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PACS. 12.20. — Electromagnetic and unified gauge fields.

Summary. — Having regard to the developing interest in a lattice-structured vacuum
in interpreting the structure of particles, an aspect of the electrically structured lattice
model of the vacuum is discussed in relation to electrie-field energy. It is shown that
a necessary condition is that the lattice should have planar boundaries. This implies
a domain structure somewhat analogous to that found in ferromagnetic materials.

Modern physical theory is tending to regard the vacuum medium as having strue-
ture somewhat analogous to that of crystalline materials. Thus we see WEISSKOPF (1)
discussing quantum electroweak dynamics and asserting that the Higgs field implies
that the vacuum has a certain fixed direction in isospace, namely that of the spinor
associated with the Higgs field. WEISSKOPF states that the situation is like that of a
ferromagnet, in which the direction in real space is determined as long as the energy
transfers are smaller than the Curie energy.

This, of course, implies an ordered structure of the vacuum medium, a feature
discussed at some length by REBBI (2) in an article entitled The lattice theory of quark
confinement. REBBI refers to a 1974 proposal by WiLsox that QCD (Quantum Chromo-
dynamics) should be formulated on a cubic lattice, an array that divides space and
time into discrete points, but is essentially an approximation to real space-time. The
advantage is that this allows calculations to be made that would otherwise be im-
possible.

This author, in collaboration with Dr. M. EacLEs, has advocated the analysis of
a vacuum structure and shown how a value of the fine-structure constant correct to
about one part in a million can be determined by a cubic lattice model of the vacuum 3.
Further research on this model has now shown the essential need for a particular
boundary condition imposed upon a physical portrayal of the vacuum state expressed
in terms of electrical charge. It is in view of the current interest in lattice theory as

() V. F. WEISSKOPF: Phys. Today, 34-11, 69 (1981).
(*) C. REBBI: Sci. 4m., 248, 36 (1983).
(®)) H. AsppEN and D. M. EAGLES: Phys. Leif. A4, 41, 423 (1972).
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applied to the vacuum field system that it seems appropriate to draw attention to
what has been, to the author at least, a rather elusive consideration.

The vacuum is seen to be electrically neutral on a macroscopic scale. It has long
been regarded as the seat of electric displacement currents according to Maxwell’s
theory and so should have some electrical content microscopically. In recent times
the physical character of the vacuum could be ignored by reliance upon Maxwell’s
equations, but experiments by Gramam and Lanoz (%) have now given cause for coming
back to the position that the vacuum does contain electrical structure and can be the
seat of forces asserted on test apparatus.

If the elements of this vacuum structure are in a state of stable equilibrium and
comprise electric charge, then, in order to satisfy Earnshaw’s law, they must pervade
a charged electrical continuum of opposite polarity. The latter is necessary to assure
stability by providing a restoring action upon displacement. Accordingly, the only
feasible electrical model for a vacuum state having structure is one for which discrete
charges q of the same polarity interact to form a lattice within a continuum of opposite
charge density o. It seems logical to suppose that the charges ¢ are of equal magnitude
and that o is uniform over a local region of space.

Then, by simple analysis, one may show that if a lattice parameter d is written to
satisfy

(1) qg=od?,

the electrically-neutral state of the vacuum implies that each charge ¢ takes up a space
volume d®. With a uniform electric field of intensity E applied we find that the charges ¢
will all be displaced in unison to satisfy

(2) Eq = kz,

where k is a constant restoring force rate and x is displacement. In effect, the whole
lattice is displaced relative to the background continuum.
The energy density stored by this displacement is

(3) W = Lka?/d®

or, from (2)

(4) W = $(Eq)*/kd?
and as this is 5?/8x, for a vacuum of unit permittivity, we find that % is given by
(5) k = 4ng*/d® = 4moq

from (1), thereby justifying the statement that it is a constant.

The use of this restoring force rate is fundamental to classical electron theory and
it might seem somewhat elementary to have derived it from the electrically neutral
vacuum model under discussion. However, a problem emerges upon analysis of radial
displacement of a charge ¢ within an arbitrarily spherical bounded system. At a distance
R from the centre of a sphere of continuum charge the total continuum charge acting

(Y G. M. GraEAM and D. G. LAHOZ: Naiure (London), 285, 154 (1980).
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on qis 4noR?*/3. The electric field is radial and is found by dividing this charge by R2.
Thus the electric field is 4moR/3, where R is now a vector.

For any displacement », as shown in fig. 1, a charge q at P will be subject to a
restoring foree which is the expression 47c/3 times the vector difference between two
radius vectors R, and FE,. This is simply (4n/3)ox. It follows that if ¢ is part of a
rigid lattice which is displaced as a whole by the distance  within the bounding spherical
continuum, then the lattice is subject to restoring forces which are only one-third those
expected from eq. (5).

Fig. 1.

Now consider a charge ¢ at a position at which it subtends a solid angle ¢ with
respect to an elemental area A at a planar boundary of the continuum. Let « be the
angle between this surface of area A and a plane surface drawn normal to the line
joining ¢ and A. This is shown in fig. 2.

Suppose now that ¢ is displaced slightly through a distance z and that the cor-
responding displacement along g4 is y. The effect of this is to cause the electric potential
due to the continuum in the same solid angle to reduce in effect upon ¢. It is as if ¢
were left at rest and a planar slice of thickness y cos « were removed from the boundary
surface. The electric field acting on g is, therefore, reduced by Aoy cos a/D?, where D
is the distance of ¢ from 4. Now, the solid angle ¢ intercepts a spherical surface distant D
over an area @D? and this must be A cos«. It then follows that the electric field
changes by poy, owing to the component effect of the continuum contained by the
planar boundary and this solid angle ¢. If g4 is at an angle f to the displacement =
then we find that y cos == », but since the force gpoy due to the elemental continuum
segment shown acts at this same angle to « the force resolves into a component along
of qpoy cos B. This is gpox and it sums upon integration over a full solid angle of 4»
to 4nqox to give the restoring force set by (5).

It follows that, provided the boundaries of the continuum space domain are planar
we will have conformity with the normal energy density formulation. Conversely,
since the energy density has to be that known from experimental observation, we can
say that a lattice-structured space of the kind described must have planar boundaries,
a feature which further enhances the analogy with the ferromagnetic state. We may
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then wonder whether we may yet discover the further property that space itself does
have the domain structure predicted by this enquiry. .

It remains to be seen whether such domain structure would be of a microscopic
nature confined to the dimensions of elementary particles or whether it may even ex-
tend to a cosmic scale. One consequence of the latter possibility is the prospect that
electric polarities of lattice charge and continuum may be reversed in adjacent domains,
a kind of antispace analogous with antimatter. Alternatively, there may be a harmonius
cyelic motion which is shared by the lattice, but which is reversed in adjacent domains,
Either way, if one argues that rotation shared with the Earth causes the space medium

Fig. 2.

to induce the geomagnetic field (as suggested by AspDEN (8)), it is to be expected that
geomagnetic field reversals might signal a traversal of a cosmic space domain. By cor-
relating the pattern of such geomagnetic field reversals with the Earth’s cosmic motion
through space we may then plot any large scale domain structure of the vacuum. Some
evidence of this is presented elsewhere (67), the cubic structure of the space medium
being evidenced by reversals which occur in pairs as the Earth traverses obliquely
near a cube edge.

The main point of this paper, however, is showing that planar boundaries are in-
dicated from field energy considerations. It is also relevant to note that, if the lattice
displacement in the structured vacuum were subject to propagation delays, the analysis
would present the conflict discussed above because the symmetrical propagation would
imply spherical boundary action. The answer to this could be that lattice displacement
which involves no lattice distortion keeps the relative spacings of all charges unchanged
and so the energy associated with their interaction is not affected. If no energy is
transferred, then the action appears to be one of harmonius motion and what may
otherwise be taken to be an action at a distance. This result may have some bearing
upon the reported conflicts between quantum theory and the theory of relativity in-
volving the measurement of polarization of matched pairs of photons and their ap-
parent coupling at speeds in excess of the speed of light.

* % %
The author concludes by thanking Dr. D. M. EAcLES who drew attention to the

problem of the restoring force anomaly for spherically bounded systems and has urged
its resolution.
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