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Abstract  Based on i 1972 analvsis of two-dimensionai Dasmonic osehiaions 1 an ciectrically

structured viicuum. the fine-structure constant. magnete moment of the proton md wthe g-factor
oi the clectron are all derived theoreticaily ind found o nave vinues v serfect accord with

measurement data. The anaivais 18 based on newlv stiscovered resonant interactions.

The experimental work of Nobel laurcate “on Kbizing. which earned him the
"98S prize in physics. nas highlightea the value of studving the guantum
nroperties of an electron gas in wiich the osciidations are Qarmonic and
confined to two dimensions. This has ied o the new recinue of precision
measurement of the fine-structure constant. based on ipe auantum Hall
phenomenon.

Earlier research has snown that anaivsis of the vacuum seif as 4 medium
which there are two-dimensional harmonious oscifations st the Compton
siectron freguency vcan account for Planck’s radiation faw and jead to a
derivation of the fine-structure constant on pure theoretical grounds.

The analysis presupposes that the vacuum has properties anaiogous to those
of a fluid-crystal medium. but governed by guantum eiectrocvnamic (QED)
ransitions. Thus. charges ¢ permeate s background continuum of uniform and
opposite charge polarity. They form into a structure and tend to share the
motion of coextensive material energy forms. but at the boundaries of microdo-
mains the charges can mutually annihilate with the corresponding amount of
charge in the continuum and shed energy which s transierred into a back-
ground of muon charge pairs. The latter form a migrant gas which can
reconstitute the lattice structure und the continuum at boundaries where
domains separate. The result is 4 vacuum medium exnibiting no \inear momen-
tum but abie to provide a light reference frame which adapts to the motion of
the faboratoryv-based observer and so accounts for the fight-specd isotropy
measurements of Micheison and Merlev.

‘The explanation of Planck’s radiation law is based on a feature of the two-
dimensional harmonic oscillations of the charges e reiative 1o the continuum
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charge. Storage of energy by increase of oscillation amplitude implies storage
of a proportional amount of angular momentum. As angular momentum 1s
conserved. the baiance invoives the counter-spin of a smali cubic sub-unit of the
lattice. This rotates at a frequency proportional to the energy quantum fed into
the field and so perturbs the lattice in the manner formulated as Planck’s
radiation faw and characterized by the Planck constant .

The fundamental step | took 1 1960° was of realizing that the charges e must
be at zero potentiai relative to the continuum. Had they been at minimum
potential. a negative energy state. then they would all be at rest and the vacuum
would have po naturai oscillation it was an casy task to show that the charges ¢
would have to be displaced in umison through a distance 2r relative 1o the
centres of cubie cefls of continuum charge of side d, neutralizing ¢, where r/d 1s
approximately (1.3029

Equaliv. 1t was quite straighttorward to show that, it r were the Compton
clectron half-wavelength parameter firdsumc. one could formulate:

a”f = e 2mes = (108043 (1

This is the reciprocai of the fine-structure constant « and is known to be slightly
greater than 137, from experiment. Hence the theory was well supported. as
may be cheched by putung rd = 0.3024 in cquation {15,

For « formal denvation of equation (11 sce ref.2 or the more recent ref. 2
which deduces it in the form:

o b= e2men = (08T 2P {

o

where {5 is the energy ratio ot the electron to that of the lattice charge ¢

The major step was iaken in 1972 when. in collaboration with Eagles.
established” that a resonance condition required B to be an odd integer The
most appropriate vaiuc satistving the non-negative but minimai potential
energy condition was found to be 1.843, making rid ¢.302915878 and he/2me” =
137.0359148

Petley® has recently reviewed the theoretical determinations of the fine-
structure constart and given aue recognition to this method as defined by
equation (2). It 1s valia at the level of 1 part per 10° when compared with the
measured value.

However. Petlev” in the same work draws attention to the fact that date
available to the beginning of 1983 collectively vield a value of ™' of
137.036004 to within 2.4 parts in 107, This gave me the impetus to look more
closely at the theorv discussed above to see whether there is any scope for
modification.

The ditficulty with such a proposal 1s that the analysis involving the reso-
nance is so rigorous that I had little scope for correction and. indeed. hold the
view that the vaiue calculated is the truc value for undisturbed vacuum
conditions.

)

[ have. however. long realized that the synchronizing constraints acting
between lattice domains in relative motion will cause a dispiacement of the
orbit of the lattice charges proportional to the relative velocity. This was
applied te expluin how the vacuum medium could develop magnetic fields
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when in a state of spin. leading to an explanation of the primary geomagnetic
field. Wesson’ acknowledged this saying “The origin of geomagnetism as a
cosmological problem is in a confused state. however. the only really connected
account being that of Aspden (1966)” (see ref.8).

In spite of this, the theory of the harmonic two-dimensional vacuum oscilla-
tions has remained dormant. physicists being reluctant to revive anything that
might appear to be an aether. However. the constraining mechanism involved
in the rotation of lattice structure in an enveloping lattice, the basis of this
geomagnetic field induction, has a counterpart in linear motion. The Earth
moves at a cosmic speed of about 390 km/s relative to isotropic background
radiation. If the latter is isotropic in the enveloping lattice, then we know that
the relative velocity v is 390 km/s and can work out how this affects the encrgy
storage n the spins connecting with Planck’s radiation law.

This motion is directed at about 12° to the plane in which the planets orbit the
Sun and we will suppose that this plane is common to. or parallel with, the two-
dimensional oscillations of the vacuum medium. Because cos 127 1s 0.978 we
can supposc that the in-plane component of v 1s about 380 km/s.

Now. the continuum charge and the lattice of ¢ charges move in juxtaposition
in orbits of radius r in the inertial frame when the vacuum is undisturbed by
transfational motion. This accounts for a 2r separation. noted above. If.
however. thev keep in register with charges having no transtational motion. in
spite of their own additional velocity v in their orbital planes, then their
compounded orbital velocity will vary with angle in orbit and be Qr + veosH,
where 8 is changing harmonically. Q is 2am.c*/h. the Compton angular
frequency of the electron. From the value of » already given we see that Qr is
¢/2. meaning that the charges ¢ and the continuum have relative motion at the
speed ¢ of light, a not unnatural feature of the vacuum medium under study.

Now. 10 stay in register at their compounded velocities. the expression Qr +
vcost must be of the form Q(r + dxcosH). this being the tangential velocity in
orbit, where Or is the planar displacement of the e charge orbit as a whole. Thus
we can write:

orlr = 2(v/c) (3)

The energy associated with this orbital motion is proportional to (2r +
dreosB)*. so far as the electric displacement component is concerned. There is
no displacement dependent kinetic energy because the motion in orbit about
the displaced centre is at constant speed: translational linear motion does not
affect either the angular momentum storage or the orbital kinetic energy. This
means that since. normally. there is equipartition of energy between the
displacement and kinetic energy storage. for the same change of angular
momentum we have a change of field energy enhanced by the factor:

(2r)° + (2r + drcosh)” (4)
(2r)" + (2r)°

which. for ) averaged over a complete 360° angle. is:

1+ (0r/r)~/16 (

N
~—
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From Lqudtion (3). this becomes 1 + (v/c)7/4. This is the factor by which
he/2e” must be increased when measured in a SpdCC domain having a u)smlc
motion at the speed v. With v = 380 km/s. (v/e)7/4 is 4.02 x 10 This
increases the value for v = 0 of 137.()359148 to 137.0359699. but bcdmnsc n
mind that there is a small uncertainty in the measurement of the cosmic speed v
and that it varies anyway by 30 km/s during the Earth’s orbit around the Sun.
this theoretical value will change by amounts commensurate with the current
uncertainty in the measured value. The theory is. therefore. quite viable.

It is appropriate here to note that the basic lattice structure of the vacuum.
meaning the dimensions of the lattice cells and the properties of the charge
clements. is unaffected by translational motion. For this reason. the value
derived in 1975 (see ref.9). for the proton/clectron mass ratio remains as a firm
result of the theory. This is:

mylm, = —i( 108:1) v (6)
4
where., as already noted. B is 1843 and the factor v is V(3/72) — 1.

Upon evaluation it may be verified that the proton/dumm mass ratio thus
predicted is 1.836.15232. This is in excellent accord with the measured value
and has been assessed in relation to the latest measurement.' as well as a
further comment on proton creation.!!

This strengthens the case in support of the fine-structure constant evaluation
discussed above.

We now cextend the discussion to show that two other. very basic constants
can be calculated with similar or better precision. We address first the question
of the proton magnetic moment expressed in nuclear magnetons.

Figure 1 Spherical charge form of radius a centrally located within two spherical field boundaries.
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In Figure 1. a spherical charge form of radius a is depicted centrally located
within two spherical field boundaries. It is assumed that standing wave reso-
nances exist in the field system thus portrayed. the half wavelength of which is
the radius a. There are three spheres because one defines the charge and the
charge is capable of limited movement within the field system relative to the
two boundaries. The latter have a fixed radial spacing determined by the cavity
resonance mode set up within the space between them. The limited motion of
the charge really requires that the radius of the middle sphere is 2a so that the
charge boundary tends to move about a mean position in which it lies at the
nodes of the standing oscillations. The radius of the outer sphere is deemed to
be as ncar as is feasible to a condition in which waves can travel around the
cavity in a plane passing through the centre of the system with an angle of
incidence at the middle sphere of 60°. For standing waves set up by two
travelling waves moving in opposite directions this assures that the field energy
pressure across the interface set by the middle sphere is the same on both faces.

The intrinsic magnetic moment of such a charge is that duc to its confined
oscillations as if its total inertia is that set by the energy bounded by the outer
field cavity sphere. Because the angular momentum is carried by a mass
reduced by ¢*/2Rc¢". where R is the radius of this hounding sphere. ¢ is the
charge and ¢ is the speed ot light. we expect the magnetic moment to be
anomalously increased by the usual factor 2 and by the factor:

MI(M — ¢"2Rc*) (7)
Using the classical formula:
Mc™ = 2g°3a (8)

which [ have used in many fruitful particle analyses.'” we can reduce equation
(7) to:

2(1 = 3a/dR) (9)

with the factor 2 now added.

The charge ¢ and mass M are now climinated. but we will be applying the
formula to the proton and regarding it as a unitary charge. when reacting
electrodynamically. or suppose that its quark constituents each individually
have their own resonance wave system defined by equation (9). Our task is to
calculate the ratio a/R; the value of @ or R can be different for different quarks
without affecting equation (9). provided the ratio a/R is determined.

As a preliminary guide. we know that a is the side of a triangle making an
angle of approximately 120° with a side 2a and that R is the third side. Simple
trigonometry then gives the value of R/a as V7. based on the formula:

R* = (2a)" + a° — 2(2a)cost (10)

where 8 i1s 120°. Putting this approximate value in equation (9) gives a factor
2.7912 as the magnetic moment of the charge compared with that it would have
in large orbital motion. where all its mass shares the angular momentum. Thus.
2.7912 is an approximate estimation of the magnetic moment in nuclear
magnetons if our particle system is the proton.
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The measured value is 2.792846. so we are close. To take the analysis further
we neced to make sure that the standing wave resonance in the cavity between
radii 2a and R is closed and does not involve an infinite number of revolutions
around the system.

Let there be N reflections at the outer boundary in n complete revolutions.
Given N and 17 we can then calculate 6 and find R/a. For 8 to be close to 120°,
N/n must be close to 9.4208.

There arc synchronizing constraints in this case determined by resonant
interaction with clectrons and muons in the surrounding lepton field. The wave
path around the proton cavity involves a wavelength of 2Na and we now
suppose that the radius ¢ is 1/1.836 approximately of that of the clectron
charge. Thus, the wavelength of a disturbance making one revolution around
the electron charge will be 2:7(1.836)a. which we take to be as close as possible
to 2Na so that resonance is encouraged. Thus N is approximately 5.768.

The muon field involves a response at a frequency p times that of the
clectron. where g is the effective muon/electron mass ratio. Resonance implics
that this is 205 or 207 (sce also ret. 13 for an independent analysis of muon
propertics). Thus. we expect that # will be a integral number z times p.

The Tatter resonance is stronger than that of the electron and so we expect
the two muon resonant modes to alternate. with the cavity resonance of the two
states having minimal transitional effect on the radius R. This means that N/n
must be as near equal as can be. consistent with a value of N in one case being
near 5,768 and N/n being near 9.4208.

By working through the various possible values of N and » for the two muon
modes. the optimum resonant state is found to be that for which N is 5.765 with
nas 3 times 205 and N is 9.702 with » as S times 207. This gives a value of N/n of
9.373948 for both. to within 3.78 parts per 10°. Note also that both ratios
factorize down to lower values. 1.153/123 and 1.078/115. which enhances the
resonance condition.

When this value of Nn is used to calculate 8 we obtain 119.665213° and
(Rla)” becomes 6.979724759. From equation (9) this gives a proton magnetic
moment of 2.7928467 it we suppose that the two muon resonances have equal
influence. It either resonance dominates this value can alter by up to 0.44 parts
per 10°.

However. the cssential point is that this is extremely close to the measured
value. Petley." for example. quotes a 1983 measurement of this quantity in
H,0 as 2.7927738 with a correction of 26.19 parts per 10° to convert to the free
proton state. This gives 2.7928469. a value in excellent accord with that just
calculated.

To advance this theoretical dissertation. T will now explore the scope for
applying these same principles to the clectron. In doing this we are treading on
the territory of QED which already claims tremendous quantitative success.
Indeed, according to Petley.' the YAg factor of the clectron. as measured. is:

1.001159652200(40) ()
whereas the theoretical value from QED is:

1.001159652460 (12)
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which itself i1s uncertain because it relies on measured values of the fine-
structure constant. the uncertainty being of the order of 100 parts per 10'-.

We will enter this field in the hope that we may discover some overriding
resonance condition which can help to resolve the discrepancy between equa-
tions (11) and (12).

Again we consider a standing wave resonance invoiving three spheres. but in
this case. as depicted in Figure 2. the resonance condition in the outer cavity is
deemed to be a radial resonance at the Compton frequency. Thus the radial
spacing between the middie and outer sphere is set bv half the Compton
clectron wavelength. This is 371/2« imes the electron charge radius determined
by equation (8). Note that we are not deaiing with normai electromagnetic
waves when we consider these cavity field oscillations. They should be
imagined as analogous to sound waves and are essentially oscillations of the
energy in the field just as sound waves concern oscillation of gas.

The inner cavity resonance of the electron appears to have the simple
symmetrical balanced form tllustrated in Figure 2. which is closed in one
revolution. Taking a as the radius of the clectron charge. the radius of the
middle sphere is simply vV 3a. We can. therefore. add this to 3ma/2a to obtain
the radius R and so deduce the eleciron g-factor from equation (9). However. a

Figure 2 Puttern of electron field cavity wave resonance.
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problem is that the waves in the outer cavity have a different frequency from
those in the inner cavities and. ideally. to keep a regulated phase. which might
be a consideration in understanding the nature of the charge polarity. this ratio
should be an odd integer.

This point is of less consequence so far as the proton is concerned because
the frequencies are so different that a constraint assuring this integer relation-
ship would only modity the proton g-factor by about 2 parts per 107

We therefore make the overriding condition of this odd integer relationship
by saving that the actual half wavelength of the oscillations in the two inner
field cavities is less than but as near as possible to the radius a. In other words.
R is the half wavelength at the electron’s Compton frequency incremented by
the small tactor V' 3/N. where N is the nearest odd integer above the value of
3/2a.

From the fact that o' is just a little more than 137. N = 647 and:

g2 =1+ A — (13)
2a(l+ V364 —a

from cquation (9). where g denotes the clectron g-factor.
We may tabulate the values of the fine-structure constant and the g-factor as
related by equation (13) 1in Table 1.

Table 1 Relationship  between  the
tine-structure constant and the ¢-factor.

o g2
137.03597 1.001 159 632 365
137033098 LO0T 159 652 280
137.0359¢ 1001 139 652 195

Now. bearing in mind that the value given in equation (12) was based on a
measurement of « ' of 137.035 963.'% it comes as quite a surprise to find that
equation (13) has given what does appear to be virtually identical results.
Therefore, both QED and this wave resonance theory would suggest that the
measured electron g-factor in expression (11) corresponds to a value of o'
close to 137.035 989.

Only further experimental work to measure the fine-structure constant can
resolve the issues left open. If the value holds closer to the upper end of Table |
then QED and the wave-resonance electron model discussed are both a little
discrepant. Otherwise. the theory for the fine-structure constant might still be
incomplete at the part in 10 level. Perhaps QED and the wave resonance
combine at an intersection of their g-values to so determine a common value for
the fine-structure constant. Alternativelv. one might suppose that much of the
analysis in both cases is dealing with the same field model. using different
analytical techniques. and that the departure comes from the refinements in the
model. Thus we see hadron corrections introduced in QED and contrasting
with the dual resonance modes in the model just presented.
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Equally. one can wonder how the QED theory of ¢lectron g-factor could be
so close and yet be challenged. In this connection note that quirks of nature do
occur in these theoretical calculations. Believers in magnetic monopoles could
casily have adopted the formula provided by Wangsness'® which gave the
proton magnetic moment as 2.79253 nuclear magnetons but had dubious
foundation in dimensional number theory. It did use equation (8), which itself
is interesting. The more blatant mere numerical proposition is that of Lenz.'’
which merely presented the formula 61" = 1.838.118 for the proton/electron
mass ratio. a theme which has encouraged Stanbury'® to advance the numerol-
ogy based on 7 to other fundamental constants. in the hope that something
physical might connect with the method.

Such research based on numbers does tend to make analysis of fundamental
constants appear as a disreputable pursuit, but this does not mean that the
constants cannot vield their secrets. As we have seen, physical principles can
lead to precise evaluation and QED techniques need not be the sole method of
enquiry. The latter have failed completely to give account of the pro-
ton/electron mass ratio and the proton magnetic moment. causing rescarchers
to turn in hope to quantum chromodynamics for their ultimate enlighten-

ment."” However, hopefully. the reader will favour the techniques presented
above.

References

U Aspden. H.. The Theory of Gravitation. Sabberton. Southampton (1960).
2 Aspden. H.. Physics Unified. p. 112, Sabberton. Southampton {1980).

3 Aspden. H.. Leu. Nuovo Cimento, 40, 33 {1984},

4 Aspden. H.. and Eagles. D.M.. Phys. Len., 414,423 (1972).

N

Petley. B.W.. The Fundamental Physical Constants and the Fronuer of Measurement, p. 161,

Adam Hilger. Bristol (1985).

6 Petlev, B.W.. The Fundamental Physical Constants and the Frontier of Measurement. p.309.
Adam Hilger. Bristol {1985).

7 Wesson. P.S.. Q. JI. R. Ast. Soc.. 14,9 (1973).

8 Aspden. H.. The Theory of Gravitation. 2nd Edn. Sabberton. Southampton (1966).

9 Aspden. H.. and Eagles. D.M.. Nuovo Cimento, 30A. 235 (1975).

10 Aspden. H.. Len. Nuovo Cimento. 38, 423 (1983),

11 Aspden. H.. Phyvs. Today, 37. 15 {1984).

12 Aspden. H.. Speculat. Sci. Technol.. 8. 235 (1985).

13 Aspden. H.. Lent. Nuovo Cimento, 39. 271 (1984).

4 Petley. BW.. The Fundumental Physical Consianis and the Frontier of Measurement’. p.202
and 213. Adam Hilger. Bristol (1983).

15 Petley. B.W.. The Fundamental Physical Constants and the Frontier of Measurement, p.187.
Adam Hilger. Bristol (1985).

16 Wangsness. R.K., Phys. Rev., 80. 769 (1950).

17 Lenz. F.. Phys. Rev., 82, 554 (1951).

I8 Stanbury. P.. Specular. Sci. Technol.. 8. 229 (1983).

19 Reinders. 1..J.. Rubinstein, H.. and Yazaki. S.. Phvs. Rep.. 127(1). 1 (1985).



