
The following comments are in regard to the Mills hydrino concept, which 
hypothesizes the existence of sub-ground state hydrogen atoms.

The kinetic energy K of an electron in Bohr orbit radius r is given by:

   K = q^2/((8Pi)(e0)(r)) = (1/2)(m)(v^2)

So speed v is:

   v = (q^2/((4pi)(e0)(r)(m))^0.5

and momentum is thus ~ 1/r:

   p = mv = ((m)(q^2)/(4(pi)e0(r))^0.5

Given that the radius is quantized to:

   r = (n^2) ((h^2)(e0))/((pi)(q^2)(m)),  for n = 1,2,3, ... 
                                      (or in Mills' case: n = 1/2, 1/3, ...)
so:

   v = [q^2/(2(e0)(h))]  (1/n) 

and thus:

   v ~ 1/n

The lower the quantum state (i.e. n being a fraction less than 1), the smaller 
the radius, and the higher the kinetic energy and momentum.  

When an ordinary excited atom radiates, the electron drops from a high 
potential to low potential.  Half the potential change is radiated, the other 
half is converted into orbital electron kinetic energy.  If  the process is 
reversed in ordinary atoms, and a photon absorbed, then a change in potential 
of twice the photon energy is involved, half coming from the photon, and half 
in the reduction in kinetic energy of the electron. 

In hydrino formation, if the (external) energy hole is filled is 27.2 eV, 
then, twice that energy might be involved in the external hole, 27.2 eV being 
absorbed, and 27.2 eV coming from the change in kinetic energy of the external 
atom's electron(s).  However, this point is moot, in that what happens to the 
external energy hole is likely unimportant.

Now, looking at the hydrino formation, if we have:

   r = (n) ((h^2)(e0))/((pi)(q^2)(m)), ,  for n = 1/2,1/3,1/4, ...
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instead of the normal quantized Bohr radius:

   r = (n^2) ((h^2)(e0))/((pi)(q^2)(m)),  for n = 1,2,3, ...

then we have an electron velocity of:

   v = [q^2/(2(e0)(h))]  1/(n^0.5),  for n = 1/2,1/3,1/4, ...

   v = 2.1876914x10^6 m/s  1/(n^0.5),  for n = 1/2,1/3,1/4, ...

and kinetic energy of the hydrino electron of:

   Ke = (1/2)(m)(v^2)

     = 2.179874x10^-18 J  [1/n]

     = 13.605698 eV  [1/n],  for n = 1/2,1/3,1/4, ...

so the full potential change for hydrino formation is:

   Kp = 2 * 13.605698 eV  [1/n],  for n = 1/2,1/3,1/4, ...

      = 27.21140 eV   [1/n],  for n = 1/2,1/3,1/4, ...

At this point it would superficially appear the first hydrino state requires a 
54.5 eV energy exchange, not a 27.2 eV exchange.  However, as with the 
ordinary atom, an explanation is that only the 27.2 eV is taken by the hole in 
making the first hydrino state. The rest comes from the change in state of the 
hydrino electron, which drops 54.5 eV in potential energy, but only retains 
27.2 in eV kinetic energy.  Only 27.2 eV need be taken by the hole, as Mills 
says.  However, if this is the case, there is no energy left over for trapping 
a photon inside the hydrino (as Mills requires.) It makes no sense that there 
is a photon in there.  That further makes no sense because there is no room 
for a low energy photon inside the hydrino.  Not by a log shot, because the 
(minimum) 47 keV is not available to make the photon that is small enough to 
fit in there, as we shall see.

If you assume the photon involved is trapped inside the hydrino, its 
wavelength lambda must be less than r:

   lambda <  r = (n) ((h^2)(e0))/((pi)(q^2)(m)),

                                    for n = 1/2,1/3,1/4, ...
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   lambda <  (n) 5.291773x10^-11 m,   for n = 1/2,1/3,1/4, ...

so, by Plank's equation:

   Ep = h*nu = (h*c)/lambda

   lambda = h*c/E <  r = (n) ((h^2)(e0))/((pi)(q^2)(m)),

                                    for n = 1/2,1/3,1/4, ...

and we see that the size of the hydrino decreases as n increases, i.e. 1/n 
decreases.   We have the energy of the photon Ep:

    Ep > (h*c)/[(5.291773x10^-11 m)  (n)],   for n = 1/2,1/3,1/4, ...

    Ep > 23,429.6 eV  (1/n),   for n = 1/2,1/3,1/4, ...

So, for the first state to contain a photon, the photon energy must be about 
47,000 eV!  It gets worse as the state numbers get smaller.

Now to consider the de Broglie wavelength of the Mills' orbital electron, and 
compare it to the orbital radius.  Assuming the electron kinetic energy in a 
hydrino is:

   v = 2.1876914x10^6 m/s  1/(n^0.5),  for n = 1/2,1/3,1/4, ...

and given de Broglie's:

   lambda = h/p

we have the electron wavelength in a hydrino given by:

   lambda_e = h/(m*v)

   lambda_e = 3.324914x10^-10 m [n^0.5],  for n = 1/2,1/3,1/4, ...

but this seems to conflict with:

   r = (n) ((h^2)(e0))/((pi)(q^2)(m)),  for n = 1/2,1/3,1/4, ...

     = (n) 5.291773x10^-11 m,   for n = 1/2,1/3,1/4, ...
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Taking even the first hydrino state, n = 1/2:

   lambda_e = 2.351069x10^-10 m

but:
   
   r = 2.645887x10^-11 m

a ratio of 8.885.  The problem gets worse as n gets smaller, because r ~ n and 
lambda_e ~ n^0.5, so:

   r/lambda_e = n/n^0.5 = n^0.5

and r shrinks in proportion to lambda as n gets smaller.  

How does that big electron fit into that little hydrino?  No matter how you 
cut it, the electron is not going to fit right into a sub-ground state 
hydrogen atom (at least not very long) and a photon of less than keV energy is 
way way too big.   

Some later thoughts now follow.

Given that the radius is quantized to:

   r = (n^2) ((h^2)(e0))/((pi)(q^2)(m)),  for n = 1,2,3, ...
                                      (or in Mills' case: n = 1/2, 1/3, ...)
we have:

   v = [q^2/(2(e0)(h))]  (1/n) = [q^2/(2(e0)(h)(n))]

instead of the Mills velocity:

   v = [q^2/(2(e0)(h))]  1/(n^0.5),  for n = 1/2,1/3,1/4, ...

Uncertainty of momentum (delta mv) for a particle (electron) constrained by 
distance delta x is given by Heisenberg as:

   delta mv = h/(2 Pi delta x)

but 2r acts as our delta x because the electron is contained within the 
orbitsphere, so we have (substituting 2r for delta x in the above):

   delta mv = h/(2 Pi [ 2 (n^2) ((h^2)(e0))/((pi)(q^2)(m)) ] )

   delta mv = [h (q^2)(m)] / [4 (n^2)(h^2)(e0)]
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   delta mv = (q^2)(m) / [4 (n^2)(h)(e0)]

and an uncertainty in velocity delta v:

   delta v = (q^2) / (4 (n^2)(h)(e0))

So now the question is how does delta v compare to v?  That is to say is the 
uncertainty on v small in comparison to v?  To see, let's look at the ratio:

   (delta v)/v = [ (q^2) / (4 (n^2)(h)(e0)) ] / [q^2/(2(e0)(h)(n))]

   (delta v)/v = [(2)(e0)(h)(n)] / [(4)(n^2)(h)(e0)]

   (delta v)/v = [(2)(n)] / [4 (n^2)]

   (delta v)/v = 1 / (2n)

However, with normal (non-Mills) orbitals, n is a whole number, so delta v 
remains small with respect to v.  There is not the large imbalance which is 
the subject of discussion here, which occurs because (1) n is a fraction, and 
(2) the exponents in the Mills equations differ such that as n goes to 
increasingly lower values, i.e. n = 1/x as x gets large, we have

   delta v = (1/2) (x^0.5) v

for Mill's, and the resulting velocity and thus energy gets way out of whack 
in states other than n=1.

The above relations for K, v, p  remain valid for inner electrons in the Bohr 
or Mills model (ignoring relativistic effects).  With n = 1 in these inner 
states, it appears r is valid for either model, thus either model works fine 
for the inner electrons.  Neither then violates Heisenberg.  It is only the 
hypothesized (by Mills) fractional quantum states that violate Heisenberg.  

Analysis from this perspective should have a dramatic effect on feasible 
catalysts, energy availability, and potential device design.

Notes from Dec 29, 2005 follow.

The above demonstrates that Heisenberg and de Broglie severely limit the half-
life of hydrinos or hydrino like assemblies.  Heisenberg doesn't actually 
preclude fractional orbits.  It only necessarily predicts a half-life for them 
that is shorter the smaller the fraction n = 1/2,1/3,1/4, ...
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Making practical use of hydrinos then is a matter of generating them in an 
environment where they quickly cause nuclear reactions.  A condensed matter 
environment is thus a good environment to utilize the hydrinos, but a 
difficult environment in which to generate them.  A gaseous environment is 
less than ideal because a short half-life precludes high reaction rates.  A 
liquid environment naturally provides both high density and the ability to 
create hydrinos.  The blue glow regime near the anode then may be an ideal 
regime to create and utilize hydrinos or hydrino like assemblies.
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