


Despite the serious problems he identifies in calculus, Miles Mathis upholds the derivatives of
sine and cosine (milesmathis.com/trig.html). He demonstrates (or attempts to demonstrate) that
their derivatives fall right out of the trigonometric identities.

Sines and cosines are just different measures of x and y on a circle. Their values form the points
on the unit circle, whose equation is r’ = x* + y°. Sine and cosine are transcendental functions
because their coordinate system is based on radians. A complete revolution, as high-school
students learn, is 2z radians (2x times the radius of the unit circle). The arc of a circle is

(in general) a transcendental number, though the relation of x to y is simple algebra.

Mathis attempts to prove the derivatives of sine and cosine with simple algebra, but I am afraid
he messed up his variables in the last steps. No worry—I can show he has the right premise.

To start the differentiation, let y =sin(x) b =cos(x)
Remember that, by definition, sin?(x) + cos’(x) = 1
z=y*=1-b?
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Mathis completely agrees with the standard derivatives of polynomials (based on x", where n is a
positive integer). In fact, he demonstrates how to find the standard derivatives and integrals
simply by adding and subtracting in order to form a table of Ay’s and Ax’s (calcsimp.html).

That first differential equation we all learn in calculus—

% (x“) = nx"*

—really is, as Mathis asserts, part of the logical definition of integer and exponent:

The table is true by definition. Given the definition of integer and exponent, the table follows. The table is axiomatic
number analysis of the simplest kind.

Going back to the derivative of sine, we already know how to differentiate x with respect to x—
A(x?)IAx, for example, is completely straightforward. But what about y? or b? with respect to x?

Again, the method falls right out of high-school math:
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To the credit of standard calculus, the chain rule is commonly demonstrated in the logical,
straightforward manner. This simple operation comes out of the definition of fractions and how
numerators and denominators can cancel out in multiplication. It is almost hard to believe that
the derivatives of polynomials themselves are not taught in such elementary fashion.



Thanks to the useful properties of fractions, we can continue deriving as usual:
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With the understanding of what Az/Ax stands for, let us write in more standard notation:
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Solving an equation means finding the substitutions that make both sides look alike. If you have
been paying much attention, a bell has probably rung in your head.

sin(x) cos(x) = — cos(x)[- sin(x)]
sin(x) cog(x) = cog(x) sin(x)

This differential equation simultaneously proves the derivatives of sine and cosine. It also
affirms the standard derivatives for sin?(x) and cos?(x).

The derivatives for hyperbolic sines are proved in the exact same fashion:
Let y=sinh(x) b =cosh(x)

By the hyperbolic trigonometric identities, cosh?(x) — sin*(x) = 1

z=y*=b’-1
dx dx dx dx dx

sinh(x) & = cosh(x) db
dx dx
This solution should be easier to guess:

db

d = cosh(x) = sinh(x)
dx X

sinh(x) cosh(x) = cosh(x) sinh(x)



In the article “Trigonometric functions,” Wikipedia makes the following statement:

Using only geometry and properties of limits, it can be shown that the derivative of sine is cosine and the derivative
of cosine is the negative of sine.

I have already demonstrated that the algebraic relationship of sine and cosine leads to a
smashingly simple differential equation. The essence of sine, cosine, and their derivatives has
everything to do with the geometry of the circle, and any relation to “limits” is secondary.
Wikipedia continues:

One can then use the theory of Taylor series to show that the following identities hold for all real numbers x:
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These identities are sometimes taken as the definitions of the sine and cosine function. They are often used as the
starting point in a rigorous treatment of trigonometric functions and their applications (e.g., in Fourier series), since
the theory of infinite series can be developed, independent of any geometric considerations, from the foundations of

the real number system. The differentiability and continuity of these functions are then established from the series
definitions alone.

Combining these two series gives Euler's formula: cos x + /sin x = e,

If one can accomplish a “rigorous treatment of trigonometric functions. ..independent[ly] of any geometric
considerations,” then one can analyze a work of literature without regard for its language. In
reality, math can never be separated from geometry because its raison d’étre is to quantify
geometric relations. It is true that the Taylor series further elaborate on the physical properties
of sines and cosines, but their most basic properties are not proven with these series—they are
just fleshed out in different notation, corroborating our established definitions in the process.

Continuing with my analysis with differential equations, I will now directly explain the
relationship of complex numbers to the circular and hyperbolic sines. By extension, | will
demonstrate the fundamental reason the natural base (e), coupled with the complex plane,
directly links the different conic functions.

The direct link between hyperbolic sine and circular sine is—once again—in the differential
equations. We must find a factor that equalizes each pair of “DE’s”.



If y = sinh(kx),

then the Ax for a given Ay has been compressed by a factor of k. In that case,

y' = kcosh(kx) and y" = k?sinh(kx)

This application of the chain rule is both graphically and algebraically defended:

df (u(x)) _ df(u) du
dx du dx

By the properties of fractions, the chain rule serves any conceivable function.

I have already confirmed that [sinX]" = cosx [snX]" = -sinX
and that [sinh X]" = cosh x [sinh X]" = sinh x

We want [sinhkx]’ = coshkx and [sinhkx]" = —sinhkx

Based on the first equation, the necessary k-value would first seem to be 1. However, the second
equation seems to require k* = —1. Clearly, we need some extra factor.

The standard relationship between hyperbolic sine and circular sine is
isinx = sinhix , or sin X = —i sSnhix

Let’s see what happens when we plug this in. (I will explain, in a moment, why “imaginary”
numbers divide the way they do.)

[-isinhix]" = —i - i coshix = —(=1) coshix = coshix
[coshix]' = isinhix = -[-i sSinhiX]

~. [-i sinhix]” = -[=i sinhix]

.+ SiNX = —i sinhix [snX]" = sinX]
oo [sinx]" = -sinx
Our DE’s also confirm that coshix = cosx

Hyperbolic sines and cosines are, respectively, the y- and x-values of the “unit hyperbola,” where
x* —y* = 1. Whereas the angles of a circle are based on circumference, the angles of a hyperbola
are based on area between a branch of the hyperbola and the nearby asymptote.

As a bonus, hyperbolic sines and cosines can be expressed in closed numerical form. Sines and
cosines of a circle, in general, cannot.



sinhx = 1 (e - &) coshx = (e +e7)

Let’s see what happens when we square each of these terms.

sinhx = 1e*(e” -1) coshx = 1 e7(e” +1)

sinh’ x = 2™ (e™ - 2¢” +1) cosh’ x = 1 e (e + 26™ +1)
(Remember the old “FOIL” rule they taught you for multiplying binomials.)
cosh’ x - sinh? x = 2™ (e™ + 2™ +1) - L& (e™ - 2™ +1)
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Hyperbolic sine and cosine are, indeed, written in the proper terms for the identity. Also of
interest is that when sinh(x) = 1, cosh(x) = 2. This is a direct connection with the silver ratio.

It is a short step, now, to prove the standard derivative of €*

coshx +sinhx = $e[(e” +1) + (e* -1)] =3e[(€*) +(¢*)]
=ie*[2e?] =e[e] =¢

- € = cosh X + sinh x

(ex) = sinh x + cosh X

(e =

All the properties of the natural base (e) come directly from its role in forming solutions to
particular algebra problems. The reason e is still transcendental is that its numerical solution
cannot be found directly from a finite number of polynomial terms.

Whereas the golden mean (phi) represents a static equilibrium, the natural base represents a
dynamic equilibrium. The golden mean comes out of a static algebraic problem, where simple
lines are being measured relative to one another. The exponential function comes out of a
dynamic algebraic problem, where the object of measurement is a trajectory.



Similar reasons explain why pi [x] is a transcendental number. If pi seems a little more absent
than the natural base (except for its role in angular coordinates), there is actually a good physical
explanation for this, as you will see just below.

I thank Mr. Mathis for teaching me to distinguish between the solution for a static problem and
the solution for a kinematic problem. My work on the stacked spins of the photon (see my
previous three papers, plus milesmathis.com/elecpro.html) corroborates Mathis’ conclusion that
pi is commonly misused where the appropriate coefficient is 4 (pi2.html).

When the circle is just a line wrapped around a boundary of constant radius (in which case, time
does not matter), the proper length is, indeed, 2x. However, when the circle is a series of velocity
vectors (which must include time), the proper length is 8. The explanation, again, is simple
trigonometry. The trigonometric essentials of Mathis’ “Lemma” are summed up here (pi3.html).
The easiest way to swallow his revelation is to remember that kinematic solutions demand
parametric expressions—everything must be a function of t = time, rather than y and x.

Here is an excerpt from the long, more detailed version of Mathis’ “Lemma’:

[Y]ou cannot directly compare two numbers, when one is a velocity and one is an acceleration. .. [T]he new number
you get from the ratio is not going to be a number that carries any real meaning in it.

...[For] example, what if my acceleration is 3 and your velocity is 1. Can we compare those two numbers directly?
No...With an acceleration of 3, my velocity could be anything at a given interval, and my distance traveled likewise.
What if my acceleration is w and your velocity is 1? Is & the value of any real relationship between
us? No. You can’t compare an acceleration to a velocity. You need more information. ... 2rr/t is actually
a variable or second-degree acceleration, of the form x/t3. This is because 7 is already an acceleration itself.
This gives 2mtr/t the dimensions of x/t?/t, which reduces to x/t3.

Remember that the circumference of the circle is always a product of acceleration. Inertia
keeps objects in a straight line. Only a radial force pulling inward can keep them in a circular
path (or, with gravity, a radial acceleration toward the center, since g = a). A circular path acts
as a velocity only when measured in radians (based on the “static circle).

My proofs for the tangents of curve equations are based on the fact that an object does not keep
to a single slope over an interval. Rather, the object travels from the slope at a-1 to that at a+1.
Mathis’ slope formula, as | contend, is only for static problems, where a curve must be measured
as a bunch of discrete lines, rather than a continuous stream of vectors. The tangent is not an
average between two points on a line—it is an average of all the slopes on the interval.
Measured slope must be transformed into true tangent, just as 7 must sometimes become 4.

It is well known among mathematicians that 4/ (~1.2732395) approximates the square root of
the golden ratio (~1.2720196). The difference between 4 and pi seems to explain the difference
between the Planck and Wien wavelengths for measuring wavelength of photons from heat.

| take you back to my third paper—*“The charge field explains fractals”:



Now we find the logarithmic difference (base e“ﬁ) between the fractions we got with the
Planck and Wien wavelengths.

IN(5277.7) - IN(29444) _ 151000015 exp(0.241728813)
1++/2 ~ 1.2734488

0 In(5277.7) — In(2944.4) z@

= 1.2720196
1+4/2 Vo

My money is on the Planck wavelength. Wikipedia (“Cosmic microwave background radiation™)
just happens to explain my choice:

The CMBR has a thermal black body spectrum at a temperature of 2.725 K, which peaks at the microwave range
frequency of 160.2 GHz, corresponding to a 1.873 mm wavelength. This holds if measured per unit frequency,
as in Planck’s law. If measured instead per unit wavelength, using Wien's law, the peak is at 1.06 mm
corresponding to a frequency of 283 GHz.

Planck’s wavelength seems to be the accurate one for this physical reason: Planck’s method is
directly connected to time. Wien’s measurement divorces its measurements from time.

As promised, | will now explain “imaginary numbers.” Of all the laughable misnomers, this term
has to take the cake. The existence of this term is more or less the ultimate proof that Mathis
rightly accuses modern math of being jury-rigged with fudges. The numbers themselves, happily
enough, are just a natural extension of the number line.

In the study of vectors, students encounter a notation that seems suspiciously like that for
complex numbers, except that in addition to i, the math has j and k. That is all a complex number
is—a two-dimensional vector. That imaginary numbers are still treated as though something
were magical about them seems even more baffling than the way calculus is taught. It is perhaps
the ultimate proof that modern mathematicians tend to be out of touch with this world that is the
raison d’étre for the development of math. The king has become oblivious to the people he is
supposed to serve.

With two-dimensional vectors, the “real” term acts as the dot product, and the “imaginary term”
acts as the cross product. Of course, the true meanings of “dot” and “cross product” cannot be
expressed with two dimensions. It takes 4 or 8 dimensions in mathematical space—the first
dimension as the domain for the dot product.

The study of vectors began with studies of the behavior of \-1. The square root of —1 is not
defined for a number line because a line has no intermediate rotations between 0° and 180°.
The minus sign is an operator that turns the line segment 180 degrees. Two rotations return the
line segment to its original orientation.



It turns out that negative numbers are also “imaginary” in a sense. Originally, only numbers
greater than O were considered “real” numbers. Being far more obviously connected to the
physical world, the thinking of ancient man can often seem more practical than modern man’s,
rather than less. The discovery of negative numbers was kick-started by accounting, where it
made intuitive sense to place “in the black” and “in the red” on the same number line.

Wikipedia (“Negative numbers”) elaborates once more:

Negative numbers appear for the first time in history in the Nine Chapters on the Mathematical Art (liu zhang suan-
shu), which in its present form dates from the period of the Han Dynasty (202 BC. — AD 220), but may well contain
much older material. The Nine Chapters used red counting rods to denote positive coefficients and black rods for
negative. (This system is the exact opposite of contemporary printing of positive and negative numbers in the fields
of banking, accounting, and commerce, wherein red numbers denote negative values and black numbers signify
positive values). The Chinese were also able to solve simultaneous equations involving negative numbers.

For a long time, negative solutions to problems were considered "false". In Hellenistic Egypt, the Greek
mathematician Diophantus in the third century A.D. referred to an equation that was equivalent to 4x + 20 = 0
(which has a negative solution) in Arithmetica, saying that the equation was absurd.

During the 7th century AD, negative numbers were used in India to represent debts. The Indian mathematician
Brahmagupta, in Brahma-Sphuta-Siddhanta (written in A.D. 628), discussed the use of negative numbers to
produce the general form quadratic formula that remains in use today. He also found negative solutions of quadratic
equations and gave rules regarding operations involving negative numbers and zero, such as "A debt cut off from
nothingness becomes a credit; a credit cut off from nothingness becomes a debt. " He called positive numbers
“fortunes," zero "a cipher," and negative numbers "debts."

European mathematicians, for the most part, resisted the concept of negative numbers until the 17th century,
although Fibonacci allowed negative solutions in financial problems where they could be interpreted as debits
(chapter 13 of Liber Abaci, AD 1202) and later as losses (in Flos).

In the 18th century it was common practice to ignore any negative results derived from equations, on the
assumption that they were meaningless.

There is, once more, good physical reason for the historical resistance to negative numbers.
Outside a vector or coordinate system, only numbers greater than 0 have physical meaning. This
is why mass is never negative—much less “imaginary”—despite the wishful thinking of some
modern physicists. Physical properties of objects are absolute values. Negative and complex
numbers (and the number 0) apply only to positions and motion in space.

Wikipedia’s article for the number zero sums up the good physical reasons for initial resistance
to zero as a concept:

Records show that the ancient Greeks seemed unsure about the status of zero as a number. They asked
themselves, "How can nothing be something?", leading to philosophical and, by the Medieval period, religious
arguments about the nature and existence of zero and the vacuum. The paradoxes of Zeno of Elea depend in large
part on the uncertain interpretation of zero.



Math with three-dimensional vectors began with the study of mathematical space with three
orthogonal square roots of —1: i, j, and k. This mathematical space is known as a quaternion.
For those who always wondered why cross products are not commutative (a x b = —b x a),
this property comes right out of the behavior of V-1 «yz- Those who could not appreciate why

a x a = 0 can now observe the mechanical reason. The dot product is simply the “real”
component that comes from multiplying the three “imaginary” numbers. (The difference is that
modern vector notation justhas i-i =1.)

Wikipedia has a good article on the “History of quaternions”:

From the mid 1880s, quaternions began to be displaced by vector analysis, [whose founders were both] inspired by
the quaternions as used in Maxwell's A Treatise on Electricity and Magnetism, but — according to Gibbs — found
that "... the idea of the quaternion was quite foreign to the subject." Vector analysis described the same
phenomena as quaternions, so it borrowed ideas and terms liberally from the classical quaternion literature.
However, vector analysis was conceptually simpler and notationally cleaner, and eventually quaternions were
relegated to a minor role in mathematics and physics.

From the main text on “Quaternions”:

However, quaternions have had a revival since the late 20th Century, primarily due to their utility in describing spatial
rotations. The representations of rotations by quaternions are more compact and quicker to compute than the
representations by matrices. In addition, unlike Euler angles they are not susceptible to gimbal lock. For this reason,
quaternions are used in computer graphics, computer vision, robotics, control theory, signal processing, attitude
control, physics, bioinformatics, molecular dynamics, computer simulations, and orbital mechanics. For example, it is
common for the attitude-control systems of spacecraft to be commanded in terms of quaternions. Quaternions have
received another boost from number theory because of their relationships with the quadratic forms.

Going back to two-dimensional complex numbers, you may have figured out how to divide by i.
Since i is a rotation by 90 degrees, the reverse is a backward rotation of the same magnitude.
That is why 1/i = -i.





