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Although the “unit hyperbola” is x2 – y2 = 1, the most basic hyperbola is y = 1/x. Hyperbolic 
functions are intricately connected with exponents and natural logarithms—for reasons far more 
fundamental than integrals and derivatives, as we have already observed. 
 
The area under 1/x—for intervals beginning at x = 1—is ln(x). This long-established fact can also 
be proved without infinite series. The fundamental reason is that the area increases arithmetically 
(1, 2, 3…) while the x-value (abscissa) increases geometrically (a, a2, a3…). Wikipedia sums it 
up in the article “Hyperbolic angle”: 
 
The quadrature of the hyperbola was first accomplished by Gregoire de Saint-Vincent in 1647 in his momentous 
Opus geometricum quadrature circuli et sectionum coni. As David Eugene Smith wrote in 1925:  
 

[He made the] quadrature of a hyperbola to its asymptotes, and showed that as the area increased in 
arithmetic series the abscissas increased in geometric series. 

 

History of Mathematics, pp. 424,5 v. 1 
 
By definition, the logarithms of geometric progression increase arithmetically. The term 
logarithm shares a common root with the term arithmetic, and now you know why. 
 
As for measuring the area under the curve with infinite series, it is certainly objectionable to 
follow the standard procedure of shrinking a series of rectangles to width = 0. But this is not the 
only systematic way to create an infinite series of rectangles under the curve. The alternative is a 
fractal analysis. Fractals avoid the entire issue of one dimension of the problem disappearing. 
Just add big rectangles to smaller rectangles—rather than having all the rectangles shrink. 
 
The reason ln(x) does not find the area under 1/x for values less than 1 is the following: 
The interval (0, 1) contains the slope leading up to the singularity at x = 0. This is the behavior of 
an improper integral. An integral that applies everywhere on the x-axis will require a primordial 
form of renormalization. 
 
Clearly, the standard model for linear differential equations applies for at least some geometric 
situations it attempts to address. The standard integral for 1/x is correct under at least some 
circumstances. But does 1/x give the proper tangent of ln(x)? In other words, does it properly 
average the series of slopes from x+1 to x–1? 
 
Regardless of standard calculus, the slope of ln x is still intimately connected with 1/x. For 
reminder’s sake, Mr. Mathis believes the slope of ln x is simply the following: 
 

 
 
For high values of x, Mathis’ slope approaches the standard derivative. Mathis accepts this 
asymptotic relationship but believes that mathematicians got seduced into producing a false 
derivative. I agree that they must have derived the equation improperly—I do not excuse them. 
But I can show that the derivative is true nevertheless. 
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For good measure, let’s compare Mathis’ graph with the graph of 1/x: 
 

 
 
At x = 21, only very close magnification can tell the “simplistic” slope formula apart from the 
standard derivative. 
 

 
 
At x = 80, even my simple graphing program has a hard time resolving the difference. The 
“simple man’s” slope of ln x does not just get closer to the standard slope (1/x) in absolute terms. 
The relative difference becomes vanishingly small as well. Mathis does not dispute this. 
 
The diminishing-interval scheme of standard calculus is physically, mathematically, and 
intuitively untenable because one of the dimensions disappears when it shouldn’t. The typical 
proof for a derivative or antiderivative involves a sort of renormalization. 
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Richard Feynman called renormalization a “dippy” process (http://milesmathis.com/quant.html) 
despite his promotion of it. As Miles Mathis puts it (power.html): 
 
Renormalization was perfected by a famous physicist named Richard Feynman, and he is notorious for calling his 
own creation “hocus-pocus” that was “not mathematically legitimate.” He also called it a shell-game. What does 
renormalization do? It removes zeroes and infinities from equations that are imploding or exploding. 
 
The way around this conundrum is so simple that the only things blocking its favor have to be 
deconstructionism and self-aggrandizing physicists. The fake genius presents an inscrutable 
world the masses can never comprehend. The true genius unlocks the doors for the masses. 
 
Again, the infinite series for ln x does not have to be in the form of rectangles that disappear at 
the limit. It can be composed in terms of a fractal. And this fractal can be produced in terms of 
normal polynomials—whose derivatives and integrals Mathis has already corroborated. 
 
Expanding the exponential function into a power series is a straightforward process: 
 

   
 

    
 
Doing the same for the inverse—the logarithmic function—is somewhat trickier. An inverse 
function is a second measurement of the original function, so we should not be too surprised that 
the unfolding process of the inverse function will often be more complicated. 
 
In Wikipedia, under “Natural logarithm,” this identity is given: 
 

 
 
To put it more clearly… 
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The relationship between x and y is easy to see, even if Wolfram Alpha requires one to find it 
manually. 
 

  

  

€ 

y =
x − 1
x + 1



  4 

Upon substituting (1+u)/(1–u) for x, Alpha calculates this derivative: 
 

 
 
Except for missing that factor of 2, the polynomial inside the parentheses looks exactly like the 
expected derivative for the original equation. Unfortunately, substituting terms of y for the x-
term puts polynomials into the denominator, and we want to avoid that. It prevents the straight 
derivation from regular polynomials and requires us to postulate a new kind of “chain rule.” 
 
That extra term in front of our expected derivative— (u – 1)2

 —is what I like to call the 
“unfolding operator.” It turns the basic series into the form that applies to normal use. 
 
Since an exponential curve is simply a fractal form of variable acceleration, it should be possible 
to express the inverse function—the natural-log curve—in nearly as straightforward a fashion. 
After some fussing with the information available on the Internet, I finally figured out a power 
function that works for all x > 0 : 
 

 
 
The derivative is 
 

 
 
That term in the big brackets disappears because it is a constant. The (-1/Q) is also a constant, so 
it does not affect the basic derivative for each term in the sum. These two series corroborate that 
the derivative of ln x really is 1/x. And they use only terms whose standard derivatives are upheld 
by Mathis’ work (milesmathis.com/calcsimp.html). 
 
I started with the standard Taylor series of ln x: 
 

    
 
The more general form uses a in place of 1. Accommodating the Taylor Series for ln(x) will 
provide convergence for 0 < x < 2a (www.understandingcalculus.com/chapters/23/23-1.php). 
The modified series must include ln(a) as one of the terms. Since the original series converges 
for all numbers less than 1, we can find logarithms for all reciprocals of the desired x > 1. For the 
term ln(a) in the modified series, simply use the negative result of ln(1/a) = –ln(a). 
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These graphs demonstrate how to unfold the logarithmic function from the Taylor series: 
 

  
 
 
Unfolding the derivative works the same basic way: 
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Perhaps some of you still don’t appreciate why the derivative of the exponential function is 
simply itself while the inverse function is not. Again, you have to look at the properties of the 
graph. Precisely because ln x is ex turned on its side, the horizontal asymptote at y = 0 turns into a 
singularity (vertical asymptote) at x = 0. Furthermore, notice that the slope of the exponential 
function approaches vertical (∞) as the x-value heads into the great beyond. When the function is 
turned on its side, the slope approaches horizontal (0). Between the two asymptotes of the 
derivative is a sharp turn where y = x = 1. This corresponds to the hard turn of ln x. 
 
Although the graph of an inverse function is simply the original curve turned on its side, the 
behavior of such functions is a surprisingly fascinating field of study. Measuring x relative to y is 
generally a rather different operation from measuring y relative to x. 
 
 
The standard derivative of an inverse function is 
 

€ 

d
dx

f −1(x) =
1

′ f ( f −1(x))
 

 
To compare the slope of a function directly to its inverse, the interval ∆x used to find the slope of 
the original curve must become the interval ∆y when addressing the inverse function. Mathis 
said, as you might recall, that shrinking the interval is liable to change the curvature in an 
undesirable way for proving a derivative. However the interval ∆x used to measure the slope of 
one curve must become the ∆y of the turned-over curve—and that will mean that the inverse 
function uses (in general) a different ∆x for its own slope. So even according to Mathis’ 
definition of slope, it seems there are two valid intervals for measuring it. 
 
 

When comparing the slope of ex directly 
to its inverse, the interval ∆x changes 
over the course of the curve if a constant 
interval ∆x for the slope of ln x is being 
used as the reference. (In other words, 
the ∆y stays constant, this time, for ex.) 
 
Recall that Mathis’ slope for ln(x) is 
 

 
 
Recall how this slope approached 1/x for 
large values of x. Now notice that the 
standard derivative of an inverse function 
is the reciprocal of 

€ 

′ f ( f −1(x)). The 
inverse function is plugged into the 

derivative of the original function. In Mathis’ slope for ln(x), let us now replace x with ex. 
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Our formula becomes 
 

 
 
Here is the resulting curve: 
 

For high values of x, this graph approaches the 
exponential curve. I have already demonstrated 
that the derivative of ex is its own self. I now 
prove, in very simple terms, that the derivative of 
an inverse function is 1 ⁄

€ 

′ f ( f −1(x))—backing up 
this standard formula as well. 
 
The website I consulted for this formula 
(oregonstate.edu/instruct/mth251/cq/ 
Stage6/Lesson/inverseDeriv.html) offers this proof 
(or, more precisely, the lack thereof): 
 
We shall not discuss the proof of this theorem here, 
other than to say that the proof is relatively difficult. 
A first step in the proof is to show that the inverse of a 
continuous function is continuous [come on—it’s just the 
curve turned on its side!]; this proof in turn requires an 
application of the Intermediate Value Theorem (see Stage 4) 
[I think we need inverse value theorem] and actually reveals 
a fairly deep and subtle property of the real numbers. 
 
Yes, it is a subtle property of numbers, but I can 
penetrate it—it’s these people who apparently 
can’t. Sometimes it pays just to leave the 
blackboard and go to the graph paper. 
 
Some mathematicians have so little faith in what 
the plain numbers tell them that it seems a wonder 

they are part of mathematics at all. How do they ever find the faith to believe that math works—
or science? I have concluded that this is the root of deconstructionism: the lack of faith that what 
one detects can inform him of absolute truth. This sort of insecurity easily breeds the sentiment 
that humans don’t find truth—but rather create truth. In this way, no fabrication is seen as a lie—
fabrication becomes the expected way of building one’s own knowledge. 
 
On the next page, I plug ln x into the series expansion of ex. Since the exponential function really 
is its own derivative, it should be easy to get the derivative of its inverse. 
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When each function is the other’s inverse, the slope of one curve can be mapped with the results 
for the other. The transform is a simple reciprocal relationship. How neatly this process works 
for exponential and logarithmic functions is the ultimate expression of the linearity of 
exponential change. (That line which resembles y = x is the result of plugging lnx into ex.) 
 
A differential equation corroborates this simple graphical analysis: 
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So to those professors who think the derivative of an inverse function is too hard to prove, 
give me a break. 




