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1) CAPACITANCE  

The phenomena of capacitance is a type of electrical energy storage in the form of a field in 
an enclosed space. This space is typically bounded by two parallel metallic plates or two metallic 
foils on an interviening insulator or dielectric. A nearly infinite variety of more complex structures 
can exhibit capacity, as long as a difference in electric potential exists between various areas of the 
structure. The oscillating coil represents one possibility as to a capacitor of more complex form, and 
will be presented here.

2) CAPACITANCE INADEQUATELY EXPLAINED  

The perception of capacitance as used today is wholly inadequate for the proper 
understanding of this effect. Steinmetz mentions this in his introductory book ''Electirc Discharges, 
Waves and impulses''. To quote, ''Unfortunately, to a large extent in dealing with dielectric fields the 
prehistoric conception of the electro- static charge (electron) on the conductor still exists, and by its 
use destroys the analogy between the two components of the electric field, the magnetic and the 
dielectric, and makes the consideration of dielectric fields unnecessarily complicated.''

3) LINES OF FORCE AS REPRESENTATION OF DIELECTRICITY  

Steinmetz continues, ''There is obviously no more sense in thinking of the capacity current 
as current which charges the conductor with a quantity of electricity, than there is of speaking of the 
inductance voltage as charging the conductor with a quantity of magnetism. But the latter 
conception, together with the notion of a quantity of magnetism, etc., has vanished since Faraday's 
representation of the magnetic field by lines of force."

4) THE LAWS OF LINES OF FORCE  

All the lines of magnetic force are closed upon themselves, all dielectric lines of force 
terminate on conductors, but may form closed loops in electromagnetic radiation. 

These represent the basic laws of lines of force. It can be seen from these laws that any line 
of force cannot just end in Space.

5) FARADAY AND LINES OF FORCE THEORY  

Farady felt strongly that action at a distance is not possible thru empty space, or in other 
words, "matter cannot act where it is not." He considered space pervaided with lines of force.
Almost everyone is familiar with the patterns formed by iron filings around a magnet. These filings 
act as numerous tiny compasses and orientate themselves along the lines of force existing around 
the poles of the magnet. Experiment has indicated that a magnetic field does possess a fiberous 
construct. By passing a coil of wire thru a strong magnetic field and listening to the coil output in 
headphones, the experimenter will notice a scraping noise. J. J. Thompson performed further 
experiments involving the ionization of gases that indicate the field is not continuous but fiberous 
(Electricity and Matter, 1906).

6) PHYSICAL CHARACTERISTICS OF LINES OF FORCE  

Consider the space between poles of a magnet or capacitor as full of lines of electric force. 
See Fig. 1. These lines of force act as a quantity of stretched and mutually repellent springs. Anyone 
who has pushed together the like poles of two magnets has felt this springy mass. Observe Fig. 2. 
Notice the lines of force are more dense along AB in between poles, and that more lines on A are 



facing B than are projecting outwards to infinity. Consider the effect of the lines of force on A. 
These lines are in a state of tension and pull on A. Because more are pulling on A towards B than 
those pulling on A away from B, we have the phenomena of physical attraction. Now observe Fig. 
3. Notice now that the poles are like rather than unlike, more or all lines pull A away from B; the 
phenomena of physical repulsion.

7) MASS ASSOCIATED WITH LINES OF FORCE IN MOTION  

The line of force can be more clearly understood by representing it as a tube of force or a 
long thin cylinder. Maxwell presented the idea that the tension of a tube of force is representative of 
electric force (volts/inch), and in addition to this tension, there is a medium through which these 
tubes pass. There exists a hydrostatic pressure against this media or ether. The value of this pressure 
is one half the product of dielectric and magnetic density. Then there is a pressure at right angles to 
an electric tube of force. If through the growth of a field the tubes of force spread sideways or in 
width, the broadside drag through the medium represents the magnetic reaction to growth in 
intensity of an electric current. However, if a tube of force is caused to move endwise, it will glide 
through the medium with little or no drag as little surface is offered. This possibly explains why no 
magnetic field is associated with certain experiments performed by Tesla involving the movement 
of energy with no accompanying magnetic field.



8) INDUCTANCE AS AN ANALOGY TO CAPACITY  

Much of the mystery surrounding the workings of capacity can be cleared by close 
examination of inductance and how it can give rise to dielectric phenomena. Inductance represents 
energy storage in space as a magnetic field. The lines of force orientate themselves in closed loops 
surrounding the axis of current flow that has given rise to them. The larger the space between this 
current and its images or reflections, the more energy that can be stored in the resulting field.

9) MECHANISM   OF STORING ENERGY MAGNETICALLY  

The process of pushing these lines or loops outward, causing them to stretch, represents 
storing energy as in a rubber band. A given current strength will hold a loop of force at a given 
distance from conductor passing current hence no energy movement. If the flow of current 
increases, energy is absorbed by the field as the loops are then pushed outward at a corresponding 
velocity. Because energy is in motion an E.M.F. must accompany the current flow in order for it to 
represent power. The magnitude of this E.M.F. exactly corresponds to the velocity of the field. Then 
if the current ceases changing in magnitude thereby becoming constant, no E.M.F. accompanies it, 
as no power is being absorbed. However, if the current decreases it represents then a negative 
velocity of field as the loops contract. Because the E.M.F. corresponds exactly to velocity it 
reverses polarity and thereby reverses power so it now moves out of the field and into the current. 
Since no power is required to maintain a field, only current, the static or stationary field, represents 
stored energy.

10) THE LIMITS OF ZERO AND INFINITY  

Many interesting features of inductance manifest themselves in the two limiting cases of 
trapping the energy or releasing it instantly. Since the power supply driving the current has 
resistance, when it is switched off the inductance drains its energy into this resistance that converts 
it into the form of heat. We will assume a perfect inductor that has no self resistance. If we remove 
the current supply by shorting the terminals of the inductor we have isolated it without interrupting 
any current. Since the collapse of field produces E.M.F. this E.M.F. will tend to manifest. However, 
a short circuit will not allow an E.M.F. to develop across it as it is zero resistance by definition. No 
E.M.F. can combine with current to form power, therefore, the energy will remain in the field. Any 
attempt to collapse forces increased current which pushes it right back out. This is one form of 
storage of energy.

11) INSTANT ENERGY RELEASE AS INFINITY  

Very interesting (and dangerous) phenomena manifest themselves when the current path is 
interrupted, thereby causing infinite resistance to appear. In this case resistance is best represented 
by its inverse, conductance. The conductance is then zero. Because the current vanished instantly 
the field collapses at a velocity approaching that of light. As E.M.F. is directly released to velocity 
of flux, it tends towards infinity. Very powerful effects are produced because the field is attempting 
to maintain current by producing whatever E.M.F. required. If a considerable amount of energy 
exists, say several kilowatt hours* (250 KWH for lightning stroke), the ensuing discharge can 
produce most profound effects and can completely destroy inadequately protected apparatus.

* The energy utilized by an average household in the course of one day.



12) ANOTHER FORM OF ENERGY APPEARS  

Through the rapid discharge of inductance a new force field appears that reduces the rate of 
inductive E.M.F. formation. This field is also represented by lines of force but these are of a 
different nature than those of magnetism. These lines of force are not a manifestation of current 
flow but of an electric compression or tension. This tension is termed voltage or potential 
difference.

13) DIELECTRIC ENERGY STORAGE SPATIALLY DIFFERENT THAN MAGNETIC   
ENERGY STORAGE

Unlike magnetism the energy is forced or compressed inwards rather than outwards. 
Dielectric lines of force push inward into internal space and along axis, rather than pushed outward 
broadside to axis as in the magnetic field. Because the lines are mutually repellent certain amounts 
of broadside or transverse motion can be expected but the phenomena is basically longitudinal. This 
gives rise to an interesting paradox that will be noticed with capacity. This is that the smaller the 
space bounded by the conducting structure the more energy that can be stored. This is the exact 
opposite of magnetism. With magnetism, the units volumes of energy can be thought of as working 
in parallel but the unit volumes of energy in association with dielectricity can be thought of as 
working in series.

14) VOLTAGE IS TO DIELECTRICITY AS CURRENT IS TO MAGNETISM  

With inductance the reaction to change of field is the production of voltage. The current is 
proportionate to the field strength only and not velocity of field. With capacity the field is produced 
not by current but voltage. This voltage must be accompanied by current in order for power to exist. 
The reaction of capacitance to change of applied force is the production of current. The current is 
directly proportional to the velocity of field strength. When voltage increases a reaction current 
flows into capacitance and thereby energy accumulates. If voltage does not change no current flows 
and the capacitance stores the energy which produced the field. If the voltage decreases then the 
reaction current reverses and energy flows out of the dielectric field.

As the voltage is withdrawn the compression within the bounded space is relieved. When the 
energy is fully dissipated the lines of force vanish.

15) AGAIN THE LIMITS ZERO AND INFINITY  

Because the power supply which provides charging voltage has internal conductance, after it 
is switched off the current leaking through conductance drains the dielectric energy and converts it 
to heat. We will assume a perfect capacitance having no leak conductance. If we completely 
disconnect the voltage supply by open circuiting the terminals of the capacitor, no path for current 
flow exists by definition of an open circuit. If the field tends to expand it will tend towards the 
production of current. However, an open circuit will not allow the flow of current as it has zero 
conductance. Then any attempt towards field expansion raises the voltage which pushes the field 
back inwards. Therefore, energy will remain stored in the field. This energy can be drawn for use at 
any time. This is another form of energy storage.

16) INSTANT ENERGY RELEASE AR INFINITY  

Phenomena of enormous magnitude manifest themselves when the criteria for voltage or 
potential difference is instantly disrupted, as with a short circuit. The effect is analogous with the 
open circuit of inductive current. Because the forcing voltage is instantly withdrawn the field 



explodes against the bounding conductors with a velocity that may exceed light. Because the 
current is directly related to the velocity of field it jumps to infinity in its attempt to produce finite 
voltage across zero resistance. If considerable energy had resided in the dielectric force field, again 
let us say several K.W.H. the resulting explosion has almost inconceivable violence and can 
vaporize a conductor of substantial thickness instantly. Dielectric discharges of great speed and 
energy represent one of the most unpleasant experiences the electrical engineer encounters in 
practice.

17) ENERGY RETURNS TO MAGNETIC FORM  

The powerful currents produced by the sudden expansion of a dielectric field naturally give 
rise to magnetic energy. The inertia of the magnetic field limits the rise of current to a realistic 
value. The capacitance dumps all its energy back into the magnetic field and the whole process 
starts over again. The inverse of the product of magnetic storage capacity and dielectric storage 
capacity represents the frequency or pitch at which this energy interchange occurs. This pitch may 
or may not contain overtones depending on the extent of conductors bounding the energies.

18) CHARACTERISTIC IMPEDANCE AS REPRESENTATION OF PULSATION OF   
ENERGY FIELD

The ratio of magnetic storage ability to that of the dielectric is called the characteristic 
impedance. This gives the ratio of maximum voltage to maximum current in the oscillatory 
structure. However, as the magnetic energy storage is outward and the dielectric storage is inward 
the total or double energy field pulsates in shape or size. The axis of this pulsation of force is the 
impedance of the system displaying oscillations and pulsation occurs at the frequency of oscillation.

19) ENERGY INTO MATTER  

As the voltage or impedance is increased the emphasis is on the inward flux. If the 
impedance is high and rate of change is fast enough (perfect overtone series), it would seem 
possible the compression of the energy would transform it into matter and the reconversion of this 
matter into energy may or may not synchronize with the circle of oscillation. This is what may be 
considered supercapacitance, that is, stable longterm conversion into matter.

20) MISCONCEPTIONS OF PRESENT THEORY OF CAPACITANCE  

The misconception that capacitance is the result of accumulating electrons has seriously 
distorted our view of dielectric phenomena. Also the theory of the velocity of light as a limit of 
energy flow, while adequate for magnetic force and material velocity, limits our ability to visualize 
or understand certain possibilities in electric phenomena. The true workings of free space 
capacitance can be best illustrated by the following example. It has been previously stated that 
dielectric lines of force must terminate on conductors. No line of force can end in space. If we take 
any conductor and remove it to the most remote portion of the universe, no lines of force can extend 
from this electrode to other conductors. It can have no free space capacity, regardless of the size of 
the electrode, therefore it can store no energy. This indicates that the free space capacitance of an 
object is the sum mutual capacity of it to all the conducting objects of the universe.

21) FREE SPACE INDUCTANCE IS INFINITE  

Steinmetiz in his book on the general or unified behavior of electricity ''The Theory and 
Calculation of Transient Electric Phenomena and Oscillation," points out that the inductance of any 
unit length of an isolated filamentary conductor must be infinite. Because no image currents exist to 



contain the magnetic field it can grow to infinite size. This large quantity of energy cannot be 
quickly retrieved due to the finite velocity of propagation of the magnetic field. This gives a non 
reactive or energy component to the inductance which is called electromagnetic radiation.

22) W  ORK OF   TESLA, STEINMETZ AND FARADAY  

In the aforementioned books of Steinmetz he develops some rather unique equations for 
capacity. Tesla devoted an enormous portion of his efforts to dielectric phenomena and made 
numerous remarkable discovers in this area. Much of this work is yet to be fully uncovered. It is my 
contention that the phenomena of dielectricity is wide open for profound discovery. It is ironic that 
we have abandoned the lines of force concept associated with a phenomena measured in the units 
called farads after Farady, whose insight into forces and fields has led to the possibility of 
visualization of the electrical phenomena.

23) QUESTION AS TO THE VELOCITY OF DIELECTRIC FLUX  

It has been stated that all magnetic lines of force must be closed upon themselves, and that 
all dielectric lines of force must terminate upon a conducting surface. It can be infered from these 
two basic laws that no line of force can terminate in free space. This creates an interesting question 
as to the state of dielectric flux lines before the field has had time to propagate to the neutral 
conductor. During this time it would seem that the lines of force, not having reached the distant 
neutral conductor would end in space at their advancing wave front. It could be concluded that 
either the lines of force propagate instantly or always exist and are modified by the electric force, or 
voltage. It is possible that additional or conjugate space exists within the same boundaries as 
ordinary space. The properties of lines of force within this conjugate space may not obey the laws 
of normally conceived space.
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Table I

Magnetic Field Dielectric Field
Magnetic flux:
φ = Li 108 lines of magnetic force.

Inductance voltage:

e '=n d 
dt

10−8=L di
dt volts.

Magnetic energy:

w=
L i2

2
 joules.

Magnetomotive force:
F = ni ampere turns.

Magnetizing force:

f = F
l  ampere turns per cm.

Magnetic-field intensity:
H = 4πf 10-1 lines of magnetic force per cm2. 

Magnetic density:
B = μH  lines of magnetic force per cm2.

Permeability: μ

Magnetic flux:
φ = AB lines of magnetic force.

Dielectric flux:
ψ = Ce lines of dielectric force.

Capacity current:

i '=n d 
dt

=C di
dt amperes.

Dielectric energy:

w=
C e2

2
joules.

Electromotive force:
e = volts.

Electrifying force or voltage gradient:

G=e
l  volts per cm.

Dielectric-field intensity:

K= G
4v 2 lines of dielectric force per cm2.

Dielectric density:
D = kK lines of dielectric force per cm2.

Permittivity or specific capacity: κ

Dielectric flux:
ψ = AD lines of dielectric force.

v = 3 X 1010 = velocity of light



Table II

Magnetic Circuit Dielectric Circuit Electric Circuit

Magnetic Flux (magnetic current):
φ = lines of magnetic force.

Magnetomotive force:
F = ni ampere turns.

Permeance:

M= 
4 F .

Inductance:

L= n2
F

10−8=
n

i
10−8

henry.
 

Reluctance:

R= F


.

Magnetic energy:

w=
Li2

2
=

F 
2

10−8 joules.

Magnetic density:

B  = 
A = μH lines per cm2.

Magnetizing force:

f = F
l ampere turns per cm.

Magnetic-field intensity:
H = .4πf

Permeability:

μ = B  / H 

Reluctivity:
ρ = f / B 

Specific magnetic energy:

w0 =
.4 f 2

2
= fB  / 2 10-8 joules 

per cm3.

Dielectric flux (dielectric current):
ψ = lines of dielectric force.

Electromotive force:
e = volts.

Permittance or capacity:

C=
4 v2

e
farads.

(Elastance ? ):
1
C
= e

4 v2
.

Dielectric energy:

w=
Ce2

2
=

e
2

joules.

Dielectric density:

D =

A = κK lines per cm2.

Dielectric gradient:

G=e
l volts per cm.

Dielectric field-intensity:

K= G
4v 2

Permittivity or specific capacity:

= D
K

(Elastivity ? ):
1

= K

D .

Specific dielectric energy:

w0 =
G2

4 v2 =
GD

2 joules per 

cm3.

Electric current:

i = electric current.

Voltage:
e = volts.

Conductance:

g= i
e mhos.

Resistance:

r= e
i ohms.

Electric power:
p = ri2 = ge2 = ei watts.

Electric-current density:

I =
i
A = γG amperes per cm2.

Electric gradient:

G=e
l volts per cm.

Conductivity:

= I
G mhos-cm.

Resistivity:

ρ =
1


=
G
I ohms-cm.

Specific power:
p0 = ρI2 = G2 = GI watts per cm3.



Table of Units, Symbols, and Dimensions

Quantity Symbol
mks
Unit 

Rationalized
Defining Equation

Dimensional 
Formula 

Exponents of cgs emu
No. of emu
No. of mks cgs esu

No. of esu
No. of mks

No. of esu
No. of emu

L M T Q

1
2
3
4
5
6
7
8
9
10
11
12

13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Length
Area
Volume
Mass
Time
Velocity
Acceleration
Force
Energy
Power
Charge
Dielectric constant of 
free space
Dielectric constant

relative
Charge density

volume
surface

line
Electric intensity
Electric flux density
Electric flux
Electric potential
EMF
Capacitance
Current
Current density
Resistance
Resistivity
Conductance
Conductivity
Electric polarization
Electric susceptibility
Electric dipole moment
Electric energy density

L
A
v

M, m
T, t
v
q
F
W
P

Q, q

ε0

ε
εr

ρ
ρs

ρl

E
D
ψ
V
Vg

C
I, i
J
R
ρ
G
σ
P
xe

me

ωe

m
m2

m3

kilogram
second
m / sec
m / sec2

newton
joule
watt

coulomb

farad / m
farad / m
numeric

coulomb / m3

coulomb / m2

coulomb / m
volt / m

coulomb / m2

coulomb
volt
volt
farad

ampere
ampere / m2

ohm
ohm-m

mho
mho / m

coulomb / m2

farad / m
coulomb-m
joule / m3

A = L2

v = L3

v = L / T
a = L / T2

F = Ma
W = FL

P = W / T
F = Q2 / (4πε0L2)

ε0 = 1 / (μ0c2)

εr = ε / ε0

ρ = Q / v
ρs = Q / A
ρl = Q / L

E = F / Q = - V / L
D = εE = ψ / A

ψ = DA
V = - EL

Vg = - dφ / dt
C = Q / V
I = Q / T
J = I / A
R = V / I

ρ = RA / L
G = 1 / R

σ = 1 / ρ = J / E
P = D – ε0E = ρL

xe = P / E = ε0 (εr -1)
me = QL

ωe = DE / 2

1
2
3
0
0
1
1
1
2
2
0

-3
-3
0

-3
-2
-1
1
-2
0
2
2
-2
0
-2
2
3
-2
-3
-2
-3
1
-1

0
0
0
1
0
0
0
1
1
1
0

-1
-1
0

0
0
0
1
0
0
1
1
-1
0
0
1
1
-1
-1
0
-1
0
1

0
0
0
0
1
-1
-2
-2
-2
-3
0

2
2
0

0
0
0
-2
0
0
-2
-2
2
-1
-1
-1
-1
1
1
0
2
0
-2

0
0
0
0
0
0
0
0
0
0
1

2
2
0

1
1
1
-1
1
1
-1
-1
2
1
1
-2
-2
2
2
1
2
1
0

cm
cm2

cm3

gram
second
cm / sec
cm / sec2

dyne
erg

erg / sec
abcoulomb

abcoulomb / cm3

abcoulomb / cm2

abcoulomb / cm
abvolt / cm

abvolt
abvolt
abfarad

abampere
abampere / cm2

abohm
abohm-cm

abmho
abmho / cm

abcoulomb / cm2

erg / cm3

102

104

106

103

1
102

102

105

107

107

10-1

10-7

10-5

10-3

106

4π / 105

4π / 10
106

108

10-9

10-1

10-5

109

1011

10-9

10-11

10-5

1

cm
cm2

cm3

gram
second
cm / sec
cm / sec2

dyne
erg

erg / sec
statcoulomb

1

statcoulomb / cm3

statcoulomb / cm2

statcoulomb / cm
statvolt / cm

statvolt
statvolt
statfarad

statampere
statampere / cm2

statohm
statohm-cm

statmho
statmho / cm

statcoulomb / cm2

1
statcoulomb-cm

erg / cm3

102

104

106

103

1
10%

102

105

107

107

10c

4πc2 / 107

1

c / 105

c / 103

c / 10
104 / c

4πc / 103

4π10c
106 / c
106 / c
c2 / 105

10c
c / 103

105 / c2

107 / c2

c2 / 105

c2 / 107

c / 103

4πc2 / 107

103c
10

1
1
1
1
1
1
1
1
1
1

100c

100c
100c
100c

1 / (100c)
100c
100c

1 / (100c)
1 / (100c)
(100c)2

100c
100c

1 / (100c)2

1 / (100c)2

(100c)2

(100c)2

100c

1



Quantity Symbol
mks
Unit 

Rationalized
Defining Equation

Dimensional 
Formula 

Exponents of cgs emu
No. of emu
No. of mks cgs esu

No. of esu
No. of mks

No. of esu
No. of emu

L M T Q

34
35
36
37

38
39

40

41
42
43
44

45
46
47
48
49
50
51
52
53
54

Permeability of free space
Permeability

relative
Magnetic pole

Magnetic moment
Magnetic intensity

Magnetic flux density

Magnetic flux
Magnetic potential
MMF
Intensity of magnetization

Inductance
self

mutual
Reluctance
Reluctivity
Permeance
Permittivity
EMF
Poynting's vector
Magnetic energy density
Magnetic susceptibility

μ0

μ
μr

p

m
H

B

φ
U
F
M

L
M
R
v
P
μ
Vg

P
ωm

xm

henry / m
henry / m
numeric
weber

weber-m
ampere / m or

newton / weber
weber / m2

weber
ampere
ampere

weber / m2

henry
henry

ampere / weber
meter / henry
weber / amp
henry / meter

volt
watts / m2

joule / m3

henry / m

μ0 = 4π / 107

μ = B / H
μr = μ / μ0

p = A (B - B0)

m = pL
H = U / L or F / p

B = μH = φ / A

φ = BA = VgT
U = F = HL

F = I
M = B - B0 = m / L3

L =  φ / I
M = φ / I = W / I2

R = F  / φ
v = 1 / μ
P = 1 / R
μ = 1 / v

Vg = -dφ / dt
P = EH

ωm = HB / 2
xm = M / H

= μ0 (μr - 1)

1
1
0
2

3
-1

0

2
0
0
0

2
2
-2
-1
2
1
2
0
-1
1

1
1
0
1

1
0

1

1
0
0
1

1
1
-1
-1
1
1
1
1
1
1

0
0
0
-1

-1
-1

-1

-1
-1
-1
-1

0
0
0
0
0
0
-2
-3
-2
0

-2
-2
0
-1

-1
1

-1

-1
1
1
-1

-2
-2
2
2
-2
-2
-1
0
0
-2

pole
= maxwell / 4π

pole-cm
oersted or

gilbert / cm
gauss or

maxwell / cm2

maxwell
gilbert
gilbert

pole / cm2 or
gauss / 4π

abhenry
abhenry

abvolt
abwatt / cm2

erg / cm3

henry / m

107 / 4π

1
103 / 4π

1010 / 4π
4π / 103

104

108

4π / 10
4π / 10
104 / 4π

109

109

108

103

10
107 / 4π

statvolt
statwatt / cm2

erg / cm3

105 / c2

105 / c2

108 / c
103

10

1 / (100c)2

1 / (100c)2

1 / (100c)
1
1

μ0 = 4π / 107 henrys / m. For c = 2.998 X 108 meters / sec, ε0 = 1 / μ0c2 = 107 / (4πc2) = 8.854 X 10-12 farad / meter

For c ~         3 X 108 meters / sec, ε0 ~ 1 / (36π109) farad / meter

      c2 = 8.988 X 1016 ~ 9 X 1016
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I. INTRODUCTION

A modern radiotelegraphic antenna generally consists of two portions, a vertical portion or 
"lead-in" and a horizontal portion or "aerial." At the lower end of the lead-in, coils or condensers or 
both are inserted to modify the natural frequency of the electrical oscillations in the system. When 
oscillating, the current throughout the entire lead-in is nearly constant and the inductances, 
capacities, and resistances in this portion may be considered as localized or lumped. In the 
horizontal portion, however, both the strength of the current and the voltage to earth vary from point 
to point and the distribution of current and voltage varies with the frequency. The inductance, 
capacity, and resistance of this portion must therefore be considered as distributed throughout its 
extent and its effective inductance, capacity, and resistance will depend upon the frequency. On this 
account the mathematical treatment of the oscillations of an antenna is not as simple as that which 
applies to ordinary circuits in which all of the inductances and capacities may be considered as 
lumped.

The theory of circuits having uniformly distributed electrical characteristics such as cables, 
telephone lines, and transmission lines has been applied to antennas. The results of this theory
do not seem to have been clearly brought out; hazy and sometimes erroneous ideas appear to be 
current in the literature, textbooks, and in the radio world in general so that the methods of
antenna measurements are on a dubious footing. It is hoped that this paper may clear up some of 
these points. No attempt has been made to show how accurately this theory applies to actual 
antennas.



FIG 1. - Antenna represented as a line with uniform 
distribution of inductance and capacity

The aerial-ground portion of the antenna, or aerial for short (CD in Fig. 1), will be treated as 
a line with uniformly distributed inductance, capacity, and resistance. As is common in the 
treatment of radio circuits the resistance will be considered to be so low as not to affect the 
frequency of the oscillations or the distribution of current and voltage. The lead-in, BC in Fig. 1 , 
will be considered to be free from inductance or capacity excepting as inductance coils or 
condensers are inserted at A to modify the oscillations.

An inductance coil, particularly if a long single-layer solenoid, may also be treated from the 
standpoint of the transmission-line theory. The theoretical results obtained furnish an interesting
explanation of certain well-known experimental results.

II. CIRCUIT WITH UNIFORMLY DISTRIBUTED INDUCTANCE AND CAPACITY

The theory, generally applicable to all circuits with uniformly distributed inductance and 
capacity, will be developed for the case of two parallel wires. The wires (Fig. 2) are of length l and 
of low resistance. The inductance per unit length L1, is defined by the flux of magnetic force 
between the wires per unit of length that there would be if a steady current of 1 ampere were 
flowing in opposite directions in the two wires. The capacity per unit length C1 is defined by the 
charge that there would be on a unit length of one of the wires if a constant emf of 1 volt were 
impressed between the wires. Further, the quantity L0 = l L1 would be the total inductance of the 
circuit if the current flow were the same at all parts. This would be the case if a constant or slowly

FIG. 2

alternating voltage were applied at x = o and the far end (x = l) short-circuited. The quantity C0 = l  
C1 would represent the total capacity between the wires if a constant or slowly alternating voltage 
were applied at x =o and the far end were open.

Let it be assumed, without defining the condition of the circuit at x = l, that a sinusoidal emf 
of periodicity ω = 2πf is impressed at x = o giving rise to a current of instantaneous value i at A and



a voltage between A and D equal to v.  At B the current will be i  i
 x

dx and the voltage from B to 

C will be v v
 x

dx .

The voltage around the rectangle ABCD will be equal to the rate of decrease of the induction 
through the rectangle, hence

v v
 x

dx −v=− 
 t

L1i dx 

v
 x

=−L1
i
 t  (1)

Further, the rate of increase of the charge q on the elementary length of wire AB will be equal to the 
excess in the current flowing in at A over that flowing out at B. 

Hence

 q
 t

= d
dt

C1 v dx =i−i  i
 x

dx 

−  i
 x

=C1
v
 t  (2)

These equations (1) and (2) determine the propagation of the current and voltage waves along the 
wires. In the case of sinusoidal waves, the expressions

v=cos t A cosC 1 L1 xB sinC1 L1 x (3)

i=sin tC1

L1
A sinC1 L1 x−B cosC1 L1 x (4)

are solutions of the above equations as may be verified by substitution. The quantities A and B are 
constants depending upon the terminal conditions. The velocity of propagation of the waves, at high 

frequencies is  V = 1
C1 L1

.

III. THE ANTENNA
1. REACTANCE OF THE AERIAL-GROUND PORTION

Applying equations (3) and (4) to the aerial of an antenna and assuming that x = 0 is the lead-in end 
while x = l is the far end which is open, we may introduce the condition that the current is zero for 
x = l. From (4)

A
B
=cotC1 L1 l  (5)

Now the reactance of the aerial, which includes all of the antenna but the lead-in, is given by the 
current and voltage at x = 0. These are. from (3), (4), and (5).



V 0=A cos t=B cot C1 L1 l cos t

i0=− C1

L1
B sin t

The current leads the voltage when the cotangent is positive and lags when the cotangent is 
negative. The reactance of the aerial, given by the ratio of the maximum values of v0 to i0, is

X =− L1

C 1
cotC 1 L1 l

or in terms of C0 = lC1 and L0 = lL1

X =− L0

C 0
cot C0 L0 (6)

or since

V = 1
L1C1

X =−L1V cotC1 L1 l as given by J. S. Stone.1

At low frequencies the reactance is negative and hence the aerial behaves as a capacity. At 

the frequency  f = 1
4C 0 L0

FIG. 3 - Variation of the reactance of the aerial of an antenna with the frequency

1 J. S. Stone, Trans. Int. Congress, St. Louis, 8, p. 555; 1904.



the reactance becomes zero and beyond this frequency is positive or inductive up to the frequency 

f = 1
2C0 L0

at which the reactance becomes infinite. This variation of the aerial reactance with 

the frequency is shown by the cotangent curves in Fig. 3.

2. NATURAL FREQUENCIES OF OSCILLATION

Those frequencies at which the reactance of the aerial, as given by equation (6), becomes 
equal to zero are the natural frequencies of oscillation of the antenna (or frequencies of resonance) 
when the lead-in is of zero reactance. They are given in Fig. 3 by the points of intersection of the 
cotangent curves with the axis of ordinates and by the equation

f = m
4C 0 L0

;m=1, 3,5, etc.

The corresponding wave lengths are given by

=V
f
= l

f C0 L0

=4 l
m

that is, 4/1, 4/3, 4/5, 4/7, etc., times the length of the aerial. If, however, the lead-in has a reactance 
XX, the natural frequencies

FIG. 4 - Curves of aerial and loading coil reactance

of oscillation are determined by the condition that the total reactance of lead-in plus aerial shall be 
zero; that is,

XX + X = 0

provided that the reactances are in series with the driving emf.



(a) Loading Coil in Lead-in. - The most important practical case is that in which an 
inductance coil is inserted in the lead—in. If the coil has an inductance L, its reactance XL + ωL. 
This is a positive reactance increasing linearly with the frequency and represented in Fig. 4 by a 
solid line. Those frequencies at which the reactance of the coil is equal numerically but opposite in 
sign to the reactance of the aerial, are the natural frequencies of oscillation of the loaded antenna 
since the total reactance XL + X = 0. Graphically, these frequencies are determined by the 
intersection of the straight line - XL = ωL (shown by a dash line in Fig. 4) with the cotangent curves 
representing X. It is evident that the frequency is lowered by the insertion of the loading coil and 
that the higher natural frequencies of oscillation are no longer integral multiples of the lowest 
frequency.

The condition XL + X = 0, which determines the natural frequencies of oscillation, leads to 
the equation

L− L0

C 0
cotC0 L0=0 .

TABLE 1 – Data for loaded antenna calculations

L
L0

C0 L0

1

 L
L0
1

3
Difference,

per cent
L
L0

C0 L0

1

 L
L0
1

3
Difference,

per cent

0.0
.1
.2
.3
.4

.5

.6

.7

.8

.9

1.0
1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4

2.5
2.6
2.7
2.8
2.9

3.0
3.1

1.571
1.429
1.314
1.220
1.142

1.077
1.021
.973
.931
.894

.860

.831

.804

.779

.757

.736

.717

.699

.683

.668

.653

.640

.627

.615

.604

.593

.583

.574

.564

.556

.547

.539

1.732
1.519
1.369
1.257
1.168

1.095
1.035
.984
.939
.900

.866

.835

.808

.782

.760

.739

.719

.701

.685

.669

.655

.641

.628

.616

.605

.594

.584

.574

.565

.556

.548

.540

10.3
6.3
4.2
3.0
2.3

1.7
1.4
1.1
.9
.7

.7

.5

.5

.4

.4

.4

.3

.3

.3

.3

.3

.2

.2

.2

.2

.2

.2

.2

.1

.1

.1

.1

3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9

4.0
4.5
5.0
5.5
6.0

6.5
7.0
7.5
8.0
8.5

9.0
9.5

10.0
11.0
12.0

13.0
14.0
15.0
16.0
17.0

18.0
19.0
20.0

0.532
.524
.517

.510

.504
.4977
.4916
.4859

.4801

.4548

.4330

.4141

.3974

.3826

.3693

.3574

.3465

.3366

.3275

.3189

.3111

.2972

.2850

.2741

.2644

.2556

.2476

.2402

.2338

.2277

.2219
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.4330
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or

cotC0 L0

C0 L0

= L
L0

(8)

This equation has been given by Guyau2 and L. Cohen3. It determines the periodicity ω and hence 
the frequency and wave length of the possible natural modes of oscillation when the distributed 
capacity and inductance of the aerial and the inductance of the loading coil are known. This 
equation can not, however, be solved directly; it may be solved graphically, as shown in Fig. 4, or a 
table may be prepared indirectly which gives the values of  C0 L0 for diferent values of 

L
L0

from which then ω, f, λ may be determined. The second column of Table 1 gives these values 

for the lowest natural frequency of oscillation, which is of the major importance practically.

FIG. 5 - Curves of aerial and series condenser reactance

(b) Condenser in Lead-in. - At times in practice a condenser is inserted in the lead-in. If the 

capacity ofthe condenser is C, its reactance is X 0=− 1
C . This reactance is shown in Fig. 5 by 

the hyperbola drawn in solid line. The intersection of the negative of this curve (drawn in dash line) 
with the cotangent curves representing X gives the frequencies for which X0 + X = 0, and hence
the natural frequencies of oscilltion of the antenna. The frequencies are increased (the wave length 
decreased) by the insertion of the condenser and the oscillations of higher frequencies are not 
integral multiples of the lowest.

The condition X0 + X = 0 is expressed by the equation

−
tanC 0 L0

 C0 L0

= C
C0

(9)

2 A. Guyau, Lumiere Electrique, 15, p. 13; 1911.
3 L. Cohen, Electrical World, 65, p. 286; 1915



which has also been given by Guyau. Equation (9) may be solved graphically as above or a table 

similar to Table 1 may be prepared giving C0 L0 for different values of
C
C 0

. More 

complicated circuits may be solved in a similar manner.

3. EFFECTIVE RESISTANCE, INDUCTANCE, AND CAPACITY

In the following the most important practical case of a loading coil in the lead-in and the 
natural oscillation of lowest frequency alone will be considered. The problem is to replace the 
antenna

FIG. 6 - (a) Antenna with loading coil; (b) artificial antenna 
with lumped constant: to represent antenna in (a)

of Fig. 6, (a), which has a loading coil L in the lead-in and an aerial with distributed characteristics, 
by a circuit (Fig. 6, (b)) consisting of the inductance L in series with lumped resistance Re, 
inductance Le, capacity Ce, which are equivalent to the aerial. It is necessary, however, to state how 
these effective values are to be defined.

In practice the quantities which are of importance in an antenna are the resonant wave length 
or frequency and the current at the current maximum. The quantities Le and Ce are therefore defined 
as those which will give the circuit (b) the same resonant frequency as the antenna in (a). Further 
the three quantities Le, Ce, and Re must be such that the current in (b) will be the same as the 
maximum in the antenna for the same applied emf whether undamped or damped with any 
decrement. These conditions determine Le, Ce, and Re uniquely at any given frequency and are the 
proper values for an artihcial antenna which is to represent an actual antenna at a particular 
frequency. In the two circuits the corresponding maxima of magnetic energies and electrostatic 
energies and the dissipation of energy will be the same.

Zenneck4 has shown how these effective values of inductance capacity and resistance can be 
computed when the current and voltage distributions are known. Thus, if at any point x on the 
oscillator the current i and the voltage v are given by

 i = I f (x); v = V φ (x)

where I is the value of the current at the current loop and V the maximum voltage, then the 
differential equation of the oscillation is

4 Zenneck, Wireless Telegraphy (translated by A. E. Selig), Note 40, p. 430.



 I
 t ∫R1 f x 2dx2 I

 t 2∫L1 f x 2 dx

I
∫C1x dx 

2

∫C1x 2 dx
=0

where the integrals are taken over the whole oscillator. If we write

Re=∫R1 f x 2dx (10)

Le=∫ L1 f  x2 dx (11)

C e=
∫C1 xdx 

2

∫C1 x2 dx
(12)

the equation becomes

Re
 I
 t

Le
2 I
 t 2 

I
C e

=0

which is the diierential equation of oscillation of a simple circuit with lumped resistance, 
inductance, and capacity of values Re, Le, and Ce and in which the current is the same as the 
maximum in the distributed case. In order to evaluate these quantities, it is necessary only to 
determine f (x) and phi (x); that is, the functions which specify the distribution of current and 
voltage on the oscillator. In this connection it will be assumed that the resistance is not of 
importance in determining these distributions.

At the far end of the aerial the current is zero; that is, for x = l; il = 0. From equations (3) 
and (4) for x = l

v l=cos t AcosC1 L1 lB sinC1 L1 l  ,

il=sin t C1

L1
Asin C1 L1 l−B cosC1 L1 l  ;

and since il = 0,

A sinC1 L1l=B cosC1 L1l .

From (3), then, we obtain

v=v l cos C1 L1 l−C1 L1 x .

Hence

x=cosC1 L1 l−C1 L1 x  .

Now for x = 0 from (4) we obtain



i0=−B C1

L1
sin t=−AC1

L1
tan C1 L1 l sin t ,

whence

i=i 0
sinC1 L1 l−C1 L1 x

sin C 1 L1 l

and

f x =
sin C1 L1l−C1 L1 x 

sinC1 L1l
.

We can now evaluate the expressions (10), (11), and (12). From (10)

Re=∫0

l
R1

sin3C1 L1 l−C1 L1 xdx
sin2C1 L1 l

=
R1

sin2C1 L1 l
[ l
2
−

sin 2C1 L1 l
4C 1 L1

]

=
R0

2
[ 1
sin2C0 L0

−
cotC0 L0

C0 L0

] (13)

and from (11) which contains the same form of integral

Le=
L0

2
[ 1

sin2C0 L0

−
cotC0 L0

C0 L0

] (14)

and from (12)

C e=
∫0

l
C1 cos C1 L1 l−C1 L1 xdx 

2

∫0

l
C1 cos2 C 1 L1 l−C1 L1 xdx

=
C1

2 sin 2C 1 L1 l

C1 L1
2

C 1
l
2

sin 2 C1 L1 l
4C1 L1



=
C0

1

[
C 0 L0 cotC0 L0

2


2 C0 L0

2 sin 2C0 L0

] (15)

The expressions (14) and (15) should lead to the same value for the reactance X of the aerial 
as obtained before. It is readily shown that



X =Le−
1

C e
=− L0

C 0
cot C 0 L0

agreeing with equation (6).

It is of interest to investigate the values of these quantities at very low frequencies (omega = 
0), frequently called the static values, and those corresponding to the natural frequency of the 
unloaded anterma or the so-called fundamental of the antenna. Substituting w=o in (13), (14), and 
(15), and evaluating the indeterminant which enters in the iirst two cases, we obtain for the low-
frequency values

Re=
R0

3
 

Le=
L0

3
(16)

C e=C0

At low frequencies the current is a maximum at the lead-in end of the aerial and falls off linearly to 
zero at the far end. The effective resistance and inductance are one-third of the values which would 
obtain if the current were the same throughout. The voltage is, however, the same at all points and 
hence the effective capacity is the capacity per unit length times the length, or C0.

At the fundamental of the anterma, the reactance X of equation (6) becomes equal to zero 

and hence C0 L0=

2 . Substituting this value in (13), (14), and (15),

Re=
R0

2

Le=
L0

2
(17)

C e=
8
2 C0 .

Hence, in going from low frequencies up to that of the fundamental of the antenna, the resistance 
(neglecting radiation and skin effect) and the inductance (neglecting skin effect) increase by 50 per 

cent, the capacity, however, decreases by about 20 per cent. The incorrect values
2


L0 and 

2


C0  have been frequently given and commonly used as the values of the effective inductance 

and capacity of the antenna at its fundamental. These lead also to the incorrect value Le=
L0

2
 for 

the low-frequency inductance.5

5 These values are given by J.H. Morecroft in Pro. I.R.E., 5, p. 389; 1917. It may be shown that they lead to correct 
values for the reactance of the aerial and hence to correct values of frequency, as was verified by the experiments. 
They are not, however, the values which would be correct for an artificial antenna in which the current must be 
equal to the maximum in the actual antenna and in which the energies must also be equal to those in the antenna. 
The resistance values given by Prof. Morecroft agree with these requirements and with the values obtained here.



The values for other frequencies may be obtained by substitution in (13), (14), (15). If the 
value L of the loading coil in the lead-in is given, the quantity C0 L0 is directly obtained from 
Table 1.

4. EQUIVALENT CIRCUIT WITH LUMPED CONSTANTS

In so far as the frequency or wave length is concerned, the aerial of the antenna may be 
considered to have constant values of inductance and capacity and the values of frequency or wave
length for different loading coils can be computed with slight error using the simple formula 
applicable to circuits with lumped inductance and capacity. The values of inductance and capacity

ascribed to the aerial are the static or low frequency; that is,
L0

3
for the inductance and C0, for the 

capacity. The total inductance in case the loading coil has a value L will be L
L0

3
and the 

frequency is given by

f = 1

2 L
L0

3
C0

(18)

or the wave length in meters by

=1884 L L0

3
C 0 (19)

where the inductance is expressed in microhenrys and the capacity in microfarads. The accuracy 
with which this formula gives the wave length can be determined by comparison with the exact 
formula (8). In the second column of Table 1 are given the values of C0 L0 for different 

values of
L
L0

as computed by formula (8). Formula (18) may be written in the form 

C0 L0=
1

 L
L0
1

3
so that the values of C0 L0 which are proportional to the frequency, 

may readily be computed from this formula also. These values are given in the third column and the 
per cent differences in the fourth column of Table 1. It is seen that formula (18) gives values for the 
frequency which are correct to less than 1 per cent excepting when very close to the fundamental of 
the antenna; that is, for very small values of L. Under these conditions the simple formula leads to 
values of the frequency which are too high. Hence to the degree of accuracy shown, which is amply 

sufficient in most practical cases, the aerial can be represented by its static inductance
L0

3
with its 

static capacity C0, in series, and the frequency of oscillation with a loading coil L in the lead-in can 
be computed by the ordinary formula applicable to circuits with lumped constants.

In an article by L. Cohen,6 which has been copied in several other publications, it was stated 
that the use of the simple wave length formula would lead to very large errors when applied to the 
antenna with distributed constants. The large errors found by Cohen are due to his having used the 

value L0, for the inductance of the aerial, instead of
L0

3
, in applying the simple formula.

6 See footnote 3.



5. DETERMINATION OF STATIC CAPACITY AND INDUCTANCE

In applying formula (8) to calculate the frequency of a loaded antenna, a knowledge of the 

quantities of L0, and C0 is required. In applying formula (18),
L0

3
and C0, are required. Hence 

either formula. may be used if the static capacity and inductance values are known. We will call 

these values simply the capacity Ca and inductance La of the antenna. Hence Ca=C0 , La=
L0

3
 

and the wave length from (19) is given by

=1884LLaCa (20)

where inductance is expressed in microhenrys and capacity in microfarads, as before.

The capacity and inductance of the antenna are then readily determined experimentally by 
the familiar method of inserting, one after the other, two loading coils of known values L1 and L2

in the lead-in and determining the frequency of oscillation or wave length for each. From the 
observed wave lengths λ1 and λ2 and known values of the inserted inductances, the inductance of the 
antenna is given by

La=
L12

2−L21
2

1
2−2

2 (21)

and the capacity of the antenna from either

1=1884L1LaCa

2=1884 L2LaC a (22)

using, preferably, the equation corresponding to the larger valued coil. This assumes that formula 
(20) holds exactly.

As an example, let us assume that the antenna has L0 = 50 gomicrohenrys and C0 = 0.001 
microfarad and that we insert two coils of 50 and 150 microhenrys and determine the wave lengths,
experimentally. We know from formula (8) and Table 1 that the wave lengths would be found to be 
491 and 771 m. From the observed wave lengths and known inductances, the value of La would be 
found by (21) to be

La = 17.8 microhenrys

and from (22)

Ca = 0.000999 microfarad.

Ca is very close to the assumed value C0 but La differs by 7 per cent from
L0

3
.  This accuracy 

would ordinarily be sufficient. We can, however, by a second approximation, derive from the 
experimental data a more accurate value of La. For, the observed value of La furnishes rough values 

of
L1

L0
and

L2

L0
, which in this example come out 0.96 and 2.88, respectively. But Table 1 gives 



the per cent error of formula (20) for diierent values of
L
L0

and shows that this formula gives a 0.7 

per cent shorter wave length than 491 m (or 488 m) for
L
L0

=0.96 but no appreciable difference 

for
L
L0

=2.88 . Recomputing La, using 488 and 771 m, gives

La = 0.0168

which is practically identical with the assumed
L0

3
.

6. DETERMINATION OF EFFECTIVE RESISTANCE, INDUCTANCE, AND CAPACITY

When a source of undamped oscillations in a primary circuit induces current in a secondary 
tuned circuit, the current in the secondary, for a given emf, depends only upon the resistance of the 
secondary circuit. When damped oscillations are supplied by the source in the primary, the current 
in the secondary, for a given emf and primary decrement, depends upon the decrement of the 
secondary; that is, upon the resistance and ratio of capacity to inductance. The higher the decrement 
of the primary circuit relative to the decrement of the secondary the more strongly does the crurent 
in the secondary depend upon its own decrement. This is evident from the expression for the current 
I in the secondary circuit.

P=
N E0

2

4f R2'  I '



where δ' is the decrement of the primary, δ that of the secondary, R the resistance of the secondary, f 
the frequency, E0 the maximum value of the emf impressed on the primary, and N the wave-train 
frequency.

These facts suggest a method of determining the effective resistance, inductance, and 
capacity of an antenna at a given frequency in which all of the measurements are made at one 
frequency and which does not require any alteration of the antenna circuit whatsoever. The 
experimental circuits are arranged as shown in Fig. 7, where S represents a coil in the primary 
circuit which may be thrown either into the circuit of a source of undamped or of damped 
oscillations. The coil L is the loading coil of the antenna, which may be thrown over to the 
measuring circuit containing a variable inductance L', a variable condenser C', and variable 
resistance R'. The condenser C' should be resistance free and shielded, the shielded terminal being 
connected to the ground side. First, the undamped source is tuned to the antenna, and then the L'C' 
circuit tuned to the source. The resistance R' is then varied until the current is the same in the two 
positions. The resistance of the L'C' circuit is then equal to Re, the eifective resistance of the aerial-
ground portion of the antenna and L'C' = LeCe. Next, the damped source is tuned to the antenna and 
the change in current noted when the connection is thrown over to the L'C' circuit. If the current 
increases, the value of C' is greater than Ce, and vice versa. By varying both L' and C',



FIG. 7 - Circuits for determining the effective resistance, inductance, 
and capacity of an antenna

keeping the tuning and R' unchanged, the current can be adjusted to the same value in both 

positions. Then, since L'C' = LeCe and C '
L'

=
Ce

Le
, the value of C' gives Ce and that of L' gives Le. 

Large changes in the variometer setting may result in appreciable changes in its resistance so that 
the measurement should be repeated after the approximate values have been found. To eliminate the 
resistance of the variometer in determining Re, the variometer is shorted and, using undamped 
oscillations, the resonance current is adjusted to equality in the two positions by varying R'. Then R'  
= Re. The measurement requires steady sources of feebly damped and strongly damped current. The 
former is readily obtained by using a vacuum-tube generator. A resonance transformer and 
magnesium spark gap operating at a low-spark frequency serve very satisfactorily for the latter 
source, or a single source of which the damping can be varied will suffice. An accuracy of 1 per 
cent is not difficult to obtain.

IV. THE INDUCTANCE COIL

The transmission-line theory can also be applied to the treatment of the effects of distributed 
capacity in inductance coils. In Fig. 8, (a) , is represented a single-layer solenoid connected to a 
variable condenser C. A and B are the terminals of the coil, D the middle, and the condensers drawn 
in dotted lines are supposed to represent the capacities between the different parts of the coil. In Fig. 
8, (b), the same coil is represented as a line with uniformly distributed inductance and capacity.

FIG. 8 - Inductance coil represented as a line with uniform 
distribution of inductonce and capacity

These assumptions are admittedly rough but are somewhat justified by the known similarity of the 
oscillations in long solenoids to those in a simple antenna.



1. REACTANCE OF THE COIL

Using the same notation as before, an expression for the reactance of the coil, regarded from 
the terminals AB (x = 0) will be determined considering the line as closed at the far end D (x = l). 
Equations (3) and (4) will again be applied, taking account of the new terminal condition: that is, 
for x = l; v = 0. Hence

A cos C1 L1 l=−B sin C1 L1 l

and for x = 0

v0=A cos t=−B tanC 1 L1 cos t

i0=− C1

L1
B sin t

which gives for the reactance of the coil regarded from the terminals A B,

X '= L1

C1
tanC1 L1 l

or

X '= L0

C0
tanC0 L0 (23)

2. NATURAL FREQUENCIES OF OSCILLATION

At low frequencies the reactance of the coil is very small and positive but increases with 

increasing frequency and becomes infinite when C0 L0=

2 . This represents the lowest 

frequency of natural oscillation of the coil when the terminals are open. Above this frequency the 
reactance is highly negative, approaching zero at the frequency C0 L0= . In this range of 
frequencies the coil behaves as a condenser and would require an inductance across the terminals to 
form a resonant circuit. At the frequency C0 L0= the coil will oscillate with its terminals 
short-circuited. As the frequency is still further increased the reactance again becomes increasingly 
positive.

Condenser Across the Terminals. - The natural frequencies of oscillation of the coil when 
connected to a condenser C are given by the condition that the total reactance of the circuit shall be 
zero.

X' + X0 = 0

From this we have

 L0

C 0
tan C0 L0=

1
C



or

cotC0 L0

C0 L0

= C
C 0

(24)

This expression is the same as (8) obtained in the case of the loaded antenna, excepting that
C
C 0

 

occurs on the right-hand side instead of
L
L0

and shows that the frequency is decreased and wave

length increased by increasing the capacity across the coil in a manner entirely similar to the 
decrease in frequency produced by inserting loading coils in the antenna lead-in.

3. EQUIVALENT CIRCUIT WITH LUMPED CONSTANTS

It is of interest to investigate the effective values of inductance and capacity of the coil at 
very low frequencies.

Expanding the tangent in equation (23) into a series we find

X '= L01
2C0 L0

3
......

and neglecting higher-power terms this may be written

X '=
 L0−

3
C0



L0−
3

C 0

This is the reactance of an inductance L0 in parallel with a capacity
C 0

3
, which shows that at low 

frequencies the coil may be regarded as an inductance L0, with a capacity
C 0

3
across the terminals 

and therefore in parallel with the external condenser C. Since at low frequencies the current is 
uniform throughout the whole coil, it is self-evident that its inductance should be L0.

Now, the similarity between equations (24) and (8) shows that, just as accurately as in the 
similar case of the loaded antenna, the frequency of oscillation of a coil with any capacity C across 
the terminals is given by the formula

f = 1

2L0C
C0

3


This, however, is also the expression for the frequency of a coil of pure inductance L0 with a 

capacity
C 0

3
across its terminals and which is in parallel with an external capacity C. Therefore, 

in so far as frequency relations are concerned, an inductance coil with distributed capacity is closely 
equivalent at any frequency to a pure inductance, equal to the low-frequency inductance (neglecting 



skin effect), with a constant capacity across its terminals. This is a well-known result of 
experiment7,  at least in the case of single-layer solenoids which, considering the changes in current 
and voltage distribution in the coil with changing frequency, is not otherwise self-evident.

WASHINGTON, March 9, 1918.

7 G.W.O. Howe, Proc. Phys. Soc. London, 21 p. 251, 1912; F.A. Kolster, Proc. Inst. Radio Eng., 1, p. 19, 1913; J.C. 
Hubbard, Phys. Rev., 9, p. 529, 1917.



FURTHER DISCUSSION* ON
"ELECTRICAL OSCILLATIONS IN ANTENNAS AND 

INDUCTION COILS" BY JOHN M. MILLER

By
John H. Morecroft

I was glad to see an article by Dr. Miller on the subject of oscillations in coils and antennas 
because of my own interest in the subject, and also because of the able manner in which Dr. Miller 
handles material of this kind. The paper is well worth studying.

I was somewhat startled, however, to find out from the author that I was in error in some of 
the material presented in my paper in the Proceedings of The Institute of Radio Engineers for 
December, 1917, especially as I had at the time I wrote my paper thought along similar lines as does 
Dr. Miller in his treatment of the subject: this is shown by my treatment of the antenna resistance.

As to what the effective inductance and capacity of an antenna are when it is oscillating in 
its fundamental mode is, it seems to me, a matter of viewpoint. Dr. Miller concedes that my 
treatment leads to correct predictions of the behavior of the antenna and I concede the same to him; 
it is a question, therefore, as to which treatment is the more logical.

From the author’s deductions we must conclude that at quarter wave length oscillations

Le=
L0

2
(1)

and

C e=
8
2 C0 (2)

The value of L really comes from a consideration of the magnetic energy in the antenna 
keeping the current in the artificial antenna the same as the maximum value it had in the actual 
antenna, and then selecting the capacity of suitable value to give the artificial antenna the same 
natural period as the actual antenna. This method of procedure will, as the author states, give an 
artificial antenna having the·same natural frequency, magnetic energy, and electrostatic energy, as 
the actual antenna, keeping the current in the artificial antenna the same as the maximum current in 
the actual antenna.

But suppose he had attacked the problem from the viewpoint of electrostatic energy instead 
of electromagnetic energy, and that he had obtained thc constants of his artificial antenna to satisfy 
these conditions (which are just as fundamental and reasonable as those he did satisfy); same 
natural frequency, same magnetic energy, same electrostatic energy and the same voltage across the 
condenser of the artificial as the maximum voltage in the actual antenna. He would then have 
obtained the relations

Le=
8
2 L0 (3)

and

*Received by the Editor, June 26, 1919.



C e=
C0

2
 (4)

Now equations (3) and (4) are just as correct as are (1) and (2) and moreover the artificial 
antenna built with the constants given in (3) and (4) would duplicate the actual antenna just as well 
as the one built according to the relations given in (1) and (2). 

I had these two possibilities in mind when writing in my original article "as the electrostatic 
energy is a function of the potential curve and the magnetic energy is the same function of the 
current curve, and both these curves have the same shape, it is logical, and so on." Needless to say, I 
still consider it logical, and after reading this discussion I am sure Dr. Miller will see my reasons for 
so thinking.

When applying the theory of uniform lines to coils I think a very large error is made at once, 
which vitiates very largely any conclusions reached. The L and C of the coil, per centimeter length, 
are by no means uniform, a necessary condition in the theory of uniform lines; in a long solenoid 
the L per centimeter near the center of the coil is nearly twice as great as the L per centimeter at the 
ends, a fact which follows from elementary theory, and one which has been verified in our 
laboratory by measuring the wave length of a high frequency wave traveling along such a solenoid. 
The wave length is much shorter in the center of the coil than it is near the ends. What the capacity 
per centimeter of a solenoid is has never been measured, I think, but it is undoubtedly greater in the 
center of the coil than near the ends.

The conclusions he reaches from his equation (22) that even at its natural frequency the L of 
the coil may be regarded as equal to the low frequency value of L is valuable in so far as it enables 
one better to predict the behavior of the coil, but it should be kept in mind that really the value of L 
of the coil, when defined as does the author in the first part of his paper in terms of magnetic energy 
and maximum current in the coil at the high frequency, is very much less than it is at the low
frequency.

One point on which I differ very materially with the author is the question of the reactance 
of a coil and condenser, connected in parallel, and excited by a frequency the same as the natural 
frequency of the circuit. The author gives the reactance as infinity at this frequency, whereas it is 
actually zero. When the impressed frequency is slightly higher than resonant frequency there is a 
high capacitive reaction and at a frequency slightly lower than resonant frequency there is a high 
inductive reaction, but at the resonant frequency the reactance of the circuit is zero. The resistance 
of the circuit becomes infinite at this frequency, if the coil and condenser have no resistance, but for 
any value of coil resistance, the reactance of the combination is zero at resonant frequency.


