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1 Preface

“Nature has stored up in the universe infinite energy. The eternal recipient
and transmitter of this infinite energy is the ether. The recognition of the ex-
istence of ether, and of the functions it performs, is one of the most important
results of modern scientific research... It has been for the enlightened student of
physics what the understanding of the mechanism of the firearm or of the steam
engine is for the barbarian...” — Nikola Tesla

The fundamental problem with electricity and electrical engineering is that no one really
knows what electricity is. Many theories are bandied about on how electricity works. The
understanding of Tesla implies the understanding of what electricity is. The phenomena
of electrical waves in Tesla coils is sometimes explained in the terms of theoretical physics
and this is a misnomer. Electricity is a property of the ether, “Modern” physics denies the
existence of the ether and has virtually denied the existence of electricity.

This publication is a preliminary attempt at a symbolic representation of electrical waves.
It serves as a continuation of the works of Charles Proteus Steinmetz, the man hired by Gen-
eral Electric to decipher the Tesla patents. The language taking form here uses simple algebra
and avoids advanced math such as calculus. The purpose of this language is to provide a more
complete understanding of the phenomenon of electrical waves. The discoveries of Nikola
Tesla can now be understood as being practical and applicable to our present situation.

Present electrical theory comprises of two quadrants out of the four quadrants presented
by author Eric Dollard in this paper. This four quadrant pattern is a primal glyph of the
formative forces of our present experiential reality and can be seen in such ancient patterns
as the Mandala and Medicine Wheel. The four quadrant pattern represents the flow of
growth and decay. The quadrants of decay are prominent in our presently accepted theories.
Consumption without regeneration is the pattern of our present society and this has brought
our world off balance.

The quadrants of growth are denied to us by the ’media event’ that our lives have become.
What we are programmed to do is to ’consume more NOW’ without ever really knowing or
caring where everything comes from or where all the waste goes to. We have to pay for
everything, electricity being a constantly running bill. Free electricity is contained in the
quadrants of growth. Unless people strive for freedom in all matters we will always be held
in the thralldom of large conglomerates of profiteers.

Austrian scientist Viktor Schauberger has provided us with a basis for the understanding
of the unbalanced condition of the earth. His work shows that our whole technology is based
on the patterns of decay. Detrimental forces are enveloping us and the media promotes
more consumption. Automobiles, power generating plants, jet airplanes, etc. are all based
on explosive forces to power them. These forces promote pollution and mechanical wear.
Schauberger provided us with the insight to use the natural forces of implosion to provide
us with our present energy needs. Implosion technology is non-polluting and powerful.
The beneficial technologies presented by Schauberger hold the key to saving our world. He
provided us with the other half of the energy equation in his areas of understanding.

Eric Dollard is now providing us with the language for understanding how to use electrical
technology in a beneficial manner. As Viktor Schauberger before him he takes a monumental
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task in hand. It is the eternal battle of life versus death, in this case it is a matter of the
survival of Mother Earth. We need to apply Dollard’s work as soon as we can. It is left to
you, the reader, to make some noise in this matter and see if you can’t wake up a few people
along the way.

Tom Brown
Director,
Borderland Sciences
Research Foundation
March 28, 1986



2 INTRODUCTION 6

2 Introduction

2.1 Electrical Power

A fundamental quantity of electrical engineering is that of the energy, often known as the
work, of the electric system. This quantity is commonly known as the kilowatt-hour in
practical applications, and as the watt-second in theoretical applications. The dimensions of
electrical energy is given by

W = ψφF0

=
ψφ

T0
watt-sec (1)

where

W work or energy in watt-sec.
ψ total dielectric flux, in lines contained in the electric system
φ total magnetic flux, in lines contained in the electric system
F0 frequency of energy pulsation, cycles/sec (Hz)
T0 period of energy pulsation, in secs

The dimension of T0 is often a complex quantity.
The quantities, ψ and φ, represent the basic components of electric energy. The time

rate of the production or consumption of these fluxes are represented by the relations

E = φ/t1 lines per second (volts) (2)

I = ψ/t2 lines per second (amperes) (3)

Equation (2) is the Law of Electromagnetic Induction. The complimentary equation (3)
is the Law of Dielectric Induction.[1, 20]

Combining equation (2) with equation (3) and substituting the time relation

2t1t2 = T 2
1

and
T 2
1 = T0t

gives

E · I =
ψφ

T 2
1

= P volt-amperes (watts) (4)

This quantity, P , is known as the power of the electric system. Substitution of equation
(1) into equation (4) gives

P = W/t watt-sec/sec (watts) (5)

Hence, the power of an electric system is the time rate of energy production or consump-
tion.



2 INTRODUCTION 7

Taking the ratio of equation (2) and equation (3), and substituting

t1/t2 = 1 a dimensionless unit

gives
E

I
=
φ

ψ
= Z volts per ampere (Ohm) (6)

This quantity, Z, is known as the Characteristic Impedance of the electric system, and
expresses the ratio of magnetic flux φ to dielectric flux ψ within the system.

2.2 Time and 

Since the dimension Time is a fundamental dimension in the important electric quantities,
volts, amperes, watts, it is of interest to investigate its properties in relation to electric
phenomena and its representation in electrical engineering calculations.

The variation of an electric quantity, U , with respect to time is usually expressed as

dnU

dtn
= γnt units/secn (7)

This is known as a differential operation. Since the properties of this type of representation
are quite abstract and possess a generality beyond that required for engineering calculations,
it is desirable to develop a form of symbolic representation more suited for engineering calcu-
lations — one such symbolic expression that has found extensive application in alternating
current calculations is [2, 14]

γt =  ω radians/sec (8)

where

± = ±
√
−1

ω = 2πF

The factor  is known as the imaginary unit.
The exact nature & origin of this symbol is a mystery to most engineers and explanation

as to how an imaginary number represents real phenomena is seldom given.[8] The demystifi-
cation of this symbol and the extension of such symbolisms to electric phenomena in general
is the object of this paper.
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2.3 Examples of Generalized Electric Waves

Figure 1: Oscillogram of High-frequency Oscillation Preceding Low-frequency Oscillation of Com-
pound Circuit Caused by Switching 154 miles of 100,000 Volts Transmission Line and Step-down
Transformer off another 154 Miles of 100,000 Volts Line; High-tension Switching.

Figure 2: Oscillogram of Oscillation of Compound Circuit Consisting of 154 miles of 100,000 Volts
Line and Step-up Transformer; Connecting and Disconnecting by Low-Tension Switches. High-
tension Current and Low-tension Voltage.

Figure 3: Reproduction of Oscillogram of Propagation of Impulse Over Transmission Line; no
Reflection. Voltage.

Figure 4: Alternating Wave, O.C. Envelope, and Oscillating Wave
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2.4 Types of Current

In the study of electric phenomena, attention is usually focused on only two forms of electric
waves, those of alternating current (A.C.) and continuous, or direct current, (D.C.). While
these forms are representative of the commercial application of electric energy, they only
represent special steady state cases. It is known that during switching operations, and in
the process of modulation, other forms of electric waves appear due to energy readjustment
within the electric system. These waves are known as electric transients. Theoretical under-
standing of these phenomena is usually quite vague. These transients give rise to a new pair
of waveforms, the oscillating currents (O.C.) and impulse currents (I.C.). Thus, in general,
the variation of electric quantities with respect to time may be divided into four distinct
categories:

1. Continuous Currents (D.C.) Time Function = Zero

2. Alternating Currents (A.C.) Time Function = radians/second

3. Impulse Currents (I.C.) Time Function = nepers/second

4. Oscillating Currents (O.C.) Time Function = neper-radians/second

NOTE: Neper is a logarithmic unit for ratios of power, defined as LNp = lnx1
x2

= ln x1−ln x2
where ln is natural logarithm.

The continuous currents represent the continuous time invariant, or scalar, component
of the generalized electric wave. The alternating currents represent the continuous cyclic
variation component of the wave. The impulse currents represent the discontinuous or acyclic
component of the wave. The oscillating currents represent alternating currents that grow or
decay with respect to time, thus being a combination of cyclic and acyclic variation.

2.5 Continuous Current

The continuous current can be resolved into a pair of superimposed impulse currents, one
impulse growing in amplitude with respect to time, representing the production of electrical
energy, the other impulse decaying in amplitude with respect to time, representing the con-
sumption of electric energy. If the two rates are equal and opposite, and the two amplitudes
unequal, the resultant wave is a direct or continuous current. Likewise, an alternating cur-
rent can be resolved into a pair of superimposed oscillating currents, one oscillation growing
in amplitude with respect to time, representing the production of electric energy, the other
oscillation decaying in amplitude with respect to time, representing the consumption of elec-
tric energy. If the two rates are equal and opposite, and the two amplitudes unequal, the
resulting wave is an alternating current.

3 Representation of Alternating Electric Waves

3.1 Graphical and Trigonometric Representation

The method most commonly employed for the representation of alternating electric waves
is known as the graphical method of representation. Other names for this method are the
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phasor diagram and vector diagram. Despite the apparent simplicity of this form of repre-
sentation it often becomes too complicated for application to practical situations involving
many quantities.

Another common method is the trigonometric form of representation. This method, while
being more suited for calculating purposes, is also complex. Additionally, the trigonometric
functions possess a somewhat mystical character in the minds of most engineers[9] and require
the use of tables or computing apparatus for their solutions.

The trigonometric functions to not completely represent the alternating electric wave
since the functions sine and cosine represent horizontal and vertical projections, respectively
of the wave. The sine projection is known as the alternating current, however both the sine
and cosine functions combined together represent the alternating power, since the alternating
electric wave is a quantity of constant amplitude rotating at a constant rate.

The alternating electric wave may be called a rotating direct current. The trigonometric
functions thus only represent shadows of the complete wave of electric energy[13], that is,
the current or voltage.

3.2 Representation into Two Dimensional Space

The primary drawback of both the graphical and trigonometric methods is that they serve
as misrepresentations of the electric waves under investigation. These representations are
actually representations of two dimensional space, that is, a plane surface. The concept of
a “surface of time” is of little value for the theoretical investigation of electric waves since
time is an axial dimension typically given as points on a line.

Consider the addition of electric resistance, R, in Ohms, and magnetic inductive reac-
tance, X, in Henrys per second, (γt)L. The usual representation is given by

θ

R

X Ẑ ∣∣∣Ẑ∣∣∣ =
√

(R2 + X2)

θ = tan−1
(
X
R

)
Figure 5: Resistance, Reactance, Impedance relationship

The resistance of an electric system is, however, a property of the system that is frequency,
or time, invariant. Thus resistance is a scalar quantity independent of the time rate of
variation of the applied electric wave. Resistance then is not a vector quantity as portrayed
in figure 5.

The reactance of an electric system is its magnetic inductance, L, multiplied by the time
rate of variation of the applied electric wave, (γt), and by equation (8). It is a time dependent
quantity associated with a quadrature versor. Thus reactance is also not a vector quantity,
hence the addition of resistance and reactance is not properly represented by a vector diagram
such as figure 5. The graphical method then really serves as a form of computing apparatus
for calculating purposes and is incapable of providing the proper representation of the electric
wave required for theoretical investigation.
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3.3 Analogous 3-D Representation

An analogous representation is two perpendicular planes in space, figure 6, containing the
vectors of figure 5.

R

X

Figure 6: Resistance, Reactance in 3-d Space

If the viewer faces one of the two planes straight on, plane X for example, then the
quadrature plane, R, having no thickness by definition of a plane surface, disappears from
view:

R

X

Figure 7: Normal to X-Plane

Going one step further, let the line R be reduced to a single point, the point being the
thickness of a plane of infinitesimal area, and let the plane X be viewed edgewise reducing
it to a single line, as shown in figure 8:
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R

X

Figure 8: Normal to X-Plane

The result is a single point R in the center of a line X. Hence, the point R represents
the resistance of the electric system, and the amount of resistance is given by the “weight”
of the point. The line X represents the reactance of the electric system, and the amount of
reactance is given by the length of this line.

Despite its somewhat contrived nature, the representation of figure 8 is more represen-
tative of the electric phenomena than is figure 5.

4 Symbolic Representation of AC Waves

4.1 New methodology for extensive calculation

Since the aforementioned methods are only usable for situations involving few quantities
and are mis-representative of the electric relations to which they are applied, a method is
therefore desirable that is capable of extensive calculation while retaining a basic simple form
representative of the wave.

It is well known that the quadrature angle, 90◦or π/2 radians, represents a fundamental
relation in A.C. theory. Since 90◦is one fourth of a complete cycle, the complete alternating
electric wave is represented in its entirety by four quadrants of rotation.

These rotations are represented[3] by figures 9, 10, & 11:

Amperes

Ohms
Resistance RReceptance 1

S

+ Reactance X

- Reactance 1
B

Figure 9: ±Reactance versus Resistance Rotations
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Mhos

Volts

Conductance G 1
R

Acceptance S

- Susceptance 1
X

+ Susceptance B

Figure 10: ±Susceptance versus Conductance Rotations

Ampere
half

Watts

Voltage
half

Resistance RAcceptance S

Reactance X

Susceptance B

Figure 11: Resistance/Acceptance versus Reactance/Susceptance Rotations

Expressed in rectangular coordinates the resistance—acceptance axis is expressed by

±a = cos (θ) = power factor %

and the reactance—susceptance axis is expressed by

± b = sin (θ) = induction factor %

where θ is the time position of the alternating electric wave.

4.2 Distinguishing time variance and time invariance

To distinguish the time invariant power factor, a, from the time invariant induction factor,
b, of the complete alternating electric wave, we may mark, for instance, the inductive time
dependent component by a distinguishing index[15], or the addition of an otherwise mean-
ingless symbol, as the letter κ, to indicate the time dependency of this component. Thus
the representation of the alternating wave is given by the expression:(

γ2t
)

= a+ κb numeric (9)
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which has the meaning that the wave factor, (γ2t ), of the wave is the sum of the time invariant
power factor a of the wave, and the time variant induction factor κ b of the wave. Both factors
combine into a resultant wave of unit intensity,∣∣(γ2t )∣∣ =

√
a2 + b2 = 1 unit radius (10)

and of time position in the cycle of alternation,

θ = arctan(b/a) radians (11)

These relations in graphical representation[4] are given by —

κb

a
θ

(γ2t )

Figure 12: Power Factor a versus Induction Factor κb

Similarly,
−
(
γ2t
)

= −a− κb numeric (12)

represents a wave with the power factor −a, and the induction factor, −b, etc.
Obviously the plus sign in the symbolic expression of equation (9) does not imply simple

addition, since it connects heterogeneous quantities — time invariant and variant quantities,
but implies combination as a complex quantity.

For the present, κ is nothing but a distinguishing index, and is otherwise free of definition
except that it is not an ordinary number.

4.3 Positive and Negative Quadrature Variations (90◦steps)

A wave of unit intensity, but delayed by one quarter cycle (positive phase quadrature) lags
behind the wave a+ κb by 90◦

(γ2t )
κaκ (γ2t )

−b1

Figure 13: Positive phase quadrature delay (90◦lag)

The power factor a is translated into induction factor κa, the induction factor b is translated
into power factor −b1.

This wave is represented symbolically as:

κa− b = κ
(
γ2t
)

(13)
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Explicitly, the algebraic operation is given by

κ (a+ κb) = κ1a+ κ2b (14)

Hence, it is a property of κ that
κ2 = −1
κ1 = κ (15)

Multiplying the symbolic expression a+ κb of an alternating electric wave by κ1 represents
the retarding of the wave through one quadrant, that is one fourth cycle or 90◦lag.

A wave of unit intensity, but delayed by one half cycle (phase opposition) lags behind the
wave a+ κb by 180◦ The power factor a and induction factor b have both become negative,

(γ2t )

−a2

− (γ2t )

−b2

Figure 14: One half cycle delay (180◦lag)

that is, reversed their polarity.
This wave is expressed symbolically as

− a− κb = −
(
γ2t
)

(16)

Explicitly, the algebraic operation is given by

κ2 (a+ κb) = κ2a+ κ3b (17)

Hence, it is a property of κ that
κ3 = −κ1 = −κ (18)

Multiplying the symbolic expression a+ κb of an alternating electric wave by κ2 represents
the retarding of the wave through two quadrants, that is, one half cycle or 180◦lag.

A wave of unit intensity, but delayed by three quarter cycles (negative phase quadrature)
lags behind the wave a+ κb by 270◦.
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(γ2t )

b3

−κ (γ2t )

−κa3

Figure 15: Three quarter cycle delay (270◦lag)

The power factor a is translated into induction factor −κa3. The induction factor b is
translated into power factor b3.

The wave is expressed symbolically as

− κa+ b = −κ
(
γ2t
)

(19)

Explicitly the algebraic operation is given by

κ3 (a+ κb) = −κ2a+ κ4b (20)

Hence, it is a property of κ that
κ4 = +1 = κ0 (21)

Multiplying the symbolic representation a+ κb of an alternating electric wave by κ3 repre-
sents the retarding of the wave through three quadrants, that is, three quarter cycles.

A wave of unit intensity, but delayed by a full cycle (phase conjunction) is in phase with
the wave a+ κb

κb

a

(γ2t )

Figure 16: Full Cycle Delay (360◦lag)

Thus no translations occur between the power and induction factors.
Explicitly the algebraic operation is given by

κ4 (a+ κb) = κ4a+ κ5b (22)

Hence it is a property of κ that
κ5 = κ1 (23)

Multiplying the symbolic expressions a+κb of an alternating electric wave by κ4 represents
the retarding of the wave through one full cycle and thus leaves the wave unaltered.
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A wave of unit intensity, but advanced by one quarter cycle (negative phase quadrature)
leads ahead of the wave a+ κb by +90◦.

(γ2t )

b0

−κ (γ2t )

−κa3

Figure 17: Quarter Cycle Lead (90◦lead)

It is seen that this is exactly the same as the wave portrayed by figure 15, and is sym-
bolized by equation (19).

−κa+ b = −κ
(
γ2t
)

(19)

However the explicit algebraic operation is given by

1

κ
(a+ κb) =

a

κ
+ b (24)

Hence it is a property of κ that

1

κ
= κ3 = κ−1 = −κ1 (25)

Dividing the symbolic expression a + κb of an alternating electric wave by κ1 represents
the advancing the wave through one complete quadrant, that is, one quarter cycle, and is
directly equivalent to multiplying the symbolic expression a+ κb by κ3.

A wave of unit intensity, but advanced by one half cycle (phase opposition) leads ahead
of the wave a+ κb by 180◦. This produces exactly the wave of figure 14, and is symbolized
by equation (16)

−a− κb = −
(
γ2t
)

(16)

However, the explicit algebraic operation is given by

1

κ2
(a+ κb) = κ−2a+ κ−1b (26)

Hence it is a property of κ that
1

κ2
= κ2 = κ−2 (27)

Multiplying or dividing the symbolic expression a+κb of an alternating electric wave by κ2

represents the inversion of the wave, that is, either advancing or retarding the wave through
one half cycle, or simply reversing its sense.

Therefore if we define the heretofore meaningless symbol, κ, by the condition

κ4 = +1 (21)
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we arrive at
κn = 4

√
+1 = 11/4

n = 0, 1, 2, 3 . . .
(28)

and
κ0 = +1
κ1 = κ
κ2 = −1
κ3 = κ−1

(29)

The symbol κn is a versor operator where κ is the axis and n is the amount of turning
around the axis κ. Since the rotational unit in this case is π/2, or a quarter cycle, the
symbol is more correctly given as κn

4

Position κn
4

Rotation

Axisκ4

Figure 18: Versor operator κn4

Thus the quadrantal versor operator κn
4 serves as a fundamental symbolic representation

of the alternating current wave:

+
(
γ2t
)

= a+ κb (30a)

−
(
γ2t
)

= −a− κb (30b)

Hence
κn

4 = (γ4t ) = κ0,2a+ κ1,3b
n = 0, 1, 2, 3 . . .

(31)

4.4 Characteristics of the Versor Operator - κn
4

The algebraic operation, 11/4, represents a quartic equation and thus has four distinct roots
which may be grouped into a pair of quadratics:

(+1)1/2 = +1 , −1 (32a)

(−1)1/2 = + , − (32b)

where the unit root + is often taken as the square root of minus one which is only partially
true since − is also a root.

Hence the four unit roots are:

0) + 1 1) + 
2) − 1 3) −  (33)
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All four roots are imaginary[10] numbers, however the root +1 is usually taken as the ref-
erence root, and called a real number. These four roots represent unit versors, that is, unit
amounts of change in angular time position around an axis κ.

For a continuing number of cycles, the characteristics of the versor operator κn
4 are given

by

Table 1: Versor Characteristics

κ4m+0
4 = κ0 = +1 |+1| = 1 n = 0, 4, 8, 12, . . .

κ4m+1
4 = κ1 = + |+| = 1 n = 1, 5, 9, 13, . . .

κ4m+2
4 = κ2 = −1 |+1| = 1 n = 2, 6, 10, 14, . . .

κ4m+3
4 = κ3 = − |−| = 1 n = 3, 7, 11, 15, . . .

m = numbers of complete (360◦) cycles of revolution.

These symbols represent the following electric constants

κ0 coefficient of energy consumption
magnetic part — resistance in Ohms, R
dielectric part — conductance in Mhos, G

κ1 coefficient of magnetic energy storage
Henrys per second — reactance X

” coefficient of dielectric energy return
Farads per second — susceptance B

κ2 coefficient of energy production
magnetic part — resistance in negative Ohms, H
dielectric part — acceptance in negative Mhos, S

κ3 coefficient of dielectric energy storage
Farads per second — susceptance, B

” coefficient of magnetic energy return
Henrys per second — reactance X

The complete expression of the alternating electric wave is thus(
γ4t
)

=
(
κ0ai + κ2aii

)
+
(
κ1bi + κ3bii

)
(34)

where

ai is the coefficient of the power factor representing energy consumption
aii is the component of the power factor representing energy production
bi is the component of the induction factor representing energy storage and return
bii is the component of the induction factor representing energy return and storage
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There is a rotation sense of versor operations:

Table 2: Rotation Sense

+κ1
4 = +j +κ−14 = κ3

4 = −
+κ2

4 = −1 +κ−24 = κ2
4 = −1

+κ3
4 = −j +κ−34 = κ1

4 = +
+κ4

4 = +1 +κ−44 = κ0
4 = +1

−κ1
4 = −j −κ−14 = κ1

4 = +
−κ2

4 = +1 −κ−24 = κ0
4 = +1

−κ3
4 = +j −κ−34 = κ3

4 = −
−κ4

4 = −1 −κ−44 = κ2
4 = −1

forward rotation reverse rotation

Re-summarizing:

Table 3: Quadrature Rotations

(−κ)4 = +1 (−κ)3 = +

(−κ)2 = −1 (−κ)1 = −

4.5 Trigonometric and Exponential Equivalents for the versor

Trigonometric and exponential (natural) equivalents in trigonometric form for the versor
operator κn

4 is given by the following relations.

κn
4 = 1

1
4

= (+1)1/2 = + cos(n0) , − cos(n0)

and (35)

= (−1)1/2 = + sin(n0) , − sin(n0)

where n0 = π
2
n;

Hence
κn

4 = κ0 cos(n0) + κ1 sin(n0) + κ2 cos(n0) + κ3 sin(n0) (36)

Substituting equation (34) into (36) gives

κ0 cosn0 = + cosn0 = +ai energy consumption
κ2 cosn0 = + cosn0 = −aii energy production
κ1 sinn0 = + sinn0 = +bi energy storage/return
κ3 sinn0 = − sinn0 = −bii energy return/storage
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It can be seen that energy consumption and production is represented by the even function
while energy storage and return by the odd function, hence

0) + cosn0 = +1 − n2
0

2!
+

n4
0

4!
− n6

0

6!
+ . . .

2) − cosn0 = −1 +
n2
0

2!
− n4

0

4!
+

n6
0

6!
− . . .

1) + sinn0 = +n0 − n3
0

3!
+

n5
0

5!
− n7

0

7!
+ . . .

3) − sinn0 = −n0 +
n3
0

3!
− n5

0

5!
+

n7
0

7!
− . . .

(37)

Substituting into equation (3), the exponential equations:

± cosn0 = ±1

2

[
ε+n0 + ε−n0

]
(38)

± sinn0 = ±1

2

[
ε−n0 − ε+n0

]
(39)

which gives

κn
4 = ε±n0 = ε

2√1n0 (40)

Thus the versor operator κn
4 also serves as the basis of imaginary logarithms and eliminates

the necessity of utilizing the square root of minus one in the exponent when expressing an
alternating electric wave in exponential form. It is then also possible for n to be of non-integer
value, allowing for the expression of heretofore unexplored electric waves.

5 Non-Quadrature Operators

The previously described methods of representing alternating, or cyclic, electric waves which
were based on four divisions can be applied to cyclic divisions other than four. One such elec-
tric wave is the three-phase wave utilized for power transmission and conversion in common
use.

Since extensive analysis is not possible without going beyond the scope of this paper, only
an outline of a few important special cases of interest; the non-rotating operator of double
division κ2 which may be called the D.C. operator, the triple phase operator κ3 associated
with conventional polyphase power, and the double quadrature operator κ8.

5.1 D.C. Operator - κn
2

The operator κn
2 represents an electric wave possessing no induction factor but only the

power factor thereby representing a time invariant wave or a wave in which there is no
energy storage and return. The κn

2 represents a wave that does not vary with respect to
time but is continuous, that is, direct current.
Conversely however, κn

2 can represent an electric wave possessing no power factor but only
the induction factor thereby representing continuous energy pulsation between magnetic and
dielectric form or a single phase A.C. load into a resistive load.
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In algebraic form
κn

2 = 2
√

+1 = 11/2 for n = 0, 1 (41)

thus two roots
κ0

2 = +1 = + |+| = 1
κ1

2 = −1 = − |−| = 1
(42)

hence the positive and negative of direct current.
For the representation of energy pulsation it is

κn
−2 = 2

√
−1 = (−1)1/2 forn = 0, 1 (43)

thus the two roots
κ0
−2 = + phase A

κ1
−2 = − phase B

(44)

which are positive and negative phases.
Exponentially the operator κn

2 is expressed as

ε±n0 = κn
2 (45)

where n0 = πn (46)

Expressing the basis of natural logarithms, ε as an infinite series gives:

ε1 = 1 +
1

1!
+

1

2!
+

1

3!
+ . . . (47)

Separating the even terms from the odd terms gives

ε1 = 1 + 1
2!

+ 1
4!

+ 1
6!

+ . . .
+ 1

1!
+ 1

3!
+ 1

5!
+ 1

7!
+ . . .

(48)

But it is (the sum of two series)

Even series = cosh 1
Odd series = sinh 1

hence
κn

2 = ε±n0

=
cosh(n0) + sinh(n0)
cosh(n0)− sinh(n0)

(49)

and the symbolic expression of the electric wave is thereby given by(
γ2t
)

= (ai − aii) (50)

or alternately (γ2t ) = (bi − bii).
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5.2 Triple Phase Operator - κn
3

The triple phase operator κn
3 represents an electric wave possessing three factors which

are partially induction factors and partially power factors, thus this form of wave produces
phenomena of which there exist little to no theoretical understanding, only the most basic
relations are given here.

In algebraic form
κn

3 = 3
√

+1 = 11/3 (51)(
γ + t3

)
= κ0

3A+ κ1
3B + κ2

3C (51a)

κ0
3 = ı0 = κ3m+0

3 n = 0, 3, 6, 9, . . . |ı0| = 1
κ1

3 = ı1 = κ3m+1
3 n = 1, 4, 7, 10, . . . |ı0| = 1

κ2
3 = ı2 = κ3m+2

3 n = 2, 5, 8, 11, . . . |ı0| = 1
(52)

All three roots are imaginary numbers and if ı0 is taken as reference, it is

ı0 = +1 (53)

and −1 is no longer a unit amount of variation. Thus the conventional concepts of plus (+)
and minus (-) no longer are applicable.

The expression of κ + 3n in quadrature form gives[16]

κ0
3 = 0 = +1

κ1
3 = 1 = −1

2

[
1−  2

√
3
]

κ2
3 = 2 = −1

2

[
1 +  2

√
3
] (54)

and
κn

3 = κ0,2
4 cos

(
2
3
πn
)

+ κ1,3
4 sin

(
2
3
πn
)

(55)

Unlike the versor operators κn
2 and κn

4 , the operator κn
3 cannot be expressed directly

in trigonometric form, but requires three new trigonometric functions. Also this operator
cannot be expressed in the basis of natural logarithms but requires a new logarithm base.

5.3 Octic or Double Quadrature Operator κn
8

The octic or double quadrature operator κn
8 is of particular interest in that it is involved

in symbolic representation of aperiodic electric waves such as impulse currents, and of non-
linear conditions such as the distortion of waves by the skin effect.

Algebraically it is,
κn

8 = 8
√

+1 = 11/8 (56)

The algebraic operation 11/8 represents an octic equation and thus has eight roots. These
roots may be grouped into a pair of quartic equations

(+1)1/4 = +1 , −1
+ , −

}
= κn

4 (57)

(−1)1/4 = +h , −h
+h , −h

}
= κn

−4 = hn4 (58)
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As shown in figure (18) these two quartic systems are displaced by 45◦, or π/4 radian, angle.
Equation (57) has κ for an axis of rotation and equation (58) has h for an axis[11], which is
co-axial with the axis κ.

The symbol κn
8 represents unit versors in multiples of one-eighth period, hence

Table 4: Octic Versors

κ1
8 = κ1/2

4 = h1 = +h
κ2

8 = κ1
4 = h2 = +

κ3
8 = κ3/2

4 = h3 = +h
κ4

8 = κ2
4 = h4 = −1

κ5
8 = κ5/2

4 = h5 = −h
κ6

8 = κ3
4 = h6 = −

κ7
8 = κ7/2

4 = h7 = −h
κ8

8 = κ4
4 = h8 = +1

Thereby, the octic versor may be expressed as

± h = 2
√
 (59)

and thus h may be called the doubly imaginary unit.
In Quadrature form (−1)1/4 is given by

h1 = 1
2√2 [+1 +  ]

h3 = 1
2√2 [+1−  ]

h5 = 1
2√2 [−1 +  ]

h7 = 1
2√2 [−1−  ]

(60)

Substituting equation (59) into the value of h1 given in equation (60)

2
√

2h1 = 1 +  (61)

However
1 +  =

2
√

2 2
√
 (62)

Hence
±h = 2

√
 (59)

As with the operator κn
3 , it is not possible to express κn

8 directly in trigonometric form.
In terms of equation (60) the quadrature trigonometric form is given by

κn
8 = κ0,2 cos

(
π
4
n
)

+ κ1,3 sin
(
π
4
n
)

(63)

The operator κn
8 can be expressed in terms of the basis of natural logarithms, ε, giving

rise to the infinite series expressions of a new set of functions applicable to κn
8 . Substituting

the exponent h into the series for ε given in equation (47)

εh = 1 + h1 +
h2

2!
+
h3

3!
+
h4

4!
+ . . . (64)
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Substituting the values of table (4) for the powers of h into equation (64), and grouping like
terms produces the infinite series expressions for the functions relating to κn

8 hence

+γ0 = 1− n4
0

4!
+
n8
0

8!
− n12

0

12!
+ . . .

+γi = n0 −
n5
0

5!
+
n9
0

9!
− n13

0

13!
+ . . .

+γii =
n2
0

2!
− n6

0

6!
+
n10
0

10!
− n14

0

14!
+ . . .

+γiii =
n3
0

3!
− n7

0

7!
+
n11
0

11!
− n15

0

15!
+ . . .

+γiv = −γ0 (65)

+γv = −γi
+γvi = −γii
+γvii = −γiii
+γviii = −γiv

thus the symbolic expression of the electric wave is given by(
γ8t
)

= ± h0γ0 ± h1γi ± h2γii ± h3γiii (66)

Substituting table (4) and grouping like terms(
γ8t
)

=
+1γ0 + γii + hγi + hγiii
−1γiv − γvi − hγv − hγvii

}
(67)(

γ8t
)

= +1 (±γ0 ± γii) + h (±γi ± γiii) (68)(
γ8t
)

= α + hβ , −α− hβ , etcetera (69)

It is of interest that this expression is of similar form to(
γ2t
)

= α + b , −α− b (30a, 30b)

Therefore the factor α is similar to the power factor a, consisting of even terms, and the
factor β is similar to the induction factor b, consisting of the odd terms.

Remembering even and odd terms of the series equations of (65)

(+γ0 + γii) = α = 1 + 
n2
0

2!
− n4

0

4!
+ 

n6
0

6!
− . . . (65a)

(+γi + γiii) = β = n1
0 − 

n3
0

3!
+
n5
0

5!
− n

7
0

7!
+ . . . (65b)

It is observed that these are quite similar in form to the conventional trigonometric functions,
sine and cosine, excepting that internally the series terms are complex quantities.

5.4 Examples — Energy Consumption and Energy Production
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Figure 19: Variable Reactance, Reaction Ma-
chine

Figure 20: Hysteric Loss of Reaction Machine

Figure 21: Reaction Machine

Figure 22: Variable Reactance, Reaction Ma-
chine

Figure 23: Hysteric Loss of Reaction Machine

Rotating Apparatus exhibiting
Canonic Electric waves —

• Figures (19) and (20):

• Production of Electric Energy

• Figures (22) and (23):

• Consumption of Electric Energy

• Figure (21):

• Composite
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6 Canonic Electric Waves

6.1 Generalized Versor Operator Form

From the proceeding sections, it can be concluded that the generalized versor operator is
given as

κn
N = 11/N (70)

where

κ is the axis of rotation
N is the number of unit divisions
n is the specific amount of variation

If the number of divisions N is a power of 2, the wave can be expressed in terms of log base
ε otherwise a new basis of logarithms is required.

In quadrature trigonometric form the generalized versor operator is of the form

κn
N = κ0,2

4 cos
(
2π n

N

)
+ κ1,3

4 sin
(
2π n

N

)
(71)

The operator κn
N represents the division of the alternating wave into N units of variation

through the cycle, thus the generalized symbolic expression of the electric wave is divided
into N factors, (

γNt
)

= Aκ0
N +Bκ1

N + Cκ2
N + · · ·+NκN−1

N (72)

6.2 Imposition Produces Interference Patterns

Since the alternating electric wave is characteristically of quadrantal, or four pole, form, κn
4 ,

the four characteristics basically being,

Table 5: Four Characteristics of Alternating Electric Waves

0) Resistance, Ohms +1 R
1) Reactance, Henrys/sec + X
2) Acceptance, Mhos -1 S
3) Susceptance, Farads/sec - B

then establishing electric waves in systems of angular division other than quadrantal, such
as triple phase, produces a type of interference pattern between the natural form of the wave
and the form imposed on it by the given system. This produces partial interchanges between
the four fundamental characteristics of the natural electric wave producing unique products
such as non-inductive reactance, that is, the storage of energy with no accompanying electric
field; or inductive acceptance, that is, the growth of an electric wave with no apparent supply
of energy[17]. This would appear as a violation of the law of energy conservation, however
these phenomena do occur in practical situations and are in need of theoretical explanation.
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6.3 Quadrantal Multiplication and Canonic Electric Waves

It was seen towards the beginning of the paper that multiplication of the alternating electric
wave

a+ κb (9)

by the quadrantal versor κ resulted in the power factor a becoming an induction factor b,
and the induction factor b becoming a power factor a, hence the four characteristics have
been shifted by one quarter cycle and assume the form given in table (6)

Table 6: Quarter-Shifted Quadrantal Properties

0) Inductive Resistance, (Farads/sec)−1

1) Non-Inductive Reactance, Ohms
2) Inductive Acceptance, (Henrys/sec)−1

3) Non-Inductive Susceptance, Mhos

thus, complete interchange of the four characteristics. This multiplication, or modulation of
one wave by another wave of the same number of divisions, produces what may be called
canonic electric waves, after the process in music where one melody is combined with itself
delayed by a given number of divisions of the measure, producing harmony by interference
with itself. This process is the underlying principle behind the synchronous condenser,
hysteresis motor, and parametric amplifier. The means for producing this phenomena is
called synchronous parameter variation[18] and is the principle behind what is often called
“free energy” which hence is quite possible if not certain. More on this will be given in Part
III on Hysteresis.

7 Transient Waves

7.1 Introduction to Transient Waves

In the previous section the electric waves vary in magnitude between constant maximum
and minimum values, that is, in equal intervals of elapsed time the wave repeats the same
magnitude, thus the waves are continuous waves (C.W.) having constant period and effect
(R.M.S.) amplitude and the alternating electric wave is in reality a rotating direct current,
with single phase and double phase being a sine or cosine projection thereof.

Transient electric waves however are discontinuous waves having magnitude that grow or
decay with respect to time, appearing as intermediate between two continuous conditions.
The appearance of transient waves is the result of changes within the electric system requiring
a change in the stored energy[21] of the system, the capacitor discharge being an example.
In electric systems where cause and effect are in direct proportion, as is generally the case in
most systems which possess no magnetic saturation or dielectric saturation (corona, etc.), the
magnitude of the transient wave varies in constant geometric progression. Since the constant
periodic progression of the alternating electric wave has been reduced to a constant numerical
value through the use of the symbolic method of representation it must be possible to express
the constant geometric progression of the transient wave in a similar symbolic form. This
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introduces the concept of the compound imaginary number, which serves as an expression
of the transient wave.

Since the symbolic representation of the transient waves is still under development by the
writer, the following material is somewhat incomplete, however it should serve as a suitable
starting point for the study of these waves.

7.2 Starting Point Equation for Transients

The symbolic expression of an alternating wave(
γ2t
)

= a+ b percent (73)

is equivalent to the known equation of Oliver Heaviside (for no spatial variation)[5](
γ2t
)

= (RG+XB) +  (XG−RB) (74)(
γ2t
)

= ŻẎ percent (75)

hence
a = (RG+XB) power factor, percent (76)

b = (XG−RB) induction factor, percent (77)

It is however
(RG+XB) , continuous wave

(XG−RB) , transient wave

where XG and RB are the magnetic and dielectric time constants respectively in nepers per
radian. Thus equation (77) serves as a starting point in the study of transient waves.

7.3 Algebraic Representation of Generalized Electric Wave

Since the symbolic expression of equation (73) is but one quadrant of the complete wave, it
is of interest to extend equation (74) to cover all four quadrants. The general form is(

γ4t
)

= ŻẎ (75a)

where the quantities of Ż and Ẏ now include energy production as energy consumption.
Substituting the electric characteristics of figures (9) and (10) into the equations of Ż and
Ẏ gives

Ż = κ0R + κ1X + κ2H impedance in complex Ohms (78)

Ẏ = κ4G+ κ3B + κ2S admittance in complex Mhos (79)

where R = Resistance (amperes)
G = Conductance (volts)
X = Reactance (amperes)
B = Susceptance (volts)
H = Receptance (amperes)
S = Acceptance (volts)
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hence

ŻẎ =
(
γ4t
)

=

[(RG+XS)− (RS +HG) +XB] +  [(XG−RB)− (XS −HB)]

= a0 + b0 percent (80)

This equation serves as an algebraic representation of the generalized electric wave (time)
and may be divided into three groups:

0) (RG+HS)− (RS +HG) scalar product
1) XB axial product
2) (XG−RB)− (XS −HB) cross products

It is of interest to note that group (0) is similar in form to equation (74) possessing the form
of a wave but scalar in that all of its constituent parts are time invariant quantities[19]. This
wave thus may be called a D.C. wave or scalar wave. Group (1) represents the continuous
pulsation of energy between the two opposite forms of energy storage, the form due to
amperes “through” reactance X and the form due to volts “across” susceptance B. Typically
this is the magnetic and dielectric fields respectively. Such a pulsation would occur if a
capacitor of zero leakage was exchanging energy with a reactance coil of perfect conductivity,
the stored energy in the system would endlessly pulsate between the two forms, the magnetic
field and the dielectric field.

Group (2) represents the production or consumption of either of the two forms of stored
energy;

XG consumption of magnetic energy by conductance, G
−RB consumption of dielectric energy by resistance, R

and in phase opposition with XG (-)
XS production of magnetic energy by acceptance, S
−HB production of dielectric energy by receptance, H

and in phase opposition with XS (-)

7.4 The Wave Equation and Transients

If the arithmetic mean of the generalized electric wave is zero, the wave equation becomes(
γ4t
)

= X ·B (81)

(R ·G+X · S) = 0 (R · S +H ·G) = 0
(X ·G−R ·B) = 0 (X · S −H ·B) = 0

hence continuous energy pulsation with no gain or loss of energy.
If the arithmetic mean of the wave differs from zero, the wave equation becomes(

γ4t
)

= [(R ·G+X · S)− (R · S +H ·G) +X ·B] (82)

(X ·G−R ·B) = (X · S −H ·B)
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hence the flow of alternating electric energy, where

(R ·G+H · S) > (R · S +H ·G)

indicates energy consumption, and

(R ·G+H · S) > (R · S +H ·G)

indicates energy production.
An important class of electric wave is one in which the quantity

(X ·G−R ·B)− (X · S −H ·B)

is non-zero. This condition results from the rate of energy consumption differing from the
rate of energy production, distorting the waveform. This produces electric waves that grow
or decay with respect to time. Such waves are transient electric waves. These waves are
characterized by having a frequency or period that is a complex quantity consisting of real
and imaginary components.

ν̇ = (ω − υ) neper-radians/sec (83)

The real component of the complex frequency ω in radians per second represents the cyclic
period of revolution in which the wave repeats the same minimum value of amplitude in
equal time intervals. The imaginary component υ, in nepers per second, represents the
acyclic period of evolution in which the maximum value of amplitude increases or decreases
at a constant geometric rate.

Transient electric waves may be divided into two categories, those waves which repeat
the minimum value of amplitude in equal intervals of time, and those waves which do not
repeat any value of amplitude more than once.

The former category of wave is called an oscillating electric wave. This wave is charac-
terized by the condition

|a0| > |b0| (84)

The latter category of wave is called an electric impulse and is characterized by the
condition

|a0| < |b0| (85)

A particular characteristic of the transient electric wave is the displacement of the max-
imum value of the wave from the point of maximum of an equivalent alternating wave as
shown in figure (24). The angle of displacement is given by

θ0 = arctan

(
b0
a0

)
(86)

with

θ0 > 45◦, oscillation
θ0 < 45◦, impulse
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x

y

θ0
π
2

π0

Impulse

Sine wave

Figure 24: Comparison of Transient and Continuous Waves

7.5 Exponential Representation of the Alternating Electric Wave

The exponential representation of the alternating electric wave is given by

ε±β = cos (β)± sin (β) (87)

where the angle β represents the time position of revolution.
Analogously, the wave of geometric progression is given by

ε±1α = cosh (α)± 2 sinh (α) (88)

where the angle α represents the time position of evolution.
Since the transient wave is the product of the period of revolution and evolution, the

exponential representation is given by

ε±1αε±β = ε±1α±β (89)

since the quantity
α + β

is a complex quantity, it can be expressed in symbolic representation

κθ1
1 = ±α± β (90)

where the subscript 1 in κ1 does not indicate the base, since base four is assumed, but
however distinguishes the axis from that of κ in the previous calculations.

Substituting the relation

ε
π
2 = κ1

and
n10 = π

2
n1

n0 = π
2
n
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into equations (89) and (40) gives

ε(±α±β)n0 = εκ
θ1
1 n0 = κnκn11 (91)

where both versors[12] are assumed base four (κ4).
Equation (91) is called a hyper-complex quantity in that it possesses a complex quantity

within a complex quantity. Obviously this could be carried indefinitely

κnκ
niκ

nii
1 ...

1

producing exceedingly complex waveforms.
This equation (91) serves as a basic symbolic expression of the generalized transient elec-

tric wave for the condition of direct correlation between cause and effect. This representation
indicates variation within variation of the wave.

Substituting
κn1

1 = κ0,2
1 cos (n10) + κ1,3

1 sin (n0)

into equation (91) gives

κn(κ0,2
1 cos(n10)+κ1,3

1 sin(n10)) (92)

= κnκ0,2
1 cos(n10) × κnκ1,3

1 sin(n10) (93)

and

κnκ0,2
1 cos(n10) = κ0,2 cos (n10κ0,2 cos (n10)) + κ1,3 sin (n0κ0,2 cos (n10)) (94)

κnκ1,3
1 sin(n10) = κ0,2 cosh (n0κ0,2 sin (n10)) + κ1,3 sinh (n0κ0,2 sin (n10)) (95)

Substituting: cos (n10) = a1
sin (n10) = b1

and combining equations (94) and (95) gives

+ 1 [cos (a1n10) cosh (b1n10)− sin (a1n10) sinh (b1n10)]

+ [cos (a1n10) sinh (b1n10)− sin (a1n10) cosh (b1n10)] (96)

substituting a1n10 = θa and b1n10 = θb gives:

[cosh (θb) (cos (θa)−  sin (θq))] +  [sinh (θb) (cos (θa)−  sin (θa))] (97)

and substituting
κθ

0 = cos (θa)−  sin (θa)

gives
κθ

0 [cosh (θb) +  sinh (θb)] (98)

and putting

κθ
0 cosh (θb) = A

κθ
0 sinh (θb) = B
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Hence (
γ4t
)

= A+ B (99)

and thus the symbolic expression of the generalized electric wave.

κnκn11

{
κn primary quadrantal versor
κn1

1 secondary quadrantal versor

n time angle (in quadrants) of position along the wave
n1 time angle (in quadrants) of phase distortion of the wave, a function of θα

7.6 Special Cases of the Exponential Form

If the angle n10 is zero, then n1 = 0 and

κ0
1 = +1

κ+1n = κ0,2 cos (n0) + κ1,3 sin (n0) (100)

This equation is the representation of a forward rotating alternating electric wave.
If the angle n10 is one quadrant (π

2
radians), then n1 = 1 and

κ1
1 = +

κ+n = κ0,2 cosh (n0)− κ1,3 sinh (n0) (101)

This equation is the representation of a decaying electric impulse and a direct current.
If the angle n10 is two quadrants (π radians), then n1 = 2 and

κ2
1 = −1

κ−1n = κ0,2 cos (n0) = κ1,3 sin (n0) (102)

This equation is the representation of a backward rotating alternating electric wave.
If the angle n10 is minus one quadrant (3π

2
radians), then n1 = 3 and

κ3
1 = −

κ−n = κ0,2 cosh (n0) + κ1,3 sinh (n0) (103)

This equation is the representation of a growing electric impulse and a direct current.
If the angle n in equation (101) is one quadrant (π

2
), then n = 1 and

κn = κ1 =  (101a)

since
κn = ε−n0

it is
κn for n = 1 =  = ε−

π
2 ≈ 0.2078795763 . . . (101a)

If the angle n in equation (101) is two quadrants (π), then n = 2 and

κ2 = ε−π ≈ 0.04321391826 . . . (101b)
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If the angle n in equation (101) is minus one quadrant (3π
2

), then n = 3 = −1 and

κ− = − = ε+
π
2 ≈ 4.8104773809 . . . (101c)

If the angle n in equation (101) is zero, then n = 0 and

κ0 = κ0 = ε0 = +1 (101d)

Likewise for equation (103), if the angle n is one quadrant (pi
2

), then n = 1 and

κ−n = κ− = − ≈ 4.8104773809 . . . (103a)

If the angle n is two quadrants (π), then n = 2 and

κ−2 = ε+π ≈ 23.140692632 . . . (103b)

If the angle n is minus one quadrant (3π
2

), then n = 3 = −1 and

κ =  = ε−
π
2 ≈ 0.20787957635 . . . (103c)

If the angle n is zero, then n = 0 and

κ−0 = κ0 = ε0 = +1 (103d)

7.7 Polar Representation of Eight Categories of Electric Waves

In polar representation, figure (25), the rotation of angle n1 through one complete cycle of
distortion indicates the existence of eight distinct categories of electric waves:

+1

−1

+−

+h

−h +h

−h
(1)

(2)

(3)

(4)

(8)

(7)

(6)

(5)

Forward ↑

↓ Reverse↑
G

ro
w

th

D
ec

ay
↓

Figure 25: Eight Categories of Electric Waves
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1. This wave is an oscillating electric wave, rotating in a forward (clockwise direction)
and decaying with respect to time moving forward. Its limits are +1, when the wave
becomes a forward rotating alternating electric wave, and +h, when the wave becomes
a critically damped impulse.

2. This wave is an electric impulse, decaying with respect to time moving forward. Its
limits are +h, the critically damped impulse, and + when the wave becomes scalar
(D.C.) of consumption.

3. This wave is an electric impulse, decaying with respect to time moving backwards, its
limits are +, a scalar (D.C.) wave and +h, a critically damped impulse in reverse
time.

4. This wave is an oscillating electric wave, rotating in a reverse direction (counterclock-
wise), decaying with respect to backward time. Its limits are +h, the critical impulse
of (3) and -1, when the wave becomes a reverse rotation alternating electric wave.

5. This wave is an oscillating electric wave, rotating in a reverse (counterclockwise) di-
rection, growing with respect to backward time. Its limits are -1, the alternating wave
of (4), and −h, when the rate of growth supersedes the rate of rotation and the wave
ceases to spiral. This is analogous to critical damping.

6. This wave is an electric impulse growing with respect to backward time. Its limits are
−h, the critical wave of (5) and −, a scalar wave of energy production.

7. This wave is an electric impulse growing with respect to time moving forward. Its
limits are −, the scalar of (6), and −h a critical impulse as in (5), but with the
opposite time sense.

8. This wave is an oscillating electric wave rotating in a forward direction (clockwise),
growing with respect to forward time. Its limits are −h, the critical impulse as in (7)
and +1, the alternating wave as in (1). This completes the cycle.

8 Other References

Please see “Impedance, Angular Velocities and Frequencies of Oscillating Current Circuits”,
and “Vector Power in A.C. Circuits”, both by A.E. Kennelly [7, 6] for other related infor-
mation pertaining to the general electric wave.
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9 List of Symbols

A Component of complex quantity, in %

B Component of complex quantity, in %

B Electric Susceptance in Mhos or Farads per second

C Component of complex quantity, in %

C Dielectric Inductance, in Farads

E E.M.F. of Magnetic Induction, lines per second

Ė E.M.F., complex versor quantity, in volts

F Frequency, in cycles per second (hz)

G Electric Conductance, in Mhos

H Electric Receptance in Negative Ohms

I M.M.F. of Dielectric Induction, lines per second

İ M.M.F. complex versor quantity, in amperes

L Magnetic Inductance, in Henrys

N Number of divisions of a complete cycle

P Electric Power, in volt-amperes or Watts

R Electric Resistance, in Ohms

S Electric Acceptance, in Negative Mhos

T Period, in seconds per cycle (1/hz)

U General Electric quantity

W Electric Energy

X Electric Reactance, in Ohms or Henrys per second

Ẏ Electric Admittance, complex versor quantity in Mhos

Ż Electric Impedance, complex versor quantity in Ohms

a Power factor in % total wave

b Induction factor in % total wave

d Magnification factor in % total wave
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f Function of ( )

h Negative versor operator

ı Arbitrary imaginary number

 Scalar or imaginary number

1 Scalar or imaginary number

κ Positive versor operator

l Length, in centimeters

m Mass, in grams

n Angle of cyclic divisions transversed

t Time variable, in seconds

υ Imaginary Frequency in nepers per second

α Component of complex quantity

β Component of complex quantity

(γt) Function of time, wave factor

ε Basis of natural logarithms (ε = 2.71828 . . . )

π Ratio of Circumference to Diameter of a Circle π = 3.1415926535 . . .

θ Time angle variable, in radians

φ Magnetic flux, in total lines

ψ Dielectric flux, in total lines
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Appendices

A Reactive Energy in Transmission Lines

In the transmission of electrical energy from the substation to the load, the transmission line
conveying this energy stores a certain amount in the space surrounding the line conductors,
that is, energy is stored in the magnetic and dielectric flow that makes up the electric field
of the conductor.

Thus, an interaction exists between this reactive energy of the line and the active and reactive
energies of the load, since all must flow through the same space.

As a matter of efficiency, the resistance of the transmission line must be very small, and is
approximately zero. Likewise, the insular conductance is also practically zero. In addition,
because of relatively low voltages and frequency, the dielectric susceptance is zero.

Hence, the only line coefficient of the line having significant magnitude is the line’s magnetic
reactance, which is directly proportional to the area enclosed by the total length of the line
conductors. These approximations hold only for overhead lines. All four constants, R, G, X
and B must be considered for underground cables.

For situations typically encountered in practice, it is permissible to assume the line as pure
reactance. The impedance of the line is given by

Z1 = R1 +K1X1 Ohms, complex
and R1 < 10%X1 Ohms

hence Z1 ≈ K1X1 Ohms, Reactive (104)

and represented by the symbol Z1.

The impedance of the load is given by the symbolic expression,

Z0 = K0R0 +K1X0 +
1

K2S0

+
1

K3B0

Ohms, complex (105)

where

R0 = Effective resistance of active energy consumption in Ohms, real.
X0 = Effective reactance of reactive energy consumption in Ohms, reactive.
S0 = Effective acceptance of active energy production in Mhos, real.
B0 = Effective susceptance of reactive energy production in Mhos, reactive.

The algebraic operator is defined as
kn = 4

√
+1

kn = cos
(
π
2

)
+  sin

(
π
2

)
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Where
K1 = First quarter cycle of lag, 90◦ = +
K2 = Second quarter of cycle of lag, 180◦ = −1
K3 = Third quarter cycle of lag, 270◦ = −
K4 = K0 = Complete cycle 360◦= 0◦ = +1
K−1 = First quarter of lead, -90◦, +270◦= K3 = −
K−2 = Second quarter of lead, -180◦, +180◦= K2 = −1
K−3 = Third quarter cycle of lead, -270◦, +90◦= K1 = +
K−4 = Complete cycle 360◦= 0◦= K0 = +1

hence

K−1 = 1
K1 = −K1

K−2 = 1
K2 = +K2

K−3 = 1
K3 = −K3

K−4 = 1
K4 = +K4 = K0

Thus:

1. The resistance R0 has maximum effect at the beginning of the A.C. cycle; (0◦)

2. The reactance X0 has maximum effect at the first quarter of the cycle; (90◦)

3. The acceptance S0 has maximum effect at the second quarter of the A.C. cycle; (180◦)

4. The susceptance B0 has maximum effect at the third quarter of the A.C. cycle; (270◦)

And inversely

1. R0 has maximum cause at the end of the A.C. cycle

2. B0 has maximum cause at the first quarter of the A.C. cycle

3. S0 has maximum cause at the second quarter of the A.C. cycle

4. X0 has maximum cause at the third quarter of the A.C. cycle

Consequently, E.M.F. is the cause and current is the effect and this is known as constant
potential system.

Let the constant potential load be represented by the schematic diagram:
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R0

Z0 G S0

X0

BeE0

B0 = Be / Ze

And the equation of the total impedance of this circuit is given by

Z0 =
(
R0 − S−10

)
+ 
(
X0 −B−10

)
Ohms, complex (106)

The power factor is

a =

(
R0 − S−10

)
Z0

percent (107)

The induction factor is

b =

(
X0 −B−10

)
Z0

percent (108)

The combined impedance at the substation due to line and load is

ZS = Z1 + Zo Ohms, complex (109)

Substituting equations (104) and (106) into (109) gives

ZS =
(
Ro − S−1o

)
+ 
[
(Xo +X1)−B−1o

]
(110)

And the schematic representation is

G S0GE0 X1

B0 R0

X0

Substation & Line Load
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The E.M.F. consumed by the line reactance is,

Ė1 = −İX1 Volts, reactive (111)

The E.M.F. consumed by the load impedance is,

Ė0 = −İ
[(
R0 − S−10

)
+ 
(
X0 −B−10

)]
Volts, complex (112)

The E.M.F. at the substation is given by

ĖS = 7, 200 volts

By Kirchoff’s Law, the sum of all the E.M.F’s in a circuit must equal zero, thus

ĖS + Ėo + Ė1 = 0

ĖS = −Ėo − Ė1 (113)

K2ĖS = Ėo + Ė1

where K2 indicates the substation is producing active energy.

Since the voltage is held constant at the substation (7200 volts), this voltage is the reference
phase, ∣∣∣K2ĖS

∣∣∣ =
∣∣∣ĖS∣∣∣ = ES = 7200 volts absolute

Hence
ES = Ėo + Ė1

The voltage at the load is thereby,

Ė0 = ES − Ė1 (114)

That is, the load E.M.F. is the substation E.M.F. minus the complex line E.M.F.

Having established the complex voltage relations, it is possible to investigate the effect the
power factor of the load has upon the voltage drop of the line.

Since the voltage drop of the line is voltage gain with respect to Ėo, that is the voltage
increase from load to substation if it drops from substation to load equation (111) becomes

Ė1 = +IX1 Volts, reactive (115)

Taking the load voltage as reference give for equation (112).

Eo = İ
[(
Ro − S−1o

)
+ 
(
Xo −B−1o

)]
(116)

The voltage at the load is thus,

Eo =
∣∣∣ĖS − Ė1

∣∣∣ (117)

If the load is pure resistance, it has a power factor of +100%, and the load current is given
by

(̇I) =
Eo
Ro

= +i1 Amperes, real
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And substituting into equation (115) gives

Ė1 = i1X1 = +e1 Volts, reactive

Hence
Ėo = ES − e1 Volts, complex

That is, the line E.M.F. indirectly subtracts from the substation E.M.F.

ES

Ė1
Ė0

If the load is a pure magnetic reactance, consuming reactive energy, it has a power factor of
0% (Lag), and the load current is given by,

İ =
E0

X0

= i11 Amperes, reactive

And substituting into equation (115) gives,

Ė1 = −i11X1 = +e11 Volts, real

Hence
Ė0 = ES − e11 Volts, complex

That is, the line E.M.F. directly subtracts from the substation E.M.F.

E1 Ė0

ES
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If the load is a pure acceptance, producing active energy, it has a power factor of -100%, and
the load current is given by,

İ = −EoSo = −io Amperes,real

And substituting into equation (115) gives,

Ė1 = −ioX1 = −eo Volts, reactive

Hence,
Ėo = ES + eo Volts, complex

That is, the line E.M.F. indirectly adds to the substation voltage, resulting in a higher
voltage at the load than at the substation.

ES

E1

Ė0

If the load is a pure susceptance, producing reactive energy, it has a power factor of 0%
(Lead), and the load current is given by,

İ = EoBo = +i∞ Amperes, reactive

And substituting into (115) gives,

Ė1 = (+)2 i∞ = −e∞ Volts, real

Hence,
Eo = ES + e∞ Volts, complex

That is, the line E.M.F. directly adds to the substation voltage, resulting in a higher voltage
at the load than the substation.

Ė1 ES

Ė0
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Thus it can be seen that the power factor, or more properly, the wave factor, of the load has
a definite effect on the voltage drop of the transmission line. A load of pure reactive energy
consumption, such as a magnetic reactor, produces the maximum voltage drop since the
E.M.F. consumed by the reactor is in phase conjunction with the E.M.F. consumed by the
line reactance. Inversely, a load of pure reactive energy production, such as a synchronous
condenser, produces the maximum voltage gain, since the E.M.F. produced by the condenser
is in phase opposition with the E.M.F. produced by the line reactance.

It is of interest to note that a reactive load produces a real E.M.F. in the line, and a real
load produces a reactive E.M.F. in the line. A reactive load such as a synchronous condenser
converts the transmission line into an extension of the substation transformer by inducing a
forward E.M.F. in phase conjunction with the E.M.F. produced by the transformer winding.

Thus, it may be said that a load which consumes reactive energy increases the apparent
distance to the substation, and a load which produces reactive energy decreases the apparent
distance to the substation.
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