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Preface to the 2009 edition

PHYSICS

Introduction: For roughly 400 years physics has been the flagship in
the advance of science, but there is still much confusion about what
physics really is.  Until 100 or so years ago, most physicists would
have said it was an attempt to understand the real world.  As they
probed deeper into matter, atoms, particles etc. they tried to visualize
the cause and effect relationships between the various levels of
abstraction.  After observing what happened in some physical
process, they tried to understand why it worked that way.  Great
swaths of phenomena were ultimately amalgamated by this process.
     Roughly 100 years ago, because of the increasing difficulty of
explaining the lower atomic and particle levels, some physicists
adopted the easy answer that it is only necessary to describe the
world, to say what happened in an overall way, and the visualization
and cause and effect of the why were not required in physics.
     At present, perhaps 95% of all physicists have adopted the
defeatist attitude that atomic and particle levels cannot be visualized
or given a cause and effect basis in the same way that the levels above
them are.  Instead, the mathematics of ensemble statistics called
Quantum Physics is touted as the fundamental basis; and the
divisions of "Classical" and "Modern" have arisen to define the old and
new approaches.

The Silver Thread: Against a background of numerous ingenious
experiments and endless smaller insights, starting with Copernicus
and Galilei, the laws of motion and particle structure have been
developed in a few giant steps. First, by Newton, who extended the
work on falling bodies and the Solar system to a theory of gravitation,
gave solid definitions of space and time and stated most clearly the
laws of motion.  Newton was followed by Faraday and Maxwell, who
synthesized the visualization of electric and magnetic fields into a
theory of electromagnetism that included a simple unification of E&M
and light propagation.  This theory still describes about 95% of all
that goes on in the world.
     By the late 1800's, Poynting had produced his field energy flow
theorem.  Also, Fitzgerald and Lorentz had given an ad hoc cause and
effect basis for why experiments like the Michelson-Morley, done in a
constant velocity inertial laboratory, could not measure the velocity.
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In 1899, based on many similar experiments, Poincare' deduced a new
physical principle:

Electro-optical phenomena depend only on relative
                motion of material bodies, radiation sources, and
                electro-optical apparatus.

In 1900 he said that precise observations cannot reveal more than
relative displacements, implying that detection of datum ether motion
in inertial labs was not possible.  His position can be summed up by:

          Identical experiments, carried out in all inertial labs, yield
          identical results.

In April 1904, Lorentz published the complete transformations, from
one moving lab to another, for Maxwell's equations.  At that time,
those transformations were thought to show that Maxwell's equations
had exactly the same form in all inertial systems.  Finally, in
September 1904, Poincare' named this new principle The Principle of
Relativity, which, paraphrased, stated:

          For any observer in uniform motion of translation relative
          to a "fixed" observer, the laws of physics must be the same
          as for those of the "fixed" observer.

     In a paper written to explain moving particle behavior and electro-
optics, the Principle of The constancy of the velocity of light was added
to the Poincare'/Lorentz Principle of Relativity by Einstein in 1905 (to
his credit, he did not propose space-time.  That was the
mathematician Minkowski's mistake).  In that same year, Einstein
also invented the idea of the photon, with E h= ν , to explain the
photo-electric effect; and he elaborated on the equivalence of mass
and energy, represented by 2

0E mc= .  Finally, in 1916, he published
the General Theory of Relativity, which geometrized space.  He and
many others toiled for years to unify the Theory of Gravitation and
E&M.  They did not succeed.  In spite of this, when Quantum Physics
was adopted by most physicists as the basis of physics, Einstein,
Planck and a few others maintained their conviction that the basis
was not statistical but deterministic.
     For about 100 years, the statisticians have failed to develop a
viable theory of particle structure.  Almost all advances have been as a
result of experiment.  In spite of this, the statisticians cling to their
faith in the ensemble statistics basis, and it is quite common to see
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one of their many expositions in which the premise is that "Einstein
was wrong".
Oh, to be so wrong ! :  Of course Einstein was wrong (but not about
determinism).  So were Copernicus, Galilei, Newton, Faraday, Maxwell
and all the other physicists.  There are two reasons why all physicists
are wrong.  First, because every human is born with a tether that
prevents seeing a great way into the future.  All are limited by their
own experience, so that even the greatest thinkers don't throw past
some limit.  Second, because it is in the nature of physics that a
theory cannot be proven, it can only be proven wrong (usually by
experiment).  So, literally thousands of theories are proposed and
rejected.  Only the very few that still appear to fit the facts are given
strong credence.  The practitioner of physics spends a lifetime being
wrong.
Who's right:  The present work presents strong evidence that Einstein
was right about determinism.  The "classical" problems are solved
deterministically.  A unified field theory results.  It is relatively simple,
but involves an unfamiliar fluid.  It is visualizable and the cause and
effect connections are apparent at all levels.  It is intuitive and paradox
free.  It is Main Line Physics.  Let's get to work.

May, 2009
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Preface to the 2001 Version

     This work began in the middle 40's of the 20th century, motivated
by the repugnance for teaching about fields and particles in terms of
vague symbols and non-visualizable processes.  The utility of a fluid
medium to describe the world became apparent quickly.  Showing, in
rigorous detail, the connection between the ether and the physical
processes observed came slowly and essentially unsupported because
of the tabu against the ether.  Some of the field equations were
particularly elusive.  After 42 years, a substantial portion of the
visualization was complete and about half of the field equations were
available; so because time was running out, the 1989 version was
produced.  Lack of the ! -wave equations necessitated writing it from
the top down, with a big gap at the bottom.
     In the past 11 years, one version of the final ! -wave equations has
been found, permitting the picture to be displayed formally from the
bottom up.  Many of the chapters have been rearranged, chopped up,
and regrouped.  This is how it was visualized 57 years ago.

ACKNOWLEDGEMENTS:

     Many of those mentioned in the 1989 version continued to support
and encourage this work.  Since then, Professor A. H. Huffman
contributed a number of cogent observations about the 1989 version
that have improved the present volume.  Professor Franco Selleri of
the Bari group, through both his technical writing and his role as
coordinator of a worldwide, international group of investigators (who
approach this problem from a more open minded viewpoint),
continues to empower those seeking reasonable answers (including
the present writer), particularly in the areas of wave-particle duality
and relativity.
     Several, much closer to the writer, contributed so much to this
new version that there is no way to credit them except to say that
there were times when, without their help, the work just could not
have continued.  Their contributions appear throughout.

Robert L. Kirkwood        Demetrius J. Margaziotis
                 Lee O. Heflinger             Thomas  Hudspeth
                 Bernard H. Mueller        Robert S. Margulies

Finally, no one knows better than my wife Patricia what living with a
seemingly never ending task for 56 years means.

                                                                                      2001
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Preface to the 1989 Version

     Modern physics books are honeycombed with strange if not bizarre
philosophical Ideas.  The student is told to abandon his intuition,
cause and effect and the deterministic world.  He is offered, instead, a
statistical numbers game, a space and time done with mirrors, and an
abstract view of the world comfortable only to pure mathematicians.
The work presented in this volume returns to the simple physical
approach to physics prevalent in the year 1900, augmented by 90
years of additional experimental data and understanding.
     Physics is an intuitively understandable deterministic description
of the real world with no paradoxes.  It consists of cause and effect
explanations of observed phenomena in successively lower levels of
abstraction.  At the bottom is a remaining unexplained metaphysical
base.  The goal is a visualizable unified field theory of particles,
energy, charge, electricity and magnetism, gravitation and nuclear
forces.  The following outlines in considerable detail such a
description of the world.
     The qualitative deterministic picture is almost complete.  The
quantitative level is varied.  Chapters 1 through 7 are well known
material, slightly rearranged and modified.  Chapters 8 and 9 (The
Electron) are reasonably rigorous.  Chapters 10 (Rods, Clocks and
Plumb Bobs), 11 (Mechanics) and 12 (The Atom) are solidly rigorous.
On  the other hand, Chapters 13 (The Nucleus) and 14 (The Particles)
are highly speculative, but based on ideas from 8 through 12.
Chapters 15, 16 and 17 are rigorous where possible.
     One thing should be clear from the reading:

Fuzzy atoms are out,
Determinism is In.

ACKNOWLEGMENTS:

     The writer is indebted to a large group of family, friends and
acquaintances who helped to maintain the atmosphere of discussion
and curiosity so essential to a study of fundamentals.  In addition to
the numerous authors quoted in the text, many others, through books
and journals, had a strong influence.  Even those who disagreed with
the concepts presented here, and they were abundant, often
unwittingly contributed.
     A few gave special support and encouragement.  One of the earliest
was Arthur Kohl, with his stimulating discussions.  Bernard G. King
and the writer studied portions of this problem together, and the
atomic picture developed from our early gropings.  Much later, David
B. Langmuir and his research organization provided an environment
conducive to the intellectual excitement so necessary to a sustained
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pursuit of an active life in Science.  Still later, a similar kind of
condition was maintained by Eric J. Woodbury.
     In direct support of the final writeup, Roy Dixon, through
correspondence and discussions, provided insight to several problems
in fluid mechanics.  Professor Edgar Reich gave mathematical aid
related to chapter 12, and Professor G. Mollenstedt donated much
published material on the Aharanov-Bohn effect.  Professor Dimitri J.
Margaziotis read some of the chapters and also provided considerable
aid in the computer-printer phase of the effort.  Finally, Robert L.
Kirkwood, a life-long friend deeply immersed in the quest for the ether
equations, read the whole manuscript.  He was instrumental in a
number of corrections that improved the work substantially.  Since he
is convinced of the fundamental premise, but has his own views
regarding the details and approaches, he cannot be considered
responsible for any part of the work that might be found wrong in the
future.
     Finally, I wish to express my deep felt gratitude to my wife Patricia
for continued concern and help directly affecting the task over a
period of years.  To top it off, she typed the manuscript; a formidable
job

                                                                            1989
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CHAPTER 1

FUNDAMENTALS

1.1 Introduction: Physics is the intuitive visualization of the real
world that replaces superstition with paradox free, cause and effect
explanations of observed phenomena.  It describes qualitatively and
quantitatively successively lower levels of abstraction, at the bottom of
which is a remaining, unexplained metaphysical base.  Viewing the
universe as a gigantic mechanism, the goal of this work is to establish
the few fundamental laws to which all parts of the complex structure
conform.
     Physics explains observed phenomena, in terms of cause and
effect, to at least one level of abstraction deeper.  An explanation is
called a theory until it has been shown to agree with all other known
phenomena to the extent that any change or improvement in it will
yield only minute differences; then it is called a law.  To qualify as
physics, a theory or explanation must satisfy the intuition, i.e. conform
to deeply rooted instincts.  It must not be accepted on the basis of its
"beauty" or its "elegance", but strictly on its "utility".  Utility is not
measured in terms of computational ease or numbers or details of
results but in the range of levels of abstraction that can be intuitively
unified.  A long view of physics shows that as deeply fundamental
laws are discovered, they tend to unify widely diverse phenomena at
lower and lower levels of abstraction.  The present work gives a set of
equations in intuitively understandable physical variables that appear
to be able to account for all observed physical phenomena in a simple
way.

1.2 Physics and Philosophy: Early societies did not distinguish
between philosophy and physics; but gradually the two disciplines
were separated until, by the end of the nineteenth century, the
overlap was small.  Philosophers continued to ponder such things as
good and evil, right and wrong, the beginning and end of time, and the
existence or non existence of the "real" world.  Physicists narrowed
their scope to attack the following problem:  given the existence of the
"real" world, what are the laws that control it and determine its
nature?  By making this separation, considerable progress in physics
was achieved.  The backbone of this progress was the coupling of
observed phenomena to cause and effect explanations. An
experimentalist observed what happened.  Cause and effect were used
to explain why it happened.  To have physics, the second step is
unavoidable.  Even a philosopher can observe what has happened,
although he may not be as skilled as an experimental physicist in
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controlling it. However, unless the question "why" is answered,
without paradoxes, physical science is not satisfied.  In physics, a
paradox is anathema.
     Completely different rules apply in philosophy.  Who knows
whether anyone will ever understand the meaning of the beginning or
end of time, for example.  Speculation in several directions at once is
encouraged, and paradoxes only add to the fun. Instead of answering
questions, philosophers take particular delight in confounding the
issue.  One of their favorite ploys consists of responding to a question
with a "proof" that the question cannot be asked.  In another form, an
object offering considerable difficulty to being understood is "proven"
not to exist.  This is completely understandable as a normal reaction
of a human mind facing an unanswerable question.  No such reaction
can be allowed a physicist.

1.3 Cause and Effect: Physicists and philosophers recognize that the
concept of cause and effect arises from everyday experience.  The
simple act of dropping a stone is a good example.  Day after day, the
same stone will drop in very much the same way, straight down.  On a
very windy day, however, the stone may move with the wind as it
drops.  In answer to the question, "Why does the stone move sideways
as it falls?", the answer is "Because of the wind".  In common usage,
the wind is the cause of the observed change, and the moving
sideways is the effect.  Dropping the stone under water produces a
different effect, because of the presence of the water, which causes the
observed change.  It is this elementary form of macroscopic cause and
effect that is the essence of physics, the simple listing of significant
conditions that must be followed by related sequences of change.
     Even in microscopic environments, the same approach can be
taken.  In the case of the stone, although the wind was an invisible
cause, it could be sensed.  However, as measuring techniques
improve, more and more subtle conditions can be listed as causes for
sequences of change in environments that are insensible to humans
but not to instruments.  For example, the answer to the question,
“Why did the stone fall down in the first place ?” comes under this
category.
     The common sense separation of events into before and after,
corresponding to cause and effect, has misled philosophers into a
morass of irrelevant distinctions between whether one "produces" the
other or one is "followed" by the other, etc.  In physics, the position is
taken that there is a continuous sequence of change in any situation.
The laws of physics determine the sequence and, given a set of
conditions, a particular sequence "must" follow.  Cause and effect has
its deepest meaning in the differential change in a region about a
point in a differentially short time.  It is the confusion between
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macroscopic and microscopic cause and effect that leads to the
philosophical problem, which has meaning only at the most
microscopic levels of abstraction.

1.4 Measurement: Philosophically, the problem of the validity of
experiment and the meaning of cause and effect are more complex.
Science has contributed to the belief that, in the process of
observation, when the initial conditions are more carefully controlled,
the results are more accurately predictable.  Physics, in particular, is
based upon experiment; repetitive observation under controlled
conditions.  All experiments are limited in accuracy and control, but
the laws of physics are deduced from experiment on the assumption
that there is in operation the principle of identical environments,
which can be stated: Any Measurements made in identical
environments, performed with identical instruments, will yield identical
results1. Whether or not such experiments can ever be carried out is a
moot point; but such is the basis of physics.  The principle of identical
environments (P.I.E) applies anywhere, any time; e.g. in inertial
systems, accelerating systems, rotating systems, etc.  Without the
P.I.E. there could be no physics.
     Viewed as a giant machine, the universe has innumerable
microscopic parts all moving in ways too hopelessly complex to control
in any experiment.  The success of a controlled experiment rests on
the facts that, first, only those parts of the universe very close to the
experiment and only the conditions most recent in time have any
strong influence on it; second, all but a few of the local conditions can
be ignored because they are effectively balanced or averaged out; and
third, it is possible to separate the few controlled changes so that they
can be related to their most immediate influences.  It is the
combination of the principle of identical environments and these three
observational facts that permit experiment to be the basis of
explanation of the operational laws of the real world.
     The universe functions according to its basic laws independently of
being observed or measured. That a small part of it insists that the
functioning of the universe depends in any way on the ability of that
small part to measure it is just as absurd as men's early insistence
that the earth was the center of the universe. Relative to the number
of parts in the whole machine, the total number of measurements ever
to be made  on it  will  be  negligible.   Physics is not based on the idea

1. J.E.McGuire & M.Tammy, Certain Philosophical Questions: Newton's Trinity
    Notebook, Cambridge University Press (1983); J.C.Maxwell, Matter and Motion, p13,
    Dover Publications, N.Y.;   R.L.Kirkwood,  On The Theory of Relativity, Thesis,
    Stanford U. Phys. Dept. (1950).
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that a thing exists only when it is directly measurable. Physics is
based upon knowing backed up by a sufficient number of indirect and
direct measurements. The temperature of the sun, for example, is not
measured directly, but is deduced from observations and what is
known about suns.

1.5 Determinism vs. Statistics: Anyone who has done experimental
work realizes that measurement is far from perfect. A number of
difficulties must be faced by experimenters.  This has led to a serious
division among physicists; one group assuming that the world is
basically deterministic and the other that the basis is statistical. In
the present discourse, it is assumed that the basis is deterministic and
that statistics only enters as a practical expedient.
     When measuring the motion of an electron, for example, since
there are no known entities small enough to measure it without
interacting with it, the results of the interaction must be included in
the measurement.  This in no way says that if not measured, the
electron could not have existed or moved deterministically; and it in
no way prevents one from knowing what that motion would have been
in principle.  To do this, it is only necessary to determine what
electrons are made of and the rules of motion of their constituent
parts; all governed, of course, by cause and effect.
     A second example is that of a boat driven by a jet engine mounted
on the boat's superstructure.  In smooth water, the boat's path is
easily predicted deterministically.  If the water is choppy, even though
its every wavelet is moving deterministically, as a practical matter, the
boat's motion will best be described by some average path on which is
superimposed a statistical component of motion due to the chop.
     Finally, consider a drop of water inside a sealed tin can sitting on a
fire.  It is totally impractical to solve the deterministic, many body
problem of the steam molecules banging around in the can.  The best
that can be done is to get averages for pressure, temperature, etc.
Here, statistics is indispensable; but the fundamental physics is still
deterministic.
     It is both practical and good physics to apply statistical mechanics
to ensembles of small machines such as gases, plasmas, liquids and
solids. That is what quantum mechanics is, the study of ensembles of
microscopic machines. It can and will reveal only limited information
about individual particles and their substructures; and it will provide
even less information about the more important deterministic laws of
particles and fields.

1.6 Levels of Abstraction: Rigid lines between levels of abstraction
need not be drawn.  Some levels commonly accepted are:
Macroscopic--distribution    and    motion   of    galaxies    and   stars;
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standard--planetary environment including temperature, pressure,
etc.; molecular--kinetic theory etc.; atomic--chemical properties,
spectroscopy; sub-atomic--particles and radiation.  The question,
"What are the particles made of?", leads to a lower, sub-particle level.
Of all these levels, the highest and the lower few are the frontiers of
physics.  The central levels are those where the solid gains of the last
400 years have been made, and about which it can be claimed that
"physical understanding" has been achieved. This means that the
mind can explain what it observes in non-metaphysical terms.
     A typical example is the process of evaporation.  In earliest times,
when fluid resting on a surface was observed to disappear gradually,
several explanations were offered.  One was that "spirits drank it".
Another was that it seeped through the substance below.  Still
another was that the elementary particles of the fluid were moving at
high speed and they gradually escaped.  Any one of these theories was
possibly valid until tied in with other phenomena.  Only one is an
explanation of what actually happens when evaporation takes place.
The latter will be an imperfect explanation until tied in with all other
phenomena; but as this is done, it is gradually recognized as the
correct explanation.

1.7 Imagination, Theory and Intuition: Before the separation of
philosophy and physics, the whole physical world was explained
philosophically in terms of spirits, gods, etc.  Of course, this was both
non-intuitive and unpredictable; no cause could be sensed, and no
process controlled. Little by little these metaphysical explanations
were replaced by physical explanations.  The concept of explaining by
identifying and relating levels of abstraction replaced superstition.
When a very complex set of phenomena is observed, the appearance
may be compounded from individual phenomena from several levels of
abstraction. Physicists of the nineteenth century recognized this and
unified broad areas of physics by identifying  various levels and their
interrelationships.  These areas where physical understanding has
been reached can be described as predictable and intuitive.
     A process is explained physically when it is described both
intuitively and correctly.  To say that a description satisfies the
intuition means that when it is explained, even to a relatively
uninitiated person, he can understand the cause and effect
relationship at least on the same level or one level of abstraction
deeper.  Correctness of a description is related to how many diverse
phenomena are tied into the observed process without conflict or
paradox.  Sometimes, it is easier to determine the correctness of a
theory than to develop the cause and effect understanding that the
intuition demands.  An example of this was the choice of the
Copernican system over the Ptolemaic in describing planetary motion.
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With limited information, the intuition might have preferred Ptolemy,
and neither theory could have been eliminated on the basis of
disagreement with known facts. Later, as more observations were
made, data on eclipses, retrogression in planetary motion, etc. made it
clear that Copernicus was correct.  The earth did in fact go around the
sun. The intuition was now more satisfied with Copernicus because of
the additional cause and effect relationships brought out by the new
data. Later, the concept of universal gravitation and the inverse
square law strengthened the intuition in this regard, even though they
were deduced from the assumption of the Copernican system's
correctness in a bootstrap type jump.
     Lower levels of abstraction present some difficulty in trying to find
the correct explanation of what actually happens because, at the
present level of understanding, the physical knowledge and
metaphysical ideas there are not yet well separated.  Added to this is
the problem of trying to visualize what is happening. Ultimately, it is
the visualization that must be completed to make an intuitive and
correct description.
     When an observed phenomenon is to be explained, several
different steps must be taken, although not always in the same order.
Generally there are some data from experiments.  The imagination is
used to suggest a tentative theory based on cause and effect. The
theory is both a visualization and a mathematical formalism.  It is
regarded as correct only if all the data is in agreement with the
formalism and the visualization is intuitively satisfying.
     In experiments performed on large ensembles, the visualization
can often be fairly crude (i.e. basically incorrect in detail) and still
yield accurate statistical results; so the intuition is satisfied with less
than an exact visualization of all the details of the phenomenon.
However, when the theory attempts to describe the structure of an
individual elementary particle, for example, the intuition plays a much
more important role in rejecting incorrect theories.
     In formulating deterministic visualizations, serious errors and
omissions occur as the result of using models.  Several types are
commonly employed. The simplest of these is the crude analogy, such
as visualizing a molecule as a marble. Much more common is the
mathematical model.  This usually consists of an entity, described by
a solution of an equation, very restricted in its resemblance to the real
world but considered valuable because of the difficulty of getting even
such a restricted solution to a difficult mathematical problem.
Anyone who has struggled with this type of problem will agree that a
partial solution is better than no solution at all. Nevertheless, the
worst physics done today is involved in the trap of the mathematical
model.
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     The point charge is a perfect example of a model and its problems.
The point charge is a mental and mathematical construct that has
some of the properties of the electron, for example.  But, to think of
the electron as a point charge is very bad physics. The electron should
be thought of as the electron; a real entity of infinite extent with
changeable shape, position, and orientation, but concentrated enough
in one region to give the appearance of being small in interactions
with other entities.  The point charge model of the electron is an
approximate representation of a few of its properties.  Nevertheless,
practitioners can be heard to discuss it as if it were one kind of
electron and another model were another kind of electron, etc.  There
is only one kind of electron, and the job of physics is to explain or
describe it as completely as possible as a single entity.  When this is
done, the result is not a "model" but the real electron. Use of the word
abstraction to describe the various levels should not be construed as
meaning that the entities and processes described are models.  When
an explanation is essentially complete, it describes what is actually
happening or the entity that is actually there.
     In the case of the point charge electron model, the infinities and
other considerations clearly force the intuition to reject the theory as
physically incorrect.  This is the role that the intuition plays in
physics. It cannot pronounce a visualization correct, the experiments
must do that; but it can reject incorrect visualizations.

1.8 Metaphysics: The metaphysics necessary as a base on which to
describe the physical world consists of a small number of statements
that will be taken on faith and will be unexplainable in the context of
the levels of abstraction above that base. Even so, they will not
disturb the intuition any more than the concept of absolute space
does.  In this regard, even the more recent idea of a self enclosed
curved space cannot prevent one from intuitively feeling that it must
“be” somewhere, meaning that the mind feels more natural with an
infinitely extending space.  In this sense the base will be intuitive.
     One of the major frontiers of physics today is at the sub-particle
level of abstraction. Great difficulty is being experienced in trying to
determine and visualize what particles are composed of. Not the least
of this difficulty results from the failure to have a good visualization of
the levels of abstraction just above, i.e. the atomic level and that of
gravitic and electromagnetic  fields.   Partly  this  is  the  result  of  the
needless abandoning of a deterministic visualization at those levels,
replacing it with a statistical one. In addition, the interference of many
metaphysical concepts introduced at too high a level of abstraction
causes some disturbing paradoxes to obscure the real picture. The
abandonment of the fundamental tenets of physics under these
circumstances essentially precludes the solution of this sub-particle
problem. To have any hope of solving it, the resumption of proper
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physical approaches must be made, and the metaphysics must be
pushed down farther below the levels of abstraction being
contemplated.
     At present there is confusion about the nature of space because of
a failure to distinguish between space itself and the measurement of it
using material rods.  The latter are made of particles which change
size in motion, leading to flexible rods.  The structure and behavior of
the rods are part of the theory used to visualize phenomena.  The
nature of space itself is not part of the theory but of the inexplainable
metaphysical base.  There is also a similar confusion about the nature
of time.  Clocks are made of particles, and their measured times are
dependent on their motion and on the manner in which they are set.
Thus, the behavior of clocks is part of the theory.  The nature of time
itself is not part of the theory, but of the metaphysical base.

1.9 Ether: For several centuries, one of the most powerful aids to
visualizing physical processes was the idea that space was filled with
a physical medium, called the ether, that was the seat of all
electromagnetic and possibly gravitic phenomena. Unfortunately, in
1905, before anyone could come up with the correct properties of the
ether, Einstein published his special theory of relativity1, in which
he stated, "...a 'luminiferous ether' will prove to be superfluous...".
This was followed by the introduction, in 1908 by the mathematician
Minkowski2, of the strange blend of mathematics and philosophy
called "space-time".  Subsequently, the ether was abandoned as an
aid to visualization; and, with the advent of quantum theory,
visualization itself was abandoned by most investigators.  This
distinctly "non-physics" approach to physics persists today on the
basis of Einstein’s "proof" that the ether does not exist.
     Few physicists are now aware of the fact that Einstein not only
knew that special relativity did not "prove" the non-existence of the
ether3; but that he used the ether, as late as 1924, as the basis for
general relativity4. He continued to do so, even though he failed to
establish the correct characteristics of the ether.
     In contemporary physics, the idea of "empty space" has given way
to the "vacuum", an entity with ever increasing real properties5.  That

1.  A.Einstein,  Annalen der Physik, 17,  891 (1905);  translation reprinted in The
     Principle of Relativity, p37, Dover Publications, New York.
2.  H.Minkowski, “Space and Time”, a speech delivered at Cologne in 1908;
     translation reprinted in The Principle of Relativity, p75, Dover Publications, N. Y.
3.  A.Einstein,  “Ether and the Theory of Relativity”  an address delivered at Leyden in
     1920; Translation printed in Sidelights on Relativity, p1, Dover Publications, N. Y.
4.  ……………, “Uber den Aether”, Verh.Schweiz.Naturf.Ges., 105,  p85 (1924).
5.  Physics Through the 1990s, Elementary Particle Physics, p71, National Academy,
     Washington, D.C.  (1986).
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these properties are those of the  ether will be assumed here, and the
description of its other properties will be given in the following.  The
immense task of trying to visualize and analyze the real world will not
be burdened here by ruling out the ether for no good reason.

1.10 Main Line Physics: Until 1900, physics was making magnificent
strides towards a total unification of the various subfields in its
domain into one overall discipline based on a relatively small number
of fundamental principles, which in turn were to be encompassed in a
single fundamental entity, the ether.  Mechanics and Heat had been
combined in the Kinetic Theory; Light, Electricity and Magnetism had
been combined in Electromagnetic Theory; and it only remained to
bring these together with Gravitation and Physical Chemistry, the
latter of which now includes also nuclei and particles. All of this was
to be done with a complete visualization at all levels of abstraction
and based on cause and effect. Special and General Relativity caused
a retreat from this position. Quantum Physics excited a rout.  The
present claim is that the final unification is now nearing completion
under Quantum Physics. However, the going is slowing.
     The old way of looking at physics is called "Classical", the new way
"Modern".  This division exists only in the field of philosophy. There is
only one physics.  It accepts all well tested phenomena, uses  any
mathematical tool that has utility, reconciles all phenomena through
cause and effect, unifies the explanations of why in the various levels
of abstraction and keeps the minimum metaphysical base as far down
in the layers of abstraction as possible. Where no explanation can be
found, the plain fact that "I don't know yet" will be appended.  The
following chapters on Main-Line Physics have been written using this
process.1

 ___________________________________________________________________
1. R.H.Dishington, Physics, Beak Publications, Pacific Palisades, CA (1989).
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CHAPTER 2

THE UNIFIED FIELD

2.1 Introduction: Looking out, the world gives the impression of
being a vast empty room in which, at a few scattered places,
something special exists. This something special appears to take on
various forms, sometimes as waves moving at high speed, sometimes
as particles either moving or at rest, generally following an observable
sequence of events.  In earlier times, these various configurations
were given separate names, such as mass or energy, although finally
it was realized that they were all just energy in different forms.  This
energy appeared to be conserved in passing from one form into
another.  However, as the idea of energy was extended, and its
conservation became well established, the nature of energy became
more abstract.  Ultimately, because one form of energy seemed to be
purely wave-like, the feeling gradually developed that there was a
more fundamental substance called the ether in which energy was a
configuration or a form of motion.  This concept will be accepted here,
and will be the basis for the development of the unified field theory.
     The first step in constructing a unified field theory is to find the
equations of motion of the ether as seen by an absolute observer; i.e.
one who sees the whole universe at once and whose measurements
are not affected by any energy configuration observed.  When these
equations of motion are found, they can then be rewritten to apply for
any observer, using flexible rods and clocks made of particles, moving
in any arbitrary way.
     In principle, an ideal theory of the world would answer all
questions with no remaining metaphysical base, an unlikely
possibility.  The next best goal is a theory with a minimum of
unanswered questions, and that is achieved by pushing the
unanswered questions lower and lower in the layers of abstraction,
until the metaphysical base is all that remains.

2.2 The Metaphysical Base: No attempt will be made here to choose
a metaphysical base and argue in its defense.  That is not the job of
physics.  The job of physics is to explain the various levels of
abstraction in such a way that the metaphysical base is pushed down
to the lowest possible level.  Whatever metaphysical base then results
will be accepted.  If properly done, that metaphysical base will be as
inexplainable as the beginning and end of time; but all the levels
above will be intuitive and simple, and no paradoxes will extend up
into  those  levels  of  abstraction.   The  metaphysical  base  that  has
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resulted from preparing the present work is:

        1. The existence of the real world is assumed.

        2. Measurement, carried out by experimenters, is in
            no way necessary for the real world's existence
            or functioning.

        3. Space is absolute - a place.

        4. Time is the sequence of events, not as they are
            measured, but as they occur.

        5. Space is filled with a substance called ether,
            whose properties are unknown except for the few
            to be discussed in this work.

     Here, space is Newton's absolute space1, an unwarpable, euclidean
place of large extent; exactly as the intuition indicates.  Time is
Newton’s absolute time1, the sequence of events, not as they are
measured but as they occur; again in agreement with the intuition.
The fact that space is filled with ether is part of the metaphysical
base, but the ether's properties are not.  They are clearly part of the
theory; since, until they are correctly specified there could be
alternative ways to describe the ether.  In the present theory, the ether
is the lowest level of abstraction.  Speculation beyond its equations of
motion, questions related to its sub-structure, will not be dealt with
here, being regarded as meaningless.  Certainly, no description of its
nature using the words particle, mass, charge, energy or momentum
is permissible.  All of these properties are derivable from the ether
itself.  The five items listed earlier, then, represent the total
metaphysical base that results from the specific theory developed
here.

2.3 The Perfect Continuum, Ether: Once the properties of the ether
are specified, the unified theory is complete; i.e. the theory and a
statement of the ether's properties are synonymous.  A complete
description of the ether has two parts; visualizable definitions of
certain of its physical characteristics, and a few formal equations
giving  a  shorthand description  of  the  relationships  between  those
physical properties.  This compact theory will be given in full in the
present chapter.  The remainder of the book  will  consist of  examples
_____________________________________________________________________
1. I.Newton, Principia Mathematica, (1686); translated by F.Cajori, University of
California Press, p6 (1946).
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of how the theory describes selected phenomena, and a demonstration
of how the world’s structure is built up from the ether.
     To start, some of the ether's important properties are:

            a. The ether is a conserved, compressible fluid.
            b. At any one absolute time t, at every absolute
                space point x,y,z, the ether has a positive
        absolute density aφ that varies from point
               to point.
            c. Over large volumes, there is an average or
                datum ether density φd .
      d. The incremental ether density φ  at each point
                is defined as φ − φa d  , which can be positive or
                negative.
            e.  At any one absolute time t, at every absolute
                 space point x,y,z, the ether has three velocity
                 components  x y zV , V , V .
             f.  In regions of space remote from energy (matter)
                a dφ = φ  and 0φ = .
             g. An observer considering a large region free
                 of energy will be called an absolute observer
                 if the datum ether has zero velocity everywhere
                 as seen by him.
             h. Questions related to other observers moving at
                 constant velocity relative to the absolute
                 observer are trivial and will be dealt with
                 later under rods and clocks.
             i.  If energy in the form of waves or particles is
                 introduced into the region observed, the
                 absolute observer sees a four variable field
                φ x y z, V ,V ,V  which varies with x, y, z and t
                 ( φ = = = = ∞x y zV V V 0 at ).
             j. The laws of physics can be written as non-linear,
                partial differential field  equations relating the
                field variables and  x, y, z and t.
            k. These intrinsic equations can be written in
                a form that is valid for any observer.
             l. They and their solutions represent all of
                the properties of the ether now known.
           m. They represent all of the physics of the known
                world, and all of the physics of the unknown
                world.
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The mathematical theory of fields involves functions that are single
valued (uniform), finite, continuous, and have continuous derivatives.
None of the examples of physical fields usually discussed satisfies
these requirements rigorously; since, if analyzed microscopically, such
things as the density of a gas or the velocity of a fluid cease to have
meaning because of the particulate structure of matter.
Consequently, field mathematics is only applicable to these "fields" as
an approximation, albeit a very good one in most cases.  However, the
match between the field mathematics and the physics in the case of
the ether is exact; because the ether is a perfect continuum.  It is not
composed of elements of the periodic table, it is basic.  It is a
frictionless fluid, of great compressibility, but has no mass, i.e., it has
no inertia or linear momentum per se and is not directly affected by
gravitation.  Therefore, it does not obey Newton's laws or any of their
derivatives such as the Navier-Stokes equation, etc.  Dynamically it
will remain unspecified until later, kinematically it behaves as a
perfectly compressible fluid, a continuum.
     In succeeding sections, the ether will be described primarily by its
absolute density aφ  and its velocity V .  An alternative representation
for the density is possible because of the assumption that the average
density over all space is a constant φd . Far out from all matter and
energy, the ether density is visualized as actually having the datum
value φd .  Consequently, at any point where ether has space and time
variations it is possible and often considerably more convenient to use
the incremental density,

a dφ = φ − φ     .                               (2.3.1)
The fact that dφ is a constant ensures that space and time derivatives
of φ  and aφ  are equal.  An important difference between φ  and aφ is
that aφ  has only positive values, representing the actual density in
space, whereas φ  can be positive or negative as aφ is greater or less
than the average value φd .  When referring to the ether, the word
density will be applied to both aφ and φ  throughout, and it will be left
to the reader to keep in mind the difference between them.
     It is clear from the preceding, that the ether has only a few simple
properties,  each  of  which  is  visualizable.  All  that  is  required  to
complete its description is a set of formal relationships that connect
these various properties.

2.4 Observer Systems: Field equations are written by an observer
describing what happens in a laboratory.  The ether field equations
are best investigated in a laboratory that, at first, is free of all
electromagnetic and gravitic fields; e.g. it could be out in space,
floating along uninfluenced by external fields.  If the laboratory is
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equipped with an external jet engine, it immediately allows the
discovery of one fundamental property of particles of matter composed
of ether distortions.  Anyone who has driven a car or ridden on a
merry-go-round knows that acceleration relative to the ether is
absolute; i.e. matter "knows" when it is accelerating relative to the
ether.  Thus, if the laboratory is pushed by its external jet engine, the
laboratory moves relative to the ether; and the laboratory observer,
standing with feet fixed to the floor, "feels" the acceleration as the
ether goes by and his speed increases.
     Although the final ether equations could be written for an
arbitrarily moving laboratory (even accelerating), they are far simpler if
written by an observer whose laboratory is not accelerating, i.e. whose
laboratory’s speed and direction of motion, relative to the ether, are
not changing. All constant velocity laboratories, moving at arbitrary
speeds, are defined as inertial systems, in which observers standing
still in each room feel no acceleration.  While, today, it is fashionable
to formulate field equations using the theory of transformations
between the various inertial systems, all of physics can be discovered
by a single observer in any one inertial laboratory.  Later on, it will be
shown that identical experiments have the same results in any two
inertial laboratories; but the derivation and visualization of the
physics is far simpler for one particular inertial observer called the
absolute observer.
     The absolute observer is one whose laboratory is at rest relative to
the datum ether, so that before particles and fields are introduced
inside, the ether in the laboratory is homogeneous, isotropic, and at
rest.  The laws of physics are discovered by introducing a particle,
such as an electron; or an electric field, such as that between the
plates of a charged capacitor; or two small masses suspended close to
each other; etc. Various controlled experiments are conducted with
these objects and their behavior is observed.  Then the generalization
of all the experiments is synthesized using the well known
mathematics of field representation (see Appendix A).  This consists of
simple forms that describe spatial changes with time.
     Although the forms used to represent the fields are usually quite
simple, the actual experiments or calculations related to them, using
the equations, usually require the establishment of a coordinate
system inside the laboratory (see Appendix B).  This is done by
visualizing three sets of imaginary surfaces, fixed relative to the
laboratory walls, ceiling and floor, which allow a different set of three
numbers to identify each point in the room.  In the case of the ether,
the density aφ and fluid velocity V are specified at each space point;
but also, other more complicated quantities, related to aφ and V , can
be written in the form of scalars, vectors or dyadics (See Appendices A
and C) and specified at each point.
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     Most experiments of interest involve fields that are changing with
time, so, in several places about the room, the laboratory has clocks
that have been set by one of several possible methods.  The time is
considered to be the same at every point in the laboratory, whether or
not a clock is located there. Choice of the method of clock setting
involves certain subtleties that are discussed in detail in chapter 8.
     Once a coordinate system and a laboratory time have been
established, the field can be described by partial differential equations
for the field variables like aφ , V , etc. in terms of the independent
variables x, y, z, and t, for example (see Appendices D & F).  The ether
field equations for the absolute observer's system, as obtained
through the preceding process, will now be presented.

2.5 The Conservation Law: The study of fluid motion is logically
divided into two parts, kinematics and dynamics.  Kinematics is a
geometrical description of the possible motions resulting from the fact
that any fluid occupies space as it moves about, and a particular part
of it cannot be in two places at once.  Dynamics deals with the laws of
cause and effect governing a particular fluid's motion.  Kinematics is,
therefore, the same for all fluids, whereas the dynamics of each
different fluid can be different (see Appendix E).
     The most fundamental kinematic equation of motion of a
conventional fluid is the continuity equation, which relates the change
in density at a point to the flow of the fluid towards or away from that
point.   Defining  the  ether  flow  vector  as  aφ V  and a( )∇ φ Vi   as the
divergence of the flow vector at the point in question (see Appendix A),
the continuity equation is written,

                                            a
a( )

t
∂φ

= −∇ φ
∂

Vi    .                           (2.5.1)

It says that the  time  rate  of  increase  of density aφ at a fixed point is
equal to the negative of  the  divergence  of  the flow vector aφ V at that
point.
     The intuitive meaning of the continuity equation is perfectly clear.
If the divergence of the flow away from a point is net positive, then the
density of the fluid at that point must be decreasing and vice versa.
Only if fluid is being created or destroyed at a point is it possible to
violate this relationship.  Therefore, Eq.(2.5.1) is the formal expression
for the conservation of ether.

2.6 Static Ether Concentrations: The ether can be distorted into
particles, and propagates both transverse, t, and longitudinal, " ,
waves.  However, the concept that certain particles are composed of
regions of condensed and rarefied ether is complicated by the
frictionless fluidity of the medium, which would immediately flow to
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thin the condensed regions and fill in the attenuated regions.  So, it is
clear that no static ether configurations exist.  In the case of so called
"static" fields, the stability is the result of a combination of bulk
displacements held together by some dynamic action in the ether.
Thus, the designation "static" field, as commonly used, implies both
bulk displacements and active, dynamic ether motion.

2.7 Longitudinal Waves: The motion of transverse ether waves is well
understood through electromagnetic theory.  These t-waves are
generated by moving charged particles, and they carry energy in two
forms; antenna and photon radiation.
     No longitudinal radiation appears in electromagnetic theory.
Nevertheless, " -waves are more prevalent and potent than t-waves.
The sometimes strange physical effects they produce are not yet
recognized as being caused by " -waves; and the theory of " -waves is
sadly lacking any large experimental base.  Since all energy transfer
by waves is presently observed to be carried by t-waves, the " -waves
appear to be energyless; which accounts for their lack of observability.
     The generation of " -waves is impossible to avoid.  Just as a stone
dropped into a quiescent pool of water causes a set of circular waves
to leave the point of impact, any disturbance of the ether at any point
immediately produces high frequency, spherical " -waves that move
outward.  These waves are essentially like those visualized by
Huygens1. When they come in contact with particles, more waves are
generated; so that the ether, everywhere, is traversed by " -waves,
moving in all directions, caused by all the interacting particles in the
universe.  Unlike  waves  in  elastic  media,  the  velocities  of  ether
" -waves and t –waves are the same, and equal to the velocity of light.
     Non-linearity is a major factor in writing the equations of motion of
the ether; and for this reason the equations that establish the
energyless " -wave amplitudes are different from those giving the bulk
flow properties, which bulk motions involve energy in one way or
another.  Thus, in writing the field equations, the bulk ether
distortions must be distinguished from the " -waves, so the
incremental density and velocity are separated into two components,

               φ = φ + φ = +           ,          V V Vi i      ,           (2.7.1)
                                bulk   " -wave                    bulk   " -wave

where the double bar indicates a constant (time average) or slowly
varying bulk ether deformation or a  t-wave, and the sub-dot indicates
a rapidly oscillating, periodic,  zero time average, longitudinal wave.
_____________________________________________________________________
1. C.Huygens, Treatise on Light, (1690); translation by S.P.Thompson, Dover
Publications, p16 ff (1962).



17

In some situations, a problem can be solved using either the bulk or
the " -wave equations separately; but more often than not, a close
meshing of both is required to explain the physical phenomena.

2.8 Separation Equations: Eqs.(2.7.1) represent two of a set of
separation equations that allow working with one or the other of the
two components, bulk or " -wave.  As an example, consider the flow
vector aφ V , i.e. the density, velocity product that specifies the ether
current density or flow density at each point in space.  If separated
into time average and periodic components, it is written,

                                        { }a a aφ = φ + φV V V
i
    .                         (2.8.1)

Its components can be found simply by using Eq.(2.3.1) and
Eqs.(2.7.1) to give,

                                    a d a   φ = φ + φ + φ = φ + φi i     ,                  (2.8.2)

which is then combined with Eqs.(2.7.1).  The result is,

                                       a a( )( )φ = φ + φ +V V Vi i     .

Carrying out the multiplication,

                                   a a aφ = φ + φ + φ + φV V V V Vi i i i     ,               (2.8.3)

where the first RHS term is non-periodic, the last two terms are
periodic, and φ Vi i  can have both periodic and non-periodic
components given by,

                                          { }φ = φ + φV V Vi i i i i i i
    .                       (2.8.4)

Combining Eqs.(2.8.4) and (2.8.3),

                               { }a a aφ = φ + φ + φ + φ + φV V V V V Vi i i i i i i
    .       (2.8.5)

Comparing Eqs.(2.8.1) and (2.8.5), the separated components of aφ V
are seen to be,

                                   φ = φ + φa aV V Vi i     ,             (bulk)             (2.8.6)
and,

                           { } { }a aφ = φ + φ + φV V V Vi i i ii i
    .      ( " - wave)       (2.8.7)



18

     Using the same procedure, the separation equations for a , the
acceleration of the ether at a point, are found to be,

                          ∂
= + ∇ + ∇
∂t
Va V V V Vi ii i     ,             (bulk)          (2.8.8)

and,

                  { }
t

∂
= + ∇ + ∇ + ∇

∂
Va V V V V V Vi

i i i i i i
i i i     .    ( " - wave)      (2.8.9)

    Even more useful is the separation of complete equations.  For
example, the ether conservation law of Eq.(2.5.1) can be expressed as,

                          ( ) a
a( )(

t t
∂φ ∂φ

∇ φ + φ + = − −
∂ ∂

V V i
i ii     ,

or when expanded out,

               
∂φ ∂φ

∇ φ + ∇ φ + ∇ φ + ∇ φ = − −
∂ ∂

a
a a( ) ( ) ( ) ( )

t t
V V V V i

i i i ii i i i     .

     Here, the first term is clearly a time average quantity and the next
two are simply periodic; but the term involving φ Vi i  can be
decomposed into a time average and a zero time average component,
as before.  Thus, the separation evolves with one more term than
given above, so that,

        { }a
a a( ) ( ) ( ) ( )

t t
∂φ ∂φ

∇ φ + ∇ φ + = −∇ φ − ∇ φ − ∇ φ −
∂ ∂

V V V V V i
i i i i i i i

i i i i i

                   Time Average                                 Zero Time Average            (2.8.10)

     In Eq.(2.8.10) the two sides can be instantaneously equal only if
both are independently equal to zero.  In effect, then, the " -waves obey
a conservation law that can be used independently of the bulk
conservation law.  This is expressed by,

                        a
a( ) ( ) 0

t
∂φ

∇ φ + ∇ φ + =
∂

V Vi ii i     ,        (Bulk)           (2.8.11)

and,

            { } ∂φ
∇ φ + ∇ φ + ∇ φ + =

∂a( ) ( ) 0
t

V V V i
i i i i i

i i i     .    ( " -wave)       (2.8.12)

      One important result comes immediately from the separation

equation for aφ V .   In  many  "static"  fields,  there is no net ether flow,



19

i.e.  aφ V =0.  Nevertheless, in such cases, from Eq.(2.8.6),

                                            
a

φ
= −

φ

VV i i     ;         ( a 0φ =V )        (2.8.13)

 which indicates that even if no ether flow occurs, there can be a time
average velocity component, if φ Vi i is not zero.  Furthermore, from

Eq.(2.8.8), even if the time average velocity V is zero, there can be a
non-zero time average acceleration,

                                            = ∇a V Vi ii     .          ( 0=V )         (2.8.14)

For convenience, the separation equations are listed in Table 2.8.1.

 __________________________________________________________________

TABLE 2.8.1

SEPARATION EQUATIONS

φ = φ + φi                 = +V V Vi                 = +a a ai

a d d a            φ = φ + φ = φ + φ + φ = φ + φi i

t
∂

= + ∇ + ∇
∂
Va V V V Vi ii i        ,       { }

t
∂

= + ∇ + ∇ + ∇
∂
Va V V V V V Vi

i i i i i i
i i i

a aφ = φ + φV V Vi i       (bulk)      ,    { } { }a aφ = φ + φ + φV V V Vi i i ii i
     ( " -wave)

a

φ
= −

φ

VV i i      if     ( a 0φ =V )       ,       = ∇a V Vi ii     if     ( 0=V )

a
a( ) ( ) 0

t
∂φ

∇ φ + ∇ φ + =
∂

V Vi ii i     ,    (Bulk)

{ } ∂φ
∇ φ + ∇ φ + ∇ φ + =

∂a( ) ( ) 0
t

V V V i
i i i i i

i i i ,   ( " -wave)
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2.9 Vorticity and Angular Persistence: In Section 2.3,  the ether was
described as a frictionless fluid that has no inertia or linear
momentum, per se.  There are situations, however, where it gives the
appearance of having angular momentum.  Wherever a steady state,
closed circulation of ether occurs, since it is frictionless, the angular
rotation will persist forever unless acted upon externally.  This
angular persistence gives the appearance of angular momentum,
although it has no relationship to mass or inertia as commonly
understood.  A more complete discussion of this effect will appear
later on, since it is closely related to difficulties with the conventional
concept of magnetic energy.

2.10 Units and Universal Constants: All of the equations developed
here are written in Heaviside-Lorentz units, because these units more
closely represent the fundamental physics of the ether than do other
more popular systems.  The latter introduce constants which have no
basic role in ether theory.  Since the standardization of practical
units, H-L units have all but disappeared from the literature, so a
table of conversion factors is included in Appendix G.  The units for
ether density 3(ether/ cm )have been called "descartes" here, because
no name for them had been established in the past, and descartes
seemed an appropriate name.
     In the following, a number of universal constants appear, some
familiar and some newly defined.  The velocity of light with respect to
the datum ether is the well known constant, 0c .  If the ether density

aφ  is greater or less than φd , in some large region, the velocity of light
c will be greater or less than 0c . The datum density φd  is also a
universal constant. Several others will be defined and discussed, later
on, where they appear in the development.  Table 2.10.1 gives the
values of these constants. Since the accepted values of fundamental
constants are regularly adjusted, as measurements gradually improve,
the values here are not to be regarded as final, nor even up to date;
but they are accurate enough to allow proper exposition of the theory.
     The important thing to notice about Table 2.10.1 is that the
constants presented are divided into two sets, basic and derived.  The
basic constants appear in the fundamental field equations, whereas
the derived constants only appear in the solutions of those equations.
The only exception to this is 0c , which is a derived constant that is
used instead of  φd  , the basic quantity.  The use of  0c  , instead of
φd , in the field equations eliminates the requirement for a fifth basic
constant to adjust  for the units used.
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TABLE 2.10.1

UNIVERSAL CONSTANTS

                 Basic                                             Derived

24 2a 7.954945 10  cm /sec−= ×       = × 10
0c 2.99792458 10  cm/sec

26 2b 1.428438 10  sec/cm= ×        −= × 9e 1.7026924 10  hlc

20
d 8.9875517 10φ = ×  descartes         −= × 27h 6.6260755 10  erg-sec

7D 2.7346139 10  cm/sec= ×               −= ×
2

7
2

dyne-cmG 8.3850240 10
gm

____________________________________________________________________

2.11 The Function of !-Waves: The way in which " -waves contribute
to the world's structure can be understood best by considering the
process of pair production, i.e. the generation of an electron/positron
pair using a high energy photon colliding with, say, a neutron.  From
the ether point of view, the pair of particles is produced by removing
some ether from one region and depositing it in another, so that the
slightly depleted region (electron) is separated from the slightly
compressed region (positron).  In this case, the fluid ether would ooze
out of the positron and flow into the electron until nothing remained
but the datum.  In order for the electron and positron to be "stable"
particles, something else must prevent this oozing.  During pair
production, an energyless, longitudinal sustaining wave is set up that
goes out of the electron and into the positron to hold their bulk
displacements of ether in place.  These frictionless " -waves persist as
long as the electron and positron remain separate particles.
     The " -wave is a permanent part of each particle, and its first
function is to stabilize and sustain the bulk distortion that constitutes
the part of the particle that is directly measurable in the laboratory.  A
second function is to establish the particle's gravitic field.  Third, the
" -wave Doppler shift properties of a particle in motion determine
many of what are conventionally called its quantum mechanical
characteristics.  Finally, many of the mysteries, such as the double-
slit and Aharonov-Bohm experiments, can be explained by the " -
waves.  Therefore, the " -wave is the fundamental ether property that
most controls the phenomena that appear in experiments with particles
and fields; even though the bulk properties are the ones usually
measured.
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     For this reason, the " -wave equations are regarded as the basic
equations of the ether; for once the fields φi  and Vi  are known, the

bulk configurations φ and V  can be found from them.  Then, from the

φ  and V  distributions come the physical definitions and
visualizations of charge, energy, inertia, momentum, etc.

2.12 The !-Wave Equations: As mentioned in Section 2.7, there is no
large experimental base to aid in discovering the basic " -wave
equations.  The number of experiments, past and present, on the bulk
characteristics of particles and fields is so great as to be uncountable;
yet, essentially all " -wave measurements made, to date, are indirect
and are recognized for what they are by only a few dissident
physicists.  The consequence is that the " -wave equations presented
here are the result of much circuitous relating of ostensibly unrelated
facts, considerable guess work, and a remaining uncertainty.  Until a
solid groundwork of " -wave experiments is available, the formal
description of the ether presented here must be used with reservation
and care.  Some part of it will undoubtedly be modified in the future.
Nevertheless, the picture it has generated will probably endure.
     The most desirable form of equation would be one that gives Vi
directly.  Then the continuity equation could be used to get φi .
Because of the conditions described in the preceding paragraph, such
an equation is not known at this time.  What has been achieved is an

equation for a scalar velocity potential η  from which Vi  can be found.
Here, again, the non-linearity of the ether requires the use of two
separate " -wave equations; one for standing " -waves and one for
traveling " -waves.

     The TRAVELING " -wave equation takes the form,

            ( )
2

2 2
2 0

2 2 2
d0 0

c1 1 1
t Dtc c

   ω∂ η ∂η  ∇ η − − ∇η − = ± ∇ φ
  ∂ φ∂ η   

Vi ii   ,    (2.12.1)

where the sign on the RHS is,

                           if  V 0        ,         if  V 0i i i i+ φ ≤ − φ ≥               (2.12.2)

and, for " -wave sources at rest,

                              2η = Vi     .        ( " -wave sources at rest)            (2.12.3)
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If the " -wave sources are moving, the relationship between Vi  and η
must be modified.  This will be discussed in a later section.
     The angular frequency ω  functions as a constant while solving Eq.
(2.12.1) for Vi  , and a separate conditional equation, to be discussed
further on, is required to determine its value.  Eq.(2.12.1) involves
both Vi  and φi  , so one other equation is needed to solve for them.

This is the " -wave continuity equation.  Because aφ  is of the order of

φd , which is immensely greater than V , φi  and Vi  in any practical
situation, Eq.(2.8.12) for the full " -wave continuity relationship can
be approximated with extreme accuracy by,

                                           d 0
t

∂φ
φ ∇ + ≅

∂
V i
ii                             (2.12.4)

Eqs.(2.12.1) and (2.12.4) allow φi  and Vi  to be found for traveling " -
waves.  Here, again, certain subtleties are involved, so that the
examples given later should be consulted before attempting to solve
Eqs.(2.12.1) and (2.12.4).

     The STANDING " -wave equation takes the form,

                                          
2

2
2 2
0

1 0
tc
∂ η

∇ η − =
∂

    ,                      (2.12.5)

where η  is again defined by Eq.(2.12.3).  The " -wave continuity
equation, Eq.(2.12.4), is again used to solve for φi .
     Eqs.(2.12.1) and (2.12.5) are field shape determining equations;
since, as stated before, ω  is a constant.  The latter sets the  scale of
the solution, and is dependent on the compression properties of the
ether, to be discussed next.

2.13 The Compression/Oscillation Equation: If ether is compressed,
so that aφ  exceeds φd  in some small region, and then is allowed to
expand, the surrounding ether interacts with the expanding ether and
an oscillation is set up.  Since it is frictionless, the oscillation and the
resulting " -waves continue unabated.  The waves are attenuated with
distance from the generating region, but the overall oscillation
persists.  This process is similar to a mass/spring system; but the
ether is so non-linear that its compression/oscillation properties are
quite different from familiar cases.
     The mass/spring process is usually described by an equation such
as,

                                            
2

2

d
( ) 0

dt
φ
+ φ =i

i!F     ,                     (2.13.1)
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where the non-linear function ( )φF i  includes the mass/spring
characteristics.  If ( )φF i  is a known function, then Eq.(2.13.1) can be
solved for a frequency/density relationship of the form,
                                               Gω = φ m( )i     ,                            (2.13.2)

where  mφi  is the initial, maximum incremental density, and G φ m( )i  is
generally an increasing, monotonic function.
     The exact form of ( )φF i  for the ether must be determined
empirically, and is not known at this time.  However, measured
particle characteristics have been used to obtain much insight as to
the form of the function G φ m( )i . This will be discussed in detail in
Chapter 4.
     The three equations necessary to solve for " -wave fields, then, are
Eqs.(2.12.4), (2.13.2) and either Eq.(2.12.1), for traveling " -waves, or
Eq.(2.12.5), for standing " -waves.  They are the main " -wave field
equations, as they are now known.  Until a larger program of " -wave
experiments is carried out, they represent the only formal method for
determining Vi  and φi  directly.  Aside from certain auxiliary
equations involved in the solutions for particles, they have within
them the ability to describe everything related to the structure of
matter.
     Next to be discussed is the equation that connects the solutions
Vi  and φi  found from the " -wave equations, to the bulk solutions for

φ  and V , which produce the directly measurable properties of
matter.

2.14 The Bridge Equation: The bulk properties of matter are found
using the "bridge" equation, which gives, quantitatively, just how
much ether distortion a given " -wave can sustain.  It takes its
simplest form for static fields, as expressed by,

                                              ∇φ = φb Vi i     ;         (static)             (2.14.1)

which indicates that, if the phase angle between φi  and Vi  is 90

degrees, no gradient of the bulk incremental density φ  can be
sustained.  However, if φi   and Vi   have an in phase component, then

the gradient of φ  depends linearly on the time average of φ Vi i .  Once

the " -waves φi  and Vi  are known throughout a region, φ  can be
determined everywhere in that region by integrating Eq.(2.14.1).
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     The designation "static" field in Eq.(2.14.1) means that no bulk

field quantity such as φ  , V  , aφ V  , etc. is changing with time.  In
cases where the bulk fields are time variable, the picture is
complicated by the finite propagation time delay required to readjust
the fields.  So, in the general case, the bridge equation is written,

                                    
∂φ

∇φ + = φ
∂
a

2
0

1 b
tc
V Vi i     ,     (general)      (2.14.2)

and is known as the "retarded" form (as in retarded potential).

2.15 Bulk Equations: Here again there are two sets of bulk equations,
microscopic and macroscopic.  Unfortunately, they are almost
identical in appearance; but they have completely different physical
meanings and are applied in quite different ways.  To emphasize the
disparity between them, only the microscopic equations will be
presented in this chapter. Discussion of the macroscopic bulk equations
and their applications will be delayed until Chapter 11.
     Whether to use the microscopic or macroscopic form of the bulk
equations is determined by the type of "charge" distribution to be
analyzed.  Most everyday electromagnetic problems involve the
separation and recombination of groups of whole charged particles,
such as electrons and other particles composing atomic nuclei.  In all
these cases, the "charge" is a number assigned to each whole particle,
and the charge density distribution is described in terms of how many
whole charged particles per cubic centimeter act at each point.  In
these cases, the fundamental nature of "charge" is not considered, and
the macroscopic equations are used.
     When the problem to be studied concerns the internal structure of
particles, and an internal distribution of charge density that
integrates throughout the particle to give the whole particle "charge"
used in the macroscopic cases, then the fundamental nature of
"charge" is of concern, and the microscopic bulk equations are used.
     Even when analyzing a microscopic case, there are two ways to
write some of the equations, because of the nature of bulk
measurements.  For example, in a field where the ether flow vector at

each point is aφ V , the bulk equations can be written in terms of φa

and aφ V . However, φ  is the quantity found directly from the bridge

equation, not φa ; and in the laboratory, φ  is measured rather than

φa ; so it is often more convenient to write the bulk equations in terms
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of φ  and the flow vector φu , where u is a velocity defined by the
relationship,

                                                aφ = φu V     .                             (2.15.1)

The significance of Eq.(2.15.1) is that the actual density φa  at each

point, moving at the actual ether velocity V  defines a definite amount
of ether actually flowing through any given small area, perpendicular

to the flow at the point, as represented by the flow vector aφ V  ; so, if

φ is used, instead of φa , there must be an apparent or effective

velocity u such that φu  gives the same net amount of ether passing

through the small area. Because φ # φa  (due to the large value of

dφ ), u V$ .  In some rare cases, the velocity u can appear to be

infinite; but, in those cases, reverting to φa  and aφ V  eliminates any
problem.

2.16 The Bulk Conservation Equation: In Section 2.8, the equation
for ether conservation, Eq.(2.5.1), was separated into its bulk and " -
wave components, given by Eqs.(2.8.11) and (2.8.12).  More compact
forms of these separated equations are,

                                        a
a 0

t
∂ φ

∇ φ + =
∂

Vi     ,         (bulk)          (2.16.1)

and

                                       { }a 0
t

∂φ
∇ φ + =

∂
V i

i
i     .      ( "  -wave)       (2.16.2)

In Section 2.12, an extremely close approximation to Eq.(2.16.2) was
introduced in the form of Eq.(2.12.4).  No such approximation is
needed for the bulk Eq.(2.16.1), however, because the bulk equations

are written directly in terms of φa  and aφ V . Thus, in the light of the
discussion in Section 2.15 regarding Eq.(2.15.1), the two forms of the
bulk conservation law required are,

                      
∂φ

∇ φ + =
∂

a
a 0

t
Vi     and    ∂φ

∇ φ + =
∂

 ( ) 0
t

ui     .      (2.16.3)

These kinematic equations can be used interchangeably. The
remainder of the bulk equations describe the ether's dynamics.
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2.17 Bulk Ether Distortions: If the " -wave equations are solved and

the bridge is used to determine φ  everywhere, then the φ  field
represents a bulk distortion away from dφ , the uniform datum.  There
are many ways to describe this distorted field. To establish a good
visualization of some of these different descriptions, first consider a

"static" φ  field held in place by its " -waves.  Not only is the original

field φ , itself, a distortion; but, for example, its gradient ∇φ  is a

different, coexistent distortion field.  The product ∇φ ∇φi  is another

different distortion field; as is any other function of φ  such as 2∇ φ ,
for example.  The reason it becomes important to recognize and
identify these different, coexisting forms of distortion, all implicit in

the original φ , is that in various interactions between fields, such as
an electron's field immersed in the field of a charged parallel plate
capacitor, for example, each of these distortions accounts for a
different effect in the interaction.  A few distortions produce such
unique and recognizable effects that they have been given special
names.  Each of these more important deformations will be discussed
here in some detail.
     The principal thing to keep in mind is that there is nothing present in
the field but the φ  distortion distribution of ether.

2.18 Incremental Bulk Distortion: One of the most directly
measurable properties of electric fields is the electric potential.  In
practical units it is given in volts, and is measured with the common
voltmeter.  The corresponding measurement in H-L units is the hlvolt.
Physically, what is being measured here is the incremental ether

density distortion φ .  When a potential of 1 hlvolt is measured from

the datum level, the density φ  is 1 descartes.  Thus, the incremental
bulk density is the physical definition of what has been named "electric
potential".  If this had been known at the time various electrical
properties were being named, electric potential now probably would be
called "ether density", and voltmeters would be called ether density
difference meters.  It is important to remember that the voltmeter does

not measure the absolute ether density φa , but either the incremental

value φ  relative to the datum, or the difference in φ  between two
regions.
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2.19 "Gradient Squared" Distortion: In 1837, Faraday first
recognized the importance of the "gradient squared" distortion, when
he defined the "electric energy density" in an electrostatic field as,

                                      2 21 1
e a2 2( ) ( )ε = ∇φ = ∇φ     ,    (static)            (2.19.1)

measured in ergs/cm3. From his point of view, φ  was the electric
potential (hlvolts) in the field, but here it is clear that the physical
definition of "electric energy density" is the particular distortion in the
ether described by Eq.(2.19.1), where φ  is measured in descartes
(hlvolts).
     If the fields are changing with time, the retardation due to the
finite propagation velocity must be included, just as was done in the
general bridge equation.  Therefore, the general definition of electric
energy density takes the (retarded) form,

                                 ( )
  ∂φ  ε = ∇φ −
  ∂   

2
2

a
e a 2

0

1 1
2 tc

    ,

 or,                                                                        (general)        (2.19.2)

                  ( )
2

2

e 2
0

1 1
2 tc

  ∂φ  ε = ∇φ −
  ∂  

   .

Here again, as in the case of the incremental bulk density φ , the
physical definition of electric energy density is a simple, physically
visualizable property of the bulk ether density.

2.20 Surrounding Function Distortion: In Appendix A, the Laplacian
2∇ φ  of a scalar field φ  is shown to be the difference, at each point in

space, between the average of φ  in a differential volume surrounding

the point and the value of φ  at the point.  This is a simple
visualization of the physical meaning of the surrounding function in

any scalar field.  In the bulk incremental ether density field φ , the
surrounding function distortion produces the unique effects attributed to
"distributed charge density". Formally, the definition of "distributed
charge density" in a static field is,

                                         ρ = −∇ φ = −∇ φ2 2
a     ,         (static)        (2.20.1)
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measured in hlcoulombs/cm3. Lack of knowledge of the physical
nature of charge resulted in the less convenient choice of sign in
Eq.(2.20.1) by early investigators.
     As before, the propagation delay time must be involved when the
fields are changing with time, so the general expression for charge
density is,

                                    
2

2 a
a 2 2

0

1
tc

 ∂ φ
 ρ = − ∇ φ −
 ∂ 

    ,

or,                                                                    (general)                (2.20.2)

                                      
2

2
2 2
0

1
tc

 ∂ φ
 ρ = − ∇ φ −
 ∂ 

    .

     Eqs.(2.20.1) and (2.20.2) look familiar, because when written with
the RHS and LHS reversed, they have the same appearance as the
well known Maxwell wave equation for the scalar potential.  It is of
utmost importance here to understand the profound difference
between Maxwell's macroscopic equations and the microscopic
Eqs.(2.20.1) and (2.20.2).  In the macroscopic equations, ρ  is the
known function, being a count of whole charged particle density at
each point. From this given source distribution, the potential function
is found by solving the macroscopic equation. The whole particles
exert coulomb forces on each other.  Quite the opposite is true in the
microscopic case described by Eqs.(2.20.1) and (2.20.2).  There, the

known field function φ , obtained from the " -waves and the bridge, is
operated on to find the distribution of surrounding function
distortion, ρ .  The elements of distributed charge ρ exert no force on
each other.

2.21 The Bulk Ether Flow Equation: There are many ether fields
that cannot be derived by the previously given bulk distortion
equations.  Common examples are the fields of permanent magnets,
solenoids and transformer coils.  Other important examples are the
neutrino and photon particles.  Some of these, as well as the analysis
of antenna radiation in the form of transverse waves, require what is
called the ether flow equation, which takes the static form,

                                       2 2
a ( )ρ = ∇ φ = ∇ φu V u     ,     (static)          (2.21.1)

measured  as  hlcoulombs/cm2-sec.  The  form  for time variable fields
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becomes,

                                     
2

2 a
a 2 2

0

1
c t

 ∂ φ
 ρ = − ∇ φ −
 ∂ 

Vu V     ,

or,                                                                            (general)     (2.21.2)

                                     
2

2
2 2
0

1 ( )( )
c t

 ∂ φ
 ρ = − ∇ φ −
 ∂ 

uu u    .

Here again, the equations have the same form as the macroscopic flow
equations reversed; but in this case problems are sometimes solved
the same way microscopically and macroscopically, even though the
same profound difference exists in their physical interpretations.
     There is a whole class of flow problems where there are vortices

present.  In these cases, the incremental density has little effect, so φ
is effectively zero, u is not defined, and the flow is handled using a
reduced form of Eq.(2.21.2),

                                        
2

2
2 2
0

1 0
tc

∂
∇ − =

∂
VV     .                       (2.21.3)

2.22 Summary of the Unified Field Equations: Eq.(2.21.3) is the last
of the main equations constituting the unified field theory of the ether.
For convenience, all of the key equations of this chapter are
summarized in Table 2.22.1.  The following chapters will consist of
solutions of these equations for much of the basic structure of matter
observed in the world. They will not, however, delve into the physics of
solids, liquids, gases or plasmas.  Those areas develop logically from
the more fundamental structures that will be derived here, but are so
voluminous as to prohibit inclusion.  Moreover, the physics in those
disciplines will be modified only slightly by the fundamental changes
elaborated here.  On the other hand, a number of, at present,
mysterious phenomena will be examined on the basis of the ether
theory.
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TABLE 2.22.1

EQUATIONS OF THE UNIFIED FIELD

Maxwell's Macroscopic Equations

2
2

2 2
0

1  
c t

∂ φ
∇ φ − = − ρ

∂
      ,      

2
2

2 2
0

1 ( )( )  
c t

∂ φ
∇ φ − = − ρ

∂
uu u       ,      
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1
c t
∂φ

∇ φ = −
∂

ui

Unified Microscopic Equations

" -wave equations

        ( )
2

2 2
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2 2 2
0 0 d
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c t c t D

   ω∂ η ∂η  ∇ η − − ∇η − = ± ∇ φ
  ∂ ∂ φ η   
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2

2
2 2
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∂ η
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∂
         (standing)      ,              2η = Vi

   d 0
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∂φ
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∂
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ii     (conservation)          ,      m( )ω = φiG              (compr./osc.)

the bridge equation

                                 a
2
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c t

∂φ
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∂
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bulk equations

 aφ = φu V     (apparent flow)          ,          ( ) 0
t
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∂
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2
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2
2 2
0

1 ( )( )
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2
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∂
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∂
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CHAPTER 3

THE ELECTRON

3.1 Introduction: The physical properties of the ether, described in
Chapter 2, and its equations of motion and distortion, summarized in
Section 2.22, represent the complete unified theory to be presented
here.  Whether  or not it is the ultimate theory must be determined by
comparing its results with all known phenomena. This is a big order
that must be carried out by many investigators, who are now not even
aware of the theory’s existence.  In this and the following chapters, a
skeletal outline of the whole phenomenological structure to be
matched will be surveyed.  Surely it will take years and many
experiments, not even conceived yet, before it can be said with any
certainty that the theory is complete.  However, this sketch is very
encouraging.
     To give the reader a feeling for how the theory is used, including
some subtleties in its application, the electron is a perfect example;
because it involves almost every basic phenomenon known, electricity,
magnetism, gravitation, quantum effects, etc.  Its study begins with
the visualization of a simple, physical flow pattern that describes it.

3.2 Visualization of the Electron: The picture of the electron to be
used here applies equally well to the positron, where some of the
physical functions are reversed.  The electron, at rest, is assumed to
be a spherically symmetrical region where a small reduction of the
central bulk ether density has been made, and which reduced density
configuration is held in shape, and prevented from filling in, by an
outgoing longitudinal wave.  Figure 3.2.1 shows an electron greatly
exaggerated in amplitude relative to dφ .

Figure 3.2.1 The electron ether density distribution.
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     The analysis begins with the solution of Eq.(2.12.1) for the
traveling ! -wave.  The bridge equation will then provide the bulk

incremental density distribution φ .  From this, the distributed charge
and electric energy density distributions ρ  and eε  will be obtained
and integrated over all space to give eq  and 0E  , the electron’s charge
and rest energy.  Finally, its spin, magnetic moment and gravitic field
will be computed.
     Next, the electron will be considered moving at constant velocity,
and its shape change, energy and charge will be evaluated.  Certain of
its quantum mechanical properties will be derived.  Finally, some
surprising conclusions will be drawn concerning its magnetic field and
radiation properties.

3.3 The Electron’s Traveling ! -Waves: First the outgoing ! -wave
characteristics will be found.  Since it is clear that, for an electron at
rest, its fields are spherically symmetrical and drop off as some
function of the radius  r, measured from its center, a simple trial form
for Vi  can be written,

                                              aˆ C
r
ψ

=V ri     ,                             (3.3.1)

where,

                                           
0

rC cos t
c

 
= ω − 

 
    ,                       (3.3.2)

and ω  is as yet unspecified; a is the amplitude constant given in
Table 2.10.1;  and (r)ψ = ψ  is an unknown, monotonically increasing
function to be found from Eq.(2.12.1).
     From Eq.(3.3.1),

                                  
0

a 1 d 1 C S
r dr r c

  ψ ψ ω
∇ = + +  ψ  

Vii      ,          (3.3.3)

where,

                                            
0

rS sin t
c

 
= ω − 

 
    ,                       (3.3.4)

Now, combining Eqs.(2.12.4) and (3.3.3),

                                 d

0

a 1 d 1 C S
t r dr r c

 φ ψ∂φ  ψ ω
= − + +  ∂ ψ  

i     ,        (3.3.5)
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which can be integrated with respect to time, leading to,

                             d 0

0

a c 1 d 1C S
c r dr r

 φ ψ  ψ
φ = − +  ω ψ  
i     .                 (3.3.6)

The product of Eqs.(3.3.6) and (3.3.1) results in,

                         
2 2

2d 0
2

0

a c 1 d 1ˆ C CS
dr rc r

 φ ψ  ψ
φ = − +  ω ψ  

V ri i     ,        (3.3.7)

which leads directly to the time average,

                                            
2 2

d
2

0

aˆ
2c r

φ ψ
φ =V ri i     ,                          (3.3.8)

and its divergence,

                                         
2 2

d
2

0

a d
dr2c r

φ ψ
∇ φ =Vi ii     .                      (3.3.9)

Since V 0i iφ > , from Eq.(2.12.2), the RHS of  Eq.(2.12.1) will have a
negative sign.
     Together, Eqs.(2.12.3) and (3.3.1) yield,

                                
2 2

2 2
2

a C
r
ψ

=Vi     and    
2 2

2

a
2r

ψ
η =     .          (3.3.10)

Since this is a “static” case, Eq.(2.12.1) reduces to,

                                 ( )2
2 0

d

c1
D
ω

∇ η − ∇η = − ∇ φ
φη

Vi ii     .               (3.3.11)

This illustrates one of the subtleties of equations in which both bulk
quantities and their time derivatives appear.  In Eq.(2.12.1), for

example, η  is a time averaged quantity; yet, in some situations, there

can be time derivatives of η .  The double bar notation indicates only a
time average over the high frequency ! - wave cycles and not over the

bulk time variations.  Only in a “static” case (where φ , V , aφ V  do not
change with time) can the time derivatives in Eq. (2.12.1), for example,
be set equal to zero.  This same dichotomy of bulk time variations and
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! -wave time averages comes up in many  places in the theory, so
caution should be the guide.

     When η  from Eq.(3.3.10) is substituted into Eq.(3.3.11) and the
indicated differentiations are carried out,  Eq.(3.3.11)  is reduced to an
equation, for the unknown function (r)ψ  in Vi , of the form,

                          
22

2 2

d 1 d 2 d 0
dr r D drdr r

ψ ψ ω ψ ψ   − + + − =   ψ    
    .         (3.3.12)

The simplest non-trivial solution of Eq.(3.3.12) is1,

                                                D/ r− ωψ = ε     .                            (3.3.13)
So, from Eq.(3.3.1),

                                           D/ raˆ C
r

− ω= εV ri     ,                        (3.3.14)

is the desired velocity ! -wave solution of Eq.(3.3.11).  The
corresponding density wave is obtained by substituting Eq.(3.3.13)
into Eq.(3.3.6), with the result,

                              D/ rd 0
2

0

a c D 1C S
c r rr

− ωφ   φ = ε − +  ω ω  
i     .         (3.3.15)

3.4 The Electron’s Oscillation Rate, ω : Normally, the angular
frequency would be determined from the compression/oscillation
Eqs.(2.13.1) and (2.13.2); but this requires an extended discussion
that is better postponed until Chapter 4.  Suffice it to say that the
electron’s oscillation rate is found to be, 20

e 7.7634396 10ω = × radians
per second; and this value will be used for the electron in Eqs.(3.3.8),
(3.3.9), and (3.3.13) through (3.3.15).  In conjunction with the values
for D and a, given in Table 2.10.1, all unknowns have now been
eliminated from the equations just enumerated; so that the absolute

values of Vi  and φi  are known, as are the bulk  values for φ Vi i  and

( )∇ φ Vi ii .  The latter can now be used with the bridge equation to

calculate the electron’s bulk structure.

3.5 The Electron's Incremental Bulk Density Structure: Since the
electron is at rest here, the static bridge Eq.(2.14.1) applies.  With the
aid  of  Eq.(3.3.8),   the  gradient  of   the   incremental   bulk   density
_____________________________________________________________________
 1. B.Liebowitz,  Phys.Rev. 64, 294 (1943).  Liebowitz suggested a similar cutoff
     function in a somewhat different context.
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distortion can be written,

                             
2

2D/ rd
2

0

a bˆ ˆb
r 2c r

− ωφ∂φ
∇φ = = φ = ε

∂
r V ri i     ,              (3.5.1)

where the constants are those in Table 2.10.1.  Next, φ  can be found
directly by integrating Eq.(3.5.1) as follows (see Appendix H),

                                    
2 2D/ r

d
02

0

a b
dr

2c r

− ωφ ε
φ = φ+∫     ;

so,

                                       
2

2D/ rd
0

0

a b
4c D

− ωφ ω
φ = ε + φ     .

To find the integration constant 0φ , remember that as r → ∞ , 0φ → ,
which means that,

                                
2

3d
0

0

a b
1.9233 10

4c D
φ ω

φ = − = − ×    des    .        (3.5.2)

Therfore, the final form of the φ distribution for the electron is,

                                   ( ) ( )2 2D/ r
0 01 1 − ωφ = φ − ψ = φ − ε     .             (3.5.3)

Figure 3.5.1 is a plot of this very simple particle.
     Only two features of  the  electron are apparent from Figure 3.5.1.
First,  it is  impressive that the electron is such a minute deformation.

Figure 3.5.1  The bulk structure of the electron.
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The greatest depletion of ether is at the center, and has the value 0φ ;
so that,

                                       0 18

d

2.1400 10−φ
= ×

φ
    ,                        (3.5.4)

almost no depletion at all.   Second, except  for  the  inflection point at
r D 1ω = ,  this extended distribution has  no  other clearly identifiable

radius.   As will be shown,  the inflection point is significant in several
respects, and its radius makes a very good choice for the effective
radius of the electron, i.e.,

                                  14
i

Dr 3.522426 10−= = ×
ω

   cm.                 (3.5.5)

     Eq.(3.5.3) can now be written in the more intuitive and useful
form,

                                         ( )i2 /
0

r r1 −φ = φ − ε     .                          (3.5.6)

3.6 The Electron's Electric Energy: Now that the space distribution

of incremental density φ is known, Eq.(2.19.1) can be employed to
establish the electron’s gradient squared distortion or electric energy

density.  Taking the gradient of φ in Eq.(3.5.6),

                                       i2 /0 i
2

r r2 rˆ
r

−φ
∇φ = − εr     .                         (3.6.1)

When  Eq.(3.6.1)  is substituted  into  Eq.(2.19.1),  the electric energy
density is found to be,

                                         i

2 2
4 /0 i

e 4
r rr

2
r

−φ
ε = ε     ,    3

ergs
cm

             (3.6.2)

which is  plotted in  Figure 3.6.1.   Apparently,  eε  is a smooth shell of
distortion that peaks at ir r= , which is one good reason for the choice

of the φ  inflection point as the electron's effective radius.
     The total rest energy in the electron's field is found by integrating
Eq.(3.6.2) over all space,

                              
i4 /

2 2
0 e 0 i 2

space 0

r r
E dvol 8 r dr

r

∞ −ε
= ε = πφ∫ ∫     ,

with the result,
                                 2 7

0 0 iE 2 r 8.18711 10−= πφ = ×     .    ergs     (3.6.3)
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Figure 3.6.1  The electron’s “gradient squared” distortion distribution.

     The physical effects produced by this gradient squared distortion
are numerous; so much so, that in the past some of the effects were
attributed to "mass", a property thought related in some way to
energy.  Modern writers say that mass and energy are "equivalent" on
the basis of the famous equation of Einstein ,et al,

                                               0
0 2

0

E
m

c
=     .                      (3.6.4)

Here, the position is taken that they are identical, i.e. one physical
phenomenon, with two names, expressed in different units.  There is
just one gradient squared distortion.  It causes all the effects of
electric energy and all the effects of mass, but the units identified with
mass are 2

0c  larger than those identified with energy.

3.7 Electron Charge: The coexistent charge density is found from the
surrounding function distortion Eq.(2.20.1) by first taking the
divergence of Eq.(3.5.1), leading to,

                                      ( )2 bρ = −∇ φ = − ∇ φ Vi ii     .                     (3.7.1)

Then, substituting Eq.(3.6.1) into Eq.(3.7.1),

                                           i

2
2 /0 i

4
r rr

4
r

−φ
ρ = ε     ,     3

hlc
cm

            (3.7.2)

which is plotted in Figure 3.7.1.  Here,  again,  ρ  is  a smooth shell of
distortion,  but it peaks at  ir r /2= ,  half  the  radius  of peak energy

ergs/cm 3

1 Fermi

Electric
Energy
Density

fig 3.6.1.PDW

0 1 2 3 4 5 6

r/re = ωr/D

0.0

4.0x10+31

8.0x10+31

1.2x10+32

εe



39

Figure 3.7.1  The electron’s “surrounding function” distortion distribution.

density.  It should be noted  that  the electron's charge density,  ρ  , is
negative because  0φ  is negative.
      The total electron charge is calculated by integrating Eq.(3.7.2)
over all space,

                             
e2 /

2
e 0 e 2

0space

r r

q dvol 16 r dr
r

∞ −ε
= ρ = πφ ∫∫      ,

with the result,

               
2

9d
e 0 e

0

2 a bq 8 r 1.702692 10  e
c

−πφ
= πφ = − = − × = −     ,     (3.7.3)

Here, again, it should be noted that eq  is negative because 0φ  is
negative.
     Equations (3.5.6),  (3.6.1),  (3.7.2) and (3.7.3) apply equally well for
the positron if the value of 0φ  in Eq.(3.5.2) is used without the
negative sign.  This is the result of an ingoing ! -wave.  However,
Eqs.(3.3.8) and (3.3.9) change sign for the positron.

3.8 Electron Spin and Magnetic Moment: In interaction processes
between particles, a considerable amount of ether churning occurs;
and when particles like the electron or positron are created from the
splatter, they end up with a specific angular momentum or what is
called spin.  Since their charge density rotates with the ether, they
have a magnetic moment as well.  In Section 2.9 it was indicated that
angular momentum in the ether is just the angular persistence of a
vortex in a frictionless fluid.  Thus, the first step in the determination
of the spin angular momentum is to find the spin vortex velocity field.
The vortex equation, Eq.(2.21.3) provides that information.
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     Calculation of the electron spin vortex is done by first ignoring the
radial, outgoing ! -waves that sustain the bulk gradient.  The

incremental bulk density φ  also has little effect on the circulating
flow.  The simplest case is that where the electron is at rest and the
circulation is not changing with time.  Eq.(2.21.3) then reduces to,

                                               2 0∇ =V     ,                                (3.8.1)

where, V  represents only the unchanging velocity of circulation about
one particular axis through the electron's center (see Figure 3.8.1).  In
spherical coordinates ( r, ,θ α ),

                                                #V=V αα     ,                                (3.8.2)
and Eq.(3.8.1) leads to,

                                        2
2 2

V
V 0

r sin
α

α∇ − =
θ

    .                       (3.8.3)

Figure 3.8.1  Spin flow.

Considering the flow as separable into r and θ  dependent parts, let,

                                             2

(r)V ( )
rα = θ
R

T     ,                          (3.8.4)

and the separated equations become,

                                
2

2 2

d 2 d ( 1) 21 0
r dr 2dr r

+ − + − =  

R R R! !     ,

and,                                                                                          (3.8.5)

                             
2

2 2

d cos d 1( 1) 0
sin dd sin

θ  + + + − = θ θθ θ 

T T
T#! !     .
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The simplest solution free of non physical attributes evolves from
1=! , with the result,

                                               sin= θT     ,                               (3.8.6)
and,

                                           
2

2

d 2 d 0
r drdr

− =
R R     .                         (3.8.7)

Eq.(3.8.7) is solved directly, with R  expressed as,

                                             3
s rK K r= +R     .                           (3.8.8)

Eqs.(3.8.6) and (3.8.8) can now be combined with Eq.(3.8.4) to give
the spin velocity field. For obvious physical reasons, the solution has

two regions, inner and outer, where Vα  of each matches at some
radius irδ .  Thus,

                                
s 3

i

s 2

i

i

 inside r

outside r

rK sin     ,   
( r )V
1K sin         ,    
r

α

δ

δ

 θ δ= 
 θ

   .          (3.8.9)

     Customarily, angular momentum is found by integrating, over all
space, the mass density at each radius times the velocity of that mass
density; but considering what has been said about momentum and its
meaning, i.e. particles have it but ether doesn't, it might be doubted
that the same integration process would apply microscopically to the
ether in electron spin.  Nevertheless, it will be assumed here that the
ether angular momentum can be made quantitative by the
conventional approach, with minor modifications.  In the light of
Eq.(3.6.4), the spin diadic is,

                                            S ( )
2
σ

= −ij ji     ,                            (3.8.10)

where,

                                 
2

e
2

0 0 0 0

V (r sin ) dvol
c

∞ π π

α

ε
σ = κ θ∫ ∫ ∫     ,               (3.8.11)

and eε  is the energy density of Eq.(3.6.2).  Here, κ  is a scaling
constant that allows for the fact that the angular persistence of a
frictionless fluid is not easily made quantitative, yet a relationship
must be found that connects it to the momentum-like effects it
produces  in  interactions  with  particles  and  fields.  After the proper
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substitutions and integrations,

                        
2

4/s 0
2 3
0

K 4 641 1 T
43c

− δπκ φ δ    σ = − + ε +    δ δ    
    ,      (3.8.12)

where δ  establishes the break point of maximum Vα , and T(x) is the
Truncation integral (see Appendix H).  Conventionally, spin is taken as
the vector of S, which is vS  or,
                                                 σ = k σ    .                                (3.8.13)

     Following along the same lines, the spin magnetic moment is
conventionally expressed as a vector,

                                       µs 

2

0 0 0 0

 dvol
2c

∞ π π
κ

= × ρ∫ ∫ ∫ r V    ;               (3.8.14)

but, because the charge density circulates always perpendicular to
the radius vector r  (see Figure 3.8.1), the only components that do
not cancel in the integration over all θ  and α  are the z components.
Again, this is better described by writing a spin magnetic dipole
moment diadic,

                                            M ( )
2
µ

= −s ij ji     ,                        (3.8.15)

where,

                                   µs 

2

0 0 0 0

V (r sin ) dvol
2c

∞ π π

α

κ
= ρ θ∫ ∫ ∫     ,         (3.8.16)

and ρ  is the charge density of Eq.(3.7.2).  With the proper
substitutions and integrations,

                        µs 
2/s 0

3
0

4 K 2 81 1 T
3c 2

− δπκ φ δ    = − + ε +    δ δ    
  ,              (3.8.17)

and the usual vector magnetic moment is the vector of M, which is vM
or,

                                                    µs s= µk     .                                          (3.8.18)
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     Taking the ratio sµ σ  with the help of Eqs.(3.6.3), (3.6.4) and
(3.7.3),

                     

2/
3

s

4/0 0
3

2 81 1 T
2e

m c 4 641 1 T
4

− δ

− δ

δ    − + ε +    δ δµ     = ±
σ δ    − + ε +    δ δ    

    ,         (3.8.19)

where the sign is + for the positron and – for the electron.  It is a well
established fact that the theoretical value of sµ σ  given by Dirac's
equation is 0 0e m c , and that the measured ratio is slightly larger. The
latter is the result of the necessity of making the measurement on an
ensemble of particles, and is of no special interest at this point.  The
actual, or intrinsic sµ σ  ratio of individual electron/positrons is given
by Eq.(3.8.19); and for any δ  is slightly smaller than 0 0e m c .  Since
the effects of the brackets in Eq.(3.8.19) and the ensemble
measurements are opposite, the exact value of δ  cannot yet be

determined; but indications are that <0.06δ , and the maximum Vα

occurs at a radius less than 152 10 cm−× .  Assuming that <0.06δ ,
then,

                                            
2

s 0
2
0

K
3c

πκ φ
σ =                                  (3.8.20)

and

                                           s 0
s

0

4 K
3c

πκ φ
µ =                                 (3.8.21)

differ from the intrinsic values by less than 1310−  parts. In the
remainder of this work Eqs.(3.8.20), (3.8.21), (3.8.12), and (3.8.17) will
all be referred to as intrinsic, unless otherwise specified.
     The constant sK  is not determined in this derivation, because it is
established during the particle production process.  Its magnitude is
specified by the complicated relationships set up by the input
conditions of the interaction.  At the present time, this complicated
interaction problem has not been solved.  However, the value of

sKκ can be obtained by using the experimental value for sµ ,

          20
s 3.2875524 10     ergs hlG−µ = ×     ,      (3.8.22)

directly in Eq.(3.8.21), which yields,

                  13 2 2
sK 1.2233488 10     erg-cm des sec−κ = × −    .   (3.8.23)
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Substituting this value for sKκ  in Eq.(3.8.20) produces a value for the
electron's angular momentum,

                                    285.2728633 10     erg-sec−σ = ×     .    (3.8.24)

     L. O. Heflinger has pointed out that, since the outer field is
equivalent to a magnetic dipole, combining Eqs.(3.8.9), (3.8.21) and
(9.4.7), sK  can be eliminated and d 03κ = φ φ , or,

                                      171.4018715 10κ = ×     .                     (3.8.25)

If this value is used for  κ  , then,

                                     31
sK 8.7265399 10−= ×     .                   (3.8.26)

From Eq.(3.8.9), the maximum Vα  at 0.06  ( 2)δ = θ = π  is found to be
2

maxV 1.9537 10  cm/sec−
α = × .

     It might be thought that the spin would interfere with or distort the
outgoing ! -waves.  That this is not a serious problem can be seen by
first recognizing that the exaggerated illustration in Figure 3.2.1 is
somewhat misleading.  When the actual numbers are examined, the
wavelength of the ! -waves is found to be very long relative to ir , as

indicated in Figure 3.8.2.  This means that the maximum Vα  is
essentially at the origin; and at that point, during the time it takes the
electron spin to rotate only one second of arc, more than 200 full

wave! −  cycles leave the electron's concentration region ( ir 10r< ).

Figure 3.8.2  The ! -wave λ  is very large relative to ri.



45

3.9 The Electron's Gravitic Field: From Eqs.(3.3.14), (3.3.15) and
(3.5.5), the travelling ! -waves are given by,

                                           i /r r
t

aˆ C
ri

−ε=V r  ,                            (3.9.1)

and,

                                i /d 0

0

r r i
t

ra c
C 1 S

c r r ri
−  φ  

φ ε − +  ω   
=     .            (3.9.2)

To understand how the electron's gravitic field is generated, it is
helpful to look at the central region where r<30ri.  This is facilitated by
expanding the cosine, for example, as,

                             
0 0

r rC cos t cos sin t sin
c c
ω ω

= ω + ω     ,

which, in the region r<30ri , reduces to C cos t≅ ω .  The sine becomes
S sin t≅ ω .  In the same region,

                                             0 irc
1 1

r r
$ 

+ ω  
    ,

so, the travelling ! -waves in the central region of the electron are,

                                        i /r r
t

aˆ cos t
ri

−ε ω≅V r     ,                     (3.9.3)

and,

                                   i i/d
2

r r
t

ra
1 sin t

rri
−φ  φ ε + ω ω  

≅ −     ,             (3.9.4)

In fact, they represent a pure compression/expansion oscillation,
which, being a disturbance, generates standing ! -waves as well as the
traveling waves.
     What the electron's standing ! -wave looks like can be determined
by solving Eq.(2.12.5) reduced to the static case,

                                                2
s 0∇ η =     ,                               (3.9.5)

where sVi  and sη  of the standing ! -wave are related through
Eq.(2.12.3),

                                                 2
s sη = Vi     .                               (3.9.6)

In spherical coordinates ( r, ,θ α ), Eq.(3.9.5) can be written,

                                            
2

2
s sd d2 0

r drdr
η η

+ =     ,                      (3.9.7)
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which has a solution,

                                            f
hs

K
K

r
η = +     .                             (3.9.8)

Since all incremental fields approach zero as r → ∞ , hK 0= , and,

                                            2 f
s s

K
r

η = =Vi     .                          (3.9.9)

The simplest standing ! -wave solution, compatible with Eq.(3.9.3),
that satisfies Eq.(3.9.9) is,

                                          g
s

K
ˆ cos t

r
= ωV ri     ,                     (3.9.10)

where g fK 2K= .

     Going back to the traveling ! -wave of Eq.(3.9.3), the maximum
amplitude of tVi  occurs at ir r= .  Here it will be assumed that the

standing velocity wave sVi  matches tVi  at that radius, leading to,

                                              
2

2
i

g
a K

r ε
=     ,                             (3.9.11)

remembering that ε  is the base of natural logarithms
( 1

i at r r−ψ = ε = ).  Thus, in Eq.(3.9.10),

                                      
3

34
2g

cmK 2.43133 10   
sec

−= ×     .            (3.9.12)

The standing wave field picture is completed by substituting
Eq.(3.9.10) in Eq.(2.12.4) to find,

                                    gd
3/2s
K3

   sin t 
2 r
φ

φ = − ω
ωi    .  er r≥          (3.9.13)

     Now it is possible to show that sVi  and sφi  establish the electron's

gravitic  field,  but  first  a  brief  summary  of  these  standing  waves'
characteristics will be given that will prove helpful later on.
Eqs.(3.9.10) and (3.9.13) indicate that these waves do not propagate;
but, instead, the whole field quivers in and out in unison.  Since,

s s 0φ =Vi i , no contribution to the electron's bulk density field is made
by these standing ! -waves.  Furthermore, for the electron at rest,

Eq.(2.8.13) shows that s 0=V .  Considering the total velocity at each
point as the sum of t V  and sV , it is possible to show, with the help
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of Eq.(2.8.8), that the only significant contribution to the electron's
acceleration field, at distances greater than i100r , is,

                                      g
2s ss

K
ˆ 

4r
= ∇ = −a V V ri ii     .                 (3.9.14)

All other contributions to the acceleration field are either much

smaller than sa  or they change sign every 104.853 10−×  cm and will

not have any effect on an object larger than 910−  cm across.  Space
will not permit including this straightforward but tedious
demonstration.
     All particles except photons and neutrinos have this standing wave
field, and its importance appears when large numbers of particles are
combined into sizable neutral objects.  Under those conditions, the
bulk fields are mostly confined inside the large object, and the sum of

all the acceleration fields remains outside.  Notice that sa  is directed

radially inward for both negative and positive charged particles.
     From Galilei's time onwards, it has been recognized that the basic
characteristic of a spherical gravitic field is that all objects at the same
distance from its center accelerate towards its center at the same rate if
unimpeded.  This is generally expressed in the form of Newton's law of
gravitation,

                                             2

GMˆ  
4 r

= −
π

a r     ,                         (3.9.15)

Where M is the mass of the source body, and G is the gravitational
constant.  If, for the moment, it is assumed that the natural state of
any object is to move to oppose its time average acceleration with
respect to the ether, then any object in the field described by
Eq.(3.9.14) will accelerate towards the center of the field. By
comparing Eqs.(3.9.14) and (3.9.15), the constant G will be seen to
have the value gK Mπ .  Converting the electron's energy from
Eq.(3.6.3) to mass units,
                                      28

0m 9.10939 10  gm−= ×     ,               (3.9.16)

and Newton's gravitation constant is found to be,

                                
3

g 7
2

0

K cmG 8.38503 10  
m g sec

−π
= = ×

−
    .      (3.9.17)

Here G differs from the usual value by a factor of 4π  used in
Eq.(3.9.15) to express the idea that the 24 rπ  in all spherical fields has
geometrical significance.
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     This completes the picture of the electron at rest.  Table 3.9.1 lists
the related properties found so far.  However, the electron has many
other interesting characteristics when it is in motion. These will be
discussed in the following.

TABLE 3.9.1

                        CONSTANTS FOR AN ELECTRON AT REST

20
d

3
0

14
i

e

      8.9875517 10        descartes     Datum ether density

     -1.92333 10             descartes     Incremental density (r=0)

r       3.522426 10         cm                Effective radius

q   

−

φ ×

φ ×

×
9

7
0

28
0

   -1.7026924 10         hlc               Charge distortion

E       8.18711 10            ergs              Energy distortion

m      9.10939 10           gm                Mass

        5.2728633 10

−

−

−

×

×

×

σ × 28

20

(intrinsic)

s

     erg-sec          Spin angular momentum
                                                                                

       3.2875524 10      erg/hlG        Spin magnetic momen

−

−µ ×

20
           

7

(intrinsic)

e

t
                                                                                

 7.7634396 10       rad/sec         Electron  - wave frequency

G        8.38503 10          c

!

−

ω ×

× 3 2m g sec   Gravitational constant−

3.10 The Constant Velocity Electron: An electron in motion exhibits
several characteristics not evident when it is at rest.  Some of these
are velocity dependent and some result from acceleration.  While the
velocity dependent properties are amenable to formal analysis, most of
the acceleration effects are mathematically intractable.  Nevertheless,
even in those cases, considerable insight evolves from the qualitative
picture available.  In the following constant velocity case, the concepts
of kinetic energy, inertia and momentum will be derived, and the
physical basis of the de Broglie frequency will be made clear.
     The analysis begins with the derivation of the ! -waves as a
solution of the traveling wave Eq.(2.12.1).  This is no easy task, but a
hint from the theory of sound suggests one simplification.  For
example, since it is well known that a moving point source of waves
produces wave fronts that are spherical, but with centers strung out
along the axis of motion, the  sustaining wave of Eq.(2.12.1) will be set
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Figure 3.10.1 Cylindrical coordinates for the moving electron.

up in cylindrical coordinates (electron velocity u  in the x direction,
see Figure 3.10.1), so that,

   

( ) ( )

      ∂ η ∂η ∂ η ∂ η ∂η ∂η ∂η      + + − − + −
      ∂ ∂ ∂ ∂∂ ∂ ∂  η       

 φω ∂ ∂ = − φ + + φ
 φ ∂ ∂ 

2 2 2
2 2 2

2 2 2 2 2
0 0

0 R
R x

d

1 1 1 1
R R R x tR x tc c

Vc
                       V V     .

D R R x
i i

i i i i

   (3.10.1)

The simplification comes from the fact that, because the electron
moves at constant velocity u  in the x direction,

                                              u
t x

∂ ∂
= −

∂ ∂
    ,                            (3.10.2)

so that Eq.(3.10.1) can be reduced to,

   

( ) ( )

    ∂ η ∂η ∂ η ∂η ∂η    + + − +
    ∂ ∂ ∂∂ γ ∂ γη     

 φω ∂ ∂ = − φ + + φ
 φ ∂ ∂ 

2 2
2 2

2 2 2 2

0 R
xR

d

1 1 1 1
R R R xR x

Vc
                       V V     .

D R R x
i i

i i i i

     (3.10.3)

The familiar motion factor,

                                            
2

2
0

1

u1
c

γ =

−

    ,                            (3.10.4)
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is a constant, and time has been eliminated from the equation.  Still
the non-linearity of the equation precludes any direct solution.
Fortunately, there are some round about ways to get to the answer,
but their discussion must be postponed until a number of other
subjects have been developed.  So, the solution will be presented here
with no proof other than it satisfies the equation by direct
substitution.

     The solution for η  is,

                                              
22

2

a
2r

*
*
ψ

η = γ     ,                            (3.10.5)

and the compatible Vi  and φi  are,

                             x R2 2

a x a RV C    ,    V C    ,
r r
* * *
* *

ψ ψ
= = γi i

                                                                                                (3.10.6)

               d 0

0 e

a c R xC 1 S
c r R x

* * * *
* * *

 φ ψ  ∂ψ ∂ψ
φ = ± γ + +  ω ψ ∂ γψ ∂  Ri ∓     .

With some nomenclature borrowed from the theory of sound1,
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   ω ω
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R R∓ ∓     ,    (3.10.7)

                                                i /r r** −ψ ε=     ,                          (3.10.8)
and,

  2 2

0

ux (x ut)  ,  r x R   ,  (r x   .
c

* * * * *)  ,  = γ − = + = γ ± β β =R   (3.10.9)

The value of eω  in these equations is that found for the electron at
rest.  The upper sign results in the outgoing waves of the electron,
whereas the lower sign represents the incoming waves of the positron.
Eqs.(3.10.6) are equivalent to Eqs.(3.9.1) and (3.9.2), except for the
differences stemming from the replacement of spherical symmetry
with cylindrical symmetry, as exhibited by the need for x and R
components in the velocity wave.  In the following, only the upper
signs, applying to the electron, will be retained.   Because the source is

_____________________________________________________________________
1. E.U.Condon, H.Odishaw, Handbook of Physics, p.3-117, McGraw-Hill, N.Y. (1958).
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in motion, the relationship between η  and Vi  becomes,

                                        
2

2
2 2 2

r
x R

*
*

η = γ
+ γ

Vi     .                    (3.10.10)

     The φi  and Vi  of Eq.(3.10.6) satisfy the continuity equation,
Eq.(2.12.4).  Their product leads to,

                                    #( )
2 2

d
3
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x + R

2c r
* *
*

φ ψ
φ = γV i Ri i     .              (3.10.11)

By combining Eqs.(2.15.1), (2.14.2) and (3.10.2), the bridge equation
can be written, with the help of Eqs.(3.5.2), (3.5.5) and (3.7.3),
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1 e x + R
x R 4 r
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Now, equating coefficients,
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Just as in the case of Eq.(3.5.1), these can be integrated to give the
constant velocity equivalent of Eq.(3.5.6),

                              ( ) ( )i2 /2
0 0

r r*1  1* * * −φ = φ − ψ = φ − ε     ,         (3.10.14)

where,
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φ = γφ = − γ = − γ

π
    .          (3.10.15)

     Having laid the groundwork for describing the physical operation
of the moving electron/positron, the concepts of charge and energy
will be re-examined in that context.  For this purpose it is possible to
use a slightly simpler form of Eq.(3.10.14), in which the ether density
pattern of the constant velocity electron is frozen at one instant of

time, say t=0.  Then φ  becomes,

                                      ( )i
'2 /r r

i

e 1
8 r

−φ = − γ − ε
π

    ,                (3.10.16)

where,

                             ( ) ( )
1 1
2 22 2 2 2r ' x R r 1 cos= γ + = + ζ θ     ,         (3.10.17)
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and,
                                               2 1ζ = γ −     .                            (3.10.18)

That the two forms of r ′  are equivalent can be seen from Figure
3.10.1.
     The first question of interest is:  When the moving charge density
is integrated over all space, what is the total charge of the moving
electron?  Has it changed?  From the definition of the dynamic
concentration of Eq.(2.20.2), the moving charge density distribution
function can be obtained from,

                                     
2 2

2
2 2
0
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 ρ = − ∇ φ −
 ∂ 

    ,                   (3.10.19)

which, upon substitution of φ  from Eq.(3.10.16), results in,
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Just as in the static case, the total charge is found from,
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where r ′  has been replaced by its spherical polar coordinate form as
taken from Eq.(3.10.17).  This simplifies the integration, which yields,

                                               eq  e= −     .                             (3.10.21)

From what is known about moving charged particles, this result was
expected.
     To observe the same process applied to the energy density
distribution, the dynamic distortion energy can be found from

Eq.(2.19.2).  Using φ  from Eq.(3.10.16), the energy density of the
constant velocity electron is,

                                          e
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    ,                  (3.10.22)

and the total moving energy of the particle is,
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The result of the integration is,

                                                0E E= γ     ,                             (3.10.23)

where 0E  is the electron/positron rest energy of Eq.(3.6.3) and Table
3.9.1.
     The energy relationship of Eq.(3.10.23) is well known, and is
usually ascribed to so called special relativity.  Clearly, no relativistic
approach was used in the preceding derivation. All of the physics
involved only one observer, and the result is directly attributable to
properties of the ether and the structure of the electron/positron
fabricated from it.  Implicit in the preceding development is the
resolution of the infamous 4/3 problem.  Its key resides in the proper
understanding of and definition of energy and energy density.
Rohrlich1 discussed the problem in detail from the present day
accepted viewpoint and described earlier attempts to resolve it.  Those
earlier investigators managed a mathematical solution that gave the
correct form of Eq.(3.10.23).  Rohrlich, himself, used a similar
approach; i.e. forcing Lorentz invariance and coming up with
correction terms for the static definitions of energy and momentum.
Although Rohrlich's results are formally the same as Butler's2, the
latter took the correct approach based upon redefining energy density,
allowing a much more intuitive interpretation of the mathematical
forms.  He was prevented from obtaining the correct physical
interpretation by using E  and H  to define energy density rather than
A and φ .
     To see exactly what happens when an electron/positron (e/p) is
brought up to some velocity u , first consider the particle at rest.
Based on the development in Section 3.5, the contour surfaces of

constant φ  are shown to be spheres, as represented in Figure 3.10.2a.
Using the equations of the present section, the corresponding surfaces

of constant φ  for a moving e/p are the oblate spheroids appearing in
Figure 3.10.2b.  So much emphasis has been placed on the Lorentz
"contraction" and the electric field E , in present day texts, that it is

almost always overlooked that the potential φ  does not contract
longitudinally to the motion but expands laterally.  This is why the
surrounding   function   or   concentration   of   the   particle

changes.   It  is  also  why  the  ∇φ 2( ) 2   distortion of the moving
particle,  integrated  over  all  space,  increases.   Note   that  for  each
_____________________________________________________________________
1. F.Rohrlich, Classical Charged Particles, Addison-Wesley Publ. Co., Reading, MA
    (1965).
2. J.W.Butler, Amer. J. Phys. 36, 936 (1968); 37, 1258 (1969).
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Figure 3.10.2  Lateral expansion of the moving electron/positron, (e/p).

different constant velocity u , a specific lateral extension and shape is
required.  Thus, a specific amount of surrounding function distortion
is identified with each velocity, as is a specific amount of distortion

energy.   Within  any  φ   contour,  a  specific  amount  of  reduced  (or
additional) ether is also identified with each velocity value.  Thus,
given a particular size and shape of the field, the associated velocity
u  is determined.
     The exact details of interaction of, say, two electrons, will be
deferred till later to allow a more logical development; but here, while
ignoring certain details, it is possible to form a very useful mental
picture.  An electron will be acted upon to bring it from rest up to
some velocity u .  However, there are no sticks or stones to move it.
There is only ether, and specifically, only ether in the form of another
particle.  So, as  illustrated in Figure 3.10.3, the sequence  starts with

Figure 3.10.3 Energy exchange between two electrons.
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one energized electron moving at velocity =1 2u i  approaching another
electron which is at rest.  It must be emphasized that the contours
shown are not edges or surfaces in any real sense; they are
equipotential or equidensity levels of the ether.  There are an infinite
number of these imaginary surfaces increasing in size from the
electron center to the far reaches of space.  Clearly, certain liberties
are taken in the simplified picture of Figure 3.10.3.  Nevertheless,
electron number one is originally carrying excess deformation energy
(over its rest value) and number two is at rest.  Later, the excess in 1
has caused 2 to move away, at the same time resulting in a transfer of
distortion from 1 to 2.  Number 1 cannot run slower unless distortion
is removed from its field and the latter is allowed to change shape to
exactly match the reduced velocity.  Number 2 cannot take on the
transferred distortion unless it moves and changes shape to exactly
match the condition of its moving at its new velocity.  As the process
of transfer continues, the first electron finally gives up all of the
excess distortion and comes to rest.  Number 2, meanwhile, has taken
on all of the original distortion and is now moving at the velocity
originally exhibited by 1.  The shape of 2 is now also exactly the same
as the original shape of 1. In this example, radiation has been
neglected.
     Delving further into the operation of an e/p, Eq.(3.10.23) can be
written as,

                                            0
2

2
0

E
E

u1
c

=

−

    ;                         (3.10.24)

and this can be expanded in series to give,

                                  
2

0 2
0

1 uE E 1  ............
2 c

 
= + +  

 
    .           (3.10.25)

For small velocities, all higher order terms of the series are negligible;
and, making use of Eq.(3.6.4),  the excess energy of the particle due to
its constant velocity is,

                                      2 20
k 02

0

E1 1E u m u
2 2c

≅ =     .               (3.10.26)

This is called the kinetic energy of the moving particle.  At higher
velocities, the exact form is found by subtracting 0E  from E of
Eq.(3.10.23), so that,

                                      ( )k 0 0E E E E 1= − = γ −     .           (3.10.27)
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     This brings the discussion to the following point.  The electron is a
small depletion of ether prevented from sagging by a sustaining wave
running away from its geometrical center. There is no rock in the
middle, there are no objects in the field. It has two kinds of
deformation that are significant in determining its charge and energy.
When it moves, it changes shape in a very precise way, increasing its
distortion content.  The excess distortion, called its kinetic energy, is
determined by its shape and velocity.  Eq.(3.10.24) represents the total
energy of the moving electron/positron.  Contrary to conventional belief,
the electron's magnetic field carries no energy.  The full implication of
this will be discussed in detail later.

3.11 Inertia and Momentum: The quantitative discussion of
momentum, etc., will be presented later on.  All that is needed here is
a brief statement about the physical nature of momentum and inertia.
In connection with Figure 3.10.3, the interaction of two electrons was
described.  Before the #1 electron had approached close enough to #2
to have a significant effect on it, their condition could be described as
follows.  Number 2, being at rest, was a solution of the field equations,
and assuming the boundary conditions did not change, it would sit
permanently at the same location forever.  Number 1, being in motion
at constant velocity, was also a solution of the field equations, and
assuming the boundary conditions did not change, it would continue
along a straight line at constant velocity forever. These are not
mathematical statements, but physical.  In both cases, the boundary

conditions are φ ≅ φ ≅ φa d0,   far out.  For the electron at rest, the

reduced φa  near the center has spherical contours, held up by
spherical wave fronts, all matched up from = r 0  to → ∞r .  For the

charge in motion, the reduced φa  is oblate in its contours, all moving
in a single direction, while curved wave fronts leave the geometrical
center along paths all exactly proportioned so that just the right

amount of φa  arrives at each point in the field to maintain the shape

and overall velocity distribution V , etc.  Otherwise, the "particle"
would cease to exist.  Only when #1 approached close enough to #2 to

lower the ether density from φd  to some φa , on the side of approach
to #1, would both see the boundary conditions change and then
adjust their representative flow pattern solutions of the field
equations.  This is the physical meaning of inertia.  Only when the
boundary conditions change will a solution of the field equations be
modified.  Inertia is obviously not a property of the ether itself, but of
the solutions to the field equations; i.e. inertia is a property of
particles, not ether.
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     Momentum, m=p u , can be understood physically by realizing
that it is a combination of the effect of inertia and the fact that it takes
time to bring about the changes in velocity of a particle such as the
electron.  First the boundary conditions must change, usually by
bringing another field into the outermost regions of the electron's field.
As the electron moves away from or towards the changing region, the
excess deformation energy must be carried throughout the electron's
field by the modified sustaining waves, which are propagating at the
speed of light.  Only when the shifted deformation moves in a very

prescribed manner and causes the shape of the electron density φ  to
maintain the proper configuration to match the overall instantaneous
velocity and motion of the electron field can the electron-external field
combination remain as a valid solution of the field equations.  Thus,
time is involved.  It is this time delay that begets the concept of
momentum.  Later on, the formal connection between the time
variation of the particle deformation and the change in the external
boundary conditions will be worked out.  Clearly momentum is not a
property of the ether but of solutions to the field equations; i.e.,
momentum is a property of particles, not ether.
     Numerical examples reviewing momentum and energy calculations
will be presented later, but the equations most often used for this are
given here in Table 3.11.1.  These equations are always called
relativistic in modern texts, but no relativistic condition has entered
into their derivation.  They come directly from a single observer's
solution of the field equations for a moving electron/positron.

TABLE 3.11.1

ENERGY AND MOMENTUM FORMULAS
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3.12 Electron Radiation: Propagating energy in the form of radiation
is normally detected at long distance from a changing configuration of
charges.  It is regarded as originating with those charges, but shaking
free in a non-reversible process.  It propagates until intercepted.
Some of the most puzzling phenomena in conventional physics
originate at the interface of the emitting charge and the freely
propagating radiation.  That is the inevitable result of the lack of
knowledge about the charge's internal structure.  The present section
deals with the mechanism by which extended charges (e.g. electrons)
create radiation.
     The standard approach to this problem is to first solve Maxwell's
equations for the fields radiated from point charges moving in explicit
ways.  Using this to define the net radiated energy leaving a charge,
that energy is associated with the acceleration of the charge.  This
whole approach is basically unsound because Maxwell's equations, as
they are used today, represent only the weak field; so that, even
though they are adequate to handle the free radiation, they cannot be
used for the interface between it and the extended electron.  As it
turns out, many situations exist where electrons accelerate but do not
radiate.  A simple closed loop of wire carrying a steady current offers
resistance to rapidly accelerating electrons through their collisions
with the conductor atoms and their sudden decelerations.  Certainly
the most conspicuous case is that of atoms in their ground state,
where electrons orbiting and accelerating towards the nucleus do not
radiate.  So strong is the belief that Maxwell's equations determine the
presence or absence of radiation, that the belief in atomic orbits has
been relinquished.  Too bad, since they are there.  The simple fact is
that Maxwell's equations are necessary but not sufficient to indicate
whether charges radiate.  The full field equations must be solved to
see whether the total field has a free or radiated part.
     From the ether viewpoint, various stable configurations called
particles engage in motions that can result in variations in the
deformation, which, although conserved, moves about.  Some part of
the total deformation is bound in the particles, i.e. is an intrinsic part
which, if it were not there, would mean the particle identity was lost.
As a particle speeds up, this bound deformation increases; and,
conversely, when it slows down, decreases.  When increasing, the
source of the acquired deformation is another particle or collection of
particles that unload deformation energy by first shifting it into the
form of an interaction deformation shared between them, after which
it is absorbed by the speeded up particle.  Radiation occurs during the
shifting process.  For example, normally a slowly moving particle
adjusts its speed to allow the interaction distortion to move
throughout the particle in such a way that just the right amount
arrives where it is needed to fulfill the requirements of the total field
equation solution of the particle moving in the external field.
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However, in situations where the speed change is too rapid or the
direction changes sharply, i.e. high acceleration occurs, it happens
that interaction energy out in the field cannot move in just the right
way to keep up with the particle.  In such cases, the renegade
deformation cannot be reclaimed by either the particle or the external
field and it escapes.  That lost deformation is the radiation.
     What is needed is a simple intuitive way to decide when radiation
will occur.  The ether provides this.  When no bound ether element is
changing shape, no radiation can occur.  When bound ether elements
are changing shape, radiation occurs, with greater radiation resulting
from more violent changing.  The full import of this concept will
gradually appear as more complicated structures, such as atoms and
macroscopic field problems, are studied.

3.13 Turning: One aspect of the electron's characteristics that has no
counterpart in contemporary physics is the result of its shape change
with motion.  By expanding laterally to the direction of its motion, the
electron has an established axis in the direction of its motion; and it
could be expected that, in certain situations, that axis could shift
direction.  In other words, the electron shape could turn.  It might
then reasonably be expected, based on the discussion in the previous
section, that whether or not its incremental ether elements turned, as
its path deviated from a straight line, could have a profound effect on
its physical operation.  At this point, it cannot be emphasized enough
that this turning is not the least like the spin examined earlier; and
often, when turning is discussed, the spin will be ignored, because the
frictionless, massless nature of the ether allows them both to operate
without interfering with each other.
     Once the electron/positron has a shape, due to its motion, the
relative motion of that shape and the ether that composes the particle
represents one of the most significant and controlling properties of
that particle, fundamental to important aspects of e/p radiation.
Figure 3.13.1 illustrates two  alternative  modes of path deviation; one

Figure 3.13.1 Path deviation with and without turning.
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with no ether turning, and the other with full ether turning.  The dots
on the equi-density contours identify particular ether elements in the

φ  field of an electron.  In the full turning case these elements move
with a flow pattern that corresponds to rigid body rotation.  In the
non-turning case, the flow pattern is more complex, with particular
elements in the density pattern approaching one another (2 and 4)
and other elements receding from each other (1 and 3).  This
corresponds to the fact that in the non-ether turning or partial ether

turning particle, the φ  field around each point is deforming, or

changing shape; whereas, in the full ether turning particle the φ  field
around each numbered point is not deforming, or changing shape.
Thus, in the former case, radiation will take place; whereas, in the
latter, it will not.  Here, again, the full significance of this
phenomenon will gradually appear as more complicated processes are
discussed.

3.14 The de Broglie Frequency: In this section, another property of
the electron that results from its sustaining wave will be discussed.
Except for the behavior of atoms, none of the observations of the
related phenomena had been made before 1924 when de Broglie first
proposed "matter waves" and the current explanations by quantum
mechanical approaches are both inaccurate and non-intuitive.
     Figure 3.14.1 illustrates the condition of a constant velocity
electron as described in Section 3.10.  The first half of the figure
indicates the outgoing sustaining waves, whereas the second part is a
plot  of  their  wave-fronts  at  any  particular  time,  say  t = 0.   From

Figure 3.14.1 A constant velocity electron.
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Eqs.(3.10.6) and (3.10.7), those fronts are specified by the phase
angle,

                                                e
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R

    ;                           (3.14.1)

and with the aid of Eqs.(3.10.9), R  can be found along the x axis,
where,
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Substituting these values into the phase δ , the frequency along the x
axis is found to be changed to,
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This change is exactly equivalent to the ordinary doppler shift of a
source or sink of sound; and, the electron's being a source of the
sustaining waves, the front edge frequency is increased and the back
is decreased, which is the opposite of the positron (sink).
     For a free electron, the only effect of these changes is the adjusted
shape described in Section 3.10.  However, when interacting with
another particle, the effect produced on the outcome is related to the
difference between the front and back frequencies.  For this reason,
the difference frequency assumes a significance of major importance.
Combining the frequencies of Eqs.(3.14.3), the difference frequency is,

                                
ν  

ν = ν − ν = − γ − β + β 
e

d f b
1 1 

1 1
    ,

which can be manipulated into the form,

                                               d e2ν = γβν     .                            (3.14.4)

To bring the derivation more in line with the conventional approach,
the momentum (see Table 3.11.1) and Eq.(3.14.4) can be used to
write,
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    ,                 (3.14.5)
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which shows that the momentum and the difference frequency vary
linearly because,

                                               
2

0 0

e

m c
h =

ν
                                (3.14.6)

is a constant.  When e 0, mν  and 0c  from Table 3.9.1 are substituted
into Eq.(3.14.6), the value of the constant h is found to be,

                                      27h 6.6260759 10     ,    erg-sec−= ×     (3.14.7)

the well known Planck's constant.  With this in mind, Eq.(3.14.5) can
be written as the de Broglie difference frequency1,

                                               d 0
p2c
h

ν =     .                           (3.14.8)

The customary way of writing this expression is,

                                                   h
p

λ =      ,        WRONG         (3.14.9)

and this relationship is called a "quantum mechanical" equation; but
it is simply another way of writing Eq.(3.14.8) which comes from the
doppler shift of the electron's  ! -wave.  Physically there is a difference
frequency.  However, the Eq.(3.14.9) is probably better not used,
because there is no difference wave, so the wavelength λ  is nothing
more than the inverse of Eq.(3.14.8) expressed in different units.  The
proper way to invert Eq.(3.14.8) is to write,
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2c h
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Λ = =
ν

     .                      (3.14.10)

dΛ  is not the wave length of a mysterious wave that travels along
curved paths.  It is determined by real waves−!  that propagate
radially from the electron's center.  It has nothing to do, directly, with
the wavelength of any wave.  Instead, in this constant linear velocity
case, it is simply the distance the electron travels during 2/β  cycles of
the difference frequency.
_____________________________________________________________________
 1. Although the author has chosen to call dν the de Broglie frequency, it should not be

confused with the conventional d b E h=ν , a fictitious frequency of a fictitious wave

that is thought to travel along with the moving particle; not as a single wave (which
leads to very unphysical velocities), but as a wave packet composed of many waves.
The electron's radial waves−! , however, are just as real as t-waves.
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CHAPTER 4

THE DATUM

4.1 Introduction: In Section 2.3, it was said that a complete
description of the ether has two parts, visualizable definitions of its
physical characteristics and the formal equations that relate them.
The latter are summarized in Table 2.22.1, and most of the
visualizations were covered in Chapter 2.  However, there are two
important features of the ether that require further elaboration before
the more complicated forms of matter are developed.  These are basic
phenomena that can be visualized without considering the properties
of constructs, such as the electron/positron, examined in Chapter 3.
More to the point, they are processes that occur, in the datum ether,
where massive particles have not yet been introduced.  One was
mentioned briefly in Section 2.13 as the compression/oscillation
condition that relates the ether's natural oscillation frequencies to its
compression distortion.  The other, called datum fluctuations,
resembles the “chop” in the ocean of the datum ether.  The present
chapter will concentrate on these two phenomena.

4.2 Datum Fluctuations: Anyone who has seen a glassy lake mirror
the scene about the shore understands the deterministic picture of
the datum drawn in Section 2.3.  The absolute observer was defined
as one who, in a region free of energy, sees the datum ether at rest,
having zero velocity everywhere.  In the case of the glassy lake, any
activity in the water about the shore generally destroys the reflected
image overall; because a gentle chop ripples across the surface.  The
same condition applies in the ether, where all the particles far away
send out waves that produce a minute, random chop throughout
space.  The effect is so small it can be ignored in most calculations of
the type used in the previous chapter. Nevertheless, these small datum
fluctuations exert significant effects in situations where constructs are
very close to being unstable.  In some cases, datum fluctuations can
push a construct “over the top” into instability.  It is these
fluctuations that introduce statistics into the deterministic picture.

4.3 The Vacuum: Until very recently, modern physicists regarded the
vacuum of space as a void in which particles and waves moved about.
However, because of the considerable development of high energy
particle physics,  this  void  has  been  given  more  and more physical
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properties;  until,  now ,  it  is  clearly  a physical entity.1  This book is
essentially a study of its properties, and the use of “vacuum”,
“quintessence” or any other term but “ether” to describe it is just an
artifice.
     Conventionally the fluctuations are viewed as more structured
than the ether theory requires, with both the random chop and the
forming of whole particles and their subsequent annihilation at each
point, temporarily violating energy conservation.  In the ether picture,
there is distortion moving about in the form of the chop; but, although
that distortion can pile up temporarily, at a point, to values as great
as those of the particles, no actual particles are formed (with their
bulk shapes and radial ! -waves all properly deployed) in regions
originally free of particles.
     In later chapters, only a few simple properties of the datum
fluctuations will be required to understand their role in the world of
particles and waves.  However, before getting to that point, it is useful
to highlight the role they have played in the controversy over their
fundamental contribution to main-line physics.

4.4 Statistical Quantum Mechanics: Every student of physics is
keenly aware of the “great revolution” (1905-1926) that split modern
physics from classical physics and set Quantum Mechanics over all.
Many are also aware of the reluctance of Einstein and others to give
up the deterministic basis for the world, along with cause and effect
and all the other paradoxically dismissed fundamentals.  Generally,
the belief predominant today is that Einstein lost and indeterminacy
won.  However, in view of the preceding chapters, such a belief is not
justified.  Not only is the world deterministic, but the goal of this work
is to present the final ether equations which describe it all
deterministically.
     This is not to suggest that the outcome of every experiment is
exactly predictable, with no statistical element present.  The intent is
to show that, even when the outcome is only predicted as a set of
alternatives with their assigned probabilities, the underlying physics
is as deterministic as that of the steam in a boiler, where it is hopeless
to follow the motion of all the individual particles. Moreover, the goal
of this section is to indicate just how conventional quantum
mechanics, with its successes and repressions, fits into main-line
physics.
     Almost from the beginning of the quantum theory, a controversy
has existed; and though it has often been over simplified,  it is carried
 ___________________________________________________________________
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along with several sub-streams.  Nevertheless, the whole set divides
itself into roughly two parts with their respective proponents.  A focal
point for the split came from Einstein, Podolsky, and Rosen (EPR) in
1935.1  The two sides of one key part of the disagreement were
pinpointed by Freistadt in a summary paper:2

    “(a) The statistical description given by quantum mechanics is the
     most complete description possible: the behavior of individual
     sub-microscopic systems is intrinsically indeterminate, erratic,
     and non-causal; in fact, the very concept of a single precise
     model must be abandoned in favor of two complementary,
     mutually interfering pictures. However, the statistical laws of
     quantum mechanics give a seemingly regular and causal behavior
     to ensembles of large numbers of sub-microscopic systems.

     (b) The statistical description given by quantum mechanics
     is inadequate: there exists a more fundamental, and, in principle,
     fully causal description, with respect to which quantum
     mechanics takes a position analogous to the position held
     by classical  statistical mechanics (of an ensemble of molecules).
     At the present time, this is not known, but one must continue
     the search for it, as it is unreasonable to assume that there
     are physical phenomena not governed by physical laws.

     The first point of view was urged most strongly by Bohr and
Heisenberg, and the second by Einstein and Planck.”

     It is clear that not all antagonists, on either side, would state the
difference in exactly this way; but it is at least representative.
As is commonly found in most controversies in physics, advocates of
both viewpoints were correct in some respects and wrong in others.
For example, this form of the argument produced the concept of
“hidden variables” and the numerous proofs that they did not exist.
The preceding portions of the present work show that the search
should have been for variables right out in plain sight, and they surely
do exist.  Recently, a variation in the argument has added excitement
and confusion.  It might be called the Bohm-Bell diversion3 and is
described  in  a write-up by Mermin.4   As summarized by Mermin, the
 ____________________________________________________________________
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EPR paper attacked “the doctrine that physical properties have in
general no objective reality independent of the act of observation.”
This latter position is one taken by most modern physicists.  “Einstein
didn’t like this.  He wanted things out there to have properties,
whether or not they were measured.”  Unfortunately, beyond this, the
discussion was couched in terms of rejecting “spooky actions at a
distance”.  The experiment of Bohm’s, the assertion that Bell’s
theorem if proven, proves Einstein wrong, and the results of the Orsay
experiments1 just show that the meager background of experimental
work on the ether leaves much to be done.  Even in the present state
of “too much theory and not enough experimental work”, most of the
mysterious effects involved in this controversy will be explained in
later chapters.  There are so few that cannot now be dealt with, that it
can be said, with some confidence, they will be after further work.
     The author believes that Einstein was just insisting on cause and
effect.  Since the spins, polarizations, correlations, etc., involved in all
of these experiments are, as in the previous chapters presented here,
explainable in terms of deterministic structures in the ether,
perturbed by the datum fluctuations, both the observed phenomena
(when correctly observed) and Einstein (when correctly understood)
are right.2
     Without entering more deeply into the various aspects of this
controversy, it will be informative to examine a related area of
considerable activity in the literature during the last seventy years.  In
many instances a specific quantum effect, e.g. Plank’s radiation law,
is derived classically. The more ambitious find a way to derive
Schroedinger’s equation classically.  Originally, these efforts were just
attempts to identify the mysterious quantum mechanical ψ  of
Schroedinger’s equation with some real physical variable.
Schroedinger himself, after some spurious attempts, concluded that

*ψψ ( *ψ  is the complex conjugate of ψ ) represented the distributed
charge density in, for example, an atom.3  Almost immediately
afterwards, Born suggested that *ψψ  represented the probability that
an electron could be found in a particular small volume of space.4
This is the accepted view today.  Some confusion still exists about
whether this probability applies only over a whole ensemble of
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identical atoms or to each atom alone, examined over some long time.1
The latter could only be true if the ergodic hypothesis applied to the
atom2; but it is not at all clear that the electrons trace out all possible
positions represented in the ensemble, even though the orbit
recessions, mass variations, etc., might make it possible. This
question is yet to be resolved.
     Even before wave mechanics, Einstein and Stern3 attempted to
derive Planck’s radiation law using zero-point energy of an harmonic
oscillator (but, as Boyer points out, not zero-point radiation).  Nernst
first speculated in 19164 that there was an electromagnetic zero-point
radiation in space.  However, the first steps in the direction that
appears ultimately to be useful in statistical quantum mechanics were
taken in 1926.  De Broglie5 suggested that Schroedinger’s equation
was related to the particle trajectories perturbed by a quantum
mechanical property, and Madelung6 showed how it was related to a
hydrodynamical model.  Seven years later, Furth7 pointed out a formal
analogy between Schroedinger’s equation and Brownian motion.
Finally, in 1944, Liebowitz8 derived the Schroedinger equation on the
basis of a “smoothest” density of perturbed orbit paths, from the
Hamilton-Jacobi equation, after defining a probability of presence for
the orbit.  He did not, however, speculate on a cause for the
perturbations.  For some unexplainable reason, this work of Liebowitz’
was totally ignored for twenty years, although parts of it are
preferred by the present author as the best approach to the problem.
A more commonly accepted position, closely related, was summed up
by Rosen9 in 1945.  The decade from 1945 to 1955 was nicely
surveyed by Freistadt10, omitting Liebowitz.  During this time, the
theory took on  a more definite  and detailed form.   Numerous papers
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appeared1, which, although not attacking this problem directly,
supplied useful ideas, pro and con for later work. However, direct
work on the problem was taken up in 1952 by Bohm2, who extended
the ideas of de Broglie and Madelung, proposing that the perturbation
was caused by a quantum mechanical potential related to the wave
function.  In that same year, Fenyes3 suggested that, instead of using
a driving force potential, the path variations could be described as a
Markov process.  Shortly after, Weizel4 described the random motion
in terms of collisions with hypothetical particles he called zerons, an
extension of Fenyes’ approach; and Bohm and Vigier5 shifted the
mechanism to random variations arising through a sub quantum
medium.
     Up to this point, the main line of development essentially implied a
zero-point fluctuation mechanism closely related to some type of
Brownian motion.  A second line of approach was taken by Braffort,
et. al.6, by going back to an electromagnetic zero-point fluctuation
that was assumed to be the residual of all the motions of all the
charges in the universe.  This allowed the deduction of a stationary
ground level for the harmonic oscillator7.
     The form of the causal theory described by Freistadt8 in his
summary paper was closest to the Bohm-Vigier approach, but from
1960 onward, all of the variations plus some new ones were developed
more rigorously and completely. Wesley9 tried to give up the
connection between ψ  and the probability.  Marshal110  (1963) gave a
full elaboration of the electromagnetic basis for the fluctuation.
Kershaw11 extended the Markov chain variation, and Comisar12 (1965)
started a new reaction by linearizing the Brownian motion technique.
Over this same time span, numerous other closely and not so closely
 ___________________________________________________________________________________

 1. R.P.Feynman,  Rev.Mod.Phys. 20, 367 (1948). J.Moyal, Proc.Camb.Phil.Soc. 45, 99;
      M.S.Bartlett & J.E.Moyal, Proc.Camb.Phil.Soc. 45, 545 (1949).
  2. D.Bohm, Phys.Rev, 85, 166 (1952); 85, 180 (1952).
  3. I.Fenyes, Z.Physik, 132, 81 (1952).
  4. I.W.Weizel, Z.Physik, 134, 246 (1953); 135, 270 (1953); 136, 582 (19!54).
  5. D.Bohm & J.P.Vigier, Phys.Rev. 96, 208 (1954).
  6. P.Braffort, M.Spighel & C.Tzara, Compt.Rend. 239, 157 (1954).
  7. P.Braffort & C.Tzara, Compt.Rend. 239, 1779 (1954).
  8. H.Freistadt, loc.cit.
  9. J.P.Wesley, Phys.Rev. 122, 1932 (1961).
10. T.W.Marshall, Proc.Roy.Soc. A276, 475 (1963); Proc.Camb.Phil.Soc. 61, 537 (1965);
      Nuovo Cimento, 38, ? (1965).
11. D.Kerehaw, Phys.Rev. 136, B1850 (1964).
12. G.G.Comisar, Phys.Rev, 138, B1332 (1965).



69

related papers and books appeared1.  A very competent job of deriving
Schroedinger’s equation on the basis of Brownian motion was carried
out by Nelson2 (1966), including a compact but well directed summary
of the earlier work.  He concluded that, at least in the limited area
examined, the phenomena originally argued as a reason for quantum
mechanics could certainly be explained classically (i.e.
deterministically).  A year later3, Lande attempted to abandon
deterministics completely and derive quantum mechanics from a set
of very basic new statistical principles.  Since the latter just attempts
to augment the accepted majority opinion on the subject, such work is
not of interest here4.
     A major milestone in this area of developing a deterministic
description of the world occurred in 1968 in the form of two papers by
T.H. Boyer5.  Inspired by the work of Kershaw6 and of Nelson6, he
showed a “direct connection between Casimir’s7 zero-point energy
calculations and Lifshitz’ 8 general theory of retarded dispersion forces
between macroscopic objects”.  The perturbing field was assumed to
be randomly fluctuating and transverse, so it was essentially that of
Nernst6, Braffort6, Marshall6, etc.  In the second paper,  Boyer applied
the same approach to Casimir’s9 model of a charged particle and
showed that model to be invalid, mainly because of “the repulsive
aspect of retarded dispersion forces which was conjectured by Verway
and Overbeck”.10 For the next two decades, although several mild
flurries   about   a   classical   deterministic   alternative   to  quantum
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mechanics or related topics by others have appeared1, the main thrust
was powered by Boyer.  From 1968 to 1988, he produced at least two
papers per year, solid convincing papers, on this topic extended into
many directions.  Although a detailed following of this field is, again,
not along the direct line of the present work, the writer cannot resist
at least a few comments on Boyer’s contribution.
     In 1969, after elaborating2 on the long range Van der Waals
potentials of dispersion theory discussed earlier, Boyer produced a
superb classical derivation of Planck's law based on the
electromagnetic zero-point fluctuations3.  One of the points raised by
him, as well as by earlier workers, relates to the fact that the
spectrum of the fluctuations has energy per normal mode given by,

                                             h h
4 2
ω ν

ε = =
π

    ;                             (4.4.1)

which has no limit as ν  increases.  Nevertheless, the results of
calculations in the aforementioned papers produced finite effects.  In
those papers, a cutoff function was used; but, in his next paper4,
Boyer showed that even before that cutoff is effective, practical
properties of materials, such as their conductivity, restrict the effects
to finite levels.  He then proceeded to point out that it is the vector
(electromagnetic) nature of the fluctuations that cause this result.  A
scalar field would require a cutoff.
     Almost immediately, another paper of moment appeared5, in which
he turned the fluctuation argument around.  Instead of postulating
the fluctuation as before, Boyer showed that the oscillations are
necessary if classical thermodynamics and classical statistical
mechanics are to form a consistent whole.  Then on the basis of their
existence, h appears only as “the constant setting the scale of the
zero-point electromagnetic radiation spectrum”.  As if that were not
enough, the development continued the reformulation of the concept
of entropy, eliminating some of the paradoxes of the old classical
theory.  Finally, this paper corrected a popular concept related to
quantum statistics.  Standard texts, by emphasis, generally attribute
the use  of   “quantum” statistics, rather than “classical”, to the fact
that identical particles are counted.  Boyer pointed out that
indistiguishability  is  really  not  the  essence  of  quantum  statistics,
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since it must also be considered in classical cases where applicable.
     After a short writeup1 clarifying the meaning of the third law of
thermodynamics in classical physics, aided by zero-point fluctuations,
Boyer applied the fluctuation theory to the specific heat of a plane,
rigid, electric-dipole rotator having classical interactions with thermal
electromagnetic radiation2.  This was followed by two papers further
clarifying statistical counting, Gibbs paradox, and entropy3.  In 1971,
all of this early work of Boyer’s was briefly summarized by Theimer4,
who presented some simplified derivations for the purpose of more
easily understanding  the more detailed analyses of Boyer.
     From 1971 to 1988, Boyer published over 30 papers touching on
many other ties between classical and quantum physics, not all
involving zero-point fluctuations.  Some treated the Aharanov-Bohm5

experiment, others the definition of momentum and energy together
with a classical model of the electron6.  The latter disagreed with
Robrlich7, Butler8, and also with sections of the present Chapter 3;
but even in disagreement, Boyer gave new insight. The remaining
publications deal with more detailed penetration of the subjects of the
earlier papers and great elaboration of the fluctuation approach.
Boyer's work is an inspiration.
     From the point of view of this discussion of datum fluctuations,
there are two papers of Boyer’s that summarize the electromagnetic
(transverse wave) picture9, which he calls “random electrodynamics”.
This approach assumes that the fluctuations are photons and
antenna radiation produced by suns and odd matter scattered about
the universe.  The fluctuations are often considered to be in
equilibrium with matter in a self perpetuating state.  With this in
mind, since the appearance of Casimir’s 1948 paper, the possibility of
extracting some of the immense datum fluctuation energy predicted
on the basis of  Eq.(4.4.1) has been taken seriously by some10.   Much
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of the work after 1980 has been influenced by this possibility1, and
the overall work continues.
     A number of the earlier papers, e.g. some of those based on a
Markov process or those similar to Liebowitz’ ideas, do not specify the
source of the Brownian motion.  This leaves open the possibility that
the fluctuations are not transverse (electromagnetic) but are
longitudinal ( ! -waves).  Since the latter carry no energy, and affect
particles by turning their paths without exchanging energy (just as a
magnetic field acts on an electron), it could be that there is no energy
in the datum fluctuation field. As will be explained in the later
discussion of the gravitic field, energy is a complicated and not
completely understood entity; so it is too early to claim that the datum
fluctuations carry recoverable energy just on the basis of the Casimir
effect.  Considering how electromagnetic radiation is formed, it is more
likely that the fluctuations are both transverse and longitudinal, with
energy carried only by the former.
     Little more needs saying here about this important area of
advance. The author shall reserve judgment of the exact nature of the
fluctuations until further experimental work is done.  If those
fluctuations are transverse (electromagnetic), then they are photons
and antenna radiation and could behave like Weizel’s zerons.  On the
other band, if they are just the buffeting resulting from all of the
crisscrossing sustaining waves (longitudinal), then they could produce
Brownian motion by turning the electrons.  However this puzzle
comes out, the result is that quantum mechanics, Schroedinger’s
equation, etc., are all classical and just statistical mechanics of
ensembles2.  This does not mean that h, for example, is only a
constant in statistical mechanics.  Clearly, from earlier chapters, h is
related to the internal oscillating frequency of the electron; so, it is
surely a constant related to a distortion-oscillation property of the
ether itself.

4.5 The Compression/Oscillation Characteristic & Particle Mass:
In Section 2.13, the compression/oscillation characteristic of the
datum ether was said to be similar to that of a mass/spring system
which obeys the frequency /density relationship of Eq.(2.13.2),

                                               m( )ω = φG i     .                               (4.5.1)
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Figure 4.5.1 The ether's
compression/oscillation characteristic.
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No method of measuring this function directly is known at present, so
all estimates of the form of m( )φG i  must be based on inferences from
high energy particle physics and atomic data.  In spite of the myriad
of particle collision experiments and other related investigations, the
present best guess as to the form of m( )φG i  is the very incomplete
curve depicted in Figure 4.5.1.  Only part of the lower three horizontal
regions are known with any certainty, but even from this meager

information, the
predilection of the
ether for certain

frequencies
suggests the
mechanism by
which the particle
masses are fixed.
     In Figure 4.5.1,
the lowest known
particle frequency,
that of the electron,
is marked.  It was
this “preferred”
frequency that was
used in Section 3.4
to fix the electron’s
rest energy using
Eqs.(3.3.12),(3.5.2),
(3.5.5) and (3.6.3).
It doesn’t require a
great leap of
imagination to

guess that other solutions of the ! -wave equations will lead to more
massive particles that correspond to higher oscillation frequencies.
What is really needed is some basic experimental technique, perhaps
based on the type of equipment used to measure the Casimir effect,
that will determine the ether frequency characteristic.  At present, this
is only a vague hope, so the methods available for a roundabout
deduction of the curve will be presented in the next chapter.
Meanwhile, almost nothing is known about the great body of datum
ether.  It represents one of the remaining frontiers of physics.
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CHAPTER 5

 THE LAYERED PARTICLES

5.1 Introduction: For the last 100 years, particle physics has been
successful primarily on the experimental side.  The rare theoretical
success has been the classification scheme called the "Standard
Model", and the prediction of the existence of one particle.  An
extensive mathematical literature, e.g. string theory, N dimensions,
etc., has done little to advance the knowledge of particle structure or
predict particle masses.
     The normal mutual support of theory and lab work has failed here,
because QM is non-visualizable and suppresses cause and effect.  This
has guided experimentalists to the "bigger machine" approach; but
particles are very flexible, and at some collision energy level they just
come apart and new particles are formed.  So, the limit has perhaps
been reached in "bigger is better".
     The ultimate goal is to change the present approach to particle
structure by avoiding the difficulties of a dogged adherence to the use
of successive layers of point particles to describe matter.  Ascribing so
many properties to point entities is at least unsatisfying.  Of course,
with only the rigor of the few presently known solutions of the field
equations, the following involves considerable conjecture.  A good part
of it could be wrong and later discarded.  Nevertheless, the basic
approach, i.e. extended particles rather than point particles, will
surely continue to be part of any picture, for the simplicity and
intuitive aspects are indispensable.  The built in potential for
specifying the masses of all the particles demands that attention be
paid to this change in viewpoint.  For the most part, processes
empirically deduced from available measured data will be called upon
for the visualization1.  This is the last great frontier of fundamental
physics;  and,  to complete  the  picture,   an  immense  effort  will  be
required, a hopeless task for one lone explorer.  The job of laying out
the whole field of particle structure will require a long effort by many
investigators.  The following is a small step in applying Main-Line
physics to find a more flexible particle classification system and to
point the way to a simpler, visualizable analytical picture.
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5.2  Particle Categories:  Here, the conventional categories of
particles (e.g. leptons, baryons, etc.) will be abandoned.  A new set,
based on simple intuitive ether properties will be adopted.
Particles are ether configurations that can act as relatively
concentrated units for some significant time.  If the structure cannot
change without some outside influence, the particle is stable.  If it
must redistribute itself into a new form (i.e. “convert”), it is unstable.
In the simplest organization of particle categories, no distinction
between stable and unstable particles is made; and stability is just
another property.  However, as discussed later, stability is a complex
problem.  Based on the available information, there are only two
different classes of fundamental particles:

1.  Layered particles (layerons) - electric
                        2.  c particles (c-ons) - magnetic

     The c particles, photons and neutrinos, travel at the speed of light
in free space, and are quite different in structure from all the other
particles.  Neutrinos allow conservation of spin angular momentum in
particle interactions.  Just how they carry electric energy away from
interactions is not yet understood.  Photons carry energy away from
charged particles, generally orbiting.  Some details of the c-on
particles' makeup will be presented in Chapter 10.
     The layered particles are composed of spherically symmetrical
ether density distributions, in some ways similar to the electron,
supported by ! -waves and stacked in various arrangements of
potential φ   (see Figure 5.2.1).    Examples  of   1,   2   and  3   layered
particles  are   the  positron,  pion  and   proton  respectively.   In   the

Figure 5.2.1. Layered particles.

          unon                        bion                           trion

  0               r →          0                r →           0                 r →

          iφ = φ                       i jφ = φ + φ                    i j kφ = φ + φ + φ
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following, the layerons will be discussed in detail.  The separation of
layerons and c-ons helps to emphasize that layerons are bulk
distortions with purely electric energy (see Secs. 3.10, 9.10 and 15.6).
      A proper analysis of the layerons begins with the unons, for which
the theory is much advanced.  The subsequent description of the
bions and trions is far from complete, and leans heavily on the unon
analysis.  Nevertheless, the visualization is carried to the point where,
even without the final rigorous answers to many important questions,
the overall picture is almost totally understandable and only awaits
the formal filling out of the many specific cases.

5.3.  Particle Measurements:  Many of the particle types studied by
physicists are man-made, and only a very few are involved in the
structure of the world ( e,  p, n ).  Table 5.3.1 lists the most important
low energy particles and shows their decay products, which help to
visualize how the particles are constructed.  Numerous other vacuum
disturbances, called resonances, have some particle-like behavior, but
here they are not considered to be particles.
     In spite of the fact that most of the data used to describe particle
characteristics at present are obtained by high energy collisions of
beams and targets, and that this information is indispensable, it is
not of paramount importance here where the goals are somewhat
different.  Instead, the discussion will lean toward particle decay,
because only the electron and the proton (and the neutron when part
of a nucleus) are stable.  All other particles decay in a relatively short
time after formation. The only difference between the bombardment
and decay conversion processes is in the complexity of the initial
conditions.  Particle conversion involves only one pseudo-stable or
unstable particle that redistributes its distortion to a lower energy
configuration.
      In particle decay, energy distortion, uninfluenced by any outside
presence other than the datum fluctuation, will always redistribute in
a downhill direction, i.e. produce only constituents of energies smaller
than the original (all adding up to the original energy, of course).  This
means that any of the particles to be examined will convert to one or
more of those listed in Table I at lower rest energies only.  These are
not the only conversions the listed particles undergo, but those
omitted, which may be very numerous in type, are found only a small
fraction of the time, less than a few percent, and often as little as, say,

6 10−  percent.
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TABLE 5.3.1

PARTICLE CONVERSION PRODUCTS
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5.4. Unons: The most common single layer particle is the
electron/positron, which was discussed in detail in Chapter 3.
Referring back to Sections 3.5 – 3.7, the e/p is a single dip (bump) of
ether density φ , held in place by its ! -waves, and of a form,

                                            2
0(1 )φ = φ − ψ      ,                            (5.4.1)

where ir r−ψ = ε  is the intrinsic wave! −  shape function, and ir is the
inflection radius.  This single layer of potential yields single layers of
energy and charge density, which indicates that the e/p is a unon
with total rest energy and charge,

                             2
0 0 iE 2 r= πφ      and     0 iq 8 r= πφ      .              (5.4.2)

     It is important to recognize that the solution of Eq.(3.3.12) for the
! -wave shape function was in no way specific to the electron.  Only
when the particular frequency eω  was used, in Eq.(3.5.2), did the

central density 0φ  of the bulk distribution φ  identify the particle as
the electron.  The implication was that, during the formation process
(e.g. pair production), the ether had been distorted enough to start the
oscillating ! -wave with a peak density of at least

4
m 1.3457 10  desiφ = × .  Then, in accordance with the mω φi

characteristic of Figure 4.5.1, the ! -wave oscillation continued at
20

e 7.7634 10  rad/secω = × .  This suggests that, if the initial
distortion had been much greater, unons of higher frequencies
corresponding to the steps in Figure 4.5.1 would have been found,
and they have been.
     The analysis in Chapter 3 applies to all the unons, if ω  is properly
chosen, so Eq.(3.9.4) for the traveling φi  wave in the particle’s central
region can be used to find mφi  for the various unons.  The density
oscillates, so the peak amplitude at every radius is reached each time
sin t 1ω = ± , reducing Eq.(3.9.4) to,

                                  i
i

/d i
p 2

r r r 30r
a r

1    ,      
rri

−φ  φ = ε + < ω  
       (5.4.3)

where ir  designates the effective radius (inflection point of the bulk
density distribution) of  each  unon as determined by its ω .  Eq.(3.5.5)
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establishes ir  as,

                                                 i
Dr =
ω

   ,                                   (5.4.4)

Combining Eqs.(5.4.3) and (5.4.4), it is simple to show that the
maximum ! -wave density mφi  occurs at the radius p mr C D/= ω ,

where mC ( 3 1)/2= − .  Thus,

                                   1
Cm

m

d
m 2 2

m

a 1 1
CC D

 φ
φ = + ω 

 ε
i     ,

or,
                                                  mKωω = φi  ,                               (5.4.5)
where,
                                        16K 5.769032 10ω = ×     .                    (5.4.6)

The difference between Eqs.(5.4.5) and (2.13.2), is that m( )ω = φG i

describes the compression/oscillation property of the ether itself,
whereas  mKωω = φi  describes  a  property  of  particle structure, i.e. a
solution of the ! -wave equation.  Both conditions must be satisfied.
Eq.(5.4.5) can be plotted over the m( )φG i  curve of Figure 4.5.1, and  a
unon should be found wherever it intersects a frequency plateau.
Figure 5.4.1 shows this plot.

Figure 5.4.1 The unon family.
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     In 1937,  Anderson  and  Neddermeyer1  published  the  first crude
data on the muon ( )µ  ,  but it took 10 years to separate its properties

from those of a bion ( )±π  with roughly the same energy.  Whereas the

electron is believed to be a stable particle, the µ  has a mean life of

only 62.1970 10  sec−× .  It is still possible, however, that all unons are
basically stable.  In fact, since they are described by the same set of
equations as the electron, it is likely.  If they are basically stable, then
it is only the datum fluctuations, triggering them into “conversion”
into lower energy particles, that gives the appearance of instability.
The amount of distortion compressed into their small volumes then
establishes their mean lifetimes.
     The next higher energy unon is the τ , which has a shorter mean
life of 132.910 10  sec−× .  This makes it much more difficult to detect,
and it was only found by Perl, et al2 as late as 1975.  No other unons
have been observed, but some properties of the multi-layer particles
suggest that the higher frequency plateaus of Figure 5.4.1 make 4th
and 5th unons possible.

5.5  Measurement of the Unon Family ω ’s: At this point, something
more should be said about the  compression/oscillation curve, and
the roundabout method  for measuring it.  Later on, in Chapter 7, a
completely classical derivation of the hydrogen atom will be presented
that uses only Newton’s laws and some properties of the extended
electron that were described in Chapter 3.  That derivation can be
used to find the equation for the frequencies in the hydrogen
spectrum in the form,

                                   
4

3
e2 6 2 2

0 0 f i

e 1 1
8m c n n

 
ν = ν − 

 
     ;                   (5.5.1)

or in the more usual form of the inverse wavelength,

                                     H 2 2
f i

1 1 1R
n n

 
ν = = − λ  

     ,                     (5.5.2)

where,

                                          
4

3
H e2 7

0 0

eR
8m c

= ν      ,                         (5.5.3)

____________________________________________________________________
 1. S.H.Neddermeyer & C.D.Anderson, Phys. Rev., 51, 884 (1937).   
 2. M.L.Perl, et al, Phys. Rev. Lett.,  35, 1489 (1975).
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and fn  and in  are the final and initial orbit numbers of the radiating

electron respectively.  The measured values of ν  from the many
transitions, including microwaves from free hydrogen in outer space,
provide a value for HR , the Rydberg constant, one of the most
accurately measured constants known.  It is found to be,

                                   5 -1
HR 1.0973731572 10  cm= ×     .           (5.5.4)

If this value is used in Eq.(5.5.3), along with the measured values of
em , e and 0c , then eν  is,

                   
2 7

200 03
e H4

8m c
R 1.2355898 10  cyc/sec

e
ν = = ×      ,     (5.5.5)

or ω 20
e = 7.7634396×10 .  This is essentially a measured value for eω .

     The same procedure can be followed to find µω , thanks to an
important series of experiments done between 1954 and 19571 by
Stearns, et al.  In these trials, various materials were bombarded with
−µ  or −π  particles; and the spectra of the −µ  or −π  atoms, in which an

electron was replaced by the −µ  or −π , were measured.  By a
calculation similar to the one above, µω  is found to be very close to
the value used in the present work.
     Because the basic measurement of wave−!  frequency just
described is difficult, particularly for higher energy unons with very
short lifetimes, a more practical shortcut is used here.  The unon ' sω
are calculated from their measured bulk rest energies by combining
Eqs.(3.5.2), (3.5.5) and (3.6.3) to give,

                                          
2 4 2

d
0 2

0

a b
E

8c D
πφ

= ω     .                          (5.5.6)

The expression can be simplified by using the derived constant of
Eq.(3.14.6), leading to,
                                               0E h= ν      ,                               (5.5.7)
where,

                            
2 2 4 2

27d
2
0

a bh 6.6260755 10 erg-s
4c D

−π φ
= = ×      .     (5.5.8)

____________________________________________________________________
 1. M.B.Stearns, in Progress in Nuclear Physics, 6, 108-137 (1957); M.B.Stearns &      
    M.Stearns, Phys. Rev., 105, 1573-82 (1957).
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Eq.(5.5.6) is represented in Figure 5.5.1, showing the bulk energies of
the extended unon family of particles as a function of their
frequencies.
     Unfortunately, determinations of ω  by this method require the fore
knowledge of each unon’s existence, and the measurement of its rest
energy or mass.  As mentioned in Section 4.5, there is no presently
known method for measuring the m( )φG i  curve directly, so the two top
steps shown in Figures 5.4.1 and 5.5.1 are just guesswork inspired by
some inferred ideas based on multi-layer particle structure.  Even if
unons 4U  and 5U  can be formed, their tremendous compaction
would lead to such extremely short mean lives that their observation
might be out of the question.

Figure 5.5.1  The unon family.

The Energy Compaction Relationship

     Eliminating 0φ  between the rest energy 0E  and charge q found in
Eqs.(5.4.2) above,

                                              
2

0 i
qE r

32
=

π
     ,     erg-cm               (5.5.9)

a relationship called the energy compaction equation.  It indicates that
the more energetic unons have smaller radii. For q e= ∓ ,

20
0 iE r 2.8838 10   erg-cm−= × .
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Unon Size and Stability

     The unons of interest will be limited to the series of whole charged
particles, i.e. e, µ , τ , ..., that can exist alone and be observed for
some finite time.  Using the compaction relationship derived above,
and the measured values of 0E  for each of the unons, the calculated
values for ir  and 0φ  are listed in Table 5.5.1 with each particle's
observed mean life.

TABLE 5.5.1

UNONS, THE "PREFERRED" ETHER STATES

The interesting features of Table 5.5.1 are that, first, although each of

these unons has the same charge  e∓  the more energetic particles
have larger center potentials; and, their energy being packed into a
smaller volume correlates with their being less stable.  Second, it
appears that the unon sequence is a set of preferred states that can
exist as "pseudo-stable" particles because of a fundamental property of
the ether.

5.6 Preferred Ether States: The  µ  and τ  are often called "big
electrons", because, like the electron, they have only the same two
simple characteristics, their center potentials and their inflection
radii.  In the later discussion of multi-layer particles, it becomes clear
that the multiple layers are similar to these three unons.  In fact, the
radii of the layers in multi-layer particles are essentially the same as
those listed in Table 5.5.1.  In one way this is surprising, but why it is
true can be understood better from the following.

      0E  (ergs)             ir  (cm)           0  (hlvolts)φ      mean life (s)

______________________________________________________

e   78.1871 10−×   14
1r 3.5224 10−= ×   31.9233 10×       Stable

µ   41.6929 10−×   16
2r 1.7035 10−= ×  5 3.9768 10×   62.1970 10−×

τ  3 2.8472 10−×  17
3 r 1.0129 10−= ×   66.6886 10×   132.9100 10−×
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The Layer Radius/Frequency Equation

     An important relationship between the inflection sphere radius of a
unon and the unon's wave−!  frequency is obtained by eliminating

0E  from Eqs.(5.5.7) and (5.5.9), with the result,

                                           
2

i i
q r D

16h
ω = =      ,                          (5.6.1)

where  2 7D e 16h 2.7346139 10   rad-cm/s= = × .  Figure (5.6.1)
depicts this relationship for the unon family of particles.  Eq.(5.6.1)
takes the surprise out of the concept of preferred ether states, for
although it is difficult to imagine how preferred radii could be a basic
condition in the ether, it is comfortable to think of preferred ether
frequencies as basic.  So, assuming that Figure 5.6.1 indicates that
the ether has preferred frequency states, Eq.(5.6.1) shows that this
also establishes preferred radii.
     Figure 5.6.1 indicates two possible unons, 4U  and 5U , that have
not yet been observed.  In analyzing the more massive, composite
particles, it is clear that there are at least two more preferred states, 4
and 5; but their great instability may make their existence possible
only inside the composite particles and not observable as unons of
higher order.  The values shown are educated guesses.
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     Table 5.6.1 lists the important "rest" characteristics of the three
known unons.

TABLE 5.6.1

Quarks

     From the 1960's on, it has been understood that the more
elaborate particles are constructed of objects, now called quarks, that
sometimes behave in a manner similar to unons but have fractional
charges ±e/3 and ±2e/3. They are thought to be "point" charges like
the conventional electron model. Little is known about the spatial
arrangement of these objects inside a composite particle.
     In interactions between quarks and external projectile particles,
the quarks behave as if they were independent entities, but no
individual quark has ever been observed outside its housing particle.
This suggests that the composite particles might be made up of very
flexible constructs similar to the finite unons described earlier, but
having fractional charges, two components for the mesons and three
for the baryons.  In that case, although the components might freely
move for short distances, if one of the components were forced out of
a composite particle, because of its fractional charge, it would not
qualify as one of the preferred unon solutions listed in Table 5.6.1, and
so would decay; as would the remaining debris from the original

UNONS

6 13
e

0 0e

         Electron    e                      Muon                       Tau     

   Stable                     2.1970 10 s        2.910 10

 E 0.51100 MeV         E 105.66 MeV          

− −
µ τ

µ

µ τ

τ = τ = × τ = ×

= = 0

14 16 17
e

9
e e e

5
0 0 0e

E 1,777.1 MeV

  r 3.5224 10 cm      r 1.7036 10          r 1.0129 10

  q 1.7027 10 hlC       q q e                     q  = q e

 1923.3 hlV              3.9768 10           6

− − −
µ τ

−
µ τ

µ τ

τ =

= × = × = ×

= × = = =

φ = φ = × φ = 6.6886 10  ×

28

erg20 22 24
e hlG

28 25 24
e

20 rad
e sec

h  =5.2729 10  erg-s for all
4

  3.2910 10      1.5920 10       9.4258 10

  m 9.1094 10 g        m 1.8835 10      m 3.1679 10

   7.7634 10      1.6052 10

−

− − −
µ τ

− − −
µ τ

µ

σ = × →
π

µ = × µ = × µ = ×

= × = × = ×

ω = × ω = × 23 24        =2.6998 10τω ×



86

particle.  If this is a correct description of composite particles, then all
of the properties of the Standard Model are preserved and yet a
greater flexibility results.
     The classification scheme described in the following includes all
whole charge particles, but not photons and neutrinos. Using the
Standard Model as a guide, the two "point" quarks that make up
mesons and the three "point" quarks that make up baryons are
replaced with the finite solutions of Eq.(5.4.1).  To avoid confusing the
properties of the "point" quarks with these finite constructs, the term
quark will not be used to describe the particle components.

5.7  Multi-layer Particles:  At this point the overall particle problem
expands intolerably, and a logical, stepwise process of solving it
demands an almost endless chain of decisions between possible
alternative choices of methods and visualizations.  The writer has
made certain specific choices, and has carried the process as far as
time and resources permit.  Although most of the key structure is
presented here, there are still volumes of calculations and
measurements to be made in verifying and filling out of the structure
as developed.  Since the same can be said for the conventional
“Standard Model”, in its present state, the two approaches should be
evaluated on the basis of their simplicity and their ability to complete
the picture.
     A case in point is the “spin crisis” related to proton structure.
Conventional theory has great difficulty and becomes dauntingly
complex in trying to explain the presence of “strange” quarks in deep-
inelastic collision scattering of electrons by protons, with a
subsequent confusion about the spins involved.1  The ether theory
presented here, on the other hand,  has  no problem at  all in showing
that the great energy brought into the proton by the entering electron
can excite the next deeper layer, which gives what appears to be the
presence of the “strange” quark.
     The spin problem of the ++∆ , which forced the addition of “color”
to the standard model, is also non existent in the ether theory,
because the particle is formed of three different concentric layers, so
none of the “quarks” is in the same state as any other.
     There are three major steps in carrying out the multi-particle
structure analysis.  The first is to adopt a system that categorizes the
various combinations of layers based upon the visualization of the
physical  distortions  in  the  ether.  The  second  is to develop a  more
general solution of the ! -wave equations of Section 2.12 than was
required for the unons.  This helps to establish the possible charges
__________________________________________________________________
 1. B.Schwartzchild,  Physics Today, p21, June (1999).
     K.Rith & A.Schafter, Scientific American, p58, July (1999).
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and energies of the particles, and reduces the number of significant
entries in the classifying system.  The third is to examine the
mountain of experimental data in order to relate the various observed
particles with the entities in the categorizing scheme.  The
classification system and its nomenclature are essentially complete.
However, while a more general solution of the ! -wave equations is
presented, and while it appears to offer most of what is needed for the
description of the multi-layer particles, it may not be the most general
solution, and some changes may be necessary to make all the
categories match up with the voluminous data.  The latter task is only
begun here.

5.8 The Multi-layer Classification System:  Whereas the quarks
have specific charges assigned, the present scheme first indicates only
the number of components a particle has.  The basis for the
nomenclature system is represented in Figure 5.8.1.  The numbered
markers represent the relative radii of layers, which are not equally
spaced, indicating only the stacking order.  The unons, bions and
trions are designated by iU , i jB  and ijkT  respectively, where the i, j
and k indicate the layers, and read from the outermost layer inwards.
The possibility  that   “quadrons”   also  exist   can  be  accommodated
by writing ijklQ ,  etc.  In all these cases, the Eq.(5.4.1) constructs take
on only the preferred radii listed in Table 5.5.1, so the subscripts
indicate the size and shape of the components.
     In this system, the correspondence of the iU  designation to the
unon family is, 1U e→ , 2U → µ  and 3U → τ , etc., each successive
particle having a single potential structure with a higher frequency, a
smaller radius and a greater energy (see Fig. 5.2.1).  The total charge
of each is e± .
     When considering the multi-layer particles, several new
characteristics appear.  For example, the individual layers do not have
different frequencies, each multi-layer particle has just one basic
frequency  ω  ,  and    a  single   ! -wave   establishes   all   the   layers.

Figure 5.8.1 The preferred ether layer radii.
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The frequency ω  will not be one of the "preferred" layer frequencies.
Instead, the single wave−!  of a multi-layer particle acts like a driver
that rings the two or three "preferred" layers constituting that
particular particle.  For example, the proton will be shown to have the
structure 123T ; i.e. a potential component 1φ  with inflection radius 1r ,
a higher potential component 2φ  with smaller inflection radius 2r ,
and a very high potential component 3φ  with a still smaller inflection
radius 3r  (see Figure 5.2.1).  On the other hand, there could be
another trion 245T , with components 2φ , 4φ  and 5φ , and inflection
radii 2r , 4r  and 5r .  Only those "preferred" radii given in Table 5.5.1
and the possible 4r  and 5r , still to be determined accurately, ever
appear in the components of multi-layer particles; but, each multi-
layer particle has just one wave−!  frequency ω .
      It is convenient to set up the next step in the classification system
on the basis of the smoothed out charge density shell ρ  rather than
the potential φ  or the energy density shell eε , since the total
integrated charge of any shell is constant, even when the particle is in
motion.  The conventional  “Standard Model” adopts a very rigid
classification scheme that combines the layers and charges in a way
that is too inflexible.  The increased flexibility of the new system
comes from the fact that the charges of each component have yet to be
specified.  Now it appears that all independent, observable particles
have total charges that are integral multiples of e.  Because of this
empirically determined fact the total particle charge distortion is Ne± ,
where N is an integer; so, at least in the two layer particles with
charge e, some of the layers must have fractional charge.  The
fractional charges have been found to be either e/3±  or 2e/3± .
     In the present system, the charge sign and magnitude are
indicated, separately from the layers, by superscripts.  For example,

the proton is identified as the trion 122
123T
−++

 where the superscripts
indicate that the fractional charges of the components are -e/3,

+2e/3, +2e/3.  The neutron is tentatively identified as 121
123T
− + −

.  Thus,

i jBαβ  (i j)≤  and ijkTαβγ  (i  j  k)< <  represent the complete description

of the multi-layer particle categories (except for the spins), where

, ,α β γ  are given values of  
+

1,  1,  2,  2, 3,  or 3
+ − + − −

 for the six possible

charge choices.  Here, 1
+
 indicates a charge of e/3+ , 2

−
 a charge of

2e/3−  and 3
+

 a charge of e+ .
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The ijB bion hierarchy

Figure 5.9.1
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5.9  Bion Configurations:  Bions are classified into three groups:

                         1. Concentric layer bions,
                                                                                    ijB       i < j

                         2. Eccentric layer, inside orbiters,

                         3. Outside orbiters                                ii B

Group 1 bions have two shells, one inside the other, with a common

center.  They have a net charge of e± , whereas the orbiters have two
layers of equal and opposite charge that give a net charge of zero.
Group 2 bions have two shells, one inside the other, with centers
displaced and both orbiting a common center.  Group 3 bions form a
"system" like positronium, with two separated, equal fractional charge
shells, orbiting a common center.   Observed concentric bions are
tentatively identified as ±π ,  D± , sD± , and B± .  Inside orbiter bions are

probably 0 0 0K ,D ,B and 0
sB  and outside orbiter bions are most likely

0
c,  , ',  π η η η and ϒ .  The latter ii(B )  decay like Positronium and,

similarly, produce two photons. This two photon radiation is their
hallmark.
     All the bions are possibly stable, in a fundamental sense (if it were
not for the datum fluctuations), but all bions convert to lower energy
forms shortly after their formation.  Because the bions decay rapidly,
their correct analysis must address the transient case, which has

many mathematical difficulties.
Therefore, the measured bion
energies are always slightly smaller
than the values calculated from the
"concentric, static" approximation.
     ijB  bions decay mostly into

unons and neutrinos.  Figure 5.9.1
diagrams the first six forms of the

ijB  bion hierarchy. For each of

these ijB  designations, there are

several possible combinations of
charge.  For complete generality

the charges 3
+

 and 3
−

 were
included earlier; but in the

following, to relate to the present view of quarks, the 3
+

 and 3
−

 classes
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will not be developed.  As an example, consider the lowest order bion
category 12Bαβ .  Each of the two layers could have one of four different
charge distortions, so the total possible types of 12B  bions is 16.
However, this number is reduced considerably because the total
particle charge must be zero or an integral multiple of e± .  Therefore,
the total number of combinations that could possibly represent real
particles is reduced to:

and,                            

- + + +
1 1 1 2 2 1 2 2
12 12 12 12

_ - - -
1 1 1 2 2 1 2 2
12 12 12 12

 B  B , B  B , 

 B  B B , B  

, ,

, , .
 

+ + + −

+ − − +

Now, since the second row represents four particles that are exactly
like those in the first row, except that their charges are opposite, the
second row particles are called the “anti-particles” of those in the first
row. Thus, the 12B  category describes only four different, possible
particles (and their anti-particles).  Subsequent analysis, using the
! -wave equation, can help to decide which, if any, is a real particle
and to identify one or all with those observed.  The charge density

distributions of the tentative
++

1 2
12 B  particle and its anti-particle are

depicted in Figure 5.9.2.  A similar process can be carried out for all
i jB   bions.  The  result  is  that  each bion category can have only four

Figure 5.9.2  Examples of possible 12B  bions
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possible particles (and their anti-particles):

                                  

+ + + +
1 1 1 2 21 2 2
i j i j i j i j B , B  B   B , , .

 

− + + −

                       (5.9.1)

The first and last of these are inside orbiters, the second and third are
concentric bions.
     Unlike the unon family, which has a “stable” particle, the electron,
at the base of its energy ladder, the bions are all short lived, and even
the lowest energy ijB  bion is triggered to convert into unons and

neutrinos.  No more need be said about ijB  bions until later, when the

solution of the ! -wave equation is used to reduce their possible
number.
     In the most general case of the outside orbiter category, each

iiBαβ yields only three possible types of bions (they are their own anti-

particles):

                                          1 1 2 2 3 3
ii ii iiB ,  B ,  B   .
+ − + − + −

                         (5.9.2)

The last, 3 3
iiB
+ −

, is essentially positronium, which is not considered a
fundamental particle.  Analysis of all orbiters involves more than just
solving the ! -wave equation, which only gives the structure of the
layers themselves.  Because orbiters are “systems” over and above the
layers, they require an analysis that shares the orbit matching
properties of atomic systems, which will be discussed in detail in
Chapter 7.

5.10  Trion Configurations:  The trions come in combinations of
concentric shells, or eccentric inside orbiters.  Although work is in
progress, the only accurately calculable concentric trion at this time is
the stable proton.  The great majority of trions appear to be inside
orbiters, none of which has been finally identified yet due to
mathematical intractability.  The success of the proton analysis
demands that the much more difficult problem of the orbiter trions be
pursued, particularly that of the neutron.
     The same procedure that established the possible bions is
applicable to the trions as well.  However, in the basic trion hierarchy,
there might not be outside orbiters.  Thus, for now, the basic trion
configurations given here involve only concentric cases of ijkTαβγ  where

i<j<k.   The result is that the first few ijkT  appear as in Figure 5.10.1.

Each category has 3 layers, and each layer can have one of 4 possible
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charges, so every category has
64 possible particles. Here,
again, the requirement for Ne±
(N=0,1,2,…) total particle
charge reduces the number of
possibles to one out of eight, or
8 (plus their anti-particles).
Subsequent analysis can
reduce this number.

     Of particular interest in this
class is the proton, since it is
the only “stable” trion known.
As before, with the unons and
bions, all of these concentric
trions might be basically stable
but susceptible to triggering
into energy conversions by the
datum fluctuations,  which
accounts for their  short  mean
lifetimes. The proton, however,

is stable, and the lowest sustainable trion form, just as the electron,
at the bottom of the unon energy ladder, is stable.

     The charge assignments for the 8 tentative trions of each set are:

111) ( 11 2) ( 1 21) ( 1 2 2) 

211) ( 21 2) ( 2 21) ( 2 2 2)

(

(

− − − − − + − + − − + +

+ − − + − + + + − + + +

Each of the ijkT  categories can have these charge assignments and

their negatives.  The advantage of this classification system over the
standard model is that it frees the charge assignments from the
quarks and provides the layer visualization, which is simple to use
and to remember.

The concentric trion hierarchy.
Figure 5.10.1.
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5.11  Multi-layer Particle Analysis: Analysis of concentric multi-layer
particles runs parallel to the derivation in Chapter 3, and Sections
5.4-5.6 of this chapter. Figure 5.11.1 lists the principal steps involved.

Figure 5.11.1.  Unon analysis outline.

Figure 5.11.2.  Multi-layer analysis outline.

UNON ANALYSIS

   1.  Assume a simple trial potential.
2

0 i(1 )φ = φ − ψ

    2.  Find a correct wave−!  shape function.
ir r

i
−ψ = ε

    3.  Solve for the correct charge density.
2

2r r2 0 i i
4
r4

r
−φ

ρ = −∇ φ = ε

MULTI-LAYER ANALYSIS

 1.  Assume a trial potential.
2 2 2 2

0 01 1 02 2 03 3(1 )   (1 ) (1 ) (1 ) ...φ = φ − ψ = φ − ψ + φ − ψ + φ − ψ +

 2.  Find each layer's new wave−!  shape function.

( )re
i 2 re

r
r 1 K  E

i
 − +  ψ = ε

( er  is the effective radius of the whole particle)

 3.  Find the iK  for each layer.

i e ir r /i
i

e i

rK =  -1   1
r

ω ω   ω
ε = − ε   ω  

 4.  Solve for the correct layer charge densities.

( )e
2

r r2 i e i
i ii 4

q r 1 K
2 r

− ψ
ρ = −∇ φ = + ε

π
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     Although the multi-layer equations are more elaborate, the outline
in Figure 5.11.2 shows that roughly the same steps are necessary to
determine the layered particle's characteristics.  In the following,
these steps are elaborated upon and the method is applied to
concentric bions and trions.
     Earlier it was said that all unons had charge distortion e± .  When
multi-layer particles are observed, at least two types are found to have
a total charge of 2e± .  This results, during the particle's formation,
from the original compression’s being large enough to generate three
or more layers of charge distortion with a total charge greater than e,
so that  the creation process  settles out  with  a larger amplitude ! -
wave, as expressed by,

                         
0

a rˆ N C     ,    C cos t
r c

 
= ψ = ω 

 
V r ∓ ∓
i ∓    ,     (5.11.1)

(upper sign outgoing, lower sign in going) where N is an integer that
determines the particle’s total charge Ne∓ , and ψ  is again a function
that approaches unity as r → ∞ .  Here again, the ether’s non-linearity
produces stepwise levels of distortion.  From Eq.(5.11.1) and the ! -
wave continuity equation,

                          d 0

0

a c 1 d 1N C S
c r dr r

 φ ψ  ψ
φ = ± +  ω ψ  

∓ ∓
i ∓     .      (5.11.2)

Combining Eqs.(5.11.1) and (5.11.2) gives,

                 
2 2 2 2

d d
2 2

0 0

a a dN    and   N
dr2c r 2c r

φ ψ φ ψ
φ = ± ∇ φ = ±V Vi i i ii    .  (5.11.3)

From Eq.(3.7.1),

                                
2 2

d
2

0

a b db N
dr2c r

φ ψ
ρ = − ∇ φ =Vi ii ∓     ,              (5.11.4)

which can be integrated over all space from r 0=  to r → ∞ , with the
result,

                                       
2

d

0

a b
q 2 N Ne

c
φ

= π =∓ ∓     .                 (5.11.5)

Although a few multi-layer particles form with N 2= , most have the
same total charge found in the unons.
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5.12  Multi-layer Trial Potential:  Although later the proton will be
used as an example, it is straightforward to generalize the process for
any concentric particle.  The principal idea is that, as discussed in
Section 2.17, the only physical presence in a particle layer is its
potential iφ  ; so, in the multi-layer particle, the only physical presence

is the sum of the potentials iφ  of the particle's layers (see Figure 5.2.1),

                                          1 2 3 .....φ = φ + φ + φ +      ,                  (5.12.1)

Paralleling the unon derivation, the same simple form of trial solution
of Maxwell's scalar equation is taken as,

                                              2
0(1 )φ = φ − ψ      ,                        (5.12.2)

where ψ  is the multi-layer shape function.  In terms of the individual
layer potentials, this becomes,

                        2 2 2
01 1 02 2 03 3(1 ) (1 ) (1 ) ....φ = φ − ψ + φ − ψ + φ − ψ +     ,   (5.12.3)

which reduces to,
                                  2 2

0 01 1 02 2( .....)φ = φ − φ ψ + φ ψ +      ,              (5.12.4)
where,
                                       0 01 02 03 ...φ = φ + φ + φ +      .                 (5.12.5)

The 0i φ ’s can each be positive or negative.

5.13  Multi-layer Shape Function: All layerons have a single ingoing
or outgoing ! -wave with a single characteristic frequency ω .  The thing
that distinguishes the multi-layer particles is that they have a
composite shape function.  Comparing Eqs.(5.12.2) and (5.12.4),

                              2 2 2 20201 03
1 2 3

0 0 0
...

φφ φ
ψ = ψ + ψ + ψ +

φ φ φ
     ,        (5.13.1)

where the 00i /φ φ  are fractions related to the amount of charge in

each layer of the composite particle.  Eq.(5.13.1) defines the total
multi-layer  shape  function ψ  ;  and, because the iψ  of the layers are
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Figure 5.13.1.  A composite shape function curve.

not equal, the total shape function has more wiggles than the unon
shape function, as shown in Figure 5.13.1.
     In summarizing the results of the classification system and the
multi-particle analysis, to this point, a conflict arises in the following
way.  Looking back to Eq.(5.5.7), that relationship between the
particle’s rest energy and frequency appears to hold for all concentric
layerons, and it is an essential part of the so called “quantum”
properties of matter.  Furthermore, the tests of Stearn’s, et al,
discussed in Section 5.5, which included pionic atoms (electron
replaced by a −π  bion), have been repeated, since 1957, with more
massive bions.  All such tests indicate that the orbit selection implied
by the de Broglie frequency, to be discussed in Chapter 7, applies in
general.  Thus, all these phenomena require that any particle have one,
single ! -wave frequency.
     On the other hand, the preceding analysis shows that if the same
shape function ir r−ψ = ε  used for the unons were used for each of the
layers, multiple frequencies would be required, one for each layer.
The resolution of this problem comes through finding a new, more
general, layer ! -wave shape function.

5.14.  The New Layer Shape Function:  The most interesting aspect
of multi-layer particles is that the layers are essentially independent,
though an indispensable part of the whole particle; i.e. the shape
functions, iψ , of the individual layers must satisfy the ! -wave
equation independently.  They can be determined by first
differentiating Eq.(5.13.1), leading to,

                          
2 222

02 201 03 31

0 0 0

d ddd ...
dr dr dr dr

φ ψφ φ ψψψ
= + + +
φ φ φ

    .  (5.14.1)

r/re

1

ψ
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Combining Eqs.(5.11.3) and (5.14.1), the ! -wave equation for the
individual layers can be written,

                            ( )
22

02
2

0

i
i i i

i

i d1 aN
drr D

φ ψω
∇ η − ∇η = − ψ

φη
    ,         (5.14.2)

where, from Eqs.(5.11.1) and (5.13.1),

                                         
2

20
2

0
i i

i aN
2r

φ
η = ψ

φ
    .                       (5.14.3)

Substitution  of Eq.(5.14.3) in Eq.(5.14.2) leads to,

                        
22

2 2
i i i i

i

d d d1 2 0
dr r D drdr r

ψ ψ ψ ψω   − + + − =  ψ   
    .      (5.14.4)

This equation, which applies to the individual layers, is identical to
Eq.(3.3.12) which gave the unon’s shape function.  In the previous
unon cases, for simplicity, a very limited solution of Eq.(5.14.4) was
used that applies only to unons.  At this point, it is necessary to use a
more general solution.
     The new ! -wave shape function for each layer takes the form,

                                 ( )re
i 2 re

r
r 1 K  E

i
 − +  ψ = ε      ,                    (5.14.5)

where ( )2 er/rE  is the exponential integral of the second kind1, er  the
effective radius of the whole multi-layer particle and iK  an, as yet,
unspecified constant.  Figure 5.14.1 depicts the family of iψ  curves
with iK  as the parameter.  The iK 0=  curve applies to the unons,
and gives the simple structure discussed earlier.  However, in multi-
layer particles, each layer has a different value of iK ; and the radii of
the layers are specified by both the particle frequency ω , which is
common to all layers in any one particle, and the values of the
parameter iK , which sets the inflection radius of each potential layer.
The shapes of the iψ  are determined primarily by the factor

er r D r − − ωε = ε , just as before, but the purpose of the iK  is to allow
___________________________________________________________________
     1. Handbook of Mathematical Functions, National Bureau of Standards,
AMS 55, p228.
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each layer to adjust itself, relative to the total particle frequency ω , so
that the layer frequencies iω , given by Eq.(5.6.1), match the "preferred"
layer frequencies.

Figure 5.14.1.  Layer shape function curves as a function of iK .

Two forms of the derivative of iψ  are required in the following,

                                      
r

i D
i i2

d D 1 K
dr r

ω
− ψ  = + ε ψ

 ω  
   ,               (5.14.6)

and,

                                     
r2

2i D
i i2

d 2D 1 K
dr r

ω
− ψ  = + ε ψ

 ω  
  .               (5.14.7)

5.15.  Multi-layer Particle Charge Density:  The charge density of a
concentric multi-layer particle, obtained with the help of Eqs.(5.11.4),
(5.11.5) and (5.14.1), is,

                    
2 22

02 201 03 31
2

0 0 0

d ddq ...
dr dr dr4 r

 φ ψφ φ ψψ
ρ = + + + 

φ φ φπ  
   ,  (5.15.1)
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which can be integrated over all space from r 0=  to r → ∞ , with the
result,
                                         1 2 3q q q q ...= + + +     ,                    (5.15.2)
where,

                                              0

0
i

iq q
φ

=
φ

∓     .                           (5.15.3)

From Eqs.(5.15.1) and (5.14.7), the charge density of each layer is
specified by,

                                   
r 2

i iD
i i 4

q D
1 K

2 r

ω
−  ψ ρ = + ε

πω  
 

    .                  (5.15.4)

For larger Ki, the charge shells move out to larger radii and their peak
values are lowered.  Nevertheless, when Eq.(5.15.4) for the layer
charge density is integrated over all space, the layer charges iq  are
found to be independent of  iK , as anticipated by Eqs.(5.11.5) and
(5.15.2).  It is this fortunate circumstance that permits using the layer
charges in the classification scheme.  Thus, Ki is a parameter that can
be varied after specifying the charge structure to be examined; and,
although it changes the radii of the charge shells as well as the energy
shells, its major effect is on the magnitudes of the layer energies.

5.16 The Multi-layer Bulk Density Equation: Starting with
Eq.(5.11.3) and the bridge equation,

                                   
2

2d
2

0

a bˆb N
2c r
φ

∇φ = φ = ± ψV ri i     ,                 (5.16.1)

and,

                                          
2

2d
2

0

a bd N
dr 2c r

φφ
= ± ψ     .                      (5.16.2)

Integration produces the bulk density distribution,

                                           1 2 3 ...φ = φ + φ + φ +     ,                   (5.16.3)
where,

                                          
2

i i
2

0

r

i i
q

S dr
4 r

ψ
φ = −

π ∫     ,                   (5.16.4)
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and iS  is a constant of integration.  When r 0= , 0ii iSφ φ ==  ; so,

                                          ( )0
i

iii
q

 I r
4 D
ω

φ = φ
π

−    ,                  (5.16.5)

where,

                                            ( )
0

r 2
i

i 2
DI r dr

r
ψ

=
ω ∫     .                    (5.16.6)

 As  r → ∞ , ( ) ( )i iI r I→ ∞  and i 0φ → .  Thus, recognizing that the
wave−!  analysis leading to Eq.(5.4.4) also determines the effective

radius of a  whole multi-layer particle to be,

                                                  e
Dr =
ω

     ,                             (5.16.7)

then,

                                           i
0i i

e

q I ( )
4 r

φ = ∞
π

     ,                         (5.16.8)

and,

                                           
( )
( )

i
0

i
ii

I r
1

I
 

φ = φ −  ∞ 
    .                   (5.16.9)

5.17  Determination of iK :  It was stated earlier that each potential
layer can be associated with a iK  that determines the inflection
radius of that layer.  Starting with the gradient of the layer potential
in Eq.(15.16.5), differentiating it with respect to r, setting the
differential to zero and solving for iK  leads to,

                                          ir /Di
i

r K 1
D

ωω = − ε 
 

    ,                  (5.17.1)

where ir  is the inflection and maximum energy density radius of the
layer.  One way to look at Eq.(5.17.1) is to recognize that with
Eq.(5.16.7) it can be written in the form,
                                               

                                             i er /ri
i

e

rK 1
r
 

= − ε 
 

    .                   (5.17.2)

If iK  of a layer is a very large number, that layer is far out from the
main energy of the particle.  If iK  is near zero the layer is close to the
effective radius er .  For i1 < K 0− < , the layer is smaller than er .
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An even more useful way to think about Eq.(5.17.1) results from
combining Eqs.(5.4.4), (5.17.2) and (5.16.7) in  the form,

                                            i/
i

i
K 1 ω ω ω

= − ε ω 
     ,                  (5.17.3)

where  the iω  are  the "preferred"  frequencies  listed  in  Table
(5.17.1).  Eq.(5.17.3)  is the most convenient for determining the
multi-layer particle structure.

TABLE 5.17.1

"PREFERRED" FREQUENCIES

5.18  Multi-layer Particle Energy:  Starting with the incremental
ether density of Eq.(5.16.3), the gradient at each point in space is,

                                    1 2 3 ......∇φ = ∇φ + ∇φ + ∇φ +    ;               (5.18.1)

and, from Eq.(2.19.1), the total electric energy density of a concentric
layeron is found to be,

                       

2 2 21 1 1
e 1 22 2 2

1 2 1 3

2 3 2 4

( ) ( ) ( ) ....

                  + ....

                  + ....
                  +....

ε = ∇φ = ∇φ + ∇φ +

∇φ ∇φ + ∇φ ∇φ +

∇φ ∇φ + ∇φ ∇φ +

i i

i i
   .            (5.18.2)

i i

20 14

23 16

24

Layer              (rad/sec)                  r    (cm)
 

   1              7.76344 10             3.52243 10

   2             1.60523  10            1.70356 10

   3              2.69981 10   

−

−

ω

× ×

× ×

× 17

24 18

25 18

          1.01289 10

   4              8.508    10             3.214    10

   5              1.580    10             1.731    10

−

−

−

×

× ×

× ×
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Integrating Eq.(5.18.2) over all space gives the total energy of the
particle in the form,

                                    

0 1 2 3

12 13 14

23 24 25

E E  E  E  ....
    E E E  ....
    E E E ....
    ....

= + + +

+ + + +

+ + + +

+

    ,               (5.18.3)

where the Ei are the layer “self” energies and the Eij are the
“interaction” energy deformations, between the layers, stored in the
ether during the particle formation process.
     The energies, Ei, of the individual layers are found by first
differentiating Eq.(5.16.4) to obtain,

                                             
2

i i i
2

d q
 

dr 4 r

φ ψ
= −

π
    ,                      (5.18.4)

and then writing the energy density as,

                                       ( )
2 42
i i1

ei i2 2 4
q  

32 r
ψ

ε = ∇φ =
π

    .            (5.18.5)

When Eq.(5.18.5) is integrated over all space, the layer self energy is
found to be,

                                          ( )
2
i

i i
e

qE  J
8 r

= ∞
π

    ,                        (5.18.6)

where,

                                          ( )
r 4

i
i e 2

0

J r r dr
r
ψ

= ∫     .                       (5.18.7)

     The interaction energies, Eij, can be written,

                                            i j
ij ij

e

q q
E J ( )

4 r
= ∞

π
    ,                       (5.18.8)

where,

                                         ( )
2 2

2
0

r
i j

ij e J r r dr
r

ψ ψ
= ∫     .                   (5.18.9)

     In the more complicated cases, involving orbiters, in addition to
the self and interaction energies, the orbiting layers are deformed and
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include their extra orbital kinetic energies which must be added in to
give the total particle energy.

5.19 Multi-layer Particle Spin and Magnetic Moment: In Section
3.8, where the electron’s spin was taken up, it was described as an
ether vortex essentially independent of the density distribution and
the ! -waves.  Its only pertinent characteristic was that the vortex
velocity increased with r inside a very small radius ( i ir 0.06rδ ≤ ), and
the external velocity gradually decreased as r increased
( 0 as r→ → ∞ ).  It was stated there, that the angular persistence of
the frictionless vortex and its external field produced the appearance
of angular momentum; but the calculation of the spin using the
conventional idea of energy density rotating about an axis was
somewhat forced, and the only fundamental connection between the
measured spin and the velocity vortex field came through the
unknown constant s Kκ .  In a multi-layer particle, the spin picture is
essentially the same for the individual layers.
     The calculation for the layer spin starts with Eq.(3.8.11), and
differs from the derivation there in the substitution of Eq.(5.18.5) for
the energy density in terms of the new iψ .  The layer spin can then be
expressed as,

                          
2 i

i

4 4r
i i i

i s i 2 3 3
0 r0 i

q( K ) dr  dr
12 c ( r ) r

δ ∞

δ

 ψ ψ
σ = κ + ∫ ∫

π δ  
    ,     (5.19.1)

where the first integral in the bracket is negligible with respect to the
second.  A very good approximation can be written in the form,

                                       
2
i

i s i i2 2
0 e

q( K ) L ( )
12 c r

σ ≅ κ ∞
π

    ,                (5.19.2)

where,

                                             
4

3
0

r
2 i

i eL (r) r  dr
 r
ψ

≅ ∫      .                   (5.19.3)

     In the same way, the magnetic moment for each layer is found by
starting with Eq.(3.8.16) and substituting Eq.(5.15.4) for the layer
charge density.  The result is

                                         i
si s i i

e 0

q2( K ) M ( )
3 r c

µ ≅ κ ∞      ,               (5.19.4)

where,

                                     ( )
2

3
0

r
r/r2 ie

i e iM (r) r 1 K  dr
r

− ψ
≅ + ε∫      .        (5.19.5)

As discussed in Section 3.8, 2 2
i 0 e i 0 0i 24 c r q 3cκ = π = φ .  This can be
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used with Eq.(5.16.8) to reduce Eq.(5.19.4) to,

                                         i
si si 0

i

M ( ) K 8 c
I ( )

 ∞
µ ≅ π  ∞ 

     .                (5.19.6)

For any reasonable, given ω , er  or iK , tables of iM ( )∞  and iI ( )∞
reveal that the bracketed quantity has the value,

                                                 i

i

M ( ) 1
I ( ) 2

 ∞
= ∞ 

     ,                       (5.19.7)

to within some small error.  Thus, Eq.(5.19.6) becomes,

                                                si si 0K 4 cµ ≅ π     .                       (5.19.8)

Likewise Eq.(5.19.2) can be simplified to the reduced form,

                                        i
i si 0i 2

i

L ( )K 4
I ( )
 ∞

σ ≅ πφ  ∞ 
     .                   (5.19.9)

Here, however, the bracketed quantity varies over a wide range; so, at
first sight, Eq.(5.19.8) appears to be the natural route for establishing
the value of siK .  In Section 3.8, the measured value of the electron's
magnetic moment sµ  was used to establish the corresponding values
of sK  and the spin sσ .  Unfortunately, the magnetic moments of
individual layers of composite particles have not been measured.
     A multi-layer particle consists of several spinning charge layers
that can reorient freely and independently of each other.  In the
ground state of a concentric layeron, the magnetic moments will act to
align some of the layers, tending to put them into pairs that cancel
some or all of the magnetic effects.  Care must be exercised, when
comparing the measured magnetic moment of a whole particle to that
calculated, to consider which layers are paired and which are free to
reorient separately.
     To avoid this difficulty, the calculation for the layer siK 's is
reversed from Section 3.8.  In the Standard Model, all "quarks" have
spin  1 2 , 28

i 2 5.272863 10  erg sec−σ = = × −$ , so it is assumed here
that all the layers also have spin  1 2 .  Therefor, the layer spins are
used to find the siK  values.
     In Section 3.8, the electron's spin and magnetic moment were
derived and related through its gyromagnetic ratio,

                                              s

0 0

e 
m c

µ
≅

σ
       .    (electron)     (5.19.10)
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Because the individual layers in the multi-layer particles have
structure similar to the electron's, by combining the above Eqs.
(5.18.6), (5.19.2) and (5.19.4), the gyromagnetic ratio of each layer can
be expressed in the form,

                                    si i i i

i 0i 0 i

q J ( ) M ( ) 
m c L ( )

 µ ∞ ∞
=  σ ∞ 

     .             (5.19.11)

Upon checking the values of iJ , iM  and iL  for a given iK , frequency
 ω or er , the bracketed term is found to be unity (discounting a small

error) for all possible layers, with the result,

                                                si i

i 0i 0

q
m c

µ
=

σ
     .     (layers)       (5.19.12)

In terms of the values that will already be known when this stage of
future calculations is reached,

                                               i 0
si i

i

q c 
E

µ = σ      ,                      (5.19.13)

and,

                                                  si
si

0

K
4 c
µ

=
π

      .                    (5.19.14)

     This is the last step in the formal analysis of multi-layer particles
to be presented here.  There are other related quantities that can be
calculated, but they do not require any further development, since
they involve only well known procedures.

5.20  Multi-layer Particle Calculations:  In the preceding analysis,
five integrals that depend upon iψ  were derived.  No closed form
solution for any of these is known to the writer.  Instead, they must be
evaluated by numerical integration.  The integrals are designated as,

iI ( )∞ , i J ( )∞ , ijJ ( )∞ , i L ( )∞  and iM ( )∞ , and they have been used in

both graphical and tabular form.   The most fundamental application
of the analysis starts by choosing a particular layer/charge
configuration to see what kind of particle it represents.  The analysis
predicts its frequency  ω , its rest energy 0 E , and beyond that its
physical structure, charge distribution, magnetic moment etc.  These
are then used to determine whether or not such a particle has been
observed.   In every case, the basic “existence” test is that Eqs.(5.5.7)
and (5.18.3) are satisfied simultaneously.  Several techniques were
used to evaluate the integrals, including computer integration with Q
Basic, and graphics.  When solving problems it is convenient to have
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the program in Basic provide, during the calculation, the values of all
the integrals for a given iK .  In some cases, a table that permanently
provides sets of the integrated values for several frequencies over a
selected range is more useful.
     Tables of ( )iI ∞ , ( )iJ ∞ , ( )ijJ ∞ , ( )iL ∞  and ( )iM ∞  are presented
in Appendix I.  In the following the argument, ∞ , will not be indicated,
and these integrals will just be designated by iI , iJ , etc.  The
tabulated values are nowhere near as accurate as particle physicists
generally take their work, but the purpose here is to illustrate the
techniques rather than to supply final particle characteristics.  In
making up the tables, certain approximations were used in the
extreme ranges.  Generally, these have a very small effect on total
particle structure.  For example, where the values of i/ω ω  are greater
than 100, the iK  become cumbersomely large, but it can be shown
that the following approximations apply,

                                ( ) ( )i i
i

1I J
/

∞ ≅ ∞ →
ω ω

   ,     i/  > 100ω ω      (5.20.1)

and, with less accuracy,

                                     ( )i 2
i

1L
2( / )

∞ →
ω ω

    ,     i/  > 100ω ω      (5.20.2)

and,

                                       ( )i
i

1M
2 /

∞ →
ω ω

    .      i/  > 100ω ω     (5.20.3)

     In doing the integrals for the interaction constants ijJ , it is easy to

show that substitution of,
                                        ( )1

ij i j2 K K K= +     ,                         (5.20.4)

allows using the iJ  integral calculations for the ijJ , thus  eliminating

the need for a considerable amount of  computation.  In that case, an
effective ijω  can be defined so that,

                                         ij/
ij

ij
K 1 ω ω ω

= − ε  ω 
    ,                     (5.20.5)

and, in the extreme ranges, it can be shown that,

                                       
ij i

 0.6931ω ω
≅ −

ω ω
    ,  i /  > 100ω ω     (5.20.6)

which allows the approximation of Eq.(5.20.1) to be used for ijJ .
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5.21.  The Concentric Particle Existence Criterion:  As mentioned
above, the existence criterion is based upon the two energy Eqs.(5.5.7)
and (5.18.3).  In terms of the derived integrals, Eq.(5.18.3) becomes,

]

2 2
0 1 1 2 2 1 2 12 1 2 23

e

2 3 23

3 4 34

1E q J q J ... 2q q J 2q q J ...     
8 r

                                              +2q q J .....
                                                    +2q q J .....

= + + + + +π

+

+

   ,         (5.21.1)

and Eq.(5.5.7) can be written as,

                                              0 E h  = ν = ω$      .                      (5.21.2)

Eq.(5.18.7) indicates that the iJ  values depend upon ω  through iψ
(see Figure 5.14.1), so there are 2 independent equations for 0E  as a
function of ω .
     Considerable ease in the calculations derives from a slight change
of variable.  By defining a quantity,

22
2 1 2 2 31 31

0 1 2 12 13 232 2 2 2 2 2
q q q q qq qq8 DJ E  = J J ....+2 J 2 J ....+2 J ....

e e e e e e
 π

= + + + + 
ω  

  ,

                                                                                                (5.21.3)
Eq.(5.21.2) becomes,

                                            2
4hDJ 0.25
e

= =      .                        (5.21.4)

For a given layer/charge configuration, Eqs.(5.21.3) and (5.21.4) can
be plotted as functions of ω , as illustrated in Figure 5.21.1; and the
predicted particle frequency ω  is found at their intersection.  The
particle's rest energy 0E  follows from Eq.(5.21.2).

Figure 5.21.1.  Eqs.(5.5.7) and (5.18.3) solved for ω .
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     No measured data taken from a particle being investigated are
used in this calculation.  The only measured data involved in setting
up the system are the unon frequencies and radii of Table 5.17.1
required to establish the "preferred" vacuum frequencies.  The only
integrals involved in the existence criterion are the iJ 's  and the ijJ 's .

5.22. Predicted Concentric Particles:  It is now possible to plot the
various concentric bion and trion predictions along the J 0.25=  line
of Figure 5.21.1.  First, however, the unons can be retrieved as a

check on the system.  As an example, choose the 3
3U
−

 layer/charge
configuration.  Eq.(5.21.3) becomes 3J J=  and Eq.(5.21.4) is
J 0.25= ; so, from Appendix I, if the 3J 's  for several 'sω  are plotted,
as in figure 5.21.1, the crossover point is found to be at

242.70 10ω = × .  The more exact value, found from the non- graphical,

Q Basic program  calculation, is 242.6998 10ω = × , indicating that 3
3U
−

is the τ  unon.  This is not surprising, since that ω  was used to
establish the 3rd layer preferred frequency.

Concentric Bions

     The existence criterion for bion layer/charge forms is,

                              
22
j i ji

i j ij2 2 2

q q qqJ J J 2 J 0.25
e e e

= + + =      .

A typical example is the 21
23B
++

, which leads to,

                                        2 3 23
1 4 4J J J J
9 9 9

= + +      .

The graphical solution is done with a programmable hand calculator
to add the three terms.  Starting anywhere in Appendix I, an ω  is
chosen and the corresponding 2 3 23J ,  J  and J  terms are added.  If the
above sum is larger than 0.25, a larger ω is chosen.  If the above sum
is smaller than 0.25, a smaller ω  is chosen.  About 4 points, in a
fairly small range of ω  with 2 above and 2 below 0.25, are usually
adequate.  When plotted on a graph like Figure 5.21.1, the 0.25

crossover point gives the proper ω .  In the case of 12
23B
++

,
232.820 10ω = × .  The more accurate value obtained from the non-

graphical, program calculation is 232.8217 10ω = × .
     The analysis has been used to plot the intersecting curves for all
concentric bions up to, and including, the fifth layer.  Figure 5.22.1
shows the result.  In trying to assess which observed particles might
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correspond to these solutions, it must be remembered that all bions
are “unstable”, i.e., they convert into lower energy particles.  Later on,
in calculating the proton properties, the fact that it is a truly stable
particle that does not convert in its free state allows the intersection
values and the observed 0E ,ω  to be essentially exact.  This is not true
for the concentric bions,  so the results require some interpretation.
For example, their mean life is about 810−  to 1210−  seconds.  If, as
has been suggested earlier, they are basically stable, but are triggered

Figure 5.22.1.  The concentric bion solutions.

by the datum fluctuations, the mean lives should be dependent on
both the fluctuations themselves  and the energy of the particles’
layers.  However, no solutions of the time dependent ! -wave
equations have been carried out.  Furthermore, the cutoff frequency
for the datum fluctuation spectrum is not known.  Thus a certain
amount of guesswork is involved in the following, and the observed
particles should not be expected to exactly match the intersection
points.  Notice that Figure 12 is plotted versus \ 2ω .
     Looking at Figure 5.22.1, a few significant observations can be
made.  For one, a particle’s outer layer establishes the major grouping

pattern.  For example,
+
2 1
1 4  B
+

 is so close in energy to
+
2 1
1 2  B
+

that the
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curves are almost identical.  Likewise,
+
2 1
2 3  B
+

and
+
2 1
2 4  B
+

are essentially
equal to each other.  Also, Figure 5.22.1 shows that the solutions are
grouped in pairs distinguished only by a reversal of the charge

magnitudes of the layers, i.e., 
+
2 1
i  j  B
+

 and 1 2
+ +

i  j
  B .  Their energies are

fairly closely matched, with 1 2
+ +

i  j
  B being roughly between 10% and

50% higher.  Thus, there are only eight significantly different concentric
bion solutions to be observed.

     The concept involved in “conversion” is that, if 1 2
2 5B
+ +

forms, it
quickly shrinks so that layer 5 becomes layer 4 or layer 3, and during
this   conversion  its  energy   distortion  is   changing,  along  with  its
frequency, by constant interaction with the datum fluctuations, which
can allow for small increases and decreases of energy.  When this
process is observed in an accelerator experiment, what is finally seen
might be the + π .  However, the  +π  also has a very short life, with

perhaps the 12
++

 charge distortion shifting to 21 
++

 and finally combining
into one layer to form 2U , the  +µ .  The  +µ  is again unstable, and so
the conversion goes down the 0E /ω  ladder to the positron, which is
in equilibrium with the datum  fluctuations.
     Figure 5.21.1 also reveals other pertinent bion properties.  For

example, the 1 2
4 5B
+ +

/ 2 1
4 5 B
+ +

 pair apparently decay so quickly that what

is observed is the bion conventionally designated  B+ .  Perhaps if the
detectors were changed, the 4U  could also be observed.

     Again,  the  1 2
3  jB
+ +

/ 2 1
3  jB
+ +

  pair  appear to be observed as either, sD+ ,

 D+ , or 3U  which is the +τ  unon.  The fact that the frequencies
corresponding to 4U  and 5U  were estimated without being observed
could explain why the predicted bions intersect so far above the
related observed particles.  Lower iω  values would shift them
downward.
     There is an anomaly here; because, while in most cases, the
conversion products are grouped fairly closely to the bion pair they
originate from, the K±  seems too far below the 3 j Bαβ to be part of that

group.  No explanation is known for the strange location of the K±  on
the 0E /ω  ladder.
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     Finally, the 1 2
+ +

i  j  B /
+
2 1
i  j  B
+

 pair probably convert into the positron,

but it is surprising that they have not been observed.  Perhaps they
have, but are so close to being a positron that it has been assumed
that is what they are.  It is clear that much more work remains in this
process of identifying and classifying the various bions.  Table 5.22.1
lists the concentric bion energy ladder.

TABLE 5.22.1

CONCENTRIC BION GROUND STATES

( )
25 12 2

45

24 21
45

rad ObservedCon centric ergs MeV         Bion  Particle             
sec

0 0( ) E )          E (    

1.168 10             B                             1.232 10        7,690

9.680 10              B

  
++

−

+

× ×

×

ω

3
4
+

                           1.021                 6,373

8.508                                       (U )          8.972 10        5,600 

8.020                                         B           8.458 

+

+ −×

12
3 j

21
3 j

               5,279

4.180                      B                             4.514                2,817

3.200                       B                             3.375                2,107

2.8

++

++

s
+

70                                          D          3.154                1,969

2.840                                          D           2.995                1,869

2.700                            

+

+

23 + 4

12
2 j

                         2.847                1,777 

7.500 10                                  K          7.910 10        493.7

2.820                       B                             2.974  

−

++

τ

× ×

+

21
2 j

              185.6

2.120                                                     2.236                139.6

1.988                       B                              2.044                127.6

1.605

++

π

+

21 12 6
1j

20 21
1j

                                                     1.693                105.7

1.370 10               B                             1.445 10        0.901

9.360 10               B        

++
−

++

µ

× ×

× 7

+

                     9.871 10        0.616

7.764                                            e           8.187                0.511

−×
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Concentric Trions

     The existence criterion for trion layer/charge forms is,

      
22 2
j i j j ki k i k

i j k ij ik jk2 2 2 2 2 2

q q q q qq q q q J J J J 2 J 2 J 2 J 0.25
e e e e e e

= + + + + + =   .

A typical example is the 122
1 23T
−++

, which leads to,

                        1 2 3 12 13 23
1 4 4 4 4 8 J J J J J J J
9 9 9 9 9 9

= + + − − +      .

From the tables in Appendix I, the iJ 's  and ij J 's  for the range of ω

from 23 8 10×  to 242 10× are repeated in Table 5.22.2.  The above sum
is found for each ω , and plotted in Figure 5.22.2.  The crossover point
is at 241.40 10  rad/sω = × .  The accurate non-graphical, program

value is 241.4051 10ω = × .
TABLE 5.22.2

Figure 5.22.1. Predicted 122
1 23T
−++

 Frequency.

1 2 3 12 13 23
23 4 4

24 4

                     J                J          J        J  & J         J           J 

  8 10      9.704 10   0.1417  0.2691  9.711 10   0.1517   0.317

 1 10      7.763 10   0.1228  0.2646  7.

− −

−

ω

× × ×

× × 4

24 4 4

24 4 4

1 4
9 9

768 10   0.1309   0.288

 1.5 10   5.176 10   0.0913  0.2636  5.177 10   0.0963   0.243

 2 10      3.882 10   0.0723  0.2584  3.883 10   0.0756   0.214
 Coefficient                             

−

− −

− −

×

× × ×

× × ×
84 4

9 9 9              -                  
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Thus, the ω  predicted for the 
-
122
123T
+ +

 is just 1.43% lower than the

measured proton frequency, 24 1.42548 10ω = × , so the 
-
122
123T
+ +

 may be
tentatively identified as the proton.
     When the existence criterion is applied to the remaining trion
layer/charge forms depicted in Figure 5.10.1, the total energy of
Eq.(5.18.3) is almost always too low to cross over the J 0.25=  level.
This indicates that most other trions are orbiters requiring the added
orbital kinetic energy to make up the total.

5.23  The Self Consistent Adjustment:  The close agreement
between the predicted and measured proton frequencies encourages
confidence in the method, and invites effort to find the source of the
error.  Since the system, to this point, just uses three given numbers
(the e, µ  and τ  frequencies) to determine a fourth (the p frequency), if
properly set up, it should be self-consistent and without error.  One of
the many possible sources of error could be the specification of the
unon preferred frequencies.  Of the four particles, the e and p are
stable (the only stable particles known), and their rest energies can be
measured with great accuracy.  On the other hand, the µ  and τ  are
very short-lived and their frequencies quickly shift lower during their
decay, making their rest energies difficult to measure accurately.
With a small adjustment of the preferred frequencies of layers two and
three the system becomes self-consistent.
     The reality is that both might need correcting, but a simple
calculation indicates that to correct the 1.4% error, the second layer
ω  need only change a comparable amount, whereas the third layer ω ,
because of its location, must change about 40%.  It is unreasonable to
suppose that the measured τ  energy is anywhere near that low, so
only the second layer ω  will be adjusted.  The corrected preferred
frequencies are listed in Table 5.23.1.  Future concentric bion and
orbiter trion work might show both need changing.
     The corrected 2ω  is increased by 2.5%, which has only a small
effect on the bion predictions expressed in Figure 5.22.1 and Table

5.22.1.  For example, the ω  for 21
23B
+−

 increases only 1.7%, which does
not affect the relationships in Figure 5.22.1 significantly.



114

TABLE 5.23.1

SELF-CONSISTENT PREFERRED FREQUENCIES

5.24  Self Consistent Proton Structure:  The overall analysis of
proton structure can now be presented in self-consistent form.  It
follows a procedure somewhat different from the one used in the
prediction calculation.  Once the prediction shows that the
layer/charge combination indicates a particular observed particle, as
many characteristics of that particle are tested as possible.
     The measured 0E  for the proton is 938.27203  MeV or

31.5032818 10−×  ergs.  To satisfy Eq.(5.21.2), it must have a
frequency 231.4254856 10ω = ×  rad/sec.  If it is to be a real particle,
at that frequency it must also satisfy Eq.(5.18.3) for the three layers
1,2,3, so that,

                               0 1 2 3 12 13 23E E E E E E E= + + + + +      .        (5.24.1)

With i 'sω  from Table 5.23.1:

      3

1
1.8361527 10ω

= ×
ω

  ,  
2

8.7467592 ω
=

ω
  ,  

3
0.52801199ω

=
ω

Invoking Eq.(5.17.3):
1 12

4
2 13

4
3 23

 K  out of range        ,  K out of  range

 K 4.8729207 10    ,  K  out of range

 K 0.80028312        ,  K 2.4364203 10

= =

= × =

= − = ×

i i

20 14

23 16

 Layer                (rad/sec)                      r    (cm)

    1                  7.76344 10                 3.52243 10

   2                 10                  10

   3  

−

−

ω

× ×

× ×1.62973 1.67796 !
24 17

24 18

25 18

               2.69981 10                  1.01289 10

   4                 8.508    10                 3.214    10

   5                 1.580    10                 1.731     10

−

−

−

× ×

× ×

× ×
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Using the accurate, non-graphical program and the approximations in

Eqs.(5.20.1) to (5.20.6):

4 4
1 12 13

2 23

3

J 5.44617 10      ,     J J 5.4482266 10
J 0.09611              ,     J 0.10153
J 0.26428

− −= × = = ×

= =

=

Eq.(5.16.7) gives  17
er 1.9183736 10−= × , so the energies of

Eqs.(5.18.6) and (5.18.8) are:

                

7 6
1 12 13

4 4
2 23

4
3

 E 3.63871 10     ,    E E 1.45604 10

 E 2.56853 10     ,    E 5.42677 10

 E 7.06299 10

− −

− −

−

= × = = − ×

= × = ×

= ×

Then, Eq.(5.24.1) leads to 3
0E 1.50328 10  ergs−= × , to the accuracy

limit of the accurate program.

     Next, the program indicates that:

      

4 7 4
1 1 1

3 2
2 2 2

2
3 3 3

I 5.44617 10   ,   L 1.48304 10   ,  M 2.72309 10

I 0.11489           ,  L 5.42896 10   ,  M 5.74709 10

I 0.60451           ,  L 7.92868 10   ,  M 0.30228

− − −

− −

−

= × = × = ×

= = × = ×

= = × =

These are used with Eqs.(5.16.8), (5.19.13) and (5.19.14) to calculate
the layer center potentials 0i φ , magnetic moments si µ  and spin
constants siK :

3 5 6
01 02 03

20 23 23
s1 s2 s3

32 34 35
s1 s2 s3

1.28222 10   ,   5.40984 10     ,   2.84646 10

2.46567 10   ,   6.98598 10   ,   2.54053 10

K 6.54492 10   ,   K 1.85437 10    ,   K 6.74362 10

− − −

− − −

φ = − × φ = × φ = ×

µ = × µ = × µ = ×

= × = × = ×

     The next step is to try to visualize how these three layers with their
spins and magnetic moments arrange themselves.  The total proton
spin is 1/2 so clearly two of the layers align themselves to cancel their
spins.  In all likelihood, the two inner layers (2,3) interact to do just
that, at the same time reducing the net magnetic field they compose.
They are the layers of greatest energy, whereas the outer layer is very
much like an electron with 1/3 the charge, and energy very much
smaller than that of the two inner layers.
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     In measuring the proton's magnetic moment, the outer layer will
precess independently at a high frequency commensurate with that
usually observed for electrons.  This has probably been ignored in the
past.  If the two inner layers were to lock together at o180 , the
proton's measured magnetic moment would be the difference between

s2 µ  and s3 µ , or 23 4.44545 10−×  ergs/hlG, a value 11.2% lower than

the observed 23
sp 5.0056 10−µ = × ergs/hlG.  However, any

misalignment results in a larger magnetic moment; so, if layer 3 is
normally precessing in the magnetic field of layer 2, when no external
field is applied, then that, coupled with a possible random
disturbance from the datum fluctuations, could account for the higher
measured value.  The misalignment angle can be calculated from the
shell structure.

5.25.  Orbiters:  Analysis of the orbiters, is considerably more
difficult; particularly that of the inside orbiters, since they have
overlapping shells on which is superimposed a dynamic orbiting
motion.  The proper analysis would involve solving for the full field,
transient case.  It is clear that to do this for all the possible ground
state configurations and then identify the observed particles
accordingly is a task that could take many man-years.

Outside Orbiters

     In Chapter 7 it is shown that, although even there the full field   
solution  of  the  two  particle  hydrogen  structure  is the basic
approach, it is possible to use a "separatist" approximation, i.e. a two
body, planetary calculation that gives excellent results.  At first

glance, the outside bion orbiters, for example i iB
+−
αα , suggest the

hydrogen atom and positronium as models; but it is not obvious that
the same analytical approach can be used.  Close proximity of the two
layers adds many complications.  Nevertheless, the fact that
positronium lends itself to similar macroscopic analysis is
encouraging, but only preliminary attempts to analyze the outside
orbiter bions have been made.  Table 5.25.1 lists their measured
properties.

Inside Orbiters

Unfortunately, the case for the inside orbiters, whose measurements

are listed in Table 5.25.2, is quite different; since the i jB
+−
αα  shells will

surely overlap and require a full  field  solution.   At this time, nothing
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more is known about the structure of these particles and it probably
will be a long time before such transient solutions are available.

TABLE 5.25.1

OUTSIDE ORBITER BIONS

TABLE 5.25.2

INSIDE ORBITER BIONS

Trion Orbiters

     Except for the clear cut case of the stable proton, the trion analysis
is in an even more primitive state than that of the orbiter bions;
because only a few of the trions appear to be simple, concentric
layerons.  Even in their ground states, most of the trions are probably
orbiters.  Only the briefest sketch of the trion family identification will
be attempted here.

( )

L

00

0
0 4 23 2

0

0 3 24   

s

Observed             MeVergs rad/sec
 Particle

 

  

                         E   ( )   ( ) E

K
K       7.9736 10         7.5610 10       4.9767 10

K

  D               2.9873 10         2.8328 10

−

−

ω


× × ×


× ×        3

0 3 24 3

0 3 24 3
s

1.8645 10
  

  B               8.4582 10         8.0204 10        5.2792 10

  B              8.6026 10         8.1574 10        5.3693 10

−

−

×

× × ×

× × ×

00

0 4 23 2

4 23

Observed
          E ergs rad sec   (MeV)Particle  E ( )              ( )          

              2.1626 10        2.0506 10         1.3498 10

                8.7711 10        8.3172 10         5.47

−

−

ω

π × × ×

η × ×

!

2

3 24 2

3 24 3
c                  

2 25

45 10

               1.5345 10        1.4551 10         9.5777 10

    4.7742 10        4.5272 10         2.9798 10

                1.5157 10        1.4373 10         9.460

−

−

−

×

′η × × ×

η × × ×

ϒ × × 34 10×
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The approach taken is to first assume that all trions are simple,
concentric particles.  The calculations described previously are carried

out for  each  one.   The  earlier  analysis  of  the proton, 122
123T
−++

, is
typical of the procedure.  When this is done for all the configurations
represented in Figure 5.10.1, extended to include the fifth layer, only
those structures with numerical values listed in Table 5.25.3 yield J
values large enough to cross the 0.25 line.  This indicates that the
concentric structure has energy (frequency) too low to represent a
physical particle solution.  On the other hand, all configurations
below the dashed line in Table 5.25.3 have energies much greater than
any observed  trion,  so  they  are probably too compacted  to do more

than just explode and convert.  In the (
_   

122
+ +

) column, the proton and
its two siblings are essentially the same particle,  with  124 and  125
both converting almost instantaneously to the proton by shifting the

inner layer  out  to   the  three  position.  In  the  (
  

212
+ − +

)  column,   the
345 configuration is down 3% from c

+Λ  and 10% from c
+Σ .  Similarly,

in the (
  

222
+ + +

) column, the energies (frequencies) indicated are about
20% low for  ++∆  and 60% low for c

++Σ (no other particles with charge

2e have been observed).  Although the 111
345T
−−−

 structure has more energy

than , ,  − − −∆ Σ Ξ  or −Ω , and could appear to be any one of these with
less energy during the decay process, this does not seem to be a good

TABLE 5.25.3

CONCENTRIC TRION FREQUENCIES
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approach.  Similar reasoning applies to the 211
345T
+−−

 configuration and
0 0 0, , ∆ Λ Σ  or 0Ξ .  Except for these last two unexplained cases, all

observed trions, including those (
  

222
+ + +

) listed, appear to be orbiters;
since the only way to bring their energies up to the observed values is
to include their orbiting energies.  This has not yet been worked out for
all the reasons given earlier in discussing the orbiter bions.
     There are roughly 16 trions observed in the ground state (spin 1

2 )

and 10 in the spin 3
2  state that should be associated with the sixty or

so low energy categories in Table 5.25.3.  By far the most important of
these are the proton and neutron.  There is little chance of a full field,
transient analysis of the neutron in the near future; but, based on a
"guess" that the so called "strong" interaction acts similarly for both
protons and neutrons because each of their two outer layers have a
similar form, the neutron is indicated in Table 5.25.3 as being in the

(
 + -

121
−

) column.  This is not absolutely necessary; since it might only be
the outer layer of each trion that determines the "strong" interaction.
In that case, the neutron might match a different configuration in
Table 5.25.3.
     One problem that arose in the quark model was the three parallel
quark spins in a particle such as the + +∆ , which was assigned three
identical u quarks, a clear violation of the Pauli exclusion principle.
To resolve this problem, the property of quark color was adopted.
The exclusion principle is a manifestation of the single solution
principle, i.e. no two identical solutions of the field equations can exist
in the same place at the same time. Referring back to Figure 5.2.1,
three layers with parallel spin clearly do not represent identical
solutions of the field equations, so no need for color arises.

5.26  Resonances: Most of the spin zero bions and the spin 1
2  trions

are conventionally called "stable" particles (with half lives 1910−τ >
sec), even though the proton (anti proton) is the only particle among
them with observed stability.  In addition, many other bions and
trions with higher energies and spins are seen.  They are called
"resonances", and represent extremely short lived transition states
( 2010−τ < sec) where the interactions are so violent that there is even
less time to settle briefly into a pseudo-stable form.  Little can be said
about these resonances, at the present state of knowledge, except that
some are probably inside orbiters, where n 1ψ > , and involve
increased angular momentum.  Others, like the "mesons" with spin 2,
are most likely not bions but complex "systems" of several layers
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paired in various ways.  While all these resonances are interesting as
aids to understanding the nature of particles, they have little to do
with the structure of matter in the form of nuclei and atoms, etc.
Thus, lack of detailed knowledge of them will not detract from the
picture being constructed here.

5.27 Change and Interaction Processes: There are two processes by
which structures such as particles, nuclei or atoms decay or change,
conversion and separation.  Although they overlap somewhat,
conversion is essentially a process in which a single identifiable
structure changes into a different identifiable structure, with the
addition or subtraction of energy, another particle or both.
Separation is the breaking apart of an identifiable structure composed
of particles, into two or more identifiable structures or particles,
usually with a release of energy.  There are numerous overlap cases,
particularly in high energy collision experiments.
     Separation is generally not found in particle decay; because, as
mentioned in the discussion on quarks in Section 5.6, neither layers
removed from multi-layer particles nor the remaining layers are
solutions of the field equations. On the other hand, separation
accounts for the majority of changes in atomic nuclei, as discussed in
Chapter 6.
     Of the conversion processes, only a few occur in nuclear and
atomic changes, and nuclear conversion, i.e. neutron or proton
conversion, will be considered in Chapter 6.
     At present, certain conventions are observed in describing
interaction processes.  For example, bion-bion, bion-trion, and trion-
trion interactions are designated "strong".  Slow interactions that
often have unons and c-ons as by products are designated "weak".  It
is likely that these designations will be replaced by others more
specific when the various deterministic processes are better
understood.  Keep in mind that, as indicated in Chapter 12, the
concept of "exchange forces" is not accepted as valid, but the
computational methods, Feynman diagrams, etc., are probably valid
as a form of bookkeeping to keep track of the energy and charge
distortions during redistribution.
     Because all layerons are essentially bubble like entities, with all of
the attendant softness and flexibility, prone to oscillate, and
susceptible to breaking up, it is not surprising that when the ether is
sufficiently stirred up by a cataclysmic collision of particles or even just
a very rapid decay, a number of smaller new particles can be formed.
In fact, if enough energy is available, any or all of the various kinds of
particles can form, and here this kind of formation process will be
called "splatter". In splatter, the original "formless" cloud of energy is
broken up into several distortion packets of various sizes and
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irregular shapes. These tend to ooze out and are gradually formed by
! -waves that determine the particular particles being created.

5.28  Proton Structure Experiments:  Experimentally, some idea of
the overall dimensions of atomic nuclei can be found from electron-
nucleus scattering, which provides one of the main sources of data on
nucleus size and charge distribution1. The technique involves
measuring the scattering cross-section, and from that, determining
the form factor of the interaction.   Under certain conditions of
momentum transfer, the form factor is the Fourier transform of the
nucleus charge distribution.  Thus, the rough structure of the
nucleus, its mean square radius, its general shape, etc., is found.
During the 1960's, the same method was used in electron-nucleon
(the term used to describe neutrons or protons in the atomic nucleus)
scattering experiments, with somewhat surprising results.  Beginning
with Hofstadter, et al2, numerous data were gathered, and a generally
accepted position on proton structure was established by 1967 3.  It
took the form of four form factors, two for the proton and two for the
neutron.  The data appeared to fit one form for the proton electric and
magnetic moment factors and the neutron magnetic moment factor.
The neutron electric form factor is approximately zero, but not exactly,
because of its distributed charge density.  The one form factor had the
shape known as the dipole curve, and it implied a charge distribution,

      r -1 9 3
d 0 0  ,    = 4.27 f   ,   5.274 10  hlc/f−α −ρ = ρ ε α ρ = ×     .   (5.28.1)

This was a surprising result, representing an exponentially decreasing
charge density as r increases, with no other structure.  Its rms radius
was 12 /E 0.80=  fermi, which was not unreasonable; but, if it were
regarded as an actual charge distribution, it led to totally non-
physical  results.   For  example,  using dρ   from  Eq.(5.28.1)  as  the

____________________________________________________________________
  1. H.Uberall, Electron Scattering From Complex Nuclei, Academic Press, N.Y. (1971).
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  2. R.Hofstadter, et al, Phys.Rev.Lett. 6, 290 (1961); Electron Scattering and Nuclear
      and Nucleon Structure, W.A.Benjamin, N.Y. (1963).
  3. G.Weber, lnt. Symp. on.Electron and Photon Interactions at High  Energies, p. 59,
      Stanford, California (1967).  D.H.Perkins, Introduction to High Energy Physics, 2nd

      Ed. p. 282, Addison-Wesley Publ.Co. Reading, Mass. (1982). F.Halzen & A.D.Martin,
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source in Poisson's equation, the first integration becomes,

                                     
2

r0
3 2

2d 1
dr 2 r r

−α ρφ α α
= + + ε α  

    .              (5.28.2)

From this, the electric energy density 2( ) /2ε = ∇φ  can be integrated
over all space and the resulting proton energy is infinite.
     On the other hand, if dρ  is thought of as a smoothed out average
due to the fact that the electron is a very large probe with which to
measure the much smaller inner nucleon structure, then the
distribution of Eq.(5.28.1) is understandable.  However, even using
the ether theory, this smoothed out form is not easily calculated,
because the immense energy of the probing electron brings enough
distortion to the central region to actually change the shell structure
of the nucleon during the measurement.

Recent Developments

     In the 1980's the experimenters reached the energy level of the
bombarding electrons that causes splattering and the creation of
strange quarks.  Since the Standard Model is too restrictive, and the
quantum mechanical analysis has an unpicture of the structure and
behavior of the particles quite different from the one presented in this
book, the theoreticians invented a seething sea of quarks, forming and
disappearing, to account for the presence of the strange quarks.  They
added the concept of color to alleviate the effect of the restrictive
nature of the quark picture.  The analysis has grown more and more
elaborate, and the results less and less reasonable.
     Meanwhile, the experimentalists have improved the data bank by
adding several variations of the earlier experiments.  One of the better
advances has been to use beams of polarized electrons. Each of the
new variations has improved the data in both accuracy and range.
     In the last year or so, the conventional analysis has led to
calculations that show the quarks as carrying only a few percent of
the proton mass with most of the mass now assigned to the "gluons"
and other spirits in the seething sea of the non-ether.
     In clear contrast to this mathematical monument, the simple
solution of Maxwell's equations and the deterministic calculations
presented in this Chapter 5, show all of the mass to be in the
electromagnetic energy density of the layers and interaction fields.

5.29.  The Neutron:  Little has been said about the neutron except for
two brief mentions in Section 5.25.  The fact that it is probably an
orbiter makes its analysis very difficult.  However, experimentally, its
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properties are much like the proton.  The free neutron has a mean life
of about 15 minutes.  Being slightly more energetic than the proton, it
then converts into an electron, a proton and an electron anti-neutrino.
Inside the nucleus it combines with a proton or another neutron and
manages to remain stable in most of the nuclear arrangements.  In
that state, the neutron and the proton are the building blocks of
matter, as represented in the atomic nucleus, which is the subject of
the next chapter.  Almost nothing more need be said about any of the
other bions or trions from this point on.
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CHAPTER 6

THE NUCLEUS

6.1 Introduction: By now, it cannot have escaped the reader that
although an intuitively pleasing, visualizable picture of nature's
operation has been provided by the ether, the availability of only a few
solutions of the field equations denies the kind of detailed picture that
must be obtained.  Nevertheless, even the picture so far presented
represents a substantial advance.  Having put space, time,
coordinates  and field equations in a non-paradoxical perspective, the
physical operation of particles is understandable on a simple cause
and effect basis.  Likewise, the deeper physical natures of charge and
energy are apparent.  Moreover, the inner workings of the electron as
an extended entity are clear, illuminating the essence of particle
momentum and kinetic energy.  Ultimately, all of this leads to the
understanding of a deterministic set of "systems" using the ordinary
laws of mechanics.  It also leads to a statistical variation in observed
results as indication of the presence of datum fluctuations in the
ether.  Finally, in Chapter 7, all of the results of the statistical
quantum mechanics, conventionally thought to be the ultimate basis
of physics, will be seen to be available as a complementary adjunct to
the deterministic description of ensemble phenomena, just as
statistical mechanics was in earlier times.  Thus, any result previously
found through the Schroedinger and Dirac equations, with some
changes that will be apparent later on, can be taken as a correct
ensemble characteristic in the ether picture, with the expectation that
the more direct deterministic analysis of the individual entities
involved in each detailed action in an experiment will yield even
further understanding of the physics not possible with the ensemble
analysis.  Completing the deterministic picture is the immediate and
ultimate goal.
     The next higher level of complexity of "systems" is encountered in
atomic nuclei.  Since 1910, it has been known that matter is
composed of atoms that are essentially miniature "solar" systems with
a massive nucleus at the center orbited by one or more electrons.
In Section 2.22 it was stated that solids, liquids, gasses and plasmas
could be mostly ignored in the quest for the basic structure of matter,
being too voluminous and too far removed from the fundamentals.  In
some respects, the same condition applies also to the nucleus.
Whereas the study of nuclear physics has been predominantly one of
trying to discover the motions, positions, affinities, and excitations of
the nucleons, including the various energy states, shell structures,
etc., these contribute primarily towards understanding of processes
for large scale energy production and control, both man made and in
nature.  In this chapter, the more fundamental side will receive all the
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attention; so the nuclear lowest energy rule and the nature of the
conventionally designated "strong" and "weak" interactions are
investigated.

6.2 The Hydrogen Nucleus: The simplest nucleus is that of the
hydrogen atom, which has a single proton orbited by a single electron.
As explained in Chapter 5, the proton is a stable, concentric trion,
with a well defined structure.  There is little more to be said about this
simple nucleon, and the hydrogen atom is analyzed in Chapter 7
using ordinary mechanics.

6.3 Deuterium: The next simplest case is found in the deuterium
atom, which consists of a nucleus made up of one proton and one
neutron, bound together, around which orbits a single electron.
Deuterium is a stable isotope of hydrogen, that immediately brings
out the problems yet to be solved.  In Chapter 5 it was indicated that
the detailed structure of the neutron is not known.  This stymies any
attempt to specify the way in which the proton and neutron are held
together in the nucleus.  It is known that the binding process is
essentially the same for p-p, p-n and n-n, if the coulomb repulsion of
the protons for each other is neglected.  Electron bombardment of
much larger nuclei indicates that the average nucleon spacing is
about 2 fermi; but if the neutron were the same size as the proton,  it
would make more sense that the spacing might be closer to 0.7 f.  In
Chapter 5 it was implied by the trion calculations that the neutron
could be an orbiter, so that if the orbit radius was about 1.7f, the
spacing could be accounted for by the electromagnetic interaction.  Here
it is assumed that something similar to this is the correct picture.
     At present, the usual designation for nucleon attraction is the
"strong" interaction.  It is described as an "exchange force" with a
virtual oπ  or ±π  being passed back and forth between two nucleons.
This picture is also conventionally used for the electromagnetic
interaction with a virtual photon replacing the bions as intermediary.
Later, in Chapter 12, the nature of the electromagnetic interaction will
be uncovered, and it definitely does not involve a photon exchange
mechanism.  It will be shown there, that all ether "forces" are similar,
and are basically electromagnetic.  So, not only will the idea of a
"force" with a virtual particle intermediary be abandoned here, but the
presence of π  bions in the residue of collider experiments is easily
understood as simple particle creation and not evidence of their
momentary presence in the deuteron.
     The point should be made that the so called "strong" interaction is
not actually very strong.  The deuteron provides the best evidence,
being held together with a binding energy of 2.224 MeV.  This can be
compared with the "binding energy" of a positron-electron
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combination 2 fermi apart, held by a purely coulomb force, that can
be separated by supplying work equal to 0.72 MeV.  So, the nucleon
binding energy is only 3 times as much as the electrostatic binding
energy.  In fact, it isn't the strength of the nuclear force that is
noteworthy, but the constancy of the nucleon spacing of about 2 fermi.
To understand the basic adhesion, the sum of the interaction energies
of all shells in both trions will at first become more negative as the two
nucleons approach each other, so that the negative interaction energy
reduces their total energy and they are attracted. Pushing them even
closer results in a smaller negative interaction energy, because of their
large positive layers, and they are repulsed. Thus, they naturally seek
a separation distance.
     It was once hoped that studying the structure of the deuteron
would lead to detailed knowledge of the potential describing the
"nucleon interaction".  This hope has not yet been realized.  The
physical facts that must be reconciled to any theory of the deuteron
ground state are few.  First, its binding energy is bE 2.224 MeV= .
Second, the angular momentum quantum number is 1.  Third, the
nuclear parity is even.  Fourth, its magnetic moment Is +0.8574
nuclear magnetons instead of the simple sum of the proton and
neutron moments (0.8794); and fifth, its electric quadrupole moment
is 27 2Q 2.7 10 cm−= + × .  Statistical quantum mechanics has provided a
first approximation form.  The only bound state is 3

1S .  This first
approximation neglects the difference between the sum of the
magnetic moments of the two nucleons.  It also cannot include the
minute quadrupole moment, since it is a spherically symmetric
approximation.  The square well solution of Schroedinger's equation
gives an approximation to the potential well depth magnitude of about
38 MeV.  Since the binding energy is only 2.224 MeV, it is a weak
bond, and no further bound states are found.  A second
approximation is generally carried out by adding in a small percentage
of the 3

1D  state through the modification of the potential to include
spin-dependent terms.1  The probability that the deuteron is in the 3D
state is about 4 percent.  Several different potentials can be made to
yield the correct quadrupole moment; so this approach does not
produce a clue to the true potential.
     Ruminating on the deuteron structure just described, the
combination of a very small amount of 3

1D to account for the magnetic
moment and quadrupole moment was chosen on the basis of point
particles with spin, energy, and charge.  However, it is well known
that both the neutron and proton are extended distributions, with
more  complex  structures.    In  the deuteron, and any other nucleus,
___________________________________________________________________
 I. L.R.B.Elton, Introductory Nuclear Theory, p 83 ff, Interscience Publ. Inc. N.Y. (1959).
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the nucleons are close enough that those complex structures overlap.
Thus, the small quadrupole moment and the 2.5 percent change in
magnetic moment could be the result of a configuration where each
nucleon's charge distribution is minutely distorted along the axis
between them.  This makes it easier to see intuitively how the
quadrupole moment can be positive, since the charge is elongated,
whereas in the conventional form it is hard to visualize how a prolate
charge deformation results from an orbiting motion.
      The failure of conventional theory to establish the basic nucleon
interaction extends into the analysis of scattering interactions
involving other deuteron conditions.  Ether theory considerations
indicate that these conventional approaches are probably wrong, and
that any success they may exhibit is coincidental.  The full field,
transient solution of the neutron could resolve this adhesion question.

 6.4 Helium: Two other simple, stable nuclei bring out certain
characteristics of nuclei in general.  The first is the isotope of helium
with 1 neutron and 2 protons as its nucleus.  In all other stable nuclei,
the number of protons never exceeds the number of neutrons.
     The second, the helium nucleus, has 2 neutrons and 2 protons.
When stripped of its two orbiting electrons, the nucleus with +2e
charge is termed an α  particle; and it represents a closed energy level,
since only 2 neutrons with opposing spins and 2 protons with
opposing spins are allowed in one energy configuration because of the
single solution rule (Pauli's exclusion principle).
     The preceding few smaller nuclei give a clear enough picture of the
fundamental problem that remains.  The rest of this chapter is a short
summary of present conventional visualization of general nuclear
structure.

6.5 Nuclear Structure: A fairly complete description of the present
level of understanding of the structure of the nucleus is available in a
number of good text books on the subject.1  Therefore, only a quick
sketch is needed to bring the discussion to the level desired.  Since
1932 it has been understood that, except for the simplest form of
hydrogen, nuclei are composed of two kinds of nucleons, protons and
neutrons, clustered like a handful of marbles.  Those nuclei occurring
in nature tend to have almost equal numbers of each until the cluster
has about 20 nucleons, after which the neutrons outnumber the
protons in a gradually increasing ratio.  Artificially produced nuclei
deviate only nominally  from this.   Attempts to  visualize details of the
  _________________________________________________________________________________
    1. R.B.Leighton, Principles of Modern Physics, McGraw-Hill Book Co. N.Y. (1959).
        L.R.B.Elton, Introductory Nuclear Theory, Interscience Publishers, N.Y. (1959).
        A,.Beiser, Perspectives of Modern Physics, McGraw-Hill Book Co. N.Y. (1969).
        R. Eisberg & R.Resnick, Quantum Physics, John Wiley & Sons, N.Y. (1974).
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structure and motions in these clusters have been numerous, but
only limited success, in any rigorous way, has been attained.  So far,
attempts to describe the "strong" interaction with a potential have
been thwarted by the small number of available simple cases and
their lack of many distinguishing characteristics.  Nucleon spins also
influence this "strong" interaction, so a simple potential is not the
complete answer.1
     In spite of these difficulties, a surprisingly good picture of the
structure of nuclei is available today.  The backbone of this
understanding is obtained by simply accepting the existence of the
strong interaction, and then, using the energy relationship of
Eq.(3.6.4) and the conventional approach to energy and force,
considering the stability of a given cluster of nucleons.  The effective
radius of a neutron or proton is about 1 fermi ( −1310 cm ); and, except
for the smallest nuclei, the clusters are approximately spherical.  The
close packing results in a fairly constant density of nucleons per unit
volume, so the spherical clusters have a radius of about,

                                             
1
3R 1.07 A     ,≅                             (6.5.1)

where A is the mass number or total number of nucleons.  Ignoring,
for the moment, the exact mechanism of attraction and repulsion of
the individual nucleons, because the range of the strong force is
essentially the same as the nucleon radius ( 1≅ fermi), each nucleon is
affected only by the 12 nucleons (or fewer in smaller clusters) that
surround it.  That is, they act just as packed marbles would act; those
inside the cluster being surrounded by 12 others and those near the
cluster's outer boundary surface interacting with about half that
number.  As a result, those nucleons inside the cluster feel no net
strong force, and are free to move around unobstructed, except for
proton charge effects, as long as they do not get closer to or farther
away from their nearest neighbors.
     These clusters are by no means static, but rather are in relatively
violent motion internally. This can be crudely but effectively visualized
by thinking of a handful of greased marbles enclosed in a rubber
balloon. If the surface is manipulated, the marbles can move about
freely along various twisted paths.  In the nucleus, the motion is
frictionless and much less inhibited.  The picture here is quite similar
to that of conduction electrons moving in a metal lattice except that
here the snaking, turning paths are not centered on fixed points as in
the lattice.  Instead, the nucleons are twisting and turning about
adjacent nucleons.  In addition to the motion resulting from its own
kinetic   energy,   each   nucleon   is   also   subjected  to  the  random
 __________________________________________________________________
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fluctuations of the datum ether, which accounts for the statistical
aspects of nuclear operation.  Whereas the nucleon orbits are
basically closed, the perturbations caused by the datum fluctuation
can induce a nucleon to attempt to breach the outer boundary.  Only
then will the outbound nucleon feel a significant force.
     Consider an outbound neutron for example.  At the center of the
nucleus there is no net force acting on it.  As the potential escapee
approaches the average boundary surface, the number of adjacent
nucleons diminishes until, when it is centered on that boundary,
there are just 6 or fewer within range of the strong interaction, and all
of these are located on the inboard side of the neutron leaving.
Therefore, as the neutron traverses a distance equal to its own
diameter it goes from a condition of no net force acting on It to
maximum retardation and back to zero force.  If it has enough kinetic
energy to do the required work against this force, it will be a free
neutron.  Figure 6.5.1a displays a typical potential energy curve for a
neutron and a nucleus.
     The condition for proton escape is moderately different. For,
although a proton located near the center of the nucleus feels no net
force, just as the neutron felt none, if that proton moves towards the
outside, even before reaching the surface it begins to feel the effect
of the coulomb repulsion due to all the other protons scattered evenly
throughout the nucleus.  The presence of that coulomb repulsion
changes the potential curve for a proton to that shown In Figure
6.5.1b.  Most notable is the barrier potential just outside R.  To
escape, a proton must have a kinetic energy large enough to overcome
that barrier.  Often, the emission of an alpha particle (with a similar
kind of potential curve), of kinetic energy lower than the barrier over
which it escapes, is observed.  Conventionally this is explained as an
example of "tunneling",  a rather  mysterious  process  involving  wave

             a. Neutron and nucleus                       b. Proton and nucleus

Figure 6.5.1 Potential energy curves.
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functions. From the ether viewpoint, the explanation is such simpler.
The potential curves of Figure 6.5.1 are understood to be nominal,
and in actuality are continuously modified by the addition and
subtraction of the ether's datum fluctuations, which increase and
decrease the potential at any point randomly as a function of time.
Thus, after a wait that depends upon the nominal barrier height and
the coincidence of a negative fluctuation in V at the same point at
which a potential escapee arrives at the same time, the effective
barrier is lower than the particle's kinetic energy and the escape is
accomplished.
     In a similar fashion, any nucleus can be thought of as broken up
into two or more arbitrary parts, each with its own kinetic energy, and
there is then the possibility that the bonding between those parts
could be broken.  In principle, deciding what combinations of
nucleons are stable and which ones will break apart with no more
external influence than the datum fluctuations might appear to be
possible only if the nature of the strong interaction were known so
that a formal calculation of the orbit and energies of the possible
configurations can be made.  In practice, however, the structural
stability of nuclei can be explained quite well without that knowledge.

6.6 Nuclear Binding Energy: The internal or rest energy of a nucleus
or an atom can be measured by passing it through a mass
spectrometer.  As a result of the present state of the art, atomic
energies are measured with a precision better than 1 part in 6 10 .
Fortunately, it is the energy differences between nuclei that are
important, since the absolute values are not as well determined.  For
example, if a particular nucleus is made up of Z protons and N
neutrons, the difference between the sum of their individually
determined energies and the measured energy of the nuclear
combination can be found accurately.  In the following, the energy
values will be given in MeV units, as discussed in Appendix G.
Conventionally, it is atomic energies that are measured and tabulated,
and the nomenclature used to designate a particular atom is N A

Z X ,
where X is the chemical element symbol (e.g., H, He, Li, etc.) and,

       N = number of neutrons         A = number of nucleons
                                                                                                  (6.6.1)
       Z = number of protons                      A = Z + N

In the following, only nuclear energies are used (the electron energies
associated    with    Z  are   deleted),   and   a   ground   state   nuclear
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combination will be designated only by N
Z . For example, the proton

and neutron rest energies are,

        ( ) ( )0 1
1 p 0 n E E 938.27   MeV     ,     E E 939.57   MeV= = = =    .

Often these energies are given in atomic mass units which are related
to energy through,

                
224
01 u 1 amu 1.66957 10 g 931.502 Mev/c−= = × =

     Now, going back to the idea of measuring the difference between
the energies of, say, the boron nucleus, ( )5

5 E 9324.51  MeV= ,1 and

its parts, p n 5E 5E 9389.26+ =  MeV; that difference, known as the
binding energy, is b E = 9389.26 - 9324.51 = 64.75 MeV.  The meaning
is clear.  In order to separate those nucleons far enough apart so that
they no longer have any significant influence on each other, an
outside source of energy equal to b E  must be provided.  In the
absence of that extra energy, the boron nucleus has at least a chance
of staying together.  If the binding energy were a negative quantity,
such a nucleus could not be assembled.  In general, the binding
energy of any nucleus is given by,

                             ( )N
b p n Z E E Z E N E= + −     ,                    (6.6.2)

where pE , nE  and ( )N
ZE  are all measured values as defined above.

     At this point it is possible to reconcile the measured binding
energy of the nuclides (any single Z,N combination) with the physical
picture presented in Section 6.5.  To start off, almost exactly the same
rationale can be exploited that is commonly applied to a drop of
liquid.  When a gas is cooled until it is transformed into an essentially
incompressible fluid, during the transition from one phase to the
other, a certain amount of energy per-molecule-converted has been
removed.  Called the heat of condensation, it clearly represents a
binding energy of the molecules in the liquid.  Where only a small
amount of liquid is formed, its surface tension pulls it into spherical
shape.  In that case, the total binding energy of the resulting drop is
proportional to the total number of molecules in it, reduced by an
amount that accounts  for the fact  that the surface  molecules are not
as strongly bound, since they have fewer neighbors.  Moreover, if   the
 ____________________________________________________________________________________
 1. Nuclear data used in this chapter taken from: Nuclear Wallet Cards, Ed. by
     V.S.Shirley, & C.M.Lederer, Isotopes Project, Lawrence Berkeley Laboratory for
     U.S. Nuclear Data Network,  January (1970).
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liquid happened to be electrically charged, the binding energy would
again be somewhat reduced because of the mutual repulsion.  So far,
all of these characteristics are duplicates of those described earlier as
nuclear properties, and the equation,

                     
2

3
1

3
b 1 2 3

volume surface
coulomb

Z(Z 1)  E a (Z N) a (Z N) a
(Z N)

−
≅ + − + −

+!"#"$ !"#"$
!""#""$

    ,          (6.6.3)

should give a reasonably good estimate of the nuclear binding energy.
In fact, with the proper coefficients, it does.  The liquid drop
approximation comes close, but two further terms are usually
appended to the equation to account for spin and de Broglie frequency
properties of protons and neutrons not exibited by molecules in a
liquid.  These should be found by solving the Hamilton-Jacobi
equations of motion of the nucleons inside the potential well, but the
difficulty of the many body problem precludes this approach.  An
excellent approximation can be made, however, by using the
Schroedinger equation approach, with a square well with rounded
corners as the radial potential profile. Combined with the assumption
that spin-orbit coupling is LS for small clusters, jj for large clusters
and a mixed form for intermediate sizes, this "shell" approximation
gives a set of states of motion that accounts for many of the observed
nuclear characteristics.  For example, since the protons see a well
shape different from that seen by the neutrons, two quite separate
sets of co-existent orbits are predicted.  It should be stressed that
these orbits are not necessarily planar or even confined to concentric
shells, in spite of the grouping of energy levels that results, but could
be long snakes, short snakes, and all varieties of 3 dimensional
snake-like paths, only matching the de Broglie difference frequency to
maintain the individual nucleon identities.  The potential appearing in
Schroedinger's equation, being essentially an on-off type of boundary,
serves only to confine the orbits.  Inside, the nucleons are freely
moving, independent of each other, except to act in rapidly exchanged
pairs as centers for directional shifts with full turning (frictionless), so
that the motion is a special kind of controlled, free particle activity.
There is no conflict between the visualization of these orbits and the
liquid drop energies discussed above.
     If it were possible to solve the deterministic ether field equations
for a large nucleus, the fact that those equations can only allow one of
each possible solution, i.e. the exclusion principle applies, ensures
that at most only two nucleons with opposite spins can occupy any of
the allowed stable closed paths.  Furthermore, because the potential
for the protons is shallower than that for the neutrons, the resulting
two different sets of allowed orbits will have two neutrons or two
protons, not one of each.  Moreover, there will be fewer allowed proton
levels than neutron levels, especially for the larger nuclei.
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     All of these characteristics are supported by the statistical
quantum mechanics solution.    Not only are the "magic numbers", i.e.
the energy "shells" with 2, 8, 20, 28, 50, 82, 126, nucleons explained,
but also the observed patterns of nuclear electric quadrupole
moments, even-even and odd-odd stability levels, and finally the total
nuclear angular momenta.
     To find the two terms to supplement Eq.(6.6.3), an approximation
within the shell approximation is useful.  Since the two sets of
particles are moving along frictionless paths with full turning, the only
thing happening that resembles a collision is the perturbation due to
the datum fluctuation, during which the particles themselves do not
exchange energy with each other.  They are, therefore, independent
and have very long (endless) mean free paths.  In fact the whole
ensemble can be quite accurately described as constituting a Fermi
gas enclosed in a spherical space.  Here again, the standard
mechanical solution is foiled by the many body aspect of the problem,
but the statistical solution is well known.1  It indicates that the
nuclides with Z = N are more stable than their unbalanced isobars
(nuclides with equal A) because the latter have nucleons of higher
kinetic energy as expressed by a term proportional to (Z-N)2/(Z+N).
     The final term injects an adjustment for the fact that, since the
single solution (exclusion) principle applies, the like nucleons are
paired in each state, so even-even nuclides having filled states, are
more stable then mixed, and mixed are more stable than odd-odd.
Thus, a term of the form,

                    ( ) ( )N N5
Z Z

1 both even

0  mixed

1 both odd

a
    ,    if     

Z N

+

−

 
 δ =  

+  

    ,         (6.6.4)

is added to Eq.(6.6.3).  It should be noted that the ether approach is
essentially reversed from the conventional nuclear viewpoint; in that,
the free motion of the nucleons is not ascribed to the single solution
(exclusion) principle, but to the type of particles and their full turning.
This, not the exclusion principle, permits using the shell and fermi
gas approximations.
     The final form of the binding energy equation Is found by
combining all of the above terms, so that,

( )2
3

1
3

2
N

b 1 2 3 4 Z

volume        surface            coulomb          asymmetry    odd-even          

Z(Z 1) (Z N) E a (Z N) a (Z N) a a
Z N(Z N)

− −
≅ + − + − − + δ

++
.     (6.6.5)

____________________________________________________________________
  1. L.R.B.Elton,  Loc.Cit. p 107.
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Most of the coefficients have been derived on theoretical grounds,
albeit crudely.  However, the best results are obtained by fitting the
equation to the measured data for the nuclide energies.  The semi-
empirical equation with the best fit has the coefficients (in MeV):

                   1 2 3

4 5

 a 15.7517   ,    a 17.8010   ,   a 0.7107
            a 23.6951      ,      a 11.18

= = =

= =
    .        (6.6.6)

Except for the smallest values of A, Eq.(6.6.5) with coefficients (6.6.6)
gives the correct binding energy to within a few percent (most often
better than 1%).  Even for smaller nuclides, the results are sometimes
surprisingly good.  For example, the measured binding energy of the
boron nuclide was found to be bE 64.75=  MeV.  Using Eq.(6.6.5),

b (calc)E 64.73= MeV, and the error is negligible.  This indicates that
the physical picture of nuclear structure given previously is very close
to the fact.  Since, as discussed in Chapters 4 and 7, even the datum
fluctuations are deterministic, the nucleus has been described in a
totally deterministic format, and no need for anything beyond that is
anticipated.  Further support for this position is obtained from
extended consideration of nuclear stability.

6.7 Nuclear Stability: The stability of a system of particles is fixed by
a very fundamental property of the ether.  Starting with Section 2.6,
where it was indicated that the ether does not maintain static

configurations of φ , and following on through Section 2.19, where
energy was defined as a gradient squared distortion, a picture has
been presented that relates to the basic property that the ether moves
to reduce that gradient squared distortion to a uniform level where
possible; i.e. where the sustaining waves do not prevent it.  In Chapter
12, this is shown to be the basis of electrostatic field interaction.
More complicated cases abound.  For example, in Section 2.11, pair
production and annihilation were described.  Once separated, there is
a tendency for the two charge distortion regions to pull together and
combine to form two photons.  The latter are velocity distortion
regions that move apart at velocity 0c , leaving the volume originally
occupied with no distortion ( a dφ = φ ).  Again, in Chapter 7, in
describing excited atomic states and the dropping back to the ground
state, although it is rationalized as a separatist phenomenon related
to electron radiation as the result of path perturbation and turning,
etc., it is also pointed out that ultimately those unstable orbits, the
stable ground state, and the exclusion phenomenon, are all just
characteristics of a single solution of the ether equations for the whole
atom taken as a single system with certain movable distortion
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concentrations.  Thus, if the ether equations available here, are the
final ones they could be expected to show not only the conservation of
gradient squared distortion, but also the rule of spreading that
distortion out to achieve a lowest level.  Not much more need be said
here about this concept, except to point out that it also appears as the
backbone of nuclear stability.  Each nucleus or nuclide represents a
single complex solution of the ether field equations; and whether or
not it can remain in a stable-state depends on whether it is losing
distortion energy by radiation or diversion into kinetic energy.
Unstable nuclides will change, by separation into parts or by
conversion of the nucleons themselves into other particles, until the
sustaining waves can maintain the remaining components in stable
form.  Before this is discussed further, it is useful to look at a general
representation of all nuclei.
     One way to represent the possible nuclides is to construct a grid
such as that In Figure 6.7.1.  The vertical lines represent constant
total nucleons, and all combinations along any A line are called
isobars.  Lines sloping downward to the right represent nuclei with a
fixed number of protons, or isotopes.  Lines sloping upward to the
right indicate combinations with a fixed number of neutrons, or
isotones.  Since moving along either, an additional neutron or proton
is added at each junction, all possible combinations of Z and N have a
place on the chart, which extends infinitely.  Fortunately, only about
285 stable or long lived nuclei  are  found in nature.  Almost  2400
observable artificial ones have been produced, but all others are so
unstable that they come apart too quickly to be observed.
     In the chart of Figure 6.7.1, all nuclides along the abscissa have
equal numbers of protons and neutrons.  Those above the abscissa
have  an  excess  of  protons,  and  only  one ( )1

2  is  stable,  all  others

breaking down relatively quickly.   Those  far above  the abscissa have

Figure 6.7.1 Generalized grid of possible nuclides.
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negative binding energy, due to the proton repulsion, and cannot be
assembled.  Most of those closer in break down by the nucleon
conversion process mentioned before, but some separate into two or
more smaller nuclides.  Nuclides below the abscissa have an excess of
neutrons, but, for some values of A, several isobars can be stable.
Most of those that are unstable break down by nucleon conversion, but
some separate into parts.
      Figure 6.7.2 graphs a short portion of the whole grid that includes
all of the smaller nuclides whose energies can be measured directly or
be determined by direct inference.  All but a few are artificially
produced, and all have positive binding energies.  The numbers shown
between nuclides represent the binding energy of the last nucleon
added.  Since most of those nuclides shown are unstable, it is
important to be able to say which are and which aren't. Because
separation instability is generally a faster process than nucleon
conversion instability, the former will be described first.

Separation

     In discussing nuclide separation instability, perhaps even more
useful than the binding energy is a related quantity called the
separation energy sE .  It represents the external energy required to
remove any fractional part of a nucleus, i.e. to divide the nucleus into
two separated parts.  Formally it can be expressed as,

                                  ( ) ( ) ( )s s
s s

N N N N
s ZZ Z ZE E E −

−= + −     ,                   (6.7.1)

here the three RHS quantities are measured.  If the binding energies
of the parts are known, sE  can be found from,

                                ( ) ( ) ( )( )s s
s s

N N NN
s b Z b bZ Z ZE E E E −

−= − +     .           (6.7.2)

Again using the boron nucleus as an example, the energy required to
separate one proton from it is,

                                   ( ) ( ) ( )( )5 0 5
s b 5 b 1 b 4E E E E= − +     .              (6.7.3)

In the sense used here, an individual neutron or proton involves only
one nucleon and therefore has zero binding energy, i.e.,

                                          ( ) ( )0 1
b 1 b 0E E 0= =     .                       (6.7.4)
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Substituting the actual energy values, the measured binding energy of
the beryllium nucleus ( )5

b 4E  is 58.16 MeV, and Eq.(6.7.3) gives

sE 6.59=  MeV.  Because a single nucleon is being removed, the
separation energy is the same as the last-nucleon binding energy
shown in Figure 6.7.2.  A positive separation energy indicates that a
single proton will not spontaneously leave the boron nucleus,
particularly since there is, in addition, the proton barrier discussed
earlier.  The above separation energy does not guarantee that after
some significant time has elapsed the "tunneling" type of proton
emission will not occur.  That must be checked in a separate
calculation.
     Now, looking back at the chart in Figure 6.7.2, a few specific
nuclides will be examined to illustrate some of the points made
earlier.  First, consider the neutron ( )1

0  and the proton ( )0
1 .  As single

particles, their binding energies are zero in the separation scheme.
Under other considerations they can exhibit both instability and
convertibility, but only as a basic property of the particle itself and not
like the separation of nucleons by doing external work on them.  The
latter is the nature of the separation instability under discussion.  The
first separation stable nuclide formed by combined nucleons is the
deuteron ( )1

1 .  From Figure 6.7.2, its binding energy is 2.224 MeV.

Not shown are its isobars, the dineutron ( )2
0 , and the diproton ( )0

2 ,

which are unstable because of the spin dependence of the strong
interaction mentioned earlier.
     Adding a proton or a neutron to ( )1

1  produces helium isotope ( )1
2

or hydrogen isotope tritium ( )2
1  with respective separation energies

5.49 and 6.26 MeV.  These ensure that a nucleon will not
spontaneously leave, reducing them to deuterons.  A separate
calculation shows that ( )1

2  does not exhibit "tunneling", so both ( )1
2

and ( )2
1  are separation stable.

     Going on to A = 4 in the chart, combining ( )1
2  and a neutron or

( )2
1  and a proton produces ( )2

2 , the α  particle or helium nucleus.
The last-nucleon binding energies ensure complete separation
stability against n or p decay.  The isobars ( )3

1  and ( )1
3 , having

negative last-nucleon separation energies, decay spontaneously, and
do not appear on a chart of separation stable nuclides.  For small
nuclides, it is convenient to determine the binding energy of the whole
nuclide by just adding all of the last-nucleon binding energies up to
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that nuclide.  For example, bE  for ( )1
1  is 2.224, and bE  for ( )2

2  is

2.224 + 5.49 + 20.58 or 28.29 MeV.  A final check on the separation
stability of ( )2

2  considers the possibility that it might decay into two

deuterons ( ) ( )1 1
1 1+ .  Using Eq.(6.7.2),

 sE 28.29 2 2.224 23.64 MeV= − × = .

Clearly this separation does not occur, so ( )2
2  is separation stable.

     The next set of isobars in Figure 6.7.2, A = 5, has no stable
member.  Nuclides ( )3

2  and ( )2
3  both have negative last-nucleon

separation energies as indicated, so they decay to ( )2
2 .  Only ( )4

1  must

be checked in more detail.  As A increases, it becomes practical to be
more systematic in looking at the decay products.  In the case of ( )4

1

they can be represented as follows:

The negative separation energy indicates that ( )4
1  decays into ( )2

1  and
2 neutrons, and is therefore not separation stable.



140

For A = 6, both  ( )4
2  and ( )3

3  are separation stable, but ( )2
4  is not.

This can be seen as follows:

Since no negative sE  appears, ( )4
2  is separation stable.  A similar

exercise shows ( )3
3  to be stable also.  On the other hand,

showing that ( )2
4  is separation unstable.
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When this process is continued for all values of A, a reduced graph of
all of the separation stable nuclides can be constructed.  Figure 6.7.3
sets forth the separation stable nuclides for the smaller A values.  Out
of the original set of 48 shown in Figure 6.7.2 for values of A up to
and  including A = 14, only 34 are separation stable; and the other 14
undergo a very rapid decay by separation.  It is well known that only a
small number of those nuclides graphed in Figure 6.7.3 are actually
stable. The second mechanism of breakdown, which applies to those
that remain, will now be considered.

Figure 6.7.3 Separation-stable nuclides.

Nucleon Conversion

     Conversion in this case is a fundamental particle property of the
nucleons.  Here, why it occurs and the results of its occurrence will be
reviewed.  Because it is a relatively slow process when compared with
separation, the latter will always occur first in cases where both
processes are possible.  Thus, it is only necessary to consider those
nuclides depicted in a separation stable grid such as that in Figure
6.7.3.  Of the two types of nucleons, neutrons and protons, the former
convert by a less complex process, and for that reason will be
examined first.
     The neutron is only a stable particle under very restricted
conditions.  A free neutron decays with a mean life of only 15
minutes. Only inside the nucleus, in a closed orbit, is it stable.
Nevertheless, it should not be thought that the neutron has particle
parts like nuclides have nucleons.  Instead, it must be visualized as a

single complicated 3 dimensional density pattern where φ  and 2( )∇φ
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are only semi-stable out in the open.  As the distribution of φ  slowly
redistributes itself, three independent ether configurations evolve out
of the original configuration.  Here, it is sufficient to set up a simple
method for determining when the neutrons inside a nucleus will break
down.  It will be based on the same energy principle as separation
decay.
     In the neutron conversion process, it can be considered to have a
binding energy which it gives up when it decays.  Along the same line
as the development of Eq.(6.6.2), the neutron binding energy Is
defined to be,

                                      b p e n E (n) E E E= + −     .                       (6.7.5)

Substituting the values of pE , eE  and nE  from Section 6.6,

                                       bE (n) 0.782 MeV= −     ,                       (6.7.6)

indicating the neutron's instability.  Now, the neutron conversion
energy of the nuclide ( )N

Z  can be defined as,

                                     ( ) ( )N 1 N
c Z 1 e ZE E E E−

+= + −     ;                    (6.7.7)

which means that in nuclides with an excess of neutrons, it is
possible (although not necessary) for one neutron to decay into a
proton, resulting in a nuclide with one less neutron and one more
proton, plus an emitted electron that leaves the nucleus.  In the early
study of radioactive materials, this was called β  decay, the electron
being the β  particle.  Simplification of Eq.(6.7.7) can be had by using
Eq.(6.6.2) to convert to nuclide binding energies, with the result that,

                           ( ) ( )( )N N 1
c b Z b Z 1 n p eE E E E E E−

+= − + − −     .

With the aid of Eqs.(6.7.5) and (6..7. 6), this becomes,

     ( ) ( )( )N N 1
c b Z b Z 1E E E 0.782  MeV−

+= − +    .   (Neutron conversion)     (6.7.8)

     Understanding of proton conversion is wholly dependent on the
total system energy conversion picture.  External to a nucleus, a
proton is a truly stable particle, being a relatively simple solution of

the ether equations.  Nevertheless, its structure ( φ  and 2( )∇φ
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distribution) is similar to, though not exactly the same as, the
neutron.  The difference controls the stability vs instability of the two.
Inside a nucleus, even one with excess neutrons, it is possible that
the overall energy configuration can readjust and redistribute itself so
that one more neutron and one less proton remain, with the creation
and ejection of a positron.  The proton conversion energy of the
nuclide ( )N

Z  is defined as,

                                      ( ) ( )N 1 N
c Z 1 Ze

E E E E+
+
−= + −     ;                   (6.7.9)

where e
+

 is used to designate a positron.  Again, using Eq.(6.6.2),

                             ( ) ( )( )N N 1
c b Z b Z 1 p n e

E E E E E E+
+
−= − + − −     ;

which, with the aid of Eqs.(6.7.5), (6.7.6) and Section 6.6 becomes,

       ( ) ( )( )N N 1
c b Z b Z 1E E E 1.804  MeV+

−= − −    .   (Proton conversion)    (6.7.10)

     Another form of proton conversion occurs in nuclei within atoms
when an inner orbit electron undergoes datum perturbation great
enough to cause it to pass close enough to the nucleus to be
captured.  In that case, the conversion represents a total ether
solution adjustment of the atom, not just of the nucleus.  The electron
capture conversion energy of the nuclide ( )N

Z  is defined as,

                                   ( ) ( )( )N 1 N
c Z 1 Z eE E E E+

−= − +     ,                  (6.7.11)

i.e. the combined energies of the original nuclide and the orbital
electron will convert into a nuclide with one less proton and one more
neutron and the annihilation of the electron.   By the same steps as
used above, this becomes,

       ( ) ( )( )N N 1
c b Z b Z 1E E E 0.782  MeV+

−= − −    .   (Electron capture)     (6.7.12)

The three Eqs.(6.7.8), (6.7.10) and (6.7.12) can now be used to
establish the final stability chart.
     Referring back to the chart of separation stable nuclides in Figure
6.7.3, each of the A = 3 isobars ( )2

1  and ( )1
2  must be examined for the

possibility  of  conversion.   Starting with ( )2
1 ,  which has an excess of
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neutrons, Eq.(6.7.8) gives,

                           cE 8.48 (7.72 0.78) 0.02 MeV= − + = −     ;

so ( )2
1  converts by electron emission to ( )1

2  which is both separation

and conversion stable.  Likewise, ( )4
2  converts to ( )3

3 , which is also

stable.  A somewhat different condition attends ( )4
3 , however.  There

Eq.(6.7.8) gives,

                         cE 39.24 (37.6 0.78) 0.86 MeV= − + = +    .

so ( )4
3  does not convert to ( )3

4 , and is both separation and conversion

stable.  The excess of protons in ( )3
4  might permit proton conversion,

and according to Eq.(6.7.10),

                          cE 37.60 (39.24 1.80) 0.16 MeV= − − = +    .

Thus, ( )3
4  does not undergo positron emission decay; but electron

capture is still possible.  This is checked using Eq.(6.7.12), to give,

                          cE 37.60 (39.24 0.78) 0.86 MeV= − − = −    ,

 indicating that, after a considerable time, electron capture-proton
conversion will occur.  The result is that ( )3

4  decays to ( )4
3 .

     The last case of direct interest here is composed of the A = 8
isobars, ( )6

2 , ( )5
3  and ( )3

5 .  Using Eq.(6.7.8) as before, it is straight-

forward to show that ( )6
2  decays into ( )5

3  and ( )5
3  into ( )4

4  by electron

emission ( decay−β ).  Also, using Eq.(6.7.10), ( )3
5  decays into ( )4

4  by

positron emission ( +β decay).  This brings out an interesting point.  In

the case of ( )3
4  there was not enough excess energy in the nucleus to

induce the proton conversion, and not until the extra energy of the
captured electron was absorbed from the total atom structure did
proton conversion (ek decay) occur.   In the case of ( )3

5 , both positron

emission and electron capture are possible in principle because both
Eqs.(6.7.10) and (6.7.12) yield negative conversion energies.  In fact,
from the equations, any case where +β decay can occur also has a
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favorable energy balance for electron capture.  But In practice, where
+β decay is possible, it will always occur first, since it is a simple

adjustment of the nuclide energy.  Electron capture requires a long
time during which the electron must come into the vicinity of the
proton, and this is often a matter of days or even years.
     Continuing the process of examining larger and larger nuclides
finally yields a much smaller total number of stable nuclides (i.e. both
separation and conversion stable).  A portion of that stable set is
presented in Figure 6.7.4

Figure 6.7.4 The stable nuclides for small A.

     Going back to the original grid in Figure 6.7.1, of the 116 possible
nuclides up to and including A = 14, 68 are unknown either because
they have negative binding energies or decay by one of the two
processes so quickly that they cannot be observed.  The remaining 48,
shown in Figure 6.7.2, are either stable (11), or decay by separation
(14) or by conversion (23).  Throughout the whole extended grid of
Figure 6.7.1, the simple deterministic picture of nuclear structure and
stability agrees with observation with no exception.  Of course, there
are many more nuclear phenomena that have not been discussed,
e.g., α  radioactivity, excited levels in the nucleus, γ  radiation decay,
nuclear interactions, etc.  But, these are outside the area of interest
as mentioned before.
     Clearly, the processes of separation and conversion when
described conventionally are just exhibitions of an "observed" rule of
progression of energy reduction in systems.  The advantage of the
ether approach is in its inherent ability to derive the energy reduction
rule from the basic field equations, and although this has not yet been
completed, it serves as a powerful motivation for solving the field
equations, and as a goal with no real opposition to attainment except
perhaps unwarranted discouragement.  The terminology "strong" and
"weak" interactions customarily applied to separation and conversion
are confusing in an ether theory where the strong and weak fields
refer to the inner and outer regions of particles' structures.  Because
the concepts of the strong and weak fields are so necessary to the
ether theory, in the following the two nuclear processes will be
designated the "nucleon Interaction" and the "nucleon conversion";
terms that are, as can be seen, closer to the true physical description
of the phenomena than the conventional terms.
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CHAPTER 7

THE ATOM

7.1 Introduction: The Wave Mechanics explanation of the atom's
interior has so proliferated that it has deeply ingrained in the modern
physicist's mind its hopeless inability to describe that interior.  A firm
belief that no deterministic description is possible can be considered the
basis of "Modern" physics.  Yet on what grounds?  What is the
physical evidence?  Take the hydrogen atom.  An electron, with 98
percent of its energy concentrated inside a sphere of radius 2OO

er and 99 percent of its charge inside the same sphere, approaches a
proton that is essentially the same size as the electron.  If the electron
is captured, the innermost stable orbit it can occupy is a circle of
radius 5

e1.5024 10 r× .  Thus, the distance between the two particles is
greater than 750 times the sphere of significant influence of either one.
     If the electron is not captured, it sails past the proton on an
hyperbolic orbit, and no one has ever suggested that any serious
change in the electron or proton occurs.  In the circular and elliptic
orbits of capture, the great distance between the particles and the
relatively slow motion of the electron argue that just as little change
takes place.  Then, why the firm belief that the interior cannot be
described deterministically?  First, such a description had not been
available up until 1989.1  Second, certain mistaken beliefs related to
the application of Maxwell's equations led to the prediction of
paradoxical non-observed radiation phemomena.  Third, a physical
reason for the existence of the de Broglie frequency has only been
forthcoming recently.1  Beyond that, the fact that the means for
measuring the electron's position in the atom without perturbing its
motion are not available has been used as a final reason for outlawing
a deterministic atom.  None of this has any validity.
     Considering the proton-electron separation in the atom, no reason
can be suggested why their motion should be any different than
outside the atom.  In earlier chapters, the control of the ! -wave
equations has been made clear; and the criterion for when an electron
will or will not radiate was presented.  The ether description of the
extended electron of Chapter 3 has explained the meaning of the de
Broglie frequency.  Finally, the ability to measure electron motion in
the atomic interior directly is irrelevant to its being deterministic.  The
perturbation in measurement is a fact, not the mysterious religion it
has become.   Considerable  evidence  has been collected to show that
___________________________________________________________________
 1. R.H.Dishington, Physics, Beak Publications, Pacific Palisades, CA (1989).
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the particles that make up single atoms retain their simple, individual
identities and behave in a straightforward manner.1
     Earlier, almost all of the electron's properties were presented.  This
was necessary because it was lack of knowledge of the electron and
the related particle structure that allowed certain myths to divert
atomic physics towards statistical ensemble methods and away from
the Main-Line, deterministic picture needed to fill out physics.  What
is called " classical" physics is capable of describing and explaining, on
the basis of cause and effect, both atomic and particle physics (and
the paradoxes of modern physics) right down to the metaphysical
base.  There is only one physics, and this and subsequent chapters
will attempt to make that clear.
     It is not impossible to describe what is going on inside atoms.  It
can be done using only Maxwell's potential equations and Newton's
laws.  In fact, Quantum Physics, in the present author's opinion, does
not constitute a physical theory, at the same level, as the Theory of
Electromagnetism and Newton's laws does.
     This chapter will present a planetary type description, of electrons
orbiting nuclei, that shows how close Bohr and Sommerfeld came to
the correct picture, in spite of the rudimentary awareness of particle
properties and structure in the early 1900's.  They were unable to see
the extended nature of the orbiting electrons, and did not realize that
the electron, in turning as it orbited, contributed to the total angular
momentum.  Thus, they failed to match the orbital angular
momentum to the value predicted by Newton's laws.  The standard QM
analysis of the atom makes the same error; and, since Shroedinger's
equation cannot give the correct answer unless the exactly correct
mechanical picture is used to enter the energy of the system, QM
carries some of the errors along.  Using the extended electron
described earlier, this will be corrected.
     The turning of the orbiting electrons in the ground state ensures
that no radiation takes place and that the ground state is stable.
Quantization of the orbits is established by the electron's real, doppler
shifted longitudinal wave difference frequency. In the next few
sections, the structure and operation of the deterministic atom will be
described using only ordinary Newtonian mechanics.

7.2 The Hydrogen Atom: The simplest atom consists of a single
electron orbiting around a single proton.  Quantum mechanics gives a
proper evaluation of certain aspects of mechanical systems when the
correct description of the mechanics is known.  In the case of the
___________________________________________________________________      
 1. T.Erber et al, "Resonance Fluorescence and Quantum Jumps in Single Atoms",
     Annals of Physics, 190, pg 254, March (1989).   H.Dehmelt, "Experiments on the
     Structure of an Elementary Particle", Science, 247, pg 539, (1989).
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Figure 7.3.1 A planar orbit

hydrogen atom, past lack of knowledge of the electron has caused QM
to be used erroneously.  The radiated frequencies and total angular
momenta predicted are correct; but, because a minute electron
angular momentum (due to its extension) has been omitted, the
orbital periods and orbital angular momenta usually given are
incorrect.  The progression of the approach from the Bohr-Somerfeld
model to the wave mechanics un-picture is so well known that
nothing will be said about the history except to point out that the
reluctance of textbook authors to give up the visualizable properties of
the former for the, until now, more quantitative, non-visualizable
latter is significant.
     While, in principle, only a complete solution of the total field
equations can give an exact picture of this miniature "planetary"
system, the mechanics of Chapter 12 combined with the properties of
the extended electron expounded in Chapter 3, keeping in mind the
approximate nature of the "force" concept, gives a highly accurate
description of atomic operation.  If the "turning" angular momentum
is added to the QM analysis, the latter also gives the same results for
the ensemble.1

7.3 Orbit Analysis: Standard planetary analysis  begins by
considering the motion of a satellite of mass 0m  moving in a central
field (see Figure 7.3.1), e.g. the Moon orbiting a fixed Earth.  The

presentation here is a
modification of Goldstein's
treatment of the Kepler
problem in astronomy.2
Customarily, the analysis is
carried out with the orbit
plane in three dimensions;
but, for complete visualization
of details, here the orbit plane
is described with two
dimensions.  To keep the
discussion simple, even in the

atomic case, mass variations will be ignored ( 1γ = ).  This will have no
important effect on either the picture or the principles presented.
_____________________________________________________________________
  1. R.H.Dishington, Physics, pg 340, Beak Publications, Pacific Palisades, CA (1989).
      ………………, Fundamental Questions in Quantum Physics,  Ed. Franco Selleri,
      Hadronic Journal Supplement, 8, #4, p 395-414,December (1993).
 2. H.Goldetein, Classical Mechanics,  p. 229, Addison-Wesley Press, Inc. Mass. (1950).
      See also: R.Becker, Electromagnetic Fields and Interactions, Vol 2, p. 56, Dover
      Publications, N.Y. (1982); G.F.Lothian, Electrons in Atoms, pgs. 65, 74,
      Butterworths, London (1963); A.Ruark and H.Urey, Atoms, Molecules, and Quanta,
      Vol 1, Chs 4 and 5, Dover Publications, N.Y. (1964).
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     The satellite's energy is defined as E T V= + . V k /4 r= − π  is its
potential energy, and its kinetic energy is (HL units),

                                   
2

2
r 2 2

0

1 p T p
2m r

 
= + 

η 
    ,                        (7.3.1)

where rp  is its radial momentum and p its total angular momentum.
To be defined later, η  is unity in the ordinary planetary case.  In the
simplified Moon-Earth system, the orbital angular momentum is,

                                                           ,            ,                         (7.3.2)

and this is usually entered for p in Eq. (7.3.1).  However, the Moon
always presents the same face to the Earth, rotating one turn about its
own axis for each complete orbit.  In the atom, the electron must turn
that way in all possible orbits (see  Sections 3.13 and 12.9), with a
turning angular momentum (not the spin),
                                                t tp K pψ=     .                              (7.3.3)

Thus, for a close parallel to the atomic case the planetary example
must be visualized with a similar constraint, with the total angular
momentum written as,
                                         t tp p p (1 K )pψ ψ= + = +     .                  (7.3.4)

Next, Newton's second law is used to write the radial force equation,

                                        ( )2
r 0 tF m r r(1 K )= − + ψ"" "      ,                (7.3.5)

and the angular momentum equation,

                                  dp 0
dt

=      ,     p kψ=      (constant)    .         (7.3.6)

In the general case, for E<0 and attractive force 2
rF k 4 r= − π , a

rather long and convoluted derivation1 leads to closed elliptical orbits
( tK 0= ) or almost elliptical orbits (precessing, tK <0; recessing, tK >0),

_____________________________________________________________________________________
  1. A.Ruark and H.Urey, Atoms, Molecules and Quanta, Vol. 1, p. 133, Dover
      Publications, N.Y.(1964).   B.Shore and D.Menzel, Principles of Atomic Spectra,
      p. 45, J.Wiley and sons, N.Y.(1968).

2
0p m rψ = ψ"
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given by,

                            
2a(1 ) r

1 cos( )
− ε

=
+ ε ηψ

     ,     t1 Kη = +                 (7.3.7)

with the parameters (HL units),

    kE
8 a

= −
π

                        Constant energy E for each possible orbit.

   20m kp k (1 )a
4ψ= = η − ε
π

    Constant total angular momentum for

                                            each possible orbit.

     min maxr r
a

2
+

=                   Similar to the semi-major axis of the

                                             elliptical case.

     min maxb r r=                     Corresponds to the semi-minor axis.

     
2b1

a
 ε = −  
 

                    Orbit eccentricity parameter.

In terms of these parameters, the radial momentum is given as a
function of r by,

                                  
2

0
r 0 2 2

k2m kp 2m E
4 r r

ψ= + −
π η

    .                  (7.3.8)

     Without the turning constraint, tK 0=  and 1η = , reducing these
equations  to the usual textbook elliptical case.  All of this is well
known1, along with the fact that any choice of semi-major axis a and
eccentricity ε  in the astronomical case (with 0k Gm M= ) will produce a
physically realizable orbit as long as the satellite is far enough away
from the force field central mass.  Because the energy E is not a
function of the eccentricity, any specific choice of a applies to a whole
family of pseudo-ellipses and their corresponding total angular
momenta p, the largest of which matches the circular orbit with
radius a and  0ε =  (see Figure 7.7.1).
     In the Moon-Earth case, the center to center distance is about 60
times the Earth's radius.  Since  the  electron-proton  separation is  at
_____________________________________________________________________________________
  1. H.Goldstein, Classical Mechanics, Addison-Wesley Press, Inc. Mass. (1950).
      R.H.Dishington, Physics, Ch.l2, Beak Publications, Pacific Palisades, CA (1989).
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Figure 7.3.2
The minr period is less than 2ψ = π .

least 750 time their significant regions of influence, and these
particles exhibit inertia, momentum and all other common properties
of ordinary matter, it should be clear that no obstacle to their executing
planetary type orbiting motion exists in any general way.  Therefore, to
apply the preceding equations to the hydrogen atom, it is only
necessary to set 2k e=  and supply a rationale for choosing  semi-
major axis a, ε  and tK .  However, it is at this point that the atomic
case begins to differ significantly from the astronomical.

     For example, in the purely
elliptical case, the period of the
orbit represents one complete
circuit of the ellipse repeated
over and over again.  In the
atomic case, the orbits are not
closed but recess, as shown in
Figure 7.3.2.  Here, the cycle is
considered to go from one minr  to
the next minr , which shifts
orientation in the cases where

tK 0≠ .    Because of this shift,
each pseudo-ellipse cycle is
completed when ψ  has swept
out only 2 /π η  radians.

     A great deal of knowledge about atoms comes from their radiation
spectra.  From the time of Bohr and Sommerfeld, it has been clear
that atoms exist in stable or pseudo-stable states; and only when an
electron shifts from one orbit to another does radiation occur.
Because this was never tied to a cause and effect explanation, but
only to the mysterious "quantum", the de Broglie "wave" and
"h",  the orbits  and the  visualization  were  ultimately  lost.  Here, the
cause and effect chain is traced directly to the properties of the electron
and its  ! -waves, and the method for finding the semi-major axis
values of a that give the observed selected orbits is presented.

7.4  The de Broglie Difference Frequency and Planck's Constant:
In Section 3.14, it was demonstrated, using only Newton's laws, that
Planck's constant h is a derived constant that relates the electron's
momentum to the Doppler difference frequency of its front and back
longitudinal waves.  The following shows the way the difference
frequency and the derived constant h enter the orbit analysis.
     Refer back to Section 3.14.  There it was shown that when an
electron moves along a path at velocity u, its radially outward moving
 waves−!  are Doppler shifted, resulting in a difference frequency
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between the front and back waves of,

                                                 d e2ν = γβν      ,                           (7.4.1)

where, 0u cβ =  and eν  is the electron's intrinsic wave−!  rest

frequency  ( 20 1.2355898 10 cyc/s× ,  as  determined by the Rydberg
constant).  Eq.(7.4.1) and the linear momentum Lp  were used to
write,

                                         d
L 0 0 0p c m uc h

2
ν

= γ =      ,                  (7.4.2)

where h is the derived Planck's constant,

                                    
2

270 0

e

m ch  6.6260755 10−= = ×
ν

     .       (7.4.3)

However, for the atomic orbit, the derivation of Section 3.14 must be
modified, as follows, to account for the separation of the orbital and
turning angular momenta.
     Using Eq.(7.3.2), the electron's orbital linear momentum is,

                                              L 0
p

p m u
a
ψ= = γ      .                     (7.4.4)

Combining Eqs.(7.4.1) and (7.4.4),

                                                  d
L 0p c h

2
ν

=      ,                        (7.4.5)

where again h is the derived constant of Eq.(7.4.3).  Eq.(7.4.5), when
transposed, gives the de Broglie difference frequency1,

                                                   L
d 0

p2c
h

ν =      .                       (7.4.6)

However, it is the total angular momentum,
                                           2

tp p p pψ ψ= + = η     ,                      (7.4.7)

that sets the electron's velocity and the difference frequency.  Defining
the total linear momentum, including the "turning", as,

                                      2 2
Lt L 0

pp p m u
a

= = η = η γ      ,                 (7.4.8)

Eq.(7.4.5) becomes,

                                               2 d
Lt 0

hp c
2
ν

= η     .                        (7.4.9)

_____________________________________________________________________________________
  1.  Although the author has chosen to call d ν  the de Broglie frequency, it should not

      be confused with db E hν = , a fictitious frequency of a fictitious wave.



153

     As discussed in Section 3.14, although there is a difference
frequency, there is no difference wave.  For an atomic orbit, the proper
inversion of Eq.(7.4.9) is,

                                              0
d 2

Ltd

2c h
p

Λ = =
η ν

     .                    (7.4.10)

where dΛ  is not the wave length of a mysterious wave that travels
along curved paths.  It is determined by real, longitudinal waves that
emanate and propagate radially from the electron's center.  dΛ  has
nothing to do directly with the wavelength of any wave. Instead, in
this orbital case, it is simply the distance the electron travels during

22/η β  cycles of the difference frequency dν .

7.5 The Steady-State Orbiting Electron Field:  To better understand
the nature of dΛ in the atom, the total field of an orbiting electron will
be visualized.  One of the most significant effects of the electron
Doppler difference frequency occurs when the electron moves
periodically in a closed path in a central electrostatic field. In that
situation the conditions for the total field solution are quite different
from those of the free electron.  In the circular orbit case, for example,
only when the effective circumference of the orbit, L 2 a/= π η , is
related to the difference frequency by,

                                             0
d 2

c2n
L

ν =
η

     ,                            (7.5.1)

where a is the orbit radius, and n 1,  2, 3, .....= , can a steady state
field solution exist.  This can be explained as follows.
     An attempt will be made to visualize the overall field surrounding
the orbiting electron near the orbit and at great distances from the
center.  It will be shown that Eq.(7.5.1) is the criterion necessary to
maintain the combined solution in steady state.
     In the hydrogen ground state, for an example, if the electron's

waves−!  are drawn to scale, because 0u/c  is small, it is impractical
to show enough waves to see their centers displaced to match past
positions of the particle as it moves along the orbit.  A better idea
about the minute but significant effects taking place can be obtained
by artificially exaggerating the velocity u.  Then, the effect in space is
seen to be a shifting of the positions of maximum and minimum
bunching of the  waves−! , as illustrated in Figure 7.5.1.  Full
turning of the electron's field is implicit.
     The same exaggerated orbit velocity and, in addition, artificially
reduced wave propagation velocity allows a plot of the outer regions of
the field.  Figure 7.5.2 shows every 2,348th wave front, and the
bunching and extending of those fronts  can  be  seen  to  spiral
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Figure 7.5.2
Outer field diverging waves, exaggerated ground state orbit.

Figure 7.5.1.
Orbiting electron ! -waves

outward  so that the spacing between successive bunching or
extending is,
                                                  0 orbD c T=     .                            (7.5.2)

By turning the figure in the
direction of the electron's
motion, the outward motion of
the spirals can be seen as a
good representation of the
total field equation solution
for the hydrogen ground state.
To be a steady state solution,
the spiral must occupy exactly
the same position relative to
the orbit, as the electron
returns to the same orbit
position, taking into account
the orbit recession.  There is
no problem in the outer field,
as long as the correct phasing
occurs along the orbit.
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     In Figures 7.5.1 and 7.5.2, the two spirals (bunching and
spreading) can be seen to approach the orbit tangentially and to join
at the electron center.  As the electron orbits, the same picture is
repeated at each point.  Again this can be seen by simply rotating the
plots to simulate the electron's motion.  Clearly, depending upon the
velocity u and the effective orbit circumference L, the phase position of
the wave fronts at the electron center may or may not be exactly the
same as the electron completes its round trip and returns to the
recessed starting point.  But, if those phases are not identical, then
the outer field will be changing and the total field equation solution
will not be steady state.
     To find the criterion for a return to the same phase condition,
think of a point on the orbit just as the electron is passing.  First, a
series of front waves, moving in the direction of the electron's motion,
cause an oscillation at the point of frequency fν .  Then a series of
back waves, leaving in a direction opposite to the electron's motion,
cause an oscillation at the point of frequency bν .  The same
phenomenon occurs at each point of the orbit circumference, differing
only in the time when the electron passes.  Only if the number of front
wave cycles 2

f f 0N L/2c= η ν , in the distance equal to the effective

circumference L, and the number of back wave cycles 2
b b 0N L/2c= η ν ,

in that same distance, are both integers can the phases and electron
oscillation match at each point.  Thus the condition for a steady-state
field in this circular orbit is that the difference between fN  and bN is
also an integer,

                             2 2
f b f b d

0 0

L Ln N N ( )
2c 2c

= − = η ν − ν = η ν      ,     (7.5.3)

which is just Eq.(7.5.1) rearranged.
      Thus, those circular paths specified by Eqs.(7.5.1) or (7.5.3) are
stable, and the elliptical orbits with the same semi-major axis a are
pseudo-stable.  The profound effect this has on atomic structure was
first pointed out by L. de Broglie, through Eq.(3.14.9), although he
was inspired by a shrewd guess based on symmetry rather than an
understanding of the electron's structure.  Unfortunately, the de
Broglie wavelength has been emphasized, and a mysterious wave of a
much different frequency than the actual frequencies, fν  and bν ,
directly involved has been used to describe "matter waves" of quantum
mechanics.  Clearly, the mathematical nature of such waves that can
travel along an orbit that is believed not to exist presents a problem to
anyone interested in physics.  The preceding picture gives a much
more realistic description of the phenomena in three dimensions.
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7.6   The Semi-Major Axis a: It is fortunate that the solution for the
orbital energy E is degenerate for all of the non-circular paths that
have the same semi-major axis a, because in all those paths the
difference frequency and electron velocity vary, and those cases are
not truly steady-state.  The criterion for finding the allowed  a  values
can be obtained from the circular orbit.
     Earlier it was shown that Newton's laws were adequate in the
astronomical problem.  They provided the solution of Eq.(7.3.7), which
includes the parameter equation for the circular orbit case ( 0ε = ),

                                             0m kp k a
4ψ= = η
π

     .                   (7.6.1)

In the astronomical solution, no further restriction is placed on either
the constant total angular momentum p or the orbit radius a.  The
arbitrary choice of either one determines the other through Eq.(7.6.1).
It is at this point the atomic case deviates most, for the choices of p
and a are not arbitrary in the atom, since the electron itself imposes
another condition on p.  Consequently, p is determined and a follows
directly from Eq.(7.6.1).  Thus, p and a are fixed and not arbitrary.
     The criterion for finding the allowed total angular momentum and
semi-axis a results from the combination of Eqs.(7.4.10) and (7.5.1),

                                                d
2 aL nπ

= = Λ
η

   .  n 1,2,3,....=   (7.6.2)

Here, n is the familiar principal "quantum number", obtained using
only Maxwell's equations and Newton's laws.  Only those orbits
specified by Eq.(7.6.2) are stable or pseudo-stable.
     Now, to find the alternative equation for p, combine Eqs.(7.4.10)
and (7.6.2) to read,

                                               Lt
nhp ap
2
η

= =
π

     .                      (7.6.3)

Equating Eqs.(7.6.1) and (7.6.3) yields,

                                                  
2 2

2
0

n ha
m e

=
π

   .    n 1,2,3,...=      (7.6.4)

 These values of a, used with the energy parameter in the list following
Eq.(7.3.7), specify all the allowable total angular momenta, orbit
energies and sizes.  They do not establish the shapes of the elliptical
orbits.  That will be taken up next.
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7.7  Orbit Shape and Eccentricity: The selection rule for circular
orbits can be rewritten, with the help of Eq.(7.6.3) above, in the form,

                                              Ltp L nh=      ,     n 1,2,3...=          (7.7.1)

 where L is the length of path and Ltp  is the total linear momentum of
the electron along the path.  If the orbit is elliptical the electron's
distortion with changing velocity precludes that orbit's stability.
Nevertheless, the rate of radiation is not that great, so a kind of
pseudo-stability exists.  If the radiation is neglected for the moment, it
is clear that the steady state field about the orbit is not the simple
cyclic spiral discussed above.  However, even when the path is
elliptical, it is possible to visualize the outer field spiraling outward in
non-circular form, always matching the electron's difference frequency
as it speeds up and slows down along the path of the orbit.  If the
match at each point is instantaneously correct, then the proper
pseudo-steady state criterion suggested by Eq.(7.7.1) is,

                                       
min2

min1

r

Lt
r

 d nh=∫ p si      ,      n 1,2,3...=       (7.7.2)

where Lt p  is the total linear momentum of the electron,

                                Lt 0 0 t r
pˆ ˆˆ ˆm r m (1 K )r p
r

= + + ψ = +p r r" "ψ ψ     ,

and ds  is the differential displacement of the electron along the
elliptical path.  The integration is carried out over the unclosed
section of the ellipse corresponding to the cycle or repetition period
from minr  to minr  and angle of 2 /π η .  In terms of the components,
Eq.(7.7.2) becomes,

                                  
min2

min1

r

Lt r
r

  d p dr pd nh= + ψ =∫ ∫ ∫p si      .          (7.7.3)

The components integrated give,

                                          
2 /

0

2 pd p d p
π η π

ψ = ψ =∫ ∫
η

     ,               (7.7.4)

and,

                                       
( )

2 /

0

2 2

r 2
p sin ( )p dr d

1 cos( )

π η ε ηψ
= ψ∫ ∫

+ ε ηψ
     .         (7.7.5)

     To complete the analysis, it is necessary to ask which orbits are
circular and which are elliptical.  It can be seen from Eq.(7.6.4), that
the smallest orbit is specified by n 1= , and succeeding values of n
give larger and larger paths; but their shapes are not indicated by n.
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In fact, it is easy to visualize a set of orbits for which n would be the
same, i.e. the total number of difference frequency beats would be the
same around the loop, and yet the shape of the paths could be quite
different because of the changing de Broglie difference frequency.
Some clarification comes from a consideration of Eq.(7.7.3), in which,
for the same n, the two components of momentum could make
different contributions.  For example, if the orbit was circular,

r p  would be zero and the total momentum contribution would be the
angular momentum p.  In an orbit of non-circular shape, the radial
momentum would not be zero, and the angular momentum
(  p cons tan t= ) would be smaller.  This would give an elliptical type
path with a semi-minor axis less than a.
     Once the allowed orbit sizes have been found through Eqs.(7.6.4)
and (7.7.3), the shapes of the various orbits, due to differences in the
de Broglie frequency, can be found from the components of Eq.(7.7.3).
It should be emphasized that it is the whole three dimensional field
that must be orbit compatible.   In other words, not only is the total
momentum along the orbit path matched to the circumference, but all
components of the field must also repeat starting with the new minr .
This can only happen if the components obey integer relationships
such as,

                             
2 /

0

pd p d n h
π η

ψψ = ψ =∫ ∫     ,    r r rp dr n h=∫    .  (7.7.6)

Finally, from Eqs.(7.3.7), (7.7.3) and (7.7.6),

                                                 r n n nψ= +      ,                        (7.7.7)
and,

                                      2 min or axis

major axis

n
1

n
ψ− ε = =      ;                 (7.7.8)

where the axes here are loosely equivalent to those of an ellipse.
Figure 7.7.1 sketches the first few allowed orbits.  In order to
determine them, it was necessary to specify tK , which is not a
universal constant, but a different constant for each distinct orbit.  In
making the sketches in Figure 7.7.1, tK  was assumed to be,

                                                   t
1K
nψ

=      ;                            (7.7.9)

but the reasons for the choice will only be discussed later on.
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Ultimately, tK  should come as a result of solutions of the total field
equations.  At present, it is only agreement with experiment that
confirms the choice of Eq.(7.7.9).

Figure 7.7.1.  Recessing atomic orbits.

7.8  Odds and Ends:  Before concluding the specific discussion of
hydrogen and broadening the atomic perspective, a few salient points
as well as the values and ranges of the various in  are in order.  Just
as in the Bohr atom, the principal quantum number can range from 1
to ∞ .  Since strong physical reasons have been given to show that
circular orbits are basically the most stable, the lowest value of r n  is
zero, or conversely, the maximum value of  nψ  is n.  On the other
hand, the orbits corresponding to linear oscillation of the electron
through the nucleus, have not been shown in Figure 7.7.1, since it is
clear that a large amount of energy is needed to force an electron to
approach very close to a proton, and experiments have shown that the
proton breaks up and other particles (s quarks) are formed.  Also, if
the linear orbit were allowed, the electron's rate of radiation would be
extreme, and the lifetime of that burst of radiation would be so short
as to not qualify this case as even pseudo-stable.  In fact, that
radiation would present a broad spectrum rather than a line.  The
upshot of these arguments is that the quantum number ranges are,

     n 1,2,3....= ∞    ;    n 1,......,nψ =    ;   r n 0,......,(n 1) = −   .    (7.8.1)
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     Another important item is the omission of the electron's mass
variability from the derivation.  A proper derivation must include it.  It
was part of Sommerfeld's model, although too much was left out of
that analysis to do more than indicate that the effects were present.
Whereas the turning momentum causes the orbit to recess a
considerable amount, the mass variation has the opposite effect,
causing a minute precession.  Nevertheless, the effect of the mass
variation enters into the energy in a different way and so leads to a
measurable effect.  Finally, a word should be said in connection with
the "Correspondence Principle" used by Bohr, et al.  Here there is no
need for it.  In the early days, because the Thomson atom, with its
linearly oscillating electrons provided discrete radiation to be
identified with the observed spectral lines, the model makers were
looking for a match between the mechanical oscillation frequencies
and the radiation.  In the Bohr model, this only occurred for the
outermost orbits, and was interpreted as an asymptotic approach to
the "classical" picture.  Here, with hindsight, it is known that the lines
are radiation emitted during a transition of the electron from one orbit
to another.  In a typical shift down from one orbit to the next, the
electron starts in orbit 1 in a configuration that is stable with respect
to de Broglie match and velocity, so that only the persistent buffeting
of the zero point fluctuations and its own speed changes perturb the
electron's motion.  Gradually, the motion reaches a deviation that
results in enough electron radiation to prevent recovery of the exact
orbit and a slow spiral inwards commences.  Soon, the de Broglie
match is badly broken and the electron shape oscillates with velocity
to produce faster inward spiraling and greater radiation per cycle.
Finally, as it approaches closer to the inner orbit, the radiation
lessens, the spiraling is slower, although the new velocity is greater,
and the electron slowly settles into orbit 2.
     It would be surprising if the radiation had the frequency of one of
these two orbits.  Rather it is logical to suspect that it should be a line
of some width, centered perhaps close to the average frequency
between the two.  In fact, the original Bohr model predicts just such a
thing.  The presently corrected analysis does so as well.  Table 7..8.1
lists the parameters  of the first five circular orbits of hydrogen.  The
radii are essentially those predicted  by Bohr, but the  angular
velocities of  the electron in orbit are found from the  Eqs.(7.6.4),  (7.3.4)
and (7.3.2). The average  mnω  are calculated and the measured values
are also given.  These latter are the lowest terms of the Lyman,
Balmer, Paschen and Brackett series respectively.  It is clear that the
calculated average mnω  is always less than 8% different from that
measured in the line spectrum.  Except for the innermost transition,
the measured frequency is always higher than the calculated average,
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which suggests that the electron spends more time or oscillates more
vigorously nearer the inner orbit.  None of these details pose a
problem to the intuition; so the operation of the hydrogen atom is
"classical" right down to its innermost orbit (even by the Bohr Theory),
making the "correspondence" principle unnecessary.

TABLE 7.8.1

THE HYDROGEN ATOM

     It is important to realize that none of the orbiting rates given in
Table 7.8.1 match those given by the standard solution of Shroedinger's
equation.  For example, the value 16 2.9232 10 rad/s ×  for the ground
state orbit represents the actual, Newtonian orbiting rate found from
Eq.(7.3.2).  In QM, the total angular momentum p is called the orbital
angular momentum, and the existence of the electron's angular
momentum is not recognized although it is unconsciously included.  If
the proper mechanical format for the energy, separating the orbital
and electron angular momenta, is used as the energy in
Schroedinger's equation; then, also taking into consideration the
present discussion of the linear orbit vs. the circular, the QM result
agrees with Table 7.8.1.
     The details of the last few paragraphs should not obscure the fact
that the numbers in Table 7.8.1, for example, are not in any way final.
They were obtained from the foregoing equations, ignoring such
subtleties as the reduced mass resulting from proton motion.  Correct
procedure would also consider the turning energy of the proton.  Table
7.8.1 overlooks this detail in the calculation of ψ"  and mnω  (average).

mnm n
n mn

-1 -1 -1

(measured)

   

  n              R                                     
2

                   (cm)                 (sec )                (sec )                  (sec )
     1      5.2918

ωω +ω
ω =ψ ω =

×

"

9 16
16 16

8 15
15 15

8 15

8

10      2.9232 10     1.6726 10        1.5495 10
     2      2.1178 10      4.2193 10

   2.7727 10        2.8702 10
     3      4.7651 10      1.3260 10   
     4      8.4714 10      5.7776

−

−

−

−

×
× ×

× ×
× ×

× ×

× ×
14 15

14
14 14

-7 14

   9.5188 10        1.0046 10
10   

  4.3983 10        4.6496 10
     5      1.3237 10       3.0191 10    

× ×

× ×
× ×
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7.9  Orbital Angular Momentum: The main difference between the
preceding development and the Bohr-Sommerfeld atom is in the
interpretation of the angular momentum and its effect on the type of
orbits, etc.  The orbital angular momentum is taken here to be pψ  of
Eq.(7.3.2) which corresponds to the usual mechanical planetary
concept of orbital momentum.  In the B-S model, there was no other
angular momentum.  In the present case, however, there is included
the additional angular momentum of the electron's turning.
According to Eqs.(7.3.3) and (7.7.9), the added turning angular
momentum is,

                                              t
1p p
n ψ
ψ

=      .                             (7.9.1)

The total angular momentum is then,

                                          1p p 1
nψ
ψ

 
= +  

 
     .                          (7.9.2)

By uniting Eqs.(7.7.4), (7.7.6) and (7.9.2),

                                      
1

n

n h n1 hp
2 21

ψ

ψ ψ
ψ = =

η π π+
    ;                  (7.9.3)

so that when Eqs.(7.9.2) and (7.9.3) are combined, the total angular
momentum is seen to be,

                                         ψ ψ= +
π

hp n (n 1) 
2

    ,                      (7.9.4)

a very familiar form.  Since its first appearance in the early days of
wave-mechanics, it has entered into every situation where angular
momentum is present; and has remained disturbing to student and
thinking physicist alike, with its forced acceptance, unexplained, take
it or leave it. It is now clear that it represents the inevitable form
taken when orbital and turning angular momenta are combined.
Now, since electrons and all other fundamental particles in which
distortion energy binds a φ  distribution, when moving along curved
paths in electric fields, have full turning, the form of the angular
momentum will always be that of Eq.(7.9.4).  It corresponds to the
orbital kinetic energy plus the turning energy,

                              total  ang. mom. t
1T T T T 1
nψ ψ
ψ

 
= + = +  

 
    .           (7.9.5)

It was this condition that led to the choice of 1 nψ for tK .
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7.10.  Three Dimensional Hydrogen Atom: In the above solution for
the hydrogen atom, only two degrees of freedom were considered;
whereas, in more complex atoms with two or more electrons, a third
degree of freedom is involved in establishing the relative positions of
two or more orbit planes.  Fortunately, the three dimensional analysis
of a hydrogen atom is only slightly more complicated than that given
earlier.  Since only a few steps are different, the analysis will be
sketched here briefly, using the coordinates ( r, ,θ α ) diagrammed in
Figure 7.10.1.
     First, the kinetic and potential energies are,

           ( )2 2 2 2 2 2 2 20m
T r r r sin  

2
= + η θ + η θ α"" "    ,   

2eV
4 r

= −
π

   .     (7.10.1)

The related momenta become,

                                 2 2 2
0p m r sin  kα α= η θ α ="     ,

                                                                                                (7.10.2)
       2 2

0 r 0not constant    ,    not constant   . p m r    ,   p m r   ,   θ = η θ =" "

Figure 7.10.1 A three dimensional orbit.

Angle α  is not in the plane of the orbit, so p kα α=  represents the z
axis component of the constant total angular momentum.  In the
plane of the orbit, the angle will designated as ψ  as before, and the
total angular momentum p is a constant related to the two
components pα  and pθ  by,

                                    
2

2
2

k
p  p  k

sin
α

θ ψ= + =
θ

    .                   (7.10.3)

So all of the results, related to p and a, found earlier for the planar
orbit are the same as before.  Only the components of p present a
change from the earlier case.
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     The pθ component is the new element in this analysis, and it must
satisfy,

                                    
2 2

1 1

2
2

2

kp d k  d
sin

θ θ
α

θ ψ
θ θ

θ = − θ∫ ∫
θ

     ,             (7.10.4)

which follows from Eq.(7.10.3).  Here, again, the angle θ  does not go
full circle, but rocks between minθ  and maxθ .  A rather convoluted
derivation yields,1

                 
2

1

2 / 2 /

0 0
p d  k d k d (k k )2

θ π η π η

θ ψ α ψ α
θ

θ = ψ − α = − π η∫ ∫ ∫   ,   (7.10.5)

since α  goes through the same number of radians that ψ  does.
     Paralleling the earlier planar derivation, the constant total angular
momentum p of Eq.(7.10.3) shows that the principal quantum number
n acts in  the same way, so the orbit criterion Eq.(7.7.2) can be
repeated here,

                                        
min2

min1

r

Lt
r

 d nh=∫ p si     ,     (n 1,2,3,...)=     (7.10.6)

where,

                       2 2
Lt 0 0 0

ˆˆ ˆm r m r  m rsin   = + η θ θ + η θ α αp r "" "      ,

                                Lt r
p pˆˆ ˆp
r r sin
θ α= + θ + α

θ
p r      .

  In terms of the components, Eq.(46) becomes,

     
min2

min1

r

Lt r r
r

 d p dr pd p dr p d p d  nhθ α= + ψ = + θ + α =∫ ∫ ∫ ∫ ∫ ∫p si    .   (7.10.7)

Again, because the total field equation solution is cyclic in three
dimensions, each of the components of the motion must return to the
cycle start condition to be steady-state; so,

                r rp dr n h=∫    ,   p d n hθ θθ =∫    ,   p d n hα αα =∫     .     (7.10.8)

Combining Eqs.(7.10.7) and (7.10.8),

                                      r r n n n n n nψ θ α= + = + +     ,             (7.10.9)

 ___________________________________________________________________
   1.H.Goldstein, Classical Mechanics, p 301, Addison-Wesley Press, Inc. (1950).
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where the quantum number ranges are,

            n 1, 2, 3, ...,= ∞    ,   n 1, 2, 3, ..., nψ =    ,   n 1, 2, 3, ..., (2n 1)θ ψ= −

                                                                                              (7.10.10)
                             n (n 1), (n 2), ..., 0, ..., (n 1)α ψ ψ ψ= − − − − + −     .

     The limits have been determined purely by physical reasoning
which is somewhat more obvious if a more conventional, completely
equivalent set of quantum numbers is used.  These are,*

Principial q. n.                           n=1,2,3,...,                        (radius a, etc.)

Angular Mom. q. n.                  1,2,3,..., n                       (orbit shape*)

Magnetic q. n.    

 

∞

=!

 orbit   m 1), ( 2),..., 0,..., ( 1)      orientation(= − − − + −





  −     

! ! ! !

(7.10.11)

where,
                                    n n n     ,    m nψ θ α α= = + =!!     ,         (7.1012)
and the orbit shape is set by,

                                        2 n n 1
n n

θ α+
− ε = =

!     .                (7.10.13)

     It is customary to call the second quantum number (conventionally
1−! ,  as  !   is   used   here)  the  orbital   quantum   number,  but

more realistically  !  represents the total angular momentum of the
electron, both orbital and turning (not spin), through the relationship
in Eq.(7.9.4) repeated here,

                                              h p ( 1)
2

= +
π

! !     .                   (7.10.14)

This can be expressed as,

                                           1 h hp 1
2 2

= + = η
π π

!!
!

    .              (7.10.15)

The orbital angular momentum is,

                                                    1 h p
2ψ =

η π
!     .                    (7.10.16)

______________________________________________________________________________________
 * WARNING:  ! is not the conventional orbital quantum number, but is increased by 1.
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Physically, the circular orbit where  n=!  is certainly a reality, and
the 0=!  case, as discussed earlier, is not regarded as a pseudo-
stable state, so the range of  !  is from 1 to n.
     The third, or magnetic quantum number is not significant in any
single free hydrogen atom because the one electron can take any of
the orbits allowed by n and !  with any orientation in space; except
that, because of the proton's magnetic moment, there is a tendency
for the orbit to be perpendicular to the magnetic field lines with the
magnetic moment of the electron orbit oriented in the direction
opposite the proton's magnetic moment.  Physically, this is a very
small effect that is normally overshadowed by other conditions.  In
certain experiments where hydrogen atoms are exposed to an external
magnetic or electric field, the external field provides an axis relative to
which the various orbits designated by m!  can be shown to be
occupied by the hydrogen atom's single electron.

7.11  The Free Hydrogen Atom:  This section will present the
structure of the three innermost sets of orbits and their total
momenta (including spin) and magnetic moments for a hydrogen atom
free of any external electric or magnetic fields.  This is something that
no present textbook can do because of the non visualizability of the
QM ensemble approach.  Whenever modern textbooks try to describe
the various orbital states, they are forced to immerse the atom in
some form of external field.  The ensuing complication completely
obscures the simplicity of a free atom.  Here the task is to visualize a
single, deterministic atom in a field free region.
     So far, nothing has been said of the atom's magnetostatic field,
although it plays a significant role in both the atom's structure and in
its radiation process.  The magnetostatic field of a single, circular
filament of current is often used as a starting point for the
description.  A detailed discussion can be found in Sections 9.4, 9.6
and 9.7.  All that must be said at this point is that the orbiting
electron in each orbit creates a vortex magnetic field, roughly dipole in
form.  When the atom radiates a photon, an electron is falling from
one orbit to another, generally smaller.  Since the smaller orbit has a
smaller magnetic field, the difference in magnetic moment is carried
away by the emitted photon along with the difference in angular
momentum.
     As discussed earlier, n is the usual quantum number that fixes
orbit size a and energy E,

                           
2 2

2
0

n h a
m e

=
π

   (A)      ,     
2e E

8 a
= −

π
   (B)     .  (7.11.1)
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Figure 7.11.1
Orbiting electron turning and spin

Orbit shape is set by nψ .  The

electron is spread out laterally,
because of its kinetic energy,
and has an oblate spheroid
shape.  Also, in the electric field
of the proton, it "turns" (in
addition to the spin) so its
shape axis is along the orbit.
The spin aligns itself with the
electron shape axis.  Figure
7.11.1 shows the electron,
moving in orbit at velocity u ,
turning and spinning.

Total vector angular momentum

     The basic orbital angular momentum is,
                                             2

0p m aψ = ω      ,                          (7.11.2)

as predicted by Newton's laws.  However, because the electron's shape
"turns", in the plane of the orbit, one turn per electron period, this
"turning" angular momentum adds to pψ  to give a total angular

momentum,
                                        ( )t tp p p 1 K p  ψ ψ= + = +     .              (7.11.3)

When atoms are quiescent, the turning factor tK  is related to the orbit
shape through,

                                                     t
1 K
nψ

=      .                       (7.11.4)

Combining Eqs.(7.11.2), (7.11.3) and (7.11.4), the total angular
momentum, before adding spin is (see Section 7.9),

                                          hp n (n 1)
2ψ ψ= +
π

     .                    (7.11.5)

At this point, before discussing the total vector angular momentum,
 J , and in order to be close to the conventional notation, the
substitutions 1

2S = σ = "  ( h/2= π" ) and L p=  can be made. It is
customary, in ensemble quantum physics, to use the same form that
appears in Eq.(7.11.5) for S and J; i.e. s(s 1)+ "  and j( j 1)+ " .
However, from the present point of view, there is no physical
justification for this, because S and J do not have any extra turning



168

components.  Therefor, the vector spin and total vector angular
momentum become,
                                      1

2
ˆ ˆ ˆS      ,      J= = =S S S J J"     ;          (7.11.6)

and there are no magnetically induced precessions of these vectors
involved in the free atom.
     It is clear from Figure 10 that the spin vector and the orbit vector
are always perpendicular to each other; so, from Eqs.(7.11.5) and
(7.11.6), the total vector angular momentum = +J L S  has a
magnitude,

                                2 2 1
4 J L S n (n 1)  ψ ψ= + = + + "     .          (7.11.7)

This very simple equation for J will not be found in the literature,
since it depends on the free atom analysis not available to modern
physics.
     Eqs.(7.11.1) and (7.11.5) give the energy and angular momentum
for each orbit.  Referring again to Figure 7.7.1, Table 7.8.1 lists some
of the values related to those orbits.  The radii are given in terms of
the Bohr radius,
                                          9

0a 5.2918 10−= ×      ,         cm      (7.11.8)
a convenient unit.  The atomic vortex is observed as the atom's
magnetic moment,
                                                  Bnψµ = µ      ,                          (7.11.9)

where B µ  is the Bohr magneton.  Values of µ  for the inner orbits of
hydrogen are listed in Table 7.11.1.

TABLE 7.11.1
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7.12 Multi-electron Atoms: It is often stated, inaccurately, that the
deterministic ("classical") approach to the atom "failed" when multiple-
electron atoms were considered.  What failed was the mathematical
approach to the three-body problem, aided and abetted by the
calculational success of wave-mechanics and the obfuscation of its
attendant philosophy.  Certainly, based on the present work, there is
no obvious reason to suspect that a completely deterministic
calculation of any atom cannot be made.  Given, the task is
horrendous.  But, even the earlier Investigations of Bohr, Kimble, Van
Vleck, Born and Einstein into the He atom and of Pauli and others
into 2H + , although they did not succeed well enough to prevent the
discarding of such approaches by almost all physicists, managed to
contribute enough to keep some embers burning.  Now, at last,
stimulated by half a century of improved mathematical techniques
and computer developments, some support for the deterministic
approach appears to be building.  Not necessarily because the recent
investigators believe in that underlying truth; but because at least
they have taken the proven position that the "semi-classical
quantization" techniques give considerably simpler approximate
solutions with as much accuracy as the corresponding approximate
solutions of quantum mechanics.  The added benefit, of course, is the
ever present physical picture allowing complete visualization.
     Take, for example, the analysis of the He atom by Leopold,
Percival, and Tworkowski.1  In comparison with the calculations of
first order perturbation theory in quantum mechanics, the results
were quite good, with promise of improvement with further work. Even
closer agreement was obtained by Strand and Reinhardt2 in their
study of 2H + , where the differences from the exact results were less
than a fraction of a percent.  In fact, a significant number of papers of
this general class has been published in the last few years.  Not in the
same vein, but closely related, are the numerous articles on collision
processes, starting, perhaps in any significant way, with Gryzinski.3
In a literally monumental series of papers, he managed to trigger an
avalanche4,5 of investigations into classical (i.e., deterministic)
collisions.  First, between particles; but, with enlarged scope, finally
____________________________________________________________________________________
 1. J.G.Leopold, I.C.Percival & A.S.Tworkowski, J.Phys.B: Atom.Molec.Phys. 13, 1025
     (1980).
 2. M.P.Strand & W.P.Reinhardt, J.Chem.Phys. 70, 3812 (1979).
 3. M.Gryzinski, Phys.Rev. 115, 374 (1959), 138, A305, A3332 & A336 (1965);
     Phys.Rev.Lett. 14, 1059 (1965), 24, 45 (1970).
 4. Only a few for example: R.C.Stabler, Phys.Rev. 133, A1268 (1964). A.E.Kingston,
     Phyn.Rev. 133, A1529 & A1537 (1964). R.H.McFarland, Phys. Rev. 139, A40 (1965).
     E.Gerjuoy, Phys.Rev. 148, 54 (1966). K.Omidvar, Phys.Rev. 177, 212 (1969).
     J.D.Garcia, Phys.Rev. 177, 223 (1969).
  5.Summarized by M.R.H.Rudge, Rev.Mod.Phys. 40, 564 (1968).
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between atoms, di-atoms, etc., as represented by such groups as W.H.
Miller, et. al.1  Again, along a somewhat different line, a semi-classical
radiation theory has appeared; typified by the work of E.T. Jaynes and
F.W. Cummings.2
     Taken together, all of these publications plus the development here
militate for the acceptance of the position that, internally, all atoms
are deterministic and calculable by ordinary planetary mechanics.
Every indication is that these methods and techniques will be refined
and improved; so that with time, aided by computers, the labor of
working out the atomic structures, the periodic table, etc., will be
completed.  Completed, incidentally by entirely "classical" procedures.
Some may argue that the presence of h and dν , etc., is not "classical".
Certainly the picture evolved in the preceding chapters and sections is
"classical" in that it is based on cause and effect; simple extension of
mechanical principles; no mysterious space-time and no mystic
regions, shapes, processes, rituals or tabus.  It involves no paradoxes,
and no non intuitive phenomena.  The point has been reached where
the artificial division between "classical" and "modern" physics should
be abandoned.  The mere presence of a constant, h, in much of the
formalism only indicates that the ether has properties that can be
related to a few constants like 0c  and h.  The latter is derivative, just
as 0c  is, and the fundamental constants are those given in Table
2.10.1.  Moreover, in the works cited above, which should be
examined for an imense number of references not quoted here, many
so called quantum effects have been calculated deterministically.
Nothing but hard work to be done and common sense to be used
stands in the way of all such phenomena being explained in a similar
way.
      The author shall resist the temptation to develop the whole atomic
scene.  In the present case, the most serious changes that should be
made related to atomic structure are first, an acceptance of a clear
structural picture of the atomic machines, and second, a process of
clearing up the loose language used in that field, which often reverses
the role of cause and effect.  The picture sketched in Section 7.10 can
be expressed most effectively in the over-simplified graphic form of
Figure 7.12.1. Here the meanings of the three quantum numbers n,
! and m!  can be better understood.  The true picture is not
presentable  in  this  static  form  because  of  the  effects  of  the orbit
_____________________________________________________________________________________
 1.W.H.Miller, J.Chem.Phys. 53, 1949 (1970), 81, 3573 (1984); Plus more than twenty
     papers with collaborators.
 2. E.T.Jaynes & F.W.Cummings, Proc.I.E.E.E:. 51, 89 (1963). M.D.Crisp & E.T.Jaynes
      Phys.Rev. 179, 1253 (1969). C.R.Stroud,Jr. & E.T.Jaynes, Phys.Rev.A, 1, 106
      (1970). E.T.Jaynes, Phys.Rev.A, 2, 260 (1970). R.K.Nesbet, Phys.Rev.Lett. 27, 553
      (1971).
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Figure 7.12.1 Allowed atomic orbits through n=3.

recessions, mass variability, spin, etc.  Nevertheless, Figure 7.12.1
goes far in making the atom visualizable.
     The simplest multiple electron atoms are those with many
electrons in closed inner shells and one valence electron.  Subject to
certain well known assumptions that permit the closed shells and the
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nucleus (of many protons and neutrons) to be lumped together and
represented by a modified potential, the analysis is very similar to that
given for the hydrogen atom.  The principal difference is that the
allowed orbits are all closer in to the center, but the various values of
n, !  and m!  are all the same.  That is, no new allowed orbits are
created as the larger atoms are built up.  This is still true in atoms
with two or more valence electrons.
     Figure 7.12.1 represents two conditions at once.  First, as
nucleons are added to the nucleus and electrons are added externally
to match, starting with the innermost orbit n = 1, !  = 1, m!  = 0, and
filling each successive layer, all of the orbits are filled in order until
the next step is n = 3, !  = 3.  Beyond that point a number of cases of
electrons filling orbits out of order are observed, but the general trend
Is to follow close to the simple order represented in Figure 7.12.1.
Second, all of the empty orbits are available to electrons excited from
an inner orbit, and these are responsible for the observed spectra
generated as excited electrons drop back into vacated lower energy
orbits.  The relationship between the orbit structure represented in
Figure 7.12.1 and the periodic table, valence, and all the other
important chemical and physical properties of atoms are very well
presented in any book on modern physics.1
      In connection with the first condition, i.e. the filling of inner
orbits, an example such as nitrogen will be helpful.  Both its n=1, ! =1
and its n = 2, !  = 1 orbits are full (2 electrons each), and its n=2, ! = 2
orbits m!  = - 1, 0 and + 1 have one electron each.  It is reasonable to
understand the behavior of these three electrons in terms of their
mutual electrostatic repulsion; i.e. they keep as far away from each
other as possible, while still following orbits allowed by their
sustaining waves.  Probably, instead of being perpendicular to the
plane of the paper, as shown, they are arranged more like a propeller,
i.e. twisted out of the plane.  Since these three orbits are the only ones
allowed in that n and !  level, the question can be asked, "what does
the next electron do?" "Why does it not go into one of those orbits with
one of the other electrons?"  The answer is, of course, that it does.  In
fact, as is well known, every orbit shown in Figure 7.12.1 takes two
electrons to fill it.  Certainly the next obvious question is, "why two
and not three?"  To answer this question, one further physical
condition must be included in the picture of the atom; the electron
spin.  The quantum numbers n, ! , m!  and the orbits they represent,
illustrated in Figure 7.12.1, were derived using a simple planetary
analysis  of  an  assumed  artificial separatist force model of the atom,
___________________________________________________________________
  1. G.F.Lothian, Electrons in Atoms, Butterworths, London (1963).
      A.Beiser, Perspectives of Modern Physics, McGraw-Hill, N.Y. (1969).
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tracing the center of motion of the electron.  The fact that during the
electron's creation it had imparted to it a spin angular momentum in
order to conserve the system momentum was simply ignored in the
electron solution of Section 3.10 and in Section 7.10.  Nevertheless,
the results of this separatist model analysis are astoundingly
accurate; and yet there is much more involved.  The true picture, as
stated many times in previous sections, is actually that of many little
bumps and hollows of ether density all gyrating under the control of a
strict set of rules (the ether field equations), policed by their subtle
sustaining waves.  How many particles are allowed in any region, how
they move, etc., are things that are totally decided by the field
equations.  This includes each electron's spin, which is retained by it
until the whole particle field is annihilated, if ever that occurs.  So, it
is in the total three dimensional field equation solution of the atom
that the fact no two electrons can ever orbit the same path with
parallel spins is established.  Such a condition would be equivalent to
allowing two distinct solutions (one or two orbiting electrons) of the
field equations with exactly the same boundary conditions.  Therefore,
calling the spin quantum number 1

2sm  ( )± , the spin is either right
handed or left handed with its axis along the orbit, and no more than
two electrons per orbit are allowed.  A third would violate the observed
rule that no two electrons with exactly the same four quantum
numbers n, ! , m! , sm  can exist in any one atom.  Conventionally,
this is known as Pauli's exclusion principle; but as such is merely an
observation.  In the ether theory, it is a derivable fact.

7.13 The Ether Datum Fluctuation: Based on the preceding
discussion, it will be assumed that the motion of particles, i.e. bumps
and depletions of ether with their ! -waves, can be visualized as
deterministic.  Nevertheless, because of a residual fluctuation always
present in the datum ether, an electron, for example, will move along
any path with a continuously varying erratic perturbation of that
path.  From the separatist force point of view, the particle appears to
take on and give off small amounts of energy (distortion) as it
vacillates.  Photons bombarding the particle could account for the
electromagnetic (transverse) fluctuation of Nernst, Braffort, Marshall,
and Boyer.  On the other hand, if the datum fluctuations were merely
scalar variations in density, the sum of numerous longitudinal waves
going in all directions, the result would still appear like ordinary
Brownian notion. No further speculation along these lines can be
made now.
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7.14 Line Widths of Deterministic Atoms: Earlier, correction of
loose language was mentioned as one of the hoped for gains from a
deterministic atomic theory.  This loose language often appears as
part of the description of line widths and rates of return from unstable
to stable states.  Numerous examples will be obvious to the reader
when he attempts to relate the deterministic picture being constructed
here with the exposition in almost any text on quantum mechanics.
Only one small aspect of the overall confusion will be discussed here
as an illustration.
      Workers who are accustomed to think in terms of bandwidth-time
products commonly used by engineers are often misled in atomic
studies by the apparent failure of some of the simple rules about line
widths and pulse lengths.  For example, a pulse of microwave
radiation generated by some electrical circuit has a bandwidth that is
inversely proportional to the pulse length transmitted.  However, when
the fluorescence line width of say a neodymium:YAG crystal (pumped
to excite its 3

2

4 F   level) is measured, that line width bears no obvious

relationship to the pulse length (life-time) of the fluorescence that
results.  A mixture of classical physics and conventional quantum
mechanics is needed to properly explain this.  The usual explanation
is always incomplete, and sometimes erroneous.  To correctly describe
the complementary way that classical physics and quantum statistical
mechanics combine to explain the phenomena, it is best to start with
a discussion of a free atom spectrum.
     If a single free atom is excited by photon impact with one of its
electrons so that the electron takes up an orbit farther out, a simple
succession of events follows.  After reaching the outer region, the
excited electron orbits along its planetary path, with energy constant
except for the small buffeting of the datum fluctuations, and, in the
non-circular orbits, the oscillations due to electron
expansion/contraction.  As diagrammed in Figure 7.14.1, after a
delay period determined by the orbit and the fluctuations, the
buffeting has so perturbed the orbit that the exchange of energy
between  the  electron  and  the  datum  cannot  be stabilized; and the

Figure 7.14.1 Excitation, delay and radiation in a single free atom.
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electron begins its inward spiral and radiates.  During a decay period,
its energy is depleted by the radiation and it finally settles into its old
orbit.
    The radiation sequence during the decay period can be described
completely by photon production, and the associated radiation
linewidth  is  that  of  the  spectrum of a single photon.  When a single
atom is not free,  i.e. when it  is immersed in a gas or a solid host, if it
is excited,  the  photon  generation  process  during  its  decay is often
shortened and the spectrum of its generated photon broadened by the
now increased buffeting of the field surrounding it.  All of the decay
processes that specifically broaden the individual photon spectrum
are known as photon broadening mechanisms.  Where a whole
ensemble of excited, identical atoms form a gas or is immersed in a
solid host, the ensemble spectrum formed by any photon broadening
mechanism results from the superposition of all of the essentially
identical photons, each with a spectrum as broad as that of the
ensemble.
      A second, important characteristic of the photon radiated by a free
atom during its decay period, is its center frequency.  As a result of
the datum fluctuations, there is a shift of the energy difference
between the initial and final orbits; for, although the fluctuations
cancel out during the electron's descent from one orbit to the other,
the instantaneous starting and ending energies affect the photon's
center-frequency (average orbital frequency) through the total field
equation solution of the atom and the datum field.  Since the datum
field is only known statistically, only an ensemble picture of the
photon center-frequency shift can be calculated.  When the ensemble
comprises a gas or is immersed in a solid host, the center shifting of
photons is often increased by the greater buffeting of the surrounding
field, giving a more broadened observed spectrum.  All similar decay
processes are known as center shift broadening mechanisms.  Some
writers identify photon and center shift broadening as homogeneous
and inhomogeneous respectively, but the correspondence is not
always exact.  Both broaden the spectrum; but the former has all
photons essentially identically broadened with identical center
frequencies; whereas the latter has unbroadened photons center
shifted.
     It was Lorentz1 who pointed out that certain characteristics of
radiation from an atomic transition can be described accurately by an
equivalent oscillating electron.  The ether oscillations of an actual
orbiting electron undergoing the transition from one state to another
produce a photon that, in some respects, is equivalent to one
produced by a simply oscillating electron initially displaced from a
_________________________________________________________________
    1. H.A.Lorentz, The Theory of Electrons, 2nd Ed. p 53,259, Dover Publications Inc.
        N.Y. (1952).
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center of equilibrium.  Commonly, the decay time and spectral line
shape due to photon broadening are calculated from an equation
representing a damped oscillation.  The following is an abbreviation of
a nice development by Stone.1    In  the  standard   damped   oscillator
equation for a free atom,

                                          
2

2 r
p2

0

Fd s s
mdt

+ ω =     ,                        (7.14.1)

s represents the displacement of the electron from its equilibrium
position, pω  is the undamped radiation frequency, and r 0F /m , is the
damping term.   The damping is caused by the electron's own field, as
it radiates, and is found from (see chapter 11),
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The final equation comes from the combination of Eqs.(7.14.1) and
(7.14.2),
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In somewhat oversimplified form  (see Stone) the solution is a damped
sinusoid,

                                           t
0 ps s cos t−α ′= ε ω     ,                      (7.14.4)

where,
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′ω = ω − α ≅ ω     ,                       (7.14.5)

and,
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Therefore, the energy radiated is also an exponentially decreasing
quantity,
                                     p2 t

0 0
tE E E −− τα= ε = ε     ,                       (7.14.7)

where the photon time constant pτ  is related to α  by,
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    .                    (7.14.8)

The time constant pτ  is often called the "Classical time constant"; but
here it will be called the free atom photon decay time, being identified
__________________________________________________________________
    1. J.M.Stone, Radiation and Optics, p 247ff, McGraw-Hill Book Co. N.Y (1963).



177

with that portion of Figure 7.14.1 during which the particular electron
radiates, i.e. creates a photon.
     Equation (7.14.4) also represents the space distribution of the
photon wave that propagates away from the radiating atom, assuming
that the photon velocity is constant throughout. Although no
conventional model of a photon exists, it is possible to utilize some of
the measurements on photons to give a rough picture of a
representative form.  A number of experiments1 seem to show that a
photon is a long needle-like wave train.  At 1.06λ = µ , for example, the
photon emitted by a free neodymium atom appears to be 1526 cm
long to the point where 0 0 pc t c= τ , its diameter is less than

55 10−× cm, and is more likely of the order of 810 cm− .  From its
beginning to the point 0 0 pc t c= τ  it has 71.43 10×  wave cycles.
Although this model might only be roughly like the actual photon, it is
close enough to be used in any analysis of photon interactions.  A
Fourier  analysis  shows  that such a wave train has what is called the
Lorentz distribution for its spectrum,
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    ,                      (7.14.9)

where here again pν  is the undamped or center frequency, and pI  is
the center frequency intensity of the observed single photon radiation.
In this case, p∆ν  represents the half power band width, and is related
to the damping constant and decay time constant by,

                                           p
p

1
2

α
∆ν = =

π πτ
    ,                       (7.14.10)

     Eqs.(7.14.1) through (7.14.10) apply to a free atom, where the only
damping is the electron's own field.  An atom in a gas or a solid host
is subjected to a continuous bombardment by the surrounding lattice
atoms or the gas molecules.  The result can be a larger instantaneous
distortion of the electron's field with a correspondingly increased
instantaneous intensity of energy released per oscillation and a
shortening of its decay time.  This produces a shorter photon with
more ether distortion in its individual waves.  Since the electron,
during the photon generating process, was exposed to this excess
random buffeting, the photon has essentially a phase-modulated wave
structure; and its bandwidth is greater.  This preserves
_____________________________________________________________________________________
  1. A.E.Ruark & H.C.Urey, Atoms. Molecules and Quanta, Vol I, p 81 ff, Dover
      Publications, Inc. N.Y. (1963).   
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the bandwidth-time relationship of Eq.(7.14.10), and the spectral
shape of Eq.(7.14.9).1
     Unlike the photon broadened spectrum, just described in a
completely deterministic way, the center-shift broadening must be
calculated statistically.  The source of the statistical variation for a
free atom is the datum fluctuation, and the formalism used is
quantum statistical mechanics and Schroedinger's equation.  It
should be emphasized that both the Shroedinger  and the Dirac form
of quantum mechanics yield the same ensemble results as the atomic
theory of the previous sections if the correct mechanics is inserted
(electron turning).  For ensemble calculations, the QM approach is
more practical.  Conventionally, the interaction of matter and
radiation is formalized by considering an ensemble of free atoms as a
separate system; then, considering a box-like space full of quantized
radiation of all modes as a second, separate system; and finally,
bringing them together via an interaction energy (small perturbation).2
This first order theory still yields sharp spectral lines, however, unless
the fact that the population is decreasing exponentially during the delay
period is injected into the formalism.3  Such a step provides time for
the fluctuations to influence the energy levels of the initial and final
orbits.  Intuitively, the excited atom population should decrease
exponentially; and experimentally this is borne out.  More will be said
about this when the delay itself is discussed.  Meanwhile, the effect of
the radiation on the sharp energy levels of the original free atom is
represented in Figure 7.14.2.  The line widths of the various
transitions  are determined by the spread of each of the energy levels,
which depends upon all of the possible transitions to levels below the
level evaluated.  The original sharp levels are now varied so that the
probability that any atom in a particular excited state has an energy E
is given by the Lorentzian distribution,4
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where 0E  is the nominal energy level of the state and E∆  is the
"width" of the level.  In Eq.(7.14.11), a slight shift of the level has been
neglected.  If an atom changes from state (2) to state (1), i.e. from
energy 2E  to energy 1E  in  the  specific case shown in  Figure 7.14.2,
 ___________________________________________________________________
 1. A.E.Siegman, An Introduction to Lasers and Masers, p 103, McGraw-Hill Book Co.
     (1971).
 2. W.Heitler, The Quantus Theory of Radiation, 2nd Ed. p 102, Oxford U. Press (1947).
 3. V.Weiskopf & E.Wigner, Zeits.f.Physik. 63, 54; 65, 18 (1930).
 4. H.E.White, Introduction to Atomic Spectra, p 422, McGraw-Hill Book Co. N.Y.(1934)
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Figure 7.14.2 Center-shift broadening from datum fluctuations.

the photon produced in the transition will have a center frequency,

                                            2 1
21

E E
h
−

ν =     ,                         (7.14.12)

generally different from the nominal center frequency.  For the total
ensemble, the center frequencies of different atoms' transitions can
vary over a range governed by the widths of both levels, so that the
line width of the center shift broadened spectrum is,
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The overall result of this center shifting is that any ensemble of free
atoms will produce a radiation spectrum (neglecting the radiation
reaction) that has a Lorentzian distribution,
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Notice that the form of Eq.(7.14.14) is exactly the same as that of
Eq.(7.14.9).   Except for that, they are completely different, since one
represents the spectrum of the individual photon as it is generated
and the other represents the whole ensemble of all the center-shifted
frequencies of all the photons generated by electrons making that
transition.  It is repeatedly claimed in books on quantum mechanics
that Eq.(7.14.14) is the quantum mechanical "equivalent" of
Eq.(7.11.9).  Nothing could be more untrue, as has been indicated.
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     The conventional derivation uses transverse electromagnetic waves
to describe the radiation in the various modes in the box.  While this
is correct for a photon field in which the atomic ensemble is
immersed, the question of the form of the datum fluctuations should
be left open.
     If the ensemble is immersed in a low pressure gas (or composes
one),  where  the  time   between   collisions   is  long,   the  photon  is
generated between   collisions   and   is   not   broadened.   However,
the  simple translational motion of each radiating atom converts the
center frequency and translates the whole spectrum of its one photon
by the doppler shift.  The ensemble therefore exhibits a broadened
spectrum, gaussian in shape, whereas the individual photons are
radiating according to Eqs.(7.14.1) through (7.14.10).  Similar shift
effects occur in solids as the result of fields imposed by crystalline
strain, lattice defects, and inhomogeneities.  Except for the datum
fluctuation generated center-shift, all of the other center-shift
mechanisms generate gaussian distributions, as the result of the
central limit theorem applied to the whole ensemble.  Most gaseous
and solid host cases involve both photon and center-shift broadening
simultaneously.  Thus, p∆ν  and c∆ν , which are quite different in
cause and magnitude, must be combined, and the resultant
distribution is called a Voigt profile,1 neither a Lorentzian nor a
gaussian shape.
     Returning now to the time delay before the photon forming process
begins; the delay time dτ  is unrelated to the spectrum and decay
time, except that the mechanism that determines both is the buffeting
of the datum fluctuations and also the thermal vibrations where
present; the delay time being how long, typically, the electron in orbit
must sustain the buffeting before correlating its motion with the
transition configuration, and the decay time being how many bumps
the electron sustains and how many orbits it makes during the
transition.  The delay time can be visualized better by neglecting the
decay times, as depicted in Figure 7.14.3.  Using the time dependent
Schroedinger equation applied to the case of an ensemble of excited
ions immersed in a fluctuating field, it can be shown that for any
particular ion, the delay time is determined statistically, i.e. there is a
small probability,
                                               21p A dt=     ,                           (7.14.15)
that its excited electron will begin radiating and decaying from state 2
to state 1 during any short time interval dt.  The quantity 21A is known
as the Einstein spontaneous emission coefficient.  Eq.(7.14.15) has
validity only in the limit of very short times, and p really expresses the
  __________________________________________________________________
    1. D.W. Posener,  Austral.J.Phys. 12, 194 (1959).
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Figure 7.14.3 Delay time distribution of decreasing excited population.

idea that the fraction of ions in state 2 that drop out during dt is,

                                        2
21
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N
− = =     ,                      (7.14.16)

where 2N  represents the total excited ion population.  Thus, 21A is the
rate of decrease of population per unit population,
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and is a constant for any given system.  Clearly 21A  has nothing  to do
with the decay time or the radiation coming from any individual ion.
Eq.(7.14.16) can be solved for the population of the excited state as a
function of time. The result is,
                                            21A t

2 2N (t) N (0) −= ε     ,                   (7.14.18)
which indicates that the population decreases exponentially with a
fluorescence time constant,
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This is exactly what was expected since it was introduced into the
quantum statistical mechanics calculation that allowed the center-
shift broadening of Eq.(7.14.14).
      As a practical example of the times and bandwidths, the Nd:YAG
rod mentioned at the beginning of this section has very representative
numbers.  When excited to fluorescence, the observed line width

( 41.064 10 cm−λ = × ) at room temperature is 11
f 5.66 A 1.50 10∆ν = = ×

$

cps, and the time constant of the fluorescence decay curve is
p 230 sτ = µ .  Clearly, the latter has no relationship to

                                  12
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    .            (7.14.20)
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At the fluorescence wave length, 41.064 10 cm−λ = ×  , the free-atom,
undamped center frequency is 14

p 2.82 10ν = × cps.  From Eq.(7.14.8),
8

p 5.09 10−τ = × sec; and, using Eq.(7.14.10), the free atom photon

decay linewidth is 6
p 3.13 10∆ν = × cps.  Based on the datum

fluctuation, the free atom center-shift linewidth c∆ν  of Eq.(7.14.13) is
of the same order of magnitude.  Thus, the free atom combined
linewidth p c∆ν + ∆ν  is of the order of 710 cps.
      When the ions are immersed in a YAG rod, the lattice vibrations at
room temperature cause the combined linewidth to broaden to the
value given above ( 11

f 1.5 10 cps∆ν = × ).  Reducing the temperature to

near zero oK  shrinks the linewidth to a fraction of an Angstrom,
showing a small residual crystal strain, clearly indicating that most of
the line broadening is thermal in nature.  Separating f∆ν  into its
components p∆ν  and c∆ν  is not possible here for several reasons.
One is that the line shapes are both Lorentzian, obviating Voigt profile
techniques.  Another is that, in spite of the fact that one is a center-
shifted broadening, the rapid thermal fluctuations ( 1210≅ per second)
cause every ion in the ensemble to pass through every center
frequency represented in the broadened spectrum many times per
second so that only the most sophisticated kind of hole burning
experiment could provide any distinction.  Thus, the time in
Eq.(7.14.20) represents the thermal variation for both processes taken
together.
      Turning now to the delay time, d 230 secτ = µ , the transitions
that produce the spectral line of interest are all within the 4f shell.  A
burst of photons passing through the host rod impacts many of the

3Nd + valence electrons in the 34f orbits of numerous members of the
doping ensemble.  These electrons are physically transported into
pseudo-stable orbits outside the 4f shell from which they rapidly pass
(through radiationless transitions, stimulated by rapid manipulation
of the site fields around the ions due to lattice vibrations), and
gradually they settle Into the 34f  orbits again, but with spin/orbit
states that are more energetic than the ground state.  These more
energetic states are metastable, i.e. on the average it takes a long time
before the lattice buffeting and the datum fluctuations cause the spins
and orbits to change to return an electron to the ground state.  The
passage of the population from the metastable state to the ground
state, observed throughout the whole host, produces a fluorescence
radiation decreasing exponentially as the remaining excited
population decreases.  The time constant of this process is very long
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because, in the free atom, transitions within the 4f shell are forbidden
(i.e. dτ → ∞ ).  When the ensemble is immersed in the host rod, the
electric fields surrounding the ions break the symmetries and shorten
the lifetime.  In the pumped states outside the 4f shell the excited
electrons are strongly affected by the lattice vibrations, resulting in
rapid ( 9

d 10 sec−τ ≅ ) radiationless transitions back to the excited 4f
states. But, these latter are shielded from the lattice by the outer 5s
and 5p shells; so, although the transitions within 4f back to the
ground state are permitted, the fluorescence time constant is still a
relatively long one,  d 230 secτ = µ .
     By now it should be clear that statements indicating that Newton's
laws and Maxwell's equations do not apply inside the atom are simply
not true.  Newton's laws and classical mechanics apply without any
modification.  Maxwell's equations, when recognized as the weak field
equations they are, also apply where they should reasonably be
expected to.  The need to make small changes in Maxwell's equations
for application to the strong field regions inside the particles is a
normal classical condition that leads to the visualizable planetary
form of atom given here.
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CHAPTER 8

RODS, CLOCKS AND PLUMB BOBS

8.1 Introduction:  In Section 1.4 the  broad concept of physics was
said to be a combination of knowing and measuring.  By knowing is
meant the understanding, through cause and effect explanations, of
the physics closely related to each new experiment.  Generally the new
experiment, when explained, adds to the understanding. The relative
importance of measurement and "knowing" are brought out here by
the fact that not until this 8th chapter was there any need to discuss
measurement in detail.  The intuition and "knowledge" common to
every day experience was sufficient to carry the work this far.  Now,
measurement must be discussed because of the arrived at awareness
of the non-rigid, variable nature of layered particles out of which all
measuring devices are made.
     In modern textbooks, the discussion of measurement usually
begins and ends with a description of Einstein's theory of Special
Relativity; but even today, the Earth's surface is peppered with
literally hundreds of dissidents, some knowledgeable, some not, who
are confused by the non-intuitive explanation of the observations and
calculations SR is used for.  Although it is clear to almost any
practicing physicist that the Lorentz transformation is an essential
tool in any quantitative study, it is equally clear that, for 104 years
the explanation of the meaning of the observations and calculations
continues to be disturbing to many.1
     Actually, Einstein's original paper didn't try to explain the results,
but just showed that Maxwell's equations required only a few
restrictions to give the Lorentz transformation equations.  The
confusion arises from Minkowski's space-time explanation (see Section
1.9).  In looking at the results of the Lorentz transformation, if the
question was asked, "How can the measuring rod of each of two
observers be shorter than the other's?"; the explanation was, "space-
time works in mysterious ways".  This was the same as saying, "The
spirits drank it" to explain evaporation.  Cause and effect were
abandoned and replaced with paradox.  There was no excuse for it.
     The present chapter is an attempt to reconcile the successful
formalism of the Lorentz transformation with an intuitive, non-
paradoxical explanation of the physics based on cause and effect.

____________________________________________________________________
  1. See the discussion of A. Ungar, Am. J. Phys. 56, 814 (1998) and R. W. Brehme,
      811.  These also have important references.
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8.2  Observers and Labs: Most experiments are conducted in
laboratories that are rooms with benches and equipment (eg. rods and
clocks) used to measure, among other things, length and time
intervals.  These rods and clocks, as well as the investigators,
themselves, are made of particles that are quite flexible.  Lorentz and
others have shown that these particles change shape when
accelerated with respect to the ether; although, at any constant speed,
they maintain the particular distorted shape that corresponds to that
speed (see Section 3.10).
     Even more important is the fact that a lab worker can know
immediately if he is accelerating with respect to the ether, because he
senses the acceleration as his body particles are changing shape.
Although rods and clocks are the measuring instruments most
familiar to everyone, because of their common every day use, a third,
and perhaps more important measuring device, is the plumb bob.  To
understand its importance, visualize two observers whose coordinate
systems are platforms upon which they rest, fixed.  In Figure 8.2.1,
the essentials are represented.  The platforms are out in free space
where negligible gravitic action is present.  One platform is moving at
constant velocity u relative to the ether, the other is accelerating
relative to the ether at the constant rate a = K (the cause of the
acceleration is not shown).  The particles making up the plumb bob
and string in the constant velocity system are not changing in any
way, but merely translating through the ether.  Thus, wherever they
happen to be in that system, they stay, and the string is generally just
loosely distributed between the holder and the bob.  Not so in the
accelerating  system.   Here, each particle is being  "forced"  to change

Figure 8.2.1 Observers with plumb bobs.
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shape and gain energy, so that it opposes the change; and thus the
string is stretched taut and the bob points in the direction opposite
the platform acceleration.  In fact, if a spring scale is inserted between
the holder and the string as shown in Figure 8.2.1, the magnitude of
that acceleration can be measured.
     People who understand neither physics nor relativity have been
heard to say, "all motion is relative."  This kind of statement is
confusing.  It is true that the kinematic relationships between the two
observers of Figure 8.2.1 are equivalent; that is, geometrically the
accelerating system "sees" the constant velocity system accelerate
away from it in the opposite direction.  But, both of them "know" that
only the one is Accelerating (with a capital A); because Acceleration is
absolute. It produces an interaction, between each particle's
configuration and the ether, that has physical effects.  This always
comes as a shock to those who believe "all motion is relative".
     The presence of the ether is brought home dramatically to anyone
living in a modern society, because one's body is a plumb bob.  It is
an extremely sensitive detector of Acceleration.  The act of stepping on
the gas or of braking suddenly in a car thrusts the ether's powerful
presence into one's consciousness; whereas the smooth ride at
constant speed on a flat freeway makes it obvious that constant
velocity particles sail through the ether unchanging.  The sad thing
about the last 114 years of ether exile is that it was caused by the
rejection of the ether as superfluous in the constant velocity systems,
totally ignoring the immensely more important Accelerating systems.
Special relativity is to all observers as Newton's first law is to all of
dynamics, almost superfluous.  Yet the ether was rejected for all cases
on the basis of its subtle, negligible appearing role in those few
restricted areas.  Every day, one's own body tests and re-tests the
ether's omnipotent presence.
     To sum up the basic situation, each observer who is Accelerating
anywhere relative to the ether is made personally aware of that
Acceleration by his own body and senses.  Moreover, he can make an
absolute quantitative measurement of that Acceleration by the use of a
plumb bob and spring scale (or other equivalent Accelerometer).
All observers agree on just who is Accelerating and how much, in spite
of the geometrical symmetry in the kinematics of the motion.  When in
doubt use a plumb bob.  A major part of the world's operation involves
dynamics, i.e.  "forces" and Accelerations.
     On the other hand, a constant velocity object is a dull and
uninteresting thing on the grand scale of things.  Its innards are
unchanging, and it does not "interact" with the ether, being the
simplest kind of solution of that medium's rules and regulations.
A set of particles all moving along together form an observer who does
not  sense his  motion, and  cannot  tell  whether  or not he  is  at rest



187

relative  to the ether. Furthermore, a plumb bob and spring scale will
not indicate his motion or the ether's presence.
     It was stated in Chapter 2 that an absolute observer is one with
respect to whom the ether is everywhere at rest in a field free lab.
That is the condition of a third lab observer at rest relative to the ether
shown in Figure 8.2.1.  Since no constant velocity lab (non-
accelerating) observer has any indication of his velocity relative to the
ether, it might seem reasonable to assume that none of those
observers, with a range of velocities, could identify whether or not they
were the absolute observer with u = 0.  Based on the Principle of
Identical Environments (see Section 1.4), it would seem just as
reasonable for any one of them to assume he was the absolute
observer, thus making the calculations for various experiments much
easier.  When this is true will become clear in the following.

8.3  Rod Contractions: Previous chapters have yielded a picture of
the layerons as very flexible constructs in the ether that change shape
and internal distortion as they change velocity.  This raises the
question, "If the particles change as they move, how does this affect
the rods and clocks?"  As first described by Lorentz, a practical
measuring rod consists of a number of particles laid end to end, but
always in neutral pairs or groups in the form of atoms.  These already
have their inner dimensions established by their balance of motions
and deformations.  Conventionally, their "forces" are balanced.
Likewise, the "forces" between the atoms are balanced to determine
the length of the rod.  Similarly, a real clock is composed of many
layerons arranged in various ways.  The fact that there is no "matter",
other than these very flexible bulk layeron constructs in the ether,
accounts for all the changes in the rods and clocks when they move
relative to the main body of the medium.
      First consider a rod constructed of atoms.  Having established a
symbol for its length L, the next task is to find what happens to its
length when it moves at constant velocity with respect to the ether.
Here it will be assumed, as in the earlier chapters, that the absolute
observer who fashioned the rod is at rest relative to the ether.  It will
further be assumed that the ether is not deformed in a large region
outside the rod. The implications of these assumptions, and
objections that an observer cannot know whether or not he is at rest
relative to the ether, will later be discussed in detail; and such
objections will be shown to be pointless.
    When a rod is at rest, its internal "forces" are determined by the

negative  gradient  of φ ;  but when the rod is  in motion with constant
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velocity, the negative dynamic gradient,

                                      
 ∂ φ
 = − ∇φ +
 ∂ 
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tc
VE     ,                    (8.3.1)

conventionally called the electric field intensity, determines the "force".
This quantity was first introduced in Eq.(2.14.2).  Earlier it was shown

that φ  in layerons expands laterally to their direction of motion, yet, if
E is calculated from Eq.(8.3.1) it is found to contract longitudinally. So
Lorentz was able to demonstrate1 (using a point charge field) that
when the rod moves at constant velocity, the dynamic gradient (field
intensity, E ) contours contract in the direction of motion by 1 γ .

Here, the full equations for φ  will be used to get the same result.2

     Using the positron equivalent of Eq.(3.10.16), with Eq.(8.3.1),
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where,
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and the positron is traveling in the x direction at velocity u.  Here, 0r
is an arbitrary contour radius corresponding to the field intensity 0E .
To find the shape of the 0r  contour in motion, equate Eqs.(8.3.2).  The
contraction along the x axis is obtained by setting R 0=  and solving
for the new x,

                                                  0rx =
γ

    ,                                 (8.3.4)

which is the same result obtained by Lorentz using his "point charge"
electron model.
     On the basis of this contraction of the particle E  field, Lorentz
argued correctly that the total rod length L, when a rod moves parallel
_____________________________________________________________________
  1. H.A.Lorentz, Proc.Acad.Sci.Amsterdam, 6, 809 (19O4). Reprinted in The Principle of
      Relativity, Dover Publications Inc. Also see Lectures on Theoretical Physics, Vol 3,
      Macmillan Co. Ltd., London (1931).
  2. R.H.Dishington, Physics, Beak Publictions, Pacific Palisades, CA (1989).
      ………………….., Advances in Fundamental Physics, p. 187, M. Barone & F. Selleri
      Eds., Hadronic Press, Palm Harbor, FL (1995).
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to its length, would contract to,

                                                 m
LL =
γ

    .                                (8.3.5)

Being made of particles that are solutions of the same field equations
as the electron/positron, all material objects contract in the direction of
their motion with respect to the ether.  This is not a mathematical or
philosophical contraction, but a real physical shortening of the rod
moving through the ether.  Cause and effect are acting through the
behavior  of  the particles.  The reality of this shortening is obscured
in  present  day  texts  by  the  introduction  of  a  set  of  symmetrical
equations, thus leading to much confusion.  Those symmetrical
transformation equations cannot and should not be introduced at this
stage of the discussion because they involve a set of arbitrary specific
acts that can only be justified after further development of the
approach used here.  By holding off that part of the procedure until
later, the source of the usual confusion will be obvious and that
confusion will vanish.  It should be quite clear that only one observer is
so far involved.

8.4 Clock Slowing: Clocks moving relative to the ether run slower
than clocks at rest in it.  This is true for all types of clocks, mainly
because clocks are made of particles just as rods are.  Because there
are many kinds of time measuring devices, it is not as easy to prove
the general statement as it was for rods; but if each type is examined,
it always turns out to be true.  Most texts describe simple photon
clocks, where a photon is sent out to a mirror and back, detected, and
another photon sent, etc.  There, the time interval of the moving clock
is increased because the photon path length is longer.

     Another elementary form of
clock involves a mass circling on
the end of a string or fine wire of
negligible mass, as exhibited in
Figure 8.4.1.  When the clock is
at rest, the energy of the circling
mass is,

                                           0
1 2

1
2
0

E
 E

u
1

c

=

−

    ;                            (8.4.1)

where the relationship to its rest  energy 0E  is taken from
Eq.(3.10.24).  Now the clock is moved at constant velocity u in a
direction perpendicular to the orbit (this is not necessary, but
simplifies the discussion).  It is assumed that the motion has been
inaugurated without unduly disturbing the orbiting mass, so that its

Figure 8.4.1 Circling mass clock.
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momentum perpendicular to the clock's direction of motion is
conserved.  The mass now executes a spiral motion through the ether,
and its new total energy is,

                                          0
2 2

2
0

s

E
 E

u
1

c

=

−

    ,                            (8.4.2)

where, 2 2 2
2su u u= +  as seen in Figure 8.4.1.  Using the conservation

of momentum,

                                           2 1
2 12 2

0 0

E Eu u
c c

= ;                               (8.4.3)

which can be combined with Eqs.(8.4.1) and (8.4.2) to yield,

                                       2 1

2 2
1
22
00

s

u u

u u
11

cc

=

−−

     .                      (8.4.4)

Squaririg both sides, cross multiplying  and cancelling like terms,
Eq.(8.4.4) becomes,

                                
2

1
2 1 2

0

uuu       u 1       
c

= − =
γ

    .                (8.4.5)

This result reintroduced into  Eq.(8.4.3) shows that,

                                               2 1E E= γ     .                                (8.4.6)

Thus, the orbital speed of the mass particle decreases, to compensate
for its energy increase due to the motion at velocity u, and just
enough to preserve its momentum, which has no reason to change.
At rest with respect to the ether, the period of the clock is,

                                               1

1

2 r
T

u
π

=     ;                                (8.4.7)

while, in motion with respect to the ether, its period is,

                                              2
m

2

2 r
T

u
π

=     .                               (8.4.8)

So, the period in motion is related to the period at rest by 1 2(r r )= ,

                                        2 1
m

1 2

r u
T   T  T

r u
= = γ     ;                    (8.4.9)
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i.e. the clock runs slower.  Again, this is not an hypothetical change,
but a true slowing of its rate; because it moves relative to the ether
and its changes in deformation and speed produce the effect. All
clocks, no matter how complex, behave in the same way.  Spring
clocks, for example, involve length contractions, energy changes,
velocity  changes and numerous interactions of these, yet they follow
Eq.(8.4.9).  An easier clock to analyze is an atom clock, where the
preceding mass on a string device works in almost the same way,
except that the radius of the electron orbit in the atom is held by only
an electrostatic gradient when the clock is at rest and by a combined
dynamic gradient reduced by a magnetic force caused by the mutual
motions of the orbiting electron and the charged nucleus along lateral
parallel paths when the clock moves. So far, no one has ever found a
clock that did not follow Eq.(8.4.9) when moving through the ether at
constant velocity.
     It should be clear that in using Eqs.(8.3.5) and (8.4.9) only one
observer is involved, and the cause and effect relationship is basic.
Ether properties determine particle properties, since particles are just
stable configurations of ether.  Particle properties determine rod and
clock characteristics.  It was once well known that all of the results of
special relativity can be derived directly from the ether caused
contractions in a completely intuitive way using cause and effect.  On
the other hand, special relativity as presently propounded has no
cause and effect basis.  It is presented on a "take it or leave it", "that's
the way it is" basis by invoking the mysterious "space-time" as its
foundation.  No sensible physicist could choose the latter over the
former.

8.5. Laboratory Classification: The rest of this chapter will
concentrate on how much can be known quantitatively in an
experiment, on explaining some of the techniques used to abet
measurement and on certain odd effects that result from flexible
particles.  It will be assumed that the qualitative actions of plumb
bobs and Accelerating observers are already intuitively understood.
Moreover, the status of so called inertial systems, i.e. the set of
constant velocity observers whose plumb bobs are relaxed, is also
assumed to be the result of intuitively understood extended particle
properties.  Note that as far as real "inertial systems" are concerned,
almost none exist, because of the ever present gravitic fields.  Only
tests run perpendicular to gravitic fields simulate the inertial system
concept.  Perhaps the only true inertial system in the universe is that
which has its boundaries so far out in space that all known stars and
galaxies, etc., are way inside some imaginary box.  Then, the observer
whose motion is matched to that of the average position of all the
matter  and  energy inside the box would be an  inertial  observer.  He
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could not tell if the overall datum ether density dφ  was moving relative
to him  at some  constant  velocity.  This  is  actually the only problem
dealt with by special relativity except in those cases that neglect
gravitic fields as an approximation.
     Some confusion appears in discussions of rod and clock
measurements because of the heavy emphasis on transformations
between moving observer systems.  Actually, all physics can be
discovered and explained in just one laboratory, and the so called
paradoxes of transformation theory have very simple explanations.
     The first step is to recognize that some labs are much better than
others in which to do experiments.  Labs are classified according to
how the datum ether is flowing through them.  There are three classes
of labs:

         INERTIAL            
1.  Primary - Datum ether at rest  

    2.  Secondary - Datum ether at one   
                             constant velocity






         
NON

INERTIAL
          

     3.  Accelerating - Datum ether varying
                             in velocity 




     In choosing a lab for the purpose of discovering the laws of
physics, one class can be eliminated at the outset.  The non inertial
labs, including rotating and linearly accelerated labs like that in
Figure 8.2.1, require very complicated equations to describe even
simple experiments.  So, most experiments are done in inertial labs.
     An inertial laboratory is one in which a lab worker standing still in
the lab feels no acceleration.  If the datum ether is at rest everywhere
in an inertial lab, that lab is designated as a primary inertial lab.  In
this type of lab a lab worker is called an absolute observer; and the
laws of physics, as seen by an absolute observer, take the simplest
form.  A lab built on the platform of a rotating merry-go-round is
definitely not a primary inertial lab, and the laws of physics in that
lab are very complicated.  Disbelievers should try to play catch in that
rotating lab.

8.6.  Primary Inertial Labs:  In setting up any lab, coordinates must
be installed and clocks set.  The coordinate system is attached to the
walls, ceiling and floor, and relates a unique set of three numbers to
each point in the lab.  Since the ether is at rest in primary labs, the
point location is unambiguous.
     In primary labs, clock setting is also simple.  One can imagine,
although it is not practical, having a tiny clock at each point in the lab
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space, wall  to  wall  and floor to ceiling.  When doing experiments, in
any and all labs, the observer in each lab always assumes that all the
clocks in the lab have been set to read exactly the same time at any
given instant.  He thinks that he has used a clock set procedure that
ensures this.  In secondary labs this is most often not true, but in
primary labs it can always be true if the clocks are properly set.
     The simplest procedure, for primary labs, is light set.  This involves
one master clock at rest in the ether, which is at rest in the lab.  Light
signals are sent from the master clock to all the other lab clocks.
There are two versions of light set, one way and two way.  In one way,
when the signals arrive, the clocks are set to the master clock's time
by correcting for the signal time delay, based on the constant velocity
of light 0c  in the ether, and the known distance to each point.  In two
way, each clock sends back a pulse to the master, and the outlying
clocks are set to half the round trip time.
     A third more difficult method uses a particular form of contact set
by carrying a clock from the master clock to all the others at a known
constant speed and making the proper corrections.(see Eq.(8.4.9)).
     All of these methods produce the same true clock synchronization
of any primary inertial lab's clocks.

8.7 Contact Clock Set and the One Way Velocity of Light: The
most fundamental way to synchronize two identical clocks is to use
the most elementary form of "contact set".  Surely, when two clocks
are at the same point they can be synchronized by "contact", and will
remain synchronized as long as they remain together.  Now, in a
primary inertial lab, let one of these be fixed relative to the ether, and
the other moving past it at constant velocity.  In this example, the
ether is assumed to have the datum density dφ  everywhere outside
the clocks.  As they pass, they are set together, say at t = 0.  Since the
moving clock runs slower, from that initial moment of contact on, the
moving clock and the fixed clock are geared together by Eq.(8.4.9),
and so the absolute or ether observer knows the readings of both
clocks exactly, as long as their environment does not change.
     A slightly more elaborate "experiment" can be set up as follows.  As
shown in Figure 8.7.1, the absolute observer uses only one fixed clock
A, the master clock.  He has two other identical clocks, B and C
attached to the ends of a rod, previously arranged so that their center
to center distance is  Lγ when at rest relative to the ether and A.
During the experiment, the rod and clocks B and C are moving
through the ether in the x direction at constant velocity u.  The ether
observer (absolute observer) is the only one involved in the
experiment, and is the one manipulating the clocks A, B and C.
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     The experiment proceeds as follows:

              At t 0= ,          B is contact set to A's t 0=

              At 1A
Lt
u

= ,      B arrives at L and C arrives at A

                               B reads 1B
Lt
u

=
γ

   ,    
2 2

0

1

1 u /c
γ =

−

                               A contact sets C to 1C 1B
Lt t
u

= =
γ

               B and C are now truly synchronized to each other and
                         remain so as long as they continue at velocity u.

     The absolute observer has previously chosen clocks B and C that
can send out single light pulses towards each other on demand.  He
had done an experiment, when the rod and clocks B and C were at
rest, and had observed that pulses sent out at the same time arrived
at the opposite clock after identical intervals.  He now continues the
experiment to determine the one way pulse arrival times as measured
by B and C in motion.  Because they are moving, his intuition tells
him that B and C will intercept their respective pulses at different
times, since the pulses travel at the constant velocity 0c  in the ether.

Figure 8.7.1. Contact synchronizing two moving clocks.
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The results of the experiment go as follows:

              At 1A
L t
u

= ,      1B 1C
Lt t
u

= =
γ

                                 B and C emit pulses

     While the light from B is going to C, C keeps moving; so the lab
observer sees the pulse going a distance L x−  to get to C, arriving at:

                  2A 1A
0

L x t t
c
−

= +

But,            2A 1Ax u(t t )= −

so:

                   2A 1A
0

Lt t
c u

− =
+

    and     2B 1B 2C 1C
0

L t t t t
(c u)

− = − =
γ +

     Conversely, while the pulse from C is going to B, B is moving away

from it and a similar calculation reveals that:

                3A 1A
0

Lt t
c u

− =
−

     and    3C 1C 3B 1B
0

L t t t t
(c u)

− = − =
γ −

     Now, suppose that there is a second observer riding along on the
moving platform (rod), using the clocks B and C and the rod length
Lγ .  If he calculates the apparent propagation velocities of the

photons received by B and C, he gets,

               2
0B

B

L c  (c u)
T
γ

= = γ +
∆

   ,  2
0C

C

L c  (c u)
T
γ

= = γ −
∆

  .    (8.7.1)

Indeed, he has measured the one way velocity of light and it is
different in both directions, a first order effect.
     This is no philosophical trick experiment, but a real one, although
it has not yet been performed as described.  If it is, no matter who
does it or where, the result will always come out as stated above.
Here, the question must be asked, "does anything about this
experiment offend the intuition?"  The answer musts be "no".  for,
both the ether observer and the one moving with the platform accept
contact synchronization as the most fundamental; and, through cause
and  effect,  they  also  accept  the  rod  and  clock rate changes.  Both
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Figure 8.7.2 .
Simplified one way velocity of light experiment.

expect the velocity of propagation to appear different in the two
directions, because both know that the pulses propagate at the
velocity 0c  relative to the ether, and the platform is moving with
respect to the ether.  If the experiment is repeated with the platform
moving in the opposite direction, the pulse from B to C will take longer.
      A simplified form of the same experiment is illustrated in Figure
8.7.2.  The roles of A and B are the same as before, but C is replaced
by a fixed detector.  Only one photon, going from B to C, is involved,
and the travel time of that photon will be the same as in the other
case.   Unfortunately, even this version may not be simple enough.

Unless someone
thinks of a much
better variation,
this experiment
might not be
possible, because
of the great
distances and
short times
required.

     Nevertheless,
there are other
indications that
the outcome is
stated correctly.
For example,
Sagnac1 mounted

four mirrors on a rotating platform and sent two light beams in
opposite directions around the loop they formed.  The interference
fringes showed that their propagation velocities matched the amounts
predicted by Eqs.(8.7.1).  Later larger loops were used, and Michelson1

built a huge outdoor circuit of mirrors and evacuated pipes and
accurately measured the Earths' rotation rate by the same technique.
It is true that these rotation system tests are not done in a primary, or
even a secondary inertial lab environment; but they still present
nearly the same simple, unchanging flow of ether as seen by the
photons.  The steady state, radial ether acceleration is cancelled out
in the opposing massless photon paths.
     Several important conclusions can be drawn from this experiment.
For example, a distinction must be made between the phrase "the
laws (equations) of physics" and the term "experiments".  If the
procedure described in Figure 8.7.1 were repeated, with two ether
clocks and one moving clock, and the roles of the two sets of clocks
_____________________________________________________________________________________
    1. H. P. Robertson, T.W. Noonan, Relativity and Cosmology, pg.38, Sagnac,
         pg. 40, Michelson, W. B. Saunders Company, Philadelphia (1968).
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exactly reversed, the two moving ether clocks would see exactly the
same thing observed by the ether observer in the original experiment.
Thus, the experiment supports the idea that identical experiments in
all inertial labs yield identical results (see Section 1.4).  It contradicts
the statement that the laws (equations) of physics are the same in all
inertial systems; because, in the particular ether theory being
described here, the fundamental equations (e.g. Maxwell's) are
assumed, from the start, to apply in primary ether labs, whereas the
inertial lab represented by the moving clocks and rod in the
experiment would require a modified set of equations to accommodate
the two different propagation velocities observed.

8.8 Actual Ether Experiments: There are two classes of ether
experiments that have been conducted since around 1887:

                               1. Measurements to determine
                                       a. Two way velocity of light
                                       b. Clock slowing
                                       c. Rod contraction

                                2. Measurements to detect constant
                                        velocity motion relative to
                                        the datum

     All accurate measurements of the velocity of light have been two
way measurements.  The presently accepted value is regarded as well
established.  Until an experiment equivalent to the one described in
Section 8.7 is achieved, the one way velocity must be deduced.
     Clock slowing was first measured directly as late as 1938.1  Even
then it was a very difficult measurement involving the frequency shift
of radiating hydrogen atoms moving in a beam.  The time dilation had
to be separated from a much larger doppler shift component.  Later,
the lifetimes of decaying unons and bions both in cosmic rays and
finally  in  large   accelerators  gave  convincing  support  to  the  fact2.
A reasonable interpretation of the Hafele-Keating experiment also
concurs3.
     It is true that rod contraction has never been measured directly,
but that hardly takes away from the fact of its existence.  Certainly
the notorious Michelson-Morley experiment led both Fitzgerald and
Lorentz  to accept the contraction  as the most reasonable explanation
___________________________________________________________________
  1. H.E. Ives, G.E. Stilwell, J.Opt.Soc.Amer. 28, 215 (1938); 31, 369 (1941).
  2. B. Rossi, D.B. Hall, Phys.Rev. 59,223 (1941).  Durbin, Loar & Havens, Phys.Rev.
      88, 179 (1952).  J. Bailey et al, Nature, 268, 301 (1977).
  3. J. Hafele, R. Keating, Science, 177, 166 (1972).
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of the results.  Many examples of so called relativistic experiments
depend upon rod shortening as well as the two preceding
characteristics in such a way that it would require a fantastic
coincidence for all of them to come out as observed.  Moreover,
Selleri's theorem1 elegantly demonstrates that if any two of the three
conditions above are found to hold, the third must also be in effect.
     Referring to Item 2 above, it is well known that no experiment has
yet determined the constant velocity of the ether relative to any inertial
system.  From the following examples, it should be clear that this will
always be the case.  On the other hand, everyone has performed an
experiment that shows the acceleration of the ether.

8.9 Cause and Effect Cure of the "Paradoxes": The analysis of
almost any experiment involving moving observers and using the
Lorentz transformation leads to "paradoxical" results when "explained"
on the basis of space-time.  When the ether is used to describe the
same proceedings, no paradox is found.  One example of this is the
popular twin paradox.
      The classical twin paradox has one twin stay at home and the
other travel a long way away, turn around and come back, only to find
that the stay-at-home has aged more than the traveler.  There are two
versions of this experiment, one involving accelerations and the other
involving only constant velocities.  Solution of the former involves
several approximations, but the velocity case is straightforward, so it
will be presented here.  For simplicity, three clocks will be used in
place of "twins".  Figure 8.9.1 diagrams the essentials.  A is a fixed
clock, and B and C are moving in opposite directions at the same
velocity u (this is not necessary but simplifies the discussion).  At the
start, they have the positions shown and no attempt has been made to
synchronize any of them.  As C passes A, however, C is contact
synchronized to A, the ether clock.  When C and B pass each other, B
is contact synchronized to C; and this takes place at a distance L from
A.  When B passes A, their times are compared, and it is found that A
reads a later time than B.

Figure 8.9.1 Constant velocity twin experiment.
___________________________________________________________________
  1. F. Selleri, Apeiron, 4, 100 (1997).
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    There is no paradox here, just the facts.  If A reads T L u∆ = when
C passes B, C according to Eq. (8.3.9) will read T∆ γ .  B is contact set
to T∆ γ , and after another T L u∆ = , as read by A, B passes A.  At
that time, A reads 2 T 2L u∆ =  and B reads 2 T∆ γ , according to Eq.
(8.3.9), as a result of its motion through the ether.  Therefore, B is

"younger" than A by the ratio 22
01 1 u cγ = − .  Here, again, this is no

mathematical or apparent change, but a real effect that present day
clocks are on the verge of showing comfortably.  Chapter 7 showed
that atoms are little solar-system like arrangements, essentially
clocks; and, if age is actually related to how many times the electrons
orbit, living twins (or triplets) would truly age differently.
      All the arguments in the literature notwithstanding, there is no
question whatever of this clock effect's not taking place.  It has only
been introduced here to provide another insight into the ether and its
properties.  True, from the relativistic point of view, it may be just as
hard to swallow as any of the "which contraction is real" answers, but
the cause and effect picture rendered possible by the ether makes it
easy to understand.
     It is the asymmetry that provides and removes the paradox.  In the
velocity experiment, the single clock is the older and the two clock set
that reverses is the younger.  In the acceleration experiment, the
sensing of Acceleration (with a capital A) provides the asymmetry.  If
the stay-at-home never feels Acceleration, and the traveler does, the
stay-at-home is older.  If both were to part and then each feel the same
Acceleration sequence ,their ages would be equal upon reuniting.
     Beyond merely clarifying the "paradox", this experiment offers an
excellent way to illustrate how the contractions prevent inertial
system observers from detecting their own absolute motion relative to
the ether.  To do this, the above experiment will be described in a
more formal way.  Because, in the second part of the experiment, the
observer A will be an inertial observer with no knowledge of his
velocity relative to the ether, all measurements are taken as contact
readings or counting marks on one scale or another without recourse
to any light set type clock synchronizations.  This means that A does
not make any velocity measurements.  These are all observed by B
and C and later by the ether observer E. Referring to Figure 8.9.2, A,
who is the ether observer (unknown to him), has a long rod that
extends in both directions.  It has evenly spaced marks all along its
length.  The experiment starts with C and B farther apart than shown,
and each moving towards the other at a previously agreed upon speed
u′′  which they measure by counting the marks  on  A's  rod,  as  they
pass,  and  their  own  time.   When C,A contact occurs, A and C start
timing.  When C,B contact occurs, C time is 1T  ′′∆ and B is set.  At the
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Figure 8.9.2 Detailed constant velocity twin experiment.

instant of B,A contact, B reads 1 2T T T′′ ′′′′∆ = ∆ + ∆ and A reads '2 T∆ .  B
is slower than A by the ratio,

                                      1 2T T TR
2 T 2 T

′′ ′′ ′′∆ + ∆ ∆
= =

′ ′∆ ∆
    .                    (8.9.1)

Since A is at rest in the ether, the moving clocks C and B run slower
than the ether clock by,

                                        
2

2
0

T u 11
2 T c

′′ ′∆
= − =

′ ′∆ γ
    .                      (8,9.2)

But, u′  is not measured in this experiment; so, to get this ratio in
terms of the measured velocity u′′ , notice that,

                   cL
u

T
′ =

′∆
    ,    c2L

u
T

′′ =
′′∆

    and   T uR
2 T u

′′ ′∆
= =

′ ′′∆
    .

Now, using the identity,

                                          
2

2 2
2
0

(u )( ) 1 ( )
c
′

′ ′γ = + γ ,                           (8.9.3)

and R 1 ′= γ  (combining Eqs.(8.9.1) and (8.9.2)),

                                       
2

2
0

1 1R
(u )1
c

= =
′γ ′′

+

    ;                         (8.9.4)

which gives the ratio of times in terms of the measured velocity.
Except for the conversion to the form of Eq.(8.9.4), this result is no
different from that derived earlier; but the details of the process are
now significantly more specific.
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     In the second part of the experiment, let A be an inertial observer
who is not at rest in the ether; but who, of course, is unaware of that
fact.  If A, B, and C repeat the experiment, the result will be exactly
the same.  It must be, or A would be able to know of his motion
relative to the ether.  Following Figure 8.9.3, B and C set their
velocities as before to the value b cu u u′′ ′′ ′′= = .  However, because A is
moving at velocity V, their true velocities relative to the ether are not
equal, but instead, as will be shown, are related to u′′  by,

                  c c cu u  (u V)′′ ′′= = γ γ −    ,   b b bu u  (u V)′′ ′′= = γ γ +         (8.9.5)
where,
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2
0

1

V1
c

γ =

−

   ,   b 2
b
2
0

1

u
1

c

γ =

−

   ,   c 2
c
2
0

1

u
1

c

γ =

−

   .    (8.9.6)

If cL  is the point of C,B contact, the corresponding time C reads is

1T  ′′∆ and E reads,
                                              1 c 1T T  ′′∆ = γ ∆     .                            (8.9.7)
By that time A has moved,
                                              A1 1L V T= ∆     ,                               (8.9.8)

and the distance to the C,B point from A is 1 c A1L L L= − .  Thus, C and
B see that point as,
                                        1 c A1 1L (L L ) L′ = γ − = γ     .                      (8.9.9)

At the time of B,A contact, A has moved to A1 A2L L+  and B has moved

Figure 8.9.3 Non ether observer twin experiment.



202

from cL  to A1 A2L L+ , in time T ′′∆  (as read by B).  At that time, E
reads 1 2T T∆ + ∆ , where,

                             2 b 2T T  ′′∆ = γ ∆    and    A2 2L V T= ∆     .             (8.9.10)

E sees C moving at velocity,

                                         c c
c

1 c 1

L L
u

T T
= =

′′∆ γ ∆
    ,                        (8.9.11)

whereas C interprets this as,

                                       c A11
c

1 1

(L L )L
u

T T
′ −

′′ = = γ
′′ ′′∆ ∆

    .                  (8.9.12)

Combining Eqs.(8.9.7), (8.9.8), (8.9.11) and (8.9.12) gives the relation
in Eq.(8.9.5).  E sees B moving at velocity,

                                c A1 A2 c A1 A2
b

2 b 2

L L L L L L
u

T T
− − − −

= =
′′∆ γ ∆

    ,     (8.9.13)

whereas B Interprets this as,

                                       c A11
b

2 2

(L L )Lu
T T
′ −

′′ = = γ
′′ ′′∆ ∆

    .                  (8.9.14)

Combining Eqs.(8.9.10),  (8.9.13) and (8.9.14) gives the second
relation in Eq.(8.9.5).  From the preceding equations,  it follows that,

  1 2T  T  ′′ ′′∆ = ∆   ,   21

c b

TT ∆∆
=

γ γ
   ,   and   c c b b(u V) (u V)γ − = γ +   .   (8.9.15)

At the end of the experiment, A reads,

                                    21
1 2

TT
T  T

∆∆
′ ′∆ + ∆ = +

γ γ
    .                     (8.9.16)

At that same time, B reads,

                                  21
1 2

c b

TT
T T T

∆∆′′ ′′ ′′∆ = ∆ + ∆ = +
γ γ

    .               (8.9.17)

So, B is slower than A by the ratio,

                                      
1 2 c b

T 2R
T  T

′′∆ γ
= =

′ ′∆ + ∆ γ + γ
    .                 (8.9.18)

As a check, if = V 0 ,  1γ = ,  ′γ = γ = γc b ,  so that,  R 1 ′= γ   as before.
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 Now, the γ , γb and cγ  of Eqs.(8.9.18) and (8.9.6) are given in terms
of E measurements, not B and C.  To convert to their values, the same
approach is used that was used earlier.  Assume for a moment that B
and C also counted marks on E.  Then,

                            ′′ = = γ
′′∆

c
ec c c

1

L
 u u

T
    ,    eb b bu u′′ = γ     ,

                                                                                                (8.9.19)

                          = =
′′γ
c

e1
c ec

u1 R
u

    and    b
e2

b eb

u1R
u

= =
′′γ

    .

Therefore,

                      =
′′

+
e1 2

ec
2
0

1 R
(u )

1
c

     and    e2 2
eb
2
0

1R
(u )

1
c

=
′′

+

   .   (8.9.20)

Substituting Eqs.(8.9.20) into Eq.(8.9.18),

                               γ
=

′′ ′′
+ + +

2 2
ec eb
2 2
0 0

2 R
(u ) (u )

1 1
c c

    .                 (8.9.21)

Now, with the aid of Eqs.(8.9.19) and (8.9.5),

                        ec c
uu V
′′

′′ = + γ
γ

    ,    and   
′′

′′ = − γ
γeb b
u u V     ;    (8.9.22)

which, combined with Eq.(8.9.21) and a very round about and tedious
manipulation, finally gives,

                                           
2

2
0

1R
(u )1
c

=
′′

+

    .                          (8.9.23)

This is exactly the same as the result from the original experiment.
Thus, A cannot tell that he is not the ether observer.
      At this point it must be emphasized that there is nothing
mysterious about this.  On the contrary, it was expected as the
inevitable result of the kind of contractions the particles composing
rods and clocks undergo because of their nature.  All of the previous
examples, and many others1 indicate that regardless of which inertial
system observer sets up an experiment, the result is always the same,
  ___________________________________________________________________
    1.  R. H. Dishington, PHYSICS, Beak Publications, Pacific Palisades, CA (1989).
        _____________, PHYSICS 2001, loc. cit. (2001).
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so that no inertial system observer can detect his uniform motion with
respect to the ether.  Yet in Section 8.6, using contact setting of two
clocks, the one way velocity of light was shown to be different in
opposite directions, and both were different from 0c .  Therefore, it
would seem that here was a case where the ether motion could be
determined.  In fact, it can't.  If the same experiment were set up with
the roles of the two sets of clocks exactly reversed, the two moving
clocks would see exactly the same thing observed by the ether
observer in the earlier example; whereas the present ether observer
would see that it all came about because of the rod and clock
changes, but that the moving observer couldn't tell the difference.
      Without knowing about the rod and clock changes, the
investigators working between 1865 and 1910 made over 50 different
kinds of experiments1, some quite exotic, to detect the ether's motion
relative to an inertial system.  It was, for obvious reasons, never
found.  All of these experiments were staunch evidence for the
existence of the ether; otherwise, how could such a variety of complex
cancellations be explained in terms of cause and effect?  Although the
mass of evidence as well as the logic of the extension of the properties
of particles to the measuring rods and clocks makes it almost certain
that ether motion relative to inertial systems cannot be detected, no
general proof, starting with the length contraction and the slowing of
clocks, has been given so far in this narrative.  Nevertheless, to retain
cause and effect as the basis of physics, here it is accepted as a fact.

8.10.  Secondary Inertial Labs: Strong arguments have been
advanced here to preserve visualization, cause and effect, intuition
and determinism, using an ether, while at the same time avoiding
metaphysics at the physical level.  In this chapter, however, certain
experiments have been described that have caused physicists no end
of soul searching and mysticism in resolving the results obtained.  For
example, though the laws (equations) of physics (see Chapter 2) are in
simplest form in primary inertial labs, apparently no one is able to say
which inertial labs are primary.  It has been demonstrated here, that
in secondary labs with truly synchronized clocks, the laws of physics
take on complicated forms that must include the different propagation
times caused by the constant velocity of propagation relative to the
ether.  The way out of this dilemma is narrow, but intuitively
satisfying.
     It is likely that all inertial lab experiments ever done have been
done in secondary labs; and the essential difference between those
___________________________________________________________________
  1. H.A.Lorentz, Lectures on Theoretical Physics, Vol 1, Macmillan & Co. Ltd. London
      (1927).  E.Whittaker, A History of the Theories of Aether and Electricity, Thomas
      Nelson & Sons, Ltd. London, Vol I (1951), Vol II (1953).
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labs and the primaries is that in the primaries all light pulses
propagate in any direction at the same velocity 0c .  For this reason,
there are several ways to set primary lab clocks so that they are all
truly synchronized.  As depicted in Figure 8.10.1, in secondary labs
with truly synchronized clocks, each pair of points in the space has
two propagation velocities associated with it due to the constant ether
flow through the lab (not shown in the Figure).  Light pulses going in
opposite directions between the points have different speeds (see
Section 8.7).  Thus, using a clock set procedure that would truly
synchronize the secondary lab's clocks would be a very bad choice.
The equations of physics in that lab would be ferociously complicated.

     The proper approach to secondary lab clock set is to find a way to
de-synchronize the clocks so that both directions of propagation
between two points have the same calculated velocity, using the
incorrect clock time.  This is done by first giving up the contact clock
set used in Section 8.7.  One-way light set from a master clock also
fails.  Special Relativity actually gets the desired result, but its
methods are so abstract and unmotivated that many of its users and
advocates are unaware that the clocks are deliberately de-
synchronized.
     The correct method for clock setting in secondary inertial labs is
found as follows.  Referring to Figure 8.10.1, it is seldom necessary to
actually set the time at every point in the 3d lab space.  Often, only a
few clocks are placed about the lab, and the significant propagation is
along just those few paths.  As an example, in Figure 8.10.1, only
three paths and three clocks are shown.  The latter are represented by
the three black dots at the centers of the spherical wave fronts shown

Figure 8.10.1 Three points in a secondary lab.
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propagating away from the point clocks, which are at any three points
in the lab.  The constant velocity ether flow through the lab is not
shown, because it cannot be known to the lab workers.  As derived in
Section 8.7, given truly synchronized clocks, there were two actual
propagation velocities caused by the constant ether velocity in the
secondary lab.  However, in that example, the ether flow was along the
line between the two clocks being set.  In the general case of Figure
8.10.1, if the single, constant velocity ether flow happened, by huge
coincidence, to be along one of the paths, then it would surely cut
across the other paths.

     Figures 8.10.2 and 8.10.3, illustrate two very special flow
configurations between any pair of clocks, and Figure 8.10.4 covers all
others.  The first, Figure 8.10.2, represents the example of Section
8.7, where it was shown that the absolute observer sees the out-back
propagation times as,

                                1
0

Lt
c u

=
+

     ,     2
0

Lt
c u

=
−

     ,

where u now represents the secondary lab's ether flow to the right
above, and the clocks and L are fixed.  Clock slowing makes the lab's
times,

                            1
0

Lt
(c u)

=
γ +!      ,     2

0

Lt
(c u)

=
γ −!      .

If the rod's length in a primary lab is Lγ , then rod shortening causes
the lab observer to measure the propagation velocities,

                  2
1 0

1

Lc (c u)
t
γ

= = γ +!
!

     ,     2
2 0

2

Lc (c u)
t
γ

= = γ −!
!

    .  (8.10.1)

Figure 8.10.2
Ether flow u parallel to L.
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Figure 8.10.3
Ether flow Perpendicular to L.

It should be pointed out that, in Eqs.(8.10.1), the second order 2γ
factor accounts for the rod shortening and clock slowing, and the first
order factor supplies the effect caused by the constant velocity of
propagation 0c relative to the moving datum ether.
      In this particular secondary lab, the proper way to set the clocks
is to force the one way velocity of propagation to be the same, and
equal to 0c .  This is done by setting,
                                           1

1 22t (t t )= +! ! !      .                         (8.10.2)
The result is,

                   0
2 2

0 0 00

c1 L L L Lt
2 (c u) (c u) cc u

   γ
= + = =  γ + γ − γ −   

!     ,

so the lab worker measures the propagation velocity 0c L t c= γ =! ! both
ways.
     If, by another rare coincidence, the datum flow through the lab
was at right angles to the line between two clocks, the timing (as seen
by an absolute observer) would be as illustrated in Figure 8.10.3.  The

ether is flowing to the right in the lab and the absolute observer finds
the light pulse transit times to be,

                 1 2 2
00

L Lt
cc u

= = γ
−

     ,     2 2 2
00

L Lt
cc u

= = γ
−

     .

In this case, there is no rod shortening, because the rod length is at
right angles to the ether velocity u, but clock slowing makes the lab's
times,

                                    1
0

Lt
c

=!      ,     2
0

Lt
c

=!      .
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Substituting the lab times in the two way clock set Eq.(8.10.2), the
result is,

                                       1
2

0 0 0

L L Lt
c c c
 

= + = 
 

!      ,

so the lab worker measures the propagation velocity 0c L t c= =! ! both
ways.

     The general case depicted in Figure 8.10.4 requires a more
elaborate derivation that need not be repeated here, because the
derivation of the Lorentz transformation gives the same result later
on.  Einstein's Special Relativity postulate about the constancy of the
velocity of light is nothing more than a statement that two way light
set, using Eq.(8.10.2), de-synchronizes the clocks and,  effectively
converts any secondary inertial lab into the equivalent of a primary
inertial lab, with calculated propagation velocity 0c  in all directions.

8.11 The Ether Observer: Conventionally, the inability of inertial
system observers to detect their motion relative to the ether has been
used to argue against the ether's existence; but a far more useful
conclusion can be drawn.1  Any reader who has come this far who still
does not appreciate the power of the ether interpretation over the
space-time approach can perhaps find guidance from the following
shift in viewpoint.  Past writing has indicated that the result of all
experiments on the ether and the implications of Relativity (from here
on, this word refers only to the first postulate) are that the inertial
observer cannot tell whether or not he is the ether observer. A more
effective  way  to  look  at  the  results is to realize that they also mean
  __________________________________________________________________
    1. R.H.Dishington, Physics, Beak Publ. , Pacific Palisades, CA (1989).

                                                                   u →
Figure 8.10.4

Ether flow in any direction relative to L.
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that any inertial observer can assume he is the ether observer, and
the results he observes are exactly what the ether observer would see
doing the same experiment.  Now, since the phenomena discussed
earlier, in all chapters including this one, are intuitively obvious in
terms of an ether observer, that is how the physics should always be
explained.  Assume the ether observer is doing the experiment.  All
other inertial observers will see the same thing.  This is true without
using the two way light set procedure of special relativity.  It is also
true using the light set procedure, or any other reasonable procedure.

8.12 The Lorentz Transformation Without Space-Time: What is the
future role of the Lorentz transformation and of special relativity?
Space-time offers nothing to the physicist.  It consists of two
postulates; the basic Relativity principle, which is just a limited form
of the Principle of Identical Environments, and correct; and the
constancy of the velocity of light, generally incorrect.  The second
postulate only holds true for the arbitrary setting of clocks by two way
light set.  For two-clock contact setting (see Section 8.7) the one way
velocity of light is different in opposite directions, so the second
postulate is wrong as presently stated.  Thus, Einstein's form of
special relativity must be used with great care and an appreciation of
its non-fundamental nature, especially as it is erroneously used to try
to explain intuitively what is being observed, is indispensable.  All that
will be retained is the basic Relativity principle; perhaps it should be
called Law of Relativity (or the Law of Identical Environments).
     Conversely, the Lorentz transformation has a utilitarian value.
This is because two way light set is generally the simplest process
available.  When it is used, and rods are read by moving observers
carrying them along, then the Lorentz transformation does give the
proper method for calculating the readings of the moving clocks and
rods in terms of those of the assumed ether observer, and vice versa.
In order to explain away the last vestiges of paradox or confusion
associated with the Lorentz transformation, it will be derived here in
its usual form, but with a slightly different emphasis, inasmuch as the
ether will be tacitly assumed as the basis of its validity.

8.13. Lorentz Transformation and Simultaneous Synchronization:
Before carrying out the derivation, a crucial difference between the
two-clock contact and light-set experiments must be indicated.
Referring back to Section 8.7, notice that the methods used by the two
sets of clocks for synchronization were not the same.  That is, during
the experiment, the experiences of the two inertial observers were not
symmetrical.  There is nothing about the Law of Relativity that
requires it.  The only reciprocal requirement imposed by Relativity is
that if the whole procedure is repeated with the roles of the clock pairs
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reversed, then the results must be indistinguishable from the first
experiment.
     A well known derivation of the Lorentz transformation is described
by Robertson.1  In it, the claim is made that the Lorentz
transformation follows from two postulates:

                    1. Relativity

2. The Fitzgerald-Lorentz matter contraction.

Unfortunately, this is not quite true.  It has been shown in earlier
sections that the contraction coupled with the clock slowing, cause
the Law of Relativity to be true, even in systems where the Lorentz
transformation and the constancy of the velocity of light are not directly
applicable.  Actually, Robertson's derivation is a much more restrictive
process than those specified by the Law of Relativity and the
contraction.  It invokes the implicit assumption that both systems are
"de-synchronized" in the same way at the same time.  In other words,
that everything happening to the two inertial observers is mutually
symmetrical, simultaneously.  This is a much more restrictive condition
than the Lorentz contraction and Relativity impose.  It is this very tight
restriction that is responsible for much of the confused intuition.
Once the implications of this implicit restriction are understood, much
of the mystery vanishes.
     Continuing with Robertson's derivation, Figure 8.13.1 displays the
usual pair of observer systems in relative motion, at constant velocity
V as seen by the ether observer S.  A rod at rest in S', with one end at
the origin and the other at (x',y',z'), will appear to S to have its ends at

 
Figure 8.13.1 Inertial systems in relative motion.

____________________________________________________________________
   1. H.P.Robertson & T.N.Noonan, Relativity and Cosmology, p 43, W.B. Saunders
       Company, Philadelphia, PA (1968).
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(Vt, 0, 0) and (x,y,z) respectively.  The matter contraction with motion
through the ether requires that,

                          1x Vt x     ,    y y     ,    z z′ ′ ′− = = =
γ

    ,           (8.13.1)

where,

                                            
2

2
0

1

V1
c

γ =

−

    .                            (8.13.2)

Next, Robertson writes,

                         1x Vt x    ,    y y    ,    z z′ ′ ′ ′+ = = =
γ

    ,            (8.13.3)

on the basis of the Relativity Law; i.e. inertial observers performing
the same experiment see the same results.  This is acceptable from
the ether viewpoint because it is known that the time slowing of
clocks and the contraction work together to ensure that result.
     At this point Robertson says that Eqs.(8.13.1) and (8.13.3) may be
solved for the Lorentz transformation:

           2
0

Vx (x Vt)  ,  y y  ,  z z  ,  t t x
c

 
′ ′ ′ ′= γ − = = = γ −  

 
  ,        (8.13.4)

and,

            2
0

Vx (x Vt )  ,  y y   ,  z z   ,  t t z
c

 
′ ′ ′ ′ ′ ′= γ + = = = γ +  

 
  .     (8.13.5)

This is the step that imposes the simultaneous transformation not
required by Relativity or the Fitzgerald-Lorentz matter contraction.
As Robertson points out, this is equivalent to the adoption of the
postulate of the constancy of the velocity of propagation.  Earlier that
postulate was shown not to be true in general, but to result from the
very arbitrary and restrictive two way method of setting the clocks.
That is what results when the Lorentz transformation is used.
     In spite of the severely restrictive character of the Lorentz
transformation, with its two way light-set clocks and its constant
calculated velocity of light in all inertial systems, its utility in setting
up experiments and in certain types of problem solving make its use
logical and practical.  It should never be used to try to explain the
physics.  The simple ether picture is better for that purpose, basic and
correct.  Almost all of the intuitional difficulties of special relativity
came from the unreal philosophical decoration of "space-time" and
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from the simultaneously symmetrical imposition of the Lorentz
transformation.

8.14 Implications of the Lorentz Transformation: Going back to
Figure 8.13.1 and Eqs.(8.13.4), which are used by S to find out what
S' measures; if S wants to know of the origin of S', he sets x 0′ =  into
the first equation and finds it satisfied by x t V= .  If S' wants to
know of the origin of S, he uses the inverse Eq.(8.13.5), setting x 0=
and finding it satisfied by x t V′ ′ = − .  S and S' both measure their
speeds as equal, with opposite velocities.  By simply reversing the sign
and making the primes unprimed and vice versa, S' and S will be
interchanged, with the original S' system now the ether observer
equivalent and the original S system now the moving observer
equivalent.  With this arbitrary clock set arrangement, the two are
completely symmetrical, simultaneously.  It is in this connection that
the greatest philosophical or metaphysical confusion enters in the
conventional approach.  The ether eliminates this.
     To the question, "which rod is really shorter or which clock truly
slower?", common conventional answers are that question has no
meaning 1,  irrelevant2,  the space-time manifold3.   Since 1960,  it has
become popular to just omit such questions, as though intuition is in
the way, and should be ignored.  In fact, the question is perfectly
valid.  So is the answer.  In every case, the rod or clock moving fastest
relative to the ether, is the shortest or slowest.  The fact that it is not
possible to determine how the ether is flowing external to any inertial
system does not invalidate that answer.  The previous sections have
explained clearly and intuitively why the ether flow cannot be
measured by an inertial observer.  The intuitive difficulty was
artificially introduced by an arbitrary choice of the simultaneously
symmetric transformations.  The Lorentz transformation is used as a
general formalism, but should not be used to obtain an intuitive grasp
of any given experiment, a number of at first sight strange results can
be deduced through its use.  There are numerous expositions of these
effects available.
     Section 8.15 summarizes the principal gains in understanding
resulting from the use of the ether as a motivation for the many
choices made in making measurements.

___________________________________________________________________
   1. A.Sommerfeld, Electrodynamice, p 227, Academic Press, N.Y.N.Y. (1952).
   2. R.B.Lindesy & H.Margenau,  Foundations of Physics, p 340, John Wiley & Sons,
     N.Y. (1936).
   3. I.S.Sokolnikoff, Tensor Analysis, p 267, John Wiley & Sons, N.Y. (1951).
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8.15  Inertial Lab Measurement Summary:

         The Principle of Identical Environments (Relativity Principle)
    holds between all inertial labs:

              Identical experiments in any two inertial labs yield
              identical results.

Primary Inertial labs:

     No inertial observer can determine that he is in a primary inertial
lab; but, (before he sets his c locks) any inertial observer can assume he
is in a primary inertial lab, and the experimental results he observes
(now including his choice of clock setting) will be exactly what a primary
observer would see doing the same experiment (with the same clock
setting).

Secondary Inertial Labs:

     There are two types of secondary inertial labs of particular interest:
Those with truly contact synchronized c locks and those with two way
light set de-synchronized c locks.

  TRULY SYNCHRONIZED CLOCKS             TWO WAY LIGHT SET CLOCKS

1.  The secondary lab clocks are set           1.  The secondary lab clocks are
     with difficulty                                             easily set

2.  The clocks are truly synchronized         2.  The clocks are deliberately
     in the most fundamental way                        de-synchronized to ensure
                                                                        3. below

3.  The principle of the constancy of           3.  The one way calculated
      light propagation velocity is not                 velocity of light is always
      generally true                                             the same, 0c

4.  The equations (laws) of physics do         4.  The equations (laws) of
     not generally have the same form               physics are exactly the
     as in the inertial lab used to set                  same in all two way light
     the clocks                                                   set inertial labs

5.  The Lorentz transformation does           5.  The Lorentz transformation
     not generally apply between the                 applies between any two way
     truly synchronized lab and the                   light set inertial labs
     inertial lab used to set the clocks
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CHAPTER 9

MAGNETICS

9.1 Introduction: This chapter is a turning point in the world
description.  In the first eight chapters, the structure of material
objects was developed to a point where only well known and
understood ensemble descriptions were needed to extend and
complete the picture.  It is noteworthy that the whole development of
the "steady state" forms of matter involved only electric energy.  At this
point, however, many peripheral forms (e.g. antenna radiation,
photons, neutrinos, etc.), that were mentioned previously but not
seriously studied, require magnetic fields for their description.  Just
as earlier the physical natures of charge and electric energy density
were presented, the basic natures of a magnetic field and its energy
density are given here.  After that, various complexities that magnetic
fields are capable of are looked into in greater detail.

9.2 The Magnetic Field, aφ V : The conventional definition of a
magnetic field ( B ) is given in terms of the very restrictive concept of
"force".  Here a magnetic field is said to exist wherever the time

average ether flow vector aφ V  is not zero.  Thus, aφ V  is the physical
embodiment of the magnetic field.  It is related to the conventional
magnetic vector potential through,

                                               a

0c
φ

=
VA     .             (des)              (9.2.1)

In terms of the incremental form of Eq.(2.15.1),

                                                
0

 
c
φ

=
uA     .                                (9.2.2)

Recognizing aφ V  as the physical essence of magnetism is important,
because there are well known cases where significant physical effects
are produced in regions where the conventional B  field is zero
everywhere; but aφ V  causes these effects.  The conventional B  field
is a measure of the ether flow "vorticity",

                                   a
0 0

1 1  
c c

= ∇ × φ = ∇ × φB V u     .                  (9.2.3)
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     Because d  >>> φ φ + φi  in any practical case,

                                              d

0

 
c
φ

≅A V     ,                               (9.2.4)

and,

                                              a dφ ≅ φV V     .                               (9.2.5)

   9.3 Magnetostatics: Magnetostatic fields are the simplest of all
ether conditions other than no field at all.  They are just those regions
of space where stationary circulation exists in the ether flow pattern.
These circulation flows can exist whether or not there is an
incremental ether density, but the term magnetostatics refers to

situations where 0φ = .  The conditions for the existence of a
magnetostatic field can be summarized by:

               Conditions
                          For                     (9.3.1)
             Magnetostatics

When these conditions are substituted into Eqs.(2.16.3) and (2.21.1),
the equations  reduce to,

                                     2 0    ,    0∇ = ∇ =V Vi     .                      (9.3.2)
     Two examples will now be given to illustrate a well known method
for solving Eqs.(9.3.2), and both will prove useful to further develop
the concepts of ether flow and particle action.  The first is the flow
field between two parallel plane sheets of current.  As seen in Figure
9.3.1, the flow of electrons is in two large parallel sheets of area great
compared with the distance between them.  In a central region, where
edge effects can be neglected, the ether flow is assumed to be parallel

to the x axis, so that y zV V 0= = .  On this basis, Eqs.(9.3.2) become,

                                     
2

x x
2

V V0    ,    0
xy

∂ ∂
= =

∂∂
    .                    (9.3.3)

Integrating the first of these twice leads to,

                                             x 1V Ky K= +     .                            (9.3.4)
Clearly, Eq.(9.3.4)  satisfies the continuity equation in Eqs.(9.3.2) and
(9.3.3) exactly.   To match the physical  conditions  depicted in Figure
9.3.1, the constant 1K  can be chosen to be zero; meaning that an
observer at the y = 0 plane half way between the plates  sees the ether
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Figure 9.3.1 Ether flow between two current sheets.

at rest at any point on that plane, but exhibiting a vorticity.  Above or
below the horizontal plane through the origin of the rectangular
coordinate system, the ether can be seen to have what is called
laminar flow.  In vector form,

                                                Ky=V i     .                                (9.3.5)

By applying Table D.6.1, the rate of rotation tensor for this field is
found to be,

                                         x1 V ( )
2 y
∂

Ω = −
∂

ji ij     ;                         (9.3.6)

which together with Eq.(E.6.11) shows that the vorticity vector is
related to the flow by,

                                  x
v

V2
y

∂
= Ω = ∇ × = −

∂
w V k     .                   (9.3.7)

From Eqs.(9.3.4) and (9.3.7) the constant K can now be identified with
the vorticity through (see Eq.C.4.5),

                                        z mK 2w 2= − = − Ω     ;                          (9.3.8)

which allows Eq.(9.3.5) to be rewritten,

                                      z m2w y 2 y= − = − ΩV i i     .                      (9.3.9)

As a matter of curiosity, the acceleration field can be found from
Eq.(2.8.8), with the result,

                                   z2w y 0
z

∂
= ∇ = − =

∂
Va V Vi     .                 (9.3.10)
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No gravitation-like acceleration appears in this field, and neutral
objects at rest in the laminar flow will not be moved.  Outside the
sheets the velocity field is zero (this is a pathologically non-physical
example).
     The correspondence between the familiar magnetostatic equation,

                                                = ∇ ×B A     ,                            (9.3.11)

and Eq.(9.3.7) can be made more explicit using Eq.(9.2.4), with the
result,

                                      d d

0 0

2  
c c
φ φ

= ∇ × =B V w     .                   (9.3.12)

Thus, using the standard method for finding the magnetostatic field
from its current sources, and aided by Eq.(9.3.12), a vorticity integral
can be written,

                                     0

d

amps)
c

  d  I (
10
π

=∫
φ

w ri"     .                  (9.3.13)

This mixed unit form gives the vorticity in radians per second, if dr is
in centimeters.  Because the current here is defined as opposite to the
electron flow, its direction is correctly related to the direction of

integration of w  by the usual right hand rule.  For numerical results
it is necessary to specify dφ  in Heaviside-Lorentz units.  With this
substitution, Eq.(9.3.13) becomes,

                              12 amps( )  d 5.9123 10  I −= ×∫ w ri"     .            (9.3.14)

Going back to the example of Figure 9.3.1, and assuming a rather
impractically high current of say 1000 amperes per centimeter of
current sheet width, the vorticity found by integrating Eq.(9.3.14)
around a loop enclosing one centimeter of the current sheet is

9w 5.91 10−= × radians per second, or about 33.7 years per rotation.
At first hand this might lead to the expectation that negligible effect
on a test electron at rest between the sheets would be observed.
Later, it will be shown that the situation is more complex, since the
electron might deform, spin up etc.; and most magnetic effects result
from very small ether velocities exaggerated by its great density.  For
the present, based on experience, it will be assumed that an electron
at rest between the sheets will feel no stimulus.  If, on the other hand
the electron moves, then the well known Lorentz "force" will act. The
mysteries of the latter effect will be dispelled in Chapter 12.
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Figure 9.3.2 Ether flow in a long solenoid.

     A second magnetostatic field of consequence is that of a long
solenoid.  Taking the flow of electrons to be in a cylindrical sheet, as
illustrated in Figure 9.3.2, the ether flow circulates in the opposite
direction.  For a coil with diameter very much smaller than its length,
the field near the middle of the coil, lengthwise, is essentially
cylindrical; and Eqs.(9.3.2) can be written in cylindrical coordinates,

                       
2

2 2

d V 1 dV V dV 0   ,   0
R dR ddR R

α α α α+ − = =
α

    ,          (9.3.15)

where it has been assumed that R zV V 0= = .  The first order equation
in Eq.(9.3.15) implies that the flow is in the form of a cylindrical
circulation.  The magnitude of the velocity field can be found from the
second order equation,

                                          3
2

K V K R
R

α = +     .                         (9.3.16)

Physical considerations permit establishment of the values for 2K  and

3K .  For example, inside the solenoid, at R = 0, V 0α =  so 3K 0= ;

but,  outside,   as R → ∞ ,  V 0α →   and  2K 0= .    Both   inside   and
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outside, at 0R R= , 0V Vα = ; so the final form of the velocity field is,

          0 0

0

0inside outside
R VVˆ ˆR   ,      ,      ,   

R R
= =V Vα α     .       (9.3.17)

Thus, inside the ether turns as a rigid body and outside the adjacent
layers of ether slip to allow the velocity at the center and at great dis-
tance from the center to be zero.  The vorticity found from Eq.(9.3.17)
is,

                            
0

0

inside

outside

V ,1         R2
;0


= ∇ × = 



kw V                 (9.3.18)

which brings the discussion to a very critical point.  Notice that the
vorticity outside the solenoid is zero.  Nevertheless, the circulation

 d= ∫ V ri"Γ  is not, since the velocity field is constant around any
circular path at a fixed radius from the coil axis.  Whether or not there
is vorticity, the circulating flow can exert physical effects.  It was
pointed out earlier that the magnetic field B  corresponds to the "flow
vorticity" of the velocity field.  In Maxwell's E&M, B  is regarded as
physically significant and A  as a mathematical tool.  For some time
now, the feeling that A  might be more physical has slowly developed
because of its role in quantum electrodynamics.  Nevertheless, no one
appears ready to give up B  as more basic.  Clearly, from the
preceding examples, A , representing the ether velocity V , is the only
physically real variable in the magnetic field; and B , defined in terms
of force on a unit pole is as empty as any other definition of "force"
(see Chapter 12).  It is true that B  is representative of the vorticity in
the ether flow, as in Eq.(9.3.12); but the artificial direction of the curl
vector has little or nothing to do with the directions in which the
physical actions are taking place.
     Eq.(9.3.18) invokes another significant consideration.  The source
of stationary circulation fields can be moving charged particles, most
often electrons, continuing along closed paths.  Inside the closed
paths, near the center, the circulating flow field has rigid body
vorticity.  However, farther from the center and outside the paths, it is
commonly found that, although there is always circulation, there is
less ordered vorticity of low magnitude or no vorticity at all.  Here, the
non-vorticity circulating fields are just as real as those with vorticity;
and the Lorentz force exerted on charged particles will not be used as a
criterion for the existence of a magnetostatic field.    Any solution of
Eqs.(9.3.2) will be regarded as a magnetostatic field.
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      Continuing with the example of the long solenoid, an inevitable
development appears when Eq.(2.8.8) Is used to determine the
acceleration field about the solenoid,

                        

0

0

2

0

0
3

inside

outside

Vˆ ,   R
R

     
V Rˆ .
R

  
  −

   = ∇ = 

 −


R
a V V

R

i            (9.3.19)

The flow exhibits a centripetal acceleration, and it might be thought
that any small neutral object should feel the primary inertial system
(the ether) accelerate towards the central axis of the solenoid.  Here
the situation is more complicated, and this question will be examined
in detail in Chapter 12.  Nevertheless, it is of some interest to check

on the magnitudes of V  and a  in an extreme case.  For example, let
the radius of the solenoid be 1 cm and the current be 100 amperes

per cm.  Then, the vorticity inside the solenoid is 10
zw 5.9123 10−= ×

rad/sec (see Eq.(9.3.14)), and the velocity just inside the electron

sheet is 0
10

0zV w R 5.9123 10−= = × cm/sec.  Again, this small velocity
is misleading because, as later developments show, this velocity
coupled with the great density of the ether can produce significant
motions.  In this example, the acceleration just inside the electron

sheet is 0
17a 3.5 10−= × , again a very small number, but still with

possible significance.
     Take another solenoid, for example,  wrapped with 20 gage copper
wire (Diam. = 28.12 10−× cm) and 12.32 turns/cm.  The coil diameter
is 1 cm and its cross sectional area is 20.785 cm . From Eq.(9.3.14), a
1cm length of solenoid, conducting a current of 12.32 amp/cm (Mks),

produces a vorticity 11w 7.28 10−= ×  rad/sec.  In this case, the ether
inside the coil is rotating as a rigid body, so its velocity at the wire is

113.64 10−× cm/sec.  By assuming 228.44 10×  atoms per 3 cm  in the
wire, and one free electron per atom, the total number of electrons in
1cm of the coil is 221.692 10× ; so the average velocity of electrons in
the wire is found to be 0.0143 cm/sec. To find the ether velocity
related to the motion of the individual electrons, a crude estimate of
the value at the center of each electron can be made by recognizing
that the net ether carried by the incremental density 0 φ , at the
electron center moving at u 0.0143=  cm/sec (the electron velocity), is

equal to the actual density d 0 φ + φ  moving at eV .  Roughly then,

e 0 d V u/= φ φ ; and, using the value of 0 φ  from Eq.(3.5.2),
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    Figure 9.4.1 Loop coordinates.

20
eV 3.06 10−= × cm/sec.  Thus, the ether vortex velocity at the coil is

91.19 10×  times that related to the electrons' motion.

9.4 A single Current Loop: The magnetostatic field of a single,
circular filament of current is of
particular interest.  Figure 9.4.1
illustrates some of the
coordinates used to describe the
field, the structure of which is
well documented in the
literature.  The form of the
equation presented here,
however, is simpler than the one
commonly used.  It was derived
by Heflinger1; and, expressed in
terms of the ether flow, is
written,

                                 [ ]0
a

Ri K(k) E(k)ˆ
kR

= −Vφ α
π

    ,                  (9.4.1)

where i is the loop current (hl amp) and K(k) and E(k) are the
standard, complete elliptic integrals.  However, the parameter k is
different from that used in several widely known references, and is
defined as,

                                       ( )2k 1 1 1/= ζ − − ζ     ,                        (9.4.2)

where,

                                    
2 2

0 0

0

1 (R /R ) (z /R )
2R /R

+ +
ζ =     .                  (9.4.3)

The "velocity" approximation of Eq.(9.2.5) converts Eq.(9.4.1) into,

                                   [ ]0
d

RiV K(k) E(k)
kRαφ = −

π
    .                (9.4.4)

This flow field is cylindrical, with no R or z component; and in the
plane of the loop ( z 0= ) bears some resemblance to the solenoid field
described previously.  Figure 9.4.2 portrays the velocity distribution
for two values of z, zero and 00.5R .  Since the current in the filament
is actually propelling the vortex, in the  z 0=   plane the maximum of
 __________________________________________________________________
  1. L.O. Heflinger, private communication.
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Maximum flow surface

Figure 9.4.3

Figure 9.4.2 Velocity field of a single current loop.

a αφ V  occurs at the radius 0 R of the filament; and the flow tapers off
outside 0 R .   However,  the  field  differs  from   that  of  the  solenoid
because there is no enhancement, by neighboring current loops, to
multiply the vortex effect.  Therefore, the field is weaker, the rigid
body turning in the central region does not extend very far out, and
the maximum velocity occurs at greater R values for larger values of z.

The sheet representing a maxVφ is drawn in Figure 9.4.3

     Figure 9.4.1 shows that, 2 2r R z R /sin= + = θ , so where 0r R>> ,
Eq.(9.4.4)can be approximated by,

       d 3

i RV A
4 rαφ ≅
π

   ,         (9.4.5)

where, A is the area 2
0Rπ enclosed

by the loop of current.  This
relationship indicates that the flow
field far from the loop has the
characteristics of a magnetic
dipole of strength,

              
0

i A
c

µ =     ,           (9.4.6)
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leading to the expression,

                                            0
d 3

c R V
4 rαφ ≅ µ
π

    .                         (9.4.7)

In vector form,

                                             0
d 3

c
4 r

≅
× rV µφ

π
    .                        (9.4.8)

Some relationships between the units are listed in Table 9.4.1.

TABLE 9.4.1

     As an example, consider a single loop of the smaller solenoid of
Section 9.3.  The loop radius is 0R 0.5 cm= , and the current is

10i 1.0627 10  hl amp= × (1 amp Mks ).  The loop area is 20.7854 cm .
At the point 0R 2R= , 0z 0.5R= , r 1.0308 cm= ; so Eq.(9.4.5) gives

8
d V 6.0641 10 des cm/secαφ = × i .  This is about 6% lower than the

exact value illustrated in Figure 9.4.2.  From Eq.(9.4.6), the magnetic
dipole moment of this loop is found to be 0.2784erg/hlGµ = .

     Finally, comparing the vortex velocity Vα  at the edge of the wire

( 0 R 0.92R=  ) with the internal flow eV  of the relatively slow moving

electrons, 21V 5.415 10 cm/sec−
α ≅ ×  and 0 de V 0.0143 /= φ φ  or

203.060 10 cm/sec−× .  Unlike the long solenoid, which has a vortex
much larger than the electron flow, here the vortex at the loop is
actually one fifth as strong as the electron flow.

9.5 The Vortex Drive Mechanism: Up to this point, little has been
said about the detailed mechanism by which vortices are generated by
circulating charged particles.  In the case of the single current loop
described in Section 9.4, the picture of the electrons driving the
central vortex was at least intuitively satisfying.  Yet, even in that
case, the intuition required the aid of a formal solution involving the

2

a

 q        hl coul     des cm
 i         hl amp     hl coul/sec    des cm/sec

         erg/hlG    hl coul cm     des cm

     des cm/sec

→ →
→ → →

µ → → →

φ →V

i
i

i i

i
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moving electrons as sources of the field.  Such a formal approach
starts with the macroscopic form of Equation (2.21.2),

                                   
2

2 a
a 2 2

0

1  
tc

∂ φ
∇ φ − = −

∂
VV J     ,                    (9.5.1)

where J  is the current density,

                                                = ρJ u     ,                                  (9.5.2)

and ρ is the charge density of whole charged particles (usually
electrons) creating the flow field.  In this case, the positions and
motions of the source charges are known and given.
     For stationary fields, where the source current is steady,
Eq.(9.5.1) reduces to,

                                            2
a  ∇ φ = −V J     ,                             (9.5.3)

which has the solution,

                                          a
1 dvol
4

φ = ∫
π

JV R     .                        (9.5.4)

Here the field is found at each fixed point r  by integrating over all
space that includes source current J  using the variable vector ′r , so
that,
                                               ′= −r rR     .                              (9.5.5)

In the case of the single current loop, Eq.(9.5.4) yielded Eq.(9.4.1), and
it was not difficult to visualize the connection between the source
electrons and the vortex.
     However, there are configurations where the generating
mechanism is not as obvious, and first impressions can be very
misleading.  The example set forth in the next section brings out some
of the reasons the well known relationships presented earlier cannot
be applied arbitrarily to situations which look very similar but have
subtle differences.

9.6 The Atomic Vortex: In Chapter 10, the structure of the photon is
investigated, and most of the clues leading to its visualization come
from the process of its generation and the machine that produces it.
The latter, of course, is the atom; and one most influential component
of atoms, related to photon generation, has not yet been described.  It
is a magnetic field.  Generally, not much is said about magnetic
effects in atoms, and often these are so small they cannot be
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observed.1  However, this particular magnetic field is well known to
produce several significant effects.
     Consider the hydrogen atom ground state, for example.  Its single
orbiting electron is traveling in a closed loop, and conventional
analysis assumes that it behaves as a single loop of current of
magnitude,

                                              e ei
T 2

ω
= =

π
    .                              (9.6.1)

The values of ω  and e  from Tables 7.6.1 and 5.4.1 give a magnitude
for the equivalent current of 6i 7.9216 10  hl amp= × .  At this point
one might be tempted to use Eqs.(9.4.1) through (9.4.6) to determine
the flow and the magnetic moment; but, because of the extended
nature of the electron, this leads to a considerable error.  Clearly, the
actual mechanism of generating the vortex is sensitive to the
difference between the orbiting electron and a current carrying loop.
However, it is clear that the current 67.9216 10  hl amp×
is the correct amount of charge being carried around the orbit per
second, so that it is the true current.  It is only the Eqs.(9.4.1)
through (9.4.6) that do not represent the true vortex generated.
     To obtain the correct form of the vortex, the charge distribution of
the extended electron of Chapter 3 must be used in Eq.(9.5.4) to
describe the moving charge source.  The integration of this
complicated field has not yet been accomplished.  Nevertheless, the
effect of the extended turning charge density appears to allow an
effective current to be defined that can be used in Eqs.(9.4.1) through
(9.4.6) to give the correct field.  That effective current is,

                                                effi i= η     ,                                 (9.6.2)

where η  is the "turning" factor defined in Eq.(7.3.7).  For the hydrogen

ground state, 2η =  , so the effective current is
7

effi 1.1203 10  hl amp= × .  When this value is used in Eq.(9.4.6), for
example, the magnetic moment of the hydrogen ground state is found
to be,
                             20

B 3.287553 10  ergs/hlG−µ = ×     ,               (9.6.3)

commonly known as the Bohr magneton.  Eqs.(9.6.2) and (9.4.6)
together give the correct moments for all the hydrogen atom orbits
when the correct η  is applied.
 ___________________________________________________________________
  1. M.L. Coffman, Amer.J.Phys, 33, p. 820 (1965).



226

 9.7 Angular Momentum and the Gyromagnetic Ratio: One further
topic that is closely related to the previous developments is that of
angular momentum.  As discussed in Sections 2.9, 3.6, 5.14 and 7.3
through 7.8, the angular persistence of the frictionless ether produces
effects that are similar to the more conventional concept of angular
momentum.  Since any ether vortex can carry distributed electric
energy density or distributed charge distortion or both around with it,
some effects of angular momentum and magnetic moment are to be
expected.  The electron's vortex field is typical of this.  In other cases,
like the single loop current, the vortex itself has no distributed electric
energy or charge, but is inextricably attached to the energy and
charge of the particles acting as the source of the field.  Other factors
also enter into the picture, and all of these conditions must be sorted
out.
     In Section 3.8 the electron's spin and magnetic moment were
derived and related through its gyromagnetic ratio,

                                              s

0 0

e
m c

µ
≅

σ
    .            (electron)       (9.7.1)

Since the individual layers in the multi-layer particles have essentially
the same structure, they have spin and angular momentum as
indicated in Section 5.19.  By combining Eqs.(3.6.4), (5.18.6), (5.19.2)
and (5.19.4), the gyromagnetic ratio of each layer can be expressed in
the form,

                                   si i i i

i i 0 i

q J ( ) M ( )
m c L ( )

 µ ∞ ∞
=  σ ∞ 

    .                     (9.7.2)

Upon checking the values of iJ , iM  and iL  in Appendix I, for a given
frequency, the bracketed term is found to be unity (discounting
roundoff error) for all possible layers, with the result,

                                              si i

i i 0

q
m c

µ
=

σ
    .            (layers)         (9.7.3)

     At this point, a reasonable question can be raised about the vortex
in the hydrogen ground state.  In Section 9.6, it was shown to have a
magnetic moment called the Bohr magneton; but it is not carrying any
distributed electric energy.  The only electric energy associated with it
is that of the orbiting electron, so what is the relationship between

Bµ  and pψ , the electron's angular momentum?  Because of the
implications of Eq.(9.4.6), it is natural to seek a relationship between
pψ and the orbit area.  A slight modification of Kepler's second law for
elliptic orbits leads to,

                                              
0

TA p
2m ψ=     ,                             (9.7.4)
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 where T is the period of the electron in the orbit1.  From Eq.(9.6.1),

                                              
0

eiA p
2m ψ=     .                            (9.7.5)

Combining Eqs.(9.4.6) and (9.6.2),

                                                 
0

i A
c
η

µ =     ,                               (9.7.6)

so Eqs.(9.7.5) and (9.7.6) then give, for any hydrogen orbit,

                                            
0 0

e
p 2m cψ

µ
= η     .          (orbits)         (9.7.7)

Thus, for the hydrogen ground state,

                                          
0 0

e2
p 2m cψ

µ
=     .                           (9.7.8)

For the orbit n 2,  n 2ψ= = ,

                                          
0 0

e1.5
p 2m cψ

µ
=     .                        (9.7.9)

As the orbit radius increases, the turning effect becomes smaller, and
for very large orbits,

                                             
0 0

e
p 2m cψ

µ
→     ;                          (9.7.10)

which is the ratio for the single current loop.  This can be seen by using
the real current in Eq.(9.4.6), since there is no electron turning in the
wire loop.  The real current can be written,

                                            
0

Ne Neui
T 2 R

= =
π

    ,                         (9.7.11)

where u is the average electron velocity and N is the total number of
electrons circulating in the loop.  The resulting magnetic moment is,

                                              0
0

Ne uR
2c

µ =     .                          (9.7.12)

The total angular momentum of the N electrons circulating is,

                                             0 0p Nm uRψ =      ,                        (9.7.13)
leading to,

                                            
0 0

e 
p 2m cψ

µ
=      .     (single loop)     (9.7.14)

 ___________________________________________________________________
  1. F.K. Richtmeyer, Introduction to Modern Physics, p.482 Mc Graw-Hill Book Co.
      Inc, N.Y  (1934).
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     In the examples discussed so far, many of the basic aspects of
magnetostatic fields have been touched upon.  The surprising
phenomena associated with them are not in the fields themselves, but
in the motion of particles in the fields, a subject to be investigated in
great detail in Chapter 12.

9.8 Magnetic Energy Storage: At this point, it is possible to visualize
magnetostatic energy.  It occurs wherever charged particles have been
driven in a closed loop.  Neglecting, for the moment, the resistance
opposing the circulation of charges in a conducting loop, as those
charges are accelerated from zero current to some final fixed current,
they push the ether so as to produce a circulating ether flow pattern
throughout the space surrounding the loop.  The long solenoid is
typical of the magnetic behavior of closed circuits. The maximum
ether flow is at the location of the driving current. Near the center of
the coil, the ether flows in a vortex as a rigid body; but farther out the
vortex reverses or the flow slips, and at great distances from the coil
the flow tapers off to zero.  In steady state, the solenoiod current
consists of a large number of charged particles moving around the
coil; each representing a certain small ether flow, just as it would as a
free particle moving at the same velocity; but the circulating flow is
much greater than that involved in the motion of the charges
themselves, and it will continue to flow as long as the charges
circulate in the loop.  The amount of work done on the charges to
accelerate them from zero up to their final velocity is far greater than
the kinetic energy they attain (still neglecting resistive losses), and
that work is effectively stored in the circulating ether field.  If an
attempt is made to slow the charges forming the current, the ether
pushes on them and is itself slowed, effectively returning the work or
energy stored in the ether circulation pattern.  Unlike the electrostatic
energy of Eq.(2.19.1), which is localized, the magnetostatic energy is
stored in the motion of the total configuration including the
circulating charges and all of the circulating ether out to infinity.
Thus, the total energy in the whole can be defined, but no localized
energy density is obviously identifiable.

     Of course, since a formal relationship between A  and  V  was
made in Section 9.2, and since the standard method of calculating the
vorticity from the current was invoked in Section 9.3, it is clear that
the magnetostatic energy could be visualized as having a distributed
density of,

                                          
2

2d
m 2

0

  2
c
φ

ε = w  ,                             (9.8.1)

which implies, in the example of the solenoid of Section 9.3, that only
the inside circulating ether has magnetic energy stored in it.  It is
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hard to say, at this point, whether or not this is true; but it is certain
that the simple extension of that concept leads to inaccuracies and
false results in certain well known cases.  Therefore, all that will be
assumed here is that magnetostatic energy is stored in a circulating
system whenever current in a closed loop produces a field that is
described by Eq.(9.3.2).  The latter combined with an identity from

Table D.6.2 ensures that throughout the field 0∇ × ∇ × =V  or
s 0∇ Φ =i ; i.e. the curl of the vorticity is zero.  In such a system,

magnetic energy can be stored and retrieved.
     On the other hand, the conventional approach is useful in actual
calculations relating to magnetostatic energy.  Review again the
thinner solenoid of Section 9.3.  On the basis of Eq.(9.3.18) the
vorticity outside is zero, so in the conventional view, energy is stored
inside only.  Substituting the velocity found in Section 9.3 into
Eq.(9.8.1), the energy density is found to be (everywhere inside)

3
m 9.54 ergs/cmε = .  Therefore, since a 1cm length of the coil has a

volume of 30.785 cm , the total energy stored in the circulating ether
field per cm of coil length is 7.5 ergs/cm.  The total kinetic energy of
these circulating electrons is 9 1.576 10−× ergs.  Using the old view,
that an electron's kinetic energy is its magnetic energy, the magnetic
energy of these electrons, found individually, would add up to an
amount 4/3 times that value, or 92.101 10−× ergs.  In Chapter 3, it
was shown that the total energy of a moving electron does not include
any magnetic energy.  The upshot is that the energy stored in the
circulating magnetic field is 94.76 10×  times greater than the total
kinetic energy of the electrons themselves.

9.9 Conventional Magnetic Energy Density: In defining magnetic
energy, great care must be taken to avoid some of the misconceptions of
the conventional theory of magnetic fields.  Conventionally, the
"electric" and "magnetic" fields can be written as,

                     
 ∂φ
 = − ∇φ + = ∇ × φ
 ∂ 

a
a2

00

1 1   ,   ( )
t cc
VE B V     .        (9.9.1)

Making the partial time derivative of aφ V  part of the electric field
vector introduces the dubious alien idea of "electromotive force", and
mixes electric and magnetic phenomena.  The conventional definitions
of electric and magnetic energy densities as 2 /2E  and 2 /2B  have led
to considerable confusion in describing energy flow in electromagnetic
fields (see Chapter 15).  The definition of electric energy density given
in Eq.(2.19.2) has eliminated that confusion and is Lorentz covariant.
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      Looked at conventionally, there can be no magnetic effect
where 0=B ; and wherever 0≠B , there is supposedly magnetic
energy density equal to 2 /2B .  On this basis, it is not possible to
understand the Aharanov-Bohm experiment, and explaining the
transformer effect (mutual inductance) or the 4/3 problem requires
the introduction of mysterious new concepts such as lines of flux,
emf, non-electromagnetic forces inside of particles, etc.  The definition
of magnetic energy density to be presented here clears up a number of
problems.  In the general case, where the ether flow is time variable, it
lumps the time variable term with the magnetic field rather than the
electric field.  Nature has provided this natural separation of electric
and magnetic fields.

9.10 Magnetic Energy Density: Unlike electric energy, which is a
simple, localized distortion condition at each space point, magnetic
energy is only partially localizable and comes in two different forms.
To the extent that it can be considered localized, magnetic energy
density is given by,

                    ( )
2

2 a
m a2 2

0 0
r

1 1
t2c c

  ∂φ  ε = ∇ × φ +
  ∂   

VV   ;  General    (9.10.1)

where the subscript r indicates serious restrictions in applying this
equation, which falsely implies that energy is stored in any region
where there is vorticity in the flow or the flow is changing with time.
For, while the ether has no linear momentum, per se; being a
frictionless fluid, it has angular persistence.  Once a vortex is formed,
it will continue forever unless physically stopped.  Therefore, in
situations where work is required to generate a vortex and where that
work is recoverable in stopping the vortex, Eq.(9.10.1) gives the
correct energy stored.  Conversely, where a vortex exists that required
no work to generate it and where no work is recoverable, Eq.(9.10.1) is
not applicable., and there is no magnetic energy involved.
     It is a fact that some ether vortices exist where no interaction can
be used to raise, store or retrieve their energies.  Particle spin is one
example.  During formation, intrinsic vortices form that remain a part
of particles until they are annihilated.  In two and three layer particles
(bions and trions), each layer can have its own spin vortex and spin
orientation.  Unlike the vortex surrounded by a closed loop of moving
charge, which charge can be used to increase or decrease the enclosed
vortex, the spin vortices are permanent unless annihilated by a
matching counterspin.  Consequently there is no storage of retrievable
work, so the spin vortex cannot be said to store energy.  On the other
hand, there is a mechanism in the ether that causes a spinning,
charged particle to align itself in a magnetic field.  If that particle is
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forced to reorient in the field, a torque is required and energy must be
supplied.  This energy can be recovered, and the effect is macroscopic,
acting on the whole particle and not changing the spin vortex itself.
     The criterion for using Eq.(9.10.1) is that the energetic vortex must
be in excess of the establishing charges' flow field.  The constant
velocity positron and electron have internal vortex flow, but do not
establish an excess vortex.  Thus they have no magnetic energy.
     With these cautions about the application of the concept of
localized magnetism, Eq.(9.10.1) can be used for all recoverable vortex
energy.  One important example of this, not associated with a closed
loop of moving charge, is propagating radiation, which will be
discussed in Section 9.12.
     The energy density eε  and the vortex term of mε  do not describe
the condition of energy while it is being converted from one form to
another.  For example, if a solenoid has no current flow, and a current
is built up, electrons carry electric energy distortion from the source
into the coil. This drives the ether enclosed in the solenoid into vortex
motion; but in the transition from the electrons' eε  to the mε  of the
coil's vortex, the energy is transiently carried in space in the form of
the second RHS term of Eq.(9.10.1).  If a second coil is wound around
the first, that primary flow acceleration can act on electrons in the
secondary and transport energy to them.  This is called the
transformer effect, which also appears in the important case of
propagated radiation.

9.11 Open Questions About Angular Momentum: In Section 3.8, the
electron's spin angular momentum and magnetic moment were
derived.  In Section 3.10, the constant velocity electron was analyzed;
and now, with the definition of the magnetic field presented in Section
9.2, its flow vector can be written, (motion in the x direction),

                                    ( )e2r /r*
a 0 u 1 −φ = γ φ − εV i     .                   (9.11.1)

The various quantities are the same as defined in Section 3.10.  This
field has both vorticity and time change; but neither this nor the
electron's spin field has retrievable stored energy.  In other words,
although putting the indicated values into Eq.(9.10.1) results in
calculable values for mε , the "energy" found is untouchable and does
not enter into the energy budgets of observed processes.
     In both the atomic orbits and the current loop, the circulating
electrons drive an "excess" vortex that has recoverable energy given by
the integral of Eq.(9.10.1) throughout the field.  So, even though they
carry no distributed charge or electric energy density around with
them, they do carry the magnetic energy.  The question then arises,
can mε in these cases be used in place of eε  in Eq.(3.8.11) to find a
very small additional angular momentum?  Since there is no related
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experimental evidence known to the writer, this question remains
unanswered.

9.12 Propagating Transverse Waves: Just as the structure and
motion of layerons involved only electric energy, propagating radiation
involves only magnetic energy.  It is well known that, except in very
special circumstances, a system of charges and currents, varying in
time and confined to a region of dimensions d < < λ , radiate energy
which, at distance r > > λ , is essentially plane wave.  Figure 9.12.1
shows the flow pattern of one sinusoidal component of this transverse
radiation.   As  shown,  the  wave  propagates  in  the  z direction with

velocity 0c=u n , n  being a unit vector.  The flow vector aφ V  is
constant over any x,y plane, and varies sinusoidally along the axis of
propagation.  Where the flow is maximum, there is no energy density;
but mε  increases towards the regions of null flow, where the vortex
and transformer energy densities are maximum.  At each plane along
the wave, the energy is half vortex and half flow acceleration.  The
wave shown is linearly polarized, but it is possible to generate similar
waves that corkscrew circularly polarized.
     This picture of ether wave propagation differs from the
conventional, because the position is taken here that antenna
radiation is solely a magnetic phenomenon, requiring only one vector

field aφ V  to describe it.  The density φ  is zero, and the above
description says that the amplitudes of the vortex and acceleration
components of the wave are equal, i.e.,

                                  ( ) a
a

a 0
a

1 ( )
c t

 ∂φ
 ∇ × φ =
 ∂ 

VV     ,                  (9.12.1)

Figure 9.12.1 The flow pattern of plane wave radiation.
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so that, from Eq.(9.10.1),

                                       ( )2m a2
0

1 ( )
c

ε = ∇ × φ V     .                      (9.12.2)

The two components are also perpendicular to each other and to n , so
that,

                           ( ) ( )2a
a a

0

1 ( ) ( )
c t

∂φ
∇ × φ × = ∇ × φ

∂
VV V n     .        (9.12.3)

In Figure 9.12.1 the energy in both components is maximum at the

nulls of the aφ V  wave, and zero at the peaks.
     Nothing more need be said here about the propagation of radiation.
The many fascinating facets of this subject will be set forth in
Chapters 10,11,13 and 15.
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CHAPTER 10

C-PARTICLES

10.1 Introduction: In Chapter 5, the dichotomy dividing fundamental
particles into layerons (electric) and c-ons (magnetic) was described,
but only the layerons were analyzed there.  Now, enough background
has been established so that an attempt to describe the c-ons can be
made.  It will be even less formal than the layeron analysis, but will
establish a useful, possible visualization.  The evidence comes first
from various experiments involving c-ons.  The principal impediment
to obtaining a rigorous, formal description is the lack of solutions of
the ! -wave equations.  In the future, these will be obtained; but the
following is mainly qualitative.
     The key to understanding detailed, deterministic c-on structure is
the profound difference between free space antenna radiation and
atomic radiation.   Antenna radiation is completely described by
Maxwell's macroscopic equations (see Section 11.2), and no case has
ever been found where the free space radiation did not spread out
following a geometrical energy reduction proportional to 21 r .  There
is no reason to believe that the radiation caused by moving an
electron in an antenna is anything more than the simple wave motion
in the ether described by Maxwell's equations.
     Atomically generated photons, on the other hand, travel for untold
light years without changing in any way except for a small shift in
their wavelength.  This is a profound difference.
     The behavior of antenna radiation is similar to all simple physical
wave motions, which exhibit the geometrical spreading.  The
spreading is essentially independent of any particulate property of the
wave medium.  On the other hand, photons behave like particles.  An
electron, for example, can travel long distances and still retain its
essential properties.  Conventionally, photons are treated as point
particles, and all transverse wave radiation, including antenna
radiation, is assumed to be carried by photons.  Here, this concept is
abandoned.  In the present work, for reasons to be discussed in the
following, c-on structure applies only to photons and neutrinos; and
antenna radiation is seen to be completely free of any photons.  It is
described in Chapters 11 and 13.

10.2 C-ons: Although these ether configurations have wave properties,
they are true particles, i.e., stable entities that can maintain their
identity only if they move at the velocity 0c  relative to the ether.  They
come in two basically different varieties, photons and neutrinos; but
they are very similar, and both appear to endure forever unless they
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interact physically with other particles.  For many years very little was
known about them, as indicated in Table 10.2.1.  Recently there has
been speculation that their rest energies and magnetic moments are
not zero. However, numerous astounding experiments have only
established that these properties are not greater than certain very
small maxima.

 TABLE 10.2.1

OLD  CHARACTERISTICS  OF  C-ONS

     

0 0

            Photon                                              Neutrino
Velocity                       c                  Velocity                         c
Rest Energy                 0                  Rest Energy                   0
Net Charge                  0                   Net Charge                    0
Magnetic Moment        0                   Magnetic Moment          0
Spin             1

2               1                   Spin                             
Transverse Electro-                          No Electro-
magnetic Interaction                        magnetic Interaction

     The first hints as to c-on structure come from the conversion
processes that produce them.  Table 5.3.1 lists several, such as the µ

and τ  decays, the ±π  decay and the neutron decay, all of which
produce neutrinos.  Also listed there are the 0π ,  η  and 0Σ decays
which generate photons.  Of course, the most common sources of
photons are atomic and molecular transitions.
     Although photons and neutrinos are, in some respects, almost
twins, their differences dictate that the proper study of c-ons begins
with a detailed examination of photon generation.

10.3:  Photon Generation: As far as is known, all photons are
generated by orbiters.  Certainly electrons orbiting in atoms are the
primary sources; but the outside orbiter bions are also clear
examples.  Still questionable are the rare instances where even non-
orbiting, concentric bions such as ±π  or K±  have one or two photons
as decay products.  In these cases the chance of occurrence is less
than 310− , so they probably represent accidental configurations that
coincidentally produce an orbiting effect.
     In an atom generating a photon, the nucleus absorbs the
momentum of the back push as the photon leaves, so a single photon
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can be pushed out on an axis perpendicular to the orbit.  The choice
of which of the two possible directions it takes is made by slight
differences in the phase fronts of the ! -wave caused by datum
fluctuations.  In the orbiter bion case, there is no nucleus to absorb
the kickback, so two photons are generated, going in opposite
directions, again on a line perpendicular to the orbit plane.
     In Sections 7.8 and 7.14, several details about photon generation
were presented, and they should be reviewed by the reader at this
point.  It should be emphasized that most of the present discussion
will be about the simplest photons produced by free atom radiation.
Other conditions can result in the production of much more
complicated photons; particularly when the radiating atom is part of a
more elaborate environment, such as being immersed in a high
pressure gas, a solid or a liquid.  Though even these complex photons
are still roughly similar to the ones to be analyzed, since they result
from more violent dumping of energy in a shorter time, they are
physically shorter and have larger amplitude waves.

10.4 The Photon Generator: To keep the discussion simple, the
Hydrogen atom is chosen as the photon generator.  Here the task is to
visualize a single, deterministic atom in a field free region.  The basic
analysis applies Newton's laws to a "planetary" electron orbiting a
proton nucleus.  This is not a temporary crutch to be abandoned as
the derivation proceeds, but the actual physical mechanism operating.
As shown in Chapter 7, certain properties of the extended electron
control the solution.  For example, the difference frequency between
the electron's front and back doppler shifted  waves−!  establishes
the  allowed  orbits.   In  Figure  10.4.1,  the   n   shown  is  the  usual

Figure 10.4.1. Orbits
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              Figure 10.4.2

quantum number that fixes orbit size a and energy E,

                      
2 2

2
0

n ha
m e

=
π

   (A)     ,      
2eE

8 a
= −

π
   (B)                (10.4.1)

Orbit shape is set by nψ .  The

electron in orbit is spread out
laterally, because of its kinetic
energy, and takes on an oblate
spheroid shape.  Also, in the
electric field of the proton, it
"turns" (in addition to the spin)
so its density shape axis is
along the orbit.  The spin
aligns itself with the electron
shape axis.  Figure 10.4.2
shows the oblate electron,
moving in orbit at velocity u ,
turning and spinning.

Total Vector Angular Momentum

     The basic orbital angular momentum is,
                                               2

0p m aψ = ω      ,                        (10.4.2)

as predicted by Newton's laws.  However, because the electron's
density/shape "turns", in the plane of the orbit, one turn per electron
period, this "turning" angular momentum adds to pψ  to give a total

angular momentum,
                                          ( )t tp p p 1 K pψ ψ= + = +      .             (10.4.3)

 When atoms are quiescent, the turning factor tK  is related to the
orbit shape through,

                                                 t
1K
nψ

=      ;                            (10.4.4)

but, during radiation Eq.(10.4.4) is not applicable.
     Combining Eqs. (10.4.2), (10.4.3) and (10.4.4), the total angular
momentum for quiescent atoms, before adding the spin (see Section
7.9), is,

                                          hp n (n 1)
2ψ ψ= +
π

     .                    (10.4.5)

This has always been a somewhat mysterious form, but is easily
explained by the electron's "turning".
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     Closely following the derivation in Section 7.11, the total vector
angular momentum, with the spin added, is,

                                     1
4 J n (n 1)  ψ ψ= + + "     .                     (10.4.6)

     Eqs.(10.4.1) and (10.4.6) give the energy and angular momentum
for each orbit.  Referring again to Figure 10.4.1, Table 10.4.1 lists
some of the values related to those orbits.  The radii are given in terms
of the Bohr radius,
                                          9

0a 5.2918 10−= ×      .       cm        (10.4.7)

TABLE 10.4.1

Atomic Magnetic Moment

     In Section 9.6, a detailed discussion of the atomic ether vortex
caused by an orbiting electron is presented.  It is important to the
present analysis because, during photon generation, a portion of the
vortex peels off and becomes a critical part of the photon structure.  The
atomic vortex is observed as the atom's magnetic moment,
                                                 Bnψµ = µ      ,                           (10.4.8)

where Bµ  is known as the Bohr magneton,

                        20
B

0 0

e 3.287553 10
2m c

−µ = = ×"   .   ergs/hlG    (10.4.9)

Values of µ  for the orbits of hydrogen are listed in Table (10.4.1).
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TABLE 10.5.1

ergs
hlG

12
B

      Transition           J                      E

                             g-cm/s               ergs

O   (3,3) (2,2)                            3.0277 10
     (3,3) (2,1)          

−

∆ ∆µ ∆

→ µ ×

→

"

B
11

B
12

B

2           2            "

     (3.3) (1,1)         2           2      1.9377 10

     (3,2) (2,2)          0             0       3.0277 10
O   (3,2) (2,1)                                  "

O  

−

−

µ

→ µ ×

→ ×
→ µ

"

"

"
11

B
12

B

 (3,2) (1,1)                            1.9377 10

O   (3,1) (2,2)         -            -       3.0277 10
     (3,1) (2,1)          0             0              "

     (3,1) (1,1)          0    

−

−

→ µ ×

→ µ ×

→

→

"

"

11

11
B

         0        1.9377 10

O   (2,2) (1,1)                             1.6349 10
      (2,1) (1,1)          0             0               "

−

−

×

→ µ ×

→

"

10.5  Transitions and Selection rules: If an electron transition
produces a photon, the photon carries away the energy difference E∆
and the angular momentum difference J∆  between the two orbits.
However, electron jumps between some orbits are not observed.  A
glance at Figure 10.4.1 reveals the basis for what are called the
selection rules,
                                           n 0  ,  n 1ψ∆ > ∆ = ±      .                  (10.5.1)

    The first must be true or E∆  would be zero.  The second says that,
usually, nψ  changes by just one unit step.  Several physical effects
establish this rule.  To better understand how, all "possible"
transitions between the orbits listed in Table 10.4.1 are shown in
Table 10.5.1, along with the important properties carried away if a
photon is produced.  Only the five jumps designated by the circles in
the left-hand column actually produce photons.

Referring to Table 10.5.1, all of the "allowed" transitions generate
photons with J∆ = ±" .  The four that would generate J 0∆ =  cannot
produce a photon, because the peeled off vortex is absolutely essential
to the photon's "particle" structure.  The two remaining cases where

J 2∆ = "  will be considered, later on, after a discussion of what
determines pω .  Thus, the only free hydrogen atom transitions possible
for the first three energy levels are those with circles in Table 10.5.1.
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     The ±  in the selection rule indicates that a photon leaving the
atom can have one of two circular polarizations.  In the positive case
the initial orbit has greater angular momentum than the final orbit;
and in the negative case the initial orbit has less.

10.6  The Radiation Orbit:  When a transition occurs, the electron is
suddenly out of lock-step with the initial stable orbit.  It spirals
inward to the final orbit, releasing energy, but the program it executes
is not simple.  In the original orbit, the whole field surrounding the
electron is locked in a great spiral (see Figures 7.5.1 and 7.5.2).
During the transition, this large spiral ether field becomes very
irregular and has a strong effect on the electron's emission.
Unfortunately, the exact, total field solution is not available.
Nevertheless, a reasonably good picture of the radiation orbit that
results from this complex interaction has been found.
     Fortunately, the orbit Eqs.(10.4.1B), (10.4.2) and (10.4.3) [but not
(10.4.1A) or (10.4.4)] are generally applicable, and adequate to
describe any path the electron might follow during radiation.  As
explained in Section 7.14, many orbit cycles are required to generate
the photon.  It is assumed that the radiated energy per cycle is small
compared to the total photon energy.  The energy radiation rate is
proportional to how much of E∆ remains, so that the total energy
radiated as a function of time is,
                                          pt /

rE E (1 )− τ= ∆ − ε      ,                    (10.6.1)

where 23 2
p p 1.59 10 /τ = × ω  and pω  is the photon angular frequency.

It follows that the electron's orbital energy during photon generation
is,
                                           pt /

fE E E− τ= ∆ ε +      .                    (10.6.2)

fE  is the energy of the electron in the final orbit.  Using Eq.(10.4.1B),
the orbit size a, as a function of time, can be found from E.
     A typical transition is (2,2) (1,1)→ , and Figure 10.6.1 depicts its
energy and orbit size curves.  When pt 5= τ , 99.3% of E∆  has been

radiated.  Because orbits are energy degenerate, the circular
calculations for E and a also apply to the non-circular orbits with the
same energy.
     Eqs.(10.4.1B) and (10.4.2) come directly from Newton's laws, and
specify the radiation orbit as a long inward spiral with no surprises.
However, certain specific properties of the radiated photon can only be
understood by considering the detailed workings of the complicated
interaction between the electron shape/motion and the surrounding
ether field.  Without the complete field solution, this interaction must
be pieced together using the following physical observations.
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Figure 10.7.1. Transition (2,2)---(1,1)

Electron orbit velocity.

   Figure 10.6.1. Transition (2,2)---(1,1)
Electron energy and orbit size.

10.7 Photon Angular Frequency, pω :  One of the most interesting

photon properties is the very narrow spectral line width, observed in
free atom radiation, which
indicates that pω , the photon
angular frequency, is
essentially constant all
through the radiation process
(see Section 7.14).  That
means the electron's speed,

        e pu a= ω      ,       (10.7.1)

is adjusted all along the
inward spiral to ensure this.
Figure 10.7.1 illustrates the
electron orbit velocity curve
during the (2,2)---(1,1)
transition.
     The first question to be
answered is, what is the value
of pω ?  After that, what

determines it?  Table 7.8.1
shows that the measured
photon frequency pω  is very

nearly equal to the average of
the initial iω  and the final

fω .  The exact value of pω is,

f f f i i i
p

n (n 1) n (n 1) 

2

+ ω − + ω
ω =

                                (10.7.2)

where fω  and iω  refer to the
circular orbits.  Elliptical
orbits use the same circular

fω  and iω  because of the
energy degeneracy (see Table
10.5.1).
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      The answer to the second question is more elusive. Although the
reason for this behavior has not yet been established by a rigorous
derivation (see Section 13.4), it is likely that, of all the possible
unstable orbits between the two stable orbits, the one chosen gives
the maximum rate of radiation.
     In Table 10.5.1, there were two transitions where J 2∆ = "  and

B2∆µ = µ .  For n 3> , there are cases where J 3∆ = "  or more.  To
understand why these transitions do not produce photons, consider
Figure 10.7.2.  It shows the stable orbit frequencies, labeled (3), (2)
and (1). The dotted arrows labeled 3 2→ , etc. indicate the radiation
orbit frequencies.  They lie roughly half way between the initial and
final orbit frequencies, and are given exactly by Eq.(10.7.2).  Normally

the photon will be generated at the first radiation  frequency  reached
by   the   electron  as  it  speeds  up,  but datum ether fluctuations
sometimes   cause  variations    in  the  orbits   that   allow bypassing
one radiation orbit and going in to another orbit closer to the nucleus.
However, in the case (3,3) (2,1)→ , the orbits are "shape" incompatible
(see Figure 10.4.1), requiring the larger adjustment J 2∆ = " .  In the
transition (3,3) (1,1)→ , although the orbits are "shape" compatible, the
required change J 2∆ = "  is again too difficult to bring about when
(3,3) (2,2)→  is encountered first.
     The transition (3,2) (2,1)→  is another example of "shape"
compatibility.  Nevertheless, zero point fluctuations allow some
electrons to bypass and go to (3,2) (1,1)→ .

10.8  The Electron/Ether Field Interaction:  By now, the electron's
orbital motion, during the stable and radiation phases, should be
reasonably clear.  The analysis it is based upon is, for the most part,

Figure 10.7.2
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rigorous.  At this point, however, a divergence appears between the
two phases.  In the stable orbit cases, the interaction between the
extended electron and the surrounding ether field is represened by the
simple "turning" relationship in Eq.(10.4.4),

                                              t
t

p 1K
p nψ ψ

= =      ;                       (10.8.1)

which expresses the angular momentum contributed by the rotating
ether elements relative to the electron's orbital angular momentum.
In those cases, tK  has a different constant value for each orbit, as
specified by nψ .  On the other hand, although t tK p pψ=  is still the
parameter that describes the interaction during a transition, Eq.(10.4.4)
no longer applies, and tK  is a widely varying function of time.  At this
point it is necessary to derive that function.
     Starting with Eqs.(7.3.1) through (7.3.7), it can be shown that, for
all orbits, stable and radiating,
                                       2 21

t 0 avg avg2E (1 K )m r= − + ω   ,                  (10.8.2)

where, avgr an /nψ=  for all orbits.  During radiation, avg pω = ω  [taken

from Eq.(10.7.2).  For stable orbits [quiescent atoms],
                             avg circn(n 1)/n (n 1) ψ ψω = + + ω      .

Combining Eqs.(10.4.1B) and  (10.8.2),

                                         t 2 2
0 avg avg

2EK 1
m r

 
= − +  ω 

    .                (10.8.3)

     Eq.(10.8.3) allows a visualization of the electron/ether-field
interaction during photon generation.  The fact that, during radiation,

pω = ω  and is essentially constant, means that tK  is a function only

of E, which is known.  Figure 10.8.1 displays the tK  curve for the
(2,2)---(1,1) transition, based on the energy curve in Figure 10.6.1.
     From Eq.(10.8.3), the sequence of events in Figure 10.8.1 is as
follows.  At the start, when the electron is in stable orbit (2,2),

tK 0.5= , 154.22 10ω = ×  and 12E 5.45 10−= − ×  ergs. Upon breaking
orbit-lock, in a very few cycles, although E and orbit size, a , remain
almost constant, the  electron  speeds up in orbit to reach pω = ω .

This drops tK , and generally drives it negative, meaning that the
electron is turning so fast that the surrounding ether appears to be
turning in the opposite direction.  Gradually, the circling electron
causes the surrounding ether to spin up, just as current in a ring
conductor does.  After about p5τ  seconds, 99.3 % of E∆ has been

radiated, and the remainder is essentially of the same order of
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Figure 10.8.1. Transition (2,2)---(1,1)

magnitude as the datum fluctuations.  At this time, the electron is
orbiting very near to the final orbit size, so lock-in takes place with a

rapid increase in ω
to fω and an equally
rapid drop in tK .
Such rapid changes
in tK  are possible
because the high
propagation velocity
allows very rapid
adjustment of the
ether field.

10.9  Preliminary Photon Structure:  So far the emphasis has been
on the photon generator, i.e. the orbiting electron.  Now, the
understanding gleaned from a fairly complete extended electron
atomic structure theory must be used to assemble an incomplete
theory of photon structure.  Without a full set of non time average
 wave−!  equations, the picture constructed here will remain
incomplete.  It involves considerable speculation, but it is important to
get as much visualization as possible in the face of the foggy limbo of
present day ensemble photon theory.  Some of the difficult choices
remaining will require new and ingenious experiments to settle which
way to go.  Meanwhile, the following is an attempt (surely with some
wrong guesses) to get a useable visualization.
     All photons appear to have certain well known characteristics,
such as: very small or zero rest energy, zero net charge and zero
magnetic moment.  They also have spin 1, in agreement with the 1"
reduction in the radiating atom's total vector angular momentum.
     Based on earlier sections, a few other photon characteristics
appear well founded.  For example, in the (2,2)---(1,1) transition, the
photon produced is a long, narrow particle ( 8/a 10>L ) because it
takes time to generate it and it is propagating away from the atomic
orbit at velocity 0c .  It has a circularly polarized, energy carrying t-
wave; and also, because the radiation process is a disturbance, an
energyless, plane  wave−!  propagating at velocity 0c .
     Of all atomic photons, the smallest diameter particle is produced by
the (2,2)---(1,1) hydrogen transition.  It is roughly 8 10 cm−  across.  Its
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effective length 0 p5c≅ τL  is  99.5 cm, containing 6 8.2 10×  cycles of

the radiated wave, or 99.3 % of E∆ .
     This meager collection of photon attributes is a relatively simple
extension of the conventional concept of a photon.  One further photon
property can be invoked to improve that concept considerably.

10.10  The Photon Vortex:  The proper approach to photon structure
is to find the physical mechanism, that antenna radiation does not
have, by which the photon is held in particle form.
     The backbone of a photon's particle structure is a long tubular
vortex.  It is pushed out perpendicularly to the electron's orbit,
probably because the orbit radius decreases during radiation.
Because of this, the ether vortex has a form close to that of a very
long, needle thin solenoid; with ether rotating as a solid body inside,
and slipping outside (zero curl field outside).  The sharp sheath region
takes the shape and size of the "a" radius curve of Figure 10.6.1; but it
is greatly stretched out, like an unwound spool of thread.  Figure
10.10.1 is greatly compressed lengthwise and expanded in diameter.

     Although there is a circulating charge (the orbiting electron

     Although originally there is a circulating charge (the orbiting
electron generating the photon vortex), once the vortex leaves the atom
it is a free vortex, moving at velocity 0c , with no attached circulating
charge.  This indicates that it is an energyless magnetic field (see
Sections 9.8ff and 15.6ff).  It also explains why a photon has no
magnetic moment.
     It is well known that vortices can travel considerable distances
without significant change.  The photon vortex has the advantage that
the ether is a frictionless fluid, and thus the vortex is essentially
indestructible.  Only when it finds a compatible particle that unwinds
it can it vanish.

Figure 10.10.1.  Photon vortex (compressed in length
  10 times and expanded in diameter 810  times)
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     Any disturbance in the ether causes the formation of waves−!
(longitudinal waves), so it is assumed that an  wave−!  propagates
inside the vortex and moves along with it.  Photons are also known to
exhibit circularly polarized t-wave (transverse wave) characteristics, so
there is also a t-wave propagating inside the vortex and moving along
with it.  Without the vortex, these waves would behave like antenna
radiation and would exhibit no particle properties.  The remaining
task is to describe these waves to the extent present knowledge
permits.

10.11  The Photon !"-Wave:  No complete quantitative analysis of the
complicated ether flow pattern during the radiation exists.  Moreover,
no complete quantitative description of the photon is available.
However, some progress has been made. Certainly the most
significant feature of any photon is its vortex.  As described above, the
orbiting electron peels off a part of the atom's dipole field as a
solenoidal vortex that turns as a rigid body in a small central region
but slips outside.  It also generates a circularly polarized t-wave, and
the disturbance also produces a nearly plane ! -wave. Both waves
propagate, in the direction of the vortex axis, inside the rigid body
region. Outside, the slip prevents coherent wave propagation.
     At this point, it is necessary to call attention to certain properties
of the ! -wave equations.  For a photon moving in the z direction,
assuming a plane ! -wave, Eq.(3.10.3) reduces to,
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   ω ∂φ∂ η ∂η  − = ±
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i i     .          (10.11.1)

Combining the bridge Eq.(2.14.2) with Eqs.(2.15.1) and (3.10.2), the
reduced bridge equation becomes,

                                           2
1V

zb
∂φ

φ =
∂γi i     .                          (10.11.2)

Substituting Eq.(10.11.2) into Eq.(10.11.1), the ! -wave equation takes
the form,
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    .               (10.11.3)

None of the forms of the ! -wave equations that involve time averages
allow solving for Vi  directly, but require trial solutions instead.  There
could be a more fundamental set of equations not involving time
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averages that could be solved for Vi  directly.  If that is true, then the
time average equations might eliminate terms necessary to correctly
describe c-ons.  Thus, the visualizations presented here could be
wrong, but they probably include most of the major features of the c-
ons.  For this reason, the simplest possible visualization is sought.
     Referring back to Figure 10.10.1, a simple, plane ! -wave can be
visualized traveling inside the tube with an incremental velocity,

                                               aC=V ki     ,                            (10.11.4)

where a is the amplitude constant, and,

                                         
0

zC cos t
c

 
= ω − 

 
    .                     (10.11.5)

From the continuity Eq.(2.12.4),
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 and,
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Since Vφi i  is constant throughout the tube of the vortex,

                                              0∇ φ =Vi ii     .                           (10.11.8)

10.12 The Photon's Bulk Structure: Because the motion factor
γ dropped out of Eq.(10.11.3), the velocity potential can be written as,

                                             
2

2 a
2

η = =Vi     ,                         (10.12.1)

a constant.  Eq.(10.11.3) then indicates that the gradient of φ  does
not vary throughout the tube.  To see how the gradient is related to
other parameters, the combination of Eqs.(10.11.7), (2.15.1) and the
bridge Eq.(2.14.2) leads to 0c=u k ,
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t c tc

∂φ ∂φ
∇φ ≅ − = −

∂ ∂
V k     .              (10.12.2)

The simplest possible case is one where 0∇φ = and the flow vector

aφ V and the bulk density φ  are both constants everywhere in the
tube.  In that case, both the charge and electric energy densities are
zero throughout.  Therefore, in this configuration the main body of the
photon is just a cylinder of excess (or reduced ?) ether density 0φ
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Figure 10.12.2 Photon bulk characteristics.

spinning on its long axis, containing a longitudinal plane wave and a
circularly polarized transverse wave moving in the direction of its axis
at the velocity 0c .
     Any charge, mass or electric energy the bulk carries must be
located at the ends of the tube.  As it propagates, the ether out in
front of  it must be compressed until  the  incremental density reaches

Figure 10.12.1 The neutrino incremental ether density profile.

the 0φ level.  At the rear, the density must drop back to the datum.
Figure 10.12.1 depicts the overall density profile.  No quantitative

solution is available at
this time, but the
general characteristics
are represented in
Figure 10.12.2.   As
displayed, there will be
equal and opposite
layers of charge
distortion at each end,
so that the net charge
is zero.
     If, instead of this
simplest configuration,
there is a constant,
non-zero gradient in
the tube, then the
electric energy being
carried away will also
be carried in the tube,
although no charge
density will appear
there.  Otherwise, the
photon will be very
much the same as the
simple configuration.
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Figure 10.13.1.
Coordinates for the t-wave

10.13  The Photon t-Wave:  Without a complete set of  wave−!
equations, it is difficult to know what is actually happening at the
vortex sheath and outside.  It appears that the vortex tube acts like a
wave guide, but without conducting boundaries or charges.  Therefor,
it is assumed that inside the vortex the t-wave has all the properties of
an unlimited-space wave. This allows the t-wave to be described by a
circularly polarized, plane wave,

                                   a a 0( ) (t)( C S)φ = φ +V V i jD      ,                (10.13.1)
where,
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with coordinates as shown in Figure 10.13.1.  The aφ V  vector rotates
in the direction of α , and the damping factor (t) D is limited by

(t) 1≤ D  .

      It follows that,
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Using the modified Poynting theorem of Section 15.8, the t-wave
magnetic energy flow vector is,
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and the energy density (see Section 9.10) is,
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or,
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     To establish the magnitudes of a 0( )φ V , D  and t∂ ∂D , it is
necessary to go back to Eq.(10.6.1), which gives the known magnetic
energy density,
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By combining Eqs.(10.4.1B) and (10.6.2) to find a, Eq.(10.13.7) can be
written, for transition (2,2)---(1,1),
                                       p pt t 24
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where,
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     Eq.(10.13.6) can be transposed and joined with Eq.(10.13.8) as,
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with [for (2,2)---(1,1)],
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Eq.(10.13.10) can be solved easily for (t)D , because
2 32
p2 4.8019 10ω = × , so it can be assumed that,
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If Eq.(10.13.12) is true, then,
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and,
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     By substituting Eqs.(10.13.13) and (10.13.14) into Eq.(10.13.12),
the assumption the latter represents is seen to be correct.  As a result,
each of the terms labeled "small" in all the preceding equations is
negligible.
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     The final step in characterizing the (2,2)---(1,1) photon's t-wave is
to establish the magnitude of a 0( )φ V .  This is done by first arbitrarily
choosing the magnitude of the damping factor at  t 0=  to be (0) 1=D .

Then, from Eq.(10.13.13), 2
m p1 K 2 3= ω  ; which, when combined

with Eq.(10.13.11), determines the amplitude to be 6
a 0( ) 1.40 10φ = ×V

hlvolts-cm\s.  Thus, the final form of the t-wave vector is,
                                        a a 0 ( )  (t) ( C S)φ = φ +V V i jD      ,      (10.13.15)
where,
                                        p pt 2 t(t) (4 3 )τ τ− −= ε − εD      .            (10.13.16)

This wave carries all of the energy E∆  taken from the radiating atom.

10.14  Photon Spin: The emerging visualization of the photon has
three parts, the energyless solenoidal magnetic field that constitutes
the vortex, the energyless  wave−!  that establishes the steady-state
bulk ether incremental density distribution and the t-wave that
carries the energy E∆  away from the electron in transition.
     The final step in describing photon structure is to explain how the
angular momentum J∆ , taken from the electron in transition, is
carried along.  It would appear that the vortex itself would be the
logical carrier, and that will be investigated first.  Nevertheless, there
are questions that must be answered; and, in some ways, the final
determination is still to be made.
     Macroscopic angular momentum of a solenoidal vortex is found
from (R,α ,z coordinates),
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J u R dvol
c

π ε
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where ε  is an energy density distribution and u its velocity at each
point.  Because the ether has no momentum itself, great care is needed
in applying Eq.(10.14.1) to electric and magnetic fields.
     For example, electron spin involves an energyless magnetic ether
vortex (see Chapter 3, Section 3.8) circulating a known, localized

electric energy density distribution e   ε at velocity V , which is
substituted into Eq.(3.8.11).  In Eq.(10.14.1), u is the velocity of the
incremental bulk ether distribution related to the actual ether velocity
V  by,

                                             du Vφ
≅

φ
     .                              (10.14.2)



252

     A long solenoid appears to locally store circulating magnetic energy
inside.  However, in the magnetic field case, since the energy density
is magnetic instead of electric the nature of angular momentum is
different.  The magnetic field has no angular momentum like the
electron's field.  It only has the angular persistence of a circulating,
frictionless fluid (see Section 2.9).  For example, the calculation of the
long solenoid energy density, m ε , in Sections 9.3 and 15.11 involves
magnetic vortices that are "attached" to circulating charged particles.
Angular momentum can only be stored or removed by interaction with
the "attached" circulating charged particles, or by injecting other
charged particles, into the vortex, which also interact through the
original "attached" particles.  Nevertheless, J for an energy storing
solenoid can be found using m ε  in Eq.(10.14.1).
     On the other hand, in the case of an energyless solenoid such as
the photon, once it is formed with no "attached" charges, the spin
angular momentum cannot be increased or decreased.  It can only be
transferred in an encounter with another particle.  Since it is truly
energyless, the spin angular momentum is better written (see Sections
9.3, 9.8 and 15.6) (R, α , z ),
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where w  is the ether vorticity.
     Referring to Eq.(10.7.1), since the vortex in the photon spins as a
rigid body the velocity throughout is,

                                                  pu Rα = ω      .                       (10.14.4)

Also, the ether vorticity has the constant value sK , where, from
Eqs.(10.14.2) and (10.14.4),
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Making these substitutions in Eq.(10.14.3) and integrating α  and R,
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     Finally,

                                 
0 p3 8 c

p 0 p 2
04 3 2 4 440d 3

c e dJ
8 ( E) ( )

τ

−ξ

ω τ ξ
= φ ∫

π φ ∆ − ε

L

     .       (10.14.8)

In the transition (2,2)---(1,1), this becomes,
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     When the vortex was being generated, lock-in to the (1,1) took
place, and the vortex was terminated between 0 pc 5τ =L/  and say 7.

At 0 pc 5τ =L/ , the integral in Eq.(10.14.9)  is 11.9810.  At 7, the

integral is 12.6194.  After that, each integer increase in 0 pc τL/ adds

roughly 0.3164. For the 0 pc 5τ =L/  case,

                                         24 2
0J 8.5669 10−= × φ      .              (10.14.10)

     Without a full set of non time average wave−!  equations, 0φ
cannot be found directly using this approach.  However, if the vortex
carries the angular momentum " , then 2

0 1.1095 10−φ = ×  hlvolts.

The corresponding ether vorticity 7
s 0 p dw K / 1.9138 10−= = φ ω φ = ×

rad/sec.  This completes one visualization of the photon.

10.15  About Photons:  Einstein was the first to understand that the
photon had energy,

                                          p p pE E h= ∆ = ν = ω#      .               (10.15.1)

Unlike the neutrinos, which are neutral in almost every respect, the t-
wave in the photon interacts with charged particles, making its
detection relatively easy.  This allows photons to be used and observed
in many types of processes and experiments.  Often these involve
lenses, polarizers, analyzers and various retarder plates and beam
splitting mirrors.  Analyses of beam processing configurations are
almost always done on the basis of wave-theory.  In most cases the
results match the observations; but fundamentally the physics of the
beam splitting and polarization changes should be described in terms
of the photon particle guidance and diversion, which is sadly neglected
in modern texts.
     Earlier it was said that the photon's t-wave is always circularly
polarized.  It is probable that no linearly polarized photon exists in
nature.  Certainly the generating atomic electrons and orbiter bion
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layers are circling, and it is obvious that the peeling off of energy and
spin is compatible with a spiraling circularly polarized wave.1  Thus, it
may be that all linearly polarized beams are composed of paired
circularly polarized particles.
     There are many unresolved questions about photons, some of
which will be discussed in Chapter 11.  The visualization presented
here does allow some puzzles to be eliminated.  As will be seen later
on, most or perhaps all of the confusing and paradoxical
interpretations of experiments on radiation involving "wave-particle
duality" are replaced with simple, intuitive answers.

10.16  The Neutrino: To get the proper feeling for the neutrino, it is
useful to read, in addition to many sources such as those listed in
Section 5.1, Asimov's impressive book, The Neutrino1.  In none of
these sources, however, is anything available indicating the size or
shape of that elusive particle.  The neutrino was first postulated, in
connection with the conversion of a free neutron into a proton and
electron, in order to save the conservation of energy law.  However,
with hindsight, its most important function is to allow spin conversion.
This is most easily understood by considering the decay of the −µ
unon, as first described in Table 5.3.1.
     The conversion process, in its simplest form, starts with the −µ
at rest, buffeted by the datum fluctuations.  After a certain delay time,
the −µ  begins to ooze outward from the 2nd layer position; and, at the
end of the conversion, an electron with its maximum electric energy at
the 1st layer position is formed.  Almost all of the rest energy of the −µ

must be carried away as kinetic energy, and the fact that the −µ

vortex velocity distribution is much more compact than the final e−

vortex velocity distribution means that some process of circulation
reconfiguration must also take place.  The method nature uses to do
the latter is to simply remove the −µ  spin vortex ( µν ) from the

conversion region, and generate an e−  neutrino/antineutrino pair of
spin vortices, one ending up inside the electron and the other ( eν )
also leaving the conversion region.  All three final particles can carry
kinetic energy away with them.

10.17  The Neutrino Vortex and ! -Wave:  The neutrino has almost
the same structure as the photon, but it has no transverse wave.  It is
  _________________________________________________________________
    1. I. Asimov, The Neutrino, Avon Books (1966). Wesley Publ. Co.,
          Reading, Mass. (1965).



255

most often generated by a spinning  unon.  As described in Section
3.8, the unon spin velocity forms an energyless dipole field that turns
as a rigid body in a small central region but slips outside.  There is no
orbiting electron as in photon generation.  During −µ  decay, for
example, it is the expansion of the particle to the lower energy electron
that causes the spin field to leave the −µ .  Here as in photon
generation, the vortex is stretched out, but it is much smaller in cross
section ( ≤0.06 er ) than the photons.  The neutrino vortex and its
plane wave−!  are depicted in Figure 10.17.1.

Figure 10.17.1 ! -wave inside the propagating µν  vortex.

     The photon wave−!  analysis of Section 10.11 is directly
applicable to the neutrino, and the bulk structure discussion and
illustrations of Section 10.12 also apply.  In light of the discussion in
Chapter 9, it does not appear that there is any recoverable magnetic
energy associated with the neutrino.  Since all of its distributed
charge is in the end structures, the chance that it has any significant
magnetic moment is slight.  Nevertheless, it does have the external
slip field of V , so some miniscule magnetic effect might be
measurable.  Again, this is an open question.
     At the present time, there is much speculation that the neutrinos
oscillate from one type ( e, ,µ τν ν ν ) to another and back.  Since nature
was forced to remove the µν  and replace it with the eν in the µ  decay,
and since it seems to be the rule that one whole spin structure must
be replaced with another whole spin structure, it is unlikely that the
individual neutrinos can oscillate.
     At this point, very little more is known about these untouchable
particles; but the visualization presented here does help to
understand many of the odd situations that involve neutrinos.



256

CHAPTER 11

MACROSCOPICS

11.1 Introduction: The principal thrust of the first ten chapters was
to lay out the properties of the ether and solve the microscopic ether
equations for the particles and more elaborate structures.  From here
on the emphasis is on phenomena that are closer to those observed in
the every day macroscopic world.  Commonly this involves certain
overt properties of particles or collections of particles, interactions
between objects, and interactions between "fields" and objects.
     Macroscopic formalisms appeared in two great steps.  In the 19th

century, Faraday and Maxwell produced Electromagnetic Theory in
the deterministic form called Maxwell's equations that describe
upwards of 90 percent of all observable physical phenomena.
Simultaneously, to handle problems involving large ensembles of
particles, statistical mechanics was developed (thermodynamics,
kinetic energy, etc.) culminating, in the 20th century, in Quantum
Physics as expressed by the equations of Schroedinger and Dirac.
Unfortunately, the "field" variables appearing in these statistical
quantum mechanics equations did not represent actual physical
variables, so that, in spite of the great power and usefulness of these
invaluable formalisms, a gap remained.  The ether picture presented
here is intended to fill that gap.  Here, as in the earlier chapters, very
little will be said about the statistical aspects of physics, since the
fundamentals are primarily the concern of the deterministic problem.

11.2 Maxwell's Macroscopic Equations: Conventionally, Maxwell's
equations are written in terms of the E  and B  fields of Eqs..(9.9.1),
but a more fundamental form is expressed as wave equations for the
so called "scalar and vector potentials".  The ether equation form is,
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Although these equations have a similar appearance to Eqs.(2.20.2)
and Eqs.(2.21.2), the profound difference discussed in Chapter 2 must
be kept in mind constantly.  The microscopic equations in Chapter 2
are actually definitions of a specific type of distributed distortion  (ρ )

that results from the presence of a known φ  distortion distribution.
The macroscopic Eqs.(11.2.1) and (11.2.2) are just the reverse.  They

allow finding the φ  and φu  distributions if ρ and u are known
everywhere.  At the standard level of abstraction, books on E&M
generally state explicitly that dimensions less than 310−  cm will be
excluded unless special care is taken to account for quantum theory
limitations; and the charge density ρ  is nothing more than a count of
whole charged particles per cubic centimeter times the charge on each
particle.
     Techniques for solving the macroscopic equations are so common
and worked out examples so voluminous that nothing of that sort will
be done here except for two simple examples that are useful to
illustrate the role of the " -waves.

11.3 Electrostatics: Electrostatic fields are the most complex of the
basic field types, since they involve lumps and hollows of incremental
bulk ether density held in stationary configurations by " -waves.  The
solution begins with the assumption that there is a known configuration
of whole charged particles from which is to be found the bulk
incremental ether density distribution that they produce. The time
average ether flow is zero and the time average fields are not
changing, so the conditions of definition of the electrostatic field are:

a d a
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t t
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= =
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  Conditions

        for

Electrostatics

                (11.3.1)

These conditions reduce Eqs.(11.2.1) and (11.2.2) to,

                                              2 ∇ φ = −ρ     .      Electrostatics       (11.3.2)

All of Maxwell's electrostatics can be obtained by solving
for the "potential" or ether density produced by various distributions
of charged particles.  However, since no stationary configuration of
bulk  ether  can  remain  unchanged without the support of  " -waves,
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Figure 11.4.1

Incremental ether density
between two charge sheets.

Figure 11.4.2

Ether density sustained by " -wave.

the equation is only a
partial description of the
physical field pattern.  Two
examples will now be given
that will illustrate what is
involved.

11.4 The Parallel Plate
Capacitor: The first
example is that of the field
between two parallel plane
sheets of charge.  As seen
in Figure 11.4.1, the two
sheets are oppositely
charged and are of an area
great compared with the
distance L between them.
In the region where edge
effects can be neglected,

the density field is assumed to be constant in the directions y and z
and to vary only with x.  In the region between the sheets 0ρ = , and
double integration of Eq.(11.3.2) yields,

                                             aK x Kφφ = +     .                           (11.4.1)

By setting 0φ =  at x = 0, aK is made to be zero. Kφ  can be found from
the voltage applied between the sheets, or from the charge density on
the sheets.  For example, if the voltage between the sheets is set at
Φ hlvolts , then the potential can be written,

                                              x
L
Φ

φ =     .                                 (11.4.2)

Only to this extent can Maxwell's electrostatics describe the field
between the sheets.

     What must be added is
the picture of the " -waves.
As a trial solution, a plane
velocity " -wave is described
by,
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                                 (11.4.3)

which moves along the x axis
as illustrated in Figure
11.4.2.  It is a wave of
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constant amplitude 1V .  The continuity Eq.(2.12.4) gives,
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Combining Eqs.(11.4.3) and (11.4.4),
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1

0

V
2c
φ

φ =Vi i     ,                          (11.4.5)

and,

                                              0∇ φ =Vi ii     .                             (11.4.6)
From Eq.(2.12.3),

                                            
2

2 1V
2

η = =Vi     ,                           (11.4.7)

therefore, since η  is constant, the Vi  of Eq.(11.4.3) is a proper
solution of the traveling " -wave Eq.(2.12.1).  The bridge equation
requires that,

                                            2d
1

0

b
K V

2cφ

φ
=     .                            (11.4.8)

This a good illustration of the condition where there is no net ether

flow, i.e. a 0φ =V , but there is a time average velocity V .  Using
Eq.(2.8.13),

                                      
2

1

d 0

V
  

2c
φ

= − = −
φ
VV ii i     ,                      (11.4.9)

which is in a direction opposite to the travel of the original " -wave Vi .
     To get a feeling for some of the magnitudes involved, let the
capacitor voltage be 1 des 1hlvolt 1062.74 voltsΦ = = =  and the sheet
spacing be 1 cm.  Then, K 1φ =  and 19

1V 6.8 10−= ×  cm\sec.  The peak

of the density wave φi  is 82.0 10−× des or, in practical units, 21
microvolts.

11.5 The Spherical Capacitor: The parallel plane charge sheet case is
pathological, in that it cannot exist physically except to some
approximation.  A real case is that of two concentric spherical surface
charge distributions, as shown in Figure 11.5.1.  The two spherical
shells are oppositely charged.  Eq.(11.3.2) is solved first, by double
integration, to give the ether density between the spheres as,

                                           
0

1 1K
r rφ

 
φ = − 

 
    .                         (11.5.1)
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Figure 11.5.1

Two concentric spherical charge sheets.

 Here, again, Kφ  can be found from the charge or voltage.  For the
case where 2 1L r r= −  and 0L r<< ,

                                             0(r r )
L
Φ

φ ≅ −     .                           (11.5.2)

Again, this is the extent to which Maxwell's equations can describe
the field.

     To obtain the
complete solution, the
same steps are followed
that were used to solve
the previous problem.
The " -wave moves
radially from one sheet
to the other as depicted
in Figure 11.5.1.   It is a
wave of decreasing
amplitude as r increases
( 1V  and Kφ  are not the
same constants found in
the previous example).
As before, V. is assumed
as a trial solution, and
takes the form,

                             1

0

V rV C    ,    C cos t
r c

 
= = ω − 

 
i     ,             (11.5.3)

which leads to,

                                       d 1 0

0

V c
C S

c r r
φ  φ = − ω 

i     .                      (11.5.4)

Then,

                           2d
12

0

V V
2c r
φ

φ =i i     and     V 0∇ φ =i ii     .          (11.5.5)

The velocity potential is,

                                           
2

2 1
2

VV
2r

η = =i     .                            (11.5.6)

When η  is substituted into the " -wave Eq.(2.12.1), it is found that,

                                    ( )
22

2 1
4

V1 0
r

∇ η − ∇η = − ≠
η

    ,                  (11.5.7)

so the Vi  of Eq.(11.5.3) is not an exact solution for the " -wave.  This
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is because for geometries other than parallel plane the bulk
deformation is affected by that geometry.  To get an exact solution, it
would be necessary to consider the geometrical conditions, with the
shape factor ψ  included.  However, for large 0 r , the RHS of
Eq.(11.5.7) is very small and Eq.(11.5.3) is a good representation of
the " -wave field between the shells.
     The bridge equation requires that,

                                            2d
1

0

b K V
2cϕ
φ

≅     ,                           (11.5.8)

or transposed,

                                           2 20
1 0

d

2c V r
b L

Φ
≅

φ
    .                        (11.5.9)

11.6 " -Wave Frequency: A most important aspect of the visualization
of " -waves in these fields is the determination of their frequencies.
This question was passed over, in the discussion of the atom in
Chapter 7, because it also arises here and can be resolved for both
situations together.  In the macroscopic electrostatic cases, the
neutral atoms that make up the geometry setting conductors are
taken apart, usually by removing one electron from each atom and
carrying it around to where the negative charge is held.  The positively
charged atoms remain grouped together in their original places.  The

bulk φ  field created between the two oppositely charged regions is
held in place by the " -waves leaving the electrons and going over to
enter the positive atoms.  In many ways this is essentially the same
physical arrangement as that of a single hydrogen atom, with one
electron separated by some distance from the proton nucleus.  The
problem of determining the " -wave frequency arises as follows.  A free
electron has an outgoing " -wave with frequency 20

e 7.7634 10ω = ×
rad/sec, and a free proton has an ingoing " -wave with frequency

24
p 1.4255 10ω = ×  rad/sec.  Since they do not match, what happens?

Do they both exist in the same region, or does the combination adjust
so that only one " -wave goes between them?  If the latter is the case,
what determines the frequency ω?
     This is very similar to the problem encountered in analyzing multi-
layer particles in Chapter 5.  There it was assumed that the combined
layers gave up their individual frequencies and adopted a single

wave−" .  Its  frequency  was  obtained  from  Eq.(5.5.7) which can be



262

expressed as,

                                              0
2 E
h
π

ω =     .                              (11.6.1)

Eq.(5.5.7) was derived from the basic analysis of the electron which is
a solution of the " -wave equation involving the universal constants at
the foundation of the ether theory.  For this reason, it is not
surprising that Eq.(11.6.1) also applied to the layerons, since they too
are similar solutions.  However, there is no guarantee that exactly the
same equation also applies to all other combinations of particles.
     At the present time, the paucity of " -wave measuring techniques
and experiments leaves no alternative but to assume that Eq.(11.6.1)
is a completely general form that applies to the total energy acting in
any configuration that is "self contained", where the latter expression
is not defined further.  Until many basic " -wave experiments to verify
this have been devised, it must remain an assumption to be
questioned.  More will be said about this in connection with the
gravitic field of a large mass to be examined in Chapter 14.

11.7 The Role of Statistics in Macroscopic Physics: It is not
obvious that a firm line can be drawn between microscopic and
macroscopic physics.  The general idea underlying the microscopic
regime is that it deals with the internal structure of the particles,
where the charge distortion distribution must be considered in detail.
Situations in which charge is in the form of whole charged particles
are regarded as macroscopic.  Atoms, and even nuclei with more than
one nucleon are macroscopic systems.  All ensembles of whole
particles that do not act together as a single entity are macroscopic.  On
the other hand, although the datum is the underpinning of the
particles, it is essentially a macroscopic entity.
     The basic division is related to whether or not statistical analysis
can apply.  Only macroscopic systems can be analyzed statistically.
Microscopic objects are purely deterministic and must be treated as
such.  Modern physicists believe that quantum statistics are the basic
nature of the world.  They try to develop statistical theories of particle
structure, and even seek the elusive "graviton" in a statistically based
gravitic field theory.  These attempts are doomed to failure, because
particle structure is a microscopic problem, and even the gravitic field
of a single large object is the product of one gigantic composite
particle.  Nevertheless, almost all of statistical quantum mechanics,
and a good share of macroscopic deterministic mechanics, is
formalized in terms of ensemble statistics, so a few words should be
said here in that regard.
     There are three types of statistics that are found regularly in
physics, Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac.
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Conventionally, M-B statistics are considered "classical", whereas B-E
and F-D statistics are described as "quantum mechanical", the
essential difference being ascribed to the indistinguishability of
particles in the latter cases.  As pointed out by Boyer,1
indistinguishability of particles is not the point, since to overcome
Gibb's paradox in the physics of gasses,  the "classical" derivations
must include the fact that gas molecules are indistinguishable.2  It is
also generally assumed that the choice of B-E or F-D statistics is
determined by the symmetry or anti-symmetry of the wave functions
of the ensemble particles.  The meaning of this assumption from a
deterministic viewpoint requires further probing in the future.
Following the suggestion of earlier chapters, the designations
"classical" and "quantum mechanical" are abandoned here.  The
following rules of thumb are applicable in general.3
     In any ensemble where the particles of the ensemble are actually
distinguishable, and no restriction is placed on how many particles
are in any single-particle state, Maxwell-Boltzmann statistics apply.
      In any ensemble where the particles are indistinguishable, and no
restriction is placed on how many particles are in any single-particle
state, Bose-Einstein statistics apply.
      In any ensemble where the particles are indistinguishable, and
some further restriction is placed on the particles, a different form of
statistics applies (i.e. neither M-B nor B-E).
     In particular, in any ensemble where the particles are
indistinguishable, and only one particle per single-particle state is
allowed, Fermi-Dirac statistics apply.  This last case occurs wherever
the single-solution rule applies to each single-particle state (see Secs.
5.25, 6.6, 7.3 and 7.12), such as electrons in atoms, or nucleon pairs
in nuclei.
     It was stated above that symmetry or anti-symmetry of the
particle's wave function decides whether it is a boson or a fermion.  In
fact, only in the case of photons has a boson particle type been
checked directly; and only in ensembles of electrons, neutrons,
protons, and muons, have fermion particle types been checked
directly.4
     Statistics is not divided into such categories as "classical" and
"modern".  The statistics of ensembles is the straightforward
application of very old probability techniques to individual problems,
where the basic input conditions are considered properly.
 ___________________________________________________________________
  1. See Section 4,4.
  2. F.Reif, Fundamentals of Statistical and Thermal Physics, p. 243, McGraw-Hill
      Book Co. N.Y. (1995).
  3. Op.cit. p 332.
  4. D.H.Perkins, Introduction to High Energy Physics, 1st Ed. p 14, Addison-Wesley
       Publ. Co., Reading, Mass. (1972).
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     To sumarize: there are three main types of statistics commonly
found in particle ensembles, Maxwell-Boltzmann, Bose-Einstein, and
Fermi-Dirac.  Conventional presentations imply that something
mysteriously related to "quantum mechanics", symmetry/asymmetry
and indistinguishability separate "classical" M-B from B-E and F-D.
These statistical forms are just three of many possible, based on
standard ensemble probability theory, where successively stronger
restrictions are placed on the ensemble characteristics.
     Before leaving this topic, one well publicized example of the
capability of statistics to solve ensemble problems should be
mentioned.  Notice that the electron's magnetic moment, given by
Eq.(3.8.24), is the intrinsic or actual flow value for each unon, and is
not exactly equal to the measured value listed in Table 5.4.1.  The
latter is slightly greater because of the many ways the interaction used
in the measurement of sµ  can take place,1 since the measurement
must be made on an ensemble rather than on a single unon.  The
calculation of this small difference to incredible accuracy is one of the
triumphs of quantum electrodynamics,2 which uses Maxwell's
equations combined with Dirac's equation to evaluate ensemble
experiments.3

 ___________________________________________________________________
  1. R.P.Feynman, Quantum Electrodynamics, p. 130, W.A.Benjamin Inc.,  N.Y. (1962).
  2. ……………….., QED, Princeton U. Press, Princeton N. J. (1985).
  3. R.B.Leighton, Principles of Modern Physics, p. 669 ff, McGraw-Hill Book Co., N.Y.
       (1939).
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CHAPTER 12

MECHANICS

12.1 Introduction: Mechanics is customarily defined as the science of
the motion of bodies and the causes of change in that motion.  In the
early days of mechanics, only two influences or forces were known to
act upon neutral objects, contact force and gravitation.  Now, it is
understood   that   even   contact   forces    are  electromagnetic
field interactions brought about by close proximity of the constituent
charges of the interacting bodies.  Although, in the past, the subject of
mechanics has had a limited purview, here it will be expanded to
include all particle/particle and particle/field interactions.
     A brief excursion is helpful at this point.  It concerns the way in
which experiments are performed.  First, it will be assumed, unless
otherwise explicitly stated, that the ether observer, i.e. one whose
inertial system is fixed relative to the ether, is the one who conducts
the experiments.  The discussion in Section 8.11 gives the reason for
this.  An experiment can usually be envisioned as performed in a
limited region enclosed in an imaginary box.  Further, the
observer/experimenter has his rods and clocks set up to establish
certain starting and end points and times.  By having them outside
the region of interaction, i.e. in the datum ether dφ , he can be sure
that, in any practical sense, they will be uninfluenced by the
experiment, i.e. by what's inside the box.  The moving bodies inside
the box are started at known points and at known times.  Later they
arrive at other known points.  Prediction of the arrival times and
places based on the initial conditions is the task of mechanics.
     The ether observer outside the imaginary box has the same role as
any absolute observer, and he examines the complex flows and
motions inside the box, including that part of the flow that represents
the particles or neutral bodies moving in the fields inside the box.  At
the same time, the interaction of a particle with the ether flow at each
position inside the box is often best established by first knowing what
would be seen by a second "ether observer" who, as in Appendix E,
uses the moving "fluid" coordinate system.  Based on this, the
resulting motion is then re-described as seen by the original or
absolute ether observer outside the box.  As in Appendix E, the
transformation from one ether observer S  to the other absolute ether
observer S is written using the ordinary or Galilean transformation.
     Neither the Law of Relativity, nor the Lorentz transformation are
used in the formulation of mechanics presented here, except in
establishing the validity of the absolute inertial observer's
measurements (see Section 8.11) and using Lorentz covariance to
verify the correctness of some derived equations.  None of the effects
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of variable energy or mass or changing shape, etc., are "relativistic",
but merely the result of the basic particle structure and the laws of
ether motion as set out in Chapters 2, 3, 5, and 8, and in Appendices
A through E.
     In the following, the concepts of "force" and "work" are described as
fictitious aids to problem solving in situations where the actual
physics just involves motion of ether distortion from one configuration
to another.  Newton's laws are developed, and the Kirkwood and
Lorentz forces are derived.  Finally particle/particle and particle /field
interactions are discussed.

12.2 "Force" and Work: Up to this point certain quantities, such as
position, velocity, and density, have been defined and observed by an
outside, absolute observer as they take on values governed by a set of
relatively simple relationships.  The entities constructed have been
allowed to interact, but the whole picture is represented by a single
continuous solution of the field equations.  Now, in an almost
inexcusable way, the picture will be made more subjective.  Work
somewhat, and force completely, are concepts that arise from the
ability of a collection of particles to be aware of its existence and to
recognize its own boundaries.  When a human "pushes" a stalled car,
the contact of the two is conceived by the human to be the means by
which a "force" is exerted on the other object; and, if the object moves,
"work" is done on it.  Yet, there is clearly no difference, other than
complexity, between that interaction and the one described in Figure
3.10.3 between two electrons.  Force and work are truly superfluous
in the electron example, since the solution of the field equations for
two dips of ether, kept from filling in by two sets of sustaining waves,
is just as proper as for one electron.  They will move apart, and their
motion is controlled in time by characteristics similar to those of a
single particle in motion.  Since "work" and "force" are arbitrarily
imposed in this case, it is clear that they are arbitrarily imposed in all
cases. There is no real physical motivation for either work or force.
     The fact that it is often easier, in a complex situation, to separate
parts of a problem, or to neglect small effects relative to large effects,
allows retention of the concepts of force and work in the following.
As long as it is clearly kept in mind that their use is an artificial aid in
problem solving, no great harm can come to the development of the
picture of the world's operation.  Nevertheless, every opportunity will
be taken to keep the objective picture uppermost.  Of primary
importance is the realization that all available equations of motion
involving force are essentially approximations.  For example, to
correctly derive the force on a single free electron in an electrostatic
field requires solving the bulk and ! -wave equations, of the electron
and the capacitor of Section 11.4 combined, as the electron is
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accelerating.  To see how difficult this could be, consult the simpler,
intractable accelerating point charge problem.1  In spite of these
difficulties, a good approximation can be found for any case.

12.3 Newton's Laws: The picture of an electron's inertia and
momentum developed in Sections 3.10, and 3.11 form the basis for
Newton's laws.  From the ether viewpoint, they are formulated as seen
by an absolute ether observer, in a region of constant ether density dφ
tracking a body that does not sensibly perturb the ether outside the
region occupied by the body.  Any body composed of layers (proton,
neutron, pion, etc.) or layered particles (atoms, planets, suns, etc.)
exhibits inertia and momentum properties similar to the electron.

The first law states:

       Every body continues in its state of rest, or of uniform motion in
       a straight line, unless it is compelled to change that state by
       forces impressed on it.

Each layer or particle that make up the body will continue to move at
constant velocity in a straight line unless the boundary conditions are
changed by a contact force, e.g. another neutral body approaching
close enough to cause the extended particle fields of the two bodies to
interact.  Thus, Newton's first law, including the special case of a body
at rest, is just the extension of the simple ideas of inertia and
momentum described in Chapter 3.

The second law states:

       The change of momentum is proportional to the motive force
       impressed; and is made in the direction of the straight line on
       which that force is impressed.

Expressed in vector notation, this is equivalent to,

                                                d
dt

=
p F
i

    ,                               (12.3.1)

where the momentum is given by,

                                           2
0

Em
c

= =p u u     .                         (12.3.2)

___________________________________________________________________
  1. L.Page and N.I.Adams,Jr. Electrodynamics, p. 163, Dover Publications, Inc.,
      New York (1965).
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Figure 12.4.1
Neutral body moving inside a solenoid.

Eq.(12.3.1) is derived, for the electron,  in Section 12.5; and extended
to other bodies as discussed above.  It is the result of applying the
relationship between the time rate of change of momentum and the
external energy absorbed by each of the body's constituent layers or
particles.  Questions about the passage of the energy through the
body from the point of contact force application, although important
and obviously not yet answered, are considered outside the main line
of thought here.  The "force" in Eq.(12.3.1) is visualized as a contact,
through which energy flows from the impressing body structure into
the accelerated body, or as a field acting on the body in some way.

The third law states:

       To every action there is always opposed an equal reaction: or, the
       mutual actions of two bodies upon each other are always equal,
       and directed to contrary parts.

In fact, this is essentially a statement that there is no such thing as
force, since all "forces" are balanced.  The mutual flow pattern of the
two objects interacting is all that actually exists.  Force is a
convenient fiction that allows a mechanics problem to be solved one
part at a time.
     The application of these three laws to typical mechanics problems
is too well known to require any further discussion.  The next sections
will try to increase the intuitive understanding of these motion
processes in terms of the ether.

12.4 The Kirkwood Force: To the absolute ether observer, the
situations described by Newton's laws are essentially the same as
those described conventionally by inertial system observers.

However, there are other
situations of interest where a
neutral body can be moving
through a field of ether velocity
that is neither uniform nor
irrotational.  The proper way to
deal with this type of problem
from the ether viewpoint will
now be developed.  To get some
idea of what is involved here,
consider the region of ether flow
inside a solenoid (see Section

9.3), as depicted in Figure 12.4.1.  A neutral body made up of, say,
610  atoms would be about 0.1 micron across; and would have

negligible effect on the circulating ether inside the solenoid.  With no
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external force acting on the body, i.e. no string or miniature "jet
engine", it is desired to find the motion of the body, which is initially
moving at the velocity u .  However, the only knowledge of the body's
motion at this stage is that given by Newton's laws for motion in an
inertial system.  The interior of the solenoid is definitely not an inertial
system.  Nevertheless, there is a differentially small inertial system S ,
fixed to the fluid, i.e. moving with it, with its origin 0  just passing the
point where the body is at any given instant.  In that differential
inertial system, for a differential time, Newton's laws apply (see
Appendix E, Figure E.4.1).
     With this knowledge, the general motion of the body can be found
using Eqs.(E.4.11) and (E.4.17),

  
2d ' d ' d d 2 ( )

dt dt dt dt
= = − − × −

u r u V w u V
i i i

  ,  d '
dt

= = −
ru u V   .    (12.4.1)

Rewriting the acceleration equation as,

                               d d d '2 ( )
dt dt dt

= + × − +
u V uw u V
i i

    ,               (12.4.2)

the acceleration of any moving point as seen by S  is composed of the
three RHS components; the acceleration of the origin of S , the
acceleration resulting from the rotation of S  and the acceleration of
the m.p. as seen by S .  This is a strictly kinematic relationship.  To
permit the use of the dynamic law represented by Eq.(12.3.1),
Eq.(12.4.2) must be augmented using Eqs.(E.3.18) and (12.4.1), which
yield,

   dm d 'm( )
dt dt

− =u V u
i i

     where     0
0 2

2
0

m
m m

( )1
c

= γ =
−

−
u V

   .   (12.4.3)

Adding the identity Eq.(12.4.3) to Eq.(12.4.2) multiplied through by m
results in,

                  d(m ) d dm d '(m )m 2m ( )
dt dt dt dt

= + × − + +
u V uw u V V
i i i

  .   (12.4.4)

which is still a kinematic transformation of the quantity mu  in S  into
the quantity of the same kind mu  in S.  To convert to a dynamical
relationship, Newton's second law in the form of Eq.(12.3.1) is applied
to S  at the origin where the body is just passing through.  The result
is the general equation for the time rate of change of the body's
momentum as seen by S, which has the form,

                      d(m ) d dmm 2m ( )
dt dt dt

= + × − + +
u V w u V V F
i i

    .     (12.4.5)
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Figure 12.4.2
Circling mass on a string.

Here F  represents any external force, such as a string or "jet engine"
that acts on the body to change its momentum as seen by S .
Following the steps leading up to Eq.(E.4.16), Eq.(12.4.5) can be
shown equivalent to,

                           ( )d m( ) m( ) ( )
dt

= − + ∇ −F u V V u V
i

i     ,           (12.4.6)

one form of the Kirkwood force equation that appeared in one of the
most important papers written in the twentieth century.1  Many of the
subsequent derivations to be presented owe a debt to the light shed by
that dissertation.
      Because of the manner in which they were constructed, both

Eqs.(12.4.5) and (12.4.6) apply to fields where <<V Vi ; but for cases

where >>V Vi  or where a body has no rest mass, the derivation must
be modified slightly.  Examples of these variations will appear later
on.  To enable certain simplifications to be made in subsequent
examples, the artificial concept of 'force" will be extended to describe
the effect of the ether on the body.  In agreement with the Third Law,
that force would be,

    ( )e
d  m( m( ) ( )

dt
= − = − − − ∇ −F F u V V u V

i

i    ,   ( 0)=Vi    ,    (12.4.7)

which says that if external force F  is applied to a neutral body, the
ether opposes that force with a counter force eF .  As will now be seen,
that is the nature of centrifugal force, for example.  Both Eqs.(12.4.6)
and (12.4.7) apply in any case where the zero time average component
of the external V  field  is zero.

Example 1

Ether at rest everywhere. Small mass
on a string executing steady circular
motion:
     This is a common experience, as
described in Figure 12.4.2. The ether
velocity 0=V  everywhere and the
ether density is dφ  everywhere. It
can be seen from Eq.(12.4.3), that
because V  is zero and,
        0ˆ ˆ u w R= =u α α     ,       (12.4.8)

 where  0w  is  the  constant  angular
velocity of the body about the point 0, the mass m is constant and equal to,

                                           22
0 0m m / 1 u /c= −     .                  (12.4.9)

 ___________________________________________________________________
  1. R.L.Kirkwood, Phys.Rev., 92, 1557 (1953).
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Since ∇V  is also zero, Eq.(12.4.7)
gives,

       = −
i

e

d
 m

dt
u

F    ,       (12.4.10)

for the force exerted by the ether
on the body.  Now, using
Eq.(12.4.8),

     e 0

ˆd
 mw R

dt
= −F

i

α  ,     (12.4.11)

but,

          = −
i

0

ˆd ˆ w
dt
α

R   ;     (12.4.12)

so,
      2

e 0
ˆmw R+=F R   .    (12.4.13)

This shows that the ether
"pushes" the body in a radial
direction with a centrifugal force
given by Eq.(12.4.13).  To
maintain the circular motion of
the body, an opposing, external
centripetal force must be
applied to the body by the
string.

Figure 12.4.3
Body at rest in a vortex flow field.

where 0w  is the angular velocity of
the ether.  Moreover, Eq.(12.4.7)
reduces to,

       e m( )= + ∇F V Vi   .      (12.4.15)
Because,

       
ˆ ˆ 
∂

∂
−= R

α

α
  ,  0 ˆw

R
∂

=
∂

V
α   ,

then, from Table D.5.1,

  0
ˆ ˆˆ ˆw ( )∇ = −V R Rα α   ;   (12.4.16)

so combining Eqs.(12.4.15) and
(12.4.16),

       2
e 0

ˆmw R= +F R    .     (12.4.17)

Example 2

Ether circulating about 0.
Particle and 0 at rest in S:
     This is the solenoid flow field
of Figure 12.4.1, with the
neutral body at rest in S as
described in Figure 12.4.3.
Since neither V  nor u  is
changing where the body is
located, m is a constant,

     0

2 2

0 0

2

0

m
m

w R
1

c

=

−

  ,    (12.4.14)

     The two situations in Examples 1 and 2 are identical as far as the
ether force that appears on the moving body.  From symmetry, this is
not too surprising, but it emphasizes how care must be applied in
thinking of the concept of force caused by ether acceleration.  In case 2,
the ether is accelerating radially inward at any point with acceleration

2
0

ˆ w R= −ea R .  However, this is not the only effect that determines the
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force on the body, even though m is constant.  The ether force is
established by the acceleration of the ether relative to the body as
seen by S , a frame moving with the ether at the point 0  where the
body is instantaneously located.  It should be pointed out that
Eq.(12.4.7) is a compact form of,

( )e
d m( m( ) 2m ( )

dt
= − − − − ∇ + × −F u V u V V w u V

i

i  , ( 0)=Vi   (12.4.18)

where the last two terms on the RHS correspond to acceleration
components resulting from the motion of the particle to regions of
different external field ether velocities.  Substituting the values from
Example 2 into Eq.(12.4.18),
                                  2 2

e 0 0
ˆ ˆ mw R 2mw R= − +F R R     .               (12.4.19)

The first term on the RHS represents the effect of the V  field's
acceleration inwards as it rotates, as seen by the general observer S.
The second term is an acceleration of the ether past the body, as seen
in the frame S , due to that frame's rotation as it moves with the ether.
In Figure 12.4.4, the ether frame S  is shown in two successive
positions.  First, with the body at 0 , and second with S  further on, so
that the body now appears in the third quadrant.  Thus, S  sees the
body moving inward, towards 0, relative to the ether, or an outwardly
accelerating ether force, as given by Eqs.(12.4.19) and (12.4.17).
Though it is often difficult to get the correct picture from the viewpoint
of S , the careful use of Eqs.(12.4.5) and (12.4.6) will always give the
correct result for fields where Vi  is zero, and will help to form the
proper visualization.

                       a.                                                           b.

Figure 12.4.4

Motion of the ether relative to the fixed body as seen by S .
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Figure 12.5.1
Positron between charged parallel plates.

12.5 The Lorentz Force - Electric: The Kirkwood force, derived in the
preceding section, applies to all neutral and charged bodies under all
conditions, but it is a very weak force.  In the presence of an external
electromagnetic field, the Kirkwood force still applies to all bodies,
charged and uncharged; but bodies with a net electric charge
experience an additional "Lorentz" force.  This Lorentz force is so
much greater than the Kirkwood force that the latter is always
neglected when an external electromagnetic field is present and acting
on a charged body.
     The Lorentz force on an electron/positron will be derived now, but
a "full field solution" is not available at this time.  Some shortcuts are
necessary, but the derivation presented here reveals all of the
essential fundamentals involved.  It is carried out in two parts, one
showing the effect of an external electric field, and the other the effect
of a magnetic field. The electric case will come first.
     Take the simple case of a positron momentarily at rest in an
electrostatic field between the plates of a parallel plane capacitor (see
Section 11.4).  Spacing between the plates, presumed here to be in an
evacuated tube, might be as little as a few microns; yet, since 98
percent of all the energy in the positron lies within a sphere of radius
200 er , or about 1110− cm, the positron occupies a negligible part of
the volume between the plates.  If a considerable charge is displaced
from one plate to another, the positron also has little effect on the
bulk ether density gradient between them.

     Figure 12.5.1 displays an
exaggerated picture of the
density.  Although the
sustaining waves are omitted
from the figure, they play an
important role.       First, a
large plane sustaining wave
moves from the - to the + plate
to maintain the constant
density gradient.  Second, the
positron sustaining wave
pattern moves from the outer
regions towards the positron's
center and maintains its
identity.  The two waves have

no effect on each other.  It can be shown, using the equations of
Section 11.2, that any dense region of ether not supported by ! -waves
will flow out to the lower density volumes until it equalizes with them.
This can be viewed as a kind of diffusion process.  Now, the positron's
sustaining wave prevents this within the positron and the "external"
field's sustaining wave prevents the + end of the field from flowing into
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Figure 12.5.2
Electron between charged parallel plates.

the −  end, but nothing holds the bump representing the positron
from going down hill, i.e. from filling in the lower density region near
the −  plate.  The positron, therefore, flows towards that plate, while
each of the sustained fields maintains its integrity.  However, because
the positron can only move by increasing its velocity, the motion
cannot be instantaneous but is controlled by how fast energy of
interaction stored at the start can be imparted to the moving positron.
Before making this quantitative, the case of an electron will be
illuminating.

     Figure 12.5.2 shows the
identical capacitor with an
electron replacing the
positron.  Again, the
external field's sustaining
wave and the electron's
sustaining wave (outward in
this case) keep those
identities intact; but there is
nothing to keep the ether
just above the lip of the
electron from flowing into its
volume, to fill it up on the
low side. This leaves less
ether in the higher region,

and in effect the electron has moved closer to the + plate.  In both
cases, the configurations resulted in ether flow not "force".  The rate
at which this flow and energy exchange takes place will now be found.
To keep the signs simple, the positron case will be used in the
derivation.  The electron case follows directly.
     The development is in two parts; first, relating the stored
interaction energy to the positron position, and second, showing how
fast the positron can take on that energy as it speeds up.  The
interaction energy is approached by a method nicely written up by
Armstrong, etc.1  First, the energy of either the external field or the
positron taken separately, can be written with the help of Eq.(2.19.1)
as,

                              21
2

space space
E  dvol ( )  dvol= ε = ∇φ∫ ∫    .              (12.5.1)

Applying Gauss' theorem (see Table D.6.2) to an identity from the
same table, 2( )∇ ψ∇φ = ∇ψ ∇φ + ψ∇ φi i ,  another form of Green's theorem
___________________________________________________________________________________
  1. H.L.Armstrong, Amer.J.Pbys., 23, 582 (1955).  N.S.Japolsky, Phil.Mag., 20,
      417 and 641 (1935), 22, 537 (1936).  B.Podolsky, Phil.Mag., 22, 998 (1936).
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is expressed as,
                            2

v S v
 dv  dS  dv∇ψ ∇φ = ψ ∇φ − ψ∇ φ∫ ∫ ∫ni i     .          (12.5.2)

Eq.(12.5.2) can be used to rewrite Eq.(12.5.1) in the form,

     2 21 1 1
2 2 2

space space surface
E ( )  dvol  dv d S= ∇φ = − φ∇ φ + φ ∇φ∫ ∫ ∫ ni      .     (!2.5.3)

Since the integrals are taken over all space, the surface is so far out
from the sources of the field that the surface integral is zero. This,
coupled with the charge density of Eq.(2.20.1), results in,

                                           1
2

space
E dv= ρφ∫   ,                           (12.5.4)

which is an alternative form of integral that relates the total stored
energy to the deformation ρ .  When applied to the positron alone,

substitution of ρ  and φ  from Eqs.(3.7.2) and (3.5.2) results in the
positron's rest energy of Eq.(3.6.3).  When applied to the parallel plane
capacitor alone, the charge densities concentrated near the two plates
make the major contribution to the energy stored in the parallel plane
field.
     Similarly, for the positron and external field superimposed, by

identifying the external and positron densities as 1φ  and 2φ
respectively, the field energy is,

= ∇φ + ∇φ = ∇φ + ∇φ + ∇φ ∇φ∫ ∫ ∫ ∫ i2 2 2
1 2 1 2 1 2

1 1 1E ( ) dv ( ) dv ( ) dv dv
2 2 2space space space space

                                                                                                (12.5.5)
The first two integrals on the RHS of Eq.(12.5.5) are of passing
interest only, since they represent the energies of the two fields when
each is alone.  The third integral clearly represents the added
interaction distortion that enters when the two fields are brought
together.  Here again, Green's theorem can be used to convert the
interaction energy into,

                                          i 2 1
space

E dv= ρ φ∫    .                          (12.5.6)

 In the present case, the positron or test charge is assumed to be a
very small volume entity, i.e. its main distortion region occupies a

negligible volume of the external field.  This permits any change in 1φ
over that region to be neglected, so that,

                                          i 21
space

E dv= φ ρ∫   .                           (12.5.7)
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Dropping the subscripts as unnecessary,

                                                iE q= φ     ,                               (12.5.8)
which states that the presence of a test charge q in an external field of
incremental ether density results in a stored energy between them, in
excess of their own separate energies, equal to the product in
Eq.(12.5.8).
     To complete the first half of the present development, it will be
assumed that the positron flows along the path of steepest descent,

i.e. parallel to the gradient of φ .  The unit vector ŝ  is used to denote
the direction of motion; and, from Eq.(12.5.8),

                                             idEˆ q
ds

= ∇φs     .                           (12.5.9)

Referring to Figure 12.5.1, Eq.(12.5.9) indicates that the positron

moving to the right a distance ds, because ∇φ  is negative and q is
positive, reduces the stored interaction energy by the amount

q d /dsφ .  To do this, it must take on the same amount of kinetic
energy (see Chapter 15).
     The second part of this development determines how fast a
positron can take on the kinetic energy.  This is found from
Eqs.(3.10.23) and (3.10.24) by taking the change in the positron's
energy as it moves a distance ds,

                               3 3 0
02 2

0 0

EdE u du duE
ds ds dtc c

= γ = γ
i

    .            (12.5.10)

This can be put in a more recognizable form by using,

                                   3
0 0

dEu d u duE E
dt dt dt

γ
= = γ

i i i

    ;                (12.5.11)

which, substituted into Eq.(12.5.10) yields,

                                         2
0

d E dEu
dt dsc

 
=  

 i

    .                      (12.5.12)

Finally, recognizing that the decrease in stored interaction energy must
be equal and opposite to the increase in kinetic energy (see Chapter
15), Eqs. (12.5.12) and (12.5.9) can be combined so that,

                                        2
0

d E  q
dt c

 
= − ∇φ  

 
u

i

    .                   (12.5.13)

 Since the quantity in the bracket on the LHS is the positron's
momentum, Eq.(12.5.13) declares that, in an external electrostatic
field, a small test charge gains momentum at a rate proportional to
both the charge and the external field's gradient.  Brief speculation
will convince the reader that the electron example of Figure 12.5.2
obeys the same relationship.  Furthermore, the restriction of a
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constant gradient field can be removed without changing the
derivation in any way.  Thus, Eq.(12.5.13) is quite general.

12.6 The Lorentz Force - Magnetic: An important point in the
preceding development is the change in direction of the particle's
motion with the sign of the charge.  Referring to Figures 12.5.1 and
12.5.2, the positron moved downhill because it was an excess of ether
flowing into a depleted region; whereas, the electron moved uphill
because it was a depleted region into which the higher density ether
flowed, in effect moving the depleted region to the higher density
portion of the external field.  A similar directional effect results from the
motion of electrons and positrons in regions where no external ether
density gradient exists.  Figure 12.6.1 shows this effect for a very
much oversimplified pair.  Each particle is represented in the figure as
a constant density, spherical distortion, in which the total ether flow
due to the particle's motion is given by,

                                             0ta ′φ = φV u     ,                             (12.6.1)
inside the particle and zero outside.  It is clear from the figure that, in

the electron, the total ether velocity vector tV  is moving in a direction
opposite to the electron's velocity u .  This is the one phenomenon
that accounts for the (until now) mysterious motion caused by a
magnetostatic field.  All other aspects of the physical mechanism are
intuitively understandable in terms of simple fluid motion.
     The derivation proceeds very much like that for the electrostatic
field, since again there is no rigorous solution of the field equations
available for the total combination of an "external" magnetic field and
a moving positron.  A significant difference is the fact that an energy
tracking procedure is doomed because, neglecting radiation effects,
the magnetic field is known not to change the energy of a charged
particle.  Therefore, it is necessary to try to understand the fluid
motion pattern in more detail and to find some pseudo criterion of a
"separate" charged particle that describes what its flow does relative to
the total solution.

Figure 12.6.1 Flow reversal with charge reversal.
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Figure 12.6.2
Charges moving in a magnetic field.

     When the real positron and an external magnetostatic field are
combined, since the major part of the positron's distortion energy lies
inside a sphere about 1110−  cm in radius, the external field is
essentially unchanged.  To help visualize the flow, the inside of a
solenoid (see Section 9.3 and figure 12.4.1) will be used as an

example.  There, the ether velocity V  is circulating in vortex motion,
with the fluid turning as a rigid body.  Consider the motion of
positrons in a plane perpendicular to the solenoid axis.  Figure 12.6.2

depicts the motion of several
positrons and one electron.
Neglecting radiation effects, the
steady state motion of each is
observed to be in a circular
path of radius proportional to
its speed u; with electrons
circulating in the same mode

as the vorticity w  of the

external field V  and positrons
in the opposite mode.  It is this
motion that requires
explanation.
     First, it is useful to consider
the total flow at the very center
of the constant density

spherical model positron, as expressed by,

                                         0 dta ′φ φ + φ=V u V     .                       (12.6.2)
This can be written as,

                                            0

d
t

′φ
≅ −

φ
u V V     ,                          (12.6.3)

where the neglected quantities are down by 1810− .  Taking the moving
point derivatives, following along with the particle,

                                         0

d

td d d
dt dt dt

′φ
= −

φ
u V V
i i i

    .                     (12.6.4)

The external field V  is known, so it is now only necessary to specify
the time rate of change of the total ether flow inside the particle to
obtain the magnetostatic force.
      Now, consider the positron as an extended entity. A better
understanding of its present action can be obtained by seeing the
relative control of the various velocity or flow components on its
shape.   From Chapter 3  it is known that the equi-density contours of
an e/p  at rest in ether that is at rest are spherical,  and it was shown
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        Positron and                   Positron at rest                  Positron moves left
        ether at rest                  ether moves right                      ether at rest
                  a.                                      b.                                       c.

Figure 12.6.3 Positron shape versus velocity.

that the shape changed to an oblate spheroid (expanding laterally)
when the particle moved at velocity u .  As illustrated in Figure

12.6.3(c), if the positron moves to the left at the velocity 1V  in ether
that is at rest, the shape is exactly the same as for the case in (b)
where the positron is at rest and the ether moves to the right at
velocity 1V .  Thus, a positron at rest just inside the solenoid of
Section 9.3, is distorted a negligible amount, inasmuch as the ether
velocity there was only 105.9123 10−× cm/sec.  In all magnetostatic
fields commonly dealt with, the ether velocity of the external field is of
roughly that same order of magnitude, and a particle at rest will have
essentially a spherical shape.  On the other hand, the velocities of
moving electron/positrons in typical experiments, are anywhere from
1 cm/sec to just under the speed of light, and so a significant shape
change is controlled and varied by the particle velocity u .  Figure
12.6.4 sums up the idea that the shape of a moving particle is
essentially independent of the external field velocity.   A more formal
way to say this is to express the velocity  of  the   particle  in  terms  of

Figure 12.6.4 Particle shape is independent of the external V  field.
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ether coordinates, as seen by S (see Sections E.3 and E.4),

                                              = −u u V     ,                              (12.6.5)

and then realize that V  is negligibly small compared to u , so that,
                                                  ≅u u     ,                                (12.6.6)
to an extremely good approximation.  With this understanding, it is
now possible to go back to Eq. (12.6.2) and sketch the flow vectors in
a positron moving through a magnetostatic field (in a plane
perpendicular to the axis as in Figure 12.6.2.  Figure 12.6.5(a)
represents the basic flow at the center.   Some care  must be observed

in interpreting this diagram and the accompanying Eqs.(12.6.2) and
(12.6.3).  Inasmuch as the external ether field is known everywhere
inside the solenoid, for example, space derivatives of V  can be taken
at every point in the field.  Conversely, in these equations, u  and tV
are only specified at the center of the positron so that only moving
point derivatives are allowed.  Eq.(12.6.3), for example, cannot be
operated on by ∇  and related space derivative functions.  Figure
12.6.5(b) shows the convenient component breakdown, where the
direction of u , i.e. ŝ , and of those quantities perpendicular to u , i.e.
parallel to ĝ , are indicated.  Note that the axis of the electron is
specified and controlled by u .
     The derivation now proceeds by returning to Eq.(12.6.4), and first
considering the component form of the LHS,

                                        
ˆd d du ˆu

dt dt dt
= +

u s s
i i i

    .                       (12.6.7)

       a. Basic flow                                         b. Parallel and perpendicular
                                                                                    components

Figure 12.6.5 Flow at the positron center.
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 Earlier, in Section 3.11, it was indicated that unless an external
distortion is applied to a positron, its own shape and internal
distortion cannot change.  Consequently, its speed cannot change,
although in more complicated situations, its velocity can vary by
having the direction of motion turn.  In the present example, the
correct, and rigorous solution of the total field, although unknown,
hangs over the derivation and must be compatible.  Therefore, the fact
that a steady state solution is required where no external distortion is
added, forces the conclusion that the positron, which is the only
distortion in the picture, cannot change shape or speed, so that,

                                   
ˆdu d d0    ,    u

dt dt dt
= =

u s
i i i

    .                  (12.6.8)

 An immediate consequence is that the positron's path is a circle, and

this can be made quantitative by finding td /dtV i  to substitute in

Eq.(12.6.4).  Because d
dt
u
i

 is perpendicular to u , the LHS of

Eq.(12.6.4) can be eliminated by taking the dot product of each term
of the equation by u , with the result,

                                          td d
dt dt

=
V Vu u
i i

i i     .                        (12.6.9)

Resulting restrictions placed on td /dtV i  can be found by replacing

d /dtV i  by its equivalent (see Eq.E.4.4),

                                         d
dt t

∂
= + ∇
∂

V V u V
i

i     .                     (12.6.10)

Keeping in mind that / t 0∂ ∂ =V  in this magnetostatic field, and

separating ∇V  into its symmetric (deformational) and anti-symmetric
(rotational) components (see Eq.E.6.10),

                                          d
dt

= Φ + Ω
V u u
i

i i     ;                       (12.6.11)

so Eq.(12.6.9) becomes,

                                    td
dt

= Φ + Ω
Vu u u u u
i

i i i i i     .                  (12.6.12)

This automatically reduces to (see Table C.5.1),

                                          td
dt

= Φ
Vu u u
i

i i i     .                        (12.6.13)

Although Φ  is zero in the inside solenoidal field, it is not zero either
outside or in the field between parallel plane current sheets, etc., so it
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will be carried along in this derivation.  Solving Eq.(12.6.13),

                                           td
dt

= Φ +
V u G
i

i     ,                       (12.6.14)

where G  is an arbitrary vector of the type 0=u Gi .  Note the
similarity of the form of Eq.(12.6.14) to that of (12.6.11).  At this point
it might be tempting to guess that they were identical, but it is easy to
see from Eq.(12.6.4) that this is not correct.  On the other hand, since

Φ  is also its own conjugate, another equally reasonable guess might

be that G  is the "conjugate" of Ωui .  That this is actually the case
will be seen shortly, but it will be deduced in a somewhat more
rational manner.

     The quantity Ωui  in Eq.(12.6.11) represents a component of the
ether acceleration caused by the rotation of the ether at the moving

point.  Clearly, the quantity G  is a component of td /dtV i  resulting
from the particle flow attempt to either match or counter the
"external" rotational flow or otherwise be compatible with the
rotational flow of the total field equation solution.  To see how this
match might be described, take the simplest possible case where ether
rotation is involved, namely, a positron at rest on the axis of a
solenoid.  An observer looking at the external field and the positron
together would see, if the positron did not rotate, a flow pattern inside
the positron that was circulating; so that rather than the solution for
a positron at rest, there would be a spiraling in of the sustaining
waves.  On the other hand, if the positron's incremental density were
circulating counter to the external field at every point, the effective
rotational component of ether flow inside would be zero, and the
already accepted solution for the positron at rest would apply.  Notice
that the rotation rate of the positron would be equal and opposite to

the vorticity w  of the "external" field.  It will be assumed that this
reverse turning will occur not only at the center of the solenoid, but
anywhere that there is a vorticity or rotational component of ether
flow.  In particular, if the positron has a velocity u  other than zero,

its motional axis will turn at the rate − Ωui , opposite to the mode of
the vorticity.  Clearly, an electron would rotate in the same direction
as the ether rotation.

     Going back to Eq.(12.6.14),with = − ΩG ui  (see Eq.D.4.12),

                                          td ( )
dt

= Φ − Ω = ∇
V u u u V
i

i i i     .        (12.6.15)
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Substituting this into Eq.(12.6.4),

                                     0

d

d  ( )
dt

′φ
= − ∇ − ∇

φ
u u V V
i

i     ;                  (12.6.16)

or, with the help of Eqs.(C.5.4) and (C.5.13), a more recognizable form,

                                  0

d

d 2 ( )
dt

′φ
= − Ω = × ∇ ×

φ
u u u V
i

i     .             (12.6.17)

As derived, this equation applies only to a particle moving in the plane
of the vorticity; but since a velocity component perpendicular to that
plane does not change (no reason to), the motion in a general
magnetostatic field is given by Eq.(12.6.17).  To bring that equation
into the form of Eq.(12.5.13), some of the relationships from Chapter 3
can be used to show that the energy of a constant speed positron is
the constant 0E e/4= γφ , where 0φ is the center point incremental
ether density of the positron in motion.  Combining this with
Eq.(12.6.17) ,

                            0
d2 2

00 0

d E e ( )
dt 4c c

   φ
= γ × ∇ × φ     ′φ  

u u V
i

    .     (12.6.18)

Now, 0φ  represents the ether density at the real positron's center;
whereas 0′φ  represents an effective value for the spherical model of
Figure 12.6.1.  The spurious RHS quantity in brackets results from
the use of the simple model.  From experience its value is essentially
unity.
     It is possible to derive the Lorentz force using the Lorentz
transformation equations given in Section 8.13.  When this is done,
neglecting radiation, the magnetic term found is,

                                  2 2
0 0

a
d E q ( )

dt c c

 
= × ∇ × φ  

 
u u V

i

    ,           (12.6.19)

so Eq.(12.6.19) is the finaI form of this component of the magnetic
force in the general case.
     It is well known that from Eq.(12.6.19) it can be shown that a
charged particle injected at low velocity u  into a constant vorticity
field will execute a helical motion of radius,

                                               muR
2qw

⊥=     ,                           (12.6.20)

where u⊥  is the component of the velocity perpendicular to w .

12.7 The Lorentz Force - Transformer Effect: One more component
of the Lorentz force equation remains to be found.  It is the basis for
understanding   the   "Transformer Effect".    In   the   simplest   case,
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visualize a region where the ether is at rest in the field.  Now,
externally, cause the ether at the point where the positron rests to
speed up. The description of this external field at the location of the

positron is given by / t 0∂ ∂ ≠V .  This term was dropped out of the
magnetostatic force derivation, and there, the particle moves to
maintain a steady state field solution.  Here, a transient effect
controls, but the motion is still given by Eq.(12.6.4); except that the
positron moves to maintain its original flow vector as expressed by,

                                                td 0
dt

=
V
i

    .                              (12.7.1)

 Therefore, Eq.(12.6.4) reduces to,

                                            0

d

d  
dt t

′φ ∂
= −

φ ∂
u V
i

    .                         (12.7.2)

 Proceeding in exactly the same manner that led to Eq.(12.6.19),

                                 0 d
2 2

00 0

( )E d e
dt 4 tc c

 φ ∂ φ
= − γ ′φ ∂ 

Vu
i

    .              (12.7.3)

One major difference is that, because the particle accelerates in line
with its motion, the energy E varies; and therefore the LHS of
Eq.(12.7.3) is not quite the same as that of Eq. (12.6.18).  However,
combining Eqs.(3.6.3), (3.7.3) and (12.5.11), Eq.(12.7.3) becomes,

                               3 0 d
2 2

00 0

( )d E e
dt 4 tc c

   φ ∂ φ
= − γ   ′φ ∂  

Vu
i

    .          (12.7.4)

Here, again, the spurious factor is the result of using the simple
model, and the most general case is written,

                                     a
2 2
0 0

d E q
dt tc c

  ∂φ
= −   ∂ 

Vu
i

    .                 (12.7.5)

This derivation is not restricted to the simple case above but applies

to any moving charge in a field specified by a / t 0∂φ ∂ ≠V .

12.8 The Lorentz Force - Total: The form of the Lorentz force
equation commonly used in present day texts is the combination of
the Eqs.(12.5.13), (12.6.19), and (12.7.5), where the "transformer"
component is grouped with the electrostatic force even though, from
the present viewpoint, it is clearly a "magnetic" effect.  Here, the
Lorentz force on a charged particle is expressed in the form,

                       L
a

a2 2
0 0

1 1q ( )
tc c

 ∂φ
 = −∇φ + × ∇ × φ −
 ∂ 

VF u V     .     (12.8.1)
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     The preceding derivations of "forces" on charged particles were not
intended to be rigorous in any way, since it has been maintained all
along that only the total field flow solutions will be rigorous.   The
attempt to make the results come out in the form of the Lorentz
equation was based on the hope that the field approach could be
broken down into a particle/force model in the same fortuitous way
that the mass of a large body produces an effect that can be
considered generated by a point mass.  At any rate, the derivations do
serve to clarify what physical mechanisms are involved.  Although the
electric and transformer force derivations are fairly intuitive, the
magnetic force component is more involved.  A simple example can
make the magnetic derivation more understandable.1

Example

If the current in the first solenoid of Section 9.3 is raised until the
field inside is = =B 0.02 (Tesla) 200 (Gauss) find the radius of the path
of a 1Kev positron circling inside, with path centered on the solenoid
axis.

The conversion factors relating magnetic field to angular rotation rate
of the ether are:

Therefore, − −= × × = ×12 10w 4.7048 10 200 9.4096 10 rad/sec .  Also, for

a 1Kev positron, −γ = + = + =3
k 01 (E /E ) 1 (10 0.511) 1.0020 , and

−= − γ =2
0 0u c 1 0.0632c .  Using Eq.(12.6.20), =R 0.54 cm .

      The external ether velocity at the orbit is, −= = × 10V wR 5.08 10
cm/sec, and the ether velocity due to the positron alone
( ′φ φ = γ0 d 0m e  in Eq. 12.6.3) is, −= γ = × 9

p 0V ( m e) u 1.016 10 cm/sec.

The total ether velocity inside the positron is, = +t pV V V ; but, from
Figure 12.8.1, the two components point in opposite directions, so

that, −= − = × 10
t pV V V 5.08 10 cm/sec.

___________________________________________________________________
  1. R.H.Dishington, Physics, p 258 ff, Beak Publications, Pacific Palisades, CA. (1989).
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Figure 12.8.1
Positron circling inside a solenoid.

Figure 12.8.2
Partial ether turning inside a solenoid.

     The external field ether
acceleration at the positron
orbit is inward (centripetal),

−= = ×2 19a w R 4.78 10 , which
is insignificant relative to the
ether accelerations seen
moving with the positron.
These are given by a slightly
modified Eq.(12.6.4),

 = −tm d d d
e dt dt dt

u V V
i i i

 ,   (12.8.2)

or,

                                      = − Ω − Ωpd
dt
V u u
i

i i     .

The LHS term is the centripetal acceleration of ether, due just to the
positron, seen at the m.p.  The first RHS term is the centripetal
acceleration of the total ether velocity due to the positron's turning, as

seen at the m.p., = = 2
ta uw 1.78 cm/sec .  The second RHS term is

the centripetal ether acceleration due to the external field, as seen at

the m.p., = = 2
exa uw 1.78 cm/sec .  Thus, combining the RHS terms,

the centripetal ether acceleration due to the positron alone, as seen at

the m.p., is, = = 2
pa 2uw 3.65 cm/sec .

     It was stated earlier that the
lateral extension of the particle's
shape is always perpendicular to
its velocity u.  Thus, as seen in
Figure 12.8.2, the shape
turns    at    the    angular    rate,

= = × 9
sw u R 3.51 10 rad/sec .

The equivalent effective ether rate
is, −= × 9

s(m e) w 1.88 10 rad/sec ,

or =s(m e) w 2w .  This indicates
that the fluid elements undergo
distortion as the positron circles,
because the shape turns twice as
fast as tV , the total flow in the

particle.  It is easier to see graphically if, instead, the turning of tV  is
converted to the equivalent incremental flow,
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Figure 12.8.3
Positron approaching a solenoid.

= = ×
eff

9
pw (e m) w 1.76 10 rad/sec , or =

effp sw w 2.  This is used to

plot the motion of the numbered fluid elements in Figure 12.8.2.
Their relative displacement is obvious.     Section 12.9 will examine
the significance of this particular turning condition in detail.

      Outside the solenoid, = 0w , so a positron will move in a straight
line at constant velocity u .  However, whereas in the previous case

the ether rate of strain tensor Φ  was zero, in this case it is not.
Consider the situation exhibited in Figure 12.8.3, where a positron
located at =R 5 cm  travels towards the center of the field at a velocity
= 0u 0.1c .  The applicable form of Eq.(12.8.2) can be written,

                                   = Φ − Φ =pd  0
dt
V u u
i

i i     .                   (12.8.3)

Referring back to Section
9.3 and table D.5.2, the
rate of strain dyadic
outside the solenoid is,

Φ = − +2
00

ˆ ˆˆ ˆR V R  ( )R Rα α .
At the point shown in
Figure  12.8.3, the positron
velocity is, = − ˆ  uu R . Thus,

Φ = 2
00ˆ  (R V R ) uu i α , or,

Φ = 2ˆ  0.113cm/secu i α . In
Eq.(12.8.3), the first RHS
term is the acceleration,

= 2
t ˆ  0.113 cm/seca α , of total ether velocity due to shear at the m.p.

The second RHS term is the acceleration of external field ether velocity
seen at the m.p.  As indicated in Figure 12.8.3, these two shear
accelerations cancel.  The positron always moves so that the two
rotations add and the two shears cancel.  In the case of the parallel
current sheets described in Section 9.3, neither Ω   nor Φ  is zero, so
the accelerations acting would be the combination of Figures 12.8.1
and 12.8.3.

12.9 Particle Turning: This example has combined the customary
method of using the Lorentz force equation to describe the motion of a
charged particle in external fields with certain added calculations to
illustrate internal physical phenomena not normally known.  Next, one
or two loose ends relating to force will be considered.  First, in regard
to the Lorentz force equation, the magnetic component was derived in
such a way that the action of the external field on both a charge at
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rest or moving was included.  This was sloughed over in the derivation
of the electrostatic gradient component, inasmuch as the effect of the
electron's possible initial motion was not explicitly included. Going
back over the steps leading up to Eq.(12.5.13), and using the motional
configurations of Section 3.10, it is possible to show that even for an
electron with an initial velocity, Eq.(12.5.13) still holds.  Based on this
knowledge, an important characteristic of the electrostatic-e/p
interaction can be found. Rewriting Eq.(12.5.13) as,

                                          = − ∇φ
d(m ) q 

dt
u
i

    ;                         (12.9.1)

and recalling that the internal ether flow in the positron in the

absence of an external V field is,

                                        = =p t (m q ) V V u     ,                      (12.9.2)

(see the Example above), the rate of change of tV  is,

                                             = − ∇φtd  
dt
V
i

    .                            (12.9.3)

Here, use has been made of the fact that the charge q of a moving
particle is constant.
     Eqs.(12.9.1) and (12.9.3) together contain a very important fact
about the turning of an electron/positron in an electrostatic field.  To
see the full import, the components of Eq.(12.9.1) are examined first.
Letting, = ˆuu s , the change in momentum is,

                            = + = − ∇φ
ˆd(m ) d d(mu) ˆmu q 

dt dt dt
u s s
i i i

    .           (12.9.4)

The two components represent the changes in direction and
magnitude.  In the same sense as used in Figure 12.6.5, the gradient
of Eq.(12.9.4) can be put in the component form,

                                    ˆ ˆ ˆ ˆ ( ) ( )∇φ = ∇φ + ∇φg g s si i     ;                    (12.9.5)
which combines with Eq.(12.9.4) to the end that,

                   
ˆd(mu) d q ˆ ˆˆ q ( )    ,    ( )

dt dt mu
= − ∇φ = − ∇φ

ss g g
i i

i i    .     (12.9.6)

The turning rate of the positron's shape, given by Eq.(12.9.6) is the
focus of the present development.  Going back to Eq. (12.9.3), the
same procedure will be used to find the turning rate of the total ether

flow inside the positron.  Letting, p p ˆ ˆ V (m q)u= =V s s , the change in
ether velocity is,

                                p p
p

ˆd d dV ˆ V
dt dt dr

= + = −∇φ
V s s
i i

    .
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Now, in conjunction with Eq.(12.9.5),

                        = − ∇φ = − ∇φp

p

ˆdV d 1 ˆ ˆˆ( )   , and  ( )
dt dt V

ss g g
i i

i i    .   (12.9.7)

From Eqs.(12.9.6), (12.9.7) and (12.9.1), it follows that,

                                        =
total

shape ether
flow

ˆ ˆd d
dt dt

s s
i i

    ;                        (12.9.8)

in other words, in an electrostatic field a moving charge flows with full
turning.  This has profound implications in radiation theory.

12.10 Newton's Second Law - Neglecting Radiation: The equation of
motion for any small body, charged or neutral, moving in a general
ether flow field and neglecting radiation from the body, is written as,

                                      += +K L ext
d(m )

dt
u F F F
i

    ,                  (12.10.1)

where = γ 0m m , LF  is the Lorentz force given by Eq.(12.8.1), extF  is
any external force (e.g. a string or jet engine), and the Kirkwood force,
from Eq.(12.4.5), is,

                            ( )= + × − +K e e
dmm 2 ( )
dt

F a w u V V
i

    .         (12.10.2)

For a charged particle in an electromagnetic field, the Lorentz force far
exceeds the Kirkwood force and KF  is negligible.  If no electromagnetic
field is present, the motion of any charged or neutral particle is

determined by the Kirkwood force, KF .  The quantity eV , in
Eq.(12.10.2) is the effective velocity of the primary inertial system at
each point in the field, so that the motion factor becomes,

                                        γ =
−

−
2

e
2
0

1

( )1
c

u V
    .                      (12.10.3)

In most situations, the primary inertial system velocity is V ; but, in

the gravitic field, = 0V  and the field manifests itself through Vi  (see
Chapter 14).

12.11 Newton's Second Law - Including Radiation: The exact way to
apply Newton's law, in circumstances where radiation from an
accelerated body is not negligible, is unknown at this time.  In Chapter
13, the details of the radiation process are investigated, and the
present status of the theory is presented.  Here, only a brief sketch of
the results will be stated.
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     Radiation occurs when charged particles undergo certain specific
types of acceleration.  Their fields distort in such a way that the
deformation exceeds the "bound" electric energy distortion that
defines the basic particle.  The excess goes off into space.  In neutral
particles, the positively and negatively charged regions manage to
interchange distortion so that this does not take place.  Therefore,
only charged bodies are considered here.
     One feasible form of Newton's second law can be written,

                                       = + +L R ext
d
dt
P F F F
i

    ,                      (12.11.1)

where, LF is the Lorentz force of Eq.(12.8.1),  extF is any other external
force (contact, etc.) applied, and RF is the radiation reaction force that
the outgoing, free distortion exerts back on the charged body.  As
derived in Chapter 13, a reasonable form for the radiation reaction of
an e/p takes the form,

                            
 γ

= − γ +  π  
R

2 2
4 2 2

5 2
0 0

e ( )
6 c c

F u u u u" "i     ,          (12.11.2)

where u is the velocity of the e/p and u"  its acceleration.  The "total"
momentum P is defined as,
                                              = + aP p p     ,                           (12.11.3)
where = γ 0mp u , the "bound", conventional momentum associated
with a constant velocity body.  The unknown lies in ap , the
momentum associated with the accelerating field.  More will be said
about this in Chapter 13.

12.12 Particle-Particle Interactions: Using the energy, momentum,
and force equations derived for unons in fields, and extrapolated to all
layerons in fields, the exchanges of energy and momentum in elastic
collisions between layerons are considered to be well understood.
The discovery of the Compton effect in the collision between a photon
and an electron, i.e. the particle like behavior of the photon, has led to
the conventional point of view about wave-particle duality that light is
"neither" particle nor wave.1  From the ether point of view, it is "both",
with no confusion.  Formal description of the Compton effect is so well
covered in the available literature that it need not be reproduced
here.2  Simply, it is the collision of two different particle types, a unon
and a photon.   The unon's  # -waves  and bulk structure interact with
 ____________________________________________________________________________________
  1. R.P.Feynman, R.B.Leighton, M.Sands, Lectures on Physics, 3, p 1-1,
      Addison-Wesley Publ. Co., Reading, MA (1965).
  2. R.L.Armstrong & J.D.King, The Electromagnetic Interaction, p 3O2 ff, Prentice-Hall
      Inc. N.J. (1973). K.H.Spring, Photons and Electrons, Ch-3, Methuen & Co. Ltd,
      London (1950).
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the photon's # -waves and bulk structure to deflect both particles; but
energy, momentum, and spin, are conserved, while both particles
change direction and make adjustments in their wave structures.  The
best possible deterministic description of any particle is a "wave-
particle duality".
      As long as particle-particle collisions involve only a relatively weak
field interaction, the exchange of energy and momentum is elastic and
can be dealt with in the customary fashion.  However, if enough
energy is involved, the collision may be inelastic; i.e. the two particles
may merge and splatter.  This is a more difficult problem, formally,
because the exact structure of most of the particles is not yet
available.  This is one of the gaps yet to be filled.

12.13 Particle-Field Interactions: The most common of these, i.e.
layerons in electrostatic and magnetostatic fields, have been
discussed in some detail in earlier sections.  Some of the concepts
were broadened to include neutral bodies.  However, the important
interaction between particles and the gravitic field has been avoided
so far.  Mainly, the reason for this is that it is a less familiar discipline
and involves a considerably more sophisticated approach. This
omission will be corrected further on, where a complete chapter (14) is
devoted to the gravitic field.

12.14 Work: So far, this chapter has concentrated on force and
interactions, and nothing has been said about work.  Once the idea of
force is allowed, the interaction of two particles, the "worker" and
"worked on", or of a particle in a field, where the latter "works" on the
former, follows naturally.  From the correct and rigorous point of view,
there is a transfer of interaction energy into the "worked on" particle,
and work is defined as that transferred energy.  In earlier sections, the
transfer process was described as a single solution of the field
equations; but inasmuch as a "worked on" particle can afterwards be
separated from the "worker" field and it retains the transfer energy as
part of its own separate moving field solution, it is possible to divorce
work and force.  Saying that a field works on a charge just means that
energy is being transferred.  Only when it is desired to calculate the
energy transfer in terms of the "force" is the conventional definition of
work necessary.
     Formally, work is defined as follows.  Starting with Eq.(12.3.1), the
component forms are written,

                               + = +
ˆdp d ˆ ˆˆ ˆ ˆp ( ) ( )

dt dt
ss s F s g F g

i i
i i     .           (12.14.1)

Since the component related only to changing direction does not
change  the  particle   shape  (or  energy  or  momentum),  the  energy
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change must be found from,

                                          = =
dp dEˆ
dt ds

s F
i

i     ,                       (12.14.2)

(see Eq.12.5.12).  From this, the transferred energy is,

                                          = =∫E d WF si     ,                        (12.14.3)

which is the definition of work.  In conclusion, the concept of work,
while it can be separated from force, is not needed in the overall
structure of physics.  It appears only as a convenience in thinking in
the conventional way.  Force has no meaning whatsoever, but is again
a convenient approximation in simplifying problems.  One final point
of importance is that in this and all of the preceding sections of this
chapter, no "so called" relativistic assumption has been made.
Nevertheless, many of the expressions derived are loaded with the "so
called" relativistic factors and forms, all simply the result of the
solutions of the overall field equations, as seen by an absolute
observer.
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CHAPTER 13

WAVES

13.1 Introduction: Ether waves come in two varieties, longitudinal
and transverse.  Both types have been discussed in some detail in
earlier chapters, yet there are several aspects of each that require
further description.  That is the goal of this chapter.
     Although ! -waves carry no energy, they cause deflection and
interference effects, are a possible component of datum fluctuations
(see Chapter 4) that trigger various actions and determine radiation
line widths (see Sections 7.13, 7.14), and they hold the bulk shapes of
layeron particles together (see Chapters 3 and 5). Their frequencies
can be determined (see Sections 5.5 and 11.6).  Beyond these few
properties, not much more is known about them.  Nevertheless, some
apparently strange phenomena can be explained very nicely by what
is known about them.
     A great deal of knowledge about t -waves has been accumulated
over the last 150 years.  Their principal function is to carry energy
from one region to another.  They do this in two basically different
forms, photon and antenna radiation.  Generally, the word "radiation"
does not apply to ! -waves, because it implies energy transport.  There
are two different aspects to radiation, its generation (see Sections
3.12, 3.13, 7.8, 9.6, 12.8, 12.9 and 12.11) and the form it takes in
traveling away from the source (see Section 9.12 and Chapter 10).
     In the following, the generation of t -waves is investigated in more
detail; and several conventionally puzzling phenomena are explained
on the basis of ! -waves.

13.2 Types of Radiation: The two types of radiation, photon and
antenna, differ both in the way they are generated and the form they
take.  Photons, which are true particles, are probably all generated by
orbiting processes.  Their particle nature is dependent upon a
magnetic vortex core, and they are long, needle like objects
(length/diameter > 310 ) that travel at speeds ± ∆0c c .  Inside the
vortex core, both an ! -wave and a t -wave propagate at the speed of
the core.  The t -wave carries the energy and is circularly polarized,
because it turns with the vortex around the propagation axis.
     Antenna radiation is quite different in form.  It is not particulate,
i.e. it has no photons in it.  It has no vortex core.  It is a pure wave
phenomenon, a solution of Maxwell's macroscopic equations, as
presented in Section 11.2.  Running through all of the earlier sections
listed above, is the concept that, although Maxwell's macroscopic
equations can properly describe the actual propagating t-waves, those
equations cannot alone describe the microscopic interface where the
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Figure 13.3.1
Hydrogen atom ground state.

actual radiation takes place.  They are necessary but not sufficient.
The propagating t-wave solutions are well known and understood.  It
is the microscopic generating process that needs elaboration.

13.3 Some Microscopic Radiation Generators: Radiation is
generated by accelerating charged particles.  Once this process is
understood for the electron/positron, it is easily extended to other
charged objects.  In Sections 3.12 and 3.13 a simple rule of thumb
about when and where e/p radiation will be generated was stated.
The following will illustrate its application in certain specific cases.

Atomic Ground State Orbits: The simplest
non-radiating accelerating electron example
is that of the ground state atomic orbit.
Figure 13.3.1 portrays the hydrogen atom
in its ground state condition.  The proton
( +e ) and the electron ( −e ) are circling about
their common center of energy as a rigid
body.  The total field equation solution is
this steady state, rigid body type rotation.
In Section 12.9, Eq.(12.9.8), it was shown
that an electron moving in an electrostatic

field exhibits full turning (see also Section 3.13); which is to say that
its bound density does not distort as it changes its direction of
motion.  Since the electron's speed is not changing, there is no
distortion change whatsoever; and the same applies to the proton.
Therefore, such a system cannot radiate, regardless of what Maxwell's
equations of the far field say.  The non-radiating atom, with its
extended particles, is part of the boundary condition for that solution
that is not included in the conventional solution of Maxwell's
equations for accelerating point charges.

Electron Circling in a Magnetic Field: Several types of particle
accelerators have as their basic element a space constant magnetic
field that holds a particle's motion on a circular path while it is
accelerated by other means.  In a cyclotron, for example, protons are
accelerated twice in each circuit by passing briefly through high
electrostatic gradient regions.  In a betatron, the magnetic field itself
is increased, allowing the transformer effect to accelerate the charge.
If, at any instant, the driving field in either of those machines were to
be turned off, the circling particles, particularly at high velocities,
would continue to circle in the steady magnetic field.  When driven,
the particles accelerate in-line with their motion as well as
centripetally.  The in-line acceleration produces some radiation, but
by far the greater amount of radiation is produced in the simple
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Figure 13.3.2
The positron under linear acceleration.

circling motion.  Even with the in-line driving fields turned off, this
radiation continues until the particles are damped down to a low
velocity.  The cause of the circling or synchrotron radiation is the only-
partial-turning of the particle's ether elements as its shape rotates.
As discussed in Section 3.13 (see Figure 3.13.1), partial turning
results in the motion of bound ether elements relative to one another;
and, especially for high speeds, inevitably leads to lost or freed
distortion.  In the example in Section 12.8, in association with Figure
12.8.2, it was shown that, in an e/p circling in a constant magnetic
field, the ether elements are rotating only half as fast as the shape
turns, so that there is an oscillating change in distortion of the bound
field, the source of the radiation.

Linear Accelerators: Uniform acceleration of an electron in a straight
line has significance in two senses.  One, because a basic class of
particle accelerating machines uses that format; and the other
because the investigators into the conventional approach to radiation
reaction have used that example as a work horse.  The analysis in
Section 12.5 can be used to help visualize the conditions (see Figure
12.5.1).  In that case, radiation reaction was ignored.  Here, it will be
emphasized.  This can be done by looking more closely at the shape of
the positron's field during the acceleration.  Assuming that the
positron appears in the external electrostatic field with no velocity and
spherical in shape (there are questions here, but they will not affect
the following), it starts to flow into the lower density regions.  It does
not do this as a rigid body, but begins to deform from the outside first,

as delineated in Figure 13.3.2.
As the particle accelerates, it
not only takes on the
interaction distortion by
extending laterally, but its equi-
density contours also bunch
asymmetrically as a result of
the accelerating flow.  Thus,
there are two bound
components of the momentum,
a velocity related and an

acceleration related part.  If, as shown in the figure, the positron
passes out of the external field and is no longer accelerated; just as it
leaves, a brief readjustment of the shape back to the symmetrical
constant velocity form of Section 3.10 and Eq.(3.10.16) takes place,
and the acceleration part of the bound field is radiated away.  The
total radiation during the whole process consists of the continuous
free radiation during the acceleration process plus the final disposal of
the bound asymmetrical acceleration momentum.
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Figure 13.3.3
Positron under linear deceleration.

Braking Radiation: Whether a
speeding positron is slowed by
passing into a field, such as
that portrayed in Figure 13.3.3,
or by passing the surface atoms
of a lattice structure as it enters
the lattice, for example, the
deceleration it experiences is
caused by its slowing in some
form of electrostatic gradient.

Here again there are two forms of the bound deformation, the laterally
expanded symmetrical velocity component and the asymmetrical
acceleration component.  As the equidensity φ  contours bunch up,
the kinetic energy of the braking positron is converted partly into the
interaction energy between the positron and the external field and
partly into free radiation.  The description of collision energy transfer
and radiation has been nicely summarized by Jackson and by
Panofsky and Phillips, for example.1

Free Electron Moving in a Conductor: In a conductor free-standing in
space, to which no charge or potential has been applied, the
conduction electrons are moving along varied and twisted orbits
involving many nuclei, being permanently attached to none.
Neglecting effects of impurities and lattice defects, the resistance to
electron motion comes in the form of collisions of the electron with
thermally agitated atoms.    Thus each conduction electron snakes its
way between the nuclei, making hyperbolic shifts in direction and
alternately (on the average) adding to or subtracting from the energy
of interaction with the lattice, while at the same time, executing full
turning.  The net effect being that no free radiation leaves the
conductor except that establishing its thermal equilibrium with its
surroundings.

Driven Electrons Moving in a Wire: The application of an alternating
potential difference between the ends of a piece of wire causes the
electrons, in addition to their random snaking motions, to drift in
unison, to and fro, along the wire, alternately accelerating and
decelerating. Figure 13.3.4 shows only the driven component of the
motion and its effect on a single electron.  At 1T , its velocity is a
maximum with no acceleration.  Subsequently, it decelerates and
radiates  until  at 2T  its  "center"  is  at  rest  and  it   is   radiating  at
 ____________________________________________________________________
  1. J.D.Jackson, Classical Electrodynamics, J.Wiley & Sons, N.Y. (1962).
      W.K.H.Panofsky & M.Phillips, Classical Electricity and Magnetism, Addison-Wesley
      Publ.Co., Cambridge, MA (1955).
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maximum rate, since outer regions of its field are unable to come back
or reverse direction.  It continues to accelerate, although less and less,
till at 3T  it again has maximum velocity and no acceleration.  Beyond
this, the same sequence is repeated in the opposite direction, until
one cycle is completed.  This is a case where Eqs.(13.4.1) and (13.4.2)
hold, because ether elements are clearly moving relative to one
another; and the velocity distortion at 1T , for example, is converted
into acceleration distortion at 2T  some of which cannot be retrieved.

Pair Production and Annihilation: One of the most remarkable
experiments supporting the existence of the ether is the complete
conversion of an energetic photon into a positron-electron pair.  If the
photon energy exceeds −× 63.2747 10 ergs ( 2.044 Mev ), i.e. if it has
enough dynamic distortion, then upon coming into the immediate
vicinity of a large particle, the photon can be collapsed into a chaotic
distortion that resolves itself into two distinct entities.  One is a region
from which ether has been removed and the other is a region, close
by, where the removed ether has been deposited.  During the
fluctuating formation period, longitudinal waves are set up, ingoing in
the excess ether region, and outgoing in the depleted region, which
allow these deformations to remain stable and independent to the
extent that any excess energy (deformation) in the process appears as
kinetic energy of motion separating the two.  These are the electron
and positron, and since they are charged, they attract.  Under some
circumstances it is possible that they fall back together, and the
excess ether just fills the depleted region, the ingoing and outgoing
waves cancel and the dynamic distortion energy generates two new
particles (both photons) going away from the collision point in
opposite directions with equal energies.  This is called the
"annihilation" of the pair.  The usual visualization of this process
involves the formation of a primitive structure called positronium,
consisting of the two particles circling around their common center of

Figure 13.3.4 A single oscillating electron.
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energy.  Much like a hydrogen atom, they have certain pseudo-stable
orbits from which they more or less quickly fall to the next inner state,
radiating as they do.  Although the hydrogen atom has a ground state
in which it is in equilibrium with the datum fluctuations, positronium
does not; so the pair is totally destroyed and radiation is produced.

Atomic Radiation

Here again, even the non-circular orbits have full turning, but the
electron's shape changes with its orbital velocity, and thus it radiates
and decays.  A certain set of these (certain ellipses) have low distortion
and low self interference, and these are pseudo-stable, having long
lifetimes and small variations in orbit energy (narrow line widths).
Any circular orbit also has full turning, which would allow stability
except for those self interfering ! -wave orbits that radiate.  The non-
self interfering circular orbits are almost stable, being perturbed only
by the small zero-point fluctuations.  Thus, these are very long
lifetime orbits and have sharp linewidths (very small variations in
orbit energy).  Only one orbit is actually stable.  All the others radiate
photons.

13.4 Electron Radiation and Reaction Force: The standard
approach to this problem is to first solve Maxwell's equations for the
radiated fields from charges moving in explicit ways.  Using this to
define the net radiated energy leaving a charge, that energy is
associated with the acceleration of the charge.  Moreover, it is
assumed that the departing energy exerts a back "force" or reaction
"force" on the charge.  Analyses of this "force" have been made
assuming a point charge as the radiator.  Although some truly brilliant
work has been done recently1 this whole approach is basically as
unsound as the force and work concepts of the preceding chapter;
because Maxwell's macroscopic equations represent only the weak
field, so that even if they are adequate to handle the free radiation,
they cannot be used for the interface between the electron and the
radiation.  Furthermore, using a point charge defeats this approach
from the start.  The strong field equations must be solved to see
whether the total field has a free or radiated part.  Nevertheless, it is
possible to form the same type of crude separatist picture for this
process as was done for the Lorentz "force".
     Before developing the ether description of electron radiation, the
conventional approach will be inspected more closely.  The whole
conventional idea of radiation from an accelerating electron started
with the  derivation  of the  radiation  from a  dipole  of electric charge
 ___________________________________________________________________
  1. C.Teitelboim, Phys.Rev. D1, 1572 (1970); D2, 1763 (1970). F.Rohrlich,
      Classical Charged Particles, Addison-Wesley, Reading, MA (1965).
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(one fixed, one in rectilinear motion) as found by Hertz in 1888.
The lobed radiation pattern was integrated over a sphere of large
radius surrounding the dipole by Larmor (1900) to give a total rate of
energy radiation of,

                                           =
π

R
2 2

3
0

dE e
dt 6 c

u"     .      0(u c )#            (13.4.1)

From that day to this, the erroneous statement is always made that
Eq.(13.4.1) is true in general because the field quantities it is based
upon are independent of the kind of motion specified.  Quite the
contrary is true, and Eq.(13.4.1) can be said to be correct only for
acceleration in the   direction   of   the   electron's    velocity,   unless
other special circumstances exist.  Nevertheless, to continue the
conventional approach, following Jackson,1 a Lorentz 4-vector
generalization of Eq.(13.4.1) leads to,2

                             
 γ

= γ +  π  

R
2 2

4 2 2
3 2
0 0

dE e ( )
dt 6 c c

u u u" "i     ;             (13.4.2)

where again the claim is made that the result is valid for arbitrary
acceleration of the electron, and where again the claim is false.  Up to
this point, the approach has been proper except for the careless
statements about the radiation equations being generally applicable.
At this juncture, the conventional picture defines a radiation reaction
"force" doing "work" on the electron equal to the negative of the energy
released by radiation,3

                                       = −∫ ∫
2 2

1 1

R
R

t t

t t

dE
d dt

dt
F si     .                     (13.4.3)

When Eq.(13.4.1) is substituted into Eq.(13.4.3), and the RHS is
integrated by parts, if = 0u u"i at 1t  and 2t  or if the motion is
periodic, then,

                                              =
πR

2

3
0

e
6 c

F u""     .      0(u c )#          (13.4.4)

The resulting Abraham-Lorentz equation of motion,

                     = + R
0d(m )

dt
u F F
i

    or    − =
π

2
0

3
0

d(m ) e
dt 6 c

u u F
i

""    ,    (13.4.5)

being second order, leads immediately to runaway solutions.  Again,
 ___________________________________________________________________
  1. J.D.Jackson, Classical Electrodynamics, p 469, J.Wiley&Sons, N.Y. (1962).
  2. A pre-relativistic derivation was given by Lie'nard (1898).
  3. A.Sommerfeld, Electrodynamics, p 293, Academic Press, N.Y. (1952).
      J.D.Jackson, loc.cit. p 582.



300

contrary to the usual claims of generality, it is valid only for rectilinear
motion except in very special circumstances.  Note also, that some
confusion exists in the literature1, 2 as to which side of the equation
the new term belongs on.
     The preceding process leading from Eq.(13.4.1) to Eq.(13.4.4) is
bypassed in finding the radiation reaction force corresponding to
Eq.(13.4.2).  Instead, following Abraham (v.Laue and Pauli), as
described in Sommerfeld,3 the  Lorentz 4-vector derivation is
extended; and it results in the following Lorentz-Dirac equations of
motion,

 γ γ γ
= + γ + + + π  

  γ γ
+ − γ +    π  

2 2 2 2
2 2

3 2 2 2
0 0 0 0

2 2 2
2 2 4 2 2

2 5 2
00 0

d e 3 ( ) 3 ( )
dt 6 c c c c

e      + ( )     ( )
6 cc c

 

p F u u u u u u u u u

u u u u u u u

i

"" " " "" "i i i

" " " "i i

                                                                                           .    (13.4.6)

        

  γ
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3 2
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2 3 2
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dE e 3 ( )
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F u u u u u u
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"" " "i i i
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The second line of the momentum equation cancels, as does that of
the energy equation; but because of later developments, these
equations have been written in this unaccustomed way.
Conventionally, the non-relativistic approximations to Eqs.(13.4.6) are
found by setting γ = 1 , and neglecting all but the u""  terms, reducing
them to Eq.(13.4.5) and a corresponding energy equation for the
particle,

                                        = + R
dE
dt

F u F u
i

i i     .                        (13.4.7)

Here, RF  reduces to that in Eq. (13.4.4).  The energy radiated from the
particle (last term) should be the negative of the energy radiation
found in Eq.(13.4.1), but this can only be shown working backwards
through Eqs.(13.4.4) to (13.4.3) and imposing the special conditions
mentioned there.  The full Lorentz-Dirac Eqs.(13.4.6) have the same
second  order  runaway  solution  problem  that  the  reduced equations
 ____________________________________________________________________
  1. Loc.cit.
  2. F.Rohrlich, Classical Charged Particles, p 12 Addison-Wesley, Reading, MA (1965).
  3. A.Sommerfeld, loc-cit. p 297 ff.
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have.  Recently, great progress in countering that aspect of the
difficulties has been made, as will be discussed presently.  First,
however, an overwhelming difficulty of the conventional approach will
be examined.
     Unsatisfied with certain aspects of the above line of thought, later
investigators, following Abraham and Lorentz in their attempt to make
the analysis more fundamental and rigorous, constructed an
elaborate theory which could not succeed.  It included the self fields of
the electron as well as the external fields; and assuming Maxwell's
macroscopic equations applied in the interior of an extended electron,
with its distributed charge, integrated those self field forces over the
electron interior.  The resulting series of terms included the coulomb
forces internal to the electron, the Larmor radiation, and many higher
order terms that involved the radius of the charge.  Only by letting
that radius go to zero could the higher order terms be eliminated
exactly, but this resulted in an infinite "electromagnetic" mass, etc.
Beset with innumerable difficulties of this nature, the whole
conventional process related to this last "rigorous" refinement is
worthless and misleading. For more basic reasons not known to or
understood by past and present investigators, that aspect of the
conventional approach must be abandoned.  The inapplicability of
Maxwell's equations in the strong charge regions, the non-existence of
"force" precluding integration of it over a volume, the absence of
"forces" between elements of a distributed charge (i.e., the basic
nature of charge itself), etc., all require its abandonment.
      Before presenting the ether picture of radiation reaction, one
further brilliant development in the approximate conventional theory
should be discussed.  Teitelboim1 reworked the point-charge theory to
show rigorously that a natural split in the terms of the equations that
come from the Lorentz 4-vector approach settles the problems about
which terms are forces, or radiation reactions, and which terms are
changes in momentum and energy.  He showed that some of the
terms represent physical entities bound to the point charge and
that others are not bound and represent energy and momentum free
to leave the charged particle.  Specifically, the square bracketed terms
on   the RHS of Eqs. (13.4.6) are the bound terms, whereas the second
bracketed terms are the free terms; and those equations are better
written,

                       
 γ

= − γ +  π  

2 2
4 2 2

5 2
0 0

d e    ( )
dt 6 c c
 

P F u u u u
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and,
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3 2
0 0

dE e    ( )
dt 6 c c
 

 γ
= − γ + 

π  
F u u u u

i

" "i i     .     (13.4.9)

The P  and t E  in these equations are defined as,
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and,
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π

u u"i     .      (13.4.11)

This grouping of terms suggested by Teitelboim has a number of
advantages.  First, the radiation reaction terms on the RHS of
Eqs.(13.4.8) and (13.4.9) are exactly the same in form as the original
radiation rate from Eq.(13.4.2).  Since Maxwell's equations are
adequate to find the far field radiation, when it occurs, it is probable
that those terms are final and not to be improved upon.  Second, since
Maxwell's equations are not adequate to specify the change in
momentum internal to or bound in the electron, the subtractive terms
on the RHS of Eqs.(13.4.10) and (13.4.11) are probably incorrect.
But since even the present conventional approach tries to modify
those terms by an iterative technique,1 where the first iteration is
considered by some to be the complete and rigorous form, those terms
pinpoint the area where improvements must be made; and the
advantage comes from the fact that, using the first iteration, runaway
solutions are eliminated.2  Third, the first iteration also eliminates the
pre-acceleration problem.2
     At present, various "interpretations" of these equations are being
put forward, and because they are made from the conventional point
of view, problems discussed above appear to anyone taking the ether
viewpoint.  Several of the workers in this field have suggested that P
in Eq.(13.4.10) is the measured momentum in experiments rather
than γ 0m u .  These, and other questions will be discussed now from
the ether standpoint.
     It is possible to state with some confidence that the momentum
and energy radiation specified in Eqs.(13.4.8) and (13.4.9) are
probably  as  good  as  is obtainable  short  of  full field solutions.  It is
 ___________________________________________________________________
  1. L.Landau,E.Lifshitz, The Classical Theory of Fields, p 222, Addison- Wesley Press,
      Cambridge,MA (195l).   C.Teitelboim, D.Villarroel, and Ch.G.vanWeert, Riv.Nuovo
      Cimento, 3, p 1 (1980).  E.N.Glass, J.Huschilt, and G.Szamosi,  Am.J.Phys. 52, p
      445 (1984). R.J.Cook, Am.J.Phys. 52, p 894 (1984).
  2. W.E.Baylis and J.Huschilt, Pbys.Rev. D13, 3237 and 3262 (1976).
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only when Eqs.(13.4.10) and (13.4.11) are reconsidered that the proper
replacements are not obvious.
     Correct use of Eqs.(13.4.8) and (13.4.9) involves first ascertaining,
by comparing with the foregoing cases of radiation generation or by
considering the basic rule of radiation generation by distortion of
ether elements, whether or not an accelerating charge can actually
produce radiation.  If it can, Eqs.(13.4.8) and (13.4.9) are used very
much as in the texts referred to earlier.  The true momentum of the
accelerating particle is increasing by the difference between the
externally applied force and the radiation reaction force, and the
actual energy change is the difference between the rate of the external
field's work and the reaction force loss.  If the accelerating charge
cannot produce radiation, these equations are just not used.
     From the ether point of view, the true momentum and energy P
and tE  are not to be found from Eqs.(13.4.10) and (13.4.11) but are
given by,
  a 0 a m= + = γ +P p p u p   and  = + = γ +2

t a 0 0 aE E E m c E  ,     (13.4.12)
where each has a velocity and an acceleration component, but the
exact form of the acceleration part is not known.  The velocity form is
just that part of the electron distortion that remains after acceleration
ceases, no matter when that occurs.

13.5 Angular Momentum in Radiation: It is well known that all
forms of radiation have linear momentum in the direction of
propagation.  It is also well known that photons have angular
momentum (vortex spin 1).1  However, there is some confusion about
the nature of antenna radiation.  The conventional approach is to
assume that all radiation is composed of photons, and therefore has
angular momentum.  That this is not true can be demonstrated by
considering an ordinary, circularly polarized electromagnetic wave, a
solution of Maxwell's macroscopic equations.  The straightforward
application of Poynting's Theorem (see Chapter 15) shows that the
only momentum in the wave is along the propagation axis.  As stated
earlier, contemplation of the generation mechanisms for photons and
antenna radiation appears to support the difference in the waves.      
In the last 60 years or so, more than a few journal articles have
attempted to explain angular momentum carried by antenna
radiation.  A surprising number of these papers have appeared in the
recent past.
     The discussion began with the recognition that, according to the
Poynting theorem, a circularly polarized plane wave, of infinite extent,
carries  no  angular  momentum.  In 1943, Humblet2 pointed out that
  ___________________________________________________________________________________
     1. G.I.Taylor, Proc.Camb.Phil.Soc. 15, 14 (1909).
     2. Humblet, J., Physica, 10, 585-603 (1943).
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there is no such  wave.  All real waves come in bounded packets.  One
faction in the discussion takes this as the starting point for the
solution.
     Others point out that, far from an antenna, a circularly polarized
wave becomes extremely close to being a plane wave, and several have
used the example that an electron in that plane wave will take up a
circular or helical path.  Feynman1 and Yurchenko2 have discussed
this, and Yurchenko suggested that the electron's circular motion is
initiated at the start up of the wave.
     A third group have attempted to show the presence of angular
momentum in the wave by measuring the torque on the antenna
involved.  Proponents of this approach are Carrara3 and also Chute4 .
     Many other papers have appeared involving light beams and
electron spin.  They are not included here because there is no
argument about electron spin or photons carrying angular
momentum5.  Only antenna radiation presents a problem.
     From the view point of the present writer, the question as to
whether antenna radiation carries angular momentum is still open.  In
the first place, experiments on transmitting antenna torque do not
help, because a transmitting antenna is in the "near" field.  There,
energy and momentum are passed back and forth and exchanged with
the surroundings to complicate the problem.  The often used
argument that an induction motor transfers angular momentum is
spurious because of the "near" field problem.  To get useful
experimental data on antenna torque, a receiving antenna in the "far"
field must be used, and this is very difficult to do with any confidence.
     Accepting the fact that a free electron, initially at rest and then
acted upon by a circularly polarized plane wave packet, circles a fixed
point: if exponential start up and shut down periods are included in
Yurchenko's derivation of that circular path, for start up and shut
down times that include  at  least  20  cycles,  the  coefficients  in  the
equation of circular motion are the same, at all times, as for his
calculation without start up and shut down.  It can then be seen that,
although the electron is circling between start up and shut down,
after the wave packet passes, the electron is again at rest.  No net
angular momentum is transferred to the electron.  In this case, while
the electron is circling, it may not have true angular momentum, but
just persistence in a lossless system.  If, while it is circling, the
electron is engaged in some way to remove angular momentum, the
latter may  be  created  with a counter angular momentum that leaves
____________________________________________________________________
  1.  Feynman, R. P., The Feynman Lectures, 3, Ch.17, pg 10 (1965).
  2.  Yurchenko, V. B., Am. J. Phys., 10, No.6, June (2002).
  3.  Carrara, N., Nature, 164, pg 882 (1949).
  4.  Chute, F. S., IEEE Trans. on Ant. and Prop., pg 585, July (1967).
  5.  Beth, R. A., Phys. Rev., 50, pg 115-25 (1936).
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in very much the same way two opposite electron neutrinos are
created during decay of the µ  meson.
     In spite of all those difficulties, if it is still assumed that a
circularly polarized plane wave packet carries angular momentum,
then the conventional consensus must adopt a difficult approach.
Many writers1 have presented more or less complete descriptions of
the accepted form of the conventional theory, which begins by stating

that, since a propagating wave packet is purely magnetic, i.e. 0φ =
and 0∇ =Ai , the A  field must return upon itself.  It is assumed that
this occurs out at the "edges" of the packet, and the Pointing theorem
makes possible an angular momentum circulating around the wave
packet far out.  Since there is no vortex in the conventional picture,
this angular momentum must be attributed to the t-wave.  However,
since little is known about the wave packet structure at the "edges"
and farther out, a rather involved process is used to estimate the
angular momentum.
     The most detailed description of this process is found in Rohrlich's
book, but many are not familiar with the notation.  The same can be
said for Heitler, but Jackson and also Becker and Sauter are very
brief.  In the end, a fair picture of the approach can be pieced together
from the papers of Chute, Ohanian, Gough, Yurchenko and Gasponer.
The following is a short form of Rohrlich's work and the others'.
     The coordinates are those of Figure 10.13.1.  Although the form of
the wave packet can be quite general, for simplicity a long cylindrical
shape will be considered here.  In fact, the t-wave of Section 10.13 will
be used, but the packet radius will be taken as 0R  all along.
     According to Eq.(10.13.5), the only energy and momentum flow
inside the packet is in the direction of the packet radiation.  At this
point in the derivation it is assumed that the unknown region outside
the packet has a component of energy and momentum flow circulating
in the direction of  α  shown in Figure 10.13.1.  The total angular
momentum contributed by this flow is,

                                    2
space0

1  dvol 
c

= ∫J R × S     ,                    (13.5.1)

where S  is taken from Eq.(10.13.5).  By manipulating S , and then the
integral, an alternative integral is found that allows finding J .
 ___________________________________________________________________
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        W. Gough, Eur. J. Phys., 7, pg 81-87 (1986).
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     The method is similar to one used in electrostatics to find the
interaction energy between an electron and an external electric field it
rests in.  It is described in Section 12.5.  By the use of an equivalent
integral that does not directly involve the correct interaction energy
density, if the integration is carried out over all space, the correct total
interaction energy is obtained.  The same approach is used here.
     First, employing a well known identity, S  can be written,

                                       ( ) ( )  
t t

∂ ∂
= ∇ − ∇
∂ ∂
A AS A Ai i     .               (13.5.2)

This leads to,

2 2
space space0 0
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t tc c
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The first integral is then integrated by parts, with  ( t) 0∇ ∂ ∂ =Ai ,  and
the total angular momentum becomes,

                                         
spin surface offset

s o + σ= +J J J J      ,                 (13.5.4)
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     The offset integral represents an angular momentum due to
choosing the z axis other than the axis of symmetry of the field.  In the
present example, the z axis is centered on the cylinder, and o 0=J .
By taking the surface integral very far out where the field is weak
( )→ ∞R , s 0=J .  Thus the total angular momentum of the wave
packet is in the intrinsic angular momentum called "spin",

                                   2
space0

1  dvol
tcσ

∂
= = ×∫

∂
AJ J A      .           (13.5.5)

Just as in the electrostatic example mentioned before, the integrand
in Eq.(13.5.5) is not the local angular momentum density, so this
integration must be taken over all space to get the correct total
angular momentum.  Actually, the greatest contribution seems to be
made in the interior region, but there are still some questions.
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Figure 13.6.1
Taylor's weak light interference experiment

     The conventional approach generally winds up relating σJ  and
packet energy.  According to Eqs.(10.13.1), (10.13.3) and (10.13.12),

                                           2 2
p 0A

t
∂

= ω
∂
AA × k D      .                   (13.5.6)

Here, D  is a simple exponential damping.  Substituting this in
Eq.(13.5.5) gives,
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Fom Eqs.(10.13.6) and (10.13.12), the total energy in the packet is,

                                        
2 2 2
p 0

2
space0

A
dvol

c
ω
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     .                 (13.5.8)

The conventional approach avoids the integration by combining
Eqs.(13.5.7) and (13.5.8), with the result,

                                                  
p

σ = ω
εJ      .                           (13.5.9)

     The preceding considerations convince the author that the
problems of photon structure and antenna radiation are far from
being solved satisfactorily.  They require more experimental work and
more analysis.  These problems are of sufficient fundamental
importance to warrant the effort.

13.6 Low Level Radiation Interference: In 1909, Taylor1 performed a
most important experiment.  Using an incoherent light source falling
on a slit from which radiation passed through two narrow parallel
slits, he observed the interference pattern on a screen. The set up is
shown in Figure 13.6.1.  It was essentially Young's experiment with
the intensity of the source reduced to the lowest possible levels.  With

long exposure time,
identical interference
patterns  appeared  on
the film for all intensities.
This was no problem as
long as radiation was
considered to be waves;
but starting with J.J.
Thomson2  in  1903,  and

____________________________________________________________________________________
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augmented by Einstein1 plus many others, the particle like properties
of radiation could not be denied.  So, how could they be reconciled
with Taylor's results; particularly when the intensity level was reduced
to the point where only one photon was present in the apparatus at
any given time? In just a few years, many explanations were offered
and proven objectionable.
      Ever since, a steady interest has been maintained in this and
related questions2.  The slits were replaced by a grating3 in 1927, and
the source by a coherent laser beam forty years later4.  Further
refinements followed5.  This experiment was not the only contributor
to the wave-particle dilemma6 and all of them together gave
resounding support to both aspects.
     One way to explain the interference experiments with low Intensity
levels was suggested by Einstein7 in one form and De Broglie8 in
another.  Both used waves that carry no energy to guide photon
particles that do.  From the ether point of view, this is the correct
approach even if the details of their analyses must be modified.
Basically, the idea is that the weak incoherent source emits individual
photons in all directions, but only rarely does one pass through the
first slit.  The ratio of photons emitted into the whole sphere about the
source to the few that pass through the slit is enormous.  At the time
that each photon is generated, a separate spherical longitudinal wave
is generated by the disturbance; and all of these ! -waves, produced
by the total number of atoms emitting photons in all directions, travel
outward and reach the slit continuously.  Thus, in spite of the
geometrical attenuation, a fairly sizable wave impinges on the first slit.
From there on, a normal, steady-state interference pattern is formed
after the waves−! pass through the pair of slits.  This ! -wave
interference pattern carries no energy, but guides any photon that
____________________________________________________________________
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goes through the first slit.  The spread due to the finite source size
plus the variation in path due to the datum fluctuations in the ether
causes the photons that enter the first slit to be diffracted with about
equal numbers going through each of the pair of slits.  From there,
each photon is guided towards the screen, and deflected so that all of
the photons are deposited properly to form the observed fringe
pattern.  It is a totally deterministic process with the datum
fluctuations having a small effect.  Each photon goes through only one
of the paired slits.  Of course, all of the conventional discussions of
perturbing the photons if they are "observed" in transit are correct,
but without such interference the process is clearly understandable.
While the mechanism just described is understandable, it is clear that
the actual "guiding" process has not yet been worked out.

13.7 Beam Splitting and the Aspect Experiment: Interferometer
beam splitting experiments have become so popular in the last few
years that the literature has burgeoned.  Loose language about
individual photons splitting and going through both branches of the
system is used to create a paradox or mystery.  From the ether point
of view, the ! -waves from the source do pass through both branches,
and set up a standing wave pattern just as they did in the double slit
experiment described in Section 13.6.  The individual photons go
through one branch or the other.  Almost all variations on this theme
have essentially the same explanation.
     There is one possible exception, i.e. experiments of the type
conducted by Aspect, et. al.1  Without knowing the exact positions of
all the optical elements in the setup, it is difficult to say whether or
not the observations can be explained on the basis of ! -waves; but
most experiments have more elements than appear in the
conventionalized diagrams usually presented in the literature.  Until
further experimental work is done on ! -waves, there does not appear
to be any reason to jump to supernatural causes in a few experiments
still unexplained.

13.8 Electron Interference Effects: The  presence  of  the   electron's
! -waves results in a number of other interference effects that are
presently ascribed to the "wave-like" properties of the electron (the
mathematical wave).  It is better to know that an "actual wave"
property of the electron causes the phenomena.    Early evidence for
the wave effects was provided by Davisson and Germer2 in 1927, and
____________________________________________________________________
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Figure 13.8.1
Opaque edge electron diffraction.

shortly thereafter by Thomson and Reid1 and also by Kikuchi2.  These
experiments involved impinging an electron beam on targets with
single crystal layers, thin metal films and thin mica films respectively;
but all involved passage of the electrons through the target with the
associated complexities.  The first "clean" observation of electron
diffraction was made in 1940 by Boersch,3 who measured the
diffraction  pattern  of  a  beam  of electrons passing an opaque edge
(see Figure 13.8.1).  Because the electrons that pass behind the edge
enter it and are quickly absorbed, the pattern of diffracted electrons
appearing on the plane of observation can be regarded as being
strictly the result of the beam electrons themselves.  According to

Boersch, the maxima are found
to lie a distance from the edge
position given by,

= + −
ν
0 1

m 4
d

c
d (a 1) (n )

a
where n = 1, 3, 5, ..... ; and this
is used as support for the
conventional relationship of
Eq.(3.14.9).  Here, again, it is
the difference frequency that
appears to govern the process.
Since, from the conventional
point of view, that is the only
relevant frequency associated
with the electron, the data

appear to support the concept.  From the ether viewpoint it is not as
clear.  For example, taking an oversimplified  look  at  the  process  of
an  electron passing the edge, Figure 13.8.2 diagrams the combined
sustaining ! -waves and diffracted ! -waves as an electron approaches
and leaves the edge. Before the electron arrives, only the diffracted
front wave interacting with the wave gives the difference frequency,
whereas the pattern in φi  at the plane of observation is strictly the
front wave interfering with itself.  Of course, after the electron passes
the edge, the pattern at the plane of observation is composed of the
diffracted back wave and the front wave, so there is a difference
  _________________________________________________________________
    1. G.P.Thomson & A.Reid, Nature, 119, 890 (1927). G.P.Tbomson, Proc.Roy. Soc. A,
        117, 600 (1928). A.Reid, Proc.Roy.Soc. A, 119, 663 (1928). R.Ironside, Proc.Roy.
        Soc.A, 119, 668 (1928). G.P.Thomson, Proc.Roy.Soc A, 128, 641 (1930).
    2. S.Kikuchi, Japan Jour.Phys. 5, 83 (1928); Proc.Tokyo Ac. 4, 271, 354, 471 (1928).
    3. H.Boersch, Die Naturwiss. 28, 709, 711 (1940). W.Glaser, Grundlagen der
       Electronenoptic, p 498, 542 ff, Springer-Verlag, Wien (1952). G.Heber & G.Weber,
        Fundamentals of Modern Quantum Physics, vol 1, p 44-46, Asia Publishing
        House, Bombay (1959).
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             a. Before                         b. After

Figure 13.8.2
Electron edge interference.

Figure 13.9.1
Chambers' setup before magnet insertion.

frequency.  Also, the edge is really not an edge but one or another of
the bound atomic electrons with which the ! -waves of electrons in the

beam interact.  Moreover, little is known about how the bulk φ  of the
electron responds in the φi  standing wave diffraction pattern.

13.9 The Aharanov-
Bohm Experiment: At
first glance, the
phenomena exhibited by
this experiment might be
thought to be just the
result of a more complex
form of the edge effect
observed by Boersch;
and, in the preliminary
stage of the process, that
is true.     However, the
final phenomenon is
probably one of the most
direct verifications of the

ether's presence available, but it could not be included until after the
discussion of the interference effects.
     The first stage of the setup involves two minute slits and a source
of electrons similar to that used in Boersch's arrangement.  Figure

13.9.1 gives an idea of the
components needed, although it
fails to communicate the
fantastically difficult
minuteness of the various
parts.  For example, the
aluminized quartz fiber used by
Chambers1 had a diameter of
about 1.5 microns, with
commensurate spaces  out  to
the  edges.   In some respects,
this arrangement is the two slit

equivalent of Boersch's edge test, but it involves an electrostatic bi-
prism to split and refocus the beam.  Even when the electron rate is
low enough so that only one electron at a time is in the space between
the source and screen, the individual electrons produce the
interference field with their remote ! -waves that ensures the fringe
pattern observed on the screen.  Here again, the difference frequency
prevails.
___________________________________________________________________
  1. R.G.Chambers, P{hys.Rev.Lett 5, 3 (1960).
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Figure 13.9.3
The Aharanov-Bohm ether phase shift.

Figure 13.9.2
Effect of magnet insertion on fringe position.

     The main point of the
experiment suggested by
Aharanov and Bohm was not
to examine the diffraction
pattern per se, nor its
mechanism of generation; but,
to show the effect, on the
beams, of the region where

= 0B outside a magnet placed
in the shadow of the quartz

fiber, as sketched in Figure 13.9.2.  Chambers used a magnetized iron
"whisker", about µ1  in diameter.  The effect was observed; i.e.
although the envelope of the distribution remained the same, the fringes
shifted.  Nevertheless, irregularities in the magnetic "whisker",
although small, combined with the dimensions chosen for the layout,
were enough to throw doubt on the result.  Later, however, the
experiment was performed elegantly by Moellenstedt and Bayh1 using
a miniscule µ4.7  diameter solenoid coil for the magnet; and their
many results have been accepted as convincing evidence for the
effect.2

     To understand the physics,
reference must be made to the
ether velocity field outside a
long solenoid as described in
Section 9.3, Eq.(9.3.17),

   = 00 )(outside
R Vˆ      .      

R
V α

Figure 13.9.3 illustrates the
essential elements of the
geometry.  Here, as in the
Boersch case, the difference
frequency establishes the

spacings of the overall diffraction pattern (with no current in the
solenoid).   When the current in the coil is raised from zero, it is not
difficult to see why a change in the phase shifts will produce the shift
___________________________________________________________________
   1. G.Moellenstedt and W.Bayh, Naturwiss. 49, 81 (1962).
   2.G.Moellenstedt and H.Lichte, in Neutron Interferometry, Ed. U.Bonse and H.Rauch,
      p 363-388, 1.Electron Interferometry, Oxford Science Publications; (Proceedings of
      an International Workshop, 5-7 June 1978, Institut Max von Laue-Paul Langevin,
      Grenoble). Despite the generous help of Prof. Dr. G. Moellenstedt, the present
      author's inexperience in this area prevents him from doing justice here to the
      inspiring work done by several investigators in this field.  Prof. Moellenatedt's
      papers should be consulted for many detailed references.
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difficult to see why a change in the phase shifts will produce the shift
of the pattern of fringes that results.  Since the ! -wave propagation
velocity along path 1 is +0c and that along path 2 is −0c , the phases

along the two paths in the presence of the V  field can only be made
to match (produce the maximum bright fringe) if path 1 is lengthened
and path 2 shortened.  This produces the fringe shift observed.
     Because of the lack of detailed knowledge regarding the guiding
process of the interfering ! -waves, it is difficult to speculate about the
result of a similar future experiment using a positron.  The true
picture must await the working out of the ! -wave guiding principles.
Nevertheless, it is clear that this experiment is one of the most basic
and important in verifying the ether's existence, since it could possibly
offer the understanding needed to decide the polarity of φ  and V  in
an absolute sense.

13.10 More About t-Waves: The visualization of neutrino generation
is roughly understandable.  The picture of photon generation in atoms
is very clear.  The distinction between antenna radiation, which lacks
a vortex core, and c-on generation, which needs the vortex core to
prevent geometric expansion, is also reasonable.  However, there are
several processes that generate radiation where it is not obvious
which classification that radiation should fall into.  Examples are
braking, synchrotron, Cherenkov radiation, etc.  In these cases, it is
not clear how a spin core can be generated in the process if photons
are the result.  Not much light can be shown on this question at this
time.

13.11 Controlled Synchrotron Radiation: Earlier it was shown that
whether or not an accelerating electron radiates depends on the
behavior of the incremental ether elements in the moving particle.  If
they turn along with the shape of the electron, their own shapes do
not change and no distortion (energy) can be radiated.  If they do not
turn with the electron's shape, they distort; and the more violently
they do the more distortion escapes.  Since, in a fixed magnetic field
the ether elements of a circling electron turn at only half the rate of
the electron's shape (see the example in Section 12.8) synchrotron
radiation is produced.  However, in a circling electron guided solely by
an electrostatic field, as in the hydrogen atom ground state, its ether
elements have full turning and no distortion is radiated.  Clearly, some
mix of magnetic and electric fields will eliminate the radiation in a
storage ring; and other mixes should provide various levels of
radiation controlled smoothly by the electrostatic and magnetostatic
field strengths.
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Figure 13.11.1
Circling electron.

     Figure 13.11.1 shows the physical layout of the electron's orbit in
a ring with combined fields, but depicts only a
small segment of the positive and negative
electrodes that extend all around the ring,
supplying the electrostatic field.  Combining
Eqs.(12.8.1) and (E.6.11), the equation of
motion of the electron moving at velocity u  is
given by,

          = + ∇φ − ×
d(m )  e 2e

dt
u u w
i

    ,      (13.11.1)

where, = γ 0m m , ( )= − ω + ωu ( sin t) cos tu i j , and both m and u are

constant in time.  Also, −φ = × × 4(Volts 9.4097 10 )des, w  is the ether

vorticity of the steady magnetic field and −= × × 8(Teslas 4.7048 10 )w

rad/sec.  Furthermore, = ww k , ∂φ
∇φ =

∂
ˆ

R
R , = ω + ωˆ cos t sin tR i j and

× = ˆuw u w R .  From Eq.(13.11.1),

                                  
 ∂φ
 = −
 ∂ 

d e e ˆ2 uw
dt m R m
u R
i

    .                (13.11.2)

Differentiating the expression for u given after Eq.(13.11.1) above,

                                            = − ω
d ˆu  
dt
u R
i

    .                          (13.11.3)

Therefore, combining Eqs.(13.11.2) and (13.11.3),

                                         φ
ω = −

m 1 d2w
e u dR

    .                     (13.11.4)

Since the electron shape rotates with ω , = ωsw .  The effective ether
equivalent of the shape rotation is (see Section 12.8),

                                   φ
= = −eff s

m 1 dw w 2w
e u dR

    .               (13.11.5)

In a purely magnetic ring ( φ =d /dR 0 ),

                                        = =eff s
mw w 2w
e

    ,                      (13.11.6)

which says that the shape turns twice as fast as the incremental ether
elements, so normal synchrotron radiation occurs.
     The idea now is to change the magnetic field B and the gradient

φd /dR together in such a way that u, m and R remain constant, but
the rate at which the ether elements rotate differs from the factor of 2
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Figure 13.11.2
Normalized plots of the gradient and B field.

in Eq.(13.11.6).  To find the correct values for B and φd /dR  let,

                                        = =eff s
mw w Nw
e

    .                     (13.11.7)

Then, from Eq.(13.11.5),

                           φ
= −

d (2 N) uw
dR

    and     =
muR
New

    .        (13.11.8)

Using the conversion factors given earlier, the required controlling
gradient is,

                         = × − β6dV 1.499 10 (2 N) B    volts/cm
dR

    ,     (13.11.9)

where, β = 0u/c  and B is in Teslas.  Substituting the proper units,
Eq.(13.11.8) can be written (for electrons),

                                γβ γβ
= =

1
R 0.3409 0.3409

NB B
    ,           (13.11.10)

where 1B  is the field corresponding to N=1, or twice the value of B
when the electric field is
zero.  Figure 13.11.2 gives
plots of the normalized
gradient,

 = − × β  6
1

dV
2dR 1
N1.499 10 B

and the normalized B field,

=
1

B 1
B N

required as a function of N.
Thus, a single "knob" could control the two fields and the amount of
radiation would be tunable from zero to a value somewhat higher than
that produced in a magnetic field alone.
     As an example that helps to understand the various magnitudes,
assume a source of 20 Mev electrons in a ring with maximum field

=1B 0.01 Tesla.  Then, γ = 40.14 , β = 0.9997 , ≅ 0u c  and

= × 3 R 1.37 10 cm .  When the settings are N=1 and = 1B B , then,

= × β ≅6
1 dV/dR 1.499 10 B 15,000 volts/cm across the beam, and

there is no synchrotron radiation.  For N=2, = =1B B /2 0.005 Tesla,
= dV/dR 0 , the radiation is normal for a simple magnetic field.  For
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N=5, −= × 3B 2 10 Tesla, = −dV/dR 9000 volts/cm and the radiation is
2.5 times the N=2 case.
      It might be thought that, for very energetic electrons and large
magnetic fields, the Eq.(13.11.1) should be augmented by the
radiation reaction term of Eq.(13.4.8), but a sampling of calculations
shows that over a wide range the term is negligibly small.
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CHAPTER 14

THE GRAVITIC FIELD

14.1 Introduction: Around 1590, Galilei measured the acceleration of
falling bodies.  In 1687, after thinking about the problem on and off
for about twenty years, Newton published his Principia, which
expounded the Law of Universal Gravitation (attraction between large
neutral bodies).  To explain why neutral bodies attracted each other,
Einstein "geometrized" space-time in his 1916 General Theory of
Relativity.  From that time to this, investigators have been trying to
combine that space-time geometrization with a theory of electricity
and magnetism; but this has failed.  In the 1950's Kirkwood1 adopted
the ether as the gravitic medium, and succeeded in developing a
gravitic field theory that takes the same form as Maxwell's equations.
     The present chapter is essentially an elaboration of Kirkwood's
gravitic field theory with minor modifications.  The full importance of
his theory is not recognized at present2, but its influence is strong in
every chapter of this work.
     In the following, first the sources of gravitic fields are discussed,
and then various interactions between particles and the fields are
described.  Finally, the concept of gravitic energy is considered.

14.2 The Gravitic Field: Layerons have gravitic fields, c-ons do not.
In Section 3.9, the gravitic field of the most elementary layeron, the
electron, was shown to be a standing ! -wave with density φ si  and
velocity sVi  (coexistent with the traveling ! -wave) that just quivers in
and out at frequency ωe .  All the other layerons also have similar
standing wave fields varying at their own characteristic frequencies.
The travelling ! -wave fields of charged layerons produce bulk
distortions that interact so strongly with other charged layerons that
the gravitic forces are negligible.  However, in neutral layerons,
neutral atoms and larger neutral composites, the traveling ! -waves go
directly from the negative to the positive layers, and so only a short
distance away from the neutral combination, the standing gravitic
wave is dominant.
     Conventionally, gravitation is approached as a "force" between
neutral bodies.  The ether view is that, since there is no "force", the
interaction  is  just  a  condition  of acceleration of the primary inertial
 ____________________________________________________________________
  1. Kirkwood, R.L., PhD Thesis, Stanford U. Physics Dept., (1950).
      …………………., Phys. Rev., 92, 1557 (1953).  Phys. Rev., 95, 1051 (1954).
  2. Kirkwood, R.L., Project RAND, D-7210, (1960).  The RAND Corp., RM-3146-RC,
                               (1962).  J. Math. Phys., 11, 2983 (1970).  Int.  J. Theor. Phys.,
                               6, 133 (1972). Loc.cit. 7, 391 (1973).
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φ

∂ ∂φ

∂ ∂
= φ = φ φ = == da

t t

All higher time partials of 

0   ,   

 and  are zero.

0   ,   

V

V
V

system at each point in the field.  Establishing the motion of the
primary inertial system about a neutral body is the key to the
problem.

14.3 Gravitostatics: Here the emphasis will be on the field around a
"large", spherical, neutral (uncharged) body at rest relative to the
absolute observer.  The conditions for a gravitostatic field are:

       Conditions
           for                     (14.3.1)
      Gravitostatics

When these conditions are substituted into the standing ! -wave
Eq.(2.12.5), that equation reduces to,

                                             ∇ =22 0Vi     .                              (14.3.2)

It was shown, in Section 3.9, that Eq.(14.3.2) has a solution,

                                         = ωgK
ˆ cos t

r
V ri     ,                        (14.3.3)

where gK  and ω  are, as yet, unspecified and r is greater than the
source mass radius.  Again, from Section 3.9,

                                        
φ

φ = ω
ω

gd
3

2

K3
sin t

2 r
i     ,                     (14.3.4)

and as discussed there, this standing ! -wave has a time average
acceleration,

                                       = ∇ = − g
2

K
ˆ  

4r
a V V ri ii     ,                    (14.3.5)

where gK  is not the same as the electron's.  Here again, it is the time
average acceleration of the neutral body standing ! -wave that
produces the gravitic effect on other bodies.

14.4 Sources of the Gravitic Field: A hydrogen atom is composed of
a proton and an electron.  To act together as a single object they must
adjust their individual frequencies ωp  and ωe  to a single composite
! -wave frequency that is slightly greater than ωp
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( −= × 3
p0E 1.50328 10 ergs ) because of the added electron rest energy

( −= × 3
e0E 0.00082 10 ergs )   (see Eq.11.6.1).  The negative interaction

energy ( −= − × 11
epE  4.3574 10 ergs ) is so small that the reduction

from 24
h 1.42626 10 rad/secω = ×  is not measurable.  If another

hydrogen atom is added to the first, the two often combine to form a
molecule, and all the particles must adjust to a new ! -wave frequency,
roughly twice the original ωh , because of the increased energy.
However, when many atoms are joined in a large, neutral body they
don't appear to go  to higher frequencies,  but simply combine their
fields.  The exact cutoff is not yet understood.
     Nevertheless, it is well known that the time average acceleration
field of a composite body is,

                                           = −
π 2

GMˆ  
4 r

a r     ,                            (14.4.1)

where M is just the sum of the rest masses of all the components.  So,
working back to Eq.(14.3 3), the ! -wave velocity field is then,

                                        = ω
π

GMˆ cos t
r

V ri     .                       (14.4.2)

If the body consists of N hydrogen atoms, then,

                                       = ωgNK
ˆ cos t

r
V ri     ,                       (14.4.3)

where gK  is the constant for a single atom.

14.5  The Gravitic Primary Inertial Systems: Earlier chapters have
provided characteristics of particles, e.g., rest energy, frequency,
charge, etc., as seen in inertial systems or by an absolute observer.  In
Chapter 12, the technique for dealing with bodies moving in non-
inertial regions, e.g. inside the vortex of a solenoid, was examined.  It
used the fact that, at any point in the flow, laws of physics held in the
differential inertial system that translated and rotated with the fluid at
the point.  Then, the motion in that differential system was
transformed to the absolute system by a Galilean transformation.
     In considering particle/field interactions, particularly neutral
particle/field interactions, one controlling influence is the particle's
motion factor (or distortion factor), discussed in Sections 3.10, 8.3,
12.4 and 12.10.  Its rigorous definition is given in Eq.(12.10.3) as,

                                        
2

e
2
0

1 
( )1

c

γ =
−

−
u V

    ,                       (14.5.1)
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where e V  is the effective velocity of the differential primary inertial
system at the particle's location and u  is the particle's velocity, both
as seen by the absolute observer conducting the measurements.
From another viewpoint, the absolute observer can find the primary
inertial system at any point in the field by finding a test particle's
velocity that results in a γ  of unity (only rest energy in the particle).

In Section 3.10, = =e 0V V  because the datum ether is at rest relative
to the absolute observer.  In Section 8.3, the same conditions applied.

However, in Section 12.4, = ≠e 0V V .  In most cases, the time average

ether velocity V  establishes the primary inertial system velocity.
     One outstanding exception to this is the gravitic field of a large

neutral body, because there = 0V  and the test particle distortion that

establishes e V  is caused by opposing the acceleration a .  In Section
13.3, several figures show various accelerated particles and the
asymmetrical bunching distortion in their fields.  The gravitic
acceleration produces just such distorted particles if their motion in

step with a  is impeded or augmented.  To determine the primary
inertial system in a spherical gravitic field, allow a free-space test
particle at very large distance from the source body to free-fall toward

it.  As it falls, its velocity = eu V  increases.  At each point in the field,
the primary inertial system inward velocity can be found by

integrating a  from = ∞ r  to r, with the result,

                                           e
GMˆ  
2 r

= −
π

V r     .                         (14.5.2)

Any test body that moves at that inward velocity is in free-fall and is
at rest in the differential primary inertial system.  It feels no

acceleration and has only its rest distortion ( = γe  ,  =1u V ).
     One of the strangest facts about the gravitic field is that at each
point there appear to be two primary inertial systems.  To see this,
start a test body at the source surface with the outward escape
velocity given by,

                                          e
GMˆ   
2 r

= +
π

V r     ,                         (14.5.3)

and let it free-fall to infinity where its velocity will be zero.  All during
that outward free-fall, the test body is at rest in the differential primary
inertial system.  It feels no acceleration and has only its rest distortion

( = γe  ,  =1u V ).
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     In practical problem solving, the velocity u is not always along a
radius, but varies both in magnitude and direction as the body moves

through the a  field.  Since eV  appears in the Kirkwood Eq.(12.10.2)
that applies to the test body's motion, at any given point the proper

sign of  eV  must be selected.  It is determined by the sign of the r

component of u , i.e. by =ru dr /dti .  The sign of eV  must always be
chosen to be the same as the sign of  =ru dr /dti .  For example, in
elliptic orbit problems, for the half of the orbit where r is increasing,

eV  is positive; but, for the other half, r is decreasing and eV  is
negative.

14.6 Test Body Mass in a Gravitic Field: Once the primary inertial
system motion field is established, Eq.(14.5.1) leads directly to the
energy and mass relationships,

                                    = γ 0E E     ,    = γ 0m m     ,                    (14.6.1)

where 0E  and 0m  are the tests body's rest energy and mass.  The
concept of a body's rest energy, in all preceding chapters, was fixed by
its energy distortion content when it was at rest in the datum ether.
That definition still applies in a gravitic field.  However, a semantic
problem arises when a test body is at "rest" ( = 0u ) in a gravitic field,
since Eqs.(14.5.1) and (14.6.1) indicate that its rest mass is
augmented by its motion relative to the primary inertial system in the
field.  Here, to avoid confusion, a test body with zero velocity, as seen
by the absolute observer, will be described as "fixed" in the gravitic
field.
     Notice that, when a body is "fixed" in the field ( = 0u ), Eq.(14.5.1)
gives the same value of γ  for both the inward and outward inertial

system values of eV ,

                                          γ =
−

π 2
0

1
GM1

2 c r

    .        ( = 0u )       (14.6.2)

Eq.(14.6.1) then indicates that a test body held fixed at smaller
distances from the source has greater mass.  It is smallest at → ∞r ,

= 0m m ; and increases, when it is fixed at the surface, to,

                                    
−

 
= −  π 

1
2

0 2
0 s

GMm m 1
2 c r

    ,                    (14.6.3)

where sr  is the source body radius.



322

Figure 14.7.1
Circling mass clock.

14.7 Clock Rate in a Gravitic Field: Now it is possible to understand
the observed slowing of clocks in a gravitic field.  Just as in Section
8.4, only one simple circling mass-on-a-string clock will be analyzed.
In the gravitic case, for simplicity, the circling is in a plane

perpendicular to the a  field, so that the only effect of the field on the
mass particle is the change in energy and
momentum.  Figure 14.7.1 shows the physical
layout.  At → ∞r , the circling mass has energy
γ1 0E  and momentum γ 2

1 1 0 0u E /c .  If the clock is
moved toward the source body, and held fixed at
the distance 2r , the energy of the circling mass
changes to = γ2 2 0E E , but its momentum

γ 2
1 1 0 0u E /c  remains the same, since no force was

applied in the plane of the orbit.  Therefore,
= γ = γ2 2 2 2 0 1 1 0u E u E u E  and, because iu  is

perpendicular to eV ,

                   =

− − −

21
2 221 e22 2 20 0 0

uu

u u1 1c c c
V

    .

This can be solved to show that,

                                     =
γ
1

2
u

u     ,    = γ2 1T T     ,                    (14.7.1)

where,

                                   γ = =
−

− π

2
e 2

2 0
0

1 1
GM11 2 c rc

V
    ,                (14.7.2)

so the clock runs slower, closer to the source body.  This is true of all
types of clocks.
     If this process is reversed, that is, start the clock at the surface
and then move it far from the source ( → ∞r ), the clock runs faster at
greater distances.
     The lowered clock rate at the surface of a star, for example,
explains what is known as the "gravitational red shift".  A photon
emitted at the star surface has a lower frequency than the value
measured on the less massive earth (red shifted), and that frequency
remains constant as the photon travels outward from the source body

because φ = φda  and = 0c c .
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14.8 A Test Body Energy Equation: Before applying Kirkwood's force
equation to test body motion in a gravitic field, a related energy
equation will be obtained.  The derivation begins by removing 0m
from Eq.(12.4.6) , and recalling Eq.(12.4.3),

                           ( )γ − = −γ ∇ − +
0

d ( ) ( ) ( )
dt m

Fu V V u V
i

i     .           (14.8.1)

Now, dotting both sides by γ −( )u V , and manipulating the derivative,

      ( ) γ
γ − = − γ − ∇ − + −2 2 2

0

d 2( ) 2 ( ) ( ) ( ) ( )
dt m

u V u V V u V u V F
i

i i i   ,   (14.8.2)

a form related to the energy equation.  Squaring the γ  factor of
Eq.(12.4.3) and taking the derivative,

                                  ( )γ
= γ −

γ
2 2

2
0

d 1 d ( )
dt dt2 c

u V
i i

    .                (14.8.3)

Combining Eqs.(14.8.2) and (14.8.3),

                γ γ
= − − ∇ − + −2 2

0 0 0

d 1( ) ( ) ( ) ( )
dt c m c

u V V u V u V F
i

i i i    ,    (14.8.4)

which is a form of the energy equation, as can be seen by multiplying
through by 2

0 0m c .

14.9 Test Body Motion in a Gravitic Field: The application of
Kirkwood's force equation to the motion of a test body in a gravitic
field will be carried out for those cases where the vorticity has no
periodic component ( = 0wi ) so that =w w .  This guarantees that in
following the ether the differential system S  is not rotating with a
rapid oscillation, but rather with a smoothly turning motion or not at
all.
     The form of the force equation to be used is given in Eqs.(12.10.2)
and (12.10.3),

                      = + × − + +e e
d(m ) dmm 2m ( )

dt dt
u a w u V V F
i i

    ,      (14.9.1)

where, with the help of Eq.(14.8.4), the third RHS term can be written,

    = − − ∇ − + −e
e e e e e e2 2

0 0

dm m ( ) ( ) ( ) ( )
dt c c

VV V u V V u V u V F
i

i i i    .     (14.9.2)

Eqs.(14.9.1) and (14.9.2) give a complete description of test body
motion in a gravitic field.  Using them, several examples will be
discussed that bring out the various ideosyncracies of gravitation,
some that have stirred feelings of mystery for almost a century.



324

14.10 A Test Body Held Fixed in a Gravitic Field: An external force
is required to hold a test body fixed ( = 0u ) against the acceleration of
a source body gravitic field.  The field is assumed to be irrotational

( = 0w ), and because = 0u  and r is fixed, Eq.(14.6..2) indicates that
γ  is constant and it follows that =dm/dt 0i .  Thus, Eq.(14.9.1)

reduces to, = −mF a .  Taking the value of a  from Eq.(14.4.2),

                                   = = γ
π π

0
2 2

GMmGMmˆ ˆ
4 r 4 r

F r r     .                  (14.10.1)

This is the external force that must be exerted on any body of mass
γ 0m  held fixed in the gravitational field of a source body.  More
fundamental is the acceleration of the object when that support is
removed.

14.11 A Satellite Orbiting a Massive Source Body: One of the
phenomena that were prominent in gravitation discussions in the last
century was the advance of the orbit of Mercury.  Einstein's
geometrized space-time gave the correct value for it.  The ether theory
also accounts for it, as Kirkwood demonstrated.

     Assume that = 0w , = 0F  and ≠ 0u .  To apply Eqs.(14.9.1) and
(14.9.2) to the up side of the orbit ( >r 0# ),

                            = + ˆˆ ru r # θ θr #     and    =
π

e
GMˆ
2 r

V r     .         (14.11.1)

From these conditions,

                                
 

− = − +  
 

e
GM ˆˆ( ) r
2 r

u V r # θ
π

θr #     ,              (14.11.2)

and following Eq.(D.5.4) and Table D.5.1,

                              ( )∇ = − Ι − +1e 2
ˆˆ ˆ ˆ3(V θθ αα

π 3
GM
2 r

    .            (14.11.3)

Then, combining Eqs.(14.11.2) and (14.11.3),

      ( )− ∇ − = − − − θ
π

2 21e e e e2 3
GM( ) ( ) ( ) 3(r )
2 r

u V V u V u V #i i    ,       (14.11.4)

so that Eq.(14.9.2) reduces to,

                          ( )= − − θ
π

2 2
e e2 2

0

dm GMmˆ ( ) 3(r )
dt 4 c r

V r u V
i

#     .       (14.11.5)

     Finally, substituting Eqs.(14.4.2) and (14.11.5) into Eq.(14.9.1),
the equation of motion becomes,

                             
 

= − + θ  π γ 

2
2 2 2

0

d(m ) GMm 1 3ˆ (r )
dt 4 r c

u r
i

#    ,           (14.11.6)



325

where γ is represented by Eq.(14.5.1).
     Since it is the shape of the orbit and its orientation that is of
primary interest, it is customary at this point to simplify the equation
by changing the time variable to the so called "proper" time,
τ = γd dt /i i .  Recalling that, = d /dtu r i  and factoring out 0m ,

Eq.(14.11.6) becomes,

                             
  θ = − +   τπτ   

22
2

2 2 2
0

d GM 3 dˆ 1 r
d4 rd c

r r
ii

    .         (14.11.7)

The first bracketed term gives the basic orbit of Kepler and Newton.
The second term leads directly to a precession of the orbit that figured
as one of the three famous tests of Einstein's General Relativity
theory.  No curved space, relativity, or other exotic concept was used
to find this result.  The preceding derivation of Eq.(14.11.7) is
essentially Kirkwood's ether gravitation theory derivation with only
minor modifications.

14.12 The C-on Energy Equation: Because c-ons have no rest mass
and are quite different from layerons, the usual motion factor effects
do not apply to them directly.  Nevertheless, c-ons do carry energy
and interact with the ether around them in the gravitic field.  Since
the exact solution for a c-on's structure and behavior in moving
through the ether is not available, its equation of motion must be
obtained by roughly paralleling the derivation of the test body motion
equation using an unspecified factor ξ  that plays a role similar to
layeron mass or energy.
     Because c-ons are long, needle like objects, certain approximations
are required.  For example, the source body is taken to be very large
relative to the c-on length, so that the c-on is treated as a point object
in the field.  The kinematic acceleration of a moving point, as seen by
the general observer S, in terms of its acceleration as seen by the fluid
observer S , is found from Eq.(12.4.2) to be,

                                = + × − +
d d d '2 ( )
dt dt dt
u V uw u V
i i

    ,            (14.12.1)

where all quantities and conditions are the same as in Section 14.8.
Here a scalar function ξ(x, y, z, t)  will be introduced, that will not be
further identified at this point.  It will, according to Eq.(E.3.18),
behave as any scalar, so,

                                              ξ ξ
=

d d '
dt dti i

    .                            (14.12.2)
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This can be used with Eq.(12 .4.1) to give,

                                        ξ ξ
− =

d d '( )
dt dt

u V u
i i

    .                     (14.12.3)

Now, multiplying Eq.(14.12.1) by ξ  and combining with Eq.(14.12.3),

                ξ ξ ξ
= ξ + ξ × − + +

d( ) d d d '( )2 ( )
dt dt dt dt

u V uw u V V
i i i

    ,        (14.12.4)

which resembles  Eq.(12.4.4).  Again, with  the aid of Eqs.(E.4.12) and
(E.4.15),

                         ( ) ξ
ξ − = − ξ ∇ − +

d d '( )( )  ( ) ( )
dt dt

uu V V u V
i i

i     ,      (14.12.5)

which is the c-on counterpart of Eq.(12.4.6).
     The c-on velocity is designated by Eq.(12.4.1), = −u u V , where no
restriction is placed on u  as yet; since, under some circumstances,
the c-on velocity can vary both in magnitude and direction.  Therefore,
                                            − =2 2( ) uu V     ,                         (14.12.6)
where u  is the speed of the c-on (sans direction).  Now, carrying out
the differentiation in Eq.(14.12.5) and transposing,

          ξ ξ
− = − ξ ∇ − − ξ − +

d d d '( )( )  ( ) ( ) ( )
dt dt dt

uu V V u V u V
i i i

i    .      (14.12.7)

Dotting both sides by ( −u V ), and using Eq.(14.12.6),

     ξ ξ ξ − ξ
= − − ∇ − − +2 2

d du ( ) d '( ) ( ) ( ) ( )
dt u dt dtu u

u V uu V V u V
i i i

i i i   ,    (14.12.8)

which is the desired counterpart of Eq.(14.8.4).  Thus, ξ  acts as a
kind of motion factor that relates c-on energy to the effect motion
through the ether produces on it.

14.13 C-on Motion in a Gravitic Field: Following along the same
steps used in Section 14.9, the equation of motion to be used in the
gravitic field is, from Eq.(14.12.4),

                      ξ ξ ξ
= ξ + ξ × − + +e e

d( ) d d '( )2 ( )
dt dt dt

u ua w u V V
i i i

  ,    (14.13.1)

which parallels Eq.(14.9.1).  The complete equation results if
Eq.(14.12.8) is substituted in the third RHS term of Eq.(14.13.1), so,

   

e e e e e2

e
e e 2

d( )  ( ) ( ) ( ) 2 ( )
dt u

du ( ) d '( ) d '( )        +     .
u dt dt dtu

ξ ξ
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ξ − ξ ξ
− +

u a V u V V u V w u V

u V u uV V

i

i i i

i i

i
    (14.13.2)
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To derive this equation it was necessary to allow the c-on speed u  to

vary, even though in regions where φ = φda , it does not; because, until
all differentiations were completed, making the assumption that u  is
constant would cause some of the ether effects to be lost from the
equations.  However, in the gravitic field specified by Eq.(14.11.1),

φ = φda , so the speed of propagation in S  is = 0u c .  Also, = 0w , so
all quantities in Eq.(14.13.2) are known except for the value of ξ .
There is no further information available to determine ξ , so it must be
chosen to make Eq.(14.13.2) match observed phenomena.
     If ξ  is chosen to be ξ = 01/c , and = 0 ˆcu s , Eq.(14.13.2) reduces to,

                 

e
e e e2

0

e0
e e 0

0 0

d  ( ) ( ) ( )
dt c

ˆ ˆdc1 ( ) d ' d '      c
c dt c dt dt

= − − ∇ −

−
− + +

u Va u V V u V

u V s sV V

i

i i i

i i

i

    .       (14.13.3)

Since 0c  is a constant and in S , a primary inertial system, c-ons do
not change direction, the last two terms are zero, and the final c-on
orbit (up side) can be found from,

                           = − − ∇ −e
e e e2

0

d  ( ) ( ) ( )
dt c
u Va u V V u V
i

i i     .       (14.13.4)

Since Eq.(14.13..4) does describe c-on motion in a gravitic field, the
choice of ξ = 01/c  was correct.

14.14 C-on Path Bending in a Source Body Field: In addition to the
"red shift" (Section 14.7) and the perihelion advance (Section 14.11), a
third "test" that Einstein's geometrized space theory met was a
bending of a light ray as it passed the limb of a star.  Kirkwood's
gravitic field theory also explains the effect successfully.
     Using values from Eqs.(14.4.2) and (14.11.1),

                  ( )= − + − − θ
π π

2
2 2

e2 2 22
0

d GM GMˆ ˆ( ) 3(r )
dt 4 r 4 r c

r r u V r
i

#     ,    (14.14.1)

which parallels Eq.(14.11.7).  But whereas in that earlier case

− 2
e( )u V  was a very small number, because of the relatively slow

satellite motion, from Eq.(14.12.6) the high speed c-on has

− = 22
e 0( ) cu V , thus cancelling out the ordinary gravitational

acceleration acting on the c-on.  The remaining terms give,

                                      = − θ
π

2
2

2 2
0

d 3GM ˆ 
dt 4 c

r r
i

#     ,                      (14.14.2)
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 which differs from Eq.(14.11.7).  From Eq.(14.14.2), Einstein's
formula for the orbit of the photon follows in a straightforward way.
Again, this result is essentially Kirkwood's ether theory derivation
with minor modifications, and again no use of relativity was needed to
obtain it.

14.15 Gravitic Energy: In educational institutions the gravitic field is
presented in two completely different ways.  Undergraduates are given
a simple picture of "force" and "work" that leads directly to the concept
of "potential energy" in the field.  The farther apart two neutral objects
are, the greater the potential energy stored between them.  On the
other hand, graduate students are introduced to the General Theory
of Relativity, and bombarded with such a horde of math symbolisms
that the fact that the experimental evidence precludes gravitic energy
stored in the field is lost.  The ether theory allows this to be
demonstrated quite simply.
     Since the gravitic field is just an acceleration in a standing ! -wave
field, and since ! -waves carry no energy, it appears, right from the
start, unlikely that there can be energy stored in the field.  In the
following it will be shown that all energy observed in gravitic field
experiments appears to be electric or possibly magnetic.

14.16 Force and Work in a Gravitic Field:1 The nature of gravitic
energy can be pursued by studying a small, neutral test body moving

radially in the field of a large mass M, where = 0w .  The motion is
described by the reduced equation,

      
  γ  

= − − +      γ ππ γ    

0 0
ext2 2 2

0

d( m ) GMm 1 1 1 GMˆ   r F
dt 2 r4 r c

u r
i

#    .   (14.16.1)

where extF  is radially outward.  Only three specific cases are needed
to describe the gravitic energy problem.
     The first is a test body fixed in the Earth's field.  Eq.(14.10.1)
indicates that the external upward force required to hold the body
fixed is,

                                         = γ
π

0
ext 2

GMmˆ 
4 r

F r     .                       (14.16.2)

Present day interpretations of energy in relativity are a strange mix of
Newtonian ideas and "relativistic" motion factors.  Conventionally, the
work (energy)  required  to  slowly  raise  such  a  test  body  from  the
 ___________________________________________________________________
  1. R.H.Dishington, Apeiron, 5, 1 (1998).  Presented at Symposium The Present Status
       of the Quantum theory of Light, York University, Toronto, Canada, August (1995).
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Earth's surface to infinity is defined as,

                                  
∞  γ −

= =∫  γ ea

2 s
ext 0 0

sr

1
W F  dr m c     ,         (14.16.3)

where γs , is the value at the Earth's surface.
     In gravitic energy situations, γs  is usually so close to unity that it
is useful to introduce the increment δ = γ −1 instead.  To get some
idea of the amounts of the energies involved, Eq.(14.16.3) becomes

≅ δ = δ2
s 0 0 s 0W m c E , where −δ ≅ × 10

s 7 10 .  Thus, energies involved in
test body motion are smaller than the body's rest energy by a factor of
about −910 , and essentially a negligible fraction of the source body
energy.  With this in mind, if a test body is slowly lifted from the
Earth's surface to outer space, using an hypothetical elevator
attached to Earth, work or energy δs 0E  (Newtonian) or slightly less
than δs 0E  (relativistic, Eq.14.16.3) is required conventionally.
Actually the test body energy is lowered from γs 0E  to 0E , and the
elevator gives δs 0E  back to the source (Earth).
     The second case is that of a test body free-falling in the field from
→ ∞r  to the Earth's surface, neglecting air friction.  Since =extF 0 , if

the initial velocity is = 0u , then the test body remains at rest in the

primary inertial system all the way down, so that = eu V  and, from
Eq.(14.5.1), γ = 1 .  This reduces Eq. (14.16.1) to,

                                           = −
π 2

d GMˆ 
dt 4 r
u r
i

    .                        (14.16.4)

Just before making contact with the Earth's surface, the test body
velocity is,

                                          = −
π

ea
s

ea

GMˆ 
2 r

u r     .                       (14.16.5)

     In test body cases, the slick Newtonian approximation obscures
the true problem.  It describes a free-falling mass as converting
"potential" to "kinetic" energy and carrying the latter to the source
body, which ultimately absorbs the "kinetic" energy as heat.  However,
in connection with Eqs.(14.16.4) and (14.16.5), the free-falling body
( ∞0E  at ) is at rest in an inertial system, its γ =1 , undergoing no
physical change all the way to the ground.  After the inelastic collision
with the Earth, the test body's energy is γs 0E  (See Section 14.6), so it
has gained energy δs 0E .  This is borne out by the observed change-of-
clock-rate and red-shift in a gravitic field.  In addition, there is an
equal amount of heat generated, so a total of δs 02 E  suddenly appears
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Figure 14.17.1
Neutral body energy transfer.

in the collision.  Clearly it comes from the source, not the test body,
meaning that all of these energies are electric, localized in the bodies
and conserved.  Since the "binding" energy is just that lost to heat, it
also is localized and electric in nature.  So, the "kinetic" and
"potential" energies of Newtonian theory are just artificial bookkeeping
tricks to allow easy calculation of the heat energy generated, ignoring
the  energy increase of the body after it is stopped.
     The third case is that of a test body shot vertically from the earth's
surface with a velocity the negative of that given in Eq.(14.16.5), again
neglecting air friction. With =extF 0 , it follows that,

                                          = =
π

e
GMˆ
2 r

u V r     ,                      (14.16.6)

γ = 1 , and the body decelerates to 0 as → ∞r .  From the instant it is
free, its energy is 0E  with all other energy adjusted out through the
driving mechanism.  Being at rest in the primary inertial system, it
rises with no energy change, neither "kinetic" nor "potential", and
escapes with energy 0E .
     At present, most of what conventionally appear to be gravitic
energy phenomena actually are localized electric energy exchanges.
Without a few new solutions to certain presently intractable
accelerating charge problems, the final word on localized, stored
gravitic energy cannot be said.

14.17 Transmission of Electric Energy Between Gravitic Fields:
There is an example of interaction between two large neutral bodies
that, as yet, has no simple explanation.  Figure 14.17.1 illustrates the

experiment.  The two bodies are
accelerating towards each other.  A
jet engine, located to push one of
the bodies away from the other, is
turned on.  The bodies continue to
attract one another.  The center of
mass of the two now accelerates in
the direction of the jet's push.  If the
acceleration caused by the jet is
greater than the rate at which the

two bodies were accelerating together, the jet propelled body will stop
and turn around and the second body will chase after it.  Clearly, the
second body is receiving electric energy just as the propelled body is.

There is probably a way to understand this in terms of ∂ ∂e / tV  which
would be a kind of magnetic effect; but obviously more work remains
to be done.
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14.18 Artificial Laboratory Gravitic Fields: In a speculative vein,
there is a possibility that gravitic fields can be created in the
laboratory.  What is required is a configuration of conductors that
have oscillating currents which create an oscillating A field with
certain specific characteristics. If a standing Vi  ! -wave is set up,

where = ∇ ≠ 0a V Vi ii , then tiny neutral test particles should be

deflected in their motion by that a  gravitic field.  One simple
configuration would be a block of metal, into which a cone shaped
cavity has been cut, with electric current running up and down the
sides of the cone.  Another could have an alternating electric field
between two electrodes, one very large (perhaps an enclosing sphere)
and the other point like to greatly concentrate the field.  Although the
numbers are discouragingly small, some such configuration might be
devised to accelerate neutrons, for example.

14.19 Mach's Principle: The contents of this chapter serve to show
that several widely held views about gravitics are not only intuitively
unsatisfactory, but simply wrong.  Space is not, in itself, curved; and
gravitics is not geometry.  The ether is "curved"; that is, it is variable
from place to place in euclidean space.  Neutral bodies move as their
constituent particles move, and these have what appear to be
extended particle characteristics such as energy and momentum.  The
change in momentum a neutral body undergoes depends only on its
local motion with respect to the ether where it is presently located.
If all matter were eliminated from the universe, a single electron, or
any other particle, would still exhibit its energy and momentum
characteristics.  Mach's principle is a non-intuitive fallacy, and should
be rejected from physics.  Geometrized space has no place in physics
either; so let the confusion end, by eliminating it from the picture.
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CHAPTER 15

THE CONSERVATION LAW

15.1 Introduction: For more than 150 years, starting with
mechanical systems, the fact that certain quantities such as energy,
momentum, etc. are constant in physical processes has led to an
increasing number of conservation laws.  With the advent of quantum
physics, new conserved quantities, such as baryon and lepton
numbers, have been found.  In these new cases, the question of just
what is being conserved arises.  Moreover, it is clear that the same
lack of understanding applies to the "classical" laws, since no
conventional theory explains just what "energy" or "momentum" really
are, for example.
     Recently, much emphasis has been placed on the related
transformation symmetry properties, and the realization that gauge
transformation symmetries are the source of certain quantum
conservation laws.  However, in spite of the insight this approach has
provided, in no case has true understanding of "what it is" that is
conserved been forthcoming.
     The following account suggests that, rather than the multiplicity of
conservation laws now in use, a single conservation law produces all
of the effects now ascribed to the many; and further, the one quantity
that is being conserved is shown to be the ether.

15.2 The Conservation Law:1 In Section 2.5 the conservation of ether
was described by the kinematic relationship known as the continuity
equation,

                                         ( ) ∂φ
∇ φ = −

∂
a

a  
t

Vi     ;                        (15.2.1)

and in Section 2.16 its separated forms were given as,

                         ( ) { }∂φ ∂φ
∇ φ + = ∇ φ + =

∂ ∂
a

a a0   ,   0
t t

V V i
i

i i     .     (15.2.2)

Each of these equations is a derived conservation law that holds
because of the basic ether conservation law of Eq.(15.2.1).  The
second equation indicates that ether is conserved during the passage
of any " -wave.  The first equation ensures that ether is conserved in
bulk motion.  It is often written as,

                                           ∂φ
∇ φ + =

∂
( ) 0

t
ui     .                         (15.2.3)

__________________________________________________________________
  1. R.H.Dishington, Apeiron, 5, p.1, Jan-Apr (1998)
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With Eqs.(2.15.1) and (9.2.2), the continuity equation becomes the
Lorentz  " gauge"  condition.   Thus, rather than  an  arbitrary  choice for
convenience, the Lorentz gauge is the only one that has physical
significance.  The bulk conservation equation it represents is the basis
for all of the other conservation laws now known.  Several important
examples of this will now be presented.

15.3 Charge Conservation: The conservation of charged particles is
well known and easily derived using Maxwell's macroscopic equations.
It has an exact parallel in the microscopic case.  To show that the
distributed charge distortion in the ether is conserved, add the
divergence of Eq.(2.21.2) to the partial time derivative of Eq.(2.20.2)
and transpose the signs, with the result,

                              ( ) ∂ρ ∂
∇ ρ + = −∇

∂ ∂

2
2

2 2
0

1 
t tc

ui +
C

C     ,               (15.3.1)

where,

                                      
∂φ

∇ φ + =
∂

a
a( ) 0

t
Vi=C     .                    (15.3.2)

So because, and only because, ether is conserved according to
Eq.(15.2.2), distributed charge distortion is conserved.  It is easy to
show that this means that moving along with the incremental density,

the ratio ρ φ/  is constant, so u  is the velocity of ρ  as well as φ .

15.4 Conventional E&M Energy Conservation: It is instructive to
review the current status of Electrodynamics.  Conventionally the
electric field E  and the magnetic field B  are defined in terms of forces
on whole charged particles.  In terms of the ether, they are defined in
Eqs.(9.9.1).  Maxwell's "force field" equations, i.e. written in terms of
E and B , can be derived, for the case of free charges in space
(absence of matter), from the bulk Eqs.(11.2.1), with the result,

        ∂ ∂ ∇ = ρ − ∇ × = ρ + + ∇ ∂ ∂ 2
0 00

1 1 1   ,   
t c t cc

EE B ui
C

C    ,        (15.4.1)

and the identities,

                          ∇ = 0iB     ,    ∂
∇ × = −

∂0

1
c t

BE     .                    (15.4.2)

Eqs.(15.4.1) reduce to the usual forms only because ether is
conserved =( 0)C .  Both Eqs.(15.4.1) and (15.4.2) are valid
macroscopically and microscopically.  Looked at conventionally and
macroscopically, energy flow is handled by the use of Poynting's
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theorem, which can be derived in the usual way from Eqs.(15.4.1) and
(15.4.2), leading to,

                                  ∂ε
∇ + + ρ = −∇ =

∂
0

t
S u E Ei i iC     ,              (15.4.3)

 where,
                                = × ε = +2 21

0 2c     ,    ( )S E B E B     .           (15.4.4)
Here again, because ether is conserved, Eq.(15.4.3) reduces to the
usual form.  There is no question about the validity of Eqs.(15.4.3)
and (15.4.4), since they constitute an identity derived directly from the
field equations.  The problem with Poynting's theorem is that, contrary
to common practice, S  and ε  do not represent energy flow and
density except in very restricted cases.  The strange descriptions of
energy flow cited in the literature result from use of the theorem as an
energy conservation law when it cannot be.
     Butler points out (see Section 3.10) that, although the field and
force equations of electrodynamics are covariant (see Sections B.8 and
D.7) under Lorentz transformations, as all valid physical laws must
be, Poynting's theorem fails this test in many cases.  Generally, energy
and momentum form a covariant 4-vector; but, except in very special
circumstances the quantities ε , and S  in Eq. (15.4.4) do not.  So even
though the relationship in Eq.(15.4.3) holds, ε  and S  cannot be
identified as energy density and flow unless they form a covariant 4-
vector.  Butler has shown that the condition for this is the total absence
of free charge and current sources (ρ = 0 ) in Eqs.(15.4.1) and (15.4.3).
This means that only in the case of radiation can ε  and S  represent
energy density and flow.  There are a few spurious non-radiation
cases, where free charge and currents are present but at rest, that
allow ε  and S  to transform properly, but appear to predict strange
energy flow patterns.  However, the correct flow is not given by ε  and
S  in these cases, but it can be found by carefully considering the
physical condition of the energy as it flows from the sources.  So only
in the case of radiation will Eqs.(15.4.3) and (15.4.4) represent
conservation of energy, and the implications of this from the ether
viewpoint will be discussed next.

15.4 Energy Conservation: In contrast to the simplicity of charge
conservation, energy conservation is complicated.  First, energy comes
in so many forms.  Second, no conventional visualization of the
internal mechanism is available in many situations. Finally, the whole
conventional structure of equivalent energies in the different forms is
based on "forces".  As discussed in Chapter 12, in the ether, there are
no forces.  Particles flow.  Here the concept of work (force) will be used
as a convenience, whereas the different forms of energy have been
given a visualizable mechanism (see Eqs.2.19.2 and 9.10.1).  Still,
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there is, as yet, no overall energy conservation equation, and each of
these different forms must be dealt with individually, as is the
custom.  There are still certain aspects of energy that are not
understood, even in the context of the unified field theory; but the
following will help to correct some of the present misunderstanding.
Only two types of energy, electric and magnetic require discussion
here.  Most other forms of energy can be understood in terms of those.

15.5 Electric Energy Conservation: The most common type of
energy is electric.  Even the nuclear interaction or so called "strong
force" has the same kind of interaction energy mechanism (see Section
6.3).  In Section 2.19, the electric energy density was defined as,

    ( ) ( )
      ∂φ ∂φ      ε = ∇φ − ε = ∇φ −     ∂ ∂        

2 2
2 2

a
e ea 2 2

0 0
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2 t 2 tc c

    (15.5.1)

It is of interest to examine under what conditions the electric energy
distortion is conserved.  The usual continuity relationship can be
expressed as,

                                 
∂ε ε

∇ ε + = ε ∇ +
∂

e e
e e

d
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t dt i
i iu u     ,                 (15.5.2)

where d/dti  is the m.p. derivative (sometimes called convective or
material, see Section E.4),
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Using Eq.(15.5.1),
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Expanding the last two terms of Eq.(15.5.4), with some manipulation,

( )e
e e

2 2
0 0

( ) ( ) ( )
t

1 1                   ( )  
t t t t tc c

∂ε
∇ ε + = ε ∇ + ∇φ ∇ φ∇ + ∇ ∇φ

∂

∂φ ∂ ∂ ∂φ ∂ + φ∇ + ∇φ − ∇φ ∇ − ∂ ∂ ∂ ∂ ∂ 

u u u u

uu

i i i i i

i i i
C

C
 (15.5.5)

Eq.(15.5.5) shows that even in the few special cases where the first
three RHS terms go to zero, electric energy is conserved only because
conservation of ether makes the last two RHS terms zero.  Several
special cases will now be considered to illustrate certain important
ideas.
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     The first is that of a particle moving at constant velocity.  Even a
neutral particle, like a neutron, has an internal ρ  distribution,
including both positive and negative distortion, which integrates to
zero over all space.  Although this ρ  distribution is uneven in
concentration, if the particle moves at constant velocity, the u  vector
field throughout the particle is constant in both space and time.
Thus, all RHS terms of Eq.(15.5.5) are zero, and electric energy is

conserved.  When electric energy is conserved, the ratio ε φe /  is
constant, and u  is also the velocity of εe .
     A more interesting case is that of an electron in a hydrogen atom.
The electron and proton orbit about their center of energy as a rigid
body, always presenting the same faces to each other.  If they are in
circular orbits, their angular velocity is constant, say w .  At each
point the velocity field is = ×u w r , which is constant in time.  The

result is that ∇ = 0ui , ∂ ∂ =/ t 0u  and ∇φ ∇ ∇φ = 0ui i , so Eq.(15.5.5)
indicates that εe  is conserved.  It follows that all circular orbits will be
stable and non-radiating if no other ether condition disturbs the flow.
     A final case is that of a positron being accelerated in a straight line
by a second higher energy positron approaching from the rear (see
Section 3.10).  As the accelerating particle's velocity increases, that
particle expands laterally by taking on more of the distortion energy
εe  from the driving particle.  Since the u  field is changing with time
and has divergence, by Eq.(15.5.5) energy εe , is not conserved. Some
of the distortion converts into another form called magnetic energy
and is lost by both particles as radiation.
     In the previous case of the hydrogen atom, the datum fluctuations
(zero-point fluctuations) buffeting the orbiting electron are large
enough, in all but the ground state, to force radiation to occur.  In
other situations, similar failures of conservation of electric energy can
result when conversion of εe  to magnetic energy occurs.

15.6 Magnetic Energy Conservation: Unlike electric energy, which is
a simple, localized distortion condition at each space point, magnetic
energy is only partially localizable and comes in two different forms.
In Section 9.10 magnetic energy density is defined as,

                          ( )
  ∂φ  ε = ∇ × φ +
  ∂   

2
2
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m a2 2
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V1 1V
t2c c

    ,          (15.6.1)

where the subscript r indicates serious restrictions in applying this
equation, which falsely implies that energy is stored in any region
where there is vorticity in the flow or the flow is changing with time.
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In situations where work is required to generate a vortex and where
that work is recoverable in stopping the vortex, the first term in
Eq.(15.6.1) gives the correct energy stored.  Conversely, where a
vortex exists that required no work to generate it and where no work
is recoverable, the first term in Eq.(15.6.1) is not applicable (see
Sections 9.8---9.10).  Assuming, for the moment, that the correct
magnetic energy density distribution is known, it might be supposed
that a form similar to Eq.(15.5.5) should follow.
     According to Eq.(15.5.5), electric energy is conserved only when all
RHS terms are zero, otherwise some of the energy is being converted
into another form.  Similarly, if a given magnetic configuration
conserves energy, the conservation criterion would be expressed as,

                                         ( ) ∂ε
∇ ε + =

∂
m

m 0
t

ui     ;                      (15.6.2)

and the problem of writing a conservation equation with localized
magnetic energy appears at once.  In looking at electric energy
conservation, its bulk nature allows the observer to "see" where the
energy is and where it is going; and the meaning and measure of its
velocity u  is obvious.  Not always so in the magnetic case.  In
magnetic problems, visualizing a velocity of energy flow is a very
abstract process.  Simple illustrations will make this clear.

15.7 Energy in a Long, Straight Current Conductor: A simple
example discussed in the literature is that of a long, straight
conducting wire through which current is steadily driven by a battery.
If the leads connecting the wire to the voltage source have negligible
resistance, then the potential, neglecting end effects, is uniform
across the wire's interior and the electric field inside and just outside
the wire is uniform, with the equipotentials perpendicular to the
length of the wire.  As long as the current is steady state, the energies
stored in the magnetic field around the wire and the electric field are
constant, so no energy from the battery goes into the vortex or the
electric field after they are established.  The energy that goes into heat
(collisions of conduction electrons with atoms) is carried by the
electrons as their individual electric kinetic energies.  It is stored in a
sphere about each electron that is less than −1110 cm in radius and
none of it gets near the region outside the wire.  Clearly, in this case,
the Poynting theorem makes no sense; since it indicates that the
steady state energy from the battery doesn't go directly into the wire
with the electrons, but leaves the source and travels through the
space around the wire, entering it radially through its long cylindrical
surface.
     If the battery is shorted, so that the current decays, the vortex is
slowed and the excess vortex energy contributes to the heating of the
wire.  In both this situation and during the vortex startup, it is
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natural to imagine the vortex energy moving radially inward or
outward; but in the steady state, Poynting's theorem fails to correctly
describe energy flow.  Even in the transient periods, it requires
modification.
     To understand the problem here, consider the steady state, where
conventionally the energy flow of Eq.(15.4.4) would be written,

                                       = − ∇φ × ≠0c 0S B     .                         (15.7.1)

In the transient case, the conventional flow takes the form,
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c t

AS B     .               (15.7.2)

Eq.(15.7.2) correctly indicates there is radial energy flow into and out
of the wire in the transient periods, but Eq.(15.7.1) falsely indicates
that energy flows radially into the wire during steady state.  The latter
could be remedied if it is concluded that the steady gradient and
vortex have no direct influence on each other.  In fact, even in the
transient case they don't.  Thus, a possible correct form for the
magnetic energy flow vector would be,

                                          ∂
= − × ≠

∂
0

t
AS B     .                        (15.7.3)

This not only corrects the long straight wire problem, but clears up a
number of other questions related to magnetic energy conservation.

15.8 A Modified Poynting Relationship for the Magnetic Field: It is
important to understand that the Poynting theorem has nothing to do
with electric energy density.  It describes a magnetic process.
Neglecting, for the moment, any restrictions on magnetic energy, from
Eq.(15.6.1) the magnetic energy density can be characterized by,

                                             ε = ε + εm v t     ,                            (15.8.1)

where the vortex and transformer energy density components are
represented by,
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Now, following Eq.(15.7.3), let,
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and its divergence,
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Aided by an identity from Table D.6.2, the divergence can be
expanded to yield,
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After some manipulation, assuming φ = 0 ,
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Combining Eqs.(11.2.1), (15.8.1) and (15.8.6), assuming no free
charge present (ρ = 0 ),
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t
∂

ε + ε = −∇
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Si     .                        (15.8.7)

     Except for the absence of charge here, Eq.(15.8.7) has the same
form as Eq.(15.4.3), but the definitions of S  and ε  are different.  Both
equations represent rigorously correct identities derived directly from
Maxwell's equations.  Both sometimes represent conservation of
energy. Eq.(15.8.7) produces fewer spurious descriptions of energy
flow, but even it is not necessarily the basic magnetic energy
conservation law.  If it is assumed that Eqs.(15.8.1) and (15.8.2)
correctly represent the magnetic energy density, then, in cases where
Eq.(15.8.7) fails as a conservation law, S  cannot simply represent the
magnetic energy flow.  What then is the meaning of the two identities
in Eqs.(15.4.3) and (15.8.7)?  In each, −∇ Si  gives the rate at which the
designated "density" is changing at a given point in the field.  In
Eq.(15.4.3), the quantity +2 2( )/2E B  is not the magnetic energy
density, but still is a measurable quantity, and −∇ Si  gives its time
rate of change.  In Eq.(15.8.7) the quantity ε = ε + εm v t  is the magnetic
energy density. However, since εm  can change by both a flow, toward
or away from the point, and also by a conversion, from or to another
form of energy, −∇ Si  represents the time rate of change of εm due to
both the flow and the conversion.  On the other hand, the magnetic
energy conservation Eq.(15.6.2) represents only the flow.
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15.9 The Magnetic Energy Conservation Relationship: By following
along the same path taken in Section 15.5, the correct magnetic
energy conservation relationship should be derivable.  Replacing εe  in
Eqs.(15.5.2) and (15.5.3) with εm , and using Eqs.(15.8.1) and
(15.8.2), the magnetic equivalent of Eq.(15.5.4) becomes,
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Unfortunately, no useful expansion of Eq.(15.9.1) to the magnetic
equivalent of Eq.(15.5.5) has yet been found; but even if it had been,
no practical method for determining u  is available.  It may be that the
resolution of this problem must await a derivation that involves the
simultaneous conservation of at least electric and magnetic energy,
including radiation.
     In spite of the apparent difficulties in visualizing magnetic energy
processes, there is still much that can be understood.  This is brought
out by considering several special cases.

15.10 Energy Conservation in Radiation: Because of the sketchy
knowledge of the internal structures of the c-ons, no energy
conservation formalism is available for them.  However, antenna
radiation fits well into the magnetic energy conservation picture.
Considering the discussion in Section 9.12, and combining
Eqs.(15.8.1), (15.8.3), (9.12.2) and (9.12.3), the antenna radiation
conservation equation can be written (ρ = 0 ),
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u Si i     .            (15.10.1)

In this case, the modified Poynting theorem is a true energy
conservation equation, and the energy and momentum it gives are the
correct values according to the ether theory.
     In Eq.(15.10.1) the velocity is = uu n , where n is a unit vector in
the direction of propagation, and εm has equal contributions from
both terms of Eq.(15.8.1) as described in Section 9.12.  To find u , set,

                                                =
εm

Su     .                              (15.10.2)

Combining Eqs.(9.12.3) and (15.8.3),
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Now, substituting Eqs.(9.12.2) and (15.10.3) into Eq.(15.10.2),

                                               0 c=u n     .                             (15.10.4)
In this case it is well known that the energy travels with velocity 0c .

15.11 Solenoid With Decaying Current: If one of the long solenoids
of Section 9.3, wound with high resistance wire, has a D.C. voltage
applied to the ends of the coil with very low resistance connecting
leads, the steady state physics is very similar to that of the long
straight wire of Section 15.7, except that the vortex energy is stored
inside the coil.  A sudden short circuiting of the coil produces a result
similar to the straight wire case.  The potential gradient between the
ends of the coil is reduced essentially to zero and remains that way.
In a somewhat oversimplified visualization, the only physical actions
on the electrons now are their stopping upon colliding with atoms, and
the decreasing aφ V  in the vortex field.  When an electron passes its
kinetic energy to an atom, and stops, it finds the primary inertial
system accelerating in the direction of the average electron motion, so
the electron accelerates along with it and gains kinetic energy again.
The process repeats for all conduction electrons until the vortex is
gone.  If the vortex energy is to be considered actually localized, then
there will be a flow of magnetic energy outward to the electrons in the
coil, but the velocity u  is not determined easily.
     Using the geometry of Section 9.3, the transient decay solution of

Eqs.(11.2.1) for the flow field a  φ V  is found in terms of Bessel
functions to be,
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where = τ0Z R /c , 0 0 0Z R /c  = τ , 0R  is the coil radius and  τ  is the
time constant of the decay ( τ = L"R/ , where  L  is the coil inductance
and R  the coil resistance, both per unit coil length).  The flow is zero

at the coil axis and a 0 ( )φ V  at 0R .
     From Eq.(15.11.1),
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leading to the magnetic energy density,
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The ratio of transformer energy density to vortex energy density is,
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    .                         (15.11.4)

For wide range of coil sizes, = τ0Z R /c  is the order of −410  or smaller,

so the ratio in Eq.(15.11.4) is less than −710 .
     The picture that unfolds is this.  The steady state solution has no
transformer energy, only vortex; but when the coil is shorted and the
electric field collapses, a small residual transformer energy is
produced as the decay starts.  According to Eq.(15.11.4), εt  remains
extremely small relative to εv , which is quite different from the
radiation case of Section 15.10, where εt  and εv  were equal.  This is a
good indication that the modified Poynting theorem is extremely close
to being a magnetic energy conservation law in this case; because, if
any radiation takes place during the decay, the vortex part of the
radiation will be of the same order as εt , which makes the radiation
essentially negligible.
     It is possible to say, in this case, that = εmS u , where εm includes
both the coil energy and the radiation energy.  In that case, the
determination of u  is not obvious, because the radiation component
velocity is 0c , but the coil vortex component would have a lower
speed.
     Where the radiation is negligible, u  can be calculated using
Eq.(15.10.2), with the result,

                                                ≅
τ
Rˆu R     .                            (15.11.5)

In some ways this is a satisfying result, but in others it is
unconvincing.  The velocity is zero at =R 0 , and increases linearly out
to 0R , which is not surprising, but it is not a function of time, which
seems odd.  Clearly, much more work on magnetic energy
conservation is needed.

15.12 Other Conservation Laws: It is clear from the earlier
discussion that the conventional description of the quantities being
conserved required revisions.  The other conservation laws can be
understood by considering those same revisions.  For example, as
described in Section 3.11, momentum and inertia derive from the fact
that it takes time for electric energy distortion in a particle to
physically redistribute itself into another particle and be separated
from the first.  Ether conservation is again central to the process.
Even in cases involving presently unexplained phenomena such as
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baryon and lepton number conservation, it is simple to show ether
conservation to be the basis.
     In particle experiments, conversion occurs when a single pseudo-
stable particle redistributes to a less distorted configuration, or
splatter produces a number of by-products during a cataclysmic
collision in an interaction between particles (see Sections 5.27 and
12.12).  In analyzing which interactions are possible and which are
not, it has been found that certain numbers assigned to particles are
always conserved, leading to baryon and lepton number conservation.
What is conserved in these interactions is ether.
     A simple example of this is one used by Feynman.1  Proton-proton
bombardment is used to produce anti-protons by the reaction,

                                      + → + + +P P P P P P     ;                   (15.12.1)
but not by,
                     P P P P P + → + +/     or    + → +/P P P P     .        (15.12.2)

Violation of baryon number conservation is the conventional
explanation.  However, from Chapter 5, P  and P  have opposite

charge distortions and the φ  ether density patterns are also
opposites.  Thus, +P P  represents zero net ether increment, whereas
+P P  represents a large ether increment.  To conserve ether, there

must be the original +P P  increment and no more.  +P P  adds no
more.  Both of the interactions of Eq.(15.12.2) violate ether
conservation.  In fact, if vortex conservation is included, all of the
cases of baryon and lepton conservation, as conventionally described,
are seen to be cases of ether conservation.
     All conservation laws can be traced back to the single conservation
of ether law.   In the future, new conservation laws can be found by
examining phenomena in the light of the ether physics involved.  Still
to come will be a total energy conservation law, probably to be derived
using a four dimensional formalism along the lines investigated by
Kirkwood.

 ____________________________________________________________________
  1. R.P.Feynman, R.B.Leighton, and M.Sands, The Feynman Lectures on Physics, 3,
       p 25-4, Addison-Wesley Publ. Co., Reading, Mass. (1965).
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APPENDIX A

REPRESENATION OF FIELDS

A.1. Introduction: In the next few appendices some tools for working
with fields are presented.  Although such things as scalar, vector, and
dyadic fields will be discussed in some detail later on, it is assumed
that the reader already has a good grounding in vector analysis and
dyadics, preferably from Weatherburn's two little books, "Elementary
Vector Analysis" and "Advanced Vector Analysis.1  In this appendix,
the main physical characteristics of fields are defined in terms of
scalars, vectors and dyadics.  Such fundamental concepts as
divergence and circulation are discussed, and the Laplacian is singled
out  as the most important field property.

A.2 Physical Scalars, Vectors, and Tensors: Many space distributed
physical entities are representable by scalars, vectors, or tensors
(particularly second order tensors).  The simplest of these are the
scalars, which are used to describe such fields as the temperature at
each point in a room or the density of a gas at each point in some
volume, i.e., fields completely characterized by a single magnitude at
each point in space and nothing more.
      The velocity flow pattern on the surface of a stream of water is
familiar to almost everyone, and it is easy to visualize its extension to
the space distributed flow pattern beneath the surface.  At each point
in the space, the fluid has a specific speed in some direction.  The
combination of a magnitude and a direction at each point in space
typifies a vector field.  In this case it is the velocity vector.
      Next in this hierarchy are the dyadics (second order tensors).
There are few good examples, common to lay experience, to illustrate
what a dyadic symbolizes.  Going back to the scalar that represents
the density φ  of a gas, if a particular point in space is designated, the
scalar field function φ  specifies the density at that point.  In the
vector case representing the velocity V , if a particular point in space is
selected, the vector field function V  specifies the magnitude and
direction of the velocity at that point.  In the case of a dyadic, if a
particular point in space is selected and an "input" or cause vector 1a  at
that point is specified (both magnitude and direction) the diadic Ψ
specifies a resultant or effect vector 1b at that point which has a
magnitude and direction that can be completely different from those of
the initial vector given.   Furthermore, if at that same point a different
initial  vector 2a  is considered,  the  "output"  vector  2b   given  by the
 __________________________________________________________________
     1. C.E.Weatherburn, Elementary Vector Analysis, (1948); Advanced Vector Analysis,
         (1947), G.Bell and Sons, London.
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Figure A.2.1 Dyadic input-output vector family.

field dyadic Ψ  can also be different from the previous "output" vector.
This is illustrated in Figure A.2.1.  In fact, a dyadic is a field function
such that, for every cause vector ia , specified at a particular point in
space, a corresponding effect vector ib  at that point is given by the
dyadic.  At a different point in space Ψ  is different, and the cause-
effect relationship, although still relating the total cause family to the
total effect family, can be completely different from that at any other
space point.
     The merry-go-round is a familiar example of a physical situation
describable by a dyadic.  If a person on the turning platform walks
radially outward at constant speed, since he passes to a region of the
platform that moves more rapidly, he must accelerate in a direction
perpendicular to his own instantaneous radial velocity.  He can "feel"
the opposition to this acceleration.  In this case, his radial velocity is
the cause vector and the effect vector is the acceleration he
experiences.  If, on the other hand, he walks perpendicularly to the
radius in the direction of the platform motion, he will be accelerated
inwardly along the radius.  In fact, the effect vector acceleration a  at
a point is always at right angles to the cause velocity u  of his motion
relative to the platform, regardless of which direction the cause
velocity vector takes.  A planar dyadic Ω  can be used to relate u  to a
for all points on the platform and for any u .

A.3 The Perfect Continuum, Ether: The symbols to be presented in
the following describe physical processes that can be intuitively
visualized in terms of the ether which is the only perfect continuum.
It is this picture that transfers over to the particulate fields mentioned
before and the field mathematics applies to the latter only to the
extent that for some range of parameters those fields (gases, liquids,
solids, etc.) appear to fit the continuum model.  Only in the case of the
ether will it be assumed that the reality and symbols match
identically.



346

     The most important of these properties of fields are the
"gradient", the "divergence", the "curl" and the "laplacian".  Each one
represents a simple, visualizable physical description of some
condition in the field.  Each one can also be calculated using a
mathematical equation that differs from the others.  To truly
understand fields, it is essential that the physical visualizations be
comprehended unencumbered by the equations.  Around the end of
the 19th century, science writers actually used two ways to designate
each of these properties.  For example the "gradient of φ " was called
"grad φ ", to indicate the physical visualization, and ∇φ  (pronounced
del phi) to mathematically represent the gradient in equations and
calculations.  This practice has been abandoned, for simplicity; but it
places a burden on the practitioner to keep in mind the physical
visualisation of ∇φ  when generally describing the field, reserving the
mathematical concept for calculation.
     A given field is described by an equation that tells its value at each
space point as a function of time, but nothing more.  Several
important properties of a field are uncovered by a detailed
examination of the conditions in a differential volume around any
chosen space point at any instant of time.  This is done using a
differential vector of length ds that points in the direction of an
arbitrary unit vector ŝ , so that,
                                               ˆd ds=s s     .                                (A.3.1)

The region that can be examined around each space point is a small
sphere of radius ds.  This is the starting point for all of the physical
functions to be described in the following sections.

 A.4 The Directional Derivative and Gradient of a Scalar Field: A
valuable property of any smoothly varying scalar field is that its space
derivatives describe another vector field, call it G , that permits easy
calculation of the directional derivative of φ ,

                                               d ˆ
ds
φ
= s Gi     ,                               (A.4.1)

where the ordinary dot product is implied.  It is easy to show that the
magnitude of G represents the maximum space rate of change of φ at
the point, defined as,1

                                            
max

d d
dn ds
φ φ =  

 
  ,                              (A.4.2)

____________________________________________________________________________________
  1. See the neat derivation given in Vector Analysis, J.W.Gibbs, E.B.Wilson, p. 139,
      Dover Publications, Inc, N.Y.; also C.E.Weatherburn, Advanced Vector Analysis,   
      G.Bell and Sons, London (1947).
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where the direction of the maximum is set by the unit vector n , and,

                                              d
dn
φ

=G n     .                               (A.4.3)

Combining Eqs.(A.4.1) and (A.4.3),

                                    sn
d d dˆ cos
ds dn dn
φ φ φ
= = θs ni     ,                   (A.4.4)

so that, if ŝ  is in the direction of n , then Eq.(A.4.2) is satisfied.  If
90θ = ° ,  d /ds 0φ = , which shows that n  is normal to the surfaces of

constant φ  in the field.  Because Eq.(A.4.3) has a similarity to the idea
of the slope of a hillside, G  is called the gradient of φ .
     There is a mathematical function ∇φ  (called del phi) that involves
space derivatives of φ .  It permits calculation of the gradient in
Eq.(A.4.3) because, as discussed in Appendix C, in any coordinate
system,
                                                 = ∇φG     .                                (A.4.5)

Modern usage, where the emphasis is on computation rather than
visualization, omits G , and calls ∇φ  the gradient; but it is important
to remember that Eq.(A.4.3) is what the gradient of a scalar field truly
represents and the mathematical equation for ∇φ  is just a calculation
aid.  From here on the symbol ∇φ  will have two meanings, that of
both G and the mathematical form∇φ .

A.5 The Line Integral of a Vector, and the Scalar Potential: If a
curved path cuts through a region in which some vector field V is
present, the projection of V onto any differential segment of the path
ds  is dV si .  The integral of the projection along the path between any
two points on the path is called the line integral of V , and the result
is generally a function of the points and the path.  It can be shown
that in the special case where the vector is the gradient of a scalar
field φ ,

                                          2
2 11 d∇φ = φ − φ∫ si     .                         (A.5.1)

The importance of this relationship lies in the fact that first, since the
value of the integral depends only on the values of φ  at the two end
points, it is independent of the path along which d∇φ si  is integrated,
which is the basis for defining the concept of the "potential"; and
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second, if the path is closed, i.e., the integration is around a loop that
starts and ends at the same point, then 2 1φ = φ and,

                                             d 0∇φ =∫ si"     .                             (A.5.2)

Eqs. (A.5.1) and (A.5.2) express two remarkable properties of the
gradient of a scalar field.
      The converse of Eq.(A.5.2) is also of fundamental importance.  If
the line integral of a vector field V  is zero around every closed loop,
i.e., if,
                                              d 0=∫ V si"     ,                              (A.5.3)

then there is a scalar field φ  of which V is the gradient; i.e. = ∇φV .
     If the condition Eq.(A.5.3) is satisfied by a vector V , it is equally
well satisfied by the vector = −E V , and since the vector actions
caused by fields are often "downhill", i.e. opposite in direction to the
gradient, the relationship just following Eq.(A.5.3) is just as often
written = −∇φE .

A.6 The Directional Derivative of a Vector Field: It is just as easy to
visualize a directional derivative in a vector field V , since it is clear
that a small displacement results in a new vector V , and the change
in V is the difference.  Even the expression for the directional
derivative,

                                               d ˆ
ds

= Ψ
V si     ,                               (A.6.1)

is similar to Eq.(A.4.1), except that the "change " vector G must be
replaced with a "change" dyadic so that the dot product will be a
vector.  Not too surprising is the fact that the "change" dyadic Ψ can
again be calculated using the same kind of mathematical operation,
as expressed by,
                                                VΨ = ∇     .                                (A.6.2)
Here, however, the correspondence ends.  There is no simple physical
analogy to the gradient of a scalar.
     Since V  is a vector field, it has not only a magnitude at each
point, but a direction, and when the change in V  is determined from
some displacement, it must reflect both the change in magnitude and
the change in direction.  For this reason, only in special cases can a
gradient of a vector field have the same intuitive meaning that a scalar
field gradient has.
     The simple laminar flow field inside a straight cylindrical tube
conducting fluid illustrates this.  The flow can be described best in
cylindrical coordinates, (R, , zα ), and is three dimensional with
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rotational symmetry about the flow axis z.  The velocity vector V  is
smaller as the radial distance increases.  The direction R̂  is always
radially outward from the flow axis, k  is parallel to the axis, and α̂  is
tangent to circles about the axis that are centered on that axis.  If a
differential displacement ds is taken in the direction of R̂ , V
decreases in magnitude and dV  is a negative vector, i.e. pointing in a
direction opposite to k .  Because the velocity is assumed not to vary
in a direction parallel to the axis, if ds is taken in the direction of k ,
dV  is zero.  Similarly, by the rotational symmetry, ds taken in the
direction of α̂  gives no change in V , so  d 0=V .  In this special case,
then, the velocity vector V  is constant on cylindrical surfaces, and a
displacement in position can, in some directions, produce a change in
the magnitude of V , but never results in a change in the direction of
V .  The latter is obvious, since the velocity field originally defined has
only one direction.  In a field as simple as this, where V=V k , the
scalar V has a gradient  V∇ , and the concept can easily be extended
to V .  However, in general fields, more often than not, any change in

ˆds produces a change in direction of a component of flow as well as a
change in magnitude.  Thus, there is no simple dyadic analogy to the
"gradient" of a scalar field.

A.7 The Line Integral of a Dyadic, and the Vector Potential: A
parallel can be drawn between the line integral of a field dyadic and
that discussed in Section A.5 for a vector.  If a curved path cuts
through a region in which some dyadic field Ψ  is present, the
projection of Ψ onto any differential segment of the path ds  is dΨ si .
The integral of the projection along the path between any two points
on the path is the line integral of Ψ , and the result is again a function
of the points and the path.  It can be shown that in the special case
where the dyadic is the gradient of a vector field V ,

                                         2
2 11 d ∇ = −∫ s V V Vi     .                        (A.7.1)

Again, the integral is independent of the path along which the integral
is taken, which is the basis for the concept of the "vector potential".
Also, if the path is closed, i.e., the integration is around a loop that
starts and ends at the same point, then 2 1=V V  and,

                                             d 0∇ =∫ s Vi"     .                             (A.7.2)

Eqs. (A.7.1) and (A.7.2) express two remarkable properties of  ∇V .
The converse of  Eq.(A.7.2)  is also of  fundamental  importance.  If the
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Figure A.8.1
The integration volume in the flow field F .

line integral of a dyadic field Ψ  is zero around every closed loop, i.e.,
if,
                                              d 0Ψ =∫ si"     ,                              (A.7.3)

 there is a vector field V  of which Ψ V= ∇ .

A.8 The Divergence of a Vector Field: Another simple but very
important property of a vector field is its divergence.  Symbolically, the
divergence of F is written ∇ Fi  (pronounced del dot F or divergence of
F interchangeably).  Here again, ∇i  is not to be considered separately
from F .  The total symbol ∇ Fi  represents the physical idea
"divergence of F ".  The divergence of a vector is a scalar.
     Physically, the divergence of F  is defined as,

                                      
S 0

1lim  dS
v→

∇ = ∫F F ni i     ,                        (A.8.1)

where the symbols are identified in Figure A.8.1.  Eq.(A.8.1) states
that the divergence of a vector field F at any point is the sum, over a
closed surface surrounding the point, of the component of F normal
outward to the surface at each point, averaged over the volume
enclosed by the surface as that volume approaches the limit zero.

     To get some
feeling for the utility
of the divergence,
consider a region in
which the ether field
velocity V  is known.
At any point in this
region, the ether flow
density is given by

a= φF V  the product
of the density and the
velocity.  Since the
flow density is
defined as the

quantity of ether flowing past a unit area, perpendicular to the flow in
unit time, if S  is an area through which flow is passing, a( )φ V Si
represents the total quantity of ether passing through S  in unit time.
With this in mind, visualize a small volume of arbitrary shape through
which the ether flows (see Figure A.8.1).  At some points on the
surface of this volume, the flow is outward; at some points it is
inward.  If a( ) dsφ V ni  is summed over the total surface, something very
useful can be found out about what is going on inside.  If, for
example, there is a net positive outflow, then one of two things must
be happening inside, either the ether density is decreasing with time
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or in some unexplained fashion, ether is being "created".  If the
divergence is negative, i.e., the outflow is negative or net flow is
inward, then either the density inside is increasing with time or, by
some magic, ether is being "annihilated" within. Notice that n is
defined as the outward normal.
     Although this example of ether flow gives an intuitive picture of the
idea of divergence in one particular case, Eq.(A.8.1) is quite general
and applies to vector fields even when such a simple interpretation is
not possible.   Most writers emphasize the inflow-outflow viewpoint of
divergence because, in fields where sources and sinks exist, the
divergence is helpful in indicating their presence and density.
However, many important fields have divergence where no sources
exist.  An example of this is the class of geometrical fields given by

n /r=F r , where n is some integer.

A.9 The curl of a Vector field: In fields where there is circulation or
vortex motion, the concept of the curl is basic.  Physically, the curl of
F is related to the line integral of F  around a small closed loop in the
field.  To find the curl of F  at a point, the first step is to define a very
small, plane contour about the point.  The orientation of the plane is
arbitrary, and the shape of the contour is arbitrary. Now, if the line
integral of  dF si  is taken around the contour, a certain magnitude
results.  This magnitude is divided by the area enclosed by the small
contour on the plane, and the surface area is then taken to the limit
zero. Mathematically, the resulting quantity is expressed as,

                                            
S 0

1

S
 lim d

→
∫ F si     .                             

     Clearly, except in very special fields, as the plane is oriented in all
possible ways about the point, the quantity will differ with different
orientation, and one orientation will exist which makes the integral a
maximum at that point.  The opposite orientation will give the same
value as the maximum but with a negative sign, since it is equivalent
to running the line integral backwards around the contour.
     All of the important elements of the curl are now apparent, the
maximum magnitude of the differential circulation, the orientation of
the plane contour that gives the maximum, and the direction of
integration around the contour.  Surprisingly, no one has yet thought
of a good vector method to represent the orientation of a plane and the
direction of a contour on that plane that is both simple and yet does
not introduce some extraneous property that has no correspondence
to anything in the field.
     The simplest representation of the curl uses a vector.
Symbolically, the vector curl of F is written ∇ × F  (pronounced del
cross F or curl of F interchangeably). The symbol ∇ × F  represents
the physical idea "curl of F ".  By arbitrarily assigning a unit vector n
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normal to the plane contour and adopting the convention that the
integration is taken around the contour in a direction such that a
right handed screw turned that way would advance in the direction of
n , the vector curl can be defined as the vector having the direction of
n for which the line integral is maximum and having the magnitude of
the maximum,

                                   
S 0

max

1

S
lim d
→

 ∇ × = ∫  
F F s ni     .                   (A.9.1)

Since this process can be carried out at each point in the field, and a
magnitude and direction can be obtained for each point, ∇ × F  is a
field vector.
     One important property of the curl is that, at any point in the field,
the line integral of F around any differentially small loop oriented
arbitrarily is,
                                        d ( ) d= ∇ ×∫ F s F Ai i     ,                         (A.9.2)

where d dSA n= , i.e. the line integral is zero if dA  is perpendicular to
∇ × F  and otherwise it varies as the cosine of the angle that n  makes
with the curl vector.
      There is an alternative integral form for the vector curl that is
often more convenient to use, although less intuitively
understandable, that is equivalent to Eq.(A.9.1).  It can be written,

                                    
0

1
v
lim  dS

v→
∇ × = ×∫F n F     ,                      (A.9.3)

where the integration is carried out over a closed surface.
     The vector representation of the curl suffers one very serious
drawback.  It implies that something physical is happening along the
direction n , when in reality all the direction does is establish an axis
and indicate by convention which way the field is physically
"circulating" about that axis.  This is such a serious misrepresentation
that it would be better not to use the vector form.  The only alternative
is to use a dyadic characterization which, although it is rigorously
correct, and doesn't give a false representation, is not nearly as
intuitively clear (this might not be true if the dyadic approach were
taught from the beginning and no reference were ever made to the
vector form, but there is no assurance of this).

A.10 The Laplacian: By far the most important quantity in field
theory is the Laplacian.  In scalar fields, it is defined as the divergence
of a particular vector field, namely the gradient of the scalar, and is
designated 2∇ φ  (pronounced Laplacian of φ  or del squared φ ).  The
Laplacian of a scalar field is itself a scalar field obtained by first
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forming the gradient ∇φ  according to Eq.(A.4.3), and then taking the
divergence of the vector field ∇φ  according to Eq.(A.8.1) to give,

                                 2

0

1
v
lim  dS

v→
∇ φ = ∇ ∇φ = ∇φ∫ ni i     .               (A.10.1)

     By analogy, it is possible to obtain the Laplacian of a vector field
also, and it has paramount importance in vector field theory.
Paralleling Eq.(A.8.1), the divergence of the dyadic Ψ  is,

                                       
0

1
v
lim  dS

v→
∇ Ψ = Ψ∫ ni i     .                    (A.10.2)

As in Section A.4, from the definition of a dyadic given in Section A.2,
having specified a point and n  at that point, Ψni  gives another vector
at that point.   Thus, ∇ Ψi  is a vector found from the integral of the
vector Ψni  over a differentially small volume v.
     The vector Laplacian is now obtained by essentially the same steps
as Eq.(A.10.1),
                                             2∇ = ∇ ∇F Fi     ,                           (A.10.3)

i.e. the Laplacian of F  is the divergence of ∇F , where the latter is a
dyadic (see Eq. A.6.1).  Using ∇ = ΨF , and Eq.(A.10.2), the definition
of the vector Laplacian is,

                                2

0

1
v

 lim  dS
v→

∇ = ∇ ∇ = ∇∫F F n Fi i     .            (A.10.4)

     The formal definitions of the scalar and vector Laplacians do not
yield a very clear intuitive picture of their physical meanings; but a
simple picture is available.  This can be seen by considering the
field in the neighborhood surrounding a specified point.  In the scalar
case, let vφ###  represent the volume average of φ  within a very small

sphere of radius R drawn about the point at which φ  and 2∇ φ  are
observed.  The average is given by,

                                        v 34
3

1  dv
R

φ = φ∫
π

###     .                         (A.10.5)

It can be shown that,

                                       2
v2R 0

10lim ( )
R→

∇ φ = φ − φ###     .                      (A.10.6)

This leads to naming the Laplacian the surrounding function, because
it gives the state of the average field surrounding a point relative to
the field at that point.  For example, if φ  is a density and the scalar

2∇ φ  is positive at a point, it means that the density, on the average,
surrounding that point is greater than the density φ  at that point. If
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2∇ φ  is negative, it means that the average density surrounding the
point is less then φ  at the point.

     In exactly the same way, if the volume average F###  of a vector field
F  surrounding a point is taken, then the vector 2∇ F  at that point is a
measure of the difference between the average F###  and F  at that point.
F### and F  can be different in both magnitude and direction.
Eqs.(A.10.5)   and (A.10.6) apply in the vector case by replacing φ  with
F  throughout.
     One useful fact can be gained from Eq.(A.10.6), and that is that if
the surrounding function is zero everywhere in some region, no
maximum or minimum value of the field variable can exist in the
region. The converse is not true, since even where the surrounding
function is not zero, more often that not there are no maxima or
minima.
     The importance of the surrounding function in field theory is that
it designates the presence or absence of equilibrium in the field, and in
addition is a measure of the extent of the departure from equilibrium.
For example, if 2(  ) 0∇ = , at every point the value of (  ) is equal to the
average of (  ) surrounding that point.  This does not mean that (  ) is
constant everywhere, but that it has a space distribution that is in
equilibrium everywhere.  If 2(  ) fcn(x, y, z, t)∇ =  then the magnitude
and direction of fcn(x,y,z,t) measures the deviation from equilibrium.
It generally determines the rate or acceleration of the return to
equilibrium.
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APPENDIX B

COORDINATE SYSTEMS

B.1 Introduction: All of the relationships given in Appendix A are
independent of any coordinate system.  The entities defined are
visualized in terms of magnitudes and/or directions at points in
space.  These entities can be manipulated to show many important
ideas and "rules" about field representation, and some of these field
relationships will be given further on.  However, any description of a
field in space will be little more than qualitative unless a coordinate
system is adopted.  This allows magnitudes and directions at each
point to be specified quantitatively.  The next few sections will
describe certain basic properties of coordinate systems.

B.2 Coordinate Systems: A coordinate system is an arrangement
that relates each point in space to a unique set of three numbers.
This is done by establishing three separate families of surfaces that fill
all space.  Figure B.2.1 illustrates the three families (x,y,z) in the most
elementary coordinate system, which is called "Cartesian" or
"rectangular".  The x family is a set of parallel planes that extend
infinitely.  Each plane is identified with one of the real numbers, and
the reference plane is marked zero.  For any given point in space, only
one value of x can be specified, corresponding to the x plane passing
through that point.  The addition of a second family of parallel planes,
y, perpendicular to the x planes, allows specifying one value of y for
each space point.   By adding a third set of  z  planes, each of which is
parallel to all others in the z set and perpendicular to both the x and y

Figure B.2.1 The general point (x,y,z) in Cartesian coordinates.
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Figure B.2.3
The general point (r, , )θ α
in spherical coordinates.

Figure B.2.2 Three families used in spherical coordinates.

sets, every point is space is uniquely defined by the intersection of
three planes specified by the three numbers x, y, and z.  A general,
arbitrary point (x,y,z) is then represented relative to the reference
point (0,0,0) by three intersecting planes as shown in Figure B.2.1.
     Another set of three families that compose what are called
"spherical" coordinates is given in Figure B.2.2.  The first is the family
of concentric spheres of radius r for all values of r between 0 and
infinity.  The second is the family of cones with vertices at the
reference point 0, called the origin, and extending infinitely.  Each

cone is represented by a value of the
coordinate θ , the angle between the
surface and the cone axis.  θ varies
between zero and π .  The third is a
family of half infinite planes originating
along the cone axis and fanning out at
different angles α  measured from a
reference plane as shown in Figure
B.2.2.  Each plane is identified uniquely
by the coordinate value α , which varies
from zero to 2π .  A general, arbitrary
point in this system is located by the
intersection of the three surfaces
( r, ,θ α ), as drawn in Figure B.2.3.
     A third set of coordinates that points
up certain special characteristics that
systems can have is a composite of one
family of parallel planes (designated ζ ),
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Figure B.2.4 Cone coordinates

and the cones and half planes used in Figure B.2.2 for spherical
coordinates.  The system, illustrated in Figure B.2.4, is called the
"cone" coordinate system.  Looking at the three systems discussed so
far, i.e., Cartesian, spherical, and cone, two required properties of the
families of surfaces are brought out.  First, the members of any one
family do not cross members of the same family except at special
points or curves.  Second, no member of one family is tangent to any
member of either of the other two families except at special surfaces.
The latter condition implies that although two surfaces of different
families generally cannot be tangent, they can be nearly tangent.
Thus, while it is clear from Figures B.2.1 and B.2.3 that the surfaces
x,y,z or r, ,θ α  are all perpendicular or orthogonal, Figure B.2.4 makes
it equally clear that, although the surfaces ζ  and α  are orthogonal as
are θ  and α  , ζ  and θ  are orthogonal only where 0θ = and π .
Systems in which all three coordinate surfaces are mutually
orthogonal are called "orthogonal" systems.  All others are called "non-
orthogonal".  Cartesian coordinates form a very special case in which
all of the surfaces are planes.  Coordinate systems involving curved
surfaces are called "curvilinear".

B.3 The Position and Differential Length Vectors: The intuitively
understood ability of an individual to act as a reference point and
specify all other positions in space by actually pointing in their
respective directions and stating how far away they are corresponds to
the idea of representing points in space by the reference vector r .
The separation of r  into direction and magnitude is expressed by
writing ˆr=r r , where r̂  is the unit vector giving the direction to a
point P from 0, the origin, and r is the magnitude of the distance from
0 to P.  Since much of the physics of fields is based on effects
resulting from small changes in position, it is convenient to obtain an
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Figure B.3.1
The components of dr

expression for the vector dr  that represents a differential change in
position from P as portrayed in Figure B.3.1.  Differentiating the
expression for r ,
                                          ˆ ˆd  dr r d= +r r r     ,                          (B.3.1)

so the differential vector dr  can be expressed in terms of two
components, one due to the change in the magnitude r and one due to

the  change in direction of
the unit vector r̂ .  Since
a unit vector always
remains unit in length, it
can only change in
direction, and the change
is always perpendicular to
the original unit vector.
The ideas represented by
Eq.(B.3.1) are completely
independent of any choice
of coordinate system.
However, to go much
farther in understanding
how r  and dr  are used

in actual problems, it is necessary to use a coordinate system.  For
purposes of illustration, the cone system of Figure B.2.4 will be used,
but the general conclusions derived will apply to any curvilinear
coordinate system.
     The technique for bringing together the vector position concept and
the coordinates is to notice that the position vector ˆrr  can be used to
identify any point in space which can also be identified by the three
numbers of the coordinate surfaces that intersect there. Thus, r  can

be written as a function of the generalized coordinates 
1 2 3

( ,  ,  )ξ ξ ξ
giving,

                                            
1 2 3

( ,  ,  )= ξ ξ ξr r     .                            (B.3.2)

Comparing Eq.(B.3.2) and ˆrr  , both r̂  and r are generally functions of
1 2 3

( ,  ,  )ξ ξ ξ  but this is not always true.  In the special case of cone
coordinates, for example, Eq.(B.3.2) becomes ( , , )= ζ θ αr r , where,

                           r r( , )= ζ θ           and          ˆ ˆ( , )= θ αr r     .           (B.3.3)

This can be seen best by observing Figure B.2.4.  If θ  and α  are held
constant   and   ζ    increases   by  dζ ,   r   increases   whereas   r̂   is
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Figure B.3.3
Variable curves for the point P.

Figure B.3.2 Three coordinate numbers match coordinate surfaces at P.

unchanged.  If ζ  and α  are constant and θ  increases by dθ , r
increases and r̂ swings outward to point along the new surface dθ + θ .
Finally, if ζ  and θ  are constant and α  increases by dα , although
r̂ swings along the conical surface θ , r is unchanged.
      The changes in the components of dr  just described help in
understanding a very basic property of coordinates.  At each space
point P, identified by three coordinate numbers, three surfaces
intersect.  Each coordinate number identifies one of the surfaces (see

Figure B.3.2).  The
intersection defines
three curves that
pass through the
point P, and each
curve represents a
path along which
one of the
coordinate variables
changes while the
other two are held
constant.  In Figure
B.3.2, for example,
1
ξ  varies along the

curve 
1
ξ ; but 

2
ξ  and

3
ξ  do  not,  since

the  
1
ξ   curve  stays  on  the  same  

2
ξ   and 

3
ξ  surfaces.  Figure B.3.3

shows the variable curves for a particular point P in terms of cone
coordinates.
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Figure B.4.1 Parallelogram components of dr

B.4 Unit Vectors, Unitary Vectors  and Scale Factors: In the
previous Section B.3, when discussing changes in r  in Figure B.2.4,
the differential changes dr  were taken purposely along only one of the
coordinate curves at P at a time.  A more general case is pictured in
Figure B.4.1, where the displacement dr  is arbitrary.  By definition,
the components of a vector are any vectors whose sum equals the
vector. In the present case, dr  has been expressed in term of three
components, each taken along one of the variable curves ζ , θ  and α
(see Figure B.3.3). These vector components add according to the
standard vector parallelogram rule, which is expressed
mathematically in the form,
                                        1 2 3d = δ + δ + δr r r r     .                         (B.4.1)
Equation (B.4.1) and the parallelogram rule apply in the most general

case where the variables are 
1
ξ , 

2
ξ  and 

3
ξ , and since each of the

component displacement vectors is made up of a magnitude ids  and
a unit vector ik , Eq.(B.4.1) becomes,

                                  1 1 2 2 3 3d ds ds ds= + +r k k k     ,                  (B.4.2)

where the ids  factors are the actual distances along the variable
curves, and the unit vectors are often not orthogonal.
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Figure B.4.2

A differential displacement component.

     To express dr  in terms of the coordinates, the function 
1 2 3

( , , )ξ ξ ξr ,
first introduced in Eq.(B.3.2), is used to find the total derivative,

                               
1 2 3

1 2 3d d  d  d∂ ∂ ∂
= ξ + ξ + ξ
∂ ξ ∂ ξ ∂ ξ

r r rr     .                (B.4.3)

Each term of Eq.(B.4.3) has a vector /∂ ∂ ξ
i

r  tangent to the variable

curve at P and a scalar factor 
i

d ξ , and the "apparent" similarity to
Eq.(B.4.2) makes it tempting to equate the vector and scalar factors.
That this cannot be done is easily seen by writing Eq.(B.4.3) in cone
coordinates,

                                  d d d d∂ ∂ ∂
= ζ + θ + α
∂ζ ∂θ ∂α
r r rr     .                   (B.4.4)

In Eq.(B.4.2), the ids were defined as the actual distances along the

variable curves, whereas the 
i

d ξ ,
as exemplified by dζ , dθ , or dα
are basically not distances but
changes in coordinate variable
numbers.  The relationship
between distances ids  and the

i
d ξ  factors is brought out in
Figure B.4.2.  For example, dζ
appears as a distance but not
equal to distance 1 ds  since

1ds sec  d= θ ζ .
     The method by which
components of Eqs.(B.4.3) and
(B.4.4) are made compatible with
those of Eq.(B.4.2) is to use scale
factors.  The basic Eq.(B.4.3)
becomes,

       
1 2 3

1 2 31 2 3
1 2 3

1 1 1d h d  h d  h d
h h h

     ∂ ∂ ∂     = ξ + ξ + ξ
     ∂ ξ ∂ ξ ∂ ξ     

r r rr     ,       (B.4.5)
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Figure B.4.3
Non-orthogonal unit vectors.

which allows the unit vectors ik  to he identified as,

                   1 2 31 2 3
1 2 3

1 1 1    ,        ,    
h h h

∂ ∂ ∂
= = =

∂ ξ ∂ ξ ∂ ξ

r r rk k k    .     (B.4.6)

and the differential lengths  to be,

                   
1 2 3

1 1 2 2 3 3 ds h d    ,   ds h d    ,   ds h d= ξ = ξ = ξ     .       (B.4.7)

The ih  are chosen to be the scale factors that convert differential
changes in the coordinate variables into differential lengths. The cone
coordinate scale factors are,

                    2
1 2 3h sec    ,   h sec    ,   h tan= θ = ζ θ = ζ θ     ,        (B.4.8)

found as, for example, 1h was found from Figure B.4.2.  Unit vectors

ik  are now tangent to the variable curves, unit in length, and not
necessarily orthogonal, as shown for cone coordinates in Figure B.4.3,
where  1 2 c 3

ˆˆ ˆ ,   , = = =k r k kθ α .
     Sometimes, for convenience in certain mathematical procedures,
the distance and unit vector approach is not used, and the forms like

Eq.(B.4.3) are used instead.  For this reason, the variables 
i
ξ  have

been given a special name, in this case contravariant, and the vectors

/∂ ∂ ξ
i

r  are called unitary to indicate that although they are parallel to
the unit vectors they are not unit in
length but involve the scale factors.
The super-superscript numbers
indicate that contravariant
components are being used.
However, here a warning about
notation should be made.  In most
writing of this type, the unitary
vectors are written with subscripts
like those used in the preceding
equations for unit vectors.  In this
work, the normal subscripts are
reserved for actual length or
distance type quantities, and the
conventional subscript and
superscript used by others for the
unitary vectors and contravariant
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components are replaced by the super-super and sub-sub notation,

                              1 2 31 2 3
   ,      ,   ∂ ∂ ∂

= = =
∂ ξ ∂ ξ ∂ ξ

r r rb b b .                   (B.4.9)

Although these expressions look simpler than those for the unit
vectors in Eq.(B.4.6), since the unit vectors have a known magnitude
(unity), they can often be written down intuitively, if the directions of
the coordinate variable curves can be seen from the geometry, as was
just done for cone coordinates.  If this is the case, and if the scale
factors can be seen from the geometry also, as is often true, then the
unitary vectors, if and when needed, can be found from,

                           1 1 2 2 3 31 2 3
h    ,   h    ,   h= = =b k b k b k    .          (B.4.10)

For cone coordinates the unitary vectors are,

                      
1

ˆ sec= θb r  , c2
ˆ=b θ secζ θ  , 

3
ˆ=b α tanζ θ   .        (B.4.11)

 SUMMATION CONVENTION

     In most work of this type, the appearance of a repeated sub or
super-script is used to indicate a sum over several variables.  This
summation convention will not be used here unless specifically noted.

B.5 Angle Variables and the Line Element: According to Eq.(A.3.2)
for the dot product of two vectors, if a vector is dotted into itself, the
result is the square of its magnitude.  Applying this to the differential
dr in Eq.(B.3.2),

      

22
1 1 1 1 2 1 2 1 3 1 3

2
2 1 2 1 2 2 2 2 3 2 3

2
3 1 3 1 3 2 3 2 3 3 3

ds d d   ds   ds ds ds ds

                 + ds ds    ds  ds ds

                 + ds ds  ds ds   ds

= = + +

+ +

+ +

r r k k k k k k

k k k k k k

k k k k k k

i i i i

i i i

i i i

   ,    (B.5.1)

Since the ik  are unit vectors, their dot products represent the cosines
of the angles between them.  These "angle" variables are designated
by,
                                        ij i j ijq cos= = θk ki     .                        (B.5.2)

Recalling that the angle between identical vectors is zero ( cos 1θ = ),
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the nine ijq  in Eq.(B.5.1) can be written,

                                      
12 13

ij 12 23

13 23

1 q q
q q 1 q

q q 1

 
 =  
  

    ,                        (B.5.3)

where the fact that ij jiq q=  has been used.  When known as functions
throughout space, the scale factors ih  together with the angle
variables ijq  represent much of the important information about a
coordinate system.
     In terms of cone coordinates, the angle variables are,

                                      ij

1 sin 0
q sin 1 0

0 0 1

θ 
 = θ 
  

    ,                      (B.5.4)

as found by observation from Figures B.4.2 and B.4.3, using,

               12 c
ˆˆq = riθ sin= θ   ,  23 c

ˆ ˆq 0= =iθ α   ,  13 ˆˆq 0= =riα   .   (B.5.5)

     Two short ways of expressing the "line element" of Eq.(B.5.1) are,

                                2
ij i j i j i j

i 3
j 3

ds q ds ds q ds ds
=
=

= =∑     ,     (*i, j)     (B.5.6)

where the very abbreviated second form is written using Einstein's
summation convention, and any repeated index is to be summed over
the range of variables.  Conventionally, this summing rule is used
without further indication.  In the present work, no summation will be
carried out on a repeated index unless followed by an asterisk and the
variables to be summed, i.e. (*i, j) as in Eq.(B.5.6).
     The line element is sometimes written in terms of contravariant
components,

                                           
ji

2

i j
ds g d d= ξ ξ     ,            (*i, j)         (B.5.7)

where the 
i j
g  are called coefficients of the metric tensor.  The 

i j
g  are

related to the unitary vectors by,
                                                

i ji j
g = b bi     ,                                 (B.5.8)

 but are mixtures of angle variables and scale factors according to,
                                              i j i j

i j
g h h q=     ,                              (B.5.9)

 as can be seen by comparing Eqs.(B.5.1) and (B.5.7) using
Eq.(B.4.10).  Although the contravariant forms are very popular, and
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the 
i j
g  lead to more symmetrical mathematical expressions, they are

somewhat obscure and lack the intuitive value of the scale factors and
angle variables.

B.6 Vector Components: Just as the components of dr  can be taken
parallel to the coordinate curves, as in Eq.(B.4.1) and Figure B.4.1,
any arbitrary vector V  can be composed of three components (added
according to the parallelogram rule) taken in the directions of the
coordinate curves.  In fact, each coordinate system specifies three
separate fields, each field consisting of all the unit vectors
corresponding to one variable.  It is these unit vectors, three at each
point, that give the directions in which the components of a general
vector are specified.  A vector is fully described then, by,

                                     1 1 2 2 3 3V V V= + +V k k k     ,                     (B.6.1)

where the magnitudes iV  correspond to "real length" components and
the ik  are unit vectors.
     Some confusion arises when a writer first places too much
emphasis on rectangular or Cartesian coordinates because they are
the most intuitively natural reference frame.  In that system, the
components of a vector V  at any point are parallel to the components
of the position vector r  designating that point.  This is not true in
curvilinear systems.  The unit vectors at the point determine the
component directions.
     Another blind spot that can develop because of too much exposure
to Cartesian coordinates is the concept of the perpendicular
projections of a vector onto the coordinate axes as the components of
the vector.  Although a vector can be resolved into these
"components", they often have bizarre properties unless orthogonal
coordinates are used, in which case the perpendicular projection
components are identical to the parallelogram components that are
fundamental in the general case.
     The expression for a vector in terms of unitary vectors and
contravariant components is,

                                  
1 2 3

2 3
 V   V   V= + +

1
V b b b     .                     (B.6.2)

These components are often useful for mathematical manipulation,
but are not too meaningful intuitively, since they involve both the real
length components and the scale factors according to,

                              
1 2 3

2 31

1 2 3

V VV
V    ,   V    ,   V

h h h
= = =     .              (B.6.3)
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     In more mathematically oriented discussions of this subject,
vectors are often represented solely in terms of their components.

For example, iV  or 
i
V  can be used to indicate a vector, where it is

understood that i takes on three values, one for each of the three
components.  This approach is used here on only rare occasions,
because it places emphasis on the components, which are
fundamentally unnecessary, and takes it away from the vector as an
entity.

B.7 Vector Products: Certain handy vector product rules will now be
given, almost without discussion.

The dot product:                 AB cos θA Bi =                                (B.7.1)

gives the perpendicular projection of either vector on the other times
that other as a scalar quantity.

The cross product:              AB sinθA B n× =                             (B.7.2)

gives a vector normal to the plane of the two vectors and of magnitude
equal to the parallelogram area specified by the two vectors.  The unit
vector n points in the direction of motion of a right handed screw
rotating from A  to B .  If the order of the vectors is reversed, the
direction of n  is reversed, i.e. B A A B× = − × .

The box product1                    vA B Ci × =                                  (B.7.3)

(often called the scalar triple product) gives the volume of the
parallelepiped specified by the three vectors.  The volume is
independent of the position of the dot and cross.  However, if the
cyclic order of A , B  and C  is changed, the sign is reversed.

The vector triple product        i i( ) ( ) ( )A B C B A C C A B× × = −          (B.7.4)

is a vector that lies in the plane of B  and C  and has two components,
one parallel to B  and one to C .  Notice that,

                                 ( ) ( ) ( )A B C B A C A B Ci i× × = −                       (B.7.5)

     The dot product and the vector triple product make it possible to
resolve  any  vector B  into  two  components,  one  parallel to and one
 ___________________________________________________________________
  1. The name proposed by J.H.Taylor, Vector Analysis, New York (1939).
      See L.Brand, Vector and Tensor Analysis, 43, John Wylie & Sons, N.Y. (1947).



367

perpendicular to another vector A .  The components are given by,1

                           ( )    ,   A B A B AB A B
A A A A"
i
i i⊥

× ×
= =                    (B.7.6)

     Operations involving cross products are analogous to the vector
curl, in that A  and B  define a plane and the cross product specifies
an area in the plane.  The unit vector n  is superfluous to the physics,
as can be seen using a dyadic representation.  However, in setting up
coordinate systems, the built in convention of the sign related to n is
useful in preserving the "right handedness" of the coordinates, also
adopted by convention.

B.8 Reciprocal Base Systems: In orthogonal systems, any
component of a given vector is obtainable by dotting the
corresponding unit vector into the given vector, i.e.,

                                        i iV k Vi=      (orthogonal coordinates)          (B.8.1)

The reason this subtle operation works for orthogonal systems is that
all three unit vectors are perpendicular to each other and the dot
product of any one with the others is zero, so that for example,

                        1 1 1 1 1 2 2 1 3 3 1V V V Vk V k k k k k ki i i i= + + =                (B.8.2)

If the same operation is tried in a non-orthogonal system, the i jk ki
can be other than zero, and the resultant is, for example,

                                   1 1 12 2 13 3V q V q Vk Vi = + +     .                     (B.8.3)

This problem can be overcome by defining a so-called "reciprocal" set
of base vectors ik  related to the original base vectors ik  so that,

                                     1
1V k Vi=      (any coordinates)           (B.8.4)

Figure B.8.1 shows an arbitrary set of unit vectors ik  at a given point.
It is desired to find another vector 1k , for example, that will obey the
following relationships,

                          1 1 1
1 2 31   ,   0   ,   0k k k k k ki i i= = =     .           (B.8.5)

 ____________________________________________________________________
  1 J.W.Gibbs-E.B.Wilson, Vector Analysis, 72, Dover Publications (1960).
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Figure B.8.1
Reciprocal base vector geometry.

The second and third products in Eq.(B.8.5) can be zero only if 1k  is
normal to the plane defined by 2k  and 3k , so it must lie along the
vertical dotted line.  If its length is now chosen so that its
perpendicular projection onto 1k  is unit in length, then the first

product condition in Eq.(B.8.5) is also
satisfied.  The direction of 1k  is
chosen to give an acute angle
between 1k  and 1k .  By repeating

this procedure for 2k  and 3k , a
complete set of reciprocal base
vectors is obtained.  Clearly, the ik
are not necessarily unit vectors.
     Mathematically,

              j ki

i j k

×
=

×

k k
k

k k ki
  ,       (B.8.6)

where i,j and k are given the values
1,2 and 3 in rotation without
changing their order.  This can be

checked by dotting the expressions with ik directly,

                                              ii
j j= δk ki     ,                               (B.8.7)

where the Kronecker delta is defined as,

                                         i
j

1  when  j = i

0  when  j i≠


δ = 


    .                         (B.8.8)

     From inspection of Eqs.(B.4.2) and (B.4.3), in terms of the unit
vectors of cone coordinates, using Eq.(B.7.2),
                                c

ˆˆ ˆ× =r θ α cos θ

                                c
ˆ ˆˆ× = =k rθ α sec θ c

ˆ − θ tan θ     ,                (B.8.9)

                                ˆˆ ˆˆ × = =r rα θ tan θ c
ˆ+θ sec θ

where k  and θ̂ are unit vectors used in the orthogonal spherical
coordinate system.  Again, using the box product of Eq.(B.7.3),
                                 1 2 3 c

ˆˆ ˆ × = ×k k k ri iθ α cos= θ     .              (B.8.10)

Now, the base system reciprocal to c
ˆˆ ˆ,  ,  r θ α  of cone coordinates is

defined by Eqs.(B.8.6), (B.8.9) and (B.8.10) to be,
                        1 sec= θk k    ,   2 ˆ=k θ sec θ    ,   3 ˆ=k α     .      (B.8.11)
Since k , θ̂  and α̂  are unit vectors, 1k and 2 k are not and 3k  is unit.
In this particular case, 1k , 2 k  and 3k  are orthogonal.
     It is a fundamental property of a base system and its reciprocal
that they are mutually reciprocal.  It is possible to find components of
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any vector such that,
                                  1 1 2 2 3 3 V V V= + +V k k k     ,                    (B.8.12)
where,
                                              i

iV = k Vi     .                             (B.8.13)
Now, looking at Eq. (B.8.13), it is clear that, whereas the iV  are the

parallelogram projections of V  on ik , the iV have the magnitudes of
perpendicular projections of V  on ik .  Although these latter have
little fundamental significance, they play an almost equal role in many
mathematical, manipulatory studies, where they are usually
presented as covariant components along with reciprocal unitary
vectors,

                                         
1 2 3

1 2 3
V V V= + +V b b b     .                      (B.8.14)

Again, caution should be observed   not to confuse the reversal of sub
and superscript notation with that of other writers.
     To round out the picture of the base system reciprocal to the unit
vectors, a reciprocal form of Eq.(B.4.2) would be,

                                  1 1 2 2 3 3d ds ds ds= + +r k k k     ,                (B.8.15)

where the ik are defined by Eq.(B.8.6), and the ids  are obtained from
Eq.(B.8.13), i.e. by dotting the ik into Eq.(B.4.2) to give,

                                

1
1 12 2 13 3

2
12 1 2 23 3

3
13 1 23 2 3

ds   ds   q ds q ds

ds q ds   ds   q ds

ds q ds q ds   ds

= + +

= + +

= + +

    .             (B.8.16)

Dotting Eq.(B.8.15) into itself gives the line element in terms of
reciprocal components,
                                          2 i j 1 2ds q ds ds=     ,        (*i, j)          (B.8.17)

where the reciprocal angle variables are,

                                              i j i jq = k ki     .                            (B.8.18)

The latter can be found in terms of the i jq  with the aid of  the defining
Eqs.(B.8.6) and (B.7.3),

           ik jk i ji j q q q
q

q
−

=    ,   
2

jki i 1 q
q

q
−

=     ,    (i, j, k cyclic)        (B.8.19)
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where 2
i j kq ( )= ×k k ki , the square of the volume of the box.  It can be

shown using only trigonometry, that,

                          2 2 2
12 13 23 12 13 23q 1 2q q q (q q q )= + − + +     .         (B.8.20)

     To illustrate some of these ideas, in cone coordinates the square of
the parallepiped volume is,

                               2 2
2

1q 1 sin cos
sec

= − θ = θ =
θ

    ,               (B.8.21)

and the reciprocal angle variables are,

                           

2

i j 2

sec tan sec 0
q tan sec sec 0

0 0 1

 θ − θ θ
 = − θ θ θ 
  

    .          (B.8.22)

     Just as the ik  and the ik  obey a reciprocal relationship,
Eq.(B.8.7),
                                              jjk

ik iq q = δ     .                            (B.8.23)

Finally, the relationships in Eqs.(B.8.4) and (B.8.13) can be used to
verify that,
                                   i i j

jq=k k     ,    j
i i jq=k k     .       (*j)     (B.8.24)

In orthogonal coordinates, i
i=k k .

     One further set of relationships that is sometimes useful can be
found from Eqs.(B.6.1), (B.8.4), (B.8.12) and(B.8.13).  It gives the
components of a vector in terms of its reciprocal components,

   i j j
iV q V=    ,   i

i j jV q V=    ,   
j

i i j
V g V=    ,   

i ji

j
V g V=    .     (*j)     (B.8.25)

From these and Eq.(B.6.3),

                                       
i

i

i

V
V

h
=    ,   i

ii
V h V=     .                    (B.8.26)
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APPENDIX C

DYADICS

C.1 Introduction:1 Because dyadics are so essential in the description
of fields, a fairly complete summary of the mathematics used to
represent them is developed here.  An effort is made to present this
material in a way that increases the visualization and intuitive feeling
about the field when dyadics are used.  In Appendix A dyadics (second
order tensors) were described as functions that specify an "output" or
effect vector at any point where an "input" or cause vector is given.
Actually, there are many kinds of vector functions that meet this
requirement, whereas dyadics represent a very restricted class of
functions.  The need for dyadics arises naturally in field physics in
those cases where the cause-effect relationship is linear.  To
understand what this means, consider a cause vector,

                                     1 1 2 2 3 3V V V= + +V k k k     ,                     (C.1.1)
and an effect vector,
                                     1 1 2 2 3 3U U U= + +U k k k     .                    (C.1.2)

A dyadic is a function that converts V  into U  in such a way that the
contribution of each component of V  to each component of U  is
independent of the others, as expressed by the linear relationship,

                                

1 2 3
1 1 1 1 2 1 3

1 2 3
2 2 1 2 2 2 3

1 2 3
3 3 1 3 2 3 3

   ( V V V )

      + ( V V V )

      + ( V V V )

= ψ + ψ + ψ

ψ + ψ + ψ

ψ + ψ + ψ

U k
k
k

    .                 (C.1.3)

The nine j
iψ  constitute the components of the dyadic.  To write

Eq.(C.1.3) in a form which clearly separates the dyadic Ψ  from the
vector V , substituting for the iV  from Eq.( B.8.4) and factoring V ,
Eq.(C.1..3) becomes,
                                                = ΨU Vi     ,                               (C.1.4)
where,

                             

1 1 2 2 3 3
1 1 1 1 1 1

1 1 2 2 3 3
2 2 2 2 2 2

1 1 2 2 3 3
3 3 3 3 3 3

    +   

      +   

      +   

Ψ = ψ ψ + ψ

ψ + ψ + ψ

ψ + ψ + ψ

k k k k k k
k k k k k k
k k k k k k

    .            (C.1.5)

 ___________________________________________________________________
  1. This Appendix follows closely: Weatherburn, Brand, Gibbs-Wilson, loc.cit.; and
      A.P.Wills, Vector Analysis With an Introduction to Tensor Analysis, Prentice Hall,
      New York (1938).
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Strong emphasis has been placed on the independence of vectors from
coordinates or components they may be expressed in terms of.
Particularly, the physical entity V  is equally well represented by,

                     1 1 2 2 3 3
1 1 2 2 3 3V V V V V V= + + = + +V k k k k k k   .       (C.1.6)

The same is true of dyadics, which represent physical processes
independent of the choice of the coordinates or components used to
express them.  For example, if Eq.(C.1.3) had been written,

                                

1 2 3
1 11 12 13

1 2 3
2 21 22 23

1 2 3
3 31 32 33

   ( V V V )

      + ( V V V )

      + ( V V V )

= ψ + ψ + ψ

ψ + ψ + ψ

ψ + ψ + ψ

U k
k
k

    ,             (C.1.7)

then by substituting for the iV  from Eq.(B.8.13),

                            
1 1 11 1 2 12 1 3 13

2 1 21 2 2 22 2 3 23

3 1 31 3 2 32 3 3 33

    +   
      +   
      +   

Ψ = ψ ψ + ψ

ψ + ψ + ψ

ψ + ψ + ψ

k k k k k k
k k k k k k
k k k k k k

    .          (C.1.8)

Now, although the nine i jψ  are different from the j
iψ  of Eq.(C.1.5),Ψ

is the same in both cases, and it converts V  into the same
U according to Eq.(C.1.4), no matter which set of components is used
to write it out.  In fact, Ψ  can be expressed in terms of co and
contravariant components also, so that,

                    

j j i j i j i i
i j i j i i j j

i j j j ji i i

i j i jj i j i
   =     =      = 

Ψ = ψ = ψ = ψ = ψ

ψ ψ = ψ ψ

k k k k k k k k

b b b b b b b b
  ,    (*i,j)     (C.1.9)

are all equivalent representations.  The fourth set of mixed
components of each set in Eq.(C.1.9) will not be carried through in the
following.  Some care is required when using components of mixed
indices.
     Just as the reciprocal and co and contravariant components of
vectors  are  related  as  in  Eqs.(B.8.25)  and  (B.8.26), a similar set of
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relationships holds for dyadics,

                     

ik jm km i j
i j ik jm km

jk k i j j
i j i ik k

j k i jk j
i i jk ik

q q    ,   =q q     (*k,m)

q           ,   q            (*k)

q           ,   q            (*k)

ψ = ψ ψ ψ

ψ = ψ ψ = ψ

ψ = ψ ψ = ψ
         (C.1.10)

and,

                            

i j ik jm km

km i j ik jm

i ik j k

k i j ik j

iki i i

j jk j jk k

g g    ,   g g    (*k,m)

g       ,   g           (*k)

g       ,   g           (*k)

ψ = ψ ψ = ψ

ψ = ψ ψ = ψ

ψ = ψ ψ = ψ

               (C.1.11)

Also,

                                  
i j

i j i j
i j

i ji j

    ,    h h
h h
ψ

ψ = ψ = ψ     .                (C.1.12)

     These component equations are complicated.  Fortunately, the
most important use of dyadics, as well as of vectors, is in visualizing
field relationships.  In that role, they are seldom resolved into
components; but, if they are, tensors in a specific case often reduce to
a considerably smaller set of components than in the general case.
     From Eqs.(C.1.5), (C.1.8) and (C.1.9) it is clear that dyadics are
expressible as one or more dyads ( ,  ,ij ab PQ ), each with a coefficient.
In addition to this "component" form any dyadic can be written in the
"reduced" form,
                                        Ψ = + +aA bB cC     .                        (C.1.13)
Here, the antecedents , ,a b c  and the consequents , ,A B C , none of
which is necessarily a unit vector, can be derived from the component
form of Ψ .  If, for example, in Eq.(C.1.8), the consequents ik  and
components i jψ  are written as components of three vectors,

                                   
1 11 2 12 3 13

1 21 2 22 3 23

1 31 2 32 3 33

= ψ + ψ + ψ

= ψ + ψ + ψ

= ψ + ψ + ψ

A k k k
B k k k
C k k k

    ,                 (C.1.14)

then,
                                      1 2 3Ψ = + +k A k B k C     .                     (C.1.15)
 Instead, taking the antecedents ik  in Eq.(C.1.9) with the components

i jψ , to form ,a b  and c ,
                                       1 2 3Ψ = + +ak bk ck     ,                     (C.1.16)
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where,

                                    
1 11 2 21 3 31

1 12 2 22 3 32

1 13 2 23 3 33

= ψ + ψ + ψ

= ψ + ψ + ψ

= ψ + ψ + ψ

a k k k
b k k k
c k k k

    .                (C.1.17)

Notice that ,  A B and C  are composed of the rows of Ψ , whereas ,  a b
and c  come from the columns.  Breaking each i jψ  into two factors,
sets of ,  ,  A B C  and ,  ,  a b c  can be formed having none of the ik
appearing explicitly.  The reduced form allows properties of dyadics to
be deduced or explained in a simple fashion.  In fact, often a single
dyad AB  is sufficient for some demonstrations.  Except in special
cases,
                                              Ψ ≠ ΨV Vi i     ,                           (C.1.18)

which easily can be seen using a single dyad Ψ = AB , since the
vectors resulting are, ( ) Ψ =V V A Bi i  and  ( )Ψ =V A B Vi i .  Note that
the bracketed quantities are scalars.  Actually, all of the ordinary
operations of addition, subtraction, multiplication, etc. can be
performed using scalars, vectors, and dyadics except those operations
that require an interchange of the order of operation.   The difference
between the two vectors resulting above when V is used first as a
prefactor and then as a postfactor in the dot product is an example of
the non-commutativity referred to.  In all operations using scalars or
vectors with dyadics the scalar or vector is applied to each dyad in the
tensor.  To illustrate, combining Eqs.(C.1.8) and (C.1.6),

                            
1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

    ( V V V )
          + ( V V V )
          + ( V V V )

Ψ = ψ + ψ + ψ

ψ + ψ + ψ

ψ + ψ + ψ

V k
k
k

i
    .            (C.1.19)

The cross product of V  as a prefactor of the reduced form in
Eq.(C.1.13) gives another dyadic,

                           ( ) ( )  ( )× Ψ = × + × + ×V V a A V b B V c C     ,         (C.1.20)
the bracketed quantities being vectors.
     Reversing each dyad in a tensor gives what is called the conjugate
dyadic.  The conjugates of the reduced form of Eq.(C.1.13) and the
component form of Eq.(C.1.8) are, respectively, cΨ = + +Aa Bb Cc  and

                          
c 1 1 11 1 2 21 1 3 31

2 1 12 2 2 22 2 3 32

3 1 13 3 2 23 3 3 33

     
        +  
        +  

Ψ = ψ + ψ + ψ

ψ + ψ + ψ

ψ + ψ + ψ

k k k k k k
k k k k k k
k k k k k k

    .         (C.1.21)
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The effect of the latter form is to interchange the components of the
rows and columns of Ψ .  Using Eqs.(C.1.6) and (C.1.21) it is easy to
show that,
                            cΨ = ΨV Vi i    , and   cΨ = ΨV Vi i      .           (C.1.22)
Clearly,
              c c c c c c c c( )   ,   ( + )   ,   ( )Ψ = Ψ Ψ Φ = Ψ + Φ Ψ Φ = Ψ Φi i   .    (C.1.23)

     If, i j jiψ = ψ , the dyadic is self conjugate or symmetric, in which
case,
                                   cΨ = ΨV Vi i   .      (  symmetric)Ψ               (C.1.24)

A most important self conjugate tensor is the idemfactor Ι , which acts
in a manner similar to unity in algebra; so that, when dotted into a
vector V , it gives that vector.  For example,

                                          ,     Ι = Ι =V V V Vi i     .                    (C.1.25)

The idemfactor takes several forms, some of which are,

                          

i j j j i j
i j i i i j

i j j ji
i
jj i i j

(q )  (q )

  = g      g

Ι = = δ =

= δ =
i

k k k k k k

b b b b b b
  .   (*i, j)       (C.1.26)

This is a convenient place to point out a basic difference between the

co-contra/unitary system of 
i
b  and 

i j
Ψ  and the distance/unit vector

system of ik  and i jψ .   Eq.(C.1.9) shows that the 
i j

i j
ψb b  and 

ji

i j
ψb b  are

always matched sub to super and super to sub.  In the distance/unit
vector system, in order to preserve the sub notation for both
magnitudes and unit vectors in the greatest number of equations
using those quantities, the i j i jψk k  and i j i jψk k  are always matched
sub to sub and super to super.  These conventions carry throughout
both systems except for the two cases in Eq.(C.1.26) involving the ( i jq )

and ( i jq ) which are shown in brackets to emphasize that in this

dyadic Ι , i j
i j (q )ψ =  and i j

i j(q )ψ = .  Actually, confusion can arise only
when the angle variables are written in index notation.  When actual
variables are used the problem does not appear.  For example, when
written out in cone coordinates, from Eq.(B.8.22),

 2 2
1 1 1 2 2 1 2 2 3 3sec ( ) tan sec secΙ = θ − + θ θ + θ +k k k k k k k k k k   ;  (C.1.27)
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from Eq.(B.8.8),
                                      1 2 3

1 2 3Ι = + +k k k k k k     ;                   (C.1.28)
and from Eq.(B.5.4),

                    1 1 1 2 2 1 2 2 3 3( )sinΙ = + + θ + +k k k k k k k k k k    ,        (C.1.29)
and the confusion of indices has disappeared.  In any case, the form of
Eq.(C.1.28) is usually the simplest to use in demonstrations.
     The idemfactor also acts as unity in the dot product with a tensor,
so that,
                                         ,     Ι Ψ = Ψ Ψ Ι = Ψi i     .                    (C.1.30)
It also helps define the reciprocal of a tensor 1−Ψ  through,

                                               1−Ψ Ψ = Ιi     .                             (C.1.31)

C.2 Products of Vectors and Diadics:1 Here, a number of product
rules will be given.  Going from the dot product,

                            ( ) ( )  a vectorΨ = = =V V AB V A Bi i i     ,             (C.2.1)
which was used to define dyadics, it is straightforward to show that,

                          ( ) ( ) ( ) a dyadicΦ Ψ = = =ab CD aD b Ci i i     .           (C.2.2)
For two dyadics in component form, each dyad of Φ  is dotted into
each dyad of Ψ .  In Eq.(C.1.20) it was observed that,

                          ( ) ( ) a dyadic× Ψ = × = × =V V ab V a b     ;           (C.2.3)
but, when two dyadics are used,

                       ( ) ( ) ( ) a triadicΦ × Ψ = × = × =ab CD a b C D     ,        (C.2.4)
since ×b C  is a vector.  A triadic is three vectors standing together, a
tetradic would be four, etc.  These higher order forms are quite
legitimate mathematically, although it is not always simple to get a
physical interpretation.  Keeping this in mind, a general product is,

                                     ...... ∗ Ψ ∗Φ ∗ ∗Ω ∗V A     ,                     (C.2.5)
where either or both vectors can be left off, and any asterisk
represents either a dot or a cross product.  As long as no dyad or
vector changes its position in the chain, any arbitrary grouping of
factors is permissible.  An example is,

     [ ] [ ] ( )   ( )   = ( ) ( ) = ( )Ψ Φ Ω = Ψ Φ Ω Ψ Φ Ω Ψ Φ ΩV V V Vi i i i i i i i i i i i   .      (C.2.6)
 ___________________________________________________________________
  1. See Weatherburn, Brand, Wills, Gibbs-Wilson, etc., loc.cit.
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Examples of mixed cross and dot products are,

           ( ) ( )× Φ Ψ = × Φ ΨV Vi i    and    ( ) ( )Φ Ψ × = Φ Ψ ×V Vi i   .       (C.2.7)

     Although the order of the vectors and dyads must be preserved in
product operations, there are some cases in which a dot and cross are
interchangeable, just as in the box product of Eq.(B.7.3).  Therefore,

            ( ) ( )Φ × = Φ ×V U V Ui i    and   ( ) ( )× Φ = × ΦV U V Ui i    .       (C.2.8)

Another similar relationship is,

                           ( )  ( )  ( )× Φ = − Φ × = − Φ ×V U U V U Vi i i     .           (C.2.9)

Most of these can be proven using the box product and a single dyad.
     Since dyads are composed of two vectors, the products possible
between two dyads also include certain double products for which a
notation has been developed.1  The simplest, most useful of these is,

                 ( ) ( )  ( ) ( )    scalar= = =ab : cd a c b d c ab d a cd bi i i i i i    .    (C.2.10)

     Products involving the idemfactor Ι  are found helpful, the simplest
being,
                                         and    3Ι Ι = Ι Ι Ι =:i     .                   (C.2.11)

Another important dyadic is,

                                 c( )  × Ι = Ι × = Ι × = − Ι ×a a a a     .               (C.2.12)

Now, using Eqs.(C.2.8) and (C.2.12),

     ( ) ( )    and   ( ) ( )Ι × = Ι × = × × Ι = Ι × = ×a r a r a r r a r a r ai i i i   .     (C.2.13)

These equations show that the dot product of a vector r  with Ι × a  or
× Ιa  can be replaced by the cross product with a .  This can be

extended to the dot product of a dyadic Ψ  and a vector a ,

  ( ) ( )× Ι Ψ = Ι × Ψ = × Ψa a ai i   and  ( ) ( )Ψ × Ι = Ψ Ι × = Ψ ×a a ai i   .   (C.2.14)

 ___________________________________________________________________
  1. See Weatherburn, loc. cit.
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     Finally, the dyadic form of the vector triple product of Eq.(B.7.4) is,

                      ( ) ( ) ( ) ( )× × = − = −A B C B A C C A B A CB BCi i i    ,     (C.2.15)

which can be used with Eq.(C.2.13) to give the very important
relationship,
                                       ( )Ι × × = −B C CB BC     .                     (C.2.16)

C.3 Invariants of a Dyadic: The idea has been stressed, throughout
the earlier discussion on coordinates, that scalars, vectors, and
dyadics are physical entities independent of coordinates in terms of
which they might be expressed.  Implicit is the idea that the field in
question is stationary (at least momentarily frozen while being
examined), and quantities with this independence property are called
invariants, meaning that they are invariant to space coordinate
transformations.  Each dyadic Ψ = + +aA bB cC  has several
associated quantities that exhibit this same space coordinate
invariance, and five of these are important enough to have been given
special names. Three are scalars, generally labeled 1Ψ , 2Ψ  and 3 Ψ ,
one is a vector vΨ  and one is a dyadic  aΨ  called the "adjoint" of Ψ .
     The "scalar" of Ψ  is:
                                   s 1Ψ = Ψ = + +a A b B c Ci i i     ,
or,                                                                                             (C.3.1)
                                j j i j i j

s 1 i j i j i i q qΨ = Ψ = ψ = δ ψ = ψ   .    (*i, j)
In terms of double product notation,
                                      s 1Ψ = Ψ = Ψ Ι = Ι Ψ: :     .                     (C.3.2)
     The "vector" of Ψ  is:
                                   v Ψ = × + × + ×a A b B c C     ,
or,                                                                                             (C.3.3)

               

1 2 3
v 23 32 31 13 12 21

23 32 31 13 12 21
1 2 3

q ( ) ( ) ( )

1    ( ) ( ) ( )
q

 ψ = ψ − ψ + ψ − ψ + ψ − ψ 

 = ψ − ψ + ψ − ψ + ψ − ψ 

k k k

k k k
    .

Clearly, from Eq.(C.3.3), any self conjugate tensor has a vector equal
to zero.  Conversely, any dyadic with a zero vector is symmetric.
     The "second" of Ψ  is (see Eq.C.1.5):

                   1 2 2 3 3 1 2 1 3 1 3 2
2 1 2 2 3 3 1 1 2 1 3 2 3 Ψ = ψ ψ + ψ ψ + ψ ψ − ψ ψ − ψ ψ − ψ ψ     ,   (C.3.4)

and the "third" of Ψ is:

  1 2 3 2 3 1 1 2 3 1 3 2 2 3 1 3 2 1
3 1 2 3 1 2 3 2 3 1 1 2 3 2 1 3 3 1 2Ψ = ψ ψ ψ + ψ ψ ψ + ψ ψ ψ − ψ ψ ψ − ψ ψ ψ − ψ ψ ψ   .  (C.3.5)
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Mixed index components were used above because they yield the
simplest form.
     The "adjoint" of Ψ  is:

                                            i j
a i j

A

q
Ψ = k k     ,         (*i, j)           (C.3.6)

where the i jA  are defined as the cofactors or signed minors of cΨ .  A
useful relationship between the third scalar invariant of a dyadic and
its adjoint is,
                                       a a 3Ψ Ψ = Ψ Ψ = Ψ Ιi i     ,                        (C.3.7)

so, if the reciprocal 1−Ψ exists,
                                            1

a 3/−Ψ = Ψ Ψ     .                            (C.3.8)
     These five invariants have numerous uses related to classifying
and characterizing dyadics, as will be brought out later on.  Their
values for the idemfactor are,

                                 1 s 2 3
1

v a c

3   ,   3   ,   1   ,

0         ,       .−

Ι = Ι = Ι = Ι =

Ι = Ι = Ι = Ι = Ι
              (C.3.9)

     Other invariants of a dyadic Ψ  can be found, although they are
often more complicated and not particularly useful.  However, there is
another useful invariant of dyadics called the "scalar magnitude".  It
will be described in the next section on dyadic classification.

C.4 Classification of Dyadics: Physically, dyadics describe at each
point the properties of a field that relate an input or cause vector to an
output or effect vector.  If the family of input vectors includes all
magnitudes and directions, then one class of dyadics produces families
of output vectors that also include all magnitudes and directions.
Dyadics of this class are called "complete".  All others are called
"incomplete".  Among the incomplete dyadics are those that,
regardless of the input vector, produce output vectors restricted to a
plane or a line or those of zero length.  Only complete dyadics have
"reciprocals".
      The classification to which a dyadic Ψ  belongs can be determined
readily using two of the invariants defined in the preceding section:

                          
3

3 a

a

0    ,                          Complete
0    &    0    ,      Planar
0    &      0   .      Linear

Ψ ≠
Ψ = Ψ ≠

Ψ = Ψ ≠

               (C.4.1)

These conditions are both necessary and sufficient.  A complete
dyadic cannot be reduced to less than three dyads,

                                         Ψ = + +aA bB cC     ,                         (C.4.2)



380

and ,  ,  a b c  and ,  ,  A B C  form two sets of non-coplanar vectors. A
planar dyadic can be reduced to the sum of two dyads (not less),

                                            Ψ = +uU vV     ,                             (C.4.3)

where u  and v , and U  and V  form two sets of non-parallel vectors.
Finally, a linear dyadic is reducible to a single dyad,

                                                Ψ = gh     .                                 (C.4.4)

The lowest class is 0Ψ = , the null dyadic.
     Clearly from Eq.(C.4.3) the planar dyadic dotted into a vector as a
post-factor produces another vector in the plane defined by u  and v .
The dot product with a vector pre-factor produces a vector in the
U / V  plane.  The linear dyadic of Eq.(C.4.4) dotted by a vector gives
an output vector parallel to g  or h  depending upon whether the
input vector is a post or pre-factor respectively.  Table C.4.1 lists dot
product relationships between the classes.

TABLE C.4.1

DYADIC CLASS PRODUCTS

(only when )

(only when )

C C C L 
                               P L

C P P 0 
C L L                                P 0 0
C 0 0                          

P                 L        
P P          L L

L  

⊥

⊥

→ 
→ → 

→ →
→


→ →



i
i

i
i i
i

i i
(only when )

         
0  

                                            L 0 0
⊥





→i

     Having classified dyadics, it is now possible to describe an
invariant that contributes to physical interpretation of various dyadic
quantities.  It is defined as,
                       m NΨ = Ψ Ψ:     ,                           (C.4.5)

where N identifies the class by taking on the values 1 (linear), 1/2
(planar) and 1/3 (complete).  Because Ψ  cannot have all zero
components unless the scalar mΨ  is zero, mΨ  is called the "scalar
magnitude" of Ψ , although it can have no such clear meaning as the
magnitudes of scalar and vector fields.
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C.5 Symmetric and Antisymmetric Dyadics: Of the many possible
dyadics, two very special kinds are used most often, symmetric and
antisymmetric.  A symmetric dyadic is one for which,

                                             Φ = ΦV Vi i     .          (symmetric)      (C.5.1)

An antisymetric dyadic is one for which,

                                             Ω = − ΩV Vi i     .    (antisymmetric)      (C.5.2)

These defining equations can hold only if the dyadics meet the
conditions,
                          c c(symm.)    ,    (antisymm.)       .    ΩΦ = Φ = − Ω      (C.5.3)

Therefore, symmetric dyadics are also called self-conjugate and
antisymmetrics are called anti-self-conjugate.
     The common use of these two restricted dyadic types results
because any dyadic Ψ can be expressed as the sum of a symmetric
and an antisymmetric part.  This can be seen by separating Ψ  into,

                             1 1
c c2 2( ) ( )Ψ = Ψ + Ψ + Ψ − Ψ = Φ + Ω     .             (C.5.4)

The symmetry of Φ and the antisymmetry of Ω  is clear.  In
component form, Eq.(C.5.3) can be written,

                             
ji i j

ji i j

ji i j
ji i j

(symm.)

(antisymm.)

       ,      ,               

    ,       .     

φ = φ φ = φ

Ω = − Ω Ω = − Ω
     (C.5.5)

Expressed in full component notation, Φ takes the same form as
Eq.(C.1.8) with the symmetric components of Eq.(C.5.5), and,

           ( )
( ) ( )

1 1 1 2 12 1 3 13

2 1 12 2 2 2 3 23

3 1 13 3 2 23 3 3

 

(antisymm.)

    0            
       0      
        0      

Ω Ω

−Ω Ω

−Ω −Ω

Ω = + +

+ + +

+ + +

k k k k k k
k k k k k k
k k k k k k

     (C.5.6)

Any symmetric dyadic obeys the relationship,
                                           s( )Φ Φ = Φ Φ:i     .        (symmetric)     (C.5.7)
The diagonal terms in the antisymmetric dyadic must always be zero,
since they could not have any other value and still reverse the sign in
the defining Eq.(C.5.2).  In general, six quantities are necessary to
specify a symmetric dyadic, whereas only three will determine the
antisymmetric type. The latter is true because antisymetric dyadics
are always planar and can be described completely by the vector
normal to the plane at the point.
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Figure C.5.1
W and the vector of plane dyadic Ω .

     A fundamental expression for an antisymmetric dyadic is,
                                           1

v2Ω = − Ι × Ω     .       (antisymm.)        (C.5.8)
At any point, if an arbitrary vector r  is dotted into Ω ,
                                        1

v2 ( )Ω = − Ι × Ωr ri i     ,
and the resulting vector P , found using Eq.(C.2.17), is,
                                        1

v2= Ω = − × ΩP r ri     ,                        (C.5.9)
which is always perpendicular to the vector vΩ .  Thus, P  lies in a
plane, and Ω  is, therefore, a planar dyadic, completely specified by its
vector vΩ .  The components of vΩ  can be found by using Eqs.(C.3.3)
and (C.5.5) to form,

                     
1 2 3

v 23 13 12

1 2 3
23 13 12

(2 q ) ( 2 q ) (2 q

     =2 q ( )

Ω = Ω + − Ω + Ω

 Ω + −Ω + Ω 

k k k

k k k
    .     (C.5.10)

 An antisymmetric dyadic first presented in Eq.(C.2.12) can be
obtained by carrying out the cross product of I and a new vector w
directly, i.e.,
            1 2 3 1 1 2 2 3 3

1 2 3( ) ( w w w )Ι × = × Ι = + + × + +w w k k k k k k k k k   .
Carrying out the indicated steps,

                

3 2
1 1 1 2 1 3

3 1
2 1 2 2 2 3

2 1
3 1 3 2 3 3

  0      ( w ) w
1 w     0      ( w )
q

( w ) w     0

 + − +
 

Ι × = + + + − 
 + − + +  

k k k k k k
w k k k k k k

k k k k k k
  .  (C.5.11)

Often the identification of w  and vΩ  is made so that 1
v2= Ωw  and,

            1 2 3
23 13 12w q    ,  w  q    ,  w q  = Ω = − Ω = Ω     .         (C.5.12)

Then,
     Ω = − Ι × = − × Ιw w   ,   Ω = ×V w Vi   and   Ω = ×V V wi   .    (C.5.13)
Thus, any antisymmetric second order tensor can be written in the
form of Eq.(C.5.!3), where w  is a vector given by Eq.(C.5.12) and is
normal to the plane of Ω .  This is diagramed in Figure C.5.1.

     It should be emphasized
that not all planar dyadics are
antisymmetric.  For example,

1 2 2 1Φ = +k k k k  is planar but
also symmetric.  Another
concept that must be made
clear is that, since the
direction of w  can vary from
point to point, the
antisymmetric dyadic has
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Figure C.6.1
The complete, symmetric

dyadic ellipsoid.

different orientations at different points in space.
      Going back to the general dyadic of Eq.(C.5.4), not only can it be
separated into self-conjugate and anti-self-conjugate parts, but the
latter is a planar dyadic specified by its vector according to Eq.(C.5.8).
Since, as mentioned in connection with Eq.(C.3.3), any symmetric
dyadic has a vector equal to zero, the vector of a general dyadic is
equal to the vector of its antisymetric part, i.e.,
                                        v v v vΨ = Φ + Ω = Ω     .                       (C.5.14)
Thus, Eq.(C.5.4) becomes,
                      1

v2 Ψ = Φ − Ι × Ψ     and    c vΨ = Ψ + Ι × Ψ     .       (C.5.15)
A few more useful dyadic relationships are given in Table C.5.1.

TABLE C.5.1

For Φ symmetrical and Ω  antisymmetrical.

s

c

s s

ˆ ˆ    0                    0
   (   )            0

(   )              (   ) 0

Ω = Ω =
Φ Ω = − Ω Φ Φ Ω =

Ω Ω = − Ω Ω Φ Ω =

r r
:

:

i i
i i
i i

C.6 Principal Axes of a Symmetric Dyadic: In the preceding section,
the basic nature of an antisymmetric dyadic was shown to be planar.
Dotting it with a unit vector r̂  of arbitrary orientation always results
in an output vector confined to a particular plane in space.

     If a complete, symmetric dyadic is
dotted with a unit vector r̂  that takes all
possible orientations at the point being
studied, the output vector R , given by

ˆ= ΦR ri , describes an ellipsoid as
depicted in Figure C.6.1. Since the
output vector R , the dyadic Φ , and the
input vector r̂  are independent of the
coordinates used to describe them, the
ellipsoid shape and size are invariant to
space coordinate transformations, and
generally described by three numbers iλ
representing the lengths of the semi-axes.
Furthermore, the orientation of the
ellipsoid with respect to a line drawn

from some arbitrary point (e.g. the origin of the coordinates) to the
point studied also must be independent of the coordinate system.  So
the three direction cosines of the axes of the ellipsoid relative to that
arbitrarily drawn line must also be invariant (see Figure C.6.1).  Since
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the direction cosines are related through the geometry, they represent
only two independent numbers.     One other number represents the
rotation of the ellipsoid around the line.  Thus, six quantities describe
the ellipsoid.
     The expression for specifying the axes of the ellipsoid is,
                                           iˆ ˆ  = Φ = λR r ri     .                           (C.6.1)
It says that for three specific directions of r̂ , the output vector

ˆ= ΦR ri  has the same direction as the input vector r̂ , and that given
Φ , those three directions can be found by solving for the three
particular values of r̂  for which this is true.  These three directions
correspond to the principal axes of the dyadic Φ .  Eq.(C.6.1) is solved
by substituting for Φ , in the form of Eq.(C.1.5), and

1 1 2 2 3 3ˆ = α + α + αr k k k  which, because the jk  are unit vectors,  yields,

                                

1 2 3
1 i 1 1 2 1 3

2 2 3
1 1 2 i 2 2 3

3 3 3
1 1 2 2 3 i 3

 ( ) 0

 ( ) 0

 ( ) 0

φ − λ α + φ α + φ α =

φ α + φ − λ α + φ α =

φ α + φ α + φ − λ α =

    .                   (C.6.2)

These three linear, homogeneous equations for the direction cosines
jα  have a unique solution only if the determinant of the coefficients of

the jα  is zero.  When the determinant is expanded, it gives a cubic
equation for iλ  with coefficients that are found to be the three scalar
invariants of Φ ,
                                   3 2

i 1 i 2 i 3 0λ − Φ λ − Φ λ − Φ =     .                    (C.6.3)
Thus, if Φ  is given, 1 2 3 ,   and Φ Φ Φ  can be determined (as in Section
C.3), allowing the three iλ  to be found by solving Eq. (C.6.3).  For
each iλ , the direction cosines iα  of the îr  can be calculated using
Eq.(C.6.2).  The three îr  give the directions of the principal axes of Φ .
Since the iλ  are found directly from the scalar invariants, they too are
invariant, showing that the principal axes are invariant as already
pointed out. From the geometry of an ellipsoid, the three îr  are
orthogonal.
     Because the principal axes of Φ  are orthogonal, a useful
simplification can result when orthogonal coordinate systems are
used.  In that case it is possible to reorient the coordinate axes to
match the principal axes of Φ  at the point under study.  If this is
done, the dyadic expressed in these oriented or principal coordinates
has only three diagonal components given by,
                                1 1 1 2 2 2 3 3 3Φ = λ + λ + λk k k k k k     .                (C.6.4)
This diagonalizing rotation of orthogonal coordinates is often used.  It
cannot be done in non-orthogonal coordinates because the angle
variables give off-diagonal components, since not all of the non-
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orthogonal coordinate axes can be matched to the orthogonal
principal axes of Φ .  When the diagonalization is used, it signifies
that the need for specifying the orientation of the dyadic has been
eliminated, and only the three numbers needed to express the shape
of the ellipsoid are involved in writing the dyadic.
     The process of finding principal axes is not restricted to
symmetrical dyadics.  However, when it is applied to antisymmetric
dyadics, they yield imaginary roots with no physical value, since a
plane is more properly their physical representation.  In general, it is
more proper, in applying these mathematical tools to physics, to first
separate the dyadic into its symmetric and antisymmetric parts and
then apply the two physically different pictures to the respective parts.
If an incomplete, symmetric dyadic is planar, then a similar kind of
representation can be made in the plane, with two directions
specifying the principal axes of an ellipse lying in the plane.
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APPENDIX D

DIFFERENTIAL FORM OF THE FIELD FUNCTIONS

D.1 Introduction: Now that the concepts related to coordinate
systems and dyadics have been set down, it is possible to return to
the fundamental field functions such as the gradient, the divergence,
the surrounding function, etc., and address them in terms of
coordinates to facilitate the study of specific examples of physical
fields.  Generally, field functions are expressions representing changes
in the fields over differentially small distances, or the integral of
conditions in many differentially small regions.  Thus, the need for
differentials of dyadics, vectors, and scalars in curvilinear coordinates
arises immediately and is discussed.
     Next, the mathematical operator ∇  is introduced as a mechanical
device to quickly calculate the component forms of the fundamental
field functions in generalized coordinates.
     Finally, these field functions are presented in the simplified form
permitted by reduction, from the general, non-orthogonal coordinates
to orthogonal and finally rectangular coordinates.

D.2 First Partials of Unit Vectors and Christoffel Coefficients:
Differentiation of vectors was first introduced in Section B.2.  The
process of differentiating general products of scalars, vectors, and
dyadics is carried out in a completely straightforward way according
to the standard rule for differentiation of scalar products, with the
addition of the requirement that the order of the factors be
maintained.  Examples of this are,

                              

d( ) d d
dt dt dt

d( ) d d d
dt dt dt dt

( )
s s s

φ φ
= φ +

φ φ
= φ + φ +

∂ Ψ × Φ ∂Φ ∂Ψ
= Ψ × + × Φ

∂ ∂ ∂

V V V

Va a VV a Va     .              (D.2.1)

A typical problem that arises is to find some partial derivative of a
dyadic such as Ψ = ψ12cˆr̂Θ .  One of these, written in cone coordinates,
is,

                            ∂Ψ
∂ζ

∂ψ ∂ ∂
= + ψ + ψ

∂ζ ∂ζ ∂ζ
12 c

c 12 c 12

ˆ ˆˆ ˆˆ ˆ rr r Θ
Θ Θ     .

In curvilinear coordinates, unit vectors like r̂  and cΘ̂ , vary in direction
from point to point.  Therefore, to obtain the correct form for /∂Ψ ∂ζ ,
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the partial derivatives of the unit vectors must be found.   Since the
partials are also vectors, they must be found in terms of their vector
components.
     In general, the first partials of the unit vectors with respect to real
length changes can be expressed in vector form as,

                                            j
i j p p

i

C
s
∂

=
∂

k
k     ;                   (*p)     (D.2.2)

and since there are three unit vectors jk  (j = l to 3), three differential
distances ids  (i = 1 to 3) and three components i j pC  for each partial
(p = 1 to 3), there are altogether twenty-seven components at each
point in space.  The twenty-seven components i j pC  are called
Christoffel coefficients of the second kind, and are to be found in
terms of the coordinates, the angle variables i jq  and the scale factors

ih .  From Eq.(B.5.2), the angle variable relationship i j i jq=k ki ,

                                    i jji
j i

p p p

q
   

s s s
∂∂∂

+ =
∂ ∂ ∂

kk k ki i     .

Combining this with Eq.(D.2.2),

      i j
pim m j j pjm m pim mj pjm im

p

q
C C C q C q

s
∂

+ = + =
∂

k k k ki i    .   (*m)     (D.2.3)

At this point a great simplification results if a new set of quantities is
defined,
                                              j

pi pim mjC C q=     .                 (*m)     (D.2.4)

These new quantities are called Christoffel coefficients of the first
kind.  In terms of these coefficients, Eq.(D.2.3) becomes,

                                          i j  j   i
pi pj

p

q
C C

s
∂

+ =
∂

    .                           (D.2.5)

If these equations are used to find the   j
piC , then the reciprocal

relationship,
                                             kj   j

pik piC q C=     ,                   (*j)     (D.2.6)

can be used to find the coefficients in the first partials of the unit
vectors of Eq.(D.2.2).  However, there are generally 27   j

piC  values,
whereas there are only 18 independent equations represented by
Eq.(D.2.5), since the i jq  are symmetric.     The 9 additional equations
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required can be obtained by first separating the coefficients from the

pk  in Eq.(D.2.2) by the use of the reciprocal base vectors kk , so that,

                                          j k
ijk

i

C   
s
∂

=
∂

k
ki     .                           (D.2.7)

After considerable manipulation,1

                                jm jim i m  m
i j ji

i j j i

q hq h
C C h s h s

∂∂
− = −

∂ ∂
    .                (D.2.8)

This relates the  k
ijC  and the scale factors ih  just as Eq.(D.2.5) related

the coefficients to the angle variables i jq .  Eqs.(D.2.5) and (D.2.8)

must now be solved for the 27   j
piC .

     When this is done, the general solution is found to be,

       

jk i j jk jik k k
i j

i j k j i k i

k i i j jk i i

k j i j i k j k

2

2 2

q q q hq h1 1 1  C 2 s s s h s h s

q q hh h h1 1 1 1     
h s h s h s h s

   ∂ ∂ ∂∂ ∂
= + − − −   

∂ ∂ ∂ ∂ ∂      
   ∂∂ ∂ ∂

+ + − +   
∂ ∂ ∂ ∂      

   .       (D.2.9)

Some reduction in complexity results from symmetries and repeated
indices; so, in actual problem solving, it is much more convenient to
calculate the  k

i jC  using the reduced forms in Table D.2.1.
     It would be possible now to use the reciprocal relationship of
Eq.(D.2.6) to obtain a general expression for the pik C  for use in
Eq.(D.2. 2).  This becomes very unwieldy, and generally it is better to
use the equations in Table D.2.1 to find the actual  k

i jC  in a particular
example and then to convert to the pik C .  To Illustrate the procedure,
some of the coefficients will be obtained for cone coordinates where,

                             1 2 c    ,    3
ˆˆ ˆ    ,    = = =k r k kΘ α    ,

                2
1 2 3 h sec     ,    h sec     ,    h tan= θ = ζ θ = ζ θ    ,     (D.2.10)

             12 c
ˆˆq = =riΘ  sin θ   ,  13 ˆˆq 0= =riα   ,  23 c

ˆ ˆ q 0= =iΘ α    ,

            2
1 2 3ds sec  d    ,   ds sec  d    ,   ds tan  d= θ ζ = ζ θ θ = ζ θ α    .

 __________________________________________________________________
  1. For the full details see R.H.Dishington, Physics, Chapter 5, Beak Publications,
      Pacific Palisades, CA (1989).
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TABLE D.2.1

CHRISTOFFEL SYMBOLS OF THE FIRST KIND

All others zero
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Substituting the values from Eq.(D.2.10) into the equations of Table
D.2.1,

       

  2   3   3
21 31 322

  1   2
33 33 All others zero

1 1 1   ,         ,   C C Csec tansec
1 1   ,      ,   C Csec tan

= = =
ζ θ ζ θζ θ

= − = −
ζ θ ζ θ

    .      (D.2.11)

     Now, with the aid of the reciprocal relationship nk  k
ijn ijC q C= , (*k),

      
211 212 3132

323 332 All others zero

tan 1 1C    ,    C      ,   C
sec secsec

1 1  C      ,   C    ,   
tan tan

θ
= − = =

ζ θ ζ θζ θ

= = −
ζ θ ζ θ

   .   (D.2.12)

Finally, from Eq.(D.2.2),

                        c

1 1 1

ˆˆ ˆ0   ,   =0   ,   0
s s s

∂∂ ∂
= =

∂ ∂ ∂
r Θ α

        2
2

ˆ tanˆ  
s sec
∂ θ

= −
∂ ζ θ

r r c
ˆ + Θ

1
secζ θ

   ,   c

2 2

ˆ ˆ= 0   ,   0
s s
∂ ∂

=
∂ ∂
Θ α     (D.2.13)

     
3

ˆ
ˆ

s
∂

=
∂

r
α

1
secζ θ

   ,   c

3

ˆ
ˆ

s
∂

=
∂
Θ

α
1

tanζ θ
   ,   c

3

ˆ ˆ 
s
∂

= −
∂
α

Θ
1

tanζ θ

     Before leaving this subject, it should be mentioned that in co-
contra, unitary systems, where the angle variables i jq  and the scale
factors ih  are combined into the metric coefficients 

i j
g , the Christoffel

coefficients are represented by even simpler and more symmetrical
equations.     For example, the defining equations,

                                               
eu

s esu

∂
= Γ

∂ ξ

b
b     ,                             (D.2.14)

have coefficients of the second kind given by the reciprocal
relationship,

                                 { } [ ]
en ene

sunsu
su,e g su,n g= = = ΓΓ     ,                (D.2.15)

where sunΓ  is the coefficient of the first kind written as,

                                    un sn su1
2 s u nsun

g g g∂ ∂ ∂ 
 Γ = + −
 ∂ ξ ∂ ξ ∂ ξ 

    .                   (D.2.16)

Admittedly more simple, these forms do not allow the intuitive under-
standing of the roles of the angle variables and the scale factors.
Once the real-length, unit vector Christoffel coefficients are obtained,
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they are often simpler than those found from Eqs.(D.2.15) and
(D.2.16), and are no more complicated.

D.3 Derivatives of Vectors and Dyadics: The total derivative of the
vector A with respect to distance is,

                              1 2 3
1 2 3

d ds ds ds
s s s
∂ ∂ ∂

= + +
∂ ∂ ∂
A A AA     ,              (D.3.1)

and it is instructive to work out the partials using the formulas
developed in the preceding section.  To show the facility of using the
index notation in this type of derivation, the general case will be
obtained.  Writing,
                                               j jA=A k     ,                       (*j)
the general partial is,

                                       j j
j j

i i i

A
A

s s s
∂ ∂∂

= +
∂ ∂ ∂

kA k     ,             (*j)    (D.3.2)

which says that in addition to the changes in the magnitudes of the
components jA , further changes in the vector A  occur due to the
changes in directions of the unit vectors.  Now, substituting from
Eq.(D.2.2),

                                     j
j j i jp p

i i

A
A C

s s
∂∂

= +
∂ ∂
A k k     .         (*j,p)    (D.3.3)

In any summation, such as that over j or p in this equation, any pair
of matched indices can be replaced by any other pair, and the
summation remains the same.  These repeated letters are called
"dummy-indices".  It helps in the regrouping of terms to replace j by m
and p by j in the second term of Eq.D.3.3).  They could have been
replaced by any other two letters, but it is desired to combine the jk
terms, so the equation is rewritten,

                                    j
j m im j j

i i

A
A C

s s
∂∂

= +
∂ ∂
A k k     .        (*j,m)

Now, factoring the jk ,

                                     j
m im j j

i i

A
A C

s s
∂ ∂

= + ∂ ∂ 

A k    ,        (*j,m)    (D.3.4)

which is the general case for vectors.  The process can be repeated to
give higher derivatives.
     The saving of steps using the index notation is even more
spectacular when the general expression for the partial of a dyadic is
desired.  Writing,
                                             i j i jΨ = ψ k k     ,                    (*i,j)    (D.3.5)
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the general partial is,

                   i j ji
i j i j j i j i

m m m ms s s s
∂ψ ∂∂∂Ψ

= + ψ + ψ
∂ ∂ ∂ ∂

kkk k k k     .      (*i,j)

Following the same steps as above,

                     i j
p j mpi ip mp j i j

m m

C C
s s

∂ψ ∂Ψ
= + ψ + ψ ∂ ∂ 

k k    ,    (*i,j,p)    (D.3.6)

which is the general case for dyadics.
     For a mixed dyadic such as i i

j jΨ = ψ k k  , (*i,j),  the general partial
is,

                      
i
j p i i

j pmip mp j j
m m

C C
s s

 ∂Ψ ∂ψ
= − ψ + ψ ∂ ∂ 

k k    .   (*i,j,p)    (D.3.7)

Generally one extra term correcting for unit vector variations is added
or subtracted for each increase in the number of unit vectors involved.
     It takes little convincing to use the component notation when
working out a general derivation of this kind, because the labor
involved in the long-hand approach is appalling.  It is equally bad to
insist on using the component notation when working with the fields
and field operators introduced in earlier sections.  This division of
usefulness will be observed carefully in this work, and component
notation will be used only in those examples where required to
increase the clarity or significantly reduce the labor.
     One word of caution is needed in taking higher order derivatives.
In such a case, it is often useful to interchange the order of
differentiation.  However, Eqs.(B.4.2), (B.4.4) and (D.3.1), representing
total derivatives written in terms of changes in the real distances ids ,

may not be integrable.  In such a case, the order of 2
i j/ s s∂ Ψ ∂ ∂  cannot

be interchanged.  Instead, the ids  and jds  must be replaced through
Eq.(B.4.7), and then the differentiation can be carried out.  Higher
order differentiation with respect to coordinate variables is
interchangeable.

D.4 The Field Operator∇ : In Appendix A all of the important field
functions were defined as field entities independent of coordinates.
Each of these functions represents a clearly defined, intuitively
understandable property of fields, and in developing the theory of
fields, each will be used in that way.  Nevertheless, in solving field
problems, coordinates and a representation of those field functions in
terms of the coordinates are required.  The expressions which give the
components of the field functions will be examined next.
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     The simplest way to begin is to combine Eqs.(A.4.1) and (A.4.5)
with the result,
                                               d dφ = ∇φsi     .                            (D.4.1)
Compare this with the definition of the total derivative,

                               1 2 3
1 2 3

d ds ds ds
s s s
∂φ ∂φ ∂φ

φ = + +
∂ ∂ ∂

    .              (D.4.2)

Equating these two forms of dφ  gives,

                            1 2 3
1 2 3

d ds ds ds
s s s
∂φ ∂φ ∂φ

∇φ = + +
∂ ∂ ∂

si     ,            (D.4.3)

and since both ds and ∇φ  are vectors, Eqs.(D.4.3), (B.7.1) and (B.8.7)
suggest that they can be written, 1 1 2 2 3 3d ds ds ds= + +s k k k , and,

                                1 2 3

1 2 3s s s
∂φ ∂φ ∂φ

∇φ = + +
∂ ∂ ∂

k k k     .                 (D.4.4)

Eq.(D.4.4) will be taken as the basic form for obtaining the components
of the gradient of any scalar field.
     The components i/ s∂φ ∂  are not the real length components of the
vector ∇φ  (which are symbolized as i( )∇φ  and are used with unit

vectors ik ).  Instead, they are the inverse components i( )∇φ .  Using
Eq.(B.8.25), ∇φ  can also be written in terms of the ik  components,
but Eq.(D.4.4) gives the simplest form, with the components being
equal in magnitude to the changes in φ  with respect to changes in
distance (taken along the ik  directions as specified by 1ds , 2ds  and

3ds ).
     Starting with Eqs.(A.6.1) and (A.6.2),

                                             d d= ∇V s Vi     ,                             (D.4.5)

and repeating the same steps as above, the component equation for
∇V  becomes,

                                1 2 3

1 2 3s s s
∂ ∂ ∂

∇ = + +
∂ ∂ ∂
V V VV k k k     ,                (D.4.6)

which has a form almost identical to that of Eq.(D.4.4).  These two
equations suggest that, for finding field quantities in component form
the vector operator,

                                 1 2 3

1 2 3s s s
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

k k k     ,                 (D.4.7)
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might offer a simple, mechanical technique.  Expanding expressions
for the divergence, curl, etc. verifies this.  For example, using
Eq.(D.3.4),

                           1 2 3

1 2 3

div 
s s s
∂ ∂ ∂

= + +
∂ ∂ ∂
V V VV k k ki i i     ,              (D.4.8)

which clearly can be written,
                                             div = ∇V Vi     .                             (D.4.9)

     In a similar fashion, it can be shown that every differential field is
given by the operation indicated between ∇  and the scalar or vector
field.  The curl of F , for example, is given by,

                           1 2 3

1 2 3s s s
∂ ∂ ∂

∇ × = × + × + ×
∂ ∂ ∂
F F FF k k k     ,        (D.4.10)

 which is nothing more than the vector of ∇F  of Eq(D.4.6), and the
surrounding function of φ  is,

                        2 1 2 3

1 2 3s s s
∂∇φ ∂∇φ ∂∇φ

∇ φ = ∇ ∇φ = + +
∂ ∂ ∂

k k ki i i i     .      (D.4.11)

      No difficulty arises, and all of the standard rules of vector and
dyadic products apply, as long as each scalar, unit vector, reciprocal
base vector, etc. that follows ∇  is operated on by the partials
according to those rules without changing the order of any
vectors or dyadics.  Equations found using the ∇  operator as a vector,
such as Eqs.(D.4.4), (D.4.6), (D.4.8), (D.4.10) and (D.4.11), apply in
any coordinate system.
     Many authors make an issue of the fact that the component forms
resulting from ∇  operations in different coordinate systems are not
the same.  It would be surprising if they were.  Instead of pointing out
this expected difference, it is most important to emphasize that the
vector operator ∇  of Eq.(D.4.7) can be applied to any field in any
operation such as i  or ×  and in any number of orders of ∇ , and the
resulting entity, independent of coordinates and coordinate systems,
will be correct for all coordinate systems, and when expanded out will
yield the correct components in those systems.
     Next, a few special cases will be inspected to show further the
power of the mechanical operator ∇ .  Just as ∇V  can be expressed
by Eq.(D.4.6), another useful dyadic is,

                                1 2 3

1 2 3s s s
∂ ∂ ∂

∇ = + +
∂ ∂ ∂
V V VV k k k     .              (D.4.12)

Notice that the order of the vectors is preserved and the operator
partials are applied to the total vector V .  If the component form of V
is now substituted and the partials are carried out, the nine
components of the dyadic are obtained.
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Other forms obtained in a similar way are found for ( )∇Vi  and ( )× ∇V .
Again, replacing the vector with a dyadic, ( )Ψ ∇i  and ( )Ψ × ∇  have
essentially the same form.  The parentheses are used to eliminate
possible confusion with another type of field operation, for example

∇φVi , where ∇  operates on φ  but not on V .
     The field vector of position r  provides several useful examples of
the operations described in this section.  The results are:

                      

2

2ˆ  ,    3    ,  0  ,  
r

ˆ1ˆr   ,    ,    0  ,  0
r r

∇ = Ι ∇ = ∇ × = ∇ =

∇ = ∇ = − ∇ Ι = ∇ × Ι =

r r r r

rr

i i

i
   .    (D.4.13)

In a few cases involving singularities, the operator ∇  can lead to
indeterminate forms where the actual physical problem is
determinate.  In these circumstances, going back to the integral
definitions gives the correct answers; because they are fundamental.
It is a deplorable trend of modern texts to present the operator forms
(e.g. Eqs.D.4.8, D.4.10 and D.4.11) as definitions of the all important
physical field functions.

D.5 Orthogonal Coordinates: Whenever possible, field physics
problems should be solved in the simplest coordinates. Often this
implies the use of an orthogonal system.  The advantages are
numerous.  By definition, an orthogonal system is one in which the
three coordinate curves at each point are mutually perpendicular, and
the cosines of the angles between them are, thus, zero.  The angle
variables i jq  from Eq.(B.5.3) reduce to,

                                    i j
i j

1 0 0
q q 0 1 0

0 0 1

 
 = =  
  

    ,   ( orthogonal
coordinates )     (D.5.1)

and the only variables having an important effect in determining the
geometry of the system are the scale factors ih .  One simplification
this produces is that the line element becomes,

                
1 2 3

2 2 2 2 2 2 2
1 2 3 1 2 3ds ds ds ds (h d ) (h d ) (h d )= + + = ξ + ξ + ξ   .    (D.5.2)

Another significant consequence is that the unit vectors are all
mutually perpendicular so that 2

1 2 3q ( ) 1= × =k k ki , and when Eq.
(D.5.1) is used with Eqs.(B.8.24) and (B.8.25), it is clear that,
                                       i i

i i    ,    V V= =k k     .                       (D.5.3)
This means that there is no difference between the unit and reciprocal
base vectors, and that the perpendicular and parallelogram
components of vectors are identical.  Again, all dyadics of the type in
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Eq.(C.1.5) reduce to Eq.(C.1.8), since j i j
i j iψ = ψ = ψ , and the first three

idemfactors of Eq.(C.1.26) reduce to,
                                     1 1 2 2 3 3Ι = + +k k k k k k     .                      (D.5.4)
     From the point of view of reducing labor, the greatest simplification
appears in the Christoffel coefficients.  In orthogonal systems, the
coefficients of the first and second kinds become identical,
                                                k

i jk i jC C=     ,                              (D.5.5)
and since the angle variables are effectively eliminated,

                       i i
i pi i ip

i p i p

h h1 1C   ,  C
h s h s

∂ ∂
= = −

∂ ∂
   .   ( all otherszero )     (D.5.6)

     Based on all these changes,
Tables D.5.1 and D.5.2 give the
most often used field functions
in terms of spherical and
cylindrical coordinates, since
these systems are commonly
involved in the fundamental
examples.  Figure D.5.1 shows
the spherical coordinates.

 Figure D.5.1⇐

TABLE D.5.1

FIELD FUNCTIONS IN SPHERICAL COORDINATES
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TABLE D.5.1 Continued
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TABLE D.5.2

FIELD FUNCTIONS IN CYLINDRICAL COORDINATES

     Figure D.5.2 shows the
cylindrical coordinates used in
the equations.

 Figure D.5.2⇐
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TABLE D.5.2 Continued

D.6 Cartesian Coordinates and Field Function Relationships: The
most elementary coordinates, called rectangular or Cartesian, are the
special case where the scale factors are not only constant throughout
space but equal to unity, i.e., ih 1= , which is equivalent to,

                                               
i

ids d= ξ     .                                (D.6.1)

All of the equations for orthogonal systems apply, but some can be
simplified considerably.  The line element, for example, is,

                         2 2 2 2 2 2 2
1 2 3ds ds ds ds dx dy dz= + + = + +     .         (D.6.2)

The unit vectors  i , j  and k  are everywhere constant, so the partials
of the unit vectors are all zero.  Furthermore, 0= = =i j j k k ii i i  and

,   and × = × = × =i j k j k i k i j .  As in all orthogonal systems,

                                       d dx dy dz= + +r i j k     ,                      (D.6.3)

but unlike any other system, the radius vector is given by,

                                           x y z= + +r i j k     .                          (D.6.4)

In spherical coordinates, for example, ˆr=r r .  All of the equations
applicable to dyadics and their invariants in orthogonal systems apply
directly, and the idemfactor is,

                                           Ι = + +ii jj kk     .                           (D.6.5)

The most significant simplification is that all of the Christoffel
coefficients i jkC are zero, i.e., the unit vectors do not vary, so that,

                                  yx zAA A
s s s s

∂∂ ∂∂
= + +

∂ ∂ ∂ ∂
A i j k     .                  (D.6.6)

The field functions are also simplified, as can be seen in Table D.6.1.
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TABLE D.6.1

FIELD FUCTIONS IN RECTANGULAR COORDINATES

     Rectangular coordinates are the natural coordinates to use in
working out general relationships of the type presented in Table D.6.2.
Once these relationships are obtained, they hold in any coordinate
system.

D.7 Coordinate Transformations: Sometimes a problem is most
easily solved in one particular coordinate system, but some of the
quantities are given in terms of another coordinate system.  To write
all elements of the problem in the preferred system, a space coordinate
transformation is used.  It is assumed that both systems are fixed in
space and therefore fixed relative to each other.
     Scalars, vectors, and dyadics are invariant to space
transformations, and look the same to any observer using any
coordinate system.  Thus, if (x, y, z)φ  represents the value of the scalar
field φ  at the point (x,y,z) at time t, as seen by an observer using
Cartesian coordinates,  another observer,  using spherical coordinates
will see the same φ  at time t, if he measures it at a point (r, , )θ α  that
corresponds to the original point.  The same thing is true of the vector
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TABLE D.6.2

FIELD FUNCTION RELATIONSHIPS
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(x, y,z)V  and the dyadic (x, y, z)Ψ . The general coordinate
transformation equations are,

               

1 1 1 2 3 2 2 1 2 3 3 3 1 2 3

1 1 1 2 3 2 2 1 2 3 3 3 1 2 3

, ,   ,  , ,   ,  , ,

, ,   ,  , ,   ,  , ,

     η = η η η η η = η η η η η = η η η η     
     
     η = η η η η η = η η η η η = η η η η     
     

   ,       (D.7.1)

which in the case of spherical coordinates become,

      2 2
2 2 2

x r sin cos     ,       y rsin sin        ,    z r cos

x y yr x y z   ,  arctan   ,  arctan
z x

= θ α = θ α = θ

+
= + + θ = α =

  .    (D.7.2)

Given the coordinates of any point in one system, these equations
locate the same point in the other system.
     To illustrate some of these ideas, consider two Cartesian systems S
and S , tilted and displaced in some way with respect to each other,
and each using the same absolute time t.  The partial derivative of V
with respect to x is,

                                x y z
x x x y x z x
∂ ∂ ∂ ∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂
V V V V     ,

and the y and z derivatives have a similar form, so that, ∇ = ∇ ∇V r Vi .
However, according to Eq.(D.4.13), ∇ = Ιr , so,
                                               ∇ = ∇V V     .                               (D.7.3)
Taking the vector and scalar of both sides,
                                   ,   ∇ = ∇ ∇ × = ∇ ×V V V Vi i     .                 (D.7.4)
Clearly the bars are superfluous.  Knowing that dyadics, vectors, and
scalars are invariant to space coordinate transformations, the
equivalence in these three relationships could have been predicted,
since ∇V , ∇ × V , and ∇ Vi  are a dyadic, a vector, and a scalar
respectively.
      The true usefulness of transformation theory is in problem solving
where components and unit vectors are needed; because, although
the invariance of vectors and dyadics is clear from their physical
nature, it is equally clear that their components and associated unit
vectors can vary widely from system to system.  A series of simple
operations can be used to obtain the required transformation
equations.  All of the frequently used transformations are listed in
Table D.7.1.  Table D.7.2 gives the specific transformations relating
the orthogonal spherical, cylindrical and rectangular coordinate
systems.
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TABLE D.7.1

TRANSFORMATION EQUATIONS  (GENERAL)

TABLE D.7.2

SPHERICAL/RECTANGULAR COORDINATES
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TABLE D.7.2 Continued

CYLINDRICAL/RECTANGULAR COORDINATES

     Coordinate Transformation

                x R cos= α                                        2 2R x y= +

                y R sin= α                                         y
arctan

x
α =

                z z=                                                 z z=

     Unit Vector Transformation

                ˆ cos= αi R ˆ − α sin α                    ˆ cos sin= α + αR i j
                ˆ sin= αj R ˆ + α cos α                    ˆ = −iα sin α + j cos α
                =k k                                         =k k

     Mathematically, vectors and tensors can be defined in a way quite
different from the physical approach.1  The idea is based on
transformation theory and applies even in coordinate systems for
which there is no metric defined (i.e., abstract "spaces" where no
spatial relationship exists between the coordinates. ).  First a "space"
is chosen.  In the preceding sections, the assumption was made that
the coordinates were defined in a three dimensional, galilean space,
and the transformations were galilean.  The special theory of relativity
defines a mathematical, 4 dimensional "space" with one imaginary
coordinate, and the transformations are Lorentzian.  Mathematically,
other coordinate transformations can be postulated including those
for even higher dimensional abstract "spaces".  Having specified the
"space", and enumerated the various coordinate systems, and
coordinate transformations relating them, i.e. relationships like

Eq.(D.7.1) relating nS,S,S,....., S , the mathematician now defines
quantities, such as 1 2 3(A ,A ,A )  or 1 2 3 4(F ,F ,F ,F ) , etc., sets of numbers,
at a given point.  However, they are not defined arbitrarily, but
according to a certain transformation rule.  The transformation is not
one of the coordinate transformations already defined, but another
process that, for a given set of numbers 1 2 3(A ,A ,A ) , for example, at a
given point in S, produces another set of numbers 1 2 3(A ,A ,A )  at the
___________________________________________________________________
 1. A.S.Eddington, The Mathematical Theory of Relativity, p. 44 ff, Cambridge U.
     Press, (1952).
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corresponding point in S .  The only transformations of this type to be
admitted are those that have the property that when applied first to

1 2 3(A ,A ,A )  going from S to S  and then to 1 2 3(A ,A ,A )  going from S  to

S  (always at the same space point) the result will be identical to that
found when the transformation is applied to 1 2 3(A ,A ,A )  going directly

from S to S .  It is found, that only three transformations have this
property; those that exhibit invariance (as discussed in connection
with Eqs. D.7.3 and D.7.4) and those that exhibit contravariance and
covariance as shown for the first two orders in Table D.7.1.  Further,
only those quantities that obey one of these three transformation
laws, are defined as scalars, vectors, and tensors.  Scalars, vectors,
and tensors defined this way are said to have the group property.  If
the coordinate transformation is galilean, the corresponding tensors
are of the galilean group.  If the coordinate transformation is
Lorentzian, the tensors are of the Lorentz group, etc.
     With the advent of relativity theory, with its heavy dependence on
coordinate transformations and multiple observers, it has become
popular to insist that the preceding mathematical definition of tensors
is physical and fundamental.  There is no denying that it is
illuminating to the physicist.  However, the advantage to be gained by
understanding the group nature of vectors and tensors is in helping to
keep in mental order the various coordinate transformations and
operations involved.  Actually, all physical vectors and tensors
automatically have the mathematical properties described, so if the
physicist had no confusion in his physical picture, and a proper
mathematical way to express the phenomena, there would be no need
to use transformation theory to help identify the nature of a quantity.
In fact, the idea that this mathematical approach to tensors is
fundamental to a physicist is false.  Physical vectors and tensors have
other properties as well as those implied in this mathematical
definition.  In particular, all of physics can be discovered and the
world can be described using one observer system, without
component transformations.  Here, transformation theory will be
relegated to the position of a sometimes useful tool, no more.   Physics
is field theory, not transformation theory.
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Figure E.2.1
Fluid through a small, fixed, closed volume.

APPENDIX E

KINEMATICS OF A PERFECT FLUID

E.1 Introduction: No fluid composed of particles is a perfect fluid, i.e.
a continuum (see Section 2.3).  Nevertheless, field equations can give
a good approximation to imperfect fluid flow.  On the other hand, the
ether appears to be a perfect fluid, so here it will be treated as a
continuum.  Kinematic relationships derived here apply to fluids in
general, so far as their properties approach those of the continuum.
     Kinematic variables are position, length, area, volume, velocity,
acceleration, and "density".  The latter is a scalar φ  or aφ , that
represents the amount of fluid per unit volume, and is not, in the case
of the ether, related to mass as it is generally understood.  Contrary to
the ease with which the velocity and acceleration of a mathematical
point can be grasped intuitively, in a fluid these require some
additional abstraction.  Beginning with some portion of the fluid
contained in an arbitrarily chosen small volume, an imaginary closed
surface is visualized which separates that fluid from all the rest and
moves along with the fluid.  If the volume of this element is chosen
smaller and smaller till it approaches a differential limit, then it takes
on the properties of a mathematical point necessary to express its
position, velocity and acceleration. General fluid motion is then
described by dividing the total fluid up into elemental volumes whose
size approaches a point, whose number approaches infinity, and
which move so that no fluid crosses any of the surfaces.  In the limit,
the motion of these point-like elements can then be represented as a
velocity vector field V  with an acceleration vector field a .
     In Section 2.5, the difference between kinematic and dynamic

equations of fluid motion was
indicated.  Kinematic relations
are the same for all fluids,
dynamic relations are specific
to each fluid type.  Thus,
relationships between the
space and time derivatives of

aφ , V and a that are the same
for all fluids constitute fluid
kinematics.

E.2 The Continuity Equation: To derive the equation of continuity,
imagine a small closed surface, of arbitrary shape, fixed relative to the
observer.  Assume a general and arbitrary flow to be passing through
this  surface  as  set  forth  in  Figure E.2.1.   Defining  the  net rate of
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outflow of fluid as,
                              anet rate of outflow dS= φ∫ V ni     ,               (E.2.1)

 and the total fluid inside the surface as,

                                   atotal fluid inside dv= φ∫     ,                   (E.2.2)

then, in a region where no fluid is being created or destroyed, the two
must be related by,

                     (total fluid inside)  net rate of outflow
t
∂

= −
∂

    .

Combining Eqs.(E.2.1) and (E.2.2),

                                     a adv dS
t
∂

φ = − φ∫ ∫
∂

V ni     .

Since the volume is fixed in the observer's space, the partial can be
taken under the integral sign.  Therefore, using Gauss' divergence
theorem (see Table D.6.2),

                                      a
adv dv

t
∂φ

= − ∇ φ∫ ∫
∂

Vi     .

No restriction has been set on the size of the volume, so if it is
reduced to differential size,

                                           a
at

∂φ
= −∇ φ

∂
Vi     ,                            (E.2.3)

which is the continuity equation.  It says that the time rate of increase
of density at a fixed point is equal to the negative of the divergence of
the flow vector aφ V at that point.

E.3 Moving Coordinate Systems: To measure the motion of a fluid,
an observer usually sets up a coordinate system fixed with respect to
himself.  He then examines the details of the fluid motion in the
immediate neighborhood of a point fixed in his system.   Customarily
this gives him a partial differential equation applicable at each and
every point in space, as in the derivation of the continuity equation in
the preceding section.  There is one other vantage point which often is
better for describing certain properties of the motion, and that is in a
system of coordinates locked to and moving with some particular
element of the fluid.  The problem of relating physical phenomena
seen in this moving system to those seen by the general observer will
now be discussed.
     Consider the two Cartesian systems illustrated in Figure E.3.1.  S
is the general observer, and  S  is the moving observer.  The origin of
S  is transporting in some known manner, and the frame of  S  rotates
with a known angular velocity represented by 0w  (as seen by S).
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Figure E.3.1
Point P as seen by observers S  and S .

Furthermore, 0w  may be changing in a known way as a function of
time.  The position of 0  relative to 0 is given by 0r , and the position of

the moving point P is given by
r  as seen by S and by r  as
seen by  S . The relationships
between the velocities and
accelerations of P as seen by
the two observers will now be
found.
     Because  S  moves relative
to S, the coordinate
transformations given in

Eq.(D.7.1) must be modified to include the time,
                          i i i ix x (x, y, z, t )    ,    x x (x, y, z, t)= =     ,           (E.3.1)
where it is assumed t t= .  A more convenient form of this
transformation is,
                                    0 0    ,    = + = −r r r r r r     ,                    (E.3.2)
where,

                           
0 0 0 0

x y z    ,    x y z
               x y z
= + + = + +

= + +
r i j k r i j k

r i j k
                (E.3.3)

and all can be functions of time.  In Eq.(E.3.3), r  is expressed in
terms of its components as measured by S; but it can also be written
in terms of  S  components.  At this point it is necessary to clearly
distinguish between the components of a vector and the coordinates of
a point.  In writing r  (the distance and direction of the point P relative
to the origin of S) in terms of  S  coordinates, although there might be
a temptation to write it as x y z+ +i j k , this cannot be done, since in
Eq.(E.3.3) x , y , and z  were taken as the "coordinates" of P as
observed by  S , and these coordinates are not the components of r
in  S , but of r .  Thus, some other designation must be used for the
 S  components of the vector r .  The following notation will be used,

                               
SS

x y zx y z r r r= + + = + +r i j k i j k
"##$##%"##$##%

    .               (E.3.4)
The system of base vectors used determines which observer is
describing a vector.  S uses i , j , k , and  S  uses i , j , k .  The
components of the vectors are magnitudes measured in the directions
of the base vectors.      The time rate of change of the vector r as seen
by S is defined as,

                                     d dx dy dz
dt dr dt dt

= + +
r i j k     ,                     (E.3.5)
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and the meaning of "as seen by S" is that i ,  j , k  are fixed relative to
S during the change of r .  The time rate of change of r , "as seen by
 S " is symbolized by a primed derivative d ' /dtr , which means that
relative to  S , the observer expressing the time derivative, i , j , k
are fixed, giving,

                                    yx zdrdr drd '
dt dt dt dt

= + +
r i j k     .                 (E.3.6)

Notice that the derivatives of the components are written without
primes, and dt is used rather than dt .  That is because first, t and t
are assumed to be the same, and second, the time rate of change of
any scalar field (which each component xr , etc., can be considered to
be) at a particular point is the same regardless of who measures it.
To relate the two time derivatives, write the derivative of both sides of
Eq.(E.3.4) as seen by S, meaning that i , j , k  are constant and i , j ,
k  vary, so that,

      yx z
x y z

drdr drdx dy dz r r r
dr dt dt dt dt dt t t t

∂ ∂ ∂
+ + = + + + + +

∂ ∂ ∂
i j ki j k i j k   .

Substituting Eqs.(E.3.5) and (E.3.6)

                             x y z
d d ' r r r
dt dt t t t

 ∂ ∂ ∂
= + + + ∂ ∂ ∂ 

r r i j k     .              (E.3.7)

To reduce the bracketed term, the time derivatives of the S  unit
vectors, as seen by S, must be found.  This can be done most easily by
realizing that the frame S  moves as a rigid body and recalling that the
expression for the velocity of any point in a rigid body with an
instantaneous angular velocity of rotation w  is,

                                             d
dt

= ×
R w R     ,                             (E.3.8)

where R  is the position vector of the point referred to the origin
through which w  is measured.  Applying Eq.(E.3.8) to the unit
vectors of S ,

   z y
d w w
dt

= −
i j k    ,   x z

d w w
dt

= −
j k i    ,   y x

d w w
dt

= −
k i j   .    (E.3.9)

When Eqs.(E.3.9) and (E.3.7) are combined, the result is,

                                        0
d d '
dt dt

= + ×
r r w r     ,                        (E.3.10)

which is the time rate of change of the position vector r  of an
arbitrarily moving point, as seen by S, in terms of the time rate of
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change of the same vector r  as seen by S .  In Eq.(E.3.10), 0w  is
measured by S.
     Taking the S derivative of both sides of Eq.(E.3.10),

                            
2

0
02

dd d d ' d
dt dt dt dtdt

 = + × + × 
 

wr r rr w     ,

which upon repeated use of Eq.(E.3.10) yields,

                
2 2

0
0 0 02 2

dd d ' d '2 ( )
dt dtdt dt

= + × + × × + ×
wr r rw w w r r    ,    (E.3.11)

the transformation of the second time rate of change of the vector r  in
S  to the second time rate of change of the same vector r  in S.  It is
expressed in terms of the first time rate of change of r  in S  and 0w
and 0d /dtw  as seen by S.
     The time derivative transformations of Eqs.(E.3.10) and (E.3.11)
relate the rates of change of the same vector r  as seen by S and S .
Often, what is desired is a transformation of the same kind of vector
rather than the same vector.  The simplest example of this is the
transformation from r  in S  to r  in S.  As is clear from Figure E.3.1,
r  and r  are not the same vector, but each represents the same kind
of thing to S and S  respectively.  To S , r  is the position vector of the
point P, and to S, r  is the position vector of the same point P.
Similarly, u  and u  represent the velocity of the same point P to the
different observers, and surely u  and u  are not the same vector
though they are the same kind of vector.  Completely different
transformations are required to relate the same vector as compared
with relating two vectors which are the same kind.  To emphasize this
concept, the velocities u  and u  of an arbitrarily moving point P can
be related by taking the S derivative of Eq.(E.3.2),

                                           0dd d
dt dt dt

= +
rr r     .                          (E.3.12)

Eq.(E.3.12) says that the velocity of an arbitrarily moving point
relative to S is equal to the sum of the velocity of the origin of S
measured by S and the velocity d /dtr  of the point P relative to a
third set of coordinates always parallel to S but with origin at 0r .  If r
is thought of as transposed to the origin of S, then from Eq.(E.3.10),

                                        0
d d '
dt dt

= + ×
r r w r     ,                       (E.3.13)

where d ' /dtr  is the velocity of the point P relative to S .  This
combined with Eq.(E.3.12) leads to,

                                    = + + ×0
0

dd d '
dt dt dt

rr r w r     ,                   (E.3.14)
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the velocity transformation,
                                        0 0= + + ×u u u w r     .                      (E.3.15)
Comparing Eqs.(E.3.10) and (E.3.14), the former transforms
derivatives of the same vector r  while the latter transforms derivatives
of r  to derivatives of r .  Equation (E.3.15), says that the velocity as
seen by S is the sum of the velocity of the origin 0 , the velocity
relative to 0  as seen by S  in his coordinates, and an extra velocity
resulting from the rotation of the S  coordinates.
     Another example of transformation of the same kind of vector is
that relating the acceleration of an arbitrarily moving point as seen by
the two observers.  Taking the derivative of Eq.(E.3.14) and combining
it with Eqs.(E.3.10) and (E.3.13) provides,

      
22 2

0 0
0 0 02 2 2

d dd d ' d '2 ( )
dt dtdt dt dt

= + + × + × × + ×
r wr r rw w w r r   ,    (E.3.16)

the acceleration transformation,

                 0
0 0 0 0

d
2 ( )

dr
= + + × + × × + ×

wu u u w u w w r r&& &   .     (E.3.17)

This equation differs from Eq.(E.3.11) in that the latter transformed
derivatives of the same vector r from S  to S, whereas Eq.(E.3.16)
relates the derivatives of r  in S  to those of r  in S, where r  and r
are the same kind of vector.  Eq(E.3.16) says that the acceleration

2 2d /dtr  of an arbitrarily moving  point as measured by S is composed

of the acceleration 2 2
0 d /dtr of the origin of S  as seen by S plus the

acceleration 2 2d ' /dtr of P relative to S , the acceleration of Coriolis,
the centripetal acceleration due to the rotation of S , and an
acceleration resulting from the angular acceleration of S .  The Coriolis
acceleration results from the curvature of the path of any point fixed
in S  and from the motion of the point inward or outward to a place
where the linear velocity of a point in S  due to its rotation is smaller
or larger.
     The final topic of this section relates to the transformation from S
to S of time derivatives of fields.  For example, the time derivative of a
scalar field (x, y, z, t)φ  as observed at a moving point is the same to
both S and S  as long as each observes the field at the same moving
point.  Mathematically this is expressed as,

                                              d d '
dt dt
φ φ

=
i i

    .                            (E.3.18)

The meaning of the dot subscript is discussed in the next section.
Extension of this idea to the time derivative of a field vector F
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observed at a moving point is implemented by expressing F  as the
difference between two position vectors 2 r  and 1r .  Then,

                                          2 1d dd 
dt dt dt

= −
r rF

i
    ,

and applying the position vector transformation, Eq.(E.3.10),

                              2 1
0 2 0 1

d ' d 'd
dt dt dt

= + × − − ×
r rF w r w r

i
    .

Combining terms,

                                        0
d d ' 
dt dt

= + ×
F F w F
i i

    .                   (E.3.19)

The same principles can be used to find the transformations of a
second rank tensor or dyadic,

                                0 0
d d '
dt dt
Ψ Ψ

= + × Ψ − Ψ ×w w
i i

    .               (E.3.20)

As before, repeated use of these forms leads to the transformations of
the second time derivatives,

              
2 2

0
0 0 02 2

dd d ' d ' 2 ( )
dt dtdt dt

= + × + × × + ×
wF F Fw w w F F

ii i

  ,  (E.3.21)

and,

      

2 2

0 0 0 02 2

0 0
0 0 0 0

d d ' d ' d '2 2 ( )
dt dtdt dt

d d
       2 ( )

dt dt

Ψ Ψ Ψ Ψ
= + × − × + × × Ψ

+ × Ψ − Ψ × − × Ψ × + Ψ × ×

w w w w

w w w w w w

i ii i  .   (E.3.22)

     At the beginning of this section, the moving system S  was
introduced because having coordinates that move along locked to an
element of the medium is useful in the general field theory.  However,
the relationships derived in this section are not restricted to a moving
system locked to the medium.     They apply to any system S  moving
relative to S in "free space".   When S  does move locked to a fluid
medium, S will be designated as the "fluid coordinate" system.

E.4 Moving Point Derivatives: The previous section presented
methods of transforming time derivatives of field quantities observed
at a moving point as seen by S  to time derivatives of field quantities
observed at the same moving point as seen by S, assuming the S  time
derivatives were already known.  The present section defines and
presents methods for obtaining these moving point derivatives.
     The simplest m.p. (moving point) derivative is that of a scalar field
such  as  (x, y, z, t)φ = φ .   Any  change  in φ  is  described  by  the total
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derivative,

                              d dx dy dz dt
x y z t
∂φ ∂φ ∂φ ∂φ

φ = + + +
∂ ∂ ∂ ∂

    ,             (E.4.1)

which says that, given any small change in position (dx,dy,dz) of the
point P at which φ  is observed, or of time (dt) at that point, φ  changes
by dφ .  The total change of φ  in a time dt can be written,

                              d dx dy dz
dt dt x dt y dt z t
φ ∂φ ∂φ ∂φ ∂φ
= + + +

∂ ∂ ∂ ∂
    .              (E.4.2)

This says that the time rate of change of φ  moving along with the point
P depends on the velocity components of P (dx/dt, dy/dt, dz/dt), the
way φ  changes in space ( / x∂φ ∂ , etc.) and also on the way φ  would
change with time if the point P were not moving ( / t∂φ ∂ ).  Eq.(E.4.2)
can be written in the form,

                                           d
dt t
φ ∂φ
= ∇φ +

∂
u

i

i     ,                          (E.4.3)

where the dot in the denominator of the LHS is used as a reminder
that unless the location and velocity of the m.p. (moving point) is
specified, the moving point derivative cannot be found.  Similarly, the
m.p. derivatives of a vector field F  and of a dyadic field Ψ  are,

                      d
dt t

∂
= ∇ +

∂
F Fu F
i

i     and    d
dt t
Ψ ∂Ψ

= ∇Ψ +
∂

u
i

i     .      (E.4.4)

In all of these expressions, u is the arbitrary velocity of the moving
point at which the quantity is being observed, and is usually written
by S as,

                                       dx dy dz
dt dt dt

= + +u i j k     .                     (E.4.5)

When 0=u , the total rate of change of any of the field quantities is
given by the partial, / t∂ ∂ .  S  would express Eq.(E.4.3) as,

                                         d ' '
dt t
φ ∂ φ
= ∇φ +

∂
u

i

i     ,                          (E.4.6)

where,

                                     dx dy dz
dt dt dt

= + +u i j k     .                      (E.4.7)

Notice that the space derivatives in Eq.(E.4.6) are the same for S and
S  (see Section D.7).
     So far, all of the equations in this section have been written for a
single observer.    This will be true throughout most of the remainder
of this section.    Generally, they will be written as seen by S, but can
be converted easily (as in Eq.E.4.6) to S  equations.
     One special case of the m.p. derivative is that where the moving
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point follows right along with some particular fluid element, in which
case the velocity becomes =u V , where V  is the fluid velocity field
vector, and the derivatives become,

    d
dt t
φ ∂φ
= ∇φ +

∂
Vi   ,  d

dt t
∂

= ∇ +
∂

F FV Fi   ,  d
dt t
Ψ ∂Ψ

= ∇Ψ +
∂

Vi    .     (E.4.8)

These are called the "fluid" derivatives.  Here, by convention, a
distinguishing dot is not used in the LHS denominators.  It is
important, in using other works, to ascertain which type of derivative
is being used, since the dot is not used by other authors to identify
the general m.p. derivative.  Even in the following, there are
derivatives such as d /dtr  that do not have the dot when they should
in the strictest sense.  The dot notation is more a convenience than a
necessity, but helps considerably in some cases.
     The m.p. and "fluid" derivatives can be related by first adding and
subtracting ∇φVi  on the RHS of Eq.(E.4.3),

                                 d ( )
dt t
φ ∂φ
= ∇φ + + − ∇φ

∂
V u V

i

i i     ,

and then recognizing the fluid derivative of Eq.(E.4.8), ending with,

                                      d d ( )
dt dt
φ φ
= + − ∇φu V

i

i     .                       (E.4.9)

A vector or dyadic can replace φ  in this equation.  Physically, this
equation says that the general variation of φ  (or ,or ΨF ) at any
arbitrarily moving point is composed of the fluid derivative of φ , i.e.
the variation of φ  seen by S at the same point but moving along with
the fluid element instantaneously located there, plus another term
resulting from the space variation of φ  and the motion of the m.p.
relative to the fluid element instantaneously  located there.
     A few words about the use of "fluid" coordinates can serve here to
clarify some of the questions that probably have arisen.  Earlier, the
statement was made that transformation theory, as it is popularly
practiced today, is not fundamental to physics.  Yet, this and the
preceding section have entered heavily into a kind of transformation
theory.  The principal difference between the two approaches is this.
In popular transformation theory, the transformation almost replaces
the physics, certainly it dominates it, and it is  used to first show the
equivalence of all observers, and then to replace an intuitive
understanding of space and time with a metaphysical ritual called
space-time.  The important feature of popular transformation theory is
the absence of a preferred system.  The transformations being
presented here, however, are used quite differently.
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Figure E.4.1
S as the fluid coordinate system.

     Using the ether theory, the equations of physics are written in the
coordinates of S, the general observer because S is the one who
wishes to solve some specific problem.  But, nature is so constructed
that the ether is the basic constituent of all things, and the laws of its
motion and motion of "particles" made of clumps of it, relative to the
general unclumped ether flow field are laws expressing interaction
between contiguous parts of it.  Thus, there is a preferred vantage
point from which the laws governing the ether can be viewed: that is
locked to the fluid, transporting and rotating with the particular
element for which the laws are written.  In these "fluid" coordinates,
the laws have the simplest form.  The need for the type of
transformation that has been presented is now clear.  It allows
conversion of the laws in the preferred system (different coordinates at
each different point, if the ether flow is space variable) to their
equivalent form in the general system S.  Consequently, although the
transformations presented just previously apply to any two systems in
relative motion, from this point on, unless otherwise specified, S
refers to the "fluid" coordinates locked to a fluid element.

     Keeping this in mind, an
equation of considerable
significance will now be
derived.  It was first obtained
in an essentially equivalent
form by Kirkwood,1 and gives
the transformation of an
m.p.'s acceleration relative to
a fluid field.  Figure E.4.1
portrays the configuration of
two observers S and S ,
where S sees a general
velocity field V  and S
moves so that the origin 0  is

locked to the fluid, and the axes of S  rotate with the fluid at 0 .  An
arbitrarily moving point has a velocity relative to the fluid element at
0 , of d ' /dtr , as seen by S .  The acceleration of P or time rate of
change of the velocity d ' /dtr  as seen by S  will be expressed in terms
of m.p. derivatives as seen by S.
     The standard transformation of the acceleration of the point P is
given in Eq.(E.3.16), where 0w  is the vorticity of the fluid at 0  (see
Section E.6) and is also the rotation rate of the axes of S .  It will be
sufficient to obtain the acceleration for a point just passing through 0 ,
 ___________________________________________________________________
  1. R.L.Kirkwood, Phys.Rev., 92, 1557 (1953).
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so that instantaneously, 0=r , and substituting that r  into
Eq.(E.3.14),

                                    0
0

dd ' d
dt dt dr

= − = −
rr r u V     ,                   (E.4.10)

Furthermore, no confusion will arise if the subscript 0  is now omitted.
Transposing Eq.(E.3.16), and using 0=r  and Eq.(E.4.10),

                               
2

2

d ' d d 2 ( )
dt dtdt

= − − × −
r u V w u V

i

    ,              (E.4.11)

where d /dtu i  is the m.p. derivative of the point's velocity, d /dtV  is
the "fluid" derivative of V  taken moving with the medium at 0 , and
all quantities are measured at 0 .
     Since it is desired to express 2 2d ' /dtr  as seen by S , in terms of
d( )/dt−u V i  as seen by S, use must be made of the m.p. derivative of
V  given in Eq.(E.4.9) as,

                                     d d ( )
dt dt

= + − ∇
V V u V V
i

i     .                    (E.4.12)

Substituting d /dtV  from Eq.(E.4.12) into Eq.(E.4.11),

                     
2

2

d ' d ( ) ( ) 2 ( )
dtdt

= − + − ∇ − × −
r u V u V V w u V

i

i   .     (E.4.13)

The combination of d( )/dt−u V  is not the way terms of this type
customarily have been written in the past.  To see what this means,
rearrange Eq.(E.4.13) to give,

                     
2

2

d d '( ) ( ) 2 ( )
dt dt

− = − − ∇ + × −
ru V u V V w u V

i

i   .     (E.4.14)

 which says that the m.p. time rate of change of the velocity of a point
relative to the medium at that point is the sum of first, the actual
acceleration of the point relative to 0  in S , second, the change due to
the space variation of V  giving a new V  as the point moves, and
third, the Coriolis acceleration as the point moves relative to the
center of circulation.
     Using an identity first stated by Kirkwood,1

                                        2 ( )× = ∇ − ∇w F F V V Fi i     ,               (E.4.15)

where F  is an arbitrary vector, and Eq.(E.4.13) becomes,

                               
2

2

d ' d ( ) ( ) ( )
dtdt

= − + ∇ −
r u V V u V

i

i     .          (E.4.16)

This  transformation  enables  the  general  observer S to predict, from
 ___________________________________________________________________
  1. R.L.Kirkwood, loc. cit.
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his observation of u  and V  at a given point, what acceleration of the
m.p. S  is observing in his system.  Equation (E.4.10) re-written
without the subscript 0 ,

                                             d '
dt

= −
r u V     ,                           (E.4.17)

allows S to predict the velocity of the m.p. seen by S .  Clearly, if the
m.p. velocity relative to the medium, −u V , is zero, S  sees no
acceleration of the point.  The reader should be cautioned that all the
equations following Eq.(E.4.9) embody the very special restriction that
the m.p. is just passing through the origin of S .  Equations already
under this restriction should not be used in derivations where further
differentiation is involved.  If such further differentiation is necessary,
the more general form developed before the restriction was imposed
should be used.  After all differentiations have been carried out, the
restriction can again be imposed.  Once final forms of such equations
as (E.4.14) or (E.4.16) are written, they apply to any point in S at
which an m.p. is instantaneously located, while moving about, as long
as the values of V , w , and ∇V  are those observed at that point at
that instant, and a different differentially small S  is visualized at each
point.

E.5 Intrinsic and Invariant Properties of Fields: Because scalars,
vectors, and tensors are independent of the coordinates used to
express them in mathematical form, and because their space
derivatives in the form of the gradient, curl, divergence, etc. are also
independent of the coordinates used (see Section D.7), they are called
invariant to space coordinate transformations (time held fixed).  In the
four dimensional space-time of special relativity, time has been
included and space-time invariance is used to identify special
quantities in a certain class of systems.  Invariance plays a major role
in the transformation theory approach to physics popular today.
However, there is another characteristic that appears in fluid motion,
which is far more important than invariance, and this importance
carries over into the physics of fields because of the basic role the
ether plays.  Fluid properties that have this characteristic are called
intrinsic.  An intrinsic property is one that is completely determined
by what goes on at and within a particular fluid element,
uninfluenced in any way by anything outside the immediate
neighborhood of that element.  More specifically, a property is intrinsic
if it depends only on the relative motion of adjoining parts of the fluid,
and is independent of the motion of the observer.  Dynamic properties
as well as kinematic can be intrinsic.
     To clearly distinguish between the concepts of invariant and
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intrinsic properties, some simple examples are useful.  The velocity
field V , because it is a vector, is clearly invariant, but it is definitely
not intrinsic, since a set of observers moving differently will each see a
different velocity field for the same flow pattern, because the velocity
is expressed in terms of an arbitrary set of coordinates external to
each fluid element observed, and therefore is not measured relative to
the adjoining fluid at each point.  On the other hand, a good example
of an intrinsic property of fluid motion can be illustrated using the
continuity equation of Section E.2.  Expanding Eq.(E.2.3),

                                     a
a a 

t
∂φ

= − ∇φ − φ ∇
∂

V Vi i     ,                     (E.5.1)

 which transposed, gives the fluid derivative,

                                          a
a

d
 

dt
φ

= − φ ∇ Vi      ,                           (E.5.2)

 that can be written,

                                          a

a

d1  
dt
φ

= − ∇
φ

Vi     .                           (E.5.3)

 Assuming no creation or destruction of fluid, if the quantity and
density of fluid are related to the volume occupied by a Q/ Vφ = δ δ ,
then,

                                             a

a

d d V
V

φ δ
= −

φ δ
    .                            (E.5.4)

Combining Eqs.(E.5.3) and (E.5.4),

                                           1 d V
V dt

δ
∇ =

δ
Vi     ,                           (E.5.5)

where it is understood that the volume is differentially small.
Equation (E.5.5) gives a physical interpretation of the divergence of
the velocity of a fluid as the time rate of change of volume per unit
volume of a fluid element as it moves along, clearly an intrinsic
property dependent only on the relative motion of the adjoining parts
of the fluid as it expands or contracts.
      These examples illustrate the fact that not all invariant properties
are intrinsic but all intrinsic properties (because they are scalars,
vectors, or tensors) are invariant.  However, intrinsic properties have a
much more powerful invariance characteristic than space coordinate
transformation invariance.  In the case of the non intrinsic velocity
field, for example, by moving along with any fluid element, its velocity
can be made to go to zero.  The curl of V  is another example of a field
that is not intrinsic.  By a suitable rotation, following any element,
∇ × V  at that element can be reduced to zero, which could not happen
if it depended only on the relative motion of adjoining parts of the
fluid.  Clearly no intrinsic quantity, dependent only on relative motion,
can be eliminated by changing the motion of the observer's coordinate
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Figure E.6.1
Changes in fluid element positions in time dt.

system.  In fact, intrinsic properties of a fluid are completely
independent of the motion of the observer.
     Another way to better understand the idea of an intrinsic quantity
is to consider the question raised in Section E.3 regarding
transforming the same entity as compared with transforming the
same kind of entity.  A vector, for example, is called invariant because
it appears identical to different observers.  Each observer examines
the same vector.  When different observers look at the same kind of
vector instead, eg., the position vector ( r  for S, r  for S ) or velocity
( V  for S, V  for S ), they generally see different things.  However,
when every different observer performs the same operation to observe
the same kind of entity, and when these entities all appear identical,
then they describe an intrinsic property of the fluid.
      A most obvious set of intrinsic quantities is that given by the fluid
derivative as seen by S  whose coordinates are moving locked to the
fluid and whose measurements are restricted to a differentially small
region about 0 .  Thus, the d  /dt′  derivatives given earlier are called
intrinsic derivatives when S  uses fluid coordinates and measures
inside a differentially small region about 0 .  In fact, any fluid property
seen by 0S (i.e. at 0  by S ) is intrinsic , and when it is expressed in
terms of any other observer's coordinates (i.e. S) it is still intrinsic.

E.6 Motion of a Fluid Element: A fluid continuum can be described
by a vector point function, indicating the position of every element α
at time t,  ( )= αr r , where each different value of α  represents a
different element of the fluid.  At time t', or t dt+ , after deforming, the
continuum can be represented by a vector point function,
                                               ( )′ ′= αr r     ,                                (E.6.1)

such that, for the same
element  α , Eq.(E.6.1)
gives a new position, as
exhibited in Figure
E.6.1.  The components
of ( )αr  at time t
are  x( )α ,  y( )α , z( )α , and
are related to the t dt+
components x ( )′ α , y ( )′ α ,
z ( )′ α  of the position

 ( )′ αr  of the same element.  The differential displacement of each
element is represented by the vector function, d ( ) ( )′= α − αr r r .
"Strain" is the name given to this displacement field.  Visualizing the
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dδ =r vector dist. P moves rel. to 0  in dt.  0(d d )−r r

dδ =r change in vector position of P rel. to 0 in dt.
                                                                  ( )′δ − δr r

Figure E.6.2
Change in displacement between two fluid elements

Figure E.6.3
Motion of a spherical element of fluid

dr  field frozen in time (at t, dr  shows to where each element will go;
at t dt+ , dr  shows from where each element has come), the change
in dr  in going a differential distance δr  is given by the total
differential,
                                           d (d )δ = δ ∇r r ri     ,                            (E.6.2)
 where δ  is used to indicate a variation produced by moving from one

space point to another in
the frozen field picture (at
either t or t dt+ ), i.e. δr
is the initial and ′δr  the
final spacing of two fluid
elements being observed.
     Now, consider an
element displaced from 0
to 0′  as depicted in
Figure E.6.2.  For another
element P located δr  from
0  at time t, the
displacement to a point
P ′  located ′δr  from 0′  at
t dt+   is,

                                0 0d d d d′= + δ − δ = + δr r r r r r     .                 (E.6.3)

Combining Eqs.(E.6.2) and (E.6.3),
                                        0d d (d )= + δ ∇r r r ri     .                        (E.6.4)
Thus, for every δr  around 0  at time t, Eq.(E.6.4) gives the
displacement of the fluid at that point in terms of the displacement  of

the fluid at 0 , and this permits a
very simple description of fluid
motion, as will now be seen.
     With the help of Figure E.6.3,
consider a small element of fluid in
the form of a sphere at time t.
Here the word element is being
used in a somewhat different way
than before, but no confusion
results from this.  Each part of the
sphere of fluid moves a distance
dr  during dt, and again Figure
E.6.3 shows the final position and

configuration of the element.  First, notice that the center of the
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sphere originally located at 0  has been translated to 0′ , a distance
0dr , as predicted by Eq.(E.6.4) when the point is identified with

δ = 0r .  Next, consider the fluid originally surrounding 0 .  In general,
if observed for a long time, the final form of the fluid originally inside
the spherical volume could be distorted into shapes that defy
mathematical representation; but for a short time dt, the flow is quite
regular, always producing a final configuration of the original fluid
that is an ellipsoid.  Each different spherical element produces an
ellipsoid of a different size and shape, unless the flow is specialized in
some way.
     The preceding statements become clearer when Eq.(E.6.4) is
analyzed in more detail.  Since the displacement of every part of the
fluid is composed of a component 0dr  plus (d )δ ∇r ri , then if an
observer translates his position by 0dr , he observes only (d )δ ∇r ri .
Thus 0dr  represents a translation of the original fluid essentially as a
rigid body.  Any turning or deforming of the fluid about 0  must be
inherent in the term (d )δ ∇r ri , which contains the strain dyadic ∇(d )r .
Any dyadic can be separated into two parts (see section C.5), one
symmetric and one antisymmetric.  When this is done, Eq.(E.6.4)
becomes,
                                       0d d S− = δ + δ Θr r r ri i     ,                     (E.6.5)
where S and Θ  are the symmetric and antisymmetric components of
∇(d )r .  S is often called the "pure-strain" tensor, but here it will be
called the strain tensor.  Confusion seldom results, even though the
same name is applied to (d )∇ r .  According to Eq.(C.5.9),

1
v2δ Θ = Θ × δr ri .  But, vΘ  can be related back to ∇(d )r  using

Eq.(C.3.3) to give, v v[ (d )] dΘ = ∇ = ∇ ×r r .  Identifying,
                                             1

2 d= ∇ × rΘ     ,                             (E.6.6)
 as a vector representing rotation in the plane of the antisymmetric
tensor Θ , then the δ Θri  term in Eq.(E.6.5) is seen to represent the
equivalent of a rigid body rotation of the fluid originally contained in
the sphere about 0 .
     Evidently the term Sδri  represents the distortion of the original
spherical element after the translation 0dr , and the rotation δ Θri  are
removed.  According to the discussion in Section C.6, since S is
symmetric, the result of dotting it with the vector δr  taken in all
possible directions about the point 0  is that the spherical element
takes the shape of an ellipsoid.  Thus, the strain always produces an
ellipsoid, with its principal axes rotated through an angle Θ , and its
center transported to a new position 0dr , from its starting point.
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The shape of the ellipsoid is given by the strain along the principal
axes.
     Inasmuch as the strain takes place in a differential time dt, the
strain field dr  is related to the velocity field by,

                                                 d
dt

=
rV     .                                (E.6.7)

Having frozen the field, the change in V  in going a differential
distance δr  is, dividing Eq.(E.6.2) by the fixed value dt, δ = δ ∇V r Vi .
The equivalence of the velocity field and the rate of strain field leads on
to the parallel of Eq.(E.6.4),
                                          0= + δ ∇V V r Vi     ,                           (E.6.8)
and of Eq.(E.6.5),
                                       0= + δ Φ + δ ΩV V r ri i     ,                       (E.6.9)
 where Φ  and Ω  are the symmetric and antisymmetric parts of ∇V
respectively,  i.e.,
                                     I∇ = Φ + Ω = Φ − ×V w     .                    (E.6.10)

Eq. (E.6.9) says that the general motion of a fluid element has three
components, a rate of transport 0V  of the element as a rigid body, a
rate of distortion into an ellipsoid δ Φri , and a rate of rotation as a
rigid body of δ Ωri .  The rate of rotation is found from δ Ω = × δr w ri ,
where,
                                  1 1 1

v v2 2 2( )= Ω = ∇ = ∇ ×w V V     .               (E.6.11)

The latter angular rate of rotation vector corresponds to the vorticity of
the fluid at the point at the center of the small, spherical element.
     The rate of strain tensor Φ and the rate of rotation tensor Ω  are
fundamental to a description of the relative motion of ether elements
in various flow fields.  Other basic quantities such as the invariants of
Φ , the rate of surface strain tensor Φs , and certain transport
theorems play an important role in visualizing the fluid field.  These
are discussed elsewhere in greater detail.1

 ___________________________________________________________________
  1. R.H.Dishington, Physics, Beak Publications, Pacific Palisades,CA (1989).
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APPENDIX F

FIELD EQUATIONS AND THEIR SOLUTION

F.1 Introduction: In attempting to establish the dynamic field
equations in any specific physical situation, several questions arise
immediately.  One relates to the number of dependent variables
necessary, another to the best of possible alternative forms of the field
functions used, and a third to the more subtle possible existence of
implicit field equations in addition to those specified.  These and other
similar questions are dealt with in the earlier version of this work.1
There it was shown that many functions represent constrained
quantities that require auxiliary relationships to specify a field
completely, but the Laplacian gives a complete description requiring
no augmentation.
     It was also shown that, on the basis of Poisson's integral equation,
the Laplacian gives the most basic representation of any field, and
some conditions pertaining to the solution of the related equations
were discussed there.

F.2 The Bulk Equations: On the basis of that earlier discussion, it
should not be surprising that the bulk equations of Section 11.2
involve the Laplacian in the form of the wave equation.  As far as can
be determined at this time, those bulk equations are complete, and
although there are some "intractable" problems that should have
closed form solutions to be really useful, other miscellaneous and
numerical methods are available and generously applied.

F.3 The ! -Wave Equations: Here again the Laplacian/equilibrium
type equations of Section 2.12 prevail.  However, although solutions of
these equations have been found using the try and see approach, no
direct solution for Vi  or φi  is available; because the equations involve

both Vi  and the time average 2Vi .  This points up the need for
another more complete set of ! -wave equations that do not involve the
time averages.  The writer has come close to finding these, but not
close enough.
     The one great hope for obtaining the advanced ! -wave equations is
by way of the four-tensor approach pursued by Kirkwood.2  This is not
a return to the weird space-time geometry of the relativists, but just
the recognition that the formalisms of ordinary space, time and ether
are kept in rather neat form by nature.
 ____________________________________________________________________
  1. R.H.Dishington, loc. cit.
  2.  See references in Chapter 14.
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    The whole structure of the present book has been devised to
separate the physics, with its visualizations, from the formal geometry
and kinematics of the Appendices, with their non-dynamic rigor.  It is
this separation of, mathematics and physics that has led successfully
to the picture presented so far.
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APPENDIX G

UNITS

Table G.1

To obtain the quantity in HLU, multiply the MKS quantity by the
factor given.  To go from HLU to MKS, divide.

Table G.2

4

5

                                      HLU                     MKS

Electric Potential                             9.40967 10 Volts

Magnetic Vector-                             2.82095 10   Webers/m
Pot

−φ ×

×A

7

ential

Energy                                                             10 Joules
Energy Density                                                 10 Joules

Charge                              q       

ε
E

10

4

10

       1.06274 10 Coulombs

Charge Density                               1.06274 10 Coulombs/m

Current                             i               1.06274 10 Amperes

Resistance                         

×

ρ ×

×
-14

13

14

              8.85419 10 Ohms

Capacitance                                    1.12941 10 Farads

Inductance                                      8.85419 10 Henrys

Electric Intensity              

−

×

×

×

R

C 

L 
6

3

6

               9.40967 10  Volts/m

Magnetic Induction                         2.82095 10 Teslas

Electric Displacement                     1.06274 10

Magnetic intensity                          3.54

−×

×

×

E
B
D

H 3 Amp Turns491 10
m

−×

−ε = ε

=E E

3 1 3
e mks

-7
mks

Electric Energy Density     (ergs/cm ) 10 (Joules/m )

Energy                               (ergs)  10 (Joules)
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Table G.3

Starred quantities are Gaussian.  Listed quantities are substituted
directly.  Quantities along rows are equal.

8

mks m s
0 0

                                  HLU         MKS               EMU               ESU      

10 1 1Electric Potential                               *
c 4 c 4 4

Magnetic Vector                   

φ φ φ φ
π π π

A
6

mks s

0
mks 0 m s

0
mks 0 m

10 1                              *
4 4

Potential

c 4Charge                          q        q      c 4  q       4  q *
10

c 4Current                         i         i       c 4  i       
10

π π

π
π π

π
π

A A

s

6

mks m s
0 0

3
mks m s

0

 4  i *

10 1 1Electric Intensity                           *
c 4 c 4 4

1 1Magnetic Intensity                4 10    *   
4 c 4

                                                  (A.T./m)

El

−

π

π π π

π
π π

E E E E

H H H H

5 0
mks m s

4
0

mks m s

c 1ectric Displacement            4 10           *
4 4

c10 1Magnetic Induction                        *       
4 4 4

                                                   (Teslas)

Magneti

−π
π π

π π π

D D D D

B B B B

3
mks m s

0
2

20
mks 0 m s9

9

mks2
0

            

4c Moment                 10 4        4   *       
c

4 cConductivity                                  4 c           4 *
10
10Resistance                      

4 c

π
µ π µ π µ µ

π
σ σ π σ πσ

π
R R m s2

0
2

20
mks 0 m s9

9

mks m s2 2
0 0

            

            

1 1             *
44 c

4 cCapacitance                          4 c           4 *
10
10 1 1Inductance                                   *

44 c 4 c

ππ

π
π π

ππ π

R R

C C C C

L L L L
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APPENDIX H

TRUNCATION INTEGRALS
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−

−

×

×

12

7

     x                      T(x)                         x                  T(x)

   0.05             4.7024 10               7.00             4.5615

   0.10             3.8302 10                7.50 
−

−

−

×

×

×

5

4

4

            4.9971

   0.15             2.2539 10                8.00             5.4365

   0.20             1.9929 10                8.50             5.8794

   0.25              7.9955 10             
−

−

−

×

×

×

3

3

3

  9.00             6.3254

   0.30              2.1277 10               9.50             6.7742

   0.35              4.4403 10               10.0             7.2254

   0.40              7.9190 10      
−

−

×

×

×

2

2

         11.0             8.1345

   0.45              1.2674 10               12.0             9.0512

   0.50              1..8767 10               13.0            9.9743

   0.55              2.6207 10−

−×

2

2

               14.0          10.9029

   0.60              3.4990 10                15.0          11.8362
   0.65                  0.04508                  16.0          12.7737
   0.70                  0.05645                  17.0          13.7149
   0.75                  0.06903                  18.0          14.6593
   0.80                  0.08279                  19.0          15.6067
   0.85                  0.09766                  20.0          16.5567
   0.90                  0.11361                  25.0          21.3385
   0.95                  0.13057                  30.0          26.1594
   1.00                  0.14850                  35.0          31.0076
   1.20                  0.2288                    40.0          35.8759
   1.40                  0.3214                    45.0          40.7595
   1.60                  0.4241                    50.0          45.6552
   1.80                  0.5351                    55.0          50.5608
   2.00                  0.6532                    60.0          55.4746
   2.50                  0.9734                    65.0          60.3952
   3.00                  1.3207                    70.0          65.3216
   3.50                  1.6881                    75.0          70.2531
   4.00                  2.0709                    80.0          75.1890
   4.50                  2.4660                    85.0          80.1287
   5.00                  2.8710                    90.0          85.0719
   5.50                  3.2842                    95.0          90.0181
   6.00                  3.7044                  100.0        

→ ∞ → − e

  94.9671
   6.50                  4.1304          x   ,  T(x) x log x
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APPENDIX I

iI ( )∞

1 2 3 4 5

20

                     I                  I                   I                   I

4 10      0.60777        0.73200        0.73200        0.73200        0.73200
5              0.57591 

              I

×

ω

                                                             
6              0.54641                                                              
8              0.49422                        

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

↓
21

                                      

1 10       0.45003                                                              
1.5            0.36663                                                 

↓ ↓ ↓

× ↓ ↓ ↓ ↓

↓ ↓ ↓
21

22

             

2 10       0.30643                                                              
 ________________________________________________________________________        

8 10     9.7043 10−

↓

× ↓ ↓ ↓ ↓

× × 3

23

      0.61211       0.73009       0.73200      0.73200

1 10      7.7634              0.58096       0.72897       0.73043           
1.5           5.1756              0.51265       0.72612        0.73
× ↓

094          
2              3.8817              0.45678       0.72275        0.73050     0.73143
3              2.5878              0.37263       0.71478        0.72933     0.73094
4              1.940

↓

3

9              0.31314        0.70603       0.72763     0.73050
5              1.5527              0.26921        0.69653       0.72701     0.72970

6              1.2939 10      0.23560        0.68662 −×
4

24

       0.72344     0.72897

8              9.7043 10      0.18777        0.66642        0.71952     0.72701

1 10       7.7634             0.15556         0.64615        0.71334     0.72473
1.5          

−×

×
  5.1756             0.10809         0.59754       0.69882     0.71847 

2              3.8817              0.08239         0.55353       0.68314      0.71130
3              2.5878              0.05548         0.47958       0.65098     0.69526
4              1.9409              0.04169         0.42122       0.61946     0.67825
5              1.5527              0.03329         0.37453       0.60973    

4

5

25

 0.66088

6              1.2939 10      0.02769         0.33654       0.56160     0.64361

8              9.7043 10      0.02069         0.27880       0.51150     0.61006

1 10       7.7634             0

−

−

×

×

×

25 5

.01649         0.23721       0.46847      0.57872
1.5            5.1756             0.01070         0.17153       0.38486      0.50972

2 10      3.8817 10      0.00803         0.13357       0.32501   −× ×    0.45357
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iJ ( )∞

1 2 3 4 5

20

                    J                 J                 J                  J

4 10     0.26460        0.27145        0.27145        0.27145       0.27145   
5             0.26119      

              J

×

ω

                                                           
6             0.25736                                                                      
8             0.24891                    

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

↓
21

                                         

1 10      0.23992                                                             
1.5           0.21778                                                 

↓ ↓ ↓

× ↓ ↓ ↓ ↓

↓ ↓ ↓
21

22 3

            

2 10     0.19699        0.27145       0.27145       0.27145         0.27145  
________________________________________________________________________    

8 10   9.70431 10  0.26501     −

↓

×

× ×
23

  0.27143       0.27145        0.27145

1 10      7.76343       0.26178       0.27142                             
1.5           5.17564       0.25215       0.27137        0.27144            
2       

× ↓ ↓

↓

      3.88172        0.24141       0.27134                            
3             2.58781        0.21961       0.27112       0.27142         0.27144   
4             1.94086        0.19953       0.

↓ ↓

27082        0.27140            
5             1.55269        0.18185       0.27053        0.27139         0.27143 
6             1.29391        0.16650       0.27011        0.27132         0.27142 

8  

↓

4

24

        9.70431 10   0.14168       0.26908         0.27124         0.27139 

1 10      7.76343        0.12278      0.26461         0.27108         0.27135 
1.5           5.17564        0.09133      0.2

−×

×
6358         0.27061         0.27121

2              3.88172        0.07224      0.25835         0.26995         0.27103
3              2.58781        0.05073      0.24613         0.26812         0.27048 
4              1.94086        0.03892      0.23308         0.26568         0.26972
5              1.55269        0.03152      0.22019         0.26479         0.24075 
6              1.29391        0.02

5

25

645      0.20794         0.25941         0.26761 

8           9.70431 10   0.01999      0.18593         0.25196         0.26482 

1 10       7.76344        0.01604      0.16728         0.24389         

−×

×

25 5 3

0.26152 
1.5            5.17563        0.01070      0.13238         0.22325         0.25166 

2 10  3.88172 10  8.02633 10  0.10877        0.20388         0.24071
     

− −× × ×
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ijJ ( )∞

       

1j 2j 34 35 45

20

   J                  J               J              J              J  

4 10     0.26757        0.27145     0.27145      0.27145      0.27145 
5             0.26540                 

             

×

↓

ω

                                       
6             0.26284                                                        
8             0.25673                                                     

↓ ↓ ↓

↓ ↓ ↓ ↓

↓ ↓ ↓
21

21

   

1 10      0.24967                                                        
1.5           0.23035                                                        

2 10      0.21029        0.27145    

↓

× ↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

×

22 3

23

  0.27145      0.27145      0.27145
  __________________________________________________________________________

8 10   9.76974 10   0.26782      0.27144      0.27144      0.27145

1 10   7.80543      

−× ×

×      0.26578      0.27143                            
1.5        5.19427           0.25913      0.27141       0.27141          
2           3.89219           0.25087      0.27137       0.27138      0

↓ ↓

↓
.27144

3           2.59246           0.23203      0.27127       0.27128      0.27143
4           1.94347           0.21281      0.27113       0.27115             
5           1.55436           0.19483  

↓

4

24

    0.27108       0.27097      0.27141
6           1.29507           0.17864      0.27070       0.27074      0.27137

8           9.71084 10   0.15172      0.27103       0.27017      0.27131

1 10    7.7

−×

× 6761           0.13092      0.26931       0.26942      0.27121
1.5         5.17749           0.09627      0.26665       0.26942      0.27091
2            3.88276           0.07555      0.26308       0.26393      0.27048
3            2.58781           0.05239      0.25399       0.25444      0.26924
4            1.94112           0.03992      0.24328       0.24380      0.26754
5            1.55286       

5

    0.03218      0.23209       0.23241      0.26663
6            1.29402           0.02692      0.22045       0.22091      0.26299

8            9.70496 10   0.02026      0.19864       0.19897      0.25−×
25

25 5 3

725 

1 10     7.76386          0.01622       0.17922       0.17942      0.25010
1.5          5.17581          0.01214       0.14144       0.14150      0.23287

2 10    3.88182 10  8.0712 10  0.11544  − −

×

× × ×     0.11545      0.21483
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iL ( )∞

1 2 3 4 5

20

                    L                   L                  L                  L
   

  4 10       0.07977         0.09354         0.09354         0.09354         0.09354
  5          

                L

×

ω

     0.07494                                                                   
  6               0.07023                                                                   
   8               0.

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

21

06153                                                                   

  1 10        0.05396                                                                  
   1.5            0.03973       

↓ ↓ ↓ ↓

× ↓ ↓ ↓ ↓

21

                                                            

   2 10       0.02990          0.09354          0.09354         0.09354        0.09354
  _______________________________________________

↓ ↓ ↓ ↓

×

22 5

23

____________________________        

   8 10     4.7087 10    0.08040          0.09347         0.09354        0.09354

   1 10     3.0136            0.07572          0.09342         0.09352           

−× ×

×

6

 
   1.5          1.3394            0.06464          0.09328         0.09351             

   2             7.5339 10    0.05512          0.09307         0.09349         0.09352  
   3             3.34

−

↓

↓

×
84            0.04074          0.09251         0.09344         0.09351

   4             1.8835            0.03097          0.09180         0.09336         0.09349
   5             1.2054            0.02

7

419          0.09092         0.09332         0.09346  

   6             8.3710 10     0.01934          0.08992        0.09312         0.09342  
  8             4.7087             0.01308          0.087

−×

24 3

64        0.09286         0.09332  

   1 10      3.0136           9.385 10       0.08510         0.09240         0.09320  
   1.5           1.3394           4.855               0.07825         0.09114

−× ×

8

3

        0.09279  

   2             7.5339 10    2.935               0.07138         0.08955        0.09224  

   3              3.3484           1.392 10       0.05903         0.08573        0.09080  

 

−

−

×

×
4  4              1.8835           8.052 10      0.04901         0.08146        0.08901

   5              1.2054           5.215               0.04106         0.08005        0.08697  

   6              

=×

9

25

8.371 10     3.647               0.03474         0.07268        0.08477
   8              4.709             2.064               0.02563         0.06445        0.08010  

   1 10       3.014            

−×

× 4

9 5

25 10 5

1.324 10       0.01956          0.05713        0.07537  

   1.5           1.339 10     5.726 10       0.01116          0.04280        0.06415

   2 10     7.534 10     3.221 10       0.00714      

−

− −

− −

×

× ×

× × ×     0.03287        0.05457
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iM ( )∞

1 2 3 4 5

20

                    M                 M                 M                M

4 10        0.30391        0.36602        0.36602        0.36602        0.36602
5                0.28798  

                M

×

ω

                                                            
6                0.27323                                                              
8                0.24713                     

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

↓
21

                                         

1 10         0.22504                                                              
1.5              0.18334                                           

↓ ↓ ↓

× ↓ ↓ ↓ ↓

↓ ↓
21

22

                   

2 10         0.15324        0.36602        0. 36602        0.36602        0.36602
  _________________________________________________________________________        

8 10      4.8

↓ ↓

×

× 3

23

522 10     0.30608        0.36507        0.36602        0.36602

1 10       3.8817            0.29051        0.36451        0.36574             
1.5            2.5878            0.25635        0.36308

−×

× ↓

        0.36550             
2              1.9409             0.22841        0.36140        0.36528        0.36574    
3              1.2939             0.18634        0.35742        0.36469        0.

↓

4

36550

4              9.7043 10     0.15659        0.35304        0.36384        0.36528
5              7.7635             0.13463        0.34829        0.36353        0.36488  
6              6.4696    

−×

24

         0.11782        0.34334        0.36175        0.36451 
8              4.8522             0.09391        0.33324        0.35978        0.36353 

1 10       3.8817             0.07781        0.323× 10        0.35670        0.36239 
1.5            2.5878             0.05407        0.29880        0.34944        0.35926 
2              1.9409              0.04122        0.27679        0.34160        

5

0.35567 
3              1.2939              0.02777        0.23982        0.32552        0.34765 

4              9.7043 10      0.02087        0.21064        0.30976        0.33915 
5              7.763

−×
5              0.01667        0.18729        0.30489        0.39047 

6              6.4696              0.01387        0.16830        0.28082        0.32183 
8              4.8522              0.01037  

25

      0.13942        0.25578        0.30506 

1 10       3.8817              0.00827        0.11863        0.23426        0.28939 
1.5            2.5878              0.00535        0.08579        0.1924
×

25 5

6        0.25489 

2 10      1.9409 10       0.00401        0.06681        0.16253        0.22681−× ×
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APPENDIX J

2nd  LAYER SELF CONSISTENT INTEGRALS

2 2 2j 2 2

20

   I                  J                 J                 L                  M

4 10     0.73200        0.27145        0.27145        0.09354       0.36602   
5                        

              

×

↓

ω

                                                                
6             0.73200                                                         0.36602  
8             0.73194                    

↓ ↓ ↓ ↓

↓ ↓ ↓

↓
21

                                     0.36599  

1 10      0.73188                                         0.09354       0.36596 
1.5           0.73175                                         0.093

↓ ↓

× ↓ ↓

↓ ↓
21

22

53       0.36590             

2 10      0.73153        0.27145       0.27145         0.09353       0.36579 
________________________________________________________________________    

8 10      0.6140

×

×
23

5       0.26519       0.26792         0.08068        0.30705

1 10      0.58323       0.26204       0.26594         0.07607         0.29164
1.5           0.51545       0.25262       0.25946         0.06
×

511         0.25775 
2             0.45983        0.24207       0.25139         0.05565         0.22994 
3             0.37580        0.22058       0.23290         0.04127         0.18793 
4             0.31621        0.20067       0.21394         0.03146        0.15813 
5             0.27210        0.18309       0.19618        0.02462         0.13608 
6             0.23830        0.16780       0.18002

24

        0.01971         0.11917 
8             0.19012        0.14298       0.15315        0.01337         0.09508 

1 10      0.12306       0.10174       0.13284         0.00615         0.06156 
1.5    
×

       0.10962        0.09241      0.09746         0.00498         0.05483
2              0.08359        0.07323      0.07655         0.00302         0.04182
3              0.05632        0.05143      0

4

4

.05313         0.00143         0.02818 

4              0.04230        0.03948      0.04050       8.279 10       0.02118 

5              0.03381        0.03198      0.03266       5.371 10       0.01693

−

−

×

×
4

4

25

 

6              0.02812        0.02684      0.02733       3.758 10       0.01409 

8              0.02109        0.02029      0.02056       2.127 10       0.01053 

1 10       0.01675        0.01628   

−

−

×

×

× 4

5

25 3 3 3 5

   0.01646       1.364 10       0.00840 

1.5            0.01086        0.01086      0.01095       5.902 10       0.00543 

2 10    8.149 10    8.149 10   8.195 10     3.320 10       0.00407
     

−

−

− − − −

×

×

× × × × ×

     Get 12J  from Appendix I.
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INDEX

A - A, 130; a, 21, 150; a , a , 18;
     A , 214; α̂ , 40; (*i, j), 364
A - Mass number, 128
A - Vector potential, 214
Abstraction, Levels of, 1, 4
Abraham, M., 300
Abraham-Lorentz equation, 299
Absolute,
    Acceleration, 185f
    Observer, 10, 12, 14, 181, 208,
        266f, 321, 407f, 415
    Space, 8, 184f
    Time, 8, 184f
Acceleration, 14
    Absolute, 185f
    Component of momentum, 295
        302f
    Coriolis, 411
    Ether, 18, 47, 185f, 220, 256f,
        269, 407f
    Gravitic, 47, 317f
    Radiation, 293f, 298f
Advance of perihelion, 159f, 324
Aharanov-Bohm effect, 311f
Alternating current, 296
Amplitude constant, 21
Amu, Atomic mass units, 131
Annihilation, Pair, 287
Angle variables, 364
Angular frequency (ω ), 35
Angular momentum, 20, 39f, 149f,
        162, 303f
    Orbital, 149, 162
Angular persistence, 20
Antecedents, Dyadic, 373
Anti-particles, 90
Atom,
     Clock, 189, 322
     Deterministic, 147f, 174f
     Free, 166, 174
     Ground state, 159f, 294
     Hydrogen, 147f, 181, 204f
     Radiation, 159, 293f, 298
     The, 146f
Atomic orbits, 150f, 170f, 191, 294
Axes, Principal, 383

B - B , 214f; b, 21; β , 50; αβ
i jB , 82f

β  decay, 120, 142
Bandwidth-time product, 174

Base,
     Coordinate systems, 367
     Metaphysical, 7, 10, 184
Bending of photon path, 326f
Beta decay, 120, 142
Bion, 75, 87
    Concentric, 108
    Orbiter
        Inside, 116
        Outside, 116f
Boersch, H., 310
Bohm-Bell diversion, 65
Bohr-Sommerfeld model, 148
Bose-Einstein statistics, 262
Box product, 366
Braking radiation, 296
Bridge,
    Constant, 21
    Equation, 24f, 36, 89
Bulk distortion,
    Density, 27, 99
    Gradient squared, 28
    Incremental, 27
    Surrounding function, 28
Bulk equations, 25f, 35f, 99f
Bulk flow, 29

C - i jpC , 387; c, 0c  20f

Capacitor, 258f
Cartesian coordinates, 355, 365, 399
Cause and effect, 2, 189, 195, 198
Centrifugal and centripetal force,
        271f
Center shift broadening, 175f
Charge, 11, 28, 38, 52, 94f, 98
    Density, 11, 28, 38, 52, 94f, 98
Christoffel coefficients, 386f
Circulation, 215, 219f
Clock paradox, 198f
Clock set, 192f
Clocks, 189, 322
Color, 119
Contact clock set, 193f
Compression/oscillation, 23f, 72f
Compton effect, 290
C-on, 75, 234f
Concentric particles,
    Bions, 108f
    Trions, 112f
Conduction electron, 296
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Conservation,
    Energy, 10, 76, 276, 332f
    Laws, 15, 332f
    Momentum, 270, 332f
Constancy of the velocity of light, 182f
     205, 211, 213
Constants, Universal, 20f
Constant velocity electron, 48f
Continuity equation, 15, 18, 26, 31,33,
      94, 247, 332f, 406f
Continuum, Perfect, 11f
Contraction,
    Clock (see Dilation, Slowing)
    Real, 199
    Rod, 181f
    Longitudinal, 53
Conversion, 75, 120, 135, 254
Coordinate numbers, 14
Coordinate system, 14, 355
    Cartesian, 355, 365, 399
    Cone, 357f
    Cylindrical, 398
    Curvilinear, 357
    Fluid, 265, 268f, 412f
    Moving, 193f, 269f, 319, 407f
    Non-orthogonal, 387
    Orthogonal, 357, 395f
    Principal, 384
    Spherical, 356, 396
    Transformation, 400
Coriolis acceleration, 411
Correspondence principle, 160
Coulomb's law, 29, 301
Cross product, 352, 366
Curl,
    Stoke's theorem, 381
    Vector field, 14, 344
Current loop, 221
Curved space, 8, 11, 317, 325
Curvilinear coordinates, 357
Cutoff function, 35, 50, 70, 88f

D - D, 21; m d , 310;∇ , 15, 347, 392;

     ∇2 , 22, 224, 392; d'r, 269, 409
Datum,
    Ether density, 12f, 37, 48, 63f,
        215, 257, 318
    Fluctuations, 63, 76, 80, 130, 160,
        173f, 298
Davisson & Germer, 310
Decay time, 175
Del, 15, 347, 392
Delay time, 175
Deformation energy, 28, 37
Deformation, Rate of,
    Fluid element, 422

Density, Ether, 12f
    Absolute, 12f
    Datum, 12f, 37, 48, 63f, 215, 257,
       318
    Incremental, 12f, 16, 25, 27, 35
    Scalar equation, 23, 24, 34, 35f
Derivatives,
    Fluid, 414, 418
    Intrinsic, 417f
    Moving point, 267f, 268, 412f
Des (see Descartes)
Descartes, 20, 27,36, 425
De-synchronized Clocks, 205f
Determinism, 4f
Deterministic, 4f, 64f, 74, 124, 146f,
Deuteron, 126f
Differential inertial system, 269f, 272
Differential length vector, 357
Diffraction, Electron, 310
Dilation (Expansion)
    Time, 189f
Directional derivative,
    Scalar field, 346
    Vector field, 348
Displacement of fluid element, 419f
Distinguishable particles, 262f
Distortion,
    Bulk density, 27, 36
    Charge, 28, 38
    Energy, 28, 37
Distortion of fluid element, 421
Divergence,
    Vector field, 350, 394f
    Dyadic field, 353, 394f
Doppler shift, 60f
Dot product, 366
Duality, Wave-Particle, 290
Dyadic, 14, 281f, 349, 371f

E - cE , 142; k E , 55; 0E , 37; n p E  ,E ,

      131; RE , 298; s E , 136; E , 53,
      188, 229; e, 21, 48, 70;  ε , 150;
      e ε , 28, 31, 37; εm , 230, 336;  η ,

      149f, 225; η , 22, 31, 34, 51; s η ,45

Effective radius, er , 37, 48, 77, 100
Einstein, A., 8, 64, 180, 262, 308, 317f
Electric field intensity, 53,188,229
Electric potential, 27
Electromagnetism, 256
Electron, 32f
    Constants, 48
    Diffraction, 310
    Energy, 37f, 52f
    Extended, 32f
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Electron (continued),
    Frequency, 35, 48, 60, 72f, 80f, 146,
        150f, 310f
    Interference, 309f
    Moving, 48f
    Orbit, 148f
    Rest, 32f, 48
    Radiation, 293f
    Structure, 32f
    Transition, 160
Electrostatics, 257f
Element, Fluid, 406f
Elementary particle,
    Neutrino, 234f
    Neutron, 117f, 123
    Photon, 234f
    Positron, (see Electron)
    Proton, 112f, 117f
Ellipsoid, 383f, 421
Emission coefficient, Spontaneous, 180
Energy, 10, 16, 28, 37, 52f, 70, 85,
        101, 130f, 149f, 179, 232, 275f,
        291f, 298f, 328f, 333f
    Binding, 130f
    Conservation, 55, 334
    Conversion, 75, 120, 135f, 141, 254
    Interaction,  101f, 275
    Kinetic, 55, 149, 162
    Lowest, Rule, 125
    Magnetic, 56, 228f, 336f
    Photon, 235f
    Potential, 128, 149, 328f
    Separation, 120, 135f, 141
Energy density, 28, 37, 52, 70, 101,
        228f, 328, 333f
Energy equation, 323, 325
Ensemble statistics, 4, 43, 262f
Environments, Principle of Identical, 3,
EPR, 65
Equations, Laws, 213
Ether, 8, 11f, 32, 63, 75, 124, 173,
        185f, 215f, 318f
    Concentrations, Static, 15, 21
    Density, 12f, 16, 23f, 34f, 37, 48,
        63f, 215, 257, 318
    Field Equations, 15, 19, 22f, 94f,
        215, 246, 266f, 3318, 423
        Electrostatics, 257f
    Force, 270f
    Motion, Efforts to measure,
        197f, 204
    Observer, 10, 12, 13, 187f, 208,
        265, 268f, 319, 407, 415

    Turning, 59, 133, 148f, 162, 167f,
        285f, 287, 294f
Euclidean, 3-space, 11

Exchange force, 120, 125
Exclusion priciple, 119, 133, 173
Expansion, Lateral, 53
Experiments, 196f, 213
External force, 270f, 324f

F - F , 267f; F , 23;
Fermi-Dirac statistics, 262f
Field, 10
    ImpIicit conditions, 423
    Scalar, 14, 344f
    Vector, 14, 344f
    Unified, 10f
Field equations, 1, 13f, 22f, 31, 35f,
        49, 93f, 215, 246, 256f, 318, 423
Field function relationships, 399, 401
Field operators, 392f
Fitzgerald-Lorentz contr., 188, 210
Flow,vector, A , 256
    Incremental, 26
Fluid,
    Circulation, 215. 219f
    Coordinates, 265, 269f, 412f
    Derivative, 414, 418
    Element, 406f
        Distortion, 421f
        Translation, 421
    Observer, 269, 272, 412
Force, 125f, 214, 266f, 298f,
        324f, 328
    Exchange, 120, 125
Force equation,
    Kirkwood, 268f, 273, 323f
    Lorentz, 284
        Electric, 273
        Magnetic, 277
        Transformer effect, 268
        Total, 284
    Neutral body, 268, 273, 323f
Form factors, 121
4/3 factor, 53
Four vector, 301
Free electron, 296
Frequency ( ω ), 35, 105
    Atomic, 161, 322
    de Broglie, 60f, 146, 155f
    Electron, 35,48, 60, 72f, 80f, 146,
        149f, 310f
    ! -wave, 35, 80, 96f, 269f, 318f

G - G, 47; G , 24, 73, 79f; 
i j
g , 364;

     Γ , 219f; Γ
sun

, 390; γ , 49f, 148,

      188f, 211, 246, 269, 276, 289,
      299, 319
G - Gravitational constant, 47
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Galilean transformation, 319, 404
Gauge equation, Lorentz, 333
General observer, 10, 12, 14, 187,
       208, 265f, 321, 408, 415
General relativity, 317, 325f, 327, 329
    Bending of photon path, 326f
    Gravitational red shift, 322
    Perihelion advance, 150f, 304
    Geometry, Space, 319. 331
Gradient,
    Scalar field, 346
    Dynamic, 188
Gradient squared distortion, 28
Gravitics, 317f
    Bending of photon path, 326f
    Gravitational constant, 47, 319
    Gravitational red shift, 322
    Primary inertial system, 319

H - h, 62; ih , 362
h, 21, 62, 70, 170,
Heaviside-Lorentz units, 20, 425f
Hidden variables, 65
Hydrogen atom, 146f, 225f, 294, 336

I - I, 217, 385; i , 408
Idemfactor, Dyadic, 217
Identical environments, Principle of, 3
Implicit field conditions, 423
Incremental ether density, 12f, 16, 25,
        27. 35
Indeterminacy, (see Uncertainty)
Indistinguishability, 70. 263
Indistinguishable particles, 70, 263
Inertia, 56f, 267
Inertial forces, 267f
Inertial system, 14, 181f
        Differential, 269f, 272
Integral, Line, Vector field, 347
Interaction,
    Energy, 101f, 275
    Particle-field, 291
    Particle-particle, 290
    Strong, 120, 125f, 145
    Weak, 120, 125f, 145
Interference, 307, 309f
Intrinsic field properties, 417f
Invariant field properties, 417f
Isobar, 133, 135
Isotone, 135
Isotope, 135
Ives-Stilwell experiment, 197

J - iJ , 102; j , 408

K - gK , 46; iK , 97; i jK , 106;

     sK , 41,44; tK , 149; ωK , 79;

      κ , 41; k, ψk , 149; k , 408

Kinematics, 15
    Fluid, 406f
    Moving point, 407f, 412f, 419
Kinetic energy, 55, 149
Kirkwood, R.L, 3, 266, 268f, 270,
        317, 324, 325, 327, 328, 415,
        423
Knowing, 4, 184

L - L, 189, 260, 380; L , 341; iL , 103;
     ! , 15f, λ , 80
! -wave, 15f
Lamellar field, 349
Laplacian, 28, 352
Lateral expansion, 53
Laws, 1
    Conservation, 15, 317
    Newton's, 267f
    Relativity, 184, 208f, 317
Layeron, 75f
Length vectors, Real, 360f
Levels of abstraction, 1, 4
Liebowitz, B., 35, 67
Light set, 193f, 205
Light velocity, Constancy, 193f, 205f,
        211, 213
    One way, 193f
    Variable, 193f, 326f
Line broadening, 174f
Line element, 363f
Line integral,
    Vector field, 347
    Diadic field, 349
Linewidth, 168f
Linear acceleration, 295
Longitudinal contraction, 53
Longitudinal waves, 16f, 33f
Lorentz,
    Distribution, 175f
    Gauge equation, 333
    Force equation, 284
        Electric, 273
        Magnetic, 277
        Transformer effect, 283f
        Total, 284
    Invariance, 400, 417
    Radiation, 299f
    Transformation, 209f, 265
Lorentz-Dirac equation, 300
Lowest energy rule, 76f, 125, 130f,
        134f
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M - M, 42; iM , 95, 97; m, 57, 250f,
      293, 300f; 0m , 38, 47; µm , 81,

      µB , 222; µs , 42; µsi , 95

Mach's principle, 310
Main-line physics, 9
Magic numbers, 133
Magnetic field, 211f, 216
Magnetic flow, Surface, Max., 219
Magnetic moment, 39f, 95
    Proton, 99
Magnetics, 211f, 251f, 315f
Magneton, Bohr, 222
Magnetostatics, 212, 251f, 260f
Mass, 11, 13, 38
    Number, 128
    Proton, 98f
    Rest, 38, 47
Matter waves, 60, 289
Maxwell-Boltzmann statistics, 245
Maxwell's equations, 146, 239, 281f
Measurement, 3, 6, 180f, 248f
Mechanics, 248f
Metaphysics, 1, 7, 10
MeV, 81, 105
Michelson-Morley, 192
Models, Mathematical, 6
Momentum, 56f, 110, 250f, 282f, 321
    Angular, 20, 39f, 148f, 159, 286
    4/3 factor, 53
    Orbital angular, 148, 159
Motion, Relative, 186f
Moving coordinate systems, 188f, 252f,
        298, 386f
Moving electron, 48f
Moving point derivative, 250f, 261,
391f
mp, (see Moving point derivative)
Multilayer particle, 81f
Muon, 78f, 81, 119f, 232

N - N, 130, 298; n, 154f; ψn , 107f,

      153f; νd , 62, 151f
N, Neutron number, 130
Neutral body, 251f, 296, 302f
Neutrino, 75f, 231f
Neutron, 116, 123, 125f
    Conversion energy, 141f
Newton's laws, 250f
Non-orthogonal coordinates, 336
Non-radiating, Accelerated electron,
    58f, 146f, 277

Nuclear,
    Binding energy, 125, 130f
    Conversion, 75, 135, 141f
    Electric quadrupole moment, 133
    Fermi gas approximation, 133f
    Force, 120, 125f
    Interaction, 120, 125f
    Liquid drop approximation, 131f
    Potentials, 129
    Radius, 128
    Separation, 120, 134, 136f
        Energy, 136f
    Shell approximation, 133
    Stability, 134f
Nuclide, 131
Nucleon, 124f
    Conversion, 141f
Nucleus, 124f

0 - Ω , 422; ω , 22, 95; ωe , 35, 48, 80
Observer,
    Absolute, 10, 12, 14, 187, 20f, 265f,
        321, 407f, 415
    Ether, 10, 12, 13, 187f, 208f, 265,
        268f, 319, 407f, 415
    General, 10, 12, 14, 187f, 208, 265f,
        321f, 407f, 415
Operator, Del, 15, 347, 392
Orbital angular momentum, 149, 162
Orbits, Electron,
    Circular, 153, 159
    Stable, 153f, 233, 294
    Unstable, 153f, 294f, 298
Orbits, Neutral body, 324
Orthogonal coordinates, 357, 395f
Oscillating electron, 296f

P - p, 57, 149; { }p , 178; φ , 12f,

     16; φ φa d ,  , 12f, 16; φ0 , 36, 95;

     φ , 16f, 36f, 96f; φa , 17f; φi , 16f,

      94f; Φ , 381f, 397f; Φs , 422;
     Ψi , 374f, 378f
Pair production/annihilation, 21,
        297f
Paradox, 1f
    Clock, 198f
    Twin, 198f
Parallelogram rule, 360f
Parallel plane charge sheets, 258f
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Particle,
    Anti-, 90
    Categories, 75f
    C-on, 75, 234f
    Distinguishable, 262f
    Elementary, 75f
    Extended, 32f, 74f, 301
    Fundamental, 75
    Indistinguishable, 262f
    Layeron, 75f
    Point, 74
    Stable, 75, 80, 89f, 109f
    Turning, 59f, 133, 149f, 162, 167f,
        284f, 287f, 294f, 313f
    Wave, Duality, 60, 290
Pauli, W., 168, 283
Pauli's exclusion principle, 132, 173
Perihelion advance, 151f, 324
Perihelion recession, 151
Periodic component of field equation
    solutions, 16f
Periodic contribution to force, 270,
        319f
Persistence, angular, 20
Phase, 24
Photon, 76, 89, 234f, 290, 293, 297,
        303f, 313, 325f
Photon broadening, 175
Photon clock, 189
Physical laws, 1
    Coulomb's law, 29, 301
    Conservation of energy, 10, 76, 276,
        332f
    Relativity, 184f, 205, 208f, 213
Planck's radiation law, 67
Plumb bobs, 184f
Point charge, 36, 74, 301
Poisson's integral equation, 423
Position vector, 358
Positron, (see Electron), 32, 275, 277
Positronium, 89, 116, 297
Post-Factor, 374
Potential,
    Electric, 27
    Scalar, 347f
    Vector, 214
    Velocity, 22
Precession,
    Einstein, 325
Pre-factor, 374
Preferred frame of reference, 268f, 402f
Primary inertial system, Gravitic, 319
Principal axes, 383f

Principal coordinates, 384
Principle,
    Exclusion, 119, 133, 178
    Of identical environments, 3
    Of relativity, 184f, 205, 208f, 213
Products, Dyadic,
    General, 376f
    Idemfactor, 377
    Mixed, 376f
Products, Vector, 366
    Box, 366
    Cross, 352, 366
    Dot, 366
    Triple, 366
Propagation, 232, 234f, 293f
Proper time, 325
Proton, 75, 93f, 118f, 125f,
        146f, 294, 318f, 336, 343,
    Conversion, 141f
    Number, 130
Pseudo-stable orbits, 298
Pulse length, 174f
Pure strain tensor, 421

Q - i jq , 363

Quadron, 87,
Quantum,
    Mechanics, 9, 60f, 64, 174f, 242f
    Number, 155f, 157f, 172
Quarks, 85

R - e r , 37, 48, 100; ir , 79, 93f; r', 51;

    r̂ , 35, 358; r , 358; r , 0r , 408;

     HR , 80; R̂ , 51, 398;R , 50;

     R ,224; ρ , 28, 38
Radiation,
    Atomic, 159, 293f, 298
    Braking, 296
    Criterion for, 58f, 156f, 221f, 267f,
        285
    Electron, 58f, 159f, 224f, 284f, 302
    Free atom, 174f
    Frequency, 159f
    Interference, 307
    Linewidth, 174
    Reaction, 298f
    Synchrotron, 294, 313f
Radius, Effective, 37, 48, 79, 89
Rate of rotation tensor, 422
Rate of strain tensor, 422
Rate of surface strain tensor, 422
Reciprocal base system, 367



441

Relativity, 8, 53, 180f, 184, 205f,
        208f,292, 317f, 325, 327
    Law of, 209
    Special, 209f
    General, 317f
Resonances, 119
Rest mass, 38, 47
Resynchronization, Special relativity,
        204f, 208f
Robertson, H.P., 210f
Rods, 184f
Rotation of fluid element, 415f, 426f
Runaway solutions, 302

S - S, 41, 407; S , 269f, 407f; *, 50f,
364; ŝ , 346f; σ , 41, 48
Scalar, 14, 344f
    Density equation, 256
    Of dyadic, 358
     Potential, 13, 35f, 347
Scale factors, 360
Scattering, Elastic 290
Schroedinger's equation, 66f
Self conjugate dyadic, 375
Semi-classical quantization,
    Atom, 169f
    Collisions, 169
    General, 66f
    Molecules, 169
    Radiation, 170
Separation, 120, 135f
    Energy, 136
Separation of constant and periodic
    components of the field, 16f
Shape equation, 35
    Solutions, 35, 50f
Shape of fluid element, 421
Simultaneity, 204, 205f, 209f
Simultaneous transformations, 209f
Single solution rule, 119, 132f, 173,
        263
Slowing of clocks, 189, 197
Slowly varying field component, 16f
Solenoid, 218, 208f, 288f
Sommerfeld, A., 300
Sources of the field, 29, 257
Space,
    Absolute, 8, 11f
    Curved, 325
Space-time, 8, 184, 191
Special relativity, 205f
Spectral line broadening, 174f
Spin, 39f, 59, 103f, 119, 172f
    Energy, 230f
Spherical charge sheets, 259f

Splatter, 120
Spreading rule, (see Lowest energy
        rule)
Stable particle, 75
Stability, Nuclear, 134f
Standing ! -waves, 23
Standing wave field, 23, 307f, 317f
Static field, 16f
Statistics,
    Bose-Einstein, 262
    Fermi-Dirac, 262
    Maxwell-Boltzmann, 262
Statistical quantum mechanics, 64f,
        173f, 262f
Strain, 420f
    Dyadic, 420
    Rate of, Tensor, 421
Strong field, 145
Strong Interaction, 119, 120, 125
Sub-dot, 16, 390f
Summation convention, 362f
Surrounding function, 28, 36, 352
Sustaining waves, 16, 24f
Symmetric dyadic, 381f
Symmetry, 332
Synchronization of clocks, 8, 15, 193f
Synchrotron radiation, 294, 313f

T - T, 149; T(x), 42, 427; tT , 162;

     τ , 78; τp , 171; τf , 176; dti , 411f,

     θ , 356; cθ̂ , 342
t-waves, 15
Tau, 78
Teitelboim, C., 298, 301
Tensor, 344
Theory, 1
Thermodynamics, 70
Thomson atom, 160
Time, 8, 11, 15, 189
Time average component,
    Of field equation solutions, 16f
    Of force, 270, 320f
Transformation,
    Galilean, 404
    Lorentz, 184f, 198f, 209f, 265, 283
    Space coordinate, 378, 402
    Theory, 400f, 408, 414f
Transformer Effect, 288
Transition, Electron, 160
Translation, 421
Transverse waves, 16, 232f, 249, 293,
        303, 313
Traveling ! -waves, 22
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Triadic, 376
Trion, 75, 86f, 91f, 93f, 112f, 117f
Triple product, 366
Truncation Integral, 42, 427f
Tunneling, 129
Turning, 59, 148f, 162, 285f,
        287f, 294f
Twin paradox, 198f

U - u, u , 49f, 188f, 269f, 411f
Unit vectors, 345, 360
Unitary vectors, 360f
Units,
    Amu, 131
    Descartes, 20, 27, 36, 405
    Fermi, 128
    Gauss, 285
    Heaviside-Lorentz, 20, 36f, 48, 217f,
        425
    MeV, 85, 111
    Tesla, 285. 425
    Volt, 27, 425
Unified field, 10-31
Universal constants, 20f
Unon, 75f
Utility, 1

V - V, 12f, 129, 149, 163, 211;

     x y zV ,V ,V , 12; V , 13; V , Vi , 13

Vacuum, 63
Variable velocity of light, 195
Vector, 14, 344, 347
    Components, 365f
    Derivatives of, 391
    Of a dyadic, 378
    Field equation, 31, 215, 224, 256
    Flow, 214f
    Position, 357f
    Potential, 214
    Same, 410, 419
    Same kind of, 410, 419
    Unit, 360f
    Unitary, 360f
Velocity,
    Ether, 12, 19
    Potential, 22
Velocity of light,
    Constancy of, 193, 205f, 211, 213
    One way, 193f
    Variable, 193f
Volume, Rate of change of, 418
v. Laue, M., 300
Vortex.
    Atomic, 224
    Neutrino, 254
    Photon, 244f

Vorticity, 20. 214f, 277f, 285, 422

W - W, 292; 0w , 407f
w , Vorticity, 407f
Wave energy, 16, 293, 330, 340f
Wavelength, ! -wave, 44
Wave-particle duality, 60, 290
Waves,
    Longitudinal, 15f, 33, 45, 50, 60,
        94f, 153f, 173f, 254f, 258f, 307f,
        318f
    Sustaining, 21, 24, 153f, 273, 309
    Transverse, 16, 232f, 249f, 293,
        303, 313
Weak field, 145
Weak Interaction, 120, 125
Work, 291

Z, Proton number, 130
Zero point fluctuations, 63, 80, 120,
        130, 150, 173f, 298
Zero time average,
    Contribution to force, 270, 390
    Solutions of the field, 16


