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INTRODUCTION

     Almost all the shortcomings of classical E&M can be traced to a

breakdown in its handling of particle structure.  The combination of

Dirac's equations and Maxwell's equations to form quantum

electrodynamics has exactly the same problems.  For about 102 years,

these problems have been left uncorrected.  The rush to quantum

mechanics brought serious work on them to a crawl.

     There were three things classical E&M did wrong:

               1.  It ended up with point particles

               2.  It defined electric and magnetic energy incorrectly (and

                    often attributed a particle's kinetic energy to its magnetic

                    field)

               3.  The Pointing theorem failed to correctly describe energy flow

                    except for radiation

     At the present state of our knowledge, all three of these problems

have the rather simple solutions presented here.

EARLY PARTICLE MODELS

      In the steady development of the understanding of electricity and

magnetism, certain milestones stand out.  In 1837, Faraday correctly

defined static electric field energy density (in Heaviside-Lorentz Units) as,

                                             21
e 2 ( )ε = ∇φ      .                                  (1)
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Figure 1.  Hollow conducting sphere

In 1853, Kelvin correctly defined static magnetic field energy density as

(HLU),

                                                 21
m 2ε = B      .                                       (2)

Finally, in 1864, Maxwell combined the various definitions with

Faraday's visualization of the fields to yield the E  and B  equations now

known as Maxwell's equations.

     Motivated by the advanced development of the atomic theory,

speculation about particles became popular.  In 1881, J. J. Thomson

decided to apply Maxwell's theory to the motion of a charged particle. In

the following, some of the details of the various models are slightly

changed to better match the present state of knowledge and simplify the

results.  Roughly, Thomson assumed the particle to be a thin, hollow,

rigid conducting sphere of radius sr  and charge q, as shown in Figure 1.

He assumed that the charge was

uniformly distributed over the surface

so that inside the sphere the electric

field was zero.  Outside, the potential,

electric energy density and total external field energy were (HLU),
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This was thought to be a reasonable result for a charged particle at rest.

     More important was the calculation for the particle moving at

constant velocity.  It was assumed that at low velocity, 0u c 1<<  , the

electric field would not change significantly, and that the magnetic field

energy represented the kinetic energy to be added to 0E ,

           21
m 2ε = B      ,     

sk mrE dvol∞= ε∫∫ ∫      ,     
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There was some dissention about this value for E because there were

other reasons to believe that a moving field's energy should be 0E E= γ .

     In 1884, Poynting derived his field energy flow theorem from

Maxwell's equations, and thirteen years later J. J. Thomson was able to

demonstrate that there were charged particles.  They were ultimately

named electrons.  This stimulated more interest in charged particle

theory.

     Abraham, using the same rigid conducting sphere model that

Thompson had used twenty two years before, adopted Thomson's rest

energy calculation as correct; but in the moving charge case decided to

apply the Pointing theorem for the total moving energy ( 0u c 1<< ).  The

result was,

     0c= ×S E B     ,     
sr

E  dvol∞= ∫∫ ∫u S  
s

4
0 0r 3c  dvol E∞= × =∫∫ ∫ E B u      .     (5)

Canceling the  u 's,

                                                 4
03E E=      ,

a very unsatisfactory result.

     One year later, in 1904, Lorentz repeated the derivation using the

Lorentz Transformation and a flexible sphere.  The result still had

4 3 factors.  For this reason, the preceding, incorrect derivations are

often described as the 4 3  problem.

     When Einstein published his Special Relativity paper in 1905, it

settled once and for all the need for the Lorentz Transformation and the

constant velocity charge total energy as 0E E= γ , because the derivation

did not require specifying the particle structure.  This is essentially

where classical particle structure development stopped.

     Since quantum electrodynamics combines Dirac's equations of

particle motion with Maxwell's potential field equations, it has all of the

above 4 3  problems. Also, both Dirac's equations and Lorentz' solution
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of Maxwell's equations require the use of point particles, with the

attendant infinities.

 THE LAST 102 YEARS (1905 - 2007)

     In the models discussed previously, the problems can be summarized

under three headings:

          1.  "Point" particle infinity

          2.  Incorrect definitions of energy densities, including

               the assumption that  kE , the particle's kinetic energy,

               is magnetic

          3.  Correction of the Poynting Theorem

      These three problems have been unsolved for the last 102 years.  In

the following, a simple solution to each of them is presented.

SOLUTION OF THE "POINT" ELECTRON PROBLEM

     It is desired to find a finite solution of Maxwell's Equations, as they

are used in quantum electrodynamics (Heaviside-Lorentz Units),

  
2

2
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c t
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c t

∂φ
∇ = −

∂
Ai   .  (6)

For the particle at rest, a solution of the scalar equation,

                                                 2∇ φ = −ρ     ,                                         (7)

must be found that eliminates the infinities of the "point" charge.  A

simple, spherical trial solution is,

                                           i2r /r
0(1 )−φ = φ − ε     ;                                (8)

Figure 2 below indicates that this potential has only two significant
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Figure 2.  Finite electron solution

features, the center value 0φ  (positive or negative) and the radius ir  of

the inflection point.

     The corresponding

charge density

distribution required to

complete the solution is

found by substituting

the trial solution Eq.(8)

in Eq.(7) to yield,

                                            i
2

2r /r0 i
4
r4

r
e−φ

ρ =     ,                                   (9)

a smooth shell of charge distortion that peaks at half ir .  This

distribution is a reasonable one.  Integrated over all space, the total

charge is 0 iq 8 r= πφ .

     Similarly, the electric energy density distribution is found from,

                           i i

2 2 2
4r /r 4r r2 0 i1

e 2 4 2 4
r q( ) 2 e

r 32 r
e− −φ

ε = ∇φ = =
π

    ,              (10)

a smooth shell of energy distortion that peaks at the inflection radius ir .

If eε  is integrated over all space, the resulting finite energy is 2
0 0 iE 2 r= πφ .

     Just to get some idea of the magnitudes involved, if the potential in

Eq.(8) is assumed to represent an electron, then using
7

0E 8.18711 10 ergs−= ×  (0.511 MeV) and 9 q e 1.7027 10 hlcoul−= − = − ×

( 191.6022 10 C−− × ), the center potential and inflection point radius are

3
0 1.9233 10 hlvolts φ = − × (approx. 6  2 10 V− × ) and 14

i r 3.522 10 cm−= × .

These are not unreasonable numbers for the electron.



THE EXPERIMENTAL "PROOF" FOR THE "POINT" ELECTRON

     What about the experiments that "prove" the electron is a "point"

particle?  It is important to notice that the expansion of the gradient of

Eq.(8),

                                  
2

0 i i i
2 2
rd r r 2 1 2 2 ...

dr rr r
 φφ

= − − + − 
 

           i r r>

reduces to 2d dr e 4 rφ ≅ π  ( for ir 200r  > ), the Coulomb field of the

"point" charge.  This explains why the well known collision experiments1

that appear to support the "point" charge electron model are also in

complete agreement with the present, finite solution.

     At low collision energies, the principal interaction is out in the

Coulomb region.  As the collision energy is increased, the Lorentz

contraction of the gradient causes the inner, non-Coulomb volume to

shrink, and the interaction never catches up with that inner region.

THE EXTENDED ELECTRON IN MOTION

      So far, the extended electron model appears to be satisfactory; but

until it is shown to give the correct constant velocity total energy 0Eγ , it

is incomplete.  The calculation begins by going back to Eq.(6) and looking

for a finite solution of the changing field scalar equation,

                                           
2

2
2 2
0

1  
c t

∂ φ
∇ φ − = − ρ

∂
     .                             (11)

     Paralleling the derivation of Eqs.(8) and (9), the potential of the

constant velocity field, moving in the x direction, is,

                                            i2r r '
0(1 )−φ = γφ − ε      ,                               (12)

____________________________________________________________________________________

 1.  D.P. Barker, et. al., Phys. Rev. Lett., 43, 1915 (1979); Phys. Rev. Lett., 45,

     1904 (1980).
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where, 2 2 2r x R′ = γ +  in cylindrical coordinates,  and γ  is defined in

Eq.(4). This differs from the spherical case of Eq.(8) mainly in that the

equipotentials are oblate spheroids; not because of any longitudinal

contraction, but because the potential φ  expands laterally.  The

longitudinal contraction of E  is always emphasized, but the lateral

expansion of φ  is more significant in relation to energy and charge.2

     The corresponding charge density distribution is,

                                            i
2

2r /r0 i
4
r4

r
e ′−φ

ρ = γ
′

    .                                (13)

The solution of Eq.(12) can be checked by using a Lorentz transformation

on the rest solution of Eq.(8).  Furthermore, if Eq.(13) is integrated over

all space, the total moving electron charge is found to be 0 i q 8 r= πφ , the

same as for the charge at rest, a well established fact.

THE ELECTRIC ENERGY DENSITY CORRECTION

     This is the second point at which the classical E&M theory of particle

structure breaks down.  Conventionally the expression for electric energy

density is commonly written,

                                    
2

21 1
e 2 2

0

1 
c t

 ∂
ε = = −∇φ − ∂ 

AE     .                       (14)

This form works for radiation propagation (where ∇φ  is zero), but in

other applications (in association with the Poynting theorem) it has led to

a long, confusing literature of strange paradoxes and suggested

alternatives3.  If Eq.(14) is integrated over all space, it fails to give a total

energy 0Eγ .  Combinations of Eq.(14) and the B  field also fail.

______________________________________________________________________
  2.  P. Lorrain, D. R. Carson, Electromagnetic Fields and Waves, 2nd Ed., W. H.

       Freeman and Company, San Francisco, p.266, (1970).

   3.  J.W. Butler, Amer. J. Phys., 36, 936 (1968); 37, 1258 (1969).
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     There are several hints as to why this is so.  For example, the

conventional definition of magnetic energy density is,

                                                 21
m 2ε = B     ,                                      (15)

where  B  is defined as the magnetic field,

                                                 = ∇ ×B A     .                                      (16)

Both the definition of B  as the magnetic field and 2 /2B  as the magnetic

energy density have problems similar to those of E  and eε .  For example,

the E  field of Eq.(14) and the B  field of Eq.(16) are so called "force"

fields, because, in principle they are measured by inserting a "test"

charge at any space point and observing the charge's behavior, i.e. the

"force" on it.  But, the vector B  does not point in the direction of either

the test charge reaction or that of the current source of the field, but

instead points in a non-physically motivated direction that is determined

by several conventions.  On the other hand, A  always points in the

general direction of the motion of the sources of the field.

     Several subtleties appear in the process of defining a magnetic field.

Usually the B  field is regarded as basic, but the Aharonov-Bohm

experiment4 clearly indicates that, even in some situations where B  is

zero, an A  field can produce magnetic effects on charged particles.

Thus, it makes sense to define the presence of A  as the magnetic field.

Here φ  and A  are considered to be the fundamental fields.  This leads to

an important observation related to Eq.(6).  The equations for φ  and A

are completely separate.  The only connection between them is in the

divergence equation, which represents fields where magnetic energy is

changing into electric energy or vice versa.  So Eq.(14) fails because it

mixes electric and magnetic effects.

_____________________________________________________________________
  4.  Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959).  R. G. Chambers, Phys. Rev.

       Lett. 5, 3 (1960).  G. Moellenstedt, W. Bayh, Naturwiss. 45, 81 (1962).
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     Another hint as to the failure of Eq.(14) relates to the success of

Eq.(11) in defining moving microscopic charge density, for there is an

alternative picture of particle structure that gives insight into the basic

nature of microscopic charge and electric energy density.  If it is assumed

that the potential φ  is the only physical entity in the electric field, then the

construct in Figure 2 is the total essence of the electron's bulk nature, i.e.

some kind of distortion in the vacuum.  Conventionally, in the "point

charge" model, charge is felt to be "something" at the point that produces

the field.  Electric energy density is even more evanescent.5  In the point

charge model, the conventional electric energy density eε  is correctly

used only outside some radius far from the point.  However, the

fundamental nature of φ  in the preceding allows a different approach.

The microscopic Eqs.(1) and (7) can be considered to define two

secondary implicit distortions, 21
2 ( )∇φ and 2−∇ φ , automatically present if φ

is present.  They do not cause the field, they are the result of it.

     An assumption, adopted almost unanimously around 1900 and still

held today, is that, in the microscopic case, the elements of distributed

charge inside a single electron, for example, individually obey Coulomb's

law just as whole charged particles do in the macroscopic case.  Lorentz

had doubts,6 but they did not prevail.  However, there is no direct

experiment to support this assumption, and electrons do not fly apart.

Thus, microscopically, there is no reason to expect the distributed

"elements" of the φ  field to produce distant actions on each other such as

the Coulomb force, which, macroscopically, results from two whole
particle   fields   interacting.   That  Eq.(11)   gives  the  correct   moving

  ______________________________________________________________________
  5.  R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics I,

       (Addison -Wesley, Reading, MA 1963) p. 4-1, 4-2 (last paragraph).

 6.   H. A. Lorentz, The theory of Electrons, 2nd Ed. (Dover Publications, Inc., New York

       1952) p.215.
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microscopic charge density bears this out.

     Now that the physical nature of ρ  and eε  as secondary implicit

distortions dependent upon φ , rather than as sources of φ , has been

indicated, the path to the correct form of moving electric energy density

eε  is clear.  It should be formulated in exactly the same way that moving

charge density ρ  was.

     In going from the rest Eq.(7) to the moving Eq.(11), because of the

finite rate of propagation, the charge density in time variable fields is

assumed to change as,

                 2ρ = −∇ φ       →        
2

2 2
2 2
0

1
c t

 ∂ φ
ρ = − φ = − ∇ φ − ∂ 

"     .             (17)

That this is true is a well verified fact.  Considering the similar natures of

ρ  and eε  as auxiliary distortions implicit in the shape of φ , it would be

surprising if electric energy density did not have the simple definition,

parallel to Eq.(17),

            21
e 2 ( )ε = ∇φ       →      

2
2 21 1

e 2 2 2
0

1  ( ) ( )
tc

 ∂φ ε = φ = ∇φ −   ∂  
"   ,         (18)

for changing fields.  Thus,

is regarded as the complete definition of electric energy density.  It

deserves serious attention, because it not only resolves the many

paradoxes, but is also Lorentz covariant like Eq.(17).  Its success in

providing the correct energy of the constant velocity electron warrants its

adoption.  This can be seen as follows: the implication is that, in addition

2
21

e 2 2
0

1( )
tc

 ∂φ ε = ∇φ −   ∂  
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to spreading out laterally, at each point in the moving field the rest

electric energy density distortion found from Eq.(10) has increased to,

                                           i
2 2

4r /r2 0 i
e 4

r2
r

e ′−φ
ε = γ

′
    ,                              (19)

and when integrated over all space gives a total electric energy 0Eγ , a

well established fact.  Thus, a reasonable finite electron description has

been demonstrated, and the correct form of the moving electric energy

density has been derived.

ENERGYLESS MAGNETIC FIELDS

     The correction to the Poynting Theorem can now be developed.  It

involves some surprising insights into the nature of magnetic fields.

Even to this day, the incorrect form of 21
e 2 ε = E  and the idea that all

magnetic fields have energy density 21
m 2=  ε B  are used to imply that the

magnetic energy in the moving electron is in some way responsible for its

kinetic energy; but this is not the case.  The electron's kinetic energy is

due entirely to the increase of the electric distortion in the laterally

expanded φ  field, as borne out by the total energy 0Eγ  integrated above.

The constant velocity electron carries no magnetic energy due to its A
field.  This is similar to the A  field due to the electron's spin, which is an

energy-less magnetic field, i.e. no energy can be added to or removed

from it.

     The electron's spin and magnetic moment are established when the

electron is formed (e.g. in pair production) and are intrinsic properties

that never change until the electron is annihilated.  Because the spin

field cannot take on or give off energy, it is essentially an energy-less

field.  It is true that an electron placed in an external magnetic field can

be torqued, and the combined fields will store the interaction energy; but
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that energy also can be recovered.  Neither the electron's spin nor

magnetic moment changes during the torqueing process, so the stored

interaction energy cannot be regarded as part of the spin field energy.

The constant velocity electron, then, has two energy-less magnetic fields;

its spin field and the one generated by its motion.  These can be ignored

in many energy flow calculations, although they can still exert forces on

other charged particles, and then the interaction energies (torques, etc.)

must be considered.

     Because the total moving electron energy 0Eγ  is 100% electric (i.e.

produced only by φ ), any energy density associated with the quantity

1
02 ( / t)/c∂ ∂A  that appears in Eq.(14) must be considered as part of the

magnetic energy density mε .  To emphasize this, the Lorentz force

equation is written,

                              L
0 0

1 1q
c c t

  ∂
= −∇φ + ×∇ × −  ∂  

AF u A     ,                  (20)

where the first RHS term is the electric force component and the second

and third terms are the magnetic force component.  This complete

separation of electric and magnetic effects is to be expected from

Maxwell's Eqs.(6), which show the separation clearly.  In light of Eq.(20),

the most reasonable way to define magnetic energy density is to assume

that each term involves a separate form of energy storage that is not

necessarily influenced by the presence of the other forms, so that mε can

be defined as,

                                                 m v tε = ε + ε     ,                                    (21)

where vε and tε  are called the vortex and transformer components of mε ,

represented by,

                            2
v

1 ( )
2

ε = ∇ × A     and    
2

t 2
0

1
t2c

∂ ε =  ∂ 
A     .               (22)



13

Written out in full,

                                  
2

2
m

0
r

1 1( )
2 c t

  ∂ ε = ∇ × +   ∂  

AA      ,                        (23)

where the subscript r indicates that there are serious restrictions in

applying Eq.(23).  These are the result of there being two different types

of A  fields, one that stores energy and one that is energy-less.  Eq.(23)

does not apply to energy-less A  fields, even though A  is not zero.

PROPAGATING TRANSVERSE WAVES

     Although layered particles involve only electric energy, propagating

antenna radiation involves only magnetic energy.  Radiation comes in two

forms, antenna and photon radiation.  The latter is not, as yet,

understood; but antenna radiation is well described.  Except in rare

cases, a system of charges and currents, varying in time and confined to

a region of dimensions d < < λ , radiate energy which, at distance r > > λ ,

is essentially plane wave.  Figure 3 shows this transverse radiation.  The

Figure 3.  The field pattern of plane wave radiation.

wave propagates in the z direction with velocity 0 c=u n  , n  being a unit

vector.  The vector A  is constant over any x,y plane, and varies

sinusoidally along the axis of propagation.  Where A  is maximum, there

is no energy density; but m ε  increases towards the null regions, where
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the vortex and transformer energy densities are maximum.  At each

plane along the wave, the energy is half vortex and half transformer. It

also is possible to generate waves that corkscrew circularly polarized.

     This picture of wave propagation differs from the conventional,

because the position is taken here that antenna radiation is solely a

magnetic phenomenon, requiring only one magnetic vector field A  to

describe it.  The scalar potential φ  is zero, and the above description

says that the amplitudes of the vortex and transformer components of

the wave are equal, i.e.,

                                          ( )a
0 a

1
c t
 ∂

∇ × =  ∂ 

AA     ,                              (24)

so that, from Eq.(23),

                                               ( )2mε = ∇ × A      .                                 (25)

The two components are also perpendicular to each other and to n , so

that,

                                     ( ) ( )2
0

1 
c t

∂
∇ × × = ∇ ×

∂
AA A n     .                       (26)

In Figure 3 the energy in both components is maximum at the nulls of

the A  wave, and zero at the peaks.

THE OLD POYNTING THEOREM

     The conventional Poynting theorem is written,

                                           ot
∂ε

= −∇ − ρ
∂

S u Ei i      ,                              (27)

where,

                            o 0c= ×S E B      ,     and     2 21
2 ( )ε = +E B     .

Eq.(27) purports to describe the change in energy density at each point

in the field as a result of the energy flow away from the point and the

work done by the field on the free charge at that point.  oS  is the old
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Poynting vector.  Eq.(27) represents a rigorously correct, macroscopic

identity derived directly from Maxwell's equations. However, only in cases

of transverse wave radiation propagation do oS  and ε  actually represent

energy flow and density.3 In such cases, 0φ = , and the Poynting vector

and energy density are,

               ( )
t

∂
= − × ∇ ×

∂
AS A       ,     

2
2

m
0

r

1 1( )
2 c t

  ∂ ε = ∇ × +   ∂  

AA      .     (28)

A MODIFIED POYNTING THEOREM

     In Eq.(28), mε  is not the conventional magnetic energy density but the

one newly defined.  Then the question arises immediately as to whether

there might be another equation, rigorously derivable from Maxwell's

Eqs.(6), that would replace the old Poynting theorem with a new

magnetic one that works in all cases.  Such an equation will be

presented here for energy carrying magnetic fields described by Eq.(23).

     The rate of change of mε  is found from Eq.(23) to be,

                          
2

m
2 2
0

( ) 1( )    
t t t c t

 ∂ε ∂ ∇ × ∂ ∂
= ∇ × +  ∂ ∂ ∂ ∂ 

A A AA i i     .

Substituting from Maxwell's vector Eq.(6) this becomes,

                         2m

0

( )( )    
t t t c

 ∂ε ∂ ∇ × ∂ ρ
= ∇ × + ∇ + ∂ ∂ ∂  

A A uA Ai i     .

Replacing 2∇ A  with an identity,

          ( )m ( )( )    
t t t

        

∂ε ∂ ∇ × ∂
= ∇ × + −∇ ×∇ × + ∇∇

∂ ∂ ∂
A AA A Ai i

0
+   

c t
ρ ∂

∂
u Ai    .
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 Again referring to Maxwell's Eqs.(6), the divergence equation converts

the third RHS term above to give,

   ( )m

0

( ) 1( )      
t t t c t t

        

∂ε ∂ ∇ × ∂ ∂ ∂∇φ
= ∇ × − ∇ ×∇ × −

∂ ∂ ∂ ∂ ∂
A A AA Ai i i  

0
+   

c t
ρ ∂

∂
u Ai    .

From here it is easy to show that,

    ,             (29)

where,

                                            m ( )
t

∂
= − × ∇ ×

∂
AS A      .                            (30)

     Eq.(29) is a new Poynting theorem that is rigorously derivable from

Maxwell's Eqs.(6) and appears to correctly describe magnetic energy flow.

Not too surprisingly, the new flow vector mS  is exactly the same as the

one that has always worked correctly for radiation propagation, i.e.

Eq.(28).  However, the magnetic energy density mε  is quite different from

the one in the old theorem.

     In Eq.(29), the last RHS term describes the work done by the

magnetic field A  on the free charge at each  point.  A commonly found

statement in present textbooks is that the magnetic field does no work on

free charges (only turning their paths), but the inclusion of the

transformer A  field as a magnetic field changes that.  Only the vortex

field does no work on free charges.

     The second RHS term in Eq.(29) represents the transfer of energy

from the magnetic field to an electric field (or radiation).

m
m

0 0

1   +   
t c t t c t

∂ε ∂ ∂∇φ ρ ∂
= −∇ −

∂ ∂ ∂ ∂
A u ASi i i
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Figure 4.  Charging capacitor

ELECTROMAGNETIC ENERGY FLOW

     The new Poynting theorem appears to give the correct picture of

energy flow in all cases so far examined.  It does, however, require a

significant shift of viewpoint.  The fact that no electric energy appears

anywhere, except in the field structure of particles, is hard to reconcile

with already learned conventional thinking.  The fact that all antenna

radiation is purely magnetic, and has no electric component is also

difficult to become accustomed to.  Even more bothersome is the idea of

two kinds of magnetic fields, energy carrying and energy-less; although

the electron's spin field has been known for over 80 years.

     The best way to overcome these prejudices is to look at a few

examples.

The Charging Capacitor:  A simple example of electric energy transport is

shown in Figure 4.  It consists of a capacitor connected to a battery by a

twisted pair of wires. Initially, the capacitor is uncharged so the voltage

across it is zero.  At the instant the wires are connected to the battery, all

their conduction electrons start to

drift away from the positive plate and

toward the negative plate of the

capacitor at an average speed as low

as a fraction of a centimeter per

second.  For each electron that pops

onto the (-) plate, another electron

leaves a nucleus on the (+) plate and enters the wire.  All of the voltage

appears as an IR drop on the wires, so the first electron that enters the

negative plate requires little energy to arrive.  To put some numbers in

an almost real example, let the capacitor be two parallel disks 16 cm in

diameter and a distance d 0.05=  cm apart.  In Heaviside-Lorentz units,

C 4021=  hlf and the battery voltage is 2V 4.705 10−= ×  hlV.
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     The first electron that enters the (-) plate teams, across the space

between the plates, with the positive nucleus left on the (+) plate, and the

pair has an interaction energy 2 18
intE e /4 d 4.614 10 ergs−= π = ×  which is

stored in the space between them.  This establishes a voltage across C of
13

1V e/C 4.234 10  hlV−= = × .

     The second electron to enter the (-) plate must team with the two

positive nuclei left on the (+) plate and both interaction energies are

stored in the intervening space.  Each subsequently arriving electron

must store one more packet of interaction energy than the previous

electron.

     As the process continues, the voltage across the capacitor increases

until it reaches V, the battery voltage.  Then the current stops, and the

full charge on C is Q VC 189.2= =  hlC.  Ignoring signs, the gradient

between the plates is V/d 0.941∇φ = =  hlV/cm, corresponding to a

stored electric energy density 2 3
e ( ) /2 .443 ergs/cmε = ∇φ = , or a total

stored energy cE 4.450=  ergs.

     The total number of electrons moved to the (-) plate is
11

eN Q/e 1.11 10= = × , so the total rest energy of all those electrons is

4
0t e 0E N E 9.096 10= = ×  ergs.  The excess, recoverable stored interaction

energy is only a small fraction of that rest energy c e 0E /N E 0.00499=  %.

     Clearly, the stored energy came through the wires with the electrons.

It did not come in through the field outside the capacitor as the old

Poynting theorem suggests.  The use of a twisted pair of wires eliminates

any magnetic effect due to the changing current, so the experiment is

totally electric in nature.
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Figure 5.  Long, straight
conductor

The Long Straight Conductor: A simple example discussed in the

literature is that of a long, straight conducting wire through which

current is steadily driven by a battery (see Fig. 5).  If the leads connecting

the wire to the voltage source have negligible resistance, then the

potential, neglecting end effects, is uniform

across the wire's interior and the electric

field inside and just outside the wire is

uniform, with the equipotentials

perpendicular to the axis of the wire.

     As long as the current is steady state, the magnetic A  field inside

and outside the wire and the electric field  φ  are constant with time, so

no energy from the battery goes into the magnetic or electric fields after

they are established.  The energy that goes into heat (collisions of

conduction electrons with atoms) is carried by the electrons as their

individual electric kinetic energies.  It is stored in a sphere about each

electron that is less than 11 10− cm in radius and none of it gets near the

region outside the wire.  Clearly, in this case, the old Poynting theorem

makes no sense; since it indicates that the steady state energy from the

battery doesn't go directly into the wire with the electrons, but leaves the

source and travels through the space around the wire, entering it radially

through its long cylindrical surface.

     In its most rigorous form, this example is pathological, because the

conductor length must be infinite and there is no return loop.  In that

case the A  field would be completely energy-less, because constant

velocity electrons have energy-less A  fields.  Only when a conductor

makes a complete loop does the interaction of the electrons in the loop

create an energy-carrying vortex A  field centered on the loop.

Nevertheless, by making a finite loop large enough, the vortex energy of

the loop can be made so small that the A  field is essentially energy-less.

In spite of the energy-less nature of the A  field, outside the conductor,
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that field can deflect a free electron; but no energy can be exchanged.

Solenoid With Decaying Current:  If a long solenoid coil, wound with high

resistance wire, has a D.C. voltage applied to the ends of the coil with

connecting leads of very low resistance, the steady state physics is

similar to that of the long straight wire, except that vortex energy is

stored inside the coil.  A sudden short circuiting of the coil produces a

result similar to the straight wire case.  The potential gradient between

the ends of the coil is reduced essentially to zero and remains that way.

In a somewhat oversimplified visualization, the only physical actions on

the electrons now are their stopping upon colliding with atoms, and the

decreasing A  in the vortex field.  When an electron passes its kinetic

energy to an atom, and stops, it accelerates and gains kinetic energy

again.  The process repeats for all conduction electrons until the vortex is

gone.  If the vortex energy is to be considered actually localized, then

there will be a flow of magnetic energy outward to the electrons in the

coil, but the velocity u  is not determined easily.

     Using Maxwell's Eqs.(6), the transient decay solution for the A  field

is found in terms of Bessel functions to be,

                                          1
0

1 0

I ( Z )ˆ
I ( Z )

=A Aα t− τε     ,                               (31)

where 0Z R/c= τ , 0 0 0Z R /c= τ , 0R  is the coil radius and τ  is the time

constant of the decay ( /τ = L"R , where L  is the coil inductance and R  the

coil resistance, both per unit coil length).  The A field is zero at the coil

axis and 0A  at 0R .

     From Eq.(31),

 [ ]
[ ]

22
2t00

v 2 2 2
0 1 0

I ( Z )
2c I ( Z )

− τε = ε
τ

A    ,      and     ,     [ ]
[ ]

22
2t10

t 2 2 2
0 1 0

I ( Z )
2c I ( Z )

− τε = ε
τ

A    .    (32)
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The ratio of transformer energy density to vortex energy density is,

                                             [ ]
[ ]

2
1t

2
v 0

I ( Z )

I ( Z )
ε

=
ε

    .                                     (33)

For a wide range of coil sizes, = τ0Z R /c  is of the order of −410  or smaller,

so the ratio in Eq.(33) is less than −710 .  Thus, neglecting small terms,

                                          
2

2t/0
m v 2

0

2A
R

− τε ≅ ε ≅ ε     .                              (34)

     The picture that unfolds is this.  The steady state solution has no

transformer energy, only vortex; but when the coil is shorted and the

electric field collapses, a small residual transformer energy is produced

as the decay starts.  According to Eq.(33), tε  remains extremely small

relative to vε , which is quite different from the radiation case where tε

and vε  were equal.  This is a good indication that the new Poynting

theorem is extremely close to being a magnetic energy conservation law

in this case; because, if any radiation takes place during the decay, the

vortex part of the radiation will be of the same order as tε , which makes

the radiation essentially negligible.

     It is possible to say, in this case, that m= εS u , where mε includes

both the coil energy and the radiation energy.  In that case, the

determination of u  is not obvious, because the radiation component

velocity is 0c , but the coil vortex component would have a lower speed.

Where the radiation is negligible, u  can be calculated with the result,

                                                   Rˆ≅
τ

u R     .                                      (34)

In some ways this is satisfying, but it is not intuitive.  The velocity is zero

at R 0= , and increases linearly out to 0R , which is not surprising, but it

is not a function of time.  To understand this, it is necessary to examine

the physical nature of A  to a deeper level of abstraction.
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     There are numerous other examples, such as a fixed charged particle

outside a fixed permanent magnet around which the old Poynting

theorem predicts a circulating energy flow.  They are easily explained by

the new Poynting theoerm, often just by inspection.

CONCLUSION

     Simple solutions to the three standing problems with classical

particle structure have been presented.  There is no reason for avoiding

their use.
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UNITS

To obtain the quantity in HLU, multiply the MKS quantity by the
factor given.  To go from HLU to MKS, divide.

4

5

                                      HLU                     MKS

Electric Potential                             9.40967 10 Volts

Magnetic Vector                              2.82095 10
Potential

Ener

−φ ×

×A

7gy                                                             10 Joules
Energy Density                                                 10 Joules

Charge                              q              1.0

ε
E

10

4

10

6274 10 Coulombs

Charge Density                               1.06274 10 Coulombs/m

Current                             i               1.06274 10 Amperes

Resistance                                  

×

ρ ×

×

R -14

13

14

     8.85419 10 Ohms

Capacitance                                    1.12941 10 Farads

Inductance                                      8.85419 10 Henrys

Electric Intensity                       

−

×

×

×

E

C 

L 
6

3

6

3

      9.40967 10  Volts/m

Magnetic Induction                         2.82095 10 Teslas

Electric Displacement                     1.06274 10
AmMagnetic intensity                          3.54491 10

−

−

×

×

×

×

B
D

H p Turns
m


