
ELEMENTARY THEORY OF THE UNIFIED FIELD©

2011

R. H. Dishington



ACKNOWLEDGEMENT

     The author thanks, for help in many forms over a span of years,
                            R. L. Kirkwood           D. J. Margaziotis
                            L. O. Heflinger            T. Hudspeth
                            B. H. Meuller              G. Ialongo
                                            R. S. Margulies

I.  INTRODUCTION

          Since 1989, a rigorous unified field theory that combines
classically corrected electromagnetism and gravitation has been
available.1 However, for obvious reasons, the rigor required to achieve
acceptance is far greater than that needed for a clear understanding of
its day to day use.  The following is an attempt to offer a reduced version
that illustrates the simplicity of the underlying physics.  Those who need
more rigor, should consult PHYSICS 2001Rev (2009).
     Taking guidance from Einstein, who pursued a deterministic, unified
field theory2 through the last years of his very productive life, and taking
advantage of 100 years of new experimental data, Einstein's belief in the
necessity to base the General Theory on an ether is accepted here and
furthered by gleaning the ether's properties from the old and new data.
The simplicity of the ether concept rests in the idea that there is only one,
single substance filling all space.  In all regions of space an enormous
amount of ether is present.  Where particles and waves are observed,
they represent tiny dimples, ether distortions, in the great overall ether
average.  The ether's equations of motion yield everything in the
universe, and the whole of physics is contained in the ether's properties.
     You have been told by "modern" physicists and their written word
that there is no ether.  You have also been told, by Lorentz, Einstein and
others that there is an ether.  Surprisingly, you yourself perform an
experiment every day that demonstrates the ether's existence.
     Experiments are conducted with equipment (eg. rods and clocks) used
to measure, among other things, length and time intervals.  These rods
and clocks, as well as the investigators, themselves, are made of
particles that are quite flexible.  Lorentz and others have shown that the
particles change shape when accelerated with respect to the ether;
although, at any constant speed, they maintain the particular distorted
shape that corresponds to that speed.  This affects the length of real rods
and the time intervals indicated by real clocks in motion with respect to
the ether, so that the rods shorten and the clocks run slower.
____________________________________________________________________________________
   1. R.H.Dishington, PHYSICS, Beak Publications, Pacific Palisades, CA (1989).
       ………………….., PHYSICS 2001, Beak Publications, Pacific Palisades, CA (2001).
       ………………….., PHYSICS 2001 Rev, http:www.lafn.org/`bd261 (2009).
    2. A.Einstein,  “Ether and the Theory of Relativity”  an address delivered at Leyden in
        1920; Translation printed in Sidelights on Relativity, p1, Dover Publications, N. Y.
        ……………, “Uber den Aether”, Verh.Schweiz.Naturf.Ges., 105,  p85 (1924).
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     Even more important is the fact that a lab worker (or you in your car)
can know immediately if there is acceleration with respect to the ether,
because one feels the acceleration as his body particles are changing
shape.  Acceleration with respect to the ether is absolute, for if several
observers are accelerating towards or away from each other, there is no
question as to who is accelerating with respect to the ether.  Any one who
is, can measure just how much, using a plumb bob and spring scale or
any other form of accelerometer.  Acceleration with respect to the ether is
the most direct way to verify the ether's existence.
     On the other hand, in a lab moving at constant speed with respect to
the ether, a worker cannot sense the ether or his motion, since his body
particles are not changing shape.  Furthermore, a plumb bob and spring
scale will not indicate his motion or the ether's presence.  It was to these
constant velocity inertial labs that Einstein's 1905 statement that the
ether is superfluous made reference.  But, even in inertial labs, many
physical phenomena require the ether as a cause for observed effects,
unless one is willing to accept the miracle working space-time.  All this is
familiar to anyone who has driven a car (a personal lab) at constant
speed on a straight freeway, and then has put on the brakes or stepped
on the gas.
     A classical physicist's tools include intuition, visualization, cause-
and-effect, theory, experiment and measurement, mathematics and
determinism.  Armed with these, during the past 400 years a partially
complete picture of the world has been found in descending layers of
abstraction, starting with the galaxies, going down to the standard,
molecular, atomic, sub-atomic and sub-particle levels, below which is an
unexplained metaphysical base. The highest and the lower few levels are
the frontiers of physics.  Early in the 20th century, "modern" physicists
traded determinism for statistics and gave up visualization and cause-
and-effect.  In their own words, visualizing the atomic and particle levels
in the same way as the levels above is "impossible".  This is simply not
true.  By avoiding "point particles", applying statistics only to ensembles
and correcting several errors still written in all present textbooks on
electromagnetism and gravitation, a deterministic visualization of the
lower levels is available.1

II. THE METAPHYSICAL BASE

      In principle, an ideal theory of the world would answer all questions
with no remaining metaphysical base, an unlikely possibility.  The next
best goal is a theory with a minimum of unanswered questions, and that
is achieved by pushing the unanswered questions lower and lower in the
layers of abstraction.  No attempt will be made here to choose a
metaphysical base and argue in its defense.  That is not the job of
physics.  The job of physics is to explain the various levels of abstraction
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in such a way that the metaphysical base is pushed down to the lowest
possible level.  Whatever metaphysical base then results will be accepted.
If properly done, that metaphysical base will be as unexplainable as the
beginning and end of time; but all the levels above will be intuitive and
simple, and no paradoxes will extend up into those levels of abstraction.
The metaphysical base that resulted from preparing the present work is:

                1. The existence of the real world is assumed.
                2. Measurement, carried out by experimenters, is in
                    no way necessary for the real world's existence
                    or functioning.
                 3. Space is absolute - a place.
                 4. Time is the sequence of events,
                     not as they are measured, but as they occur.
                 5. Space is filled with a substance called ether,
                     whose properties are unknown except for the few
                     to be discussed in this work.

     Here, space is Newton's absolute space3, an uncurved, euclidean
place of large extent; exactly as the intuition indicates.  Time is Newton’s
absolute time3, the sequence of events, not as they are measured but as
they occur; again in agreement with the intuition.  The fact that space is
filled with ether is part of the metaphysical base, but the ether's
properties are not.  They are clearly part of the theory; since, until they
are correctly specified there could be alternative ways to describe the
ether.  In the present theory, the ether is the lowest level of abstraction.
Speculation beyond its equations of motion, questions related to its sub-
structure, will not be dealt with here, being regarded as meaningless.
Certainly, no description of its nature using the words particle, mass,
charge, energy or momentum is permissible.  All of these properties are
derivable from the ether itself.  The five items listed earlier, then,
represent the total metaphysical base that results from the specific theory
developed here.

III. THE UNIFIED FIELD

      Looking out, the world gives the impression of being a vast empty
room in which, at a few scattered places, something special exists. This
something special appears to take on various forms, sometimes as waves
moving at high speed, sometimes as particles, moving or at rest,
generally following an observable sequence of events.  Early on, these
configurations were given separate names, such as mass or energy,
although finally it was realized that they were all just energy in different
forms, conserved in passing from one form into another. Ultimately,
because one form of energy seemed to be purely wave-like, the feeling
____________________________________________________________________________________
   3. I.Newton, Principia Mathematica, (1686); translated by F.Cajori, University of California Press, p6 (1946).
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developed that there was a more fundamental substance called the ether
in which energy was a configuration or a form of motion.  This concept
will be accepted here, and will be the basis for the development of the
unified field theory.
     In the great blank regions, between the specks where energy is
located, the ether has essentially a constant density dφ  ( 3ether/cm ),
defined here as the datum.  Where there appear to be particles (energy
bundles) or waves, the ether is distorted into specific kinds of patterns.
Early physicists pictured the ether as the datum with waves and solid
objects moving in it; but by the end of the 19th century they were trying
to show that there is only ether in space, constant or distorted.  That is
the visualization developed here.  Where the ether is distorted away from

dφ , the absolute density ( 3ether/cm ) is defined as aφ ; and, for particles
at rest relative to the datum ether, there are several implicit distortions
such as aφ  itself, or 21

a2 ( )∇φ , or 2
a∇ φ , or others.  Some of these produce

such important effects in particle or field interactions that they are given
specific names such as "energy" or "charge", etc.  However, the important
thing to understand is that there is nothing in space but the ether density

aφ .  All the other "named" quantities are just implied in the shape of the aφ
field.
     Once the properties of the ether are specified, the unified theory is
complete; i.e. the theory and a statement of the ether's properties are
synonymous.  A complete description of the ether has two parts;
visualizable definitions of certain of its physical characteristics, and a few
formal equations giving a shorthand description of the relationships
between those physical properties.  The equations are listed in APPENDIX
A, but the main thrust here is in the visualization, which will be
described in the following.
Units
     Unless the visualization is made quantitative, it is just speculation; so
it is necessary to choose a system of units.  The units closest to the
physics are called Heaviside-Lorentz.  However, they have all but
disappeared.  Rather than have readers relearn the old names, in this
series of write ups the unit names are the same as in the common
systems (mks, esu, emu, etc.) with hl appended.  For example, the table
in APPENDIX B converts hlvolts to mksvolts and vice versa.
The Ether's Properties
     To start, some of the ether's important properties are:
            a. The ether is an invisible, conserved, compressible fluid.
            b. At any one absolute time t, at each absolute space point x,y,z,
                the ether has a positive absolute density aφ ( 3ether/cm ) that
                varies from point to point.
            c. Over large volumes, the average, datum ether density is dφ .
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            d. The incremental ether density φ  at each point is defined as
               a dφ − φ  , and can be positive or negative.
            e.  At any one absolute time t, at each absolute space point x,y,z,
                the ether has three velocity components  x y zV ,V ,V .
             f.  In regions of space far from energy (matter), a dφ = φ  and 0φ = .
             g. An observer considering a large region free of energy is
                 called an absolute observer if the datum ether has zero
                 velocity everywhere as seen by him.
             h. Questions related to other observers moving at constant
                 velocity relative to the absolute observer are dealt with later
                 under rods and clocks.
             i.  If energy in the form of waves or particles is introduced into
                 the region, the absolute observer sees a four variable field
                a x y z,V ,V ,Vφ  varying with x, y, z and t ( x y zV V V 0 at φ = = = = ∞ ).
             j. The laws of physics can be written as non-linear, partial
                differential field  equations relating the field variables and
                x, y, z and t (see APPENDIX A).

      The mathematical theory of fields involves functions that are single
valued (uniform), finite, continuous, and have continuous derivatives.
None of the examples of physical fields (fluids, gasses, etc.) usually
discussed in textbooks satisfies these requirements rigorously because of
the particulate structure of matter.  However, the match between the field
mathematics and the physics in the case of the ether is exact; because
the ether is a perfect continuum.  It is not composed of elements of the
periodic table, it is basic.  It is a frictionless fluid, of great compressibility,
but has no mass, i.e., it has no inertia or linear momentum per se and is
not directly affected by gravitation.  Therefore, it does not obey Newton's
laws or any of their derivatives such as the Navier-Stokes equation, etc.
Dynamically it will remain unspecified until later, kinematically it
behaves as a perfectly compressible fluid, a continuum.
     Later, the ether will be described primarily by its absolute density aφ
and its velocity V .  The incremental density φ  is an alternative
representation for the density because of the assumption that the
average density over all space is a constant dφ . Far out from all matter
and energy, the ether density is visualized as actually having the datum
value dφ .  Consequently, at any point where ether has space and time
variations it is possible and often considerably more convenient to use
the incremental density,
                                                a dφ = φ − φ     .                                        (1)
The fact that dφ  is a constant ensures that space and time derivatives of
φ  and aφ  are equal.  An important difference between φ  and aφ  is that aφ
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has only positive values, representing the actual density in space,
whereas φ  can be positive or negative as aφ  is greater or less than the
average value dφ .  When referring to the ether, the word density

3(ether/cm ) will be applied to both aφ and φ  throughout, and it will be
left to the reader to keep in mind the difference between them.
     It is clear from the preceding, that the ether has only a few simple
properties, each of which is visualizable.  All that is required to complete
its description is a set of formal relationships that connect these various
properties.  However, before presenting the details of the unified field, a
few corrections to the usual textbook description of the failure of
"classical" Electricity and Magnetism will be useful later on.

IV. CORRECTED CLASSICAL E&M

      Modern physics textbooks describe the failure of "classical" E&M.
Yet, except for a few incorrect results, classical physics makes up a large
part of the present theory in the form of Maxwell's equations.  There were
three principal things classical E&M did wrong:

          1.  It ended up with "point" particles.
          2.  It defined electric and magnetic energy incorrectly (often
               attributing a particle's kinetic energy to its magnetic field).
          3.  The Poynting theorem failed to correctly describe energy flow
               except for radiation.

At present, all of these problems are carried over into Quantum
Mechanics.  Fortunately, they have the simple solutions presented here.
There are no "point" particles
     By the 1870's Maxwell had completed his equations for
electromagnetic fields in labs at rest in the ether, but he questioned their
applicability in labs moving through the ether (e.g. earth labs).  In 1905,
Einstein published a clock setting technique that allowed Maxwell's
equations to be used in moving labs.  In the following, when Maxwell's
equations are used, it is the potential form (Heaviside-Lorentz units),

     
2

2
2 2
0

1
c t

∂ φ
∇ φ − = −ρ

∂
   ,   

2
2

2 2
00

1
cc t

∂
∇ − = −

∂
A JA    ,   

0

1
c t

∂φ
∇ = −

∂
Ai    ,       (2)

that is referred to.  Any solution of Eq.(2) provides a unique solution of
the E  and B  form of Maxwell's equations as well.  The two sets of
equations are completely equivalent in that respect.  However, although
E andB  correctly represent forces acting on charged particles, for moving
particles and waves they give erroneous visualizations of electric and
magnetic energy density contributions.  In Eq.(2), φ  is related to the
measured incremental ether density and A is related to the source of the
magnetic field.  For this reason, in ether discussions, Eq.(2) is preferred.
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     At present, the most commonly used solution of these equations for a
spherically symmetrical, charged particle at rest is,

                                                  q
4 r

φ =
π

    ,                                          (3)

where q is the total "charge" on the particle.  The distributed charge
density ρ  that matches the solution is found by substituting Eq.(3) in
Eq(2), with the result (at rest, spherical coordinates),

                      2 2
2 3 3

1 d d q q r 0
dr drr 2 r 2 r

φ   ρ = −∇ φ = − = − =   π π   
    .            (4)

The electric energy density in the field of this particle at rest is,

                                  
2 2

21 1
e 2 2 2 4

d q( )
dr 32 r

φ ε = ∇φ = =  π 
    ,                        (5)

  which, when integrated from any sphere of arbitrary radius 0r  to ∞
gives a total energy 0E  outside 0r ,

                                                
2

0
0

qE
16 r

=
π

    .                                       (6)

This is clearly not a "physical" solution of Maxwell's scalar equation,
because, from Eq.(4), there is no charge anywhere in the field, just a
mysterious something that is concentrated at the "point" center,
although it influences other  particles all the way out.  Meanwhile, if the
"classical" electron radius is entered for 0r  in Eq.(6), the result is the
measured total rest energy of the electron, all outside 0r , leaving the
infinite energy found between r 0=  and 0r  to be explained away.  The
process used in quantum mechanics for dealing with this, introduced by
Feynman, is to just ignore the infinity.  He expressed dissatisfaction with
what he called normalization, but offered no alternative.  Dirac wrote a
diatribe against it.  Here the conclusion is, there are no "point particles.
A finite particle solution of Maxwell's scalar equation
      A solution of Maxwell's scalar equation,
                                                 2∇ φ = −ρ     ,                                         (7)

that eliminates the infinities of the "point" charge is required.  That
simple, at rest, finite spherical solution is,

                                               φ = φ − ψ2
0(1 )     ,                                  (8)

where ψ  is the shape factor, ir /re−ψ = .  Figure 1 indicates that this
potential has only two significant features, the center value 0φ  (positive
or negative) and the radius ir  of the inflection point.
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     The corresponding
charge density
distribution required
to complete the
solution is found by
substituting the
solution Eq.(8) in
Eq.(7) to yield,

i
2

2r /r0 i
4
r4

r
e−φ

ρ =   ,  (9)

a  smooth shell of charge distortion that peaks at half ir .  Integrated over
all space, the total charge is 0 iq 8 r= πφ .
     Similarly, the at rest electric energy density distribution is found from,

                                     i
2 2

4r /r2 0 i1
e 2 4

r( ) 2
r

e−φ
ε = ∇φ =     ,                           (10)

a smooth shell of energy distortion that peaks at the inflection radius ir .

If eε  is integrated over all space, the resulting finite energy is 2
0 0 iE 2 r= πφ .

     Just to get some idea of the magnitudes involved, if the potential in
Eq.(8) is assumed to represent an electron, then using

7
0E 8.18711 10 ergs−= ×  (0.511 MeV) and 9q e 1.7027 10 hlcoul−= − = − ×

( 191.6022 10 C−− × ), the center potential and inflection point radius are
3

0 1.9233 10 hlvoltsφ = − ×  (approx. 6 2 10 V− × )  and 14
ir 3.522 10 cm−= × .

The "point charge" electron "measurement"
     In the finite solution, any potential level is always closer to the center
than the corresponding potential in the "point" charge field, i.e., the finite
particle has a smaller diameter.  It is also important to notice that the
expansion of the gradient of Eq.(8),

                                  
2

0 i i i
2 2
rd r r2 1 2 2 ...

dr rr r
 φφ

= − − + − 
 

           ir r>

reduces to 2 d dr e 4 rφ ≅ π  (for ir 200r> ), the Coulomb field of the "point
charge".  This explains why the well known collision experiments4 that
appear to support the "point charge" electron model are also in complete
agreement with the present, finite solution.  At low collision energies, the
principal interaction is out in the Coulomb region.  As the collision
energy is increased, the Lorentz contraction of the gradient causes the
inner, non-Coulomb volume to shrink, and the interaction never catches
up with that inner region.
_____________________________________________________________________
 4.  D.P. Barker, et. al., Phys. Rev. Lett., 43, 1915 (1979); Phys. Rev. Lett., 45, 1904 (1980).

                             Figure 1
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The finite particle in motion
     So far, the finite particle solution is satisfactory; but it still must be
shown to give the constant velocity total energy 0Eγ , where u is the
velocity and γ is defined as,

                                                
2

2
0

u1 1
c

γ = −      .                               (11)

 The calculation begins by going back to Eq.(2) and looking for a finite
solution of the full changing field scalar equation,

                                           
2

2
2 2
0

1  
c t

∂ φ
∇ φ − = − ρ

∂
     .                             (12)

     Paralleling the derivation of Eqs.(8) and (9), the potential of the
constant velocity field, moving in the x direction at velocity u, is,
                                            i2r r '

0(1 )−φ = γφ − ε      ,                               (13)

where, 2 2 2r x R′ = γ +  in cylindrical coordinates.  Eq.(13) differs from the
spherical case of Eq.(8) mainly in that the equipotentials are oblate
spheroids; not because of any longitudinal contraction, but because the
potential φ  expands laterally.  The longitudinal contraction of E  is
always emphasized, but the lateral expansion of φ  is more significant in
relation to energy and charge.5
     Substituting Eq.(13) in Eq.(12), the charge density distribution is,

                                            i
2

2r /r0 i
4
r4

r
e ′−φ

ρ = γ
′

    .                                (14)

The solution in Eq.(13) can be checked by using a Lorentz transformation
on the rest solution of Eq.(8).  Furthermore, if Eq.(14) is integrated over
all space, the total moving electron charge is found to be 0 i q 8 r= πφ , the
same as for the charge at rest, a well established fact.
The electric energy density correction
     This is the second point at which the classical E&M theory of particle
structure breaks down.  Conventionally the expression for electric energy
density is commonly written,

                                    
2

21 1
e 2 2

0

1 
c t

 ∂
ε = = −∇φ − ∂ 

AE      .    WRONG      (15)

This form works for radiation propagation (where ∇φ  is zero), but in
other applications (in association with the Poynting theorem) it has led to
a long, confusing literature of strange paradoxes and suggested
alternatives6.  If Eq.(15) is integrated over all space, it fails to give a total
energy 0Eγ .  Combinations of Eq.(15) and the B  field also fail.
  __________________________________________________________________________________________________________
    5.  P. Lorrain, D. R. Carson, Electromagnetic Fields and Waves, 2nd Ed., W. H. Freeman and Company,
         San Francisco, p.266, (1970).
    6.  J.W. Butler, Amer. J. Phys., 36, 936 (1968); 37, 1258 (1969).
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     There are several hints as to why this is so.  For example, the
conventional definition of magnetic energy density is,
                                                 21

m 2ε = B     ,                                      (16)
where  B  is defined as the magnetic field,

                                                 = ∇ ×B A     .                                      (17)
Both the definition of B  as the magnetic field and 2 /2B  as the magnetic
energy density have problems similar to those of E  and eε .  For example,
the E  field of Eq.(15) and the B  field of Eq.(16) are so called "force"
fields, because, in principle they are measured by inserting a "test"
charge at any space point and observing the charge's behavior, i.e. the
"force" on it.  But, the vector B  does not point in the direction of either
the test charge reaction or that of the current source of the field, but
instead points in a non-physically motivated direction that is determined
by several conventions.  On the other hand, A  always points in the
general direction of the motion of the sources of the field.
     Several subtleties appear in the process of defining a magnetic field.
Usually the B  field is regarded as basic, but the Aharonov-Bohm
experiment7 clearly indicates that, even in some situations where B  is
zero, an A  field can produce magnetic effects on charged particles.
Thus, it makes sense to define the presence of A  as the magnetic field.
Here φ  and A  are considered to be the fundamental fields.  This leads to
an important observation related to Eq.(2).  The equations for φ  and A
are completely separate.  The solution of the scalar equation just found is
purely electric and a solution of the vector equation is purely magnetic. So
Eq.(15) fails because it mixes electric and magnetic effects.
     Another hint as to the failure of Eq.(15) relates to the success of
Eq.(12) in defining moving microscopic charge density, for there is an
alternative picture of elementary particle structure that gives insight into
the basic nature of microscopic charge and electric energy densities.  If it
is assumed that the potential φ  is the only physical entity in the electric
field, then the construct in Figure 1 is the total essence of an elementary
particle's bulk nature, i.e. a specific distortion in the ether.  In the "point
charge" model, charge is "something" at the point producing the field.
Electric energy density is even more evanescent.8  However, as
mentioned in Sec.III, the nature of φ  in the preceding allows a different
approach.  The microscopic Eqs.(7) and (10) can be considered to define
two secondary implicit distortions, 21

2 ( )∇φ and 2−∇ φ , automatically present
if φ  is present.  They do not cause the field, they are the result of it.
_____________________________________________________________________
     7.  Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959).  R. G. Chambers, Phys. Rev. Lett. 5, 3 (1960).
          G. Moellenstedt, W. Bayh, Naturwiss. 45, 81 (1962).
     8.  R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics I,
           (Addison -Wesley, Reading, MA 1963) p. 4-1, 4-2 (last paragraph).
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     An erroneous assumption, adopted almost unanimously around 1900
and still held today, is that, in the microscopic case, the elements of
distributed charge ρ inside a single particle, for example, individually obey
Coulomb's law just as whole charged particles do in the macroscopic case.
Lorentz had doubts,9 but they did not prevail.  However, there is no
direct experiment to support this assumption, and electrons, for
example, do not fly apart.  Thus, microscopically, there is no reason to
expect the distributed "elements" of the φ  field to produce distant actions
on each other such as the Coulomb force, which, macroscopically, results
from two whole particle fields interacting.  That Eq.(12) gives the
correct moving microscopic charge density bears this out.
     Now that the physical nature of ρ  and eε  as secondary implicit
distortions dependent upon φ , rather than as sources of φ , has been
indicated, the path to the correct form of moving electric energy density

eε  is clear.  It should be formulated in exactly the same way that moving
charge density ρ  was.
     In going from the rest Eq.(7) to the moving Eq.(12), because of the
finite rate of propagation, the charge density in time variable fields is
assumed to change as,

                 2ρ = −∇ φ       →        
2

2 2
2 2
0

1
c t

 ∂ φ
ρ = − φ = − ∇ φ − ∂ 

"     .             (18)

That this is true is a well verified fact.  Considering the similar natures of
ρ  and eε  as auxiliary distortions implicit in the shape of φ , it would be
surprising if electric energy density did not have the simple definition,
parallel to Eq.(18),

            21
e 2 ( )ε = ∇φ       →      

2
2 21 1

e 2 2 2
0

1  ( ) ( )
tc

 ∂φ ε = φ = ∇φ −   ∂  
"   ,         (19)

for changing fields.  Thus,

is offered here as the correct, complete definition of electric energy
density.  It deserves serious attention, because it not only resolves the
many paradoxes, but also leads to Lorentz invariance like Eq.(18).  Its
success in providing the correct energy of the constant velocity particle
______________________________________________________________________
  9.   H. A. Lorentz, The theory of Electrons, 2nd Ed. (Dover Publications, Inc., New York  1952) p.215.

2
21

e 2 2
0

1( )
tc

 ∂φ ε = ∇φ −   ∂  



12

warrants its adoption.  This can be seen as follows: the implication is
that, in addition to spreading out laterally, at each point in the moving
field the rest electric energy density distortion found from Eq.(10) has
increased to,

                                           i
2 2

4r /r2 0 i
e 4

r2
r

e ′−φ
ε = γ

′
    ,                              (20)

and when integrated over all space gives a total electric energy 0Eγ , a
well established fact.  Thus, a reasonable finite charged particle
description has been demonstrated, and the correct form of the moving
electric energy density has been derived.
Energyless magnetic fields
     The correction to the Poynting Theorem can now be developed.  It
involves some surprising insights into the nature of magnetic fields.
Even to this day, the incorrect form of 21

e 2 ε = E  and the idea that all

magnetic fields have energy density 21
m 2=  ε B  are used to imply that the

magnetic energy in a moving charged particle is in some way responsible
for its kinetic energy; but this is not the case.  A particle's kinetic energy
is due entirely to the increase of the electric distortion in the laterally
expanded φ  field, as borne out by the total energy 0Eγ  integrated above.
A constant velocity charged particle carries no magnetic energy due to its
A  field.  This is similar to the A  field due to the electron's spin, which is
an energy-less magnetic field, i.e. no energy can be added to or removed
from it.
     The electron's spin and magnetic moment are established when the
electron is formed (e.g. in pair production) and are intrinsic properties
that never change until the electron is annihilated.  Because the spin
field cannot take on or give off energy, it is essentially an energy-less
field.  It is true that an electron placed in an external magnetic field can
be torqued, and the combined fields will store the interaction energy; but
that energy also can be recovered.  Neither the electron's spin nor
magnetic moment changes during the torqueing process, so the stored
interaction energy cannot be regarded as part of the spin field energy.
The constant velocity electron, then, has two energy-less magnetic fields;
its spin field and the one generated by constant velocity motion.  These
can be ignored in many energy flow calculations, although they can still
exert forces on other charged particles, and then the interaction energies
(torques, etc.) must be considered.
     Because the total moving electron energy 0Eγ  is 100% electric (i.e.
produced only by φ ), any energy density associated with the quantity
1

02 ( / t)/c∂ ∂A  that appears in Eq.(14) must be considered as part of the
magnetic  energy   density  mε .    To  emphasize  this,  the  Lorentz   force



13

equation is written,

                              L
0 0

1 1q
c c t

  ∂
= −∇φ + × ∇ × −  ∂  

AF u A     ,                  (21)

where the first RHS term is the electric force component and the second
and third terms are the magnetic force component.  Again, this complete
separation of electric and magnetic effects is to be expected from
Maxwell's Eqs.(2), which show the separation clearly.  In light of Eq.(21),
the most reasonable way to define magnetic energy density is to assume
that each term involves a separate form of energy storage that is not
necessarily influenced by the presence of the other forms, so that mε can
be defined as,
                                                 m v tε = ε + ε     ,                                    (22)
where vε and tε  are called the vortex and transformer components of mε ,
represented by,

                            2
v

1 ( )
2

ε = ∇ × A     and    
2

t 2
0

1
t2c

∂ ε =  ∂ 
A     .               (23)

Written out in full,

                                  
2

2
m

0
r

1 1( )
2 c t

  ∂ ε = ∇ × +   ∂  

AA      ,                        (24)

where the subscript r indicates that there are serious restrictions in
applying Eq.(24).  These are the result of there being two different types
of A  fields, one that stores energy and one that is energy-less.  Eq.(24)
does not apply to energy-less A  fields, even though A  is not zero.
Propagating transverse waves
      Although layered particles involve only electric energy, propagating
antenna radiation involves only magnetic energy.  Radiation comes in two
forms, antenna and photon radiation.  The latter is not, as yet,
understood; but antenna radiation is well described.  Except in rare
cases, a system of charges and currents, varying in time and confined to
a region of dimensions d < < λ , radiate energy which, at distance r > > λ ,
is essentially plane wave.  Figure 2 shows this transverse radiation.  The

Figure 2.  The field pattern of plane wave radiation.
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wave propagates in the z direction with velocity 0 c=u n  , n  being a unit
vector.  The vector A  is constant over any x,y plane, and varies
sinusoidally along the axis of propagation.  Where A  is maximum, there
is no energy density; but m ε  increases towards the null regions, where
the vortex and transformer energy densities are maximum.  At each
plane along the wave, the energy is half vortex and half transformer. It
also is possible to generate waves that corkscrew circularly polarized.
     This picture of wave propagation differs from the conventional,
because the position is taken here that antenna radiation is solely a
magnetic phenomenon, requiring only one magnetic vector field A  to
describe it.  The scalar potential φ  is zero, and the above description
says that the amplitudes of the vortex and transformer components of
the wave are equal, i.e.,

                                          ( )a
0 a

1
c t

 ∂
∇ × =  ∂ 

AA     .                              (25)

The two components are also perpendicular to each other and to n .
The old Poynting theorem
     The conventional Poynting theorem is written,

                                           ot
∂ε

= −∇ − ρ
∂

S u Ei i      ,                              (26)

where,
                            o 0c= ×S E B      ,     and     2 21

2 ( )ε = +E B     .
Eq.(26) supposedly describes the change in energy density at each point
in the field as a result of the energy flow away from the point and the
work done by the field on the free charge at that point.  oS  is the old
Poynting vector.  Eq.(26) represents a rigorously correct, macroscopic
identity derived directly from Maxwell's equations. However, only in cases
of transverse wave radiation propagation do oS  and ε  actually represent
energy flow and density.6 In such cases, 0φ = , and the Poynting vector
and energy density are,

               ( )
t

∂
= − × ∇ ×

∂
AS A       ,     

2
2

m
0

r

1 1( )
2 c t

  ∂ ε = ∇ × +   ∂  

AA      .     (27)

A modified Poynting theorem
     In Eq.(27), mε  is not the conventional magnetic energy density but the
one newly defined.  Then the question arises immediately as to whether
there might be another equation, rigorously derivable from Maxwell's
Eqs.(2), that would replace the old Poynting theorem with a new
magnetic one that works in all cases.  Such an equation will be
presented here for energy carrying magnetic fields described by Eq.(24).
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The rate of change of mε  is found from Eq.(24) to be,

                          
2

m
2 2
0

( ) 1( )    
t t t c t

 ∂ε ∂ ∇ × ∂ ∂
= ∇ × +  ∂ ∂ ∂ ∂ 

A A AA i i     .

Substituting from Maxwell's vector Eq.(2), replacing 2∇ A  with an identity
and using the divergence equation in Maxwell's Eq.(2) to convert the
third RHS term resulting gives,

   ( )m

0

( ) 1( )      
t t t c t t

        

∂ε ∂ ∇ × ∂ ∂ ∂∇φ
= ∇ × − ∇ × ∇ × −

∂ ∂ ∂ ∂ ∂
A A AA Ai i i  

0
+   

c t
ρ ∂

∂
u Ai    .

      From here it is easy to show that,

    ,             (28)

where,

                                            m ( )
t

∂
= − × ∇ ×

∂
AS A      .                            (29)

     Eq.(28) is a new Poynting theorem that is rigorously derivable from
Maxwell's Eqs.(2) and appears to correctly describe magnetic energy flow.
Not too surprisingly, the new flow vector mS  is exactly the same as the
one that has always worked correctly for radiation propagation, i.e.
Eq.(27).  However, the magnetic energy density mε  is quite different from
the one in the old theorem.
     In Eq.(28), the last RHS term describes the work done by the
magnetic field A  on the free charge at each  point.  A commonly found
statement in present textbooks is that the magnetic field does no work on
free charges (only turning their paths), but the inclusion of the
transformer A  field as a magnetic field changes that.  Only the vortex
field does no work on free charges.
     The second RHS term in Eq.(28) represents the transfer of energy
from the magnetic field to an electric field (or radiation).
Electromagnetic energy flow
     The new Poynting theorem appears to give the correct picture of
energy flow in all cases so far examined.  It does, however, require a
significant shift of viewpoint.  The fact that no electric energy appears
anywhere, except in the field structure of particles, is hard to reconcile
with already learned conventional thinking.  The fact that all antenna
radiation is purely magnetic, and has no electric component is also
difficult to become accustomed to.  Even more bothersome is the idea of
two kinds of magnetic fields, energy carrying and energy-less; although
the electron's spin field has been known for over 80 years.  The best way

m
m

0 0

1   +   
t c t t c t

∂ε ∂ ∂∇φ ρ ∂
= −∇ −

∂ ∂ ∂ ∂
A u ASi i i
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Figure 3.  Charging capacitor

Figure 4. Long, straight conductor

to overcome these prejudices is to look at a few examples.
The Charging Capacitor
     A simple example of electric energy transport is shown in Figure 3.  It
consists of an uncharged capacitor connected to a battery by a twisted
pair of wires.  At the instant the battery is connected to the wires, all
their conduction electrons start to drift away from the positive plate and
toward the negative plate of the capacitor at an average speed as low as a

fraction of a centimeter per second.
For each electron that pops onto the
(-) plate, another electron leaves a
nucleus on the (+) plate and enters
the wire; and during the drift, each
electron adds to its rest energy a
minute amount of kinetic energy
which it draws from the potential field
inside the wire. When it arrives at the

(-) plate, it stops drifting and stores the minute kinetic energy as
interaction energy with the (+) plate nuclei, but it still retains its much
larger rest energy.  Only the small interaction energies are recoverable
from the capacitor.  As the process continues, the voltage across the
capacitor increases until it equals the battery voltage.  Then the current
stops.
     The total number of electrons moved to the (-) plate is very large.
Each electron's rest energy is held inside a sphere of radius roughly

127 10 cm−× .  Clearly, the recoverable energy stored in the capacitor came
through the wires with the electrons.  It did not come in through the field
outside the capacitor as the old Poynting theorem suggests.  Since
electric energy only exists in the fields of particles, this is always the
case.  The use of a twisted pair of wires eliminates any magnetic effect
due to the changing current, so the experiment is totally electric in
nature.
The Long Straight Conductor
     A simple example discussed in the literature is that of a long, straight
conducting wire through which current is steadily driven by a battery
(see Fig. 4).  If the leads between the wire and the voltage source have
negligible resistance, then the potential, neglecting end effects, is
uniform across the wire's interior and the electric field inside and just

outside the wire is uniform, with  equi-
potentials perpendicular to the wire's axis.
     As long as the current is steady state,
the magnetic A  field inside and outside
the wire and the electric field  φ  are
constant with time, so no energy from the

battery goes into the magnetic or electric fields after they are established.
The energy that goes into heat (collisions of conduction electrons with
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atoms) is carried by the electron's individual electric kinetic energies.  It
is stored in a sphere about each electron that is less than 11 10− cm in
radius and none of it gets near the region outside the wire.  Clearly, in
this case, the old Poynting theorem is wrong; since it indicates that the
steady state energy from the battery doesn't go directly into the wire with
the electrons, but leaves the source and travels through the space
around the wire, entering it radially through its long cylindrical surface.
Further corrections of classical E&M
     The three major corrections have now been made.  There are several
others that are not as general as these three.  They will be discussed
where they fit into the applications.

V.  THE ETHER AS THE UNIFIED FIELD

     Although the final ether equations could be written for an arbitrarily
moving laboratory (even accelerating), they are far simpler if written by
an observer whose laboratory is not accelerating, i.e. whose laboratory’s
speed and direction of motion, relative to the ether, are not changing. All
constant velocity laboratories, moving at arbitrary speeds, are defined as
inertial systems, in which observers standing still in each room feel no
acceleration.  While, today, it is fashionable to formulate field equations
using the theory of transformations between the various inertial systems,
all of physics can be discovered by a single observer in any one inertial
laboratory.  Later on, it will be shown that identical experiments have the
same results in any two inertial laboratories; but the derivation and
visualization of the physics is far simpler for one particular inertial
observer called the absolute observer.
     The absolute observer is one whose laboratory is at rest relative to the
datum ether, so that before particles and fields are introduced inside, the
ether in the laboratory is homogeneous, isotropic, and at rest.  The laws
of physics are discovered by introducing a particle, such as an electron;
or an electric field, such as that between the plates of a charged
capacitor; or two small masses suspended close to each other; etc.
Then the generalization of all the experiments is synthesized using the
well known mathematics of field representation (see Appendix A).  This
consists of simple forms that describe spatial changes with time.
     Although the forms used to represent the fields are usually quite
simple, the actual experiments or calculations related to them, using the
equations, usually require the establishment of a coordinate system
inside the laboratory.  This is done by visualizing three sets of imaginary
surfaces, fixed relative to the laboratory walls, ceiling and floor, so that a
different set of three numbers identifies each point in the room.  For the
ether, the density aφ  and fluid velocity V  are specified at each space
point; but also, other quantities, related to aφ  and V , can be written in
the form of scalars, vectors or dyadics and specified at each point.
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     Most experiments of interest involve fields that are changing with
time, so, in several places about the room, the laboratory has clocks that
have been set by one of several possible methods.  The time is considered
to be the same at every point in the laboratory, whether or not a clock is
located there. Choice of the method of clock setting involves certain
subtleties that are discussed in detail later on.
     Once a coordinate system and a laboratory time have been
established, the field can be described by equations for the field variables
like aφ , V , etc. in terms of the independent variables x, y, z, and t.  The
ether field equations for the absolute observer's system, as obtained
through the preceding process, will now be discussed.

VI.  THE CONSERVATION LAW

     The study of fluid motion is logically divided into two parts,
kinematics and dynamics.  Kinematics is a geometrical description of the
possible motions resulting from the fact that any fluid occupies space as
it moves about, and a particular part of it cannot be in two places at
once.  Dynamics deals with the laws of cause and effect governing a
particular fluid's motion.  Kinematics is, therefore, the same for all fluids,
whereas the dynamics of each different fluid can be different.
     The most fundamental kinematic equation of motion of a conventional
fluid is the continuity equation, which relates the change in density at a
point to the flow of the fluid towards or away from that point.  Defining
the  ether  flow  vector  as  aφ V  and a( )∇ φ Vi   as the divergence of the flow
vector at the point in question, the continuity equation is written,

                                                a
a( )

t
∂φ

= −∇ φ
∂

Vi     .                               (30)

It says that the time rate of increase of density aφ at a fixed point is
equal to the negative of  the  divergence  of  the flow vector aφ V  at that
point.
     The intuitive meaning of the continuity equation is perfectly clear.  If
the divergence of the flow away from a point is net positive, then the
density of the fluid at that point must be decreasing and vice versa.  Only
if fluid is being created or destroyed at a point is it possible to violate this
relationship.  Therefore, Eq.(30) is the formal expression for the
conservation of ether.

VII.  LONGITUDINAL WAVES

Static ether concentrations
     The ether can be distorted into particles, and propagates both
transverse, t , and longitudinal, #  , waves.  However, the concept that
certain particles are composed of regions of condensed and rarefied ether
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is complicated by the frictionless fluidity of the medium, which would
immediately flow to thin the condensed regions and fill in the attenuated
regions.  So, it is clear that no truly static ether configurations exist.  In
the case of so called "static" fields, the stability is the result of a
combination of bulk displacements held together by some dynamic
action in the ether.  Thus, the designation "static" field, as commonly
used, implies both bulk displacements and active, dynamic ether motion.
Longitudinal waves
     Motion of transverse ether waves is well understood.  These t-waves
are generated by moving charges, and they carry energy in two forms;
antenna and photon radiation.  No longitudinal radiation appears in E&M
theory. Nevertheless, # -waves are more prevalent than t-waves.  The
sometimes strange physical effects they produce are not yet recognized
as caused by # -waves; and the theory of # -waves is lacking any large
experimental base.  Since all energy transfer by waves is presently seen
to be carried by t-waves, # -waves appear to be energyless; which
accounts for their lack of observability.
     The generation of # -waves is impossible to avoid.  Just as a stone
dropped into a quiescent pool of water causes a set of circular waves to
leave the point of impact, any disturbance of the ether at any point
immediately produces high frequency, spherical # -waves that move
outward.  These waves are essentially like those visualized by Huygens10.
When they come in contact with particles, more waves are generated; so
that the ether, everywhere, is traversed by # -waves, moving in all
directions, caused by all the interacting particles in the universe.  Unlike
waves in elastic media, the velocities of ether # -waves and t –waves are
the same, and equal to the velocity of light.
     Non-linearity is a major factor in the ether's behavior and for this
reason the equations that establish the energyless # -wave amplitudes
are different from those giving the bulk flow properties involving energy
in one way or another.  Thus, in writing the field equations, the bulk
ether distortions must be distinguished from the # -waves, so the
incremental density and velocity are separated into two components,
                              aa           ,          φ = φ + φ = +V V Vi i      ,                (31)
                                                        bulk   # -wave                     bulk   # -wave

where the double bar indicates a constant (time average) or slowly
varying bulk ether deformation or a  t-wave, and the sub-dot indicates a
rapidly oscillating, periodic, zero time average, longitudinal wave.  Typical

wave−#  examples are,
                          ( )       ,         ˆ f(r) C g(r) C h(r) S= φ = −V ri i      ,               (32)

                                ,     
0 0

r rC cos (t ) S sin (t )
c c

= ω − = ω −      .

________________________________________________________________________
  10. C.Huygens, Treatise on Light, (1690); translation by S.P.Thompson, Dover Publications, p16 ff (1962).
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     In some situations, a problem can be solved using either the bulk or
the # -wave equations separately; but more often than not, a close
meshing of both is required to explain the physical phenomena.
Separation equations
     Eqs.(31) represent two of a set of separation equations that allow
working with one or the other of the two components, bulk or # -wave.
As an example, consider the flow vector aφ V , i.e. the density, velocity
product that specifies the ether flow density at each point in space.  If
separated into time average and periodic components, it is written,
                                                     { }a a aφ = φ + φV V V

i
     .                              (33)

Its components can be found simply by using Eqs.(31) in,
                                          aa ( )( )φ = φ + φ +V V Vi i      .
Carrying out the multiplication,
                                             a aaφ = φ + φ + φ + φV V V V Vi i i i      ,                      (34)
                                                         bulk       periodic$%%%%&%%%%'           ?

where the first RHS term is non-periodic, the next two terms are periodic,
and φ Vi i  can have both periodic and non-periodic components given by,

                    { } 2
2 2

fgˆ ˆfg(C hCS) (1 C hS )
2

φ = φ + φ = − = + −V V V r ri i i i i i i
     .   (35)

It follows that,

                          { } 2 2
fg fgˆ ˆ =       and       (C hS )
2 2

φ φ = −V r V ri i i i i

Combining Eq.(34) and (35),

                                 { }a aaφ = φ + φ + φ + φ + φV V V V V Vi i i i i i i
     .              (36)

                                                    bulk$%%%%%&%%%%%'               periodic       $%%%%%%%%%&%%%%%%%%%'

Comparing Eq.(33) and (36), the separated components of aφ V  are seen
to be,
                                                aaφ = φ + φV V Vi i     ,             (bulk)
and,
                                        { } { }aaφ = φ + φ + φV V V Vi i i ii i

    .       ( # - wave)
     Using the same procedure, the separation equations for other
properties such as the acceleration of the ether at a point can be found;
but, even more useful is the separation of complete equations.  For
example, the ether conservation law of Eq.(30) can be expressed as,

                                    ( ) a
a( )(

t t
∂φ ∂φ

∇ φ + φ + = − −
∂ ∂

V V i
i ii     ,

expanded out, and separated.  For convenience, the separation equations
are listed in APPENDIX C.
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VIII  VORTICITY AND ANGULAR PERSISTENCE

     In Section III, the ether was described as a frictionless fluid that has
no inertia or linear momentum, per se.  There are situations, however,
where it gives the appearance of having angular momentum.  Wherever a
steady state, closed circulation of ether occurs, since it is frictionless, the
angular rotation will persist forever unless acted upon externally.  This
angular persistence gives the appearance of angular momentum,
although it has no relationship to mass or inertia as commonly
understood.  A more complete discussion of this effect will appear later
on, since it is closely related to difficulties with the conventional concept
of magnetic energy.

IX  UNIVERSAL CONSTANTS

     All of the equations developed here are written in Heaviside-Lorentz
units so a table of conversion factors is included in APPENDIX B.  The
units for ether density 3(ether/ cm ) have been called "descartes" here,
because no name for them had been established in the past, and
descartes seemed an appropriate name.
     In the following, a number of universal constants appear, some
familiar and some newly defined.  The velocity of light with respect to the
datum ether is the well known constant, 0c .  If the ether density aφ  is
greater or less than dφ , in some large region, the velocity of light c will be
greater or less than 0c . The datum density dφ  is also a universal
constant. Several others will be defined and discussed, later on, where
they appear in the development.  Table I gives the values of these
constants (the basics are, aee, bee, phee, dee).  Since the accepted values
of fundamental constants are regularly adjusted, as measurements
gradually improve, the values here are not to be regarded as final; but
they are accurate enough to allow proper exposition of the theory.

TABLE I

UNIVERSAL CONSTANTS

Basic                                             Derived

24 2a 7.954945 10  cm /sec−= ×       10
0c 2.99792458 10= ×  cm/sec

        26 2b 1.428438 10  sec/cm= ×        9e 1.7026924 10−= ×  hlc

     20
d 8.9875517 10φ = ×  descartes         27h 6.6260755 10  erg-sec−= ×

        7D 2.7346139 10  cm/sec= ×        
2

7
2

dyne-cmG 8.3850240 10
gm

−= ×
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     The important thing to notice about Table I is that the constants
presented are divided into two sets, basic and derived.  The basic
constants appear in the fundamental field equations, whereas the
derived constants only appear in the solutions of those equations.  The
only exception to this is 0c , which is a derived constant that is used
instead of dφ , the basic quantity.  The use of 0c , instead of dφ , in the field
equations eliminates the requirement for a fifth basic constant to adjust
for the units used.

X  THE FUNCTION OF WAVES−#

     The way in which # -waves contribute to the world's structure can be
understood best by considering the process of pair production, i.e. the
generation of an electron/positron pair using a high energy photon
colliding with, say, a neutron.  From the ether point of view, the pair of
particles is produced by removing some ether from one region and
depositing it in another, so that the slightly depleted region (electron) is
separated from the slightly compressed region (positron).  In this case,
the fluid ether would ooze out of the positron and flow into the electron
until nothing remained but the datum.  In order for the electron and
positron to be "stable" particles, something else must prevent this oozing.
During pair production, an energyless, longitudinal sustaining wave is
set up that goes out of the electron and into the positron to hold their
bulk displacements of ether in place.  These frictionless # -waves persist
as long as the electron and positron remain separate particles.
________________________________________________________________________
The electron as an example
     The picture of the electron to be used here applies equally well to the
positron, where some of the physical functions are reversed.  The
electron, at rest, is assumed to be a spherically symmetrical region where
a small reduction of the central bulk ether density has been made, and
which reduced density configuration is held in shape, and prevented
from filling in, by an outgoing longitudinal wave.  Figure 5 shows an
electron greatly exaggerated in amplitude relative to dφ .

Figure 5.  The electron ether density distribution.

________________________________________________________________________
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     The # -wave is a permanent part of each particle, and its first function
is to stabilize and sustain the bulk distortion that constitutes the part of
the particle that is directly measurable in the laboratory.  A second
function is to establish the particle's gravitic field.  Third, the # -wave
Doppler shift properties of a particle in motion determine many of what
are conventionally called its quantum mechanical characteristics.
Finally, many of the mysteries, such as the double-slit and Aharonov-
Bohm experiments, can be explained by the # -waves.  Therefore, the # -
wave is the fundamental ether property that most controls the phenomena
that appear in experiments with particles and fields; even though the bulk
properties are the ones usually measured.  For this reason, the # -wave
equations are regarded as the basic equations of the ether; for once the
fields φi  and Vi  are known, the bulk configurations φ  and V  can be

found from them.  Then, from the φ  and V  distributions come the
physical definitions and visualizations of charge, energy, inertia,
momentum, etc.

XI  THE # -WAVE EQUATIONS

     As mentioned in Section VII, there is no large experimental base to
aid in discovering the basic # -wave equations.  The number of
experiments, past and present, on the bulk characteristics of particles
and fields is so great as to be uncountable; yet, essentially all # -wave
measurements made, to date, are indirect and are recognized for what
they are by only a few dissident physicists.  The consequence is that the
# -wave equations presented here are the result of much circuitous
relating of ostensibly unrelated facts, considerable guess work, and a
remaining uncertainty.  Until a solid groundwork of # -wave experiments
is available, the formal description of the ether presented here must be
used with care.  Some part of it will undoubtedly be modified in the
future.  Nevertheless, the picture it has generated will probably endure.
     The most desirable form of equation would be one that gives Vi
directly.  Then the continuity equation could be used to get φi .  Because
of the conditions described in the preceding paragraph, such an equation
is not known at this time.  What has been achieved is an equation for a
scalar velocity potential η from which Vi  can be found.  Here, again, the
non-linearity of the ether requires the use of two separate # -wave
equations; one for standing # -waves and one for traveling # -waves.
These equations are listed in APPENDIX A.
     When using the traveling # -wave equation, the sign on the RHS is,
                   if  V 0        ,         if  V 0+ φ ≤ − φ ≥i i i i               (37)
and, for # -wave sources at rest,
                                                              2η = Vi      .         ( # -wave sources at rest)       (38)
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If the # -wave sources are moving, the relationship between Vi  and η
must be modified.  This will be discussed in a later section.
      The angular frequency ω functions as a constant while solving the
equation for Vi  , and a separate conditional equation, to be discussed

further on, is required to determine the value of ω.  The equation for η
involves both Vi  and φi  , so one other equation is needed to solve for
them.  This is the # -wave continuity equation.  At the end of Section VII,
the first step in separating the ether conservation Eq.(30) into its bulk
and # -wave components was given.  The # -wave component is listed at
the end of APPENDIX C.  Because aφ  is of the order of dφ , which is

immensely greater than V , φi  and Vi  in any practical situation, the
equation for the full # -wave conservation relationship can be
approximated with extreme accuracy by,

                                           d 0
t

∂φ
φ ∇ + ≅

∂
V i
ii                                         (39)

The equation for η and Eq.(39) allow φi  and Vi  to be found for traveling
# -waves; but certain subtleties are involved, so that the examples should
be consulted before attempting to solve these equations.
     The standing # -wave equation is solved in essentially the same way.
________________________________________________________________________
The electron as an example
     Before the traveling # - wave η equation in APPENDIX A and Eq.(39)

can be solved for Vi  and φi , the sign on  the RHS of the η equation must
be determined.  This is done as follows.
     Since it is clear that, for an electron at rest, its fields are spherically
symmetrical and drop off as some function of the radius r, measured
from its center, a simple trial form for Vi  can be written,

                                 aˆ C
r
ψ

=V ri      ,     
2 2

2
2

a
2r

ψ
η = =Vi      ,                  (40)

and ω is as yet unspecified; a is the amplitude constant given in Table I;
and (r)ψ = ψ  is an unknown, monotonically increasing function to be

found from the traveling wave η equation in APPENDIX A.
     From Eq.(40),

                                    
0

a 1 d 1 C S
r dr r c

  ψ ψ ω
∇ = + +  ψ  

Vii      ,                 (41)

Now, combining Eqs.(39) and (41),

                                  d

0

a 1 d 1 C S
t r dr r c

  ∂φ φ ψ ψ ω
= − + +  ∂ ψ  

i      ,
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which can be integrated with respect to time, leading to,

                                    d 0

0

a c 1 d 1C S
c r dr r

  φ ψ ψ
φ = − +  ω ψ  
i      .                 (42)

The product of Eqs.(40) and (42) results in,

                           
2 2

2d 0
2

0

a c 1 d 1ˆ C CS
c r dr r

  φ ψ ψ
φ = − +  ω ψ  

V ri i      ,                (43)

which leads directly to the time average,

                                                
2 2

d
2

0

aˆ
2c r

φ ψ
φ =V ri i       ,                             (44)

and its divergence,

                                             
2 2

d
2

0

a d
2c r dr
φ ψ

∇ φ =Vi ii      .                           (45)

Since V 0φ >i i , the RHS of the η traveling # -wave equation, in APPENDIX
A, will have a negative sign.  Note that this has been determined without
actually solving for Vi  and φi , since ψ  is still unspecified.
________________________________________________________________________
     The three equations necessary to solve for # -wave fields, then, are
Eqs.(39), (40) and either the traveling or standing # -wave equation.  All
together, they are the main # -wave field equations, as they are now
known.  Until a larger program of # -wave experiments is carried out,
they represent the only formal method for determining Vi  and φi  directly.
Aside from certain auxiliary equations involved in the solutions for
particles, they have within them the ability to describe everything related
to the structure of matter.
________________________________________________________________________
The electron as an example
     Since an electron at rest is a “static” case, the η equation in
APPENDIX A reduces to,

                                       ( )2
2 0

d

1 c
D
ω

∇ η − ∇η = − ∇ φ
φη

Vi ii      .                    (46)

This illustrates one of the subtleties of equations in which both bulk
quantities and their time derivatives appear.  In the full η equation, for

example, η is a time averaged quantity; yet, in some situations, there

can be time derivatives of η.  The double bar notation indicates only a
time average over the high frequency # - wave cycles and not over the
bulk time variations.  Only in a “static” case (where φ , V , aφ V  do not

change with time) can the time derivatives in the full η equation, for
example, be set equal to zero.  This same dichotomy of bulk time
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variations and # -wave time averages comes up in many places in the
theory, so caution should be the guide.
     When η from Eq.(40) is substituted into Eq.(46) and the indicated
differentiations are carried out,  Eq.(46)  is reduced to an equation, for
the unknown function (r)ψ  in Vi , of the form,

                            
22

2 2

d 1 d 2 d 0
dr dr r D dr r

ψ ψ ω ψ ψ   − + + − =   ψ    
     .                  (47)

The simplest non-trivial solution of Eq.(47) is11,

                                                   D/ r− ωψ = ε      .                                   (48)
So, from Eq.(40),

                                               D/ raˆ C
r

− ω= εV ri      ,                              (49)

is the desired velocity # -wave solution of Eq.(46).  The corresponding
density wave solution is obtained by substituting Eq.(48) into Eq.(42),
with the result,

                                 D/ rd 0
2

0

a c D 1C S
c r r r

− ωφ   φ = ε − +  ω ω  
i      .                 (50)

________________________________________________________________________
     The equation for η and Eq.(39) are field shape determining equations;
since, as stated before, ω is a constant.  The latter sets the scale of the
solution, and is dependent on the compression properties of the ether, to
be discussed next.

XII  THE COMPRESSION/OSCILLATION EQUATION

     If ether is compressed, so that aφ  exceeds dφ  in some small region,
and then is allowed to expand, the surrounding ether interacts with the
expanding ether and an oscillation is set up.  Since it is frictionless, the
oscillation and the resulting # -waves continue unabated.  The waves are
attenuated with distance from the generating region, but the overall
oscillation persists.  This process is similar to a mass/spring system; but
the ether is so non-linear that its compression/oscillation properties are
quite different from familiar cases.
     The mass/spring process is often described by an equation such as,

                                            
2

2

d ( ) 0
dt

φ
+ φ =i

i!F     ,

where   the   non-linear   function   ( )φiF     includes   the    mass/spring
______________________________________________________________________________________
11. B.Liebowitz,  Phys.Rev. 64, 294 (1943). Liebowitz suggested a similar function in a different context.
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characteristics.  If ( )φiF  is a known function, then the equation can be
solved for a frequency/density relationship of the form,
                                               G m( )ω = φi     ,                                       (51)

where  mφi  is the initial, maximum incremental density, and G m( )φi  is
generally an increasing, monotonic function.
     The exact form of ( )φiF  for the ether must be determined empirically,
and is not known at this time.  However, measured particle
characteristics have been used to obtain much insight as to the form of
the functionG m( )φi .  This will be discussed later.
________________________________________________________________________
The electron as an example
     In the case of the ether, the function G m( )φi  appears to be a type of
staircase function, with the electron as the lowest stable particle energy
step.  Its # - wave  forms with the value  207.7634396 10 rad/secω = × .
________________________________________________________________________
     Next to be discussed is the equation that connects the solutions Vi
and φi  found from the # -wave equations, to the bulk solutions for φ  and

V , which produce the directly measurable properties of matter.

XIII  THE BRIDGE EQUATION

     The bulk properties of matter are found using the "bridge" equation,
which gives, quantitatively, just how much ether distortion an # -wave
can sustain.  It takes its simplest form for static fields, as expressed by,
                                                 b∇φ = φ Vi i     ;         (static)                   (52)
 which says that, if the phase between φi  and Vi  is 90 degrees, no

gradient of the bulk density φ  can be  supported.  If φi  and Vi  have an in

phase component, then the gradient of φ  depends linearly on their time

average.  Once the # -waves φi  and Vi  are known throughout a region, φ
can be determined everywhere in that region by integrating Eq.(52).
     The designation "static" field in Eq.(52) means that no bulk field
quantity such as φ  , V  , aφ V  , etc. is changing with time.  In cases
where the bulk fields are time variable, the picture is complicated by the
finite propagation time delay required to readjust the fields.  So, in the
general case, the bridge equation is written,

                                          a
2
0

1 b
c t

∂φ
∇φ + = φ

∂
V Vi i     ,     (general)             (53)

and is known as the "retarded" form (as in retarded potential).
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Figure 6.  The bulk structure of the electron.

________________________________________________________________________
The electron as an example
     If the electron is at rest, the static bridge Eq.(52) applies.  Using
Eq.(44), the gradient of the incremental bulk distortion can be written,

                                    
2

2D/ rd
2

0

a bˆ ˆb
r 2c r

− ω∂φ φ
∇φ = = φ = ε

∂
r V ri i      ,                (54)

where the constants are those in Table I.  Next, φ  can be found directly
by integrating Eq.(54) as follows (see APPENDIX D),

                                      
2 2D/ r

d
02

0

a b dr
2c r

− ωφ ε
φ = φ+∫      ;

so,

                                         
2

2D/ rd
0

0

a b
4c D

− ωφ ω
φ = ε + φ      .

To find the integration constant 0φ , remember that as  r → ∞ , 0φ → ,
which means that,

                                  
2

3d
0

0

a b 1.9233 10
4c D

φ ω
φ = − = − ×    des     .              (55)

Therfore, the final form of the bulk φ  distribution for the electron is,

                                  ( ) ( )2 2D/ r
0 01 1 − ωφ = φ − ψ = φ − ε      .                       (56)

Figure 6 is a plot of this very simple particle. It has only two features.
First, the electron is such
a minute deformation.
The greatest depletion of
ether is at the center, and
has the value 0φ ; so that,

 180

d

2.1400 10−φ
= ×

φ
,  (57)

almost no depletion at all.
Second, its inflection
point at r D 1ω = , is the
only identifiable radius.
Fortunately, it is a good
choice as the effective
radius of the electron,

                                      14
e

Dr 3.522426 10−= = ×
ω

   cm     .                 (58)

     Eq.(56) can now be written in the more intuitive and useful form,
                                           ( )e2 /

0
r r 1 −φ = φ − ε      .                                (59)

________________________________________________________________________
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XIV  BULK EQUATIONS

     Here again there are two sets of bulk equations, microscopic and
macroscopic.  Unfortunately, they are almost identical in appearance; but
they have completely different physical meanings and are applied in quite
different ways.  To emphasize the disparity between them, only the
microscopic equations will be presented at this point. Discussion of the
macroscopic bulk equations and their applications will be delayed until
later.  Whether to use the microscopic or macroscopic form of the bulk
equations is determined by the type of "charge" distribution to be
analyzed.  Most everyday electromagnetic problems involve the
separation and recombination of groups of whole charged particles, such
as electrons and other particles composing atomic nuclei.  In all these
cases, the "charge" is a number assigned to each whole particle, and the
charge density distribution is described in terms of how many whole
charged particles per cubic centimeter act at each point.  In these cases,
the fundamental nature of "charge" is not considered, and the macroscopic
equations are used.
     When the problem to be studied concerns the internal structure of
particles, and an internal distribution of charge density that integrates
throughout the particle to give the whole particle "charge" used in the
macroscopic cases, then the fundamental nature of "charge" is of concern,
and the microscopic bulk equations are used.
     Even when analyzing a microscopic case, there are two ways to write
some of the equations, because of the nature of bulk measurements.  For
example, in a field where the ether flow vector at each point is aφ V , the

bulk equations can be written in terms of aφ  and aφ V . However, φ  is the

quantity found directly from the bridge equation, not aφ ; and in the

laboratory, φ  is measured rather than aφ ; so it is often more convenient

to write the bulk equations in terms of φ  and the flow vector φu , where
u is a velocity defined by the relationship,
                                                           aφ = φu V      .                                      (60)

The significance of Eq.(60) is that the actual density aφ  at each point,

moving at the actual ether velocity V  defines a definite amount of ether
actually flowing through any given small area, perpendicular to the flow
at the point, as represented by the flow vector aφ V ; so, if φ  is used,

instead of aφ  , there must be an apparent or effective velocity u such that

φu  gives the same net amount of ether passing through the small area.

Because φ( aφ  (due to the large value of dφ ), u V) .  In some rare
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cases, the velocity u  can appear to be infinite; but, in those cases,
reverting to aφ  and aφ V  eliminates any problem.
The bulk conservation equation
At the end of Section VII, the first step in separating the ether
conservation Eq.(30) into its bulk and # -wave components was given.
They are listed at the end of APPENDIX C.  More compact forms of these
separated equations are,

                                            a
a 0

t
∂ φ

∇ φ + =
∂

Vi      ,         (bulk)                (61)

 and

                                           { }a 0
t

∂φ
∇ φ + =

∂
V i
i

i      .        ( # -wave)            (62)

 In Section XI, an extremely close approximation to the # -wave
component was introduced in the form of Eq.(39).  No such
approximation is needed for the bulk Eq.(61), however, because the bulk
equations are written directly in terms of aφ  and aφ V . Thus, in the light
of the discussion above regarding Eq.(60), the two forms of the bulk
conservation law required are,

                             a
a 0

t
∂φ

∇ φ + =
∂

Vi     and     ( ) 0
t

∂φ
∇ φ + =

∂
ui      .          (63)

These kinematic equations can be used interchangeably. The remainder
of the bulk equations describe the ether's dynamics.
Bulk ether distortions
     Having solved the # -wave equations and used the bridge to find φ

everywhere, the φ  field is a bulk distortion away from dφ ; but there are
other ways to describe this distorted field.  A good visualization of these
is useful.  Consider a "static" φ  field held in place by its # -waves.  Not

only is the original field φ , itself, a distortion; but, for example, its

gradient ∇φ  is a different, coexistent distortion field.  The product ∇φ ∇φi

is another different distortion field; as is any other function of φ  such as
2∇ φ , for example.  It becomes important to recognize these different,

coexisting distortions, all implicit in the original φ , because in
interactions between fields, each of these distortions accounts for a
different effect in the interaction.  A few distortions produce such unique
and recognizable effects that they have been given special names.  Each
of these more important deformations will be discussed here in some
detail.
     The principal thing to keep in mind is that there is nothing present in
the field but the φ  distortion distribution of ether.
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Incremental bulk distortion
     One of the most directly measurable properties of electric fields is the
electric potential.  In practical units it is given in volts, and is measured
with the common voltmeter.  The corresponding measurement in H-L
units is the hlvolt.  Physically, what is being measured here is the
incremental ether density distortion φ .  When a potential of 1 hlvolt is

measured from the datum level, the density φ  is 1 descartes.  Thus, the
incremental bulk density is the physical definition of what has been
named "electric potential".  If this had been known at the time various
electrical properties were being named, electric potential now probably
would be called "ether density", and voltmeters would be called ether
density difference meters.  It is important to remember that the voltmeter
does not measure the absolute ether density aφ , but either the

incremental value φ  relative to the datum, or the difference in φ  between
two regions.
"Gradient squared" distortion
     In 1837, Faraday first recognized the importance of the "gradient
squared" distortion, when he defined the "electric energy density" in an
electrostatic field as,
                                           2 21 1

e a2 2( ) ( )ε = ∇φ = ∇φ      ,     (static)              (64)

measured in ergs/cm3. From his point of view, φ  was the electric
potential (hlvolts) in the field, but here it is clear that the physical
definition of "electric energy density" is the particular distortion in the ether
described by Eq.(64), where φ  is measured in descartes (hlvolts).
     If the fields are changing with time, the retardation due to the finite
propagation velocity must be included, just as was done in the general
bridge equation.  Therefore, the general definition of electric energy
density takes the (retarded) form,

                                     ( )
2

2
a

ae 2
0

1 1
2 c t

  ∂φ ε = ∇φ −    ∂  
     ,

 or,                                                                                (general)        (65)

                                       ( )
2

2

e 2
0

1 1
2 c t

  ∂φ ε = ∇φ −    ∂  
     .

Here again, as in the case of the incremental bulk density φ , the physical
definition of electric energy density is a simple, physically visualizable
property of the bulk ether density.
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Figure 7. The electron’s “gradient squared”
                                      distortion distribution.

________________________________________________________________________
The electron as an example
The Electron's electric energy
     Since the space distribution of incremental density φ  is now known,
Eq.(64) can be employed to establish the electron’s gradient squared
distortion or electric energy density.  Taking the gradient of φ  in Eq.(59),

                                           e2 /0 e
2

r r2 rˆ
r

−φ
∇φ = − εr      .                             (66)

When  Eq.(66)  is substituted  into  Eq.(64),  the electric energy density is
found to be,

                                            e
2 2

4 /0 e
e 4

r rr2
r

−φ
ε = ε      ,     3

ergs
cm

                   (67)

 which is  plotted in  Figure 7.   Apparently, eε  is a smooth shell of
distortion that peaks at er r= ,
which is one good reason for
the choice of the φ  inflection
point as the electron's effective
radius.
     The total rest energy in the
electron's field is found by
integrating Eq.(67) over all
space,

 
e4 /

2 2
0 e 0 e 2

space 0

r r
E dvol 8 r dr

r

∞ −ε
= ε = πφ∫ ∫  ,

with the result,
                                     2 7

0 0 eE 2 r 8.18711 10−= πφ = ×      .     ergs         (68)
     The physical effects produced by this gradient squared distortion are
numerous; so much so, that in the past some of the effects were
attributed to "mass", a property thought related in some way to energy.
Modern writers say that mass and energy are "equivalent" on the basis of
the famous equation of Einstein ,et al,

                                                   0
0 2

0

Em
c

=      .                                   (69)

 Here, the position is taken that they are identical, i.e. one physical
phenomenon, with two names, expressed in different units.  There is just
one gradient squared distortion.  It causes all the effects of electric
energy and all the effects of mass, but the units identified with mass are

2
0c  larger than those identified with energy.

________________________________________________________________________
"Surrounding function" distortion
     The Laplacian 2∇ φ  of a scalar field φ  is known to be the difference, at
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each point in space, between the average of φ  in a differential volume

surrounding the point and the value of φ  at the point.  This is a simple
visualization of the physical meaning of the "surrounding" function in
any scalar field.  In the bulk incremental ether density field φ , the
surrounding function distortion produces the unique effects attributed to
"distributed charge density". Formally, the definition of "distributed
charge density" in a static field is,
                                             2 2

aρ = −∇ φ = −∇ φ      ,     (static)                (70)
measured in hlcoulombs/cm3. Lack of knowledge of the physical nature
of charge resulted in the less convenient choice of sign in Eq.(70) by early
investigators.
     As before, the propagation delay time must be involved when the
fields are changing with time, so the general expression for charge
density is,

                                    
2

2 a
a 2 2

0

1
c t

 ∂ φ
ρ = − ∇ φ −  ∂ 

    ,

or,                                                                             (general)              (71)

                                      
2

2
2 2
0

1
c t

 ∂ φ
ρ = − ∇ φ −  ∂ 

     .

Eqs.(70) and (71) look familiar, because when written with the RHS and
LHS reversed, they have the same appearance as the well known Maxwell
wave equation for the scalar potential.  It is of utmost importance here to
understand the profound difference between Maxwell's macroscopic
equations and the microscopic Eqs.(70) and (71).  In the macroscopic
equations, ρ  is the known function, being a count of whole charged
particle density at each point. From this given source distribution, the
potential function is found by solving the macroscopic equation. The
whole particles exert coulomb forces on each other.  Quite the opposite is
true in the microscopic case described by Eqs.(70) and (71).  There, the
known field function φ , obtained from the # -waves and the bridge, is
operated on to find the distribution of "surrounding" function distortion,
ρ .  The elements of distributed charge ρ exert no force on each other.
________________________________________________________________________
The electron as an example
Electron charge
     The coexistent charge density is found from the surrounding function
distortion Eq.(70) by first taking the divergence of Eq.(66), leading to,
                                               

                                            e
2

2 /0 e
4

r rr4
r

−φ
ρ = ε      ,     3

hlc
cm

                     (72)
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which is plotted in
Figure 8.  Here, again,
ρ  is a smooth shell of
distortion, but it peaks
at er r /2= , half the
radius of peak energy
density.  It should be
noted that the
electron's charge
density, ρ  , is negative
because 0φ  is negative.
      The total electron
charge is calculated by
integrating Eq.(72) over

all space,
e2 /

2
e 0 e 2

0space

r r

q dvol 16 r dr
r

∞ −ε
= ρ = πφ ∫∫      ,

with the result,

                     
2

9d
e 0 e

0

2 a bq 8 r 1.702692 10  e
c

−πφ
= πφ = − = − × = −      ,        (73)

Here, again, eq  is negative because 0φ  is negative.
     Equations (59),  (66),  (72) and (73) apply equally well for the positron
if the value of 0φ  in Eq.(55) is used without the negative sign.  This is the
result of an ingoing # -wave.  However, Eqs.(44) and (45) change sign for
the positron.
________________________________________________________________________
The Bulk Ether Flow Equation
    Some fields, eg. permanent magnets, solenoids and transformer coils,
cannot be derived using the above bulk distortion equations.  Other
examples are the neutrinos and photons.  Some of these, as well as the
analysis of antenna radiation in the form of transverse waves, require
what is called the ether flow equation, which takes the static form,
                                          2 2

a ( )ρ = ∇ φ = ∇ φu V u      ,     (static)               (74)
measured  as  hlcoulombs/cm2-sec.  The form for time variable fields
becomes,

                                     
2

2 a
a 2 2

0

1
c t

 ∂ φ
ρ = − ∇ φ −  ∂ 

Vu V     ,

or,                                                                                    (general)       (75)

                                     
2

2
2 2
0

1 ( )( )
c t

 ∂ φ
ρ = − ∇ φ −  ∂ 
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     Figure 8.  The electron's "surrounding " function
                                      distortion distribution.



35

Here again, the equations have the same form as the macroscopic flow
equations reversed; but in this case problems are sometimes solved the
same way microscopically and macroscopically, even though the same
profound difference exists in their physical interpretations.
Vortex flow
     There is a whole class of flow problems where there are vortices
present.  In these cases, the incremental density has little effect, because
all of the ether in dφ  is circulating, so φ  is effectively zero, u is not
defined, and the flow is handled using a reduced form of Eq.(75),

                                           
2

2
2 2
0

1 0
c t

∂
∇ − =

∂
VV      .     (vortex)                (76)

________________________________________________________________________
The electron as an example
Electron spin and magnetic moment
     In interaction processes between particles, a considerable amount of
ether churning occurs; and when particles like the electron or positron
are created from the splatter, they end up with a specific angular
momentum or what is called spin.  Since their charge density rotates with
the ether, they have a magnetic moment as well.  In Section VIII it was
indicated that angular momentum in the ether is just the angular
persistence of a circulation in a frictionless fluid.  Thus, the first step in
the determination of the spin angular momentum is to find the spin
vortex velocity field.  The vortex equation, Eq.(76), provides that
information.
     Calculation of the electron spin vortex is done by first ignoring the
radial, outgoing # -waves that sustain the bulk gradient.  The
incremental bulk density φ  also has little effect on the circulating flow.
The simplest case is that where the electron is at rest and the circulation

Figure 9.  Spin flow.
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is not changing with time.  Eq.(76) then reduces to,
                                                  2 0∇ =V      ,                                      (77)
where, V  is the unchanging circulation about one specific axis through
the electron's center (see Figure 9).  In spherical coordinates ( r, ,θ α ),

                                                  *V=V αα      ,
and Eq.(77) leads to,

                                          2
2 2

VV 0
r sin

α
α∇ − =

θ
     .

Considering the flow as separable into r and θ  dependent parts, let,

                                              2

(r)V ( )
rα = θ
R T      ,

and the separated equations can be solved in the usual way.  The
simplest solution free of non-physical attributes gives the spin velocity
field Vα . For obvious physical reasons, the solution has two regions,

inner and outer, where Vα  of each matches at some radius erδ .  Thus,

                                            
s e3

e

s e2

inside r

outside r

 
rK sin     ,   

( r )V
1K sin         ,    
r

α

δ

δ

 θ δ= 
 θ

     .      (78)

     Customarily, angular momentum is found by integrating, over all
space, the mass density at each radius times the velocity of that mass
density; but considering what has been said about momentum and its
meaning, i.e. particles have it but ether doesn't, it might be doubted that
the same integration process would apply microscopically to the ether in
electron spin.  Nevertheless, it will be assumed here that the ether
angular momentum can be made quantitative by the conventional
approach, with minor modifications.  In the light of Eq.(69), the spin is

                                     
2

e
2
00 0 0

 V (rsin ) dvol
c

∞ π π

α

ε
σ = κ θ∫ ∫ ∫      ,

and eε  is the energy density of Eq.(67).  Here, κ  is a scaling constant
that allows for the fact that the angular persistence of a frictionless fluid
is not easily made quantitative, yet a relationship must be found that
connects it to the momentum-like effects it produces in interactions with
particles  and  fields.  After the proper substitutions and integrations,

                             
2

4/s 0
2 3
0

K 4 64 1 1 T
3c 4

− δπκ φ δ    σ = − + ε +    δ δ    
     ,            (79)

where δ  establishes the break point of maximum Vα , and T(x) is the
Truncation integral (see APPENDIX D).
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     Following along the same lines, the spin magnetic moment is
conventionally expressed as a vector,

                                      
2

s
0 0 0 0

 dvol
2c

π π
κ

µ ρ
∞

= ×∫ ∫ ∫ r V      ;

but, because the charge density circulates always perpendicular to the
radius vector r  (see Figure 9), the only components that do not cancel in
the integration over all θ  and α  are the z components.  Again, this is
better described by writing the scalar spin magnetic dipole moment,

                                    
2

s
0 0 0 0

V (rsin ) dvol
2c

∞ π π

α

κ
µ = ρ θ∫ ∫ ∫      ,

and ρ  is the charge density of Eq.(72).  With the proper substitutions
and integrations,

                                           
2/s 0

s 3
0

4 K 2 81 1 T
3c 2

− δπκ φ δ    µ = − + ε +    δ δ    
     .                     (80)

     Taking the ratio sµ σ  with the help of Eqs.(71), (72) and (73),

                            

2/
3

s

4/0 0
3

2 81 1 T
2e

m c 4 641 1 T
4

− δ

− δ

δ    − + ε +    δ δµ     = ±
σ δ    − + ε +    δ δ    

     ,             (81)

where the + is the positron and – the electron.  It is well established that
the value of sµ σ  given by Dirac's equation is 0 0e m c , and that the
measured ratio is slightly larger, because the measurement must be
made on an ensemble of particles.  The actual, or intrinsic sµ σ  ratio of
individual electron/positrons is given by Eq.(81); and for any δ  is slightly
smaller than 0 0e m c .  Since the effects of the brackets in Eq.(81) and the
measurements are opposite, the value of δ  cannot yet be determined; but
it seems that <0.06δ , and the peak Vα  occurs at a radius less than

152 10 cm−× .  Assuming that <0.06δ , then,

                                                 
2

s 0
2
0

K
3c

πκ φ
σ =                                        (82)

and

                                                 s 0
s

0

4 K
3c

πκ φ
µ =                                      (83)

differ from the intrinsic values by less than 1310−  parts. In the remainder
of this work Eqs.(82), (83), (79), and (80) will all be referred to as intrinsic,
unless otherwise specified.
     The constant sK  is not determined in this derivation, because it is
established during the particle production process.  Its magnitude is
specified by the complicated relationships set up by the input conditions
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of the interaction.  At the present time, this complicated interaction
problem has not been solved.  However, the value of sKκ can be obtained
by using the experimental value for sµ ,
                                        20

s ergs hlG3.2875524 10     −µ = ×      ,          (84)
directly in Eq.(83), which yields,
                                      2 213

s erg-cm des secK 1.2233488 10     − −κ = ×  .  (85)
Substituting this value for sKκ  in Eq.(82) produces a value for the
electron's angular momentum,
                                       285.2728633 10     erg-sec−σ = ×      .             (86)
     L. O. Heflinger has pointed out that, since the outer field is equivalent
to a magnetic dipole, combining Eqs.(78), (83) and (000), sK  can be
eliminated and d 03κ = φ φ , or,

                                         171.4018715 10κ = ×      .
If this value is used for κ , then,
                                               31

sK 8.7265399 10−= ×      .

From Eq.(78), the maximum Vα  at 0.06  ( 2)δ = θ = π  is found to be

                                        2
max cm/secV 1.9537 10  −

α = × .

XV  THE GRAVITIC FIELD

     There are two classes of particles, the bulk layer type like the
electron, and the high speed photons and neutrinos.  Whereas the
layerons do have gravitic fields, the c-ons appear not to.  All layeron
electric fields require traveling # -waves to sustain their bulk forms; but
at the particle center, where the traveling # -wave starts, there is a region
of pure compression/relaxation that also generates a radial standing # -
wave.  These radial waves constitute the particle's gravitic field.
_______________________________________________________________________
The Electron's Gravitic Field
     From Eqs.(49), (50) and (58), the travelling # -waves are given by,

                                             e /r r
t

aˆ C
r

−ε=V ri      ,

and,                                                                                                   (87)

                                   e /d 0

0

r r e
t

ra cC 1 S
c r r r

−φ   φ ε − +  ω   
=i      .

To understand how the electron's gravitic field is generated, it is helpful
to look at the central region where r<30re.  This is facilitated by
expanding the cosine, for example, as,

                                
0 0

r rC cos t cos sin t sin
c c
ω ω

= ω + ω     ,
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which, in the region r<30re , reduces to C cos t≅ ω .  The sine becomes
S sin t≅ ω .  In the same region,

                                             0 erc 1 1
r r

 + ω  
)     ,

so, the travelling # -waves in the central region of the electron are,

                                        e /r r
t

aˆ cos t
r

−ε ω≅V ri      ,

and,                                                                                                   (88)

                                   ee /d
2

r r
t

ra 1 sin t
r r

−φ  φ ε + ω ω  
≅ −i      ,

In fact, they represent a pure compression/expansion oscillation, which,
as a disturbance, also generates standing # -waves as well.
     What the electron's standing # -wave looks like can be determined by
solving the standing wave η equation, listed in APPENDIX A, reduced to
the static case,
                                                  2

s 0∇ η =      ,                                     (89)

where sVi  and sη  of the standing # -wave are related through Eq.(38),

                                                    2
s sη = Vi      ,

In spherical coordinates ( r, ,θ α ), Eq.(89) can be written,

                                             
2

2
s sd d2 0

dr r dr
η η

+ =      ,

which has a solution,

                                                 f
hs

KK
r

η = +     .

Since all incremental fields approach zero as r → ∞ , hK 0= , and,

                                                2 f
s s

K
r

η = =Vi      .                               (90)

The simplest standing # -wave solution, compatible with Eq.(88), that
satisfies Eq.(90) is,

                                              g
s

K
ˆ cos t

r
= ωV ri     ,                             (91)

where g fK 2K= .
     Going back to the traveling # -wave of Eq.(88), the maximum
amplitude of tVi  occurs at er r= .  Here it will be assumed that the
standing velocity wave sVi  matches tVi  at that radius, leading to,

                                                    
2

2
e

g
a K

r ε
=     ,

remembering that ε  is the base of natural logarithms ( 1
e at r r−ψ = ε = ).
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Thus, in Eq.(91),

                                         
3

34
2g

cmK 2.43133 10   
sec

−= ×      .

The standing wave field picture is completed by substituting Eq.(91) in
Eq.(39) to find,

                                      gd
3/2s
K3   sin t 

2 r
φ

φ = − ω
ωi      .     er r≥               (92)

     Now it is possible to show that sVi  and sφi  establish the electron's
gravitic  field,  but  first  a  brief  summary  of  these  standing  waves'
characteristics will be given that will prove helpful later on. Eqs.(91) and
(92) indicate that these waves do not propagate; but, instead, the whole
field quivers in and out in unison.  Since, s s 0φ =Vi i , no contribution to
the electron's bulk density field is made by these standing # -waves.
Furthermore, for the electron at rest ( a 0φ =V ), the third from last

equation in APPENDIX C shows that s 0=V .  Considering the total
velocity at each point as the sum of t V  and sV , it is possible to show,

with the help of the separated a  equation in APPENDIX C, that the only
significant contribution to the electron's acceleration field, at distances
greater than e100r , is,

                                       g
2s ss

K
ˆ 

4r
= ∇ = −a V V ri ii      .                           (93)

All other contributions to the acceleration field are either much smaller
than sa  or they change sign every 104.853 10−×  cm and will not have any

effect on an object larger than 910−  cm across.  Space will not permit
including this straightforward but tedious demonstration.
     All particles except photons and neutrinos have this standing wave
field, and its importance appears when large numbers of particles are
combined into sizable neutral objects.  Under those conditions, the bulk
fields are mostly confined inside the large object, and the sum of all the
acceleration fields remains outside.  Notice that sa  is directed radially

inward for both negative and positive charged particles.
     From Galilei's time onwards, it has been recognized that the basic
characteristic of a spherical gravitic field is that all objects at the same
distance from its center accelerate towards its center at the same rate if
unimpeded.  This is generally expressed in the form of Newton's law of
gravitation,

                                              2

GMˆ  
4 r

= −
π

a r      ,                                   (94)

where  M  is  the  mass  of  the  source  body,  and  G is  the gravitational  
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constant.  If, for the moment, it is assumed that the natural state of any
object is to move to oppose its time average acceleration with respect to the
ether, then any object in the field described by Eq.(93) will accelerate
towards the center of the field. By comparing Eqs.(93) and (94), the
constant G will be seen to have the value g K M  π .  Converting the
electron's energy from Eq.(68) to mass units,
                                      28

0m 9.10939 10  gm−= ×      ,
and Newton's gravitation constant is found to be,

                               
3

g 7
2

0

K cm G 8.38503 10  
m g sec

−π
= = ×

−
     .

Here G differs from the usual value by a factor of 4π  used in Eq.(94) to
express the idea that the 2 4 rπ  in all spherical fields has geometrical
significance.
________________________________________________________________________
     Gravitic fields are purely standing radial # - waves.  In the charged
layered particles, the gravitic field is overwhelmed by the electric field.; so
the gravitic field plays no significant role.  In large neutral bodies,
however, eg. suns, planets and their satellites, all the charged particles
are paired off, ie. their traveling # - waves go directly out of a negative
particle into an associated positive particle and stay essentially inside the
body.  Thus, the only # - wave field outside the neutral body is the sum of
all the radial standing # - waves from all the particles inside.

XVI  SUMMARY OF THE UNIFIED FIELD EQUATIONS

Eq.(76) is the last of the main equations constituting the unified field
theory of the ether.  For convenience, all of the key equations are
summarized in APPENDIX A.  The following sections will consist of
solutions of these equations for much of the basic structure of matter
observed in the world. They will not, however, delve into the physics of
solids, liquids, gases or plasmas.  Those areas, which develop logically
and statistically from the more fundamental deterministic structures that
will be derived here, are so voluminous as to prohibit inclusion.
Moreover, the physics in those disciplines will be modified only slightly
by the fundamental changes elaborated here.  On the other hand, a
number of, at present, mysterious phenomena will be examined on the
basis of the ether theory.

XVII  THE DATUM

     In Section III, it was said that a complete description of the ether has
two parts, visualizable definitions of its physical characteristics and the
formal equations that relate them.  The latter are summarized in
APPENDIX A, and most visualizations have been covered; but there are
two important features that require further elaboration.  These are basic
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phenomena that can be visualized without considering the properties of
particles.  They are processes that occur, in the datum, before massive
particles have been introduced.  One was mentioned briefly in Section XII
as the compression/oscillation condition that relates the ether's natural
oscillation frequencies to its compression distortion.  The other, called
datum fluctuations, resembles the “chop” in the ocean of the datum
ether.  The present section concentrates on these two phenomena.
Datum fluctuations
     Anyone who has seen a glassy lake mirror the scene about the shore
understands the deterministic picture of the datum drawn in Section III.
The absolute observer was defined as one who, in a region free of energy,
sees the datum ether at rest, having zero velocity everywhere.  In the
case of the glassy lake, any activity in the water about the shore
generally destroys the reflected image overall; because a gentle chop
ripples across the surface.  The same condition applies in the ether,
where all the particles far away send out waves that produce a minute,
random chop throughout space.  The effect is so small it can be ignored in
most calculations of the type already discussed.  Nevertheless, these
small datum fluctuations exert significant effects in situations where
constructs are very close to being unstable.  In some cases, datum
fluctuations can push a construct “over the top” into instability.  It is
these fluctuations that introduce statistics into the deterministic picture.
The vacuum
     Until very recently, modern physicists regarded the vacuum of space
as a void in which particles and waves moved about.  However, because
of the considerable development of high energy particle physics, this
void has been given more and more physical properties; until, now, it is
clearly  a physical entity.**  The present work is  a study of its properties,
and the use of “vacuum”, “quintessence” or any other term but “ether” to
describe it is just an artifice.
     Conventionally the fluctuations are viewed as more structured than
the ether theory requires, with both the random chop and the forming of
whole particles and their subsequent annihilation at each point,
temporarily violating energy conservation.  In the ether picture, there is
distortion moving about in the form of the chop; but, although that
distortion can pile up temporarily, at a point, to values as great as those
of the particles, no actual particles are formed (with their bulk shapes
and radial # -waves all properly deployed) in regions originally free of
particles.  This type of distortion does not require energy conservation
violation.
     The exact nature of the datum fluctuations is not yet known.  They
could be waves−# , t-waves or both.  This lack of knowledge has little
effect on the development of the deterministic part of the theory at this
stage of development.
________________________________________________________________________
**.Physics Through the 1990s, Elementary Particle Physics, (National Academy, Washington, D.C. 1986) p.71.
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Figure 10   The ether's
compression/oscillation characteristic.
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The compression/oscillation characteristic & particle mass
 In Section XII, the compression/oscillation characteristic of the datum
ether was said to be similar to that of a mass/spring system which obeys
the frequency /density relationship of Eq.(51),
                                                  m( )ω = φG i      .                                   (95)

No method of measuring this
function directly is known at
present, so all estimates of the
form of m( )φG i  must be based
on inferences from high
energy particle physics and
atomic data.  In spite of the
myriad of particle collision
experiments and other related
investigations, the present
best guess as to the form of

m( )φG i  is the very incomplete
curve depicted in Figure 10.
Only part of the lower three
horizontal regions are known
with any certainty, but even
from this meager information,
the predilection of the ether
for certain preferred
frequencies suggests the
mechanism by which the
particle masses are fixed.

     In Figure 10, the lowest known particle frequency, that of the
electron, is marked.  It was this “preferred” frequency that was used in
Section XII to fix the electron’s rest energy.  It doesn’t require a great leap

TABLE II
SELF-CONSISTENT PREFERRED FREQUENCIES

TABLE 5.23.1

SELF-CONSISTENT PREFERRED FREQUENCIES

i i

20 14

23 16

 Level                 (rad/sec)                      r    (cm)

    1                  7.76344 10                 3.52243 10

   2                 10                  10

   3 

−

−

ω

× ×

× ×1.62973 1.67796 !
24 17

24 18

25 18

                2.69981 10                  1.01289 10

   4                 8.508    10                 3.214    10

   5                 1.580    10                 1.731     10

−

−

−

× ×

× ×

× ×
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of imagination to guess that other solutions of the # -wave equations will
lead to more massive particles that correspond to higher preferred
oscillation frequencies.  Table II lists the known preferred ether
frequencies, including levels 4 and 5  which are educated guesses.

XVIII THE CONSTANT VELOCITY ELECTRON

     The picture of the electron at rest has been completed.  Table III lists
the related properties found so far.  However, the electron has many
other interesting characteristics when it is in motion. These will be
discussed in the following.

TABLE III

                        CONSTANTS FOR AN ELECTRON AT REST

   

20
d

3
0

14
e

e

      8.9875517 10        descartes     Datum ether density

     -1.92333 10             descartes     Incremental density (r=0)

r       3.522426 10         cm                Effective radius

q   

−

φ ×

φ ×

×
9

7
0

28
0

   -1.7026924 10         hlc               Charge distortion

E       8.18711 10            ergs              Energy distortion

m      9.10939 10           gm                Mass

        5.2728633 10

−

−

−

×

×

×

σ × 28

20

(intrinsic)

s

     erg-sec          Spin angular momentum
                                                                                

       3.2875524 10      erg/hlG        Spin magnetic momen

−

−µ ×

20
           

7

(intrinsic)

e

t
                                                                                

 7.7634396 10       rad/sec         Electron  - wave frequency

G        8.38503 10          c−

ω ×

×

#

3 2m g sec   Gravitational constant−

     An electron in motion exhibits several characteristics not evident
when it is at rest.  Some of these are velocity dependent and some result
from acceleration.  While the velocity dependent properties are amenable
to formal analysis, most of the acceleration effects are mathematically
intractable.  Nevertheless, even in those cases, considerable insight
evolves from the qualitative picture available.  In the following constant
velocity case, the concepts of kinetic energy, inertia and momentum will
be derived, and the physical basis of the de Broglie frequency will be
made clear.
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     The analysis begins with the derivation of the # -waves as a solution of
the traveling wave η equation in APPENDIX A.  It is well known that a
moving point source of waves produces wave fronts that are spherical,
but with centers strung out along the axis of motion, so the sustaining
wave is set up in cylindrical coordinates (x, R, α , electron velocity u  in
the x direction).  The solution will be presented here with no proof other
than it satisfies the equation by direct substitution.
     The solution for η is,

                                                 
22

2

a
2r

*
*
ψ

η = γ      ,

and the compatible Vi  and φi  are,

                                 x R2 2

a x a RV C    ,    V C
r r
* * *
* *

ψ ψ
= = γi i      ,

                                                                                                          (96)

                      d 0

0 e

a c R xC 1 S
c r R x
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* * *

  φ ψ ∂ψ ∂ψ
φ = ± γ + +  ω ψ ∂ γψ ∂  Ri ∓      .

With some nomenclature borrowed from the theory of sound12,

              
0 0

e eC cos t     ,    S sin t
c c

   ω ω
= =   γ γ   

R R∓ ∓     ,     e /r r** −ψ ε=     ,

and,                                                                                                   (97)

            2 2

0

ux (x ut)  ,  r x R   ,  (r x   .
c

* * * * *)  ,  = γ − = + = γ ± β β =R

Here, the value of eω  is that found for the electron at rest.  The upper
sign results in the outgoing waves of the electron, whereas the lower sign
represents the incoming waves of the positron.  In the following, only the
upper signs, applying to the electron, will be retained.   Because the
source is in motion, the relationship between η and Vi  becomes,

                                          
2

2
2 2 2

r
x R

*
*

η = γ
+ γ

Vi      .

     In visualizing the moving particle, it is possible to use a slightly
simpler form, in which the ether density pattern of the constant velocity
electron is frozen at one instant of time, say t 0= .  Then φ  becomes,

                                       ( )e
'2 /r r

e

e 1
8 r

−φ = − γ − ε
π

     ,                           (98)

where,

                                 ( ) ( )
1 1
2 22 2 2 2r ' x R r 1 cos= γ + = + ζ θ      ,                   (99)

and 2 1ζ = γ −     .
_____________________________________________________________________
12. E.U.Condon, H.Odishaw, Handbook of Physics, p.3-117, McGraw-Hill, N.Y. (1958).
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The first question of interest is:  When the moving charge density is
integrated over all space, what is the total charge of the moving electron?
Has it changed?  From the surrounding function distortion equation in
APPENDIX A, the moving charge density distribution function can be
obtained with the small change,

                                         
2 2

2
2 2
0

u
c x

 ∂ φ
ρ = − ∇ φ −  ∂ 

     ,

which, upon substitution of φ  from Eq.(98), results in,

                                          e2 /e
4

r rer 
2 r

− ′ρ = − γ ε
′π

     .

Just as in the static case, the total charge is found from,

                                
( )

e2r
r 1 cos 2

e
e 24 2

space

er
q dvol

2 r 1 cos

−
+ζ θγ

= −
π + ζ θ

ε
∫      ,

where r′  has been replaced by its spherical polar coordinate form as
taken from Eq.(99).  This simplifies the integration, which yields,
                                                  eq  e= −      .
From what is known about moving charged particles, this result was
expected.
     To observe the same process applied to the energy density
distribution, the gradient squared distortion energy equation, in
APPENDIX A, can be used.  With φ  from Eq.(98), the energy density of
the constant velocity electron is,

                                           e
2 2

4 /
e 2 4

r re
32 r

− ′γ
ε = ε

′π
     ,

and the total moving energy of the particle is,

                                    
( )

e4
2 2 1 cos 2

22 4 2
space

r
r

e
E dvol

32 r 1 cos

−
+ ζ θ

θ

γ
=

π + ζ

ε
∫      .

The result of the integration is,
                                                  0E E= γ      ,                                    (100)
where 0E  is the electron/positron rest energy in Table III.
     The energy relationship of Eq.(100) is well known, and is usually
ascribed to so called special relativity.  Clearly, no relativistic approach
was used in the preceding derivation. All of the physics involved only one
observer, and the result is directly attributable to properties of the ether
and the structure of the electron/positron fabricated from it.  Implicit in
the preceding development is the resolution of the infamous 4/3
problem.  Its key resides in the proper understanding of and definition of
energy and energy density.  Rohrlich discussed the problem in detail
from the present day accepted viewpoint and described earlier attempts
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to resolve it13.  Those earlier investigators managed a mathematical
solution that gave the correct form of Eq.(100).  Rohrlich, himself, used a
similar approach; i.e. forcing Lorentz invariance and coming up with
correction terms for the static definitions of energy and momentum.
Although Rohrlich's results are formally the same as Butler's14, the latter
took the correct approach based upon redefining energy density, allowing
a much more intuitive interpretation of the mathematical forms.  He was
prevented from obtaining the correct physical interpretation by using E
and H  to define energy density rather than A and φ .
     To see exactly what happens when an electron is brought up to some
velocity u , first consider the particle at rest.  The contour surfaces of
constant φ  are spheres, as represented in Figure 11a.  Corresponding

surfaces of constant φ  for a moving e/p are the oblate spheroids
appearing in Figure 11b.  In present day texts, it is almost always
overlooked that the potential φ  does not contract longitudinally to the
motion but expands laterally, which is why the surrounding function or
charge density of the particle changes.  It is also why the 2( ) 2∇φ
distortion of the moving particle,  integrated  over  all  space,  increases.
Note that for each different constant velocity u ,  a  specific  lateral exten-

Figure 11  Lateral expansion of the moving electron/positron, (e/p).

sion and shape is required.  So, a specific amount of charge distortion is
identified with each velocity, as is a specific amount of energy distortion.
Particle interaction
     The exact details of interaction of, say, two electrons, will be deferred
till later; but here it is possible to form a useful mental picture.  An
electron will be acted upon to bring it from rest up to some velocity u .
However, there are no sticks or stones to move it.  There is only ether,
and specifically, only ether in the form of another particle.  So, as
illustrated in Figure 12, the sequence starts with one energized electron
moving at velocity 1 2=u i  approaching another electron which is at rest.
It must be emphasized that the contours shown are not edges or surfaces
________________________________________________________________
 13. F.Rohrlich, Classical Charged Particles, Addison-Wesley Publ. Co., Reading, MA (1965).
 14. J.W.Butler, Amer. J. Phys. 36, 936 (1968); 37, 1258 (1969).
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Figure 12  Energy exchange between two electrons.

in any real sense; they are equipotential or equidensity levels of the
ether.  There are an infinite number of these imaginary surfaces
increasing in size from the electron center to the far reaches of space.
Clearly, certain liberties are taken in the simplified picture of Figure12.
Nevertheless, electron number one is originally carrying excess
deformation energy (over its rest value) and number two is at rest.  Later,
the excess in 1 has caused 2 to move away, at the same time resulting in
a transfer of distortion from 1 to 2.  Number 1 cannot run slower unless
distortion is removed from its field and the latter is allowed to change
shape to exactly match the reduced velocity.  Number 2 cannot take on
the transferred distortion unless it moves and changes shape to exactly
match the condition of its moving at its new velocity.  As the process of
transfer continues, the first electron finally gives up all of the excess
distortion and comes to rest.  Number 2, meanwhile, has taken on all of
the original distortion and is now moving at the velocity originally
exhibited by 1.  The shape of 2 is now also exactly the same as the
original shape of 1. In this example, radiation has been neglected.
     Delving further into the operation of an e/p, Eq.(100) can be written
as,

                             
2

0
0 22

0
2
0

E 1 uE E 1 .........
2 cu1

c

 
= = + + 

 −

     .

For small velocities, all higher order terms of the series are negligible;
and, making use of Eq.(69),  the excess energy of the particle due to its
constant velocity is,

                                       2 20
k 02

0

E1 1E u m u
2 2c

≅ =     .

This is called the kinetic energy of the moving particle.  At higher
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velocities, the exact form is found by subtracting 0E  from E of Eq.(100),
so that,
                                        ( )k 0 0E E E E 1= − = γ −      .
     This brings the discussion to the following point.  The electron is a
small depletion of ether prevented from sagging by a sustaining wave
running away from its geometrical center. There is no rock in the middle,
there are no objects in the field. It has two kinds of deformation that are
significant in determining its charge and energy.  When it moves, it
changes shape in a very precise way, increasing its distortion content.
The excess distortion, called its kinetic energy, is determined by its shape
and velocity.  Eq.(98) represents the total energy of the moving
electron/positron.  Contrary to conventional belief, the electron's magnetic
field carries no energy.  The full implication of this will be discussed in
detail later.
Inertia and Momentum
 The quantitative discussion of momentum, etc., will be presented later
on.  All that is needed here is a brief statement about the physical nature
of momentum and inertia.  In connection with Figure 12, the interaction
of two electrons was described.  Before the #1 electron had approached
close enough to #2 to have a significant effect on it, their condition could
be described as follows.  Number 2, being at rest, was a solution of the
field equations, and assuming the boundary conditions did not change, it
would sit permanently at the same location forever.  Number 1, being in
motion at constant velocity, was also a solution of the field equations,
and assuming the boundary conditions did not change, it would continue
along a straight line at constant velocity forever. These are not
mathematical statements, but physical.  In both cases, the boundary
conditions are a d0,  φ ≅ φ ≅ φ  far out.  For the electron at rest, the reduced

aφ  near the center has spherical contours, held up by spherical wave
fronts, all matched up from  r 0=  to r → ∞ .  For the charge in motion,
the reduced aφ  is oblate in its contours, all moving in a single direction,
while curved wave fronts leave the geometrical center along paths all
exactly proportioned so that just the right amount of aφ  arrives at each
point in the field to maintain the shape and overall velocity distribution
V , etc.  Otherwise, the "particle" would cease to exist.  Only when #1
approached close enough to #2 to lower the ether density from d φ  to

some aφ , on the side of approach to #1, would both see the boundary
conditions change and then adjust their representative flow pattern
solutions of the field equations.  This is the physical meaning of inertia.
Only when the boundary conditions change will a solution of the field
equations be modified.  Inertia is obviously not a property of the ether
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itself, but of the solutions to the field equations; i.e. inertia is a property
of particles, not ether.
     Momentum, m=p u , can be understood physically by realizing that it
is a combination of the effect of inertia and the fact that it takes time to
bring about the changes in velocity of a particle such as the electron.
First the boundary conditions must change, usually by bringing another
field into the outermost regions of the electron's field.  As the electron
moves away from or towards the changing region, the excess deformation
energy must be carried throughout the electron's field by the modified
sustaining waves, which are propagating at the speed of light.  Only
when the shifted deformation moves in a very prescribed manner and
causes the shape of the electron density φ  to maintain the proper
configuration to match the overall instantaneous velocity and motion of
the electron field can the electron-external field combination remain as a
valid solution of the field equations.  Thus, time is involved.  It is this time
delay that begets the concept of momentum.  Later on, the formal
connection between the time variation of the particle deformation and the
change in the external boundary conditions will be worked out.  Clearly
momentum is not a property of the ether but of solutions of the field
equations; i.e., momentum is a property of particles, not ether.
     Numerical examples reviewing momentum and energy calculations
will be presented later, but the equations most often used for this are
given here in TableIV.  These equations are always called relativistic in
modern texts, but no relativistic condition has entered into their
derivation.  They come directly from a single observer's solution of the
field equations for a moving electron/positron.

TABLE IV

ENERGY AND MOMENTUM FORMULAS

2 2 2 k
0 k 0 0
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2
0

02 2
0

0k

0 k

EE E E                     E (pc ) E               1
E

pcE 1 1p mu 1          u c 1                    u
c E

EE                                      p 1 2
c E
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= = − = − =
γ γ
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Electron radiation
     Propagating energy in the form of radiation is normally detected at
long distance from a changing configuration of charges.  Some of the
most puzzling phenomena in conventional physics originate at the
interface of the emitting charge and the freely propagating radiation.
That is the inevitable result of the lack of knowledge about the charge's
internal structure.
     The standard approach to this problem is to first solve Maxwell's
equations for the fields radiated from point charges moving in explicit
ways.  Using this to define the net radiated energy leaving a charge, that
energy is associated with the acceleration of the charge.  This whole
approach is basically unsound.  As it turns out, many situations exist
where electrons accelerate but do not radiate.  Certainly the most
conspicuous case is that of atoms in their ground state, where electrons
orbiting and accelerating towards the nucleus do not radiate.  So strong
is the belief that Maxwell's equations determine the presence or absence
of radiation, that the belief in atomic orbits has been relinquished.  Too
bad, since they are there.  The simple fact is that Maxwell's equations are
necessary but not sufficient to indicate whether charges radiate.  The full
field equations must be solved to see whether the total field has a free or
radiated part.
     From the ether viewpoint, particles engage in motions that can result
in variations in the deformation, which, although conserved, moves
about.  Some part of the total deformation is bound in the particles, i.e.
is an intrinsic part which, if it were not there, would mean the particle
identity was lost.  As a particle speeds up, this bound deformation
increases; and, conversely, when it slows down, decreases.  When
increasing, the source of the acquired deformation unloads distortion
energy by first shifting it into the form of an interaction deformation
shared between them, after which it is absorbed by the speeded up
particle.  Radiation occurs during the shifting process.  In situations
where the speed change is too rapid or the direction changes sharply, i.e.
high acceleration occurs, it happens that interaction energy out in the
field cannot move in just the right way to keep up with the particle.  In
such cases, the renegade deformation cannot be reclaimed by either the
particle or the external field and it escapes.  That lost deformation is the
radiation.
     What is needed is a simple intuitive way to decide when radiation will
occur.  The ether provides this.  When no bound ether element is
changing shape, no radiation can occur.  When bound ether elements are
changing shape, radiation occurs, with greater radiation resulting from
more violent changing.  The full import of this concept will gradually
appear as more complicated structures, such as atoms and macroscopic
field problems, are studied.
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Turning
     One aspect of the electron's characteristics that has no counterpart in
contemporary physics is the result of its shape change with motion.  By
expanding laterally, the electron has an established axis in the direction
of its motion; and, in certain situations, that axis could shift direction.
In other words, the electron shape could turn.  It might then reasonably
be expected, based on the previous discussion, that whether or not its
incremental ether elements turned, as its path deviated from a straight
line, could have a profound effect on its physical operation.  At this point,
it cannot be emphasized enough that this turning is not the least like the
spin examined earlier; and often, when turning is discussed, the spin will
be ignored, because the frictionless, massless nature of the ether allows
them both to operate without interfering with each other.
     Once the electron/positron has a new shape, due to its motion, the
relative motion of that shape and the ether that composes the particle
represents one of the most significant and controlling properties of that
particle, fundamental to important aspects of e/p radiation. Figure 13
illustrates two alternative modes of path deviation; one of e/p radiation
with no ether turning, and the other with full ether turning and no
radiation.  The dots on the equi-density contours identify particular ether
elements in the φ  field of an electron.  In the full turning case these
elements move with a flow pattern that corresponds to rigid body
rotation.  In the non-turning case, the flow pattern is more complex, with
particular elements in the density pattern approaching one another (2
and 4) and other elements receding from each other (1 and 3).  This
corresponds to the fact that in the non-ether turning or partial ether
turning particle, the φ  field around each point is deforming, or changing
shape; whereas, in the full ether turning particle the φ  field around each
numbered point is not deforming, or changing shape. Thus, in the former
case, radiation will take place; whereas, in the latter, it will not.  Here,
again, the full significance of this phenomenon will gradually appear as
more complicated processes are discussed.

Figure 13  Path deviation with and without turning.
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The de Broglie frequency
     There is another property of the electron that results from its # -wave.
Except for the behavior of atoms, none of the observations of the related
phenomena had been made before 1924 when de Broglie first proposed
"matter waves" and the current explanations by quantum mechanical
approaches are both inaccurate and non-intuitive.
     Figure 14 illustrates the condition of a constant velocity electron as
described earlier.  The first half of the figure indicates the outgoing # -
waves, whereas the second part is a plot of their wave-fronts at any
particular time,  say  t = 0.   From Eqs.(96) and (97), those fronts are spe-

Figure 14  A constant velocity electron.

cified by the phase angle,
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and R  can be found along the x axis, where,

                                      

x     ,    x 0
1

 
x

    ,    x 0
1

 > − β= 
 <
 + β

R      .                          (102)

Substituting these values into the phase δ , the frequency along the x
axis is found to be changed to,
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     .                          (103)

This change is exactly equivalent to the ordinary doppler shift of a source
or sink of sound; and, the electron's being a source of the # -waves, the
front edge frequency is increased and the back is decreased, which is the
opposite of the positron (sink).



54

     For a free electron, the only effect of these changes is the adjusted
shape described before.  However, when interacting with another
particle, the effect produced on the outcome is related to the difference
between the front and back frequencies.  For this reason, the difference
frequency assumes a significance of major importance.  Combining the
frequencies of Eqs.(103), the difference frequency is,

                                  e
d f b

1 1 
1 1

ν  
ν = ν − ν = − γ − β + β 

     ,

which can be manipulated into the form,
                                               d e2  ν = γβν      .                                  (104)
To bring the derivation more in line with the conventional approach, the
momentum (see Table IV) and Eq.(104) can be used to write,

                                      
2

o 0 d
0 0 0

e

m c pc m uc
2
ν

= γ =
ν

     ,                     (105)

which shows that the momentum and the difference frequency vary
linearly because,

                                                  
2

0 0

e

m ch  =
ν

                                     (106)

is a constant.  When e 0, mν  and 0c  from Table III are substituted into
Eq.(106), the value of the constant h is found to be,
                                      27h 6.6260759 10     ,    erg-sec−= ×                    (107)
the well known Planck's constant.  With this in mind, Eq.(105) can be
written as the de Broglie difference frequency15,

                                                             d 0
p 2c
h

ν =      .                               (108)

The customary way of writing this expression is,

                                                       h
p

λ =      ,        WRONG              (109)

and this relationship is called a "quantum mechanical" equation; but it is
simply another way of writing Eq.(108) which comes from the doppler
shift of the electron's  # -wave.  Physically there is a difference frequency.
However, the Eq.(109) is probably better not used, because there is no
difference wave, so the wavelength λ  is nothing more than the inverse of
Eq.(108) expressed in different units.  The proper way to invert Eq.(108)
is to write,

                                                  0
d

d

2c h  
p

Λ = =
ν

     .                           (110)

________________________________________________________________________________________________
 15. Although the author has chosen to call dν the de Broglie frequency, it should not be confused

      with the conventional db E h =ν , a fictitious frequency of a fictitious wave that is thought to

      travel along with the moving particle; not as a single wave (which leads to very unphysical
      velocities), but as a wave packet composed of many waves.  The electron's radial # waves− ,
      however, are just as real as t-waves.
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d  Λ is not the wave length of a mysterious wave that travels along curved
paths.  It is determined by real # waves−  that propagate radially from the
electron's center.  It has nothing to do, directly, with the wavelength of
any wave.  Instead, in this constant velocity case, it is simply the distance
the electron travels during  2  β  cycles of the difference frequency.

XVIV THE LAYERED PARTICLES
Introduction
     For the last 100 years, particle physics has been successful primarily
on the experimental side.  The rare theoretical success has been the
classification scheme called the "Standard Model", and the prediction of
the existence of one particle.  An extensive mathematical literature, e.g.
string theory, N dimensions, etc., has done little to advance the
knowledge of particle structure or predict particle masses.
     The normal mutual support of theory and lab work has failed here,
because QM is non-visualizable and suppresses cause and effect.  This
has guided experimentalists to the "bigger machine" approach; but
particles are very flexible, and at some collision energy level they just
come apart and new particles are formed.  So, the limit has perhaps been
reached in "bigger is better".
     The ultimate goal is to change the present approach to particle
structure by avoiding the difficulties of a dogged adherence to the use of
successive layers of point particles to describe matter.  The following is a
small step in applying Main-Line physics to find a more flexible particle
classification system and to point the way to a simpler, visualizable
analytical picture.
Particle categories
     Here, the conventional categories of particles (e.g. leptons, baryons,
etc.) will be abandoned.  A new set, based on simple intuitive ether
properties will be adopted.       Particles are ether configurations that can
act as relatively concentrated units for some significant time.  If the
structure cannot change without some outside influence, the particle is
stable.  If it must redistribute itself into a new form (i.e. “convert”), it is
unstable.  In the simplest organization of particle categories, no
distinction between stable and unstable particles is made; and stability
is just another property.  However, as discussed later, stability is a
complex problem.  Based on the available information, there are only two
different classes of fundamental particles:

1.  Layered particles (layerons) - electric
                          2.  c particles (c-ons) - magnetic

      The c particles, photons and neutrinos, travel at the speed of light in
free space, and are quite different in structure from all the other particles.
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Neutrinos allow conservation of spin angular momentum in particle
interactions.  Just how they carry electric energy away from interactions
is not yet understood.  Photons carry energy away from charged
particles, generally orbiting.  Some details of the c-on particles' makeup
will be presented later on.
     The layered particles are composed of spherically symmetrical ether
density distributions, very much like the electron, supported by # -waves
and stacked in various arrangements of potential φ   (see Figure 15).
Examples of 1, 2 and 3 layered particles are the positron, pion and
proton  respectively.   In the  following,  the  layerons   will   be discussed

Figure 15  Layered particles.

in detail.  The separation of layerons and c-ons helps to emphasize that
layerons are bulk distortions with purely electric energy (see Sec. XVIII).
     A proper analysis of the layerons begins with the unons, for which the
theory is much advanced.  The subsequent description of the bions and
trions is far from complete, and leans heavily on the unon analysis.
Nevertheless, the visualization is carried to the point where, even without
the final rigorous answers to many important questions, the overall
picture is almost totally understandable and only awaits the formal filling
out of the many specific cases.

Particle measurements
     Many of the particle types studied by physicists are man-made, and
only a very few are involved in the structure of the world (e,  p, n ).  Table
V lists the most important low energy particles and shows their decay
products, which help to visualize how the particles are constructed.
Numerous other vacuum disturbances, called resonances, have some
particle-like behavior, but here they are not considered to be particles.
     In spite of the fact that most of the data used to describe particle
characteristics at present are obtained by high energy collisions of beams
and targets, and that this information is indispensable, it is not of
paramount importance here where the goals are somewhat different.

          unon                        bion                           trion

  0                r →          0                 r →           0                  r →

          iφ = φ                       i jφ = φ + φ                    i j kφ = φ + φ + φ
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Instead, the discussion will lean toward particle decay, because only the
electron and the proton (and the neutron when part of a nucleus) are
stable.  All other particles decay in a relatively short time after formation.
The only difference between the bombardment and decay conversion
processes is in the complexity of the initial conditions.  Particle
conversion involves only one pseudo-stable or unstable particle that
redistributes its distortion to a lower energy configuration.

TABLE V

PARTICLE CONVERSION PRODUCTS

     In particle decay, energy distortion, uninfluenced by any outside
presence other than the datum fluctuation, will always redistribute in a
downhill direction, i.e. produce only constituents of energies smaller
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than the original (all adding up to the original energy, of course).  This
means that any of the particles to be examined will convert to one or
more of those listed in Table V at lower rest energies only.  These are not
the only conversions the listed particles undergo, but those omitted,
which may be very numerous in type, are found only a small fraction of
the time, less than a few percent, and often as little as, say, 6 10  −

percent.
Unons
     The most common single layer particle is the electron/positron, which
was previously discussed in detail.  Referring back, the e/p is a single
dip (bump) of ether density φ , held in place by its # -waves, and of a
form,
                                               2

0(1 )φ = φ − ψ      ,                                (111)

where ir r  −ψ = ε  is the intrinsic wave−#  shape function, and i r  is the
inflection radius.  This single layer of potential yields single layers of
energy and charge density, which indicates that the e/p is a unon with
total rest energy and charge,

                                 2
0 0 iE 2 r= πφ      and    0 i q 8 r= πφ      .                  (112)

    It is important to recognize that the solution of Eq.(47) for the # -wave
shape function was in no way specific to the electron.  Only when the
particular frequency eω  was used, in Eq.(55), did the central density 0 φ

of the bulk distribution φ  identify the particle as the electron.  The
implication was that, during the formation process (e.g. pair production),
the ether was distorted enough to start the oscillating # -wave with a
peak density of at least 4

m 1.3457 10  desφ = ×i .  Then, in accordance with
the m  ω φi characteristic of Figure 10, the # -wave oscillation continued at

20
e 7.7634 10  rad/secω = × .  This suggests that, if the initial distortion

had been much greater, unons of higher frequencies corresponding to
the steps in Figure 10 would have been found, and they have been.
     The previous electron analysis applies to all the unons, if  ω  is
properly chosen, so Eq.(88) for the traveling φi  wave in the particle’s
central region can be used to find m  φi  for the various unons.  The
density oscillates, so the peak amplitude at every radius is reached each
time sin t 1ω = ± , reducing Eq.(88) to,

                              i
i

/d i
p 2

r r r 30r
a r1    ,       

rr
−φ  φ = ε + < ω  

i                   (113)

where ir  designates the effective radius (inflection point of the bulk
density distribution) of  each  unon as determined by its  ω .  Eq.(58)
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establishes ir  as,

                                                   i
D r =
ω

     ,                                     (114)

Combining Eqs.(113) and (114), it can be seen that the maximum # -wave
density m φi  occurs at the radius p mr C D/= ω , where mC ( 3 1)/2= − .
Thus,

                                    1
Cm

d
m 2 2

m
m

a 1 1
CC D

 φ
φ = + ω 

 ε
i     ,

or,
                                                  mKωω = φi      ,                                  (115)
where,
                                          16K 5.769032 10ω = ×      .                         (116)
The difference between Eqs.(115) and (95), is that m( )ω = φG i  describes
the compression/oscillation property of the ether itself, whereas

mKωω = φi  describes  a  property  of  particle structure, a solution of the
# -wave equation.
Both conditions
must be satisfied.
Eq.(115) can be
plotted over the

m( )φG i  curve of
Figure 10, and  a
unon is found at
each intersection
with a frequency
plateau.  Figure
16 shows this
plot.

                            Figure 16  The unon family.

     The electron is a stable particle, but the µ  has a mean life of only
6 2.1970 10  sec−× .  It is still possible, however, that all unons are

basically stable.  In fact, since they are described by the same set of
equations as the electron, it is likely.  If they are basically stable, then it
is only the datum fluctuations, triggering them into “conversion” into
lower energy particles, that gives the appearance of instability.  The
amount of distortion compressed into their small volumes then
establishes their mean lifetimes.  The next higher energy unon is the τ ,
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which has a shorter mean life of 13 2.910 10  sec−× .  No other unons have
been observed, but properties of the multi-layer particles suggest that
the higher frequencies of Figure 16 make 4th and 5th unons possible.
Measurement of the Unon Family ω ’s
     At this point, something more should be said about the
compression/oscillation curve, and the roundabout method  for
measuring it.  Farther on, a completely classical derivation of the
hydrogen atom will be presented that uses only Newton’s laws and some
properties of the extended electron that were described earlier.  That
derivation can be used to find the equation for the frequencies in the
hydrogen spectrum in the form,

                                      
4

3
e2 6 2 2

0 0 f i

e 1 1
8m c n n

 
ν = ν − 

 
     ;                        (117)

or in the more usual form of the inverse wavelength,

                                        H 2 2
f i

1 1 1R
n n

 
ν = = − λ  

     ,                         (118)

where,

                                             
4

3
H e2 7

0 0

eR
8m c

= ν      ,                             (119)

and fn  and in  are the final and initial orbit numbers of the radiating

electron respectively.  The measured values of ν  from the many
transitions, including microwaves from free hydrogen in outer space,
provide a value for H R , the Rydberg constant, one of the most accurately
measured constants known.  It is found to be,
                                   5 -1

HR 1.0973731572 10  cm= ×      .                 (120)
If this value is used in Eq.(119), along with the measured values of em , e
and 0c , then eν  is,

                       
2 7

200 03
e H4

8m c R 1.2355898 10  cyc/sec
e

ν = = ×      ,         (121)

or 20
e = 7.7634396×10ω .  This is essentially a measured value for eω .

     The same procedure can be used to find µω  and it is found to be very
close to the value used in the present work.  Because the measurement
of wave−!  frequency just described is difficult for higher energy unons
with very short lifetimes, a more practical shortcut is used here.  The
unon ' sω  are calculated from their measured bulk rest energies by
combining Eqs.(55), (114) and (112) to give,

                                             
2 4 2

d
0 2
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a bE
8c D

πφ
= ω      .                             (122)
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Figure 17  The unon family.

The expression can be simplified by using the derived constant of
Eq.(106), leading to,
                                                 0E h= ν      ,                                    (123)
where,

                           
2 2 4 2

27d
2
0

a bh 6.6260755 10 erg-s
4c D

−π φ
= = ×      .             (124)

Eq.(122) is represented in Figure 17, showing the bulk energies of the
extended unon family of particles as a function of their frequencies.

Unfortunately, deter-
minations of ω by this
method require the
fore knowledge of each
unon’s existence, and
the measurement of its
rest energy or mass.
As mentioned earlier,
there is no known
method for measuring
the m( )φG i  curve
directly, so the two top
steps shown in Figures
16 and 17 are just
guesswork inspired by

some inferred ideas based on multi-layer particle structure.  Even if
unons 4U  and 5U  can be formed, their tremendous compaction would
lead to such extremely short mean lives that their observation might be
out of the question.
The energy compaction relationship
     Eliminating 0φ  between the rest energy 0E  and charge q found in
Eqs.(112) above,

                                                  
2

0 i
qE r

32
=

π
     ,     erg-cm                (125)

a relationship called the energy compaction equation.  It indicates that
the more energetic unons have smaller radii. For q e= ∓ ,

20
0 iE r 2.8838 10   erg-cm−= × .

Unon size and stability
     The unons of interest will be limited to the series of whole charged
particles, i.e. e, µ , τ , ..., that can exist alone and be observed for some
finite time.  Using the compaction relationship, and the measured values
of 0E  for each of the unons, the calculated values for ir  and 0φ  are listed
in Table VI with each particle's observed mean life.
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TABLE VI

UNONS, THE "PREFERRED" ETHER STATES

     The interesting features of Table VI are that, first, although each of
these unons has the same charge  e∓  the more energetic particles have
larger center potentials; and, their energy being packed into a smaller
volume correlates with their being less stable.  Second, it appears that
the unon sequence is a set of preferred states that can exist as "pseudo-
stable" particles because of a fundamental property of the ether.
Preferred Ether States
     The  µ  and τ  are often called "big electrons", because, like the
electron, they have only the same two simple characteristics, their center
potentials and their inflection radii.  In the later discussion of multi-layer
particles, it becomes clear that the multiple layers are similar to these
three unons.  In fact, the radii of the layers in multi-layer particles are
essentially the same as those listed in Table VI.  In one way this is
surprising, but why it is true can be understood better from the
following.

The Layer Radius/Frequency Equation
     An important relationship between the inflection sphere radius of a
unon and the unon's wave−!  frequency is obtained by eliminating 0E
from Eqs.(123) and (125), with the result,

                                             
2

i i
q r D

16h
ω = =      ,                              (126)

where  2 7D e 16h 2.7346139 10   rad-cm/s= = × .  Eq.(126) takes the
surprise out of the concept of preferred ether states, for although it is
difficult to imagine how preferred radii could be a basic condition in the
ether, it is comfortable to think of preferred ether frequencies as basic.
So, assuming that Figure 16 indicates that the ether has preferred
frequency states, Eq.(126) shows that this establishes preferred radii.
     Figure 16 indicates two possible unons, 4U  and 5U , that have not yet
been observed.  In analyzing the more massive, composite particles, it is

      0E  (ergs)             ir  (cm)           0  (hlvolts)φ      mean life (s)

______________________________________________________

e   78.1871 10−×   14
1r 3.5224 10−= ×   31.9233 10×       Stable

µ   41.6929 10−×   16
2r 1.7035 10−= ×  5 3.9768 10×   62.1970 10−×

τ  3 2.8472 10−×  17
3 r 1.0129 10−= ×   66.6886 10×   132.9100 10−×
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clear that there are at least two more preferred states, 4 and 5; but their
great instability may make their existence possible only inside the
composite particles and not observable as unons of higher order.  The
values shown are educated guesses.  Table VII lists the important "rest"
characteristics of the three known unons.

TABLE VII

Elementary particles and quarks
     From the foregoing it can be said that the unons are truly elementary
particles.  Each one stands alone with its own set of properties.  From the
1960's on, it has been understood that the more elaborate particles are
constructed of objects, now called quarks, that sometimes behave in a
manner similar to particles but have fractional charges ±e/3 and ±2e/3.
They are thought to be "point" charges like the conventional electron
model. Little is known about the spatial arrangement of these objects
inside a composite particle.
     In interactions between quarks and external projectile particles, the
quarks behave as if they were independent entities, but no individual
quark has ever been observed outside its housing particle.  This suggests
that the composite particles might be made up of very flexible constructs
similar to the finite unons described earlier, but having fractional
charges, two components for the mesons and three for the baryons.  In
that case, although the components might freely move for short
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Figure 18  The preferred ether layer radii.

distances, if one of the components were forced out of a composite
particle, because of its fractional charge, it would not qualify as one of the
preferred unon solutions listed in Table VII nor as an elementary particle,
and so would decay; as would the remaining debris from the original
particle.  If this is a correct description of composite particles, then all of
the properties of the Standard Model are preserved and yet a greater
flexibility results.
     The classification scheme described in the following includes all whole
charge particles, but not photons and neutrinos. Using the Standard
Model as a guide, the two "point" quarks that make up mesons and the
three "point" quarks that make up baryons are replaced with the finite
solutions of Eq.(111).  To avoid confusing the properties of the "point"
quarks with these finite constructs, the term quark will not be used to
describe the multiple particle components.

XX  MULTI-LAYER PARTICLES

     At this point the overall particle problem expands intolerably, and a
logical, stepwise process of solving it demands an almost endless chain of
decisions between possible alternative choices of methods and
visualizations.  The writer has made certain specific choices, and has
carried the process as far as time and resources permit.  Although most
of the key structure is presented here, there are still volumes of
calculations and measurements to be made in verifying and filling out of
the structure as developed.  Since the same can be said for the
conventional “Standard Model”, in its present state, the two approaches
should be evaluated on the basis of their simplicity and their ability to
complete the picture.

The Multi-layer Classification System
     Whereas the quarks have specific charges assigned, the present
scheme first indicates only  the  number of components a particle has.  The

basis for the nomen-
clature system is repre-
sented in Figure 18.
The numbered markers
represent the relative
radii of layers, which are
not equally spaced,
indicating only the
stacking order.  The
unons, bions and trions

are designated by iU , i jB  and ijkT  respectively, where the i, j and k
indicate the layers, and read from the outermost layer inwards.  The
possibility that “quadrons” also exist can be accommodated by writing
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ijklQ , etc.  In all these cases, the Eq.(111) constructs take on only the
preferred radii listed in Table II, so the subscripts indicate the size and
shape of the components.
     In this system, the correspondence of the iU  designation to the unon
family is, 1U e→ , 2U → µ  and 3U → τ , etc., each successive particle
having a single potential structure with a higher frequency, a smaller
radius and a greater energy (see Fig. 15).  The total charge of each is e± .
     When considering the multi-layer particles, several new
characteristics appear. For example, the individual layers do not have
different frequencies, each multi-layer particle has just one basic frequency
ω , and a single # -wave establishes all the layers.  The frequency ω is
not one of the "preferred" layer frequencies. Instead, the single wave−#
of a multi-layer particle acts like a driver that rings the two or three
"preferred" layers constituting that particular particle.  As an example,
the proton will be shown to have the structure 123T ; i.e. a potential
component 1φ  with inflection radius 1r , a higher potential component 2φ
with smaller inflection radius 2r , and a very high potential component 3φ
with a still smaller inflection radius 3r  (see Figure 15).  On the other
hand, there could be another trion 245T , with components 2φ , 4φ  and 5φ ,
and inflection radii 2r , 4r  and 5r .  Only those "preferred" radii given in
Table II and the possible 4r  and 5r , still to be determined accurately,
ever appear in the components of multi-layer particles; but, each multi-
layer particle has just one wave−!  frequency ω.  It is an empirically
determined fact that each whole charge particle has a rest energy 0E
given by Eq.(122),

                                       
2 4 2
d

0 2
0

a bE
8c D

πφ
= ω = ω,      .                             (127)

     It is convenient to set up the next step in the classification system on
the basis of the smoothed out charge density shell ρ  rather than the
potential φ  or the energy density shell eε , since the total integrated
charge of any shell is constant, even when the particle is in motion.  The
conventional  “Standard Model” adopts a very rigid classification scheme
that combines the layers and charges in a way that is too inflexible.  The
increased flexibility of the new system comes from the fact that after the
structure of the particle has been established in the subscripts, the
charges of each component have yet to be specified.  Now it appears that
all independent, observable particles have total charges that are integral
multiples of e.  Because of this empirically determined fact the total
particle charge distortion is Ne± , where N is an integer; so, at least in
the two layer particles with charge e, some of the layers must have
fractional charge.  The fractional charges are found to be e/3±  or 2e/3± .
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     In the new system, the charge sign and magnitude are indicated,
separately from the layers, by superscripts.  For example, the proton is

identified as the trion 122
123T
−++

 where the superscripts indicate that the

fractional charges of the components are -e/3, +2e/3, +2e/3.  Thus, i jB αβ

(i j)≤  and ijkT αβγ  (i  j  k)< <  represent the complete description of the
multi-layer particle categories (except for the spins), where , ,α β γ  are

given values of  
+

1,  1,  2,  2, 3,  or3
+ − + − −

 for the six possible charge choices.

Here, 1
+
 indicates a charge of e/3+ , 2

−
 a charge of 2e/3−  and 3

+
 a charge

of e+ .
Bion Configurations
     Bions are classified into three groups:
                         1. Concentric layer bions,
                         2. Eccentric layer, inside orbiters,       ijB       i < j

                         3. Outside orbiters                                ii B
Group 1 bions have two shells, one inside the other, with a common
center.  They have a net charge of e± , whereas the orbiters have two
layers of equal and opposite charge that give a net charge of zero.  Group
2 bions have two shells, one inside the other, with centers displaced and
both orbiting a common center.  Group 3 bions form a "system" like
positronium, with two separated, equal fractional charge shells, orbiting
a common center.  Observed concentric bions are tentatively identified as

±π ,  D± , sD± , and B± .  Inside orbiter bions are probably 0 0 0K ,D ,B and 0
sB

and outside orbiter bions are most likely 0
c,  , ',  π η η η and ϒ .  The latter

ii(B )  decay like Positronium and, similarly, produce two photons. This
two photon radiation is their hallmark.
     All the bions are possibly stable, in a fundamental sense (if it were not
for the datum fluctuations), but all bions convert to lower energy forms
shortly after their formation.  Because the bions decay rapidly, their
correct analysis must address the transient case, which has many
mathematical difficulties.  Therefore, the measured bion energies are
always slightly smaller than the values calculated from the "concentric,
static" approximation.
     ijB  bions decay mostly into unons and neutrinos.  Figure 19

diagrams the first six forms of the ijB  bion hierarchy. For each of these

ijB  designations, there are several possible combinations of charge.  For

complete generality the charges 3
+

 and 3
−

 were included earlier; but in

the following, to relate to the present view of quarks, the 3
+

 and 3
−

 classes
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Figure 19  The ijB bion hierarchy

will not be developed.  As an
example, consider the lowest
order bion category 12Bαβ .  Each of
the two layers could have one of
four different charge distortions,
so the total possible types of 12B
bions is 16.  However, this
number is reduced considerably
because the total particle charge
must be zero or an integral
multiple of e± .  Therefore, the
total combinations that could

possibly represent real particles is
reduced to:

- + + +

_ - - -

1 1 1 2 2 1 2 2
1 2 1 2 1 2 1 2

1 1 1 2 2 1 2 2
1 2 1 2 1 2 1 2

 B  B , B  B , 

 B  B B , B  

, ,

, ,  .
 

+ + + −

+ − − +

Now, since the second row represents four particles that are exactly like
those in the first row, except that their charges are opposite, the second
row particles are called the “anti-particles” of those in the first row. Thus,
the 12B  category describes only four different, possible particles (and
their anti-particles).  Subsequent analysis, using the # -wave equation,
can help to decide which, if any, is a real particle and to identify one or
all with those observed possible particles (and their anti-particles):

                                       
+ + + +
1 1 1 2 21 2 2
i j i j i j i j B , B  B   B , , .

 

− + + −

                               (128)

The first and last of these are inside orbiters, the second and third are
concentric bions.
     Unlike the unons, which have the “stable” electron at the base of their
energy ladder, bions are short lived, and even the lowest energy ijB  bion

is triggered to convert.  No more need be said about ijB  bions until later,
when solutions of the # -wave equation reduces their possible number.
     In the most general case of the outside orbiter category, each

iiBαβ yields only three possible types of bions (they are their own anti-
particles):

                                          11 22 33
ii ii iiB ,  B ,  B   .
+ − + − + −

                                 (129)
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The last, 33
iiB
+ −

, is positronium, which is not considered a fundamental
particle.
Trion Configurations
     The trions come in combinations of concentric shells, or eccentric
inside orbiters.  Although work is in progress, the only accurately
calculable concentric trion at this time is the stable proton.  The great
majority of trions appear to be inside orbiters, none of which has been
finally identified yet due to mathematical intractability.  The success of
the proton analysis demands that the much more difficult problem of the

orbiter trions be pursued,
particularly that of the
neutron.
     The same procedure that
established the possible bions
is applicable to the trions as
well.  However, in the basic
trion hierarchy, there might
not be outside orbiters.  Thus,
for now, the basic trion
configurations given here
involve only concentric cases
of ijkTαβγ  where i<j<k.   The

result is that the first few ijkT
appear as in Figure 20. Each
category has 3 layers, and
each layer can have one of 4
possible charges, so every
category has 64 possible

particles. Here, again, the requirement for Ne±  (N=0,1,2,…) total particle
charge reduces the number of possibles to one out of eight, or 8 (plus
their anti-particles).  Subsequent analysis can reduce this number.
     Of particular interest in this class is the proton, since it is the only
“stable” trion known.  As before, with the unons and bions, all of these
concentric trions might be basically stable but susceptible to triggering
into energy conversions by the datum fluctuations, which accounts for
their short mean lifetimes. The proton, however, is stable, and the lowest
sustainable trion form, just as the electron, at the bottom of the unon
energy ladder, is stable.
     The charge assignments for the 8 tentative trions of each set are:

111) ( 11 2) ( 1 21) ( 1 2 2) 

211) ( 21 2) ( 2 21) ( 2 2 2)

(

(

− − − − − + − + − − + +

+ − − + − + + + − + + +

Figure 20  Concentric trions.
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Multi-layer Particle Analysis
      Analysis of concentric multi-layer particles runs parallel to the
derivation for the electron in Sections X - XVI, and pages 58 - 63.  Figure
21 lists the principal steps involved.  Although the multi-layer equations
are more elaborate, the outline in Figure 22 shows that roughly the same
steps are necessary to determine the concentric layered particle's
characteristics.  In the following, these steps are elaborated upon and the
method is applied to concentric bions and trions.

Figure 21.  Unon analysis outline.

Figure 22.  Multi-layer analysis outline.

UNON ANALYSIS
   1.  Assume a simple trial potential.

2
0 i(1 )φ = φ − ψ

    2.  Find a correct wave−!  shape
         function.

ir r
i

−ψ = ε
    3.  Solve for the correct charge
         density.

2
2r r2 0 i i

4
r4

r
−φ

ρ = −∇ φ = ε

MULTI-LAYER ANALYSIS
1.  Assume a trial potential.

2 2 2 2
0 01 1 02 2 03 3(1 )   (1 ) (1 ) (1 ) ...φ = φ − ψ = φ − ψ + φ − ψ + φ − ψ +

2.  Find each layer's new wave−!  shape function.

( )re
i 2 re

r
r 1 K  E

i
 − +  ψ = ε

( er  is the effective radius of the whole particle)
3.  Find the iK  for each layer.

i e ir r /i
i

e i

rK =  -1   1
r

ω ω   ω
ε = − ε   ω  

 4.  Solve for the correct layer charge densities.

( )e
2

r r2 i e i
i ii 4

q r 1 K
2 r

− ψ
ρ = −∇ φ = + ε

π
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     Earlier it was said that all unons had charge distortion e± .  When
multi-layer particles are observed, at least two types are found to have a
total charge of 2e± .  Although a few multi-layer particles form with
N 2= , most have the same total charge e±  found in the unons.
Multi-layer Trial Potential
     Although later the proton will be used as an example, it is
straightforward to generalize the process for any concentric particle.  The
principal idea is that, as discussed in Sections III, IV and XIV, the only
physical presence in a particle layer is its potential iφ ; so, in the multi-

layer particle, the only physical presence is the sum of the potentials iφ  of
the particle's layers (see Figure 15),
                                          1 2 3 .....φ = φ + φ + φ +      ,                           (130)
     Paralleling the unon derivation, the same simple form of trial solution
of Maxwell's scalar equation is taken as,
                                              2

0(1 )φ = φ − ψ      ,                                 (131)
where ψ  is the multi-layer shape function.  In terms of the individual
layer potentials, this becomes,
                         2 2 2

01 1 02 2 03 3(1 ) (1 ) (1 ) ....φ = φ − ψ + φ − ψ + φ − ψ +      ,            (132)
which reduces to,
                                    2 2

0 01 1 02 2( .....)φ = φ − φ ψ + φ ψ +      ,                     (133)
where,
                                       0 01 02 03 ...φ = φ + φ + φ +      .                           (134)
The 0i φ ’s can each be positive or negative.
Multi-layer Shape Function
     All layerons have a single ingoing or outgoing # -wave with a single
characteristic frequency ω .  The thing that distinguishes the multi-layer
particles is that they have a composite shape function.  In summarizing
the results of the classification system and the multi-particle analysis, to
this point, a conflict arises in the following way.  Looking back to
Eq.(127), that relationship between the particle’s rest energy and
frequency appears to hold for all concentric layerons, and it is an essential
part of the so called “quantum” properties of matter.  Furthermore, tests
which included pionic atoms (electron replaced by a −π  bion) have been
repeated with more massive bions.  All such tests indicate that the orbit
selection implied by the de Broglie frequency, to be discussed later,
applies in general.  Thus, all these phenomena require that any particle
have one, single # -wave frequency.
     On the other hand, the preceding analysis shows that if the same
shape function ir r−ψ = ε  used for the unons were used for each of the
layers, multiple frequencies would be required, one for each layer.  The
resolution lies in the use of a more general, layer # -wave shape function.
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The New Layer Shape Function
     The most interesting aspect of multi-layer particles is that the layers
are essentially independent, though an indispensable part of the whole
particle; i.e. the shape functions, iψ , of the individual layers must satisfy
the # -wave equation independently.  Analysis available in footnote
reference 1 (2009) reveals that the iψ  must satisfy the equation,

                            
22

2 2
i i i i

i

d d d1 2 0
dr dr r D dr r

ψ ψ ψ ψω   − + + − =  ψ   
     .            (130)

This equation, which applies to the individual layers, is identical to Eq.(47)
which gave the unon’s shape function.  In the previous unon cases, for
simplicity, a very limited solution of Eq.(130) was used that applies only
to unons.  At this point, it is necessary to use a more general solution.
     The new # -wave shape function for each layer takes the form,

                                          ( )re
i 2 re

r
r 1 K  E

i
 − +  ψ = ε      ,                           (131)

where ( )2 er/rE  is the exponential integral of the second kind16, er  the
effective radius of the whole multi-layer particle and iK  an, as yet,
unspecified constant.  Figure 23 depicts the family of iψ  curves with iK
as the parameter.  The iK 0=  curve applies to the unons, and gives the
simple structure discussed earlier.  However, in multi-layer particles, each
layer has a different value of  iK  ; and the radii of the layers are specified

Figure 23.  Layer shape function curves as a function of iK .

________________________________________________________________________
     16. Handbook of Mathematical Functions, National Bureau of Standards, AMS 55, p228.
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by both the particle frequency ω, which is common to all layers in any
one particle, and the values of the parameter iK , which sets the
inflection radius of each potential layer.  The shapes of the iψ  are

determined primarily by the factor er r D r − − ωε = ε , just as before, but the
purpose of the iK  is to allow each layer to adjust itself, relative to the total
particle frequency ω, so that the layer frequencies iω , given by Eq.(126),
match the "preferred" layer frequencies.
     Two forms of the derivative of iψ  are required in the following,

                                       
r

i D
i i2

d D 1 K
dr r

ω
− ψ  = + ε ψ

 ω  
     ,                      (132)

and,

                                      
r2

2i D
i i2

d 2D 1 K
dr r

ω
− ψ  = + ε ψ

 ω  
     .                     (133)

Multi-layer Particle Charge Density
     The charge density of a concentric multi-layer particle is,

                        
2 22

02 201 03 31
2

0 0 0

d dq d ...
dr dr dr4 r

 φ ψφ φ ψψ
ρ = + + + φ φ φπ  

     ,       (134)

which can be integrated over all space from r 0=  to r → ∞ , with the
result,
                                            1 2 3q q q q ...= + + +      ,                         (135)
where,

                                                 0

0
i

iq q
φ

=
φ

∓      .                                (136)

From Eqs.(134) and (133), the charge density of each layer is,

                                        
r 2

i iD
i i 4

q D 1 K
2 r

ω
−  ψ ρ = + ε

 πω  
     .                      (137)

For larger Ki, the charge shells move out to larger radii and their peak
values are lowered.  Nevertheless, when Eq.(137) for the layer charge
density is integrated over all space, the layer charges iq  are found to be
independent of  iK .  It is this fortunate circumstance that permits using
the layer charges in the classification scheme.  Thus, Ki is a parameter
that can be varied after specifying the charge structure to be examined;
and, although it changes the radii of the charge shells as well as the
energy shells, its major effect is on the magnitudes of the layer energies.
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The Multi-layer Bulk Density Equation
     The single # -wave that rings a multi-layer particle is written as,

                          
0

a rˆ N C     ,    C cos t
r c

 
= ψ = ω 

 
V r ∓ ∓
i ∓      ,            (138)

(upper sign outgoing, lower sign in going) where N is an integer that
determines the particle’s total charge Ne∓ , and ψ  is the multi-layer
shape function.  From Eq.(138) and the # -wave continuity equation,

                            d 0

0

a c 1 d 1N C S
c r dr r

 φ ψ  ψ
φ = ± +  ω ψ  

∓ ∓
i ∓      .             (139)

Combining Eqs.(138) and (139) gives,

                     
2 2 2 2

d d
2 2

0 0

a a dN    and   N
dr2c r 2c r

φ ψ φ ψ
φ = ± ∇ φ = ±V Vi i i ii      .      (140)

From Eqs.(54) and (70),

                                  
2 2

d
2

0

a b db N
dr2c r

φ ψ
ρ = − ∇ φ =Vi ii ∓      ,                     (141)

which can be integrated over all space from r 0=  to r → ∞ , with the
result,

                                       
2

d

0

a bq 2 N Ne
c

φ
= π =∓ ∓      .                         (142)

Starting with the bridge equation and Eq.(140),

                                     
2

2d
2

0

a bˆb N
2c r
φ

∇φ = φ = ± ψV ri i      ,                       (143)

and,

                                           
2

2d
2

0

a bd N
dr 2c r

φφ
= ± ψ      .                              (144)

Integration produces the bulk density distribution,
                                          1 2 3 ...φ = φ + φ + φ +      ,                             (145)
where,

                                          
2

i i
2

0

r

i i
qS dr
4 r

ψ
φ = −

π ∫      ,                           (146)

and iS  is a constant of integration.  When r 0= , 0ii iSφ φ ==  ; so,

                     ( )0
i

iii
q  I r
4 D

ω
φ = φ

π
−       and     ( )

0

r 2
i

i 2
DI r dr

r
ψ

=
ω ∫      .     (147)

 As  r → ∞ , ( ) ( )i iI r I→ ∞  and i 0φ → .  The  wave−#  analysis leading to
Eq.(114) determines the effective radius of a whole multi-layer particle to
be,
                                                  er D= ω     .                                    (148)
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Determination of iK

     It was stated earlier that each potential layer is associated with a iK
that determines the inflection radius of that layer.  Starting with the
gradient of the layer potential in Eq.(146), differentiating it with respect
to r, setting the differential to zero and solving for iK  leads to,

                                          ir /Di
i

r K 1
D

ωω = − ε 
 

     ,                          (149)

where ir  is the inflection and maximum energy density radius of the
layer.  One way to look at Eq.(149) is to recognize that with Eq.(147) it
can be written in the form,                                               

                                             i er /ri
i

e

rK 1
r

 
= − ε 

 
     .                           (150)

If iK  of a layer is a very large number, that layer is far out from the main
energy of the particle.  If iK  is near zero the layer is close to the effective
radius er .  For i1 < K 0− < , the layer is smaller than er .  An even more
useful way to think about Eq.(149) results from combining Eqs.(144),
(150) and (147) in  the form,

                                             i/
i

i
K 1 ω ω ω

= − ε ω 
     ,                           (151)

where  the iω  are  the "preferred"  frequencies  listed  in  Table VIII.
Eq.(151)  is the most convenient for determining the multi-layer particle
structure.

TABLE VIII

"PREFERRED" FREQUENCIES

i i

20 14

23 16

24

Layer              (rad/sec)                  r    (cm)
 

   1              7.76344 10             3.52243 10

   2             1.60523  10            1.70356 10

   3              2.69981 10   

−

−

ω

× ×

× ×

× 17

24 18

25 18

          1.01289 10

   4              8.508    10             3.214    10

   5              1.580    10             1.731    10

−

−

−

×

× ×

× ×
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Multi-layer Particle Energy
     Starting with the incremental ether density of Eq.(145), the gradient
at each point in space is,
                                    1 2 3 ......∇φ = ∇φ + ∇φ + ∇φ +    ;

and, from Eq.(64), the total electric energy density of a concentric layeron
is found to be,

                       

2 2 21 1 1
e 1 22 2 2

1 2 1 3

2 3 2 4

( ) ( ) ( ) ....

                  + ....

                  + ....
                  +....

ε = ∇φ = ∇φ + ∇φ +

∇φ ∇φ + ∇φ ∇φ +

∇φ ∇φ + ∇φ ∇φ +

i i

i i
     .                    (152)

Integrating Eq.(152) over all space gives the total energy of the particle in
the form,

                                     

0 1 2 3

12 13 14

23 24 25

E E  E  E  ....
    E E E  ....
    E E E ....
    ....

= + + +

+ + + +

+ + + +

+

     ,                       (153)

where the Ei are the layer “self” energies and the Eij are the “interaction”
energy deformations, between the layers, stored in the ether during the
particle formation process.
     The energies, Ei, of the individual layers are found by first
differentiating Eq.(146) to obtain,

                                              
2

i ii
2

d q  
dr 4 r
φ ψ

= −
π

     ,                             (154)

and then writing the energy density as,

                                       ( )
2 42
i i1

ei i2 2 4
q  

32 r
ψ

ε = ∇φ =
π

     .                     (155)

When Eq.(155) is integrated over all space, the layer self energy is found
to be,

                          ( )
2
i

i i
e

qE  J
8 r

= ∞
π

     ,     ( )
r 4

i
i e 2

0

J r r dr
r

ψ
= ∫                  (156)

     The interaction energies, Eij, can be written,

                            i j
ij ij

e

q q
E J ( )

4 r
= ∞

π
     ,    ( )

2 2

2
0

r
i j

ij e J r r dr
r

ψ ψ
= ∫             (157)

In the more complicated cases, involving orbiters, in addition to the self
and interaction energies, the orbiting layers are deformed and include
their extra orbital kinetic energies which must be added in to give the
total particle energy.
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Multi-layer Particle Calculations
     In the preceding analysis, certain integrals that depend upon iψ  were
derived.  No closed form solution for any of these is known to the writer.
Instead, they must be evaluated by numerical integration.  The integrals,
including several left out of this reduced version, are designated as, iI ( )∞ ,

i J ( )∞ , ijJ ( )∞ , i L ( )∞  and iM ( )∞ , and they have been used in both
graphical and tabular form.   The most fundamental application of the
analysis starts by choosing a particular layer/charge configuration to see
what kind of particle it represents.  The analysis predicts its
frequency  ω , its rest energy 0 E , and beyond that its physical structure,
charge distribution, magnetic moment etc.  These are then used to
determine whether or not such a particle has been observed.   In every
case, the basic “existence” test is that Eqs.(127) and (153) are satisfied
simultaneously.  Several techniques were used to evaluate the integrals,
including computer integration with Q Basic, and graphics.  When
solving problems it is convenient to have the program in Basic provide,
during the calculation, the values of all the integrals for a given iK .  In
some cases, a table that permanently provides sets of the integrated
values for several frequencies over a selected range is more useful.
     Tables of ( )iI ∞ , ( )iJ ∞ , ( )ijJ ∞ , ( )iL ∞  and ( )iM ∞  are presented in
Appendix I of PHYSICS2001Rev.  In the following the argument, ∞ , will
not be indicated, and these integrals will just be designated by iI , iJ ,
etc.  The tabulated values are nowhere near as accurate as particle
physicists generally take their work, but the purpose here is to illustrate
the techniques rather than to supply final particle characteristics.  In
making up the tables, certain approximations were used in the extreme
ranges.  Generally, these have a very small effect on total particle
structure.
     In doing the integrals for the interaction constants ijJ , it is easy to
show that substitution of,
                                            ( )1

ij i j2 K K K= +      ,                              (158)

allows using the iJ  integral calculations for the ijJ , thus  eliminating the
need for a considerable amount of  computation.  In that case, an
effective ijω  can be defined so that,

                                          ij/
ij

ij
K 1 ω ω ω

= − ε  ω 
     .                            (159)
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The Concentric Particle Existence Criterion
     As mentioned above, the existence criterion is based upon the two
energy Eqs.(127) and (153).  In terms of the derived integrals, Eq.(153)
becomes,

              

]

2 2
0 1 1 2 2 1 2 12 1 2 23

e

2 3 23

3 4 34

1E q J q J ... 2q q J 2q q J ...     
8 r

                                              +2q q J .....
                                                    +2q q J .....

= + + + + +π

+

+

   ,     (160)

and Eq.(127) is,
                                             0 E h  = ν = ω,      .                               (161)
Eqs.(156) and(157) indicate that the iJ  values depend upon ω through

iψ  (see Figure 23), so there are 2 independent equations for 0E  as a
function of ω .
     Considerable ease in the calculations derives from a slight change of
variable.  By defining a quantity,

22
2 1 2 2 31 31

0 1 2 12 13 232 2 2 2 2 2
q q q q qq q8 D qJ E  = J J ....+2 J 2 J ....+2 J ....

e e e e e e
 π

= + + + + ω  
  ,

                                                                                                        (162)
Eq.(161) becomes,

                                             2
4hDJ 0.25
e

= =      .                             (163)

For a given layer/charge configuration, Eqs.(162) and (163) can be
plotted as functions of ω, as illustrated in Figure 24; and the predicted
particle frequency ω is found at their intersection.  The particle's rest
energy 0E  follows from Eq.(161).

Figure24.  Eqs.(162) and (163) solved for ω .
     No measured data taken from a particle being investigated are used in
this calculation.  The only measured data involved in setting up the
system are the unon frequencies and radii of Table VIII required to
establish the "preferred" vacuum frequencies.  The only integrals involved
in the existence criterion are the iJ 's  and the ijJ 's .
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Predicted Concentric Particles
     It is now possible to plot the various concentric bion and trion
predictions along the J 0.25=  line of Figure 24.

Concentric Bions

     The existence criterion for bion layer/charge forms is,

                               
22
j i ji

i j ij2 2 2

q q qqJ J J 2 J 0.25
e e e

= + + =       .

A typical example is the 21
23B
++

, which leads to,

                                        2 3 23
1 4 4J J J J
9 9 9

= + +      .

The graphical solution is done with a programmable hand calculator to
add the three terms.  The analysis has been used to plot the intersecting
curves for all concentric bions up to, and including, the fifth layer.
Figure 25 shows the result.  In trying to assess which observed particles
might correspond to these solutions, it must be remembered that all
bions are “unstable”, i.e., they convert into lower energy particles.  Later
on, in calculating the proton properties, the fact that it is a truly stable
particle that does not convert in its free state allows the intersection
values and the observed 0E ,ω to be essentially exact.  This is not true for
the concentric bions, so the results require some interpretation.  For
example, their mean life is about 810−  to 1210−  seconds.  If, as has been
suggested earlier, they are basically stable, but are triggered by the
datum  fluctuations,  the  mean  lives  should  be dependent  on both the

                           Figure 25.  The concentric bion solutions.
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fluctuations themselves  and the energy of the particles’ layers.  However,
no solutions of the time dependent # -wave equations have been carried
out.  Furthermore, the cutoff frequency for the datum fluctuation
spectrum is not known.  Thus a certain amount of guesswork is involved
in the following, and the observed particles should not be expected to
exactly match the intersection points.  Notice that Figure 25 is plotted
versus \2ω .
Concentric Trions
     The existence criterion for trion layer/charge forms is,

  
22 2
j i j j ki k i k

i j k ij ik jk2 2 2 2 2 2

q q q q qq q q q J J J J 2 J 2 J 2 J 0.25
e e e e e e

= + + + + + =   .

A typical example is the 122
1 23T

−++

, which leads to,

   1 2 3 12 13 23
1 4 4 4 4 8 J J J J J J J
9 9 9 9 9 9

= + + − − +      .

From the tables, the above sum is found for each ω, and plotted in
Figure 26.  The crossover point is at 241.40 10  rad/s ω = × .  The accurate
non-graphical, program value is 241.4051 10ω = × .  Thus, the ω predicted

Figure 26. Predicted 122
1 23T

− ++

 Frequency.

for the 
-
122
123T

+ +

 is just 1.43% lower than the measured proton frequency,

24 1.42548 10ω = × , so the 
-
122
123T

+ +

 is tentatively identified as the proton.
     When the existence criterion is applied to the remaining trion
layer/charge forms depicted in Figure 20, the total energy of Eq.(153) is
almost always too low to cross over the J 0.25=  level.  This indicates
that most other trions are orbiters requiring the added orbital kinetic
energy to make up the total.
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The Self Consistent Adjustment
     The close agreement between the predicted and measured proton
frequencies encourages confidence in the method, and invites effort to
find the source of the error.  Since the system, to this point, just uses
three given numbers (the e, µ  and τ  frequencies) to determine a fourth
(the p frequency), if properly set up, it should be self-consistent and
without error.  One of the many possible sources of error could be the
specification of the unon preferred frequencies.  Of the four particles, the
e and p are stable (the only stable particles known), and their rest
energies can be measured with great accuracy.  On the other hand, the µ
and τ  are very short-lived and their frequencies quickly shift lower
during their decay, making their rest energies difficult to measure
accurately.  With a small adjustment of the preferred frequencies of layers
two and three the system becomes self-consistent.
     The reality is that both might need correcting, but a simple calculation
indicates that to correct the 1.4% error, the second layer 2ω  need only
change a comparable amount, whereas the third layer 3ω , because of its
location, must change about 40%.  It is unreasonable to suppose that
the measured τ  energy is anywhere near that low, so only the second
layer 2ω  will be adjusted.  The corrected preferred frequencies are listed
in Table IX.  Future concentric bion and orbiter trion work might show both
need changing.  The corrected 2ω  is increased by 2.5%, which has only a
small effect on the bion predictions expressed in Figure 25.

TABLE IX
SELF-CONSISTENT PREFERRED FREQUENCIES

Self Consistent Proton Structure
     The overall analysis of proton structure can now be presented in self-
consistent form.  It follows a procedure somewhat different from the one
used in the prediction calculation.  Once the prediction shows that the
layer/charge  combination  indicates  a  particular  observed  particle, as

i i

20 14

23 16

 Layer                (rad/sec)                      r    (cm)

    1                  7.76344 10                 3.52243 10

   2                 10                  10

   3  

−

−

ω

× ×

× ×1.62973 1.67796 !
24 17

24 18

25 18

               2.69981 10                  1.01289 10

   4                 8.508    10                 3.214    10

   5                 1.580    10                 1.731     10

−

−

−

× ×

× ×

× ×
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many characteristics of that particle are tested as possible.
     The measured 0E  for the proton is 938.27203 MeV or

31.5032818 10−×  ergs.  To satisfy Eq.(161), it must have a frequency
241.4254856 10ω = ×  rad/sec.  If it is to be a real particle, at that

frequency it must also satisfy Eq.(153) for the three layers 1,2,3, so that,

                              0 1 2 3 12 13 23E E E E E E E= + + + + +      .                  (164)
With i 'sω  from Table IX:

      3

1
1.8361527 10ω

= ×
ω

  ,  
2

8.7467592 ω
=

ω
  ,  

3
0.52801199ω

=
ω

Invoking Eq.(151):
1 12

4
2 13

4
3 23

 K  out of range        ,  K out of  range

 K 4.8729207 10    ,  K  out of range

 K 0.80028312        ,  K 2.4364203 10

= =

= × =

= − = ×
Using the accurate, non-graphical program:

4 4
1 12 13

2 23

3

J 5.44617 10      ,     J J 5.4482266 10
J 0.09611              ,     J 0.10153
J 0.26428

− −= × = = ×

= =

=

Eq.(148) gives  17
er 1.9183736 10−= × , so the energies of Eqs.(156) and

(157) are:

                

7 6
1 12 13

4 4
2 23

4
3

 E 3.63871 10     ,    E E 1.45604 10

 E 2.56853 10     ,    E 5.42677 10

 E 7.06299 10

− −

− −

−

= × = = − ×

= × = ×

= ×

        (165)

Then, Eq.(164) leads to 3
0E 1.50328 10  ergs−= × , to the accuracy limit of

the more accurate program.
Proton Strcture and Dark Matter
     This is a good place to point out a significant difference between the
ether theory and the quantum mechanical standard model.  Recently a
quantum mechanical model of the proton produced the result that most
of the proton mass is not found in the quarks, but in the space between
them.  This has led to more speculation about "dark matter".  From
Eq.(165), it is clear that most of the proton's mass (energy) is
concentrated in the layers (quarks), and the remainder is the normal
interaction energy always found in the space between layers.  The
introduction of an idea like "dark matter" is just another example like the
introduction of "color" in the standard model.  One problem that arose in
the quark model was the three parallel quark spins in a particle such as
the ++∆ , which was assigned three identical u quarks, a clear violation of
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the Pauli exclusion principle.  To resolve this problem, the property of
quark color was adopted.  The exclusion principle is a manifestation of
the single solution principle, i.e. no two identical solutions of the field
equations can exist in the same place at the same time. Referring back to
Figure 15, three concentric layers with parallel spin clearly do not
represent identical solutions of the field equations, so no need for color
arises, resulting in a great simplification, no "color".  Many other
examples similar to this are given throughout PHYSICS 2001Rev.
Orbiters
     Analysis of the orbiters, is considerably more difficult; particularly
that of the inside orbiters, since they have overlapping shells on which is
superimposed a dynamic orbiting motion.  The proper analysis would
involve solving for the full field, transient case.  It is clear that to do this
for all the possible ground state configurations and then identify the
observed particles accordingly is a task that could take many man-years.

XXI THE ATOM
Introduction
     A firm belief that no deterministic description of the atom's interior is
possible can be considered the basis of "Modern" physics.  Why?  Take
the hydrogen atom.  An electron, with 98 percent of its energy/mass and
99 percent of its charge concentrated inside a sphere of radius 2OO er ,
approaches a proton that is essentially the same size as the electron.  If
the electron is captured, the innermost stable orbit it can occupy is a
circle of radius 5

e1.5024 10 r× .  Thus, the distance between the two
particles is greater than 750 times the sphere of significant influence of
either one (earth to moon distance is only 60 times the radius of the
earth).  If the electron is not captured, it sails past the proton on an
hyperbolic orbit, and no serious change in the electron or proton occurs.
In the circular and elliptic orbits of capture, the great distance between
the particles and the relatively slow motion of the electron argue that just
as little change takes place.  So, since these particles exhibit inertia,
momentum and all other common properties of ordinary matter, it
should be clear that no obstacle to their executing planetary type orbiting
motion exists in any general way, and Newton's laws must apply.
     Earlier, the electron's properties were presented because it was lack
of knowledge of the electron and the related particle behavior that
diverted physics away from the deterministic form needed to finish the
picture.     It is not impossible to describe what is going on inside atoms.
It can be done using only Maxwell's potential equations and Newton's
laws.  The following presents a planetary type description, of electrons
orbiting nuclei, that shows how close Bohr and Sommerfeld came to the
correct picture.  They were unable to see the extended nature of the
orbiting electrons, and did not realize that the electron, in turning as it
orbited, contributed to the total angular momentum.  Thus, they failed to
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Figure 27 A planar orbit

match the orbital angular momentum to the value predicted by Newton's
laws.  The standard QM analysis of the atom makes the same error; and,
since Shroedinger's equation cannot give the correct answer unless the
exactly correct mechanical picture is used to enter the energy of the
system, QM carries some of the errors along.  Using the extended
electron described earlier, this will be corrected.
     The turning of the orbiting electrons in the ground state ensures that
no radiation takes place and that the ground state is stable.
Quantization of the orbits is established by the electron's real, doppler
shifted longitudinal wave difference frequency. Here, the structure and
operation of the deterministic atom will be described using only ordinary
Newtonian mechanics.
The Hydrogen Atom
 The simplest atom consists of a single electron orbiting around a single
proton.  Quantum mechanics gives a proper evaluation of certain aspects
of mechanical systems when the correct description of the mechanics is
known.  In the case of the hydrogen atom, past lack of knowledge of the
electron has caused QM to be used erroneously.  The radiated
frequencies and total angular momenta predicted are correct; but,
because a minute electron angular momentum (due to its extension) has
been omitted, the orbital periods and orbital angular momenta usually
given are incorrect.  If the "turning" angular momentum is added to the
QM analysis, the latter also gives the same results for the ensemble that
are found here.
Orbit Analysis
     Standard planetary analysis begins by considering the motion of a

satellite of mass 0m  moving in a central
field (see Figure 27), e.g. the Moon
orbiting a fixed Earth. To keep the
discussion simple, even in the atomic
case, mass variations will be ignored
( 1γ = ).  This will have no important
effect on either the picture or the
principles presented.  The satellite's
energy is defined as E T V= + .
V k/4 r= − π  is its potential energy, and

its kinetic energy is (HL units),

                                         
2

2
r 2 2

0

1 p T p
2m r

 
= + η 

     ,                         (166)

 where rp  is its radial momentum and p its total angular momentum.  To
be defined later, η is unity in the ordinary planetary case.  In the
simplified Moon-Earth system, the orbital angular momentum is,

                                                                ,          ,                            (167)
2

0p m rψ = ψ#
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and this is usually entered for p in Eq. (166).  However, the Moon always
presents the same face to the Earth, rotating one turn about its own axis
for each complete orbit.  In the atom, the electron must turn that way in
all possible orbits (see Section XVIII, Turning ), with a turning angular
momentum (not the spin),
                                                           t tp K pψ=      .                                   (168)
Thus, for a close parallel to the atomic case the planetary example must
be visualized with the total angular momentum written as,
                                        t tp p p (1 K )pψ ψ= + = +      .                         (169)
Next, Newton's second law is used to write the radial force equation,
                                        ( )2

r 0 tF m r r(1 K )= − + ψ## #      ,
and the angular momentum equation,

                                         
dp 0
dt

=      ,     p kψ=       .     (constant)

In the general case, for E<0 and attractive force 2
rF k 4 r= − π , a rather

long and convoluted derivation17 leads to closed elliptical orbits ( tK 0= )
or almost elliptical orbits (precessing, tK <0; recessing, tK >0), given by,

                                    
2a(1 ) r

1 cos( )
− ε

=
+ ε ηψ

     ,     t1 Kη = +                       (170)

with the parameters (HL units),

    kE
8 a

= −
π

                        Constant energy E for each possible orbit.

20m kp k (1 )a
4ψ= = η − ε

π
       Constant total angular momentum for

                                            each possible orbit.

     min maxr ra
2
+

=                   Similar to the semi-major axis of the

                                            elliptical case.

     min maxb r r=                     Corresponds to the semi-minor axis.

     
2b1

a
 ε = −  
 

                    Orbit eccentricity parameter.

In terms of these parameters, the radial momentum is given as a
function of r by,

                                        
2

0
r 0 2 2

k2m kp 2m E
4 r r

ψ= + −
π η

     .                  (171)

______________________________________________________________________________________
  17. A.Ruark and H.Urey, Atoms, Molecules and Quanta, Vol. 1, p. 133, Dover Publications, N.Y.(1964).
        B.Shore and D.Menzel, Principles of Atomic Spectra, p. 45, J.Wiley and sons, N.Y.(1968).



85

Figure 28
The minr period is less than 2ψ = π .

     Without the turning constraint, tK 0=  and 1η = , reducing these
equations  to the usual textbook elliptical case.  All of this is well known,
along with the fact that any choice of semi-major axis a and eccentricity ε
in the astronomical case (with 0k Gm M= ) will produce a physically
realizable orbit as long as the satellite is far enough away from the force
field central mass.  Because the energy E is not a function of the
eccentricity, any specific choice of a applies to a whole family of pseudo-
ellipses and their corresponding total angular momenta p, the largest of
which matches the circular orbit with radius a and  0ε =  (see Figure 31).

     To apply the preceding equations to
the hydrogen atom, it is only necessary to
set 2k e=  and supply a rationale for
choosing  semi-major axis a, ε  and tK .
However, it is at this point that the atomic
case begins to differ significantly from the
astronomical.  For example, in the purely
elliptical case, the period of the orbit
represents one complete circuit of the
ellipse repeated over and over again.  In
the atomic case, the orbits are not closed
but recess, as shown in Figure 28.  Here,
the cycle is considered to go from one minr

to the next minr , which shifts orientation in the cases where  tK 0≠ .
Because of this shift, each pseudo-ellipse cycle is completed when ψ  has
swept out only 2 /π η  radians.
     From the time of Bohr and Sommerfeld, it has been clear that atoms
exist in stable or pseudo-stable states; and only when an electron shifts
from one orbit to another does radiation occur.  Because this was never
tied to a cause and effect explanation, but only to the mysterious
"quantum", the de Broglie "wave" and "h", the orbits and the
visualization  were  ultimately  lost.  Here, the cause and effect chain is
traced directly to the properties of the electron and its  ! -waves, and the
method for finding the semi-major axis values of a that give the observed
selected orbits is presented.

The de Broglie Difference Frequency and Planck's Constant
     At the end of Section XVIII, it was demonstrated, using only Newton's
laws, that Planck's constant h is a derived constant that relates the
electron's momentum to the Doppler difference frequency of its front and
back longitudinal waves.  The following shows the way the difference
frequency and the derived constant h enter the orbit analysis.
     Refer back to Section XVIII.  There it was shown that when an
electron moves along a path at velocity u, its radially outward moving
 waves−!  are Doppler shifted, resulting in a difference frequency
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between the front and back waves of,
                                                 d e2ν = γβν      ,                                  (172)
where, 0u cβ =  and eν  is the electron's intrinsic wave−!  rest frequency

( 20 1.2355898 10 cyc/s× , as determined by the Rydberg constant).
Eq.(172) and the linear momentum Lp  were used to write,

                                         d
L 0 0 0p c m uc h

2
ν

= γ =      ,

where h is the derived Planck's constant,

                                  
2

270 0

e

m ch  6.6260755 10−= = ×
ν

     .                 (173)

However, for the atomic orbit, the derivation of Section XVIII must be
modified, as follows, to account for the separation of the orbital and
turning angular momenta.
     Using Eq.(167), the electron's orbital linear momentum is,

                                              L 0
p

p m u
a

ψ= = γ      .                            (174)

Combining Eqs.(172) and (174),

                                                  d
L 0p c h

2
ν

=      ,                               (175)

where again h is the derived constant of Eq.(173).  Eq.(175), when
transposed, gives the de Broglie difference frequency18,

                                                   L
d 0

p2c
h

ν =      .

However, it is the total angular momentum,
                                               2

tp p p pψ ψ= + = η      ,
that sets the electron's velocity and the difference frequency.  Defining
the total linear momentum, including the "turning", as,

                                           2 2
Lt L 0

pp p m u
a

= = η = η γ      ,

Eq.(175) becomes,

                                                   2 d
Lt 0

hp c
2
ν

= η      .                          (176)

As discussed in Section XVIII, although there is a difference frequency,
there is no difference wave.  For an atomic orbit, the proper inversion of
Eq.(176) is,

                                                  0
d 2

Ltd

2c h
p

Λ = =
η ν

     .                        (177)

where dΛ  is not the wave length of a mysterious wave that travels along
____________________________________________________________________________________________________________
  18.  Although the author has chosen to call d ν  the de Broglie frequency, it should not be confused with

        db E hν = , a fictitious frequency of a fictitious wave.
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Figure 29.
Orbiting electron ! -waves

curved paths.  It is determined by real, longitudinal waves that emanate
and propagate radially from the electron's center.  dΛ  has nothing to do
directly with the wavelength of any wave. Instead it is simply the distance
the electron travels during  22 η β  cycles of the difference frequency dν .
The Steady-State Orbiting Electron Field
     To better understand the nature of dΛ in the atom, the total field of an
orbiting electron will be visualized.  One of the most significant effects of
the electron Doppler difference frequency occurs when the electron
moves periodically in a closed path in a central electrostatic field. In that
situation the conditions for the total field solution are quite different from
those of the free electron.  In the circular orbit case, for example, only
when the effective circumference of the orbit, L 2 a/= π η, is related to the
difference frequency by,

                                                0
d 2

c2n
L

ν =
η

     ,                                (178)

where a is the orbit radius, and  n 1,  2, 3, .....= , can a steady state field
solution exist.  This can be explained as follows.
     An attempt will be made to visualize the overall field surrounding the
orbiting electron near the orbit and at great distances from the center.  It
will be shown that Eq.(178) is the criterion necessary to maintain the
combined solution in steady state.
     In the hydrogen ground state, because 0u/c  is small, the electron's

waves−#  drawn to scale cannot show the minute but significant effects
taking place along the orbit.  By artificially exaggerating the velocity u,
the effect in space is seen to be a shifting of the positions of maximum
and minimum bunching of the  waves−! , as illustrated in Figure 29.
Full turning of the electron's field is implicit.
     The same exaggerated orbit velocity and, in addition, artificially
reduced wave propagation velocity allows a plot of the outer regions of the

field.  Figure 30 shows every 2,348th

wave front, and the bunching and
extending of those fronts  can  be  seen
to  spiral  outward  so that the spacing
between successive bunching or
extending is,
                        0 orbD c T=     .         (179)
 By turning the figure in the direction
of the electron's motion, the outward
motion of the spirals can be seen as a
good representation of the total field
equation solution for the hydrogen
ground state.  To be a steady state
solution, the spiral must occupy exactly
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Figure 30
Outer field diverging waves, exaggerated ground state orbit.

the same position relative to the orbit, as the electron returns to the same
orbit position, taking into account the orbit recession.  There is no
problem in the outer field, as long as the correct phasing occurs along
the orbit.

     In Figures 29 and 30, the two spirals (bunching and spreading) can
be seen to approach the orbit tangentially and to join at the electron
center.  As the electron orbits, the same picture is repeated at each point.
Again this can be seen by simply rotating the plots to simulate the
electron's motion.  Clearly, depending upon the velocity u and the
effective orbit circumference L, the phase position of the wave fronts at
the electron center may or may not be exactly the same as the electron
completes its round trip and returns to the recessed starting point.  But,
if those phases are not identical, then the outer field will be changing and
the total field equation solution will not be steady state.
     To find the criterion for a return to the same phase condition, think of
a point on the orbit just as the electron is passing.  First, a series of front
waves, moving in the direction of the electron's motion, cause an
oscillation at the point of frequency fν .  Then a series of back waves,
leaving in a direction opposite to the electron's motion, cause an
oscillation at the point of frequency bν .  The same phenomenon occurs at
each point of the orbit circumference, differing only in the time when the
electron passes.  Only if the number of front wave cycles 2

f f 0N L/2c= η ν ,
in the distance equal to the effective circumference L, and the number of
back wave cycles 2

b b 0N L/2c= η ν , in that same distance, are both
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integers can the phases and electron oscillation match at each point.
Thus the condition for a steady-state field in this circular orbit is that the
difference between fN  and bN is also an integer,

                            2 2
f b f b d

0 0

L Ln N N ( )
2c 2c

= − = η ν − ν = η ν      ,              (189)

which is just Eq.(187) rearranged.
     Thus, those circular paths specified by Eqs.(187) or (189) are stable,
and the elliptical orbits with the same semi-major axis a are pseudo-
stable.  The profound effect this has on atomic structure was first
pointed out by L. de Broglie, through Eq.(109), although he was inspired
by a shrewd guess based on symmetry rather than an understanding of
the electron's structure.  Unfortunately, the de Broglie wavelength has
been emphasized, and a mysterious wave of a much different frequency
than the actual frequencies, fν  and bν , directly involved has been used
to describe "matter waves" of quantum mechanics.  The preceding
picture gives a much more realistic description of the phenomena in
three dimensions.
The Semi-Major Axis a
     It is fortunate that the solution for the orbital energy E is degenerate
for all of the non-circular paths that have the same semi-major axis a,
because in all those paths the difference frequency and electron velocity
vary, and those cases are not truly steady-state.  The criterion for finding
the allowed a values can be obtained from the circular orbit.
     Earlier it was shown that Newton's laws were adequate in the
astronomical problem.  They provided the orbit solution of Eq.(170),
which includes the parameter equation for the circular orbit case ( 0ε = ),

                                           0m kp k a
4ψ= = η

π
     .                            (190)

In the astronomical solution, no further restriction is placed on either the
constant total angular momentum p or the orbit radius a.  The arbitrary
choice of either one determines the other through Eq.(190).  It is at this
point the atomic case deviates most, for the choices of p and a are not
arbitrary in the atom, since the electron itself imposes another condition
on p.  Consequently, p is determined and a follows directly from Eq.(190).
Thus, p and a are fixed and not arbitrary.
     The criterion for finding the allowed total angular momentum and
semi-axis a results from the combination of Eqs.(177) and (187),

                                             d
2 aL nπ

= = Λ
η

     .     n 1,2,3,....=        (191)

Here, n is the familiar principal "quantum number", obtained using only
Maxwell's equations and Newton's laws.  Only those orbits specified by
Eq.(191) are stable or pseudo-stable.
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     Now, to find the alternative equation for p, combine Eqs.(177) and
(191) to read,

                                             Lt
nhp ap
2

η
= =

π
     .                              (192)

Equating Eqs.(190) and (192) yields,

                                                 
2 2

2
0

n ha
m e

=
π

     .    n 1,2,3,...=             (193)

These values of a, used with the energy parameter in the list following
Eq.(170), specify all the allowable total angular momenta, orbit energies
and sizes.  They do not establish the shapes of the elliptical orbits.  That
is taken up next.
Orbit Shape and Eccentricity
     The selection rule for circular orbits can be rewritten, with the help of
Eq.(192) above, in the form,
                                                 Ltp L nh=      ,     n 1,2,3...=              (194)
 where L is the length of path and Ltp  is the total linear momentum of
the electron along the path.  If the orbit is elliptical the electron's
distortion with changing velocity precludes that orbit's stability.
Nevertheless, the rate of radiation is not that great, so a kind of pseudo-
stability exists.  If the radiation is neglected for the moment, it is clear
that the steady state field about the orbit is not the simple cyclic spiral
discussed above.  However, even when the path is elliptical, it is possible
to visualize the outer field spiraling outward in non-circular form, always
matching the electron's difference frequency as it speeds up and slows
down along the path of the orbit.  If the match at each point is
instantaneously correct, then the proper pseudo-steady state criterion
suggested by Eq.(194) is,

                                             
min 2

min1

r

Lt
r

 d nh=∫ p si      ,      n 1,2,3...=        (195)

where Lt p  is the total linear momentum of the electron,

                                 Lt 0 0 t r
pˆ ˆˆ ˆm r m (1 K )r p
r

= + + ψ = +p r r# #ψ ψ      ,

and ds  is the differential displacement of the electron along the elliptical
path.  The integration is carried out over the unclosed section of the
ellipse corresponding to the cycle or repetition period from minr  to minr
and angle of 2 /π η .  In terms of the components, Eq.(195) becomes,

                                
min 2

min1

r

Lt r
r

  d p dr pd nh= + ψ =∫ ∫ ∫p si      .                   (196)

The components integrated give,

                                       
2 /

0

2 pd p d p
π η π

ψ = ψ =∫ ∫
η

     ,                         (197)



91

and,

                                  
( )

2 /

0

2 2

r 2
p sin ( )p dr d

1 cos( )

π η ε ηψ
= ψ∫ ∫

+ ε ηψ
     .                      (198)

     To complete the analysis, it is necessary to ask which orbits are
circular and which are elliptical.  It can be seen from Eq.(193), that the
smallest orbit is specified by n 1= , and succeeding values of n give larger
and larger paths; but their shapes are not indicated by n.  In fact, it is
easy to visualize a set of orbits for which n would be the same, i.e. the
total number of difference frequency beats would be the same around the
loop, and yet the shape of the paths could be quite different because of
the changing de Broglie difference frequency.  Some clarification comes
from a consideration of Eq.(196), in which, for the same n, the two
components of momentum could make different contributions.  For
example, if the orbit was circular, r p  would be zero and the total
momentum contribution would be the angular momentum p.  In an orbit
of non-circular shape, the radial momentum would not be zero, and the
angular momentum (  p cons tan t= ) would be smaller.  This would give
an elliptical type path with a semi-minor axis less than a.
     Once the allowed orbit sizes have been found through Eqs.(193) and
(196), the shapes of the various orbits, due to differences in the de
Broglie frequency, can be found from the components of Eq.(196). It
should be emphasized that it is the whole three dimensional field that
must be orbit compatible.   In other words, not only is the total
momentum along the orbit path matched to the circumference, but all
components of the field must also repeat starting with the new minr . This
can only happen if the components obey integer relationships such as,

                         
2 /

0
pd p d n h

π η

ψψ = ψ =∫ ∫     ,    r r rp dr n h=∫      .           (199)

Finally, from Eqs.(170), (196) and (199),
                                               r n n nψ= +      ,                                 (200)
and,

                                      2 min or axis

major axis

n
1

n
ψ− ε = =      ;                       (201)

where the axes here are loosely equivalent to those of an ellipse.  Figure
31 sketches the first few allowed orbits.  In order to determine them, it
was necessary to specify tK , which is not a universal constant, but a
different constant for each distinct orbit.  In making the sketches in Figure
31, tK  was assumed to be,

                                                  t
1K
nψ

=      ;                                    (202)
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but the reasons for the choice will only be discussed later on.  Ultimately,
tK  should come as a result of solutions of the total field equations.  At

present, it is only agreement with experiment that confirms the choice of
Eq.(202).

Figure 31.  Recessing atomic orbits.

Odds and Ends
     Before concluding the specific discussion of hydrogen, a few salient
points as well as the values and ranges of the various in  are in order.
Just as in the Bohr atom, the principal quantum number can range from
1 to ∞ .  Since strong physical reasons have been given to show that
circular orbits are basically the most stable, the lowest value of r n  is
zero, or conversely, the maximum value of  nψ  is n.  On the other hand,
the often published orbits corresponding to linear oscillation of the electron
through the nucleus have not been shown in Figure 31, since it is clear
that a large amount of energy is needed to force an electron to approach
very close to a proton, and experiments have shown that the proton
breaks up and other particles (s quarks) are formed.  Also, if the linear
orbit were allowed, the electron's rate of radiation would be extreme, and
the lifetime of that burst of radiation would be so short as to not qualify
this case as even pseudo-stable.  In fact, that radiation would present a
broad spectrum rather than a line.  The upshot of these arguments is
that the quantum number ranges are,
              n 1,2,3....= ∞    ;    n 1,......,nψ =    ;   r n 0,......,(n 1) = −   .   (203)
     Another important item is the omission of the electron's mass
variability from the derivation.  A proper derivation must include it.
Whereas the turning momentum causes the orbit to recess a
considerable amount, the mass variation has the opposite effect, causing
a minute precession.  Nevertheless, the effect of the mass variation
enters into the energy in a different way and so leads to a measurable
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mnm n
n mn

-1 -1 -1
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  n              R                                     
2

                   (cm)                 (sec )                (sec )                  (sec )
     1      5.2918

ωω + ω
ω = ψ ω =

×

#

9 16
16 16

8 15
15 15
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8

10      2.9232 10     1.6726 10        1.5495 10
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−

−

−

−
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× ×
× ×

× ×
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14
14 14

-7 14

   9.5188 10        1.0046 10
10   

  4.3983 10        4.6496 10
     5      1.3237 10       3.0191 10    

× ×

× ×
× ×

effect.  Finally, a word should be said in connection with the
"Correspondence Principle" used by Bohr, et al.  Here there is no need for
it.  In the early days, because the Thomson atom, with its linearly
oscillating electrons provided discrete radiation to be identified with the
observed spectral lines, the model makers were looking for a match
between the mechanical oscillation frequencies and the radiation.  In the
real atoms, the spectral lines are radiation emitted during a transition of
the electron from one orbit to another.  In a typical shift down from one
orbit to the next, the electron starts in orbit 1 where the persistent
buffeting of the zero point fluctuations and its own speed changes
perturb the electron's motion.  Gradually, the motion reaches a deviation
that prevents recovery of the exact orbit and a slow spiral inwards
commences.  Soon, the de Broglie match is badly broken and the
electron shape oscillates with velocity to produce faster inward spiraling
and greater radiation per cycle.  Finally, as it approaches closer to the
inner orbit, the radiation lessens, the spiraling is slower, although the
new velocity is greater, and the electron slowly settles into orbit 2.
It would be surprising if the radiation had the frequency of one of these
two orbits.  Rather it should be a line of some width, centered perhaps
close to the average frequency between the two.  In fact, the original Bohr
model predicts just such a thing.  The presently corrected analysis does
so as well.  Table X lists the parameters  of the first five circular orbits of
hydrogen.  The radii are essentially those predicted by Bohr, but the
angular velocities of  the electron in orbit are found from the  Eqs.(193),
(169) and (167). The average mn ω  are calculated and the measured
values are also given.  These latter are the lowest terms of the Lyman,
Balmer, Paschen and Brackett series respectively.  It is clear that the
calculated average mn ω  is always less than 8% different from that
measured in the line spectrum.  Except for the innermost transition, the
measured frequency  is  always higher than the calculated average,
which  suggests

TABLE X
THE HYDROGEN ATOM



94

that the electron spends more time or oscillates more vigorously nearer
the inner orbit.  None of these details pose a problem to the intuition; so
the operation of the hydrogen atom is "classical" right down to its
innermost orbit (even by the Bohr Theory), making the "correspondence"
principle unnecessary.
     It is important to realize that none of the orbiting rates given in Table X
match those given by the standard solution of Shroedinger's equation.  For
example, the value 16 2.9232 10 rad/s × for the ground state orbit
represents the actual, Newtonian orbiting rate found from Eq.(167).  In
QM, the total angular momentum p is called the orbital angular
momentum, and the existence of the electron's angular momentum is not
recognized although it is unconsciously included.  If the proper
mechanical format for the energy, separating the orbital and electron
angular momenta, is used as the energy in Schroedinger's equation;
then, also taking into consideration the present discussion of the linear
orbit vs. the circular, the QM result agrees with Table X.
     The details of the last few paragraphs should not obscure the fact
that the numbers in Table X, for example, are not in any way final. They
were obtained from the foregoing equations, ignoring such subtleties as
the reduced mass resulting from proton motion.  Correct procedure
would also consider the turning energy of the proton.  Table X overlooks
this detail in the calculation of ψ#  and mn ω  (average).
Orbital Angular Momentum
     The main difference between the preceding development and the
Bohr-Sommerfeld atom is in the interpretation of the angular momentum
and its effect on the type of orbits, etc.  The orbital angular momentum is
taken here to be pψ  of Eq.(167) which corresponds to the usual
mechanical planetary concept of orbital momentum.  In the B-S model,
there was no other angular momentum.  In the present case, however,
there is included the separated angular momentum of the electron's
turning. According to Eqs.(168) and (202), the added turning angular
momentum is,

                                                t
1p p
n ψ

ψ

=      .                                  (204)

The total angular momentum is then,

                                             1p p 1
nψ

ψ

 
= +  

 
     .                               (205)

By uniting Eqs.(197), (199) and (205),

                                      
1
n

n h n1 hp
2 21

ψ

ψ ψ
ψ = =

η π π+
     ;                         (206)
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Maximum flow surface

Figure 32

so that when Eqs.(205) and (206) are combined, the total angular
momentum is seen to be,

                                          hp n (n 1) 
2ψ ψ= +

π
     ,                            (207)

a very familiar form.  Since its first appearance in the early days of wave-
mechanics, it has entered into every situation where angular momentum
is present; and has remained disturbing to student and thinking
physicist alike, with its forced acceptance, unexplained, take it or leave
it. It is now clear that it represents the inevitable form taken when orbital
and turning angular momenta are combined.     Now, since electrons and
all other fundamental particles in which distortion energy binds a φ
distribution, when moving along curved paths in electric fields, have full
turning, the form of the angular momentum will always be that of
Eq.(207).  It corresponds to the orbital kinetic energy plus the turning
energy,

                               total  ang. mom. t
1T T T T 1
nψ ψ

ψ

 
= + = +  

 
     .                 (208)

It was this condition that led to the choice of 1 nψ for tK .
The Free Hydrogen Atom
     This section will present the structure of the three innermost sets of
orbits and their total momenta (including spin) and magnetic moments
for a hydrogen atom free of any external electric or magnetic fields.  This
is something that no present textbook can do because of the non
visualizability of the QM ensemble approach.  Whenever modern
textbooks try to describe the various orbital states, they are forced to
immerse the atom in some form of external field.  The ensuing
complication completely obscures the simplicity of a free atom.  Here the
task is to visualize a single, deterministic atom in a field free region.
     So far, nothing has been said of the atom's magnetostatic field,
although it plays a significant role in both the atom's structure and in its
radiation process.  The magnetostatic field of a circular filament of
current is sometimes used as a starting point for the description (see

Figure 32).  All that must be said at this
point is that the orbiting electron in each
orbit creates a vortex magnetic field,
roughly dipole in form.  When the atom
radiates a photon, an electron is falling
from one orbit to another, generally
smaller.  Since the smaller orbit has a
smaller magnetic field, the difference in
magnetic moment is carried away by the
emitted photon along with the difference in
angular momentum.
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Figure 33
Orbiting electron turning and spin

     As discussed earlier, n is the usual quantum number that fixes orbit
size  a  and energy E,

                       
2 2

2
0

n h a
m e

=
π

     (A)      ,     
2e E

8 a
= −

π
     (B)      .          (209)

Orbit shape is set by nψ .  The electron is
spread out laterally, because of its kinetic
energy, and has an oblate spheroid
shape.  Also, in the electric field of the
proton, it "turns" (in addition to the spin)
so its shape axis is along the orbit.  The
spin aligns itself with the electron shape
axis.  Figure 33 shows the electron,
moving in orbit at velocity u , turning and
spinning.

       Total vector angular momentum
     The basic orbital angular momentum

is given by Eq.(167),
                                               2

0p m aψ = ω      ,                                 (210)
as predicted by Newton's laws.  However, because the electron's shape
"turns", in the plane of the orbit, one turn per electron period, this
"turning" angular momentum adds to pψ  to give a total angular
momentum,
                                      ( )t tp p p 1 K p  ψ ψ= + = +      .                        (211)
When atoms are quiescent, the turning factor tK  is related to the orbit
shape through,

                                                 t
1 K
nψ

=      .                                    (212)

Combining Eqs.(210), (211) and (212), the total angular momentum,
before adding spin is (see Eq.(207)),

                                          hp n (n 1)
2ψ ψ= +

π
     .                             (213)

At this point, before discussing the total vector angular momentum,  J ,
and in order to be close to the conventional notation, the substitutions

1
2S = σ = ,  ( h/2= π, ) and L p=  can be made. It is customary, in

ensemble quantum physics, to use the same form that appears in
Eq.(213) for S and J; i.e. s(s 1)+ ,  and j( j 1)+ , .  However, from the
present point of view, there is no physical justification for this, because S
and J do not have any extra turning components.  Therefor, the vector
spin and total vector angular momentum become,
                                   1

2
ˆ ˆ ˆS      ,      J= = =S S S J J,      ;                     (214)
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and there are no magnetically induced precessions of these vectors
involved in the free atom.
     It is clear from Figure 33 that the spin vector and the orbit vector are
always perpendicular to each other; so, from Eqs.(213) and (214), the
total vector angular momentum = +J L S  has a magnitude,

                                2 2 1
4 J L S n (n 1)  ψ ψ= + = + + ,      .                   (215)

This very simple equation for J will not be found in the literature, since it
depends on the free atom analysis not available to modern physics.
     Eqs.(209) and (213) give the energy and angular momentum for each
orbit.  Referring again to Figure 31, Table X lists some of the values
related to those orbits.  The radii are given in terms of the Bohr radius,
                                          9

0a 5.2918 10−= ×      ,         cm               (216)
a convenient unit.  The atomic vortex is observed as the atom's magnetic
moment,
                                                  Bnψµ = µ      ,                                   (217)

where B µ  is the Bohr magneton ( 203.287553 10  ergs/hlG−× ).  Values of
µ  for the inner orbits of hydrogen are listed in Table XI.

TABLE XI

XXII  RODS, CLOCKS AND PLUMB BOBS

    The most fundamental law of physics is the Principle of Identical
Environments (P.I.E.), which can be stated: Any Measurements made in
identical environments, performed with identical instruments, will yield
identical results19.  Whether or not such experiments can ever be carried
out is a moot point; but such is the basis of physics.  The principle of
_____________________________________________________________________________________________________
 19. J.E.McGuire & M.Tammy, Certain Philosophical Questions: Newton's Trinity Notebook, Cambridge
       University Press (1983); J.C.Maxwell, Matter and Motion, p13, Dover Publications, N.Y.; R.L.Kirkwood,
       On The Theory of Relativity, Thesis, Stanford U. Phys. Dept. (1950).
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identical environments (P.I.E) applies anywhere, any time; e.g. in inertial
systems, accelerating systems, rotating systems, etc.  Without the P.I.E.
there could be no physics.
     In modern textbooks, the discussion of measurement usually begins
and ends with a description of Einstein's Special Relativity; but even
today, there are literally hundreds of dissidents, some knowledgeable,
some not, who are confused by the non-intuitive explanation of the
observations and calculations SR is used for.  Although it is clear to
almost any practicing physicist that the Lorentz transformation is an
essential tool in any quantitative study, it is equally clear that, for 104
years the explanation of the meaning of the observations and
calculations continues to be disturbing to many.20 The present section is
an attempt to reconcile the successful formalism of the Lorentz
transformation with an intuitive, non-paradoxical explanation of the
physics based on cause and effect.
     A proper examination of The Special Theory should begin with the
question, "Why did Einstein write his 1905 paper?  What was he trying to
do?"  A clue to the answer can be found in the paper's title, "On the
Electrodynamics of Moving Bodies".  He was trying to save Maxwell's
equations.  To understand this, it is necessary to go back to Maxwell
himself.
     By the 1870's Maxwell had completed his equations for the behavior
of electromagnetic fields in laboratories at rest in the ether, but he was
disturbed about their application in laboratories moving through the
ether (e.g. earth labs).  It is important, at this point, to realize just what
Maxwell did not know.  For example, he did not know about rod
shortening experiments, starting with the Michelson-Morley (1880's) and
running beyond.  He knew nothing of clock slowing experiments, most of
which came over 60 years later, and the Lorentz transformation was 25
years in the future.  Keeping this in mind, the following is a variation on
what was bothering him.

Figure 34.

 ___________________________________________________________________________________________________________
  20.  A. Ungar, Am. J. Phys. 56, 814 (1998) and R. W. Brehme, 811.  These also have  important references.
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     Figure 34 illustrates a laboratory set up involving a lab bench to
which is attached a clock A.  Two other clocks B and C, identical to A,
are attached to the ends of a rod of length L and moving at velocity u to
the right.  If B and C are synchronized, and they simultaneously send
out light pulses toward each other, because C is approaching B's pulse
and B is moving away from C's pulse, B and C measure different arrival
times.  If, now, the B-rod-C combination is regarded as a separate
inertial lab with two observers, then B and C have found the velocity of
light to be different in opposite directions, one 0c u+  and one 0c u− .
But, Maxwell's equations have only the single propagation velocity 0c , so
they can't be used in the B-rod-C lab.  Maxwell died before he could
straighten this out.
The Michelson-Morley was performed to check Maxwell's problem, but
added a decade of confusion.  Finally, Lorentz and Fitzgerald
independently deduced, what now seems obvious, that rods shorten
when moving through the ether.  That explains the M-M results.
Rod Contractions
     As first described by Lorentz, a practical measuring rod consists of a
number of particles laid end to end, but always in neutral pairs or
groups in the form of atoms.  These have their inner dimensions
established by their balance of motions and deformations.  Likewise, the
"forces" between the atoms are balanced to determine the length of the
rod.  Similarly, a real clock is composed of many layerons arranged in
various ways.  The fact that there is no "matter", other than these very
flexible bulk layeron constructs in the ether, accounts for all the changes
in the rods and clocks when they move relative to the medium.
     When a rod is at rest, its internal "forces" are determined by the
negative gradient of φ ; but when the rod is in motion with constant
velocity, the negative dynamic gradient,

                                       a
2
0

1 ( )
c t

 ∂ φ
= − ∇φ +  ∂ 

VE      ,                          (218)

conventionally called the electric field intensity, determines the "force".
Earlier it was shown that φ  in layerons expands laterally to their
direction of motion, yet, if E is calculated from Eq.(218) it is found to
contract longitudinally. So Lorentz was able to demonstrate21 (using a
"point" charge field) that when the rod moves at constant velocity, the
dynamic gradient (field intensity, E ) contours contract in the direction of
motion by 1 γ .  Here, the finite layer φ  gives the same result.22 On the
____________________________________________________________________________________________________________
21. H.A.Lorentz, Proc.Acad.Sci.Amsterdam, 6, 809 (19O4). Reprinted in The Principle of Relativity, Dover Pub-
      lications Inc. Also see Lectures on Theoretical Physics, Vol 3, Macmillan Co. Ltd., London (1931).
22. R.H.Dishington, Physics, Beak Publictions, Pacific Palisades, CA (1989).
      ………………….., Advances in Fundamental Physics, p. 187, M. Barone & F. Selleri Eds., Hadronic Press,
      Palm Harbor, FL (1995).
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basis of this contraction of the particle E  field, Lorentz argued correctly
that the total rod length L, when a rod moves parallel to its length, would

contract to,

                                                  m
LL =
γ

     .                                     (219)

Being made of particles that are solutions of the same field equations as
the electron/positron, all material objects contract in the direction of their
motion with respect to the ether.  This is not a mathematical nor
philosophical contraction, but a real physical shortening of the rod
moving through the ether.  Cause and effect are acting through the
behavior  of  the particles.  The reality of this shortening is obscured in
present  day  texts by introducing transformation equations.  It should be
quite clear that only one observer is so far involved.
Clock Slowing
 Clocks moving relative to the ether run slower than clocks at rest in it.
This is true for all types of clocks, mainly because clocks are made of
particles just as rods are.  Because there are many kinds of time
measuring devices, it is not as easy to prove the general statement as it
was for rods; but if each type is examined, it always turns out to be true.
Most texts describe simple photon clocks, where a photon is sent out to a
mirror and back, detected, and another photon sent, etc.  There, the time
interval of the moving clock is increased because the photon path length
is longer.

     Another elementary form of clock
involves a mass circling on the end of a
string or fine wire of negligible mass, as
exhibited in Figure 35.  When the clock is
at rest, the energy of the circling mass is,

                
2
1

1 0 2
0

u E E 1
c

= −      ;       (220)

where the relationship to its rest  energy 0E  is taken from Section XVIII.
Now the clock is moved at constant velocity u in a direction
perpendicular  to  the  orbit  (this  is  not  necessary,  but  simplifies  the
discussion).  It is assumed that the motion has been inaugurated
without disturbing the orbiting mass, so that its momentum
perpendicular to the clock's direction of motion is conserved.  The mass
now executes a spiral motion through the ether, and its new total energy
is,

                                          
2

2 0 2
0

su E E 1
c

= −      ,                            (221)

where,  2 2 2
2su u u= +   as  seen  in  Figure 35.  Using the conservation of

Figure 35 Circling mass clock.
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momentum,

                                             2 1
2 12 2

0 0

E Eu u
c c

=      ;                                (222)

which can be combined with Eqs.(220) and (221) to yield,

                                         2 1
2 2

1
22
00

s

u u
u u11

cc

=

−−

     .                            (223)

Squaring both sides, cross multiplying and canceling like terms, Eq.(223)
becomes,

                                  
2

1
2 1 2

0

u uu       u 1       
c

= − =
γ

     .                    (224)

This result reintroduced into Eq.(222) shows that,

                                                 2 1E E= γ      .                                     (225)

Thus, the orbital speed of the mass particle decreases, to compensate for
its energy increase due to the motion at velocity u, and just enough to
preserve its momentum, which has no reason to change.     At rest with
respect to the ether, the period of the clock is,

                                                  1

1

2 rT
u
π

=      ;

while, in motion with respect to the ether, its period is,

                                                 2
m

2

2 rT
u
π

=     .

So, the period in motion is related to the period at rest by 1 2(r r )= ,

                                         2 1
m

1 2

r uT   T  T
r u

= = γ      ;                          (226)

i.e. the clock runs slower.  Again, this is not an hypothetical change, but a
true slowing of its rate; because it moves relative to the ether and its
changes in deformation and speed produce the effect. All clocks behave
in the same way.  Spring clocks, for example, involve length contractions,
energy changes, velocity changes and numerous interactions of these, yet
they follow Eq.(226).  So far, no one has ever found a clock that did not
follow Eq.(226) when moving through the ether at constant velocity.
Rod, Clock and Mass Changes
     Rod, clock and mass changes are now experimentally measured
physical effects; but in 1893, when Lorentz and Fitzgerald proposed rod
shortening to explain the null Michelson-Morley result, rod shortening
was suspect.  By 1904, it appeared to Lorentz to account for many of the
numerous null experiments.  In particular, the failure to detect ether
motion in inertial labs.
     The rod and clock changes are what make the Lorentz Transformation
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equations necessary.  Except in ultra-high speed particle experiments,
they usually represent extremely small changes.  Compared with the
much larger, first order velocity difference in Maxwell's problem, they are
negligible.  They have nothing directly to do with the purpose or
solution in Einstein's 1905 paper.
Poincare's Relativity Principle
     In 1899, based on numerous experiments, Poincare' deduced a new
physical principle:
                Electro-optical phenomena depend only on relative
                motion of material bodies, radiation sources, and
                electro- optical apparatus.
In 1900 he said that precise observations cannot reveal more than
relative displacements, implying that detection of datum ether motion in
inertial labs was not possible.  His position can be summed up by the
correct statement:
          Identical experiments, carried out in all inertial labs, yield
          identical results.
In 1904, he named it The Principle of Relativity; but, unfortunately, he
replaced it with the idea that the laws of physics are the same in all
inertial labs.  If, by laws of physics is meant the equations of physics,
that statement is not generally true.  It depends critically on how the
clocks are set.
     The correct form of Poincare's Relativity Principle, in terms of
experiments, is only coincidentally related to the old Newtonian concept
of relativity.  Instead, it is a sub-part of the most basic principle of physics,
The Principle of Identical Environments (P.I.E.).  The latter, and
Poincare's Sub-Principle have nothing directly to do with the
purpose or solution in Einstein's 1905 paper.
Lorentz' Transformation
     In April 1904, Lorentz published a set of complete transformations,
from one moving lab to another, for Maxwell's equations (not quite the
exact form now known as the Lorentz transformation).  He discussed the
role of ether in rod shortening but probably didn't think the clocks truly
ran slow.  What he was offering was a way to make the calculations on
moving bodies taking the ether into account.
Einstein's Solution of Maxwell's Problem
     Apparently Einstein was unaware of Lorentz' 1904 paper.  Although
he was aware of the failure of the Michelson-Morley and numerous other
attempts to detect motion through the ether, he still didn't know about
the clock-slowing measurements to be made 32 years later and beyond,
and he probably didn't know of the particles' shape change.  At least he
didn't appear to think of the variations in length and time as is possible
now, armed with years of experimental data.
     Going back to Maxwell's problem, there are several different ways to
set the clocks.  As described in PHYSICS 2001Rev, Section 8.7, the most
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fundamental way to synchronize two identical clocks is by contact set.  As
long as two clocks remain in contact, no matter how they move about,
they are truly synchronized.  If, as in Figure 34, one is fixed and one
moves at constant velocity, because of experimentally demonstrated
clock slowing, once contact-set, the two clocks are geared together, and
the times of each one, although they differ, are known exactly.  Thus,
clocks B and C can be truly synchronized in the usual sense of the word
using contact-set, and Maxwell's problem is real.  If the B and C clocks
are synchronized this way, two different propagation velocities will be
observed.
     Einstein realized that to use Maxwell's equations in moving systems,
there must be only one propagation velocity 0c  in all directions, just as
in the labs at rest.  His brilliant insight was to see that, if all the clocks
are two-way light set, there is just one calculated velocity 0c  in all
directions.
     Einstein's artificial forcing of the two clocks, B and C, to be set by
two-way light or the equivalent actually de-synchronizes them.  In their
de-synchronized state, they allow the use of Maxwell's equations and the
Lorentz Transformation.  The Special Theory thus solves Maxwell's
problem in a very practical, but arbitrary, way.  The space-time
justification for this violates real world logic, and experiment, by ignoring
intuition, visualization, cause and effect (the motivation provided by the
ether), and the evidence of shape changing effects in acceleration.
     This solution has immense practical value.  But, to use space-time to
explain the physics causes the confusion that has been evident for over
100 years.  The ether makes the physics clear.  Einstein's solution is
simply a clock setting technique and has nothing to do with the
metaphysical nature of time.
Maxwell's first Order Experiment
     A formal analysis of Maxwell's experiment (see figure 34) appears in
PHYSICS 2001Rev, Section 8.7, where the two different propagation
velocities are 2

B 0c (c u)= γ +  and 2
C 0c (c u)= γ − .  The first order

measurement is in the u±  term, and the (in this case) negligible second
order effect is in the 2γ  factor.  This experiment is extremely difficult to
do in the form shown; because of the large distance requirements
imposed by the high speed of light.  It has not been done this way.
However, there are other indications that the outcome is stated correctly.
For example, Sagnac23 mounted four mirrors on a rotating platform and
sent two light beams in opposite directions around the loop they formed.
The interference fringes showed that their propagation velocities matched
the amounts predicted. Later larger loops were used, and Michelson23

built a huge outdoor circuit of mirrors and evacuated pipes and
____________________________________________________________________________________________________________
   23. H. P. Robertson, T.W. Noonan, Relativity and Cosmology, pg.38, Sagnac, pg. 40, Michelson, W. B.
         Saunders Company, Philadelphia (1968).
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accurately measured the Earths' rotation rate by the same technique.  It
is true that these rotation system tests are not done along a line; but
they still present nearly the same simple, unchanging flow of ether as
seen by the photons.  Nothing suggests that if larger and larger circular
paths were used the results would be different, and the paths would
approach the linear one.
Laboratory Classification
     The rest of this section will concentrate on how much can be known
quantitatively in an experiment.  It will be assumed that the qualitative
actions of plumb bobs and Accelerating observers are already intuitively
understood.  Moreover, the status of so called inertial systems, i.e. the
constant velocity observers whose plumb bobs are relaxed, is assumed to
be the result of intuitively understood extended particle properties.
     Some confusion appears in discussions of rod and clock
measurements because of the heavy emphasis on transformations
between moving observer systems.  Actually, all physics can be
discovered and explained in just one laboratory, and the so called
paradoxes of transformation theory have very simple explanations.
     The first step is to recognize that some labs are much better than
others in which to do experiments.  Labs are classified according to how
the datum ether is flowing through them.  There are three classes of labs:

         INERTIAL            
1.  Primary - Datum ether at rest  

    2.  Secondary - Datum ether at one   
                             constant velocity






         
NON

INERTIAL
          

     3.  Accelerating - Datum ether varying
                             in velocity 





     In choosing a lab for the purpose of discovering the laws of physics,
one class can be eliminated at the outset.  The non inertial labs, including
rotating and linearly accelerated labs need involved equations to describe
simple experiments, so, most experiments are done in inertial labs.
     An inertial laboratory is one in which a lab worker standing still in the
lab feels no acceleration.  If the datum ether is at rest everywhere in an
inertial lab, that lab is designated as a primary inertial lab.  In this type
of lab a lab worker is called an absolute observer; and the laws of
physics, as seen by an absolute observer, take the simplest form.  A lab
built on the platform of a rotating merry-go-round is definitely not a
primary inertial lab, and the laws of physics in that lab are very
complicated.  Disbelievers should try to play catch in that rotating lab.
Primary Inertial Labs
     In setting up any lab, coordinates must be installed and clocks set.
The coordinate system is attached to the walls, ceiling and floor, and
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Figure 36  Three points in a secondary lab.

relates a unique set of three numbers to each point in the lab.
     In primary labs, clock setting is also simple.  One can imagine,
although it is not practical, having a tiny clock at each point in the lab
space, wall to wall and floor to ceiling.  When doing experiments, in any
and all labs, the observer in each lab always assumes that all the clocks
in the lab have been set to read exactly the same time at any given
instant.  He thinks that he has used a clock set procedure that ensures
this.  In secondary labs this is most often not true, but in primary labs it
can always be true if the clocks are properly set.
     The simplest procedure, for primary labs, is light set.  This involves
one master clock at rest in the ether, which is at rest in the lab.  Light
signals are sent from the master clock to all the other lab clocks.  There
are two versions of light set, one way and two way.  In one way, when the
signals arrive, the clocks are set to the master clock's time by correcting
for the signal time delay, based on the constant velocity of light 0c  in the
ether, and the known distance to each point.  In two way, each clock
sends back a pulse to the master, and the outlying clocks are set to half
the round trip time.
     A third more difficult method uses a particular form of contact set by
carrying a clock from the master clock to all the others at a known
constant speed and making the proper corrections.(see Eq.(226)).
     All of these methods produce the same true clock synchronization of
any primary inertial lab's clocks, because the ether is at rest everywhere,
and all light pulses propagate in any direction at the same velocity 0c .
Secondary Inertial Labs
     It has been demonstrated here, that in secondary labs with truly
synchronized clocks, the laws of physics take on complicated forms that
must include the different propagation times caused by the constant
velocity of propagation relative to the ether.  The way out of this dilemma
is narrow, but intuitively satisfying.
     It is likely that most inertial lab experiments ever done have been
done in secondary labs.  As depicted in Figure 36, in secondary labs with

truly synchronized clocks,
each pair of points in the
space has two propagation
velocities associated with it
due to the constant ether
flow through the lab (not
shown in the Figure).  Light
pulses going in opposite
directions between the points
have different speeds.  Thus,
using a clock set procedure
that would truly synchronize
the secondary lab's clocks
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Figure 37  Ether flow u parallel to L.

would be a very bad choice, with ferociously complicated equations.
     The proper approach to secondary lab clock set is to find a way to de-
synchronize the clocks so that both directions of propagation between
two points have the same calculated velocity, using the incorrect clock
time.  This is done by first giving up the contact clock set used for true
synchronization. One-way light set from a master clock also fails.  Special
Relativity actually gets the desired result, but its methods are so abstract
and unmotivated that many of its users and advocates are unaware that
the clocks are deliberately de-synchronized.
     The correct method for clock setting in secondary inertial labs is
found as follows.  Referring to Figure 36, it is seldom necessary to
actually set the time at every point in the 3D lab space.  Often, only a few
clocks are placed about the lab, and the significant propagation is along
just those few paths.  As an example, in Figure 36, only three paths and
three clocks are shown.  The latter are represented by the three black
dots at the centers of the spherical wave fronts shown propagating away
from the point clocks, which are at any three points in the lab.  The
constant velocity ether flow through the lab is not shown, because it
cannot be known to the lab workers.  As derived in PHYSICS  2001 Rev,
Section 8.7, given truly synchronized clocks, there were two actual
propagation velocities caused by the constant ether velocity in the
secondary lab.  However, in that example, the ether flow was along the
line between the two clocks being set.  In the general case of Figure 36, if
the constant velocity ether flow happened, by huge coincidence, to be
along one of the paths, then it would surely cut across the other paths.
     Figures 37 and 38, illustrate two very special flow configurations
between any pair of clocks, and Figure 39 covers all others.  The first,
Figure 37, represents the example given earlier, where the ether flow is
along the line of propagation.  It was shown that the absolute observer
sees the out-back propagation times as,

                                  1
0

Lt
c u

=
+

     ,     2
0

Lt
c u

=
−

     ,

where u now
represents the
secondary lab's
ether flow to the
right, and the
clocks and L are
fixed. Clock slow-
ing makes the
lab's times,

                               1
0

Lt
(c u)

=
γ +!      ,     2

0

Lt
(c u)

=
γ −!      .
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Figure 38  Ether flow Perpendicular to L.

If the rod's length in a primary lab is Lγ , then rod shortening causes the
lab observer to measure the propagation velocities,

                      2
1 0

1

Lc (c u)
t
γ

= = γ +!
!

     ,     2
2 0

2

Lc (c u)
t
γ

= = γ −!
!

     .

In this particular secondary lab, the proper way to set the clocks is to
force the one way velocity of propagation to be the same, and equal to 0c .
This is done, using Einstein's solution, by setting,

                                                                            .                           (227)

The result is,

                   0
2 2

0 0 0 0

1 L L L c Lt
2 (c u) (c u) c u c
    γ

= + = =   γ + γ − γ −   
!     ,

so the lab worker measures the propagation velocity 0c L t c= γ =! ! both
ways.

     If, by another rare
coincidence, the
datum flow through
the lab was at right
angles to the line
between two clocks,
the timing (as seen by
an absolute observer)
would be as
illustrated in Figure
38.  The ether is

flowing to the right in the lab and the absolute observer finds the light
pulse transit times to be,

                    1 2 2
00

L Lt
cc u

= = γ
−

     ,     2 2 2
00

L Lt
cc u

= = γ
−

     .

In this case, there is no rod shortening, because the rod length is at right
angles to the ether velocity u, but clock slowing makes the lab's times,

                                       1
0

Lt
c

=!      ,     2
0

Lt
c

=!      .

Substituting the lab times in the two way clock set Eq.(227), the result is,

                                         1
2

0 0 0

L L Lt
c c c
 

= + = 
 

!      ,

so the lab worker measures the propagation velocity 0c L t c= =! !  both
ways.
     The general case, depicted in Figure 39, requires a more elaborate
derivation that need not be repeated here, because the derivation of the

1
1 22t (t t )= +! ! !
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                                                                  u →
Figure 39  Ether flow in any direction relative to L.

Lorentz transformation gives the same result later on.  Einstein's Special
Relativity postulate
about the constancy
of the velocity of light
is nothing more than
a statement that two
way light set, using
Eq.(227), de-synchro-
nizes the clocks and,
effectively converts a
secondary inertial lab
into the equivalent of
a primary inertial
lab, with calculated
propagation velocity

0c  in all directions.
Actual Ether Experiments
     There are two classes of ether experiments that have been conducted
since around 1887:
                               1. Measurements to determine
                                       a. Two way velocity of light
                                       b. Clock slowing
                                       c. Rod contraction
                                2. Measurements to detect constant
                                        velocity motion relative to
                                        the datum

     All accurate measurements of the velocity of light have been two way
measurements.  The presently accepted value is regarded as well
established.  Until an experiment equivalent to the one described on page
98 is achieved, the one way velocity must be deduced.
     Clock slowing was first measured directly as late as 1938.24 Even then
it was a very difficult measurement involving the frequency shift of
radiating hydrogen atoms moving in a beam.  The time dilation had to be
separated from a much larger doppler shift component.  Later, the
lifetimes of decaying unons and bions both in cosmic rays and finally in
large accelerators gave  convincing  support  to  the  fact25.  A reasonable
interpretation of the Hafele-Keating experiment also concurs26.
      It is true that rod contraction has never been measured directly, but
that hardly takes away from the fact of its existence.  Certainly the
notorious Michelson-Morley experiment led both Fitzgerald and Lorentz
to accept the contraction  as the most reasonable explanation of the
________________________________________________________________________
   24. H.E. Ives, G.E. Stilwell, J.Opt.Soc.Amer. 28, 215 (1938); 31, 369 (1941).
   25. B. Rossi, D.B. Hall, Phys.Rev. 59,223 (1941).  Durbin, Loar & Havens, Phys.Rev. 88, 179 (1952).
         J. Bailey et al, Nature, 268, 301 (1977).
   26. J. Hafele, R. Keating, Science, 177, 166 (1972).
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results.  Many examples of so called relativistic experiments depend
upon rod shortening as well as the two preceding characteristics in such
a way that it would require a fantastic coincidence for all of them to come
out as observed.
     Referring to Item 2 above, it is well known that no experiment has yet
determined the constant velocity of the ether relative to any inertial
system.  From numerous examples in the literature and several in
PHYSICS 2001, it should be clear that this will always be the case.  On
the other hand, everyone has performed an experiment that shows the
acceleration of the ether.
The Ether Observer
     Strong arguments have been advanced here to preserve visualization,
cause and effect, intuition and determinism, using an ether, while at the
same time avoiding metaphysics at the physical level.  However, certain
experiments have been described that have caused physicists no end of
soul searching and mysticism in resolving the results obtained.  For
example, though the laws (equations) of physics are in simplest form in
primary inertial labs, apparently no one is able to say which inertial labs
are primary.
     It was stated in section III that an absolute observer is one with
respect to whom the ether is everywhere at rest in a field free lab.  Since
no constant velocity lab (non-accelerating) observer has any indication of
his velocity relative to the ether, it might seem reasonable to assume that
none of those observers, with a range of velocities, could identify whether
or not they were the absolute observer with u 0= .  Conventionally, the
inability of inertial system observers to detect their motion relative to the
ether has been used to argue against the ether's existence; but a far more
useful conclusion can be drawn.27 Based on the Principle of Identical
Environments, it would seem just as reasonable for any one of them to
assume he is the absolute observer, and the results he observes are
exactly what the ether observer would see doing the same experiment.
Now, since the phenomena discussed earlier are intuitively obvious in
terms of an ether observer, that is how the physics should always be
explained.  Assume the ether observer is doing the experiment.  All other
inertial observers will see the same thing.  This is true without using the
two way light set procedure of special relativity.  It is also true using the
light set procedure, or any other reasonable procedure.
The Lorentz Transformation Without Space-Time
     What is the future role of the Lorentz transformation and of special
relativity?  Space-time offers nothing to the physicist.  SR consists of two
postulates; the basic Relativity principle, which is just a limited form of
the Principle of Identical Environments, and correct; and the constancy
of the velocity of light, generally incorrect.  The second postulate only
holds true for the arbitrary setting of clocks by two way light set.  For two-
________________________________________________________________________
  27.  R. H. Dishington, PHYSICS, Beak Publicatios, Pacific Palisades, CA (1989).
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clock contact setting the one way velocity of light is different in opposite
directions, so the second postulate is wrong as presently stated.  Thus,
Einstein's form of special relativity must be used with great care and an
appreciation of its non-metaphysical nature is indispensable.  All that
will be retained is the basic "relativity" postulate.
     Conversely, the Lorentz transformation has a utilitarian value.  This
is because  two  way  light  set is generally the simplest process available.
When it is used, and rods are read by moving observers carrying them
along, then the Lorentz transformation does give the proper method for
calculating the readings of the moving clocks and rods in terms of those
of the assumed ether observer, and vice versa.  In order to explain away
the last vestiges of paradox or confusion associated with the Lorentz
transformation, it will be derived here in its usual form, but with a
slightly different emphasis, inasmuch as the ether will be tacitly
assumed as the basis of its validity.
Lorentz Transformation and Simultaneous Synchronization
     Before carrying out the derivation, a crucial difference between the
two-clock contact and light-set experiments must be indicated.  Referring
back to Figure 34, notice that the methods used by the two sets of clocks
for synchronization were not the same.  That is, during the experiment,
the experiences of the two inertial observers were not symmetrical.  There
is nothing about the relativity postulate that requires it.  The only
reciprocal requirement imposed by relativity is that if the whole
procedure is repeated with the roles of the clock pairs reversed, then the
results must be indistinguishable from the first experiment.
     A well known derivation of the Lorentz transformation, described by
Robertson,28 implies that the transformation follows from two postulates:

                   1. Relativity
                   2. The Fitzgerald-Lorentz matter contraction.

Unfortunately, this is not quite true.  It is shown, in PHYSICS 2001Rev,
that rod contraction coupled with the clock slowing, cause the relativity
postulate to be true, even in systems where the Lorentz transformation
and the constancy of the velocity of light are not directly applicable.
Actually, Robertson's derivation is much more restrictive.  It invokes the
implicit assumption that both systems are "de-synchronized" in the same
way at the same time.  In other words, that everything happening to the
two inertial observers is mutually symmetrical, simultaneously.  This is a
much more restrictive condition than the Lorentz contraction and relativity
impose.  It is this very tight restriction that is responsible for much of the
confused intuition.  Once the implications of this implicit restriction are
understood, much of the mystery vanishes.
________________________________________________________________________
   28. H.P.Robertson & T.N.Noonan, Relativity and Cosmology, p 43, W.B. Saunders Company, Philadelphia,
         PA (1968).
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Figure 40.  Inertial systems in relative motion.

     Continuing with Robertson's derivation, Figure 40 displays the usual
pair of observer systems in relative motion, at constant velocity V as seen
by the ether observer S.  A rod at rest in S', with one end at the origin
and the other at (x',y',z'), will appear to S to have its ends at(Vt, 0, 0) and
(x,y,z) respectively.  The matter contraction with motion through the
ether requires that,

                             1x Vt x     ,    y y     ,    z z′ ′ ′− = = =
γ

     ,                 (228)

where,

                                                    
2

2
0

1
V1
c

γ =

−

     .

Next, Robertson writes,

                             1x Vt x    ,    y y    ,    z z′ ′ ′ ′+ = = =
γ

     ,                (229)

on the basis of the relativity postulate; i.e. inertial observers performing
the same experiment see the same results.  This is acceptable from the
ether viewpoint because it is known that the time slowing of clocks and
the contraction work together to ensure that result.
     At this point Robertson says that Eqs.(228) and (229) may be solved
for the Lorentz transformation:

                   2
0

Vx (x Vt)  ,  y y  ,  z z  ,  t t x
c

 
′ ′ ′ ′= γ − = = = γ − 

 
     ,       (230)

and,

                    2
0

Vx (x Vt )  ,  y y   ,  z z   ,  t t z
c

 
′ ′ ′ ′ ′ ′= γ + = = = γ + 

 
     .     (231)

This is the step that imposes the simultaneous transformation not required
by Relativity or the Fitzgerald-Lorentz matter contraction.  As Robertson
points out, this is equivalent to the adoption of the postulate of the
constancy of the velocity of propagation.  Earlier that postulate was
shown not to be true in general, but to result from the very arbitrary and
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restrictive two way method of setting the clocks.  That is what results
when the Lorentz transformation is used.
     In spite of the severely restrictive character of the Lorentz
transformation, with its two way light-set clocks and its constant
calculated velocity of light in all inertial systems, its utility in setting up
experiments and in certain types of problem solving make its use logical
and practical.  It should never be used to try to explain the physics.  The
simple ether picture is better for that purpose, basic and correct.  Almost
all of the intuitional difficulties of special relativity came from the unreal
philosophical decoration of "space-time" and from the simultaneously
symmetrical imposition of the Lorentz transformation.
Implications of the Lorentz Transformation
     Going back to Figure 40 and Eq.(230), which are used by S to find out
what S' measures; if S wants to know of the origin of S', he sets x 0′ =
into the first equation and finds it satisfied by x t V= .  If S' wants to
know of the origin of S, he uses the inverse Eq.(231), setting x 0=  and
finds it satisfied by x t V′ ′ = − .  S and S' both measure their speeds as
equal, with opposite velocities.  By simply reversing the sign and making
the primes unprimed and vice versa, S' and S will be interchanged, with
the original S' system now the ether observer equivalent and the original
S system now the moving observer equivalent.  With this arbitrary clock
set arrangement, the two are completely symmetrical, simultaneously.  It
is in this connection that the greatest philosophical or metaphysical
confusion enters the conventional approach.  The ether eliminates this.
     To the question, "which rod is really shorter or which clock truly
slower?", common conventional answers are that question has no
meaning 29,  irrelevant30,  the space-time manifold31.   Since 1960, it has
become popular to just omit such questions, as though intuition is in the
way, and should be ignored.  In fact, the question is perfectly valid.  So is
the answer.  In every case, the rod or clock moving fastest relative to the
ether, is the shortest or slowest.  The fact that it is not possible to
determine how the ether is flowing external to any inertial system does
not invalidate that answer.  The previous sections have explained clearly
and intuitively why the ether flow cannot be measured by an inertial
observer.  The intuitive difficulty was artificially introduced by an
arbitrary choice of the simultaneously symmetric transformations.  The
Lorentz transformation is used as a general formalism, but should not be
used to obtain an intuitive grasp of any given experiment, a number of at
first sight strange results can be deduced through its use.  There are
numerous expositions of these effects available.
     The following summarizes the gains in understanding using the ether
as a motivation for the many choices made in clock setting.
________________________________________________________________________
   29. A.Sommerfeld, Electrodynamice, p 227, Academic Press, N.Y.N.Y. (1952).
   30. R.B.Lindesy & H.Margenau,  Foundations of Physics, p 340, John Wiley & Sons, N.Y. (1936).
   31. I.S.Sokolnikoff, Tensor Analysis, p 267, John Wiley & Sons, N.Y. (1951).
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INERTIAL LAB MEASUREMENT SUMMARY

         The Principle of Identical Environments (Relativity Principle)
    holds between all inertial labs:

              Identical experiments in any two inertial labs yield
              identical results.

Primary Inertial labs:

     No inertial observer can determine that he is in a primary inertial lab;
but, (before he sets his clocks) any inertial observer can assume he is in a
primary inertial lab, and the experimental results he observes (now
including his choice of clock setting) will be exactly what a primary
observer would see doing the same experiment (with the same clock
setting).

Secondary Inertial Labs:

     There are two types of secondary inertial labs of particular interest:
Those with truly contact synchronized clocks and those with two way
light set de-synchronized clocks.

  TRULY SYNCHRONIZED CLOCKS         TWO WAY LIGHT SET CLOCKS

1.  The secondary lab clocks are set        1.  The secondary lab clocks are
     with difficulty                                             easily set

2.  The clocks are truly synchronized       2.  The clocks are deliberately
     in the most fundamental way                     de-synchronized to ensure
                                                                      3. below

3.  The principle of the constancy of         3.  The one way calculated
      light propagation velocity is not               velocity of light is always
      generally true                                           the same, 0c

4.  The equations (laws) of physics do       4.  The equations (laws) of
     not generally have the same form             physics are exactly the
     as in the inertial lab used to set                same in all two way light
     the clocks                                                 set inertial labs

5. The Lorentz transformation does           5.  The Lorentz transformation
     not generally apply between the                applies between two-way
     truly synchronized lab and the                  light set inertial labs
     inertial lab used to set the clocks
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XXIII  C-PARTICLES

Introduction
     In Section XVIV, the dichotomy dividing fundamental particles into
layerons (electric) and c-ons (magnetic) was described, but only the
layerons were analyzed there.  Now, enough background has been
established so that an attempt to describe the c-ons can be made.  It will
be less formal than the layeron analysis, but will establish a useful
visualization.  The following is mainly qualitative.
     The key to understanding detailed, deterministic c-on structure is the
profound difference between free space antenna radiation and atomic
radiation.   Antenna radiation is completely described by Maxwell's
macroscopic equations (see Section IV), and no case has ever been found
where the free space radiation did not spread out following a geometrical
energy reduction proportional to 21 r .  There is no reason to believe that
the radiation caused by moving an electron in an antenna is anything
more than the simple wave motion in the ether described by Maxwell's
equations.
     Atomically generated photons, on the other hand, travel for untold
light years without changing in any way except for a small shift in their
wavelength.  This is a profound difference.
     The behavior of antenna radiation is similar to all simple physical
wave motions, which exhibit the geometrical spreading.  The spreading is
essentially independent of any particulate property of the wave medium.
On the other hand, photons behave like particles.  An electron, for
example, can travel long distances and still retain its essential
properties.  Conventionally, photons are treated as point particles, and
all transverse wave radiation, including antenna radiation, is assumed to
be carried by photons.  Here, this concept is abandoned.  In the present
work, for reasons to be discussed in the following, c-on structure applies
only to photons and neutrinos; and antenna radiation is seen to be
completely free of any photons.  It was described in Section IV.
C-ons
     Although these ether configurations have wave properties, they are
true particles, i.e., stable entities that can maintain their identity only if
they move at the velocity 0c  relative to the ether.  They come in two
basically different varieties, photons and neutrinos; but they are very
similar, and both appear to endure forever unless they interact physically
with other particles.  For many years very little was known about them.
For example, they were both thought to have zero rest energy, zero net
charge and zero magnetic moment; only differing in spin, 1 for the
photon and 1 2  for the neutrino.  Recently there has been speculation
that their rest energies and magnetic moments are not zero. However,
numerous astounding experiments have only established that these
properties are not greater than certain very small maxima.
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     The first hints as to c-on structure come from the conversion
processes that produce them.  Table V (pg.57) lists several, such as the µ
and τ  decays, the  ±π  decay and the neutron decay, all of which produce
neutrinos.  Also listed there are the 0π ,η and 0Σ decays which generate
photons.  Of course, the most common sources of photons are atomic
and molecular transitions.
     Although photons and neutrinos are, in some respects, almost twins,
their differences dictate that the proper study of c-ons begins with a
detailed examination of photon generation.
Photon Generation
     As far as is known, all photons are generated by orbiters.  Certainly
electrons orbiting in atoms are the primary sources; but the outside
orbiter bions are also clear examples.  Still questionable are the rare
instances where even non-orbiting, concentric bions such as  ±π  or  K±

have one or two photons as decay products.  In these cases the chance of
occurrence is less than 310− , so they probably represent accidental
configurations that coincidentally produce an orbiting effect.
     In an atom generating a photon, the nucleus absorbs the momentum
of the back push as the photon leaves, so a single photon can be pushed
out on an axis perpendicular to the orbit.  The choice of which of the two
possible directions it takes is made by slight differences in the phase
fronts of the ! -wave caused by datum fluctuations.  In the orbiter bion
case, there is no nucleus to absorb the kickback, so two photons are
generated, going in opposite directions, again on a line perpendicular to
the orbit plane.
     It should be emphasized that most of the present discussion will be
about the simplest photons produced by free atom radiation.  Other
conditions can result in the production of much more complicated
photons; particularly when the radiating atom is part of a more elaborate
environment, such as being immersed in a high pressure gas, a solid or a
liquid.  Though even these complex photons are still roughly similar to
the ones to be analyzed, since they result from more violent dumping of
energy in a shorter time, they are physically shorter and have larger
amplitude waves.
The Photon Generator
     To keep the discussion simple, the Hydrogen atom is chosen as the
photon generator.  Here the task is to visualize a single, deterministic
atom in a field free region.  The basic analysis applies Newton's laws to a
"planetary" electron orbiting a proton nucleus.  This is not a temporary
crutch to be abandoned as the derivation proceeds, but the actual
physical mechanism operating.  The inner orbit Hydrogen characteristics
were shown in Figure 31 (pg.92) and listed in TABLE X (pg.93).
     A single orbiting electron generates an ether vortex with a dipole type
magnetic field, as depicted in Figure 32 (pg.95), that is the crucial
element in photon generation.  TABLE XI (pg.97) lists the magnetic
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moments of the inner Hydrogen orbits.  The values listed in the above
tables indicate the principal factor in photon generation.
The Radiation Orbit
     In a quiescent Hydrogen atom the electron is circling the innermost
orbit (n,n ) (1,1)ψ = .  If that atom is excited to the (2,2) state, the electron
is circling the (2,2) orbit (see Figure 31).  After a relatively short delay
time the datum fluctuations perturb the orbit and cause the electron to
start the decay back to the (1,1) orbit.  When a downward transition
occurs, the electron is suddenly out of lock-step with the initial pseudo-
stable orbit.  It spirals inward to the final orbit, releasing energy, but the
program it executes is not simple.
     As explained in Section XV (pg.90), many orbit cycles are required to
generate the photon.  It is assumed that the radiated energy per cycle is
small compared to the total photon energy.  The energy radiation rate is
proportional to how much of E∆  remains, so that the electron's orbital
energy during photon generation is,

pt/
fE E E− τ= ∆ ε +     .

where 23 2
p p 1.59 10 /τ = × ω  , pω  is the photon angular frequency and fE

is the energy of the electron in the final orbit.  When pt 5= τ , 99.3% of
E∆  has been radiated.

     All photons appear to have certain well known characteristics, such
as: very small or zero rest energy, zero net charge and zero magnetic
moment.  They also have spin 1, in agreement with the 1"  reduction in
the radiating atom's total vector angular momentum.  A few other photon
characteristics appear well founded.  For example, in the (2,2)---(1,1)
transition, the photon produced is a long, narrow particle ( 8/a 10>L )
because it takes time to generate it and it is propagating away from the
atomic orbit at velocity 0 c .  It has a circularly polarized, energy carrying
t-wave; and also, because the radiation process is a disturbance, an
energyless, plane  wave−!  propagating at velocity 0 c .
     Of all atomic photons, the smallest diameter particle is produced by
the (2,2)---(1,1) hydrogen transition.  It is roughly 810 cm−  across.  Its
effective length 0 p5c≅ τL  is  99.5 cm, containing 68.2 10×  cycles of the
radiated wave, or 99.3 % of E∆ .
     This meager collection of photon attributes is a relatively simple
extension of the conventional concept of a photon.  One further photon
property can be invoked to improve that concept considerably.
The Photon Vortex
     The proper approach to photon structure is to find the physical
mechanism, that antenna radiation does not have, by which the photon
is held in particle form.  The backbone of a photon's particle structure is
a long tubular vortex.  It is pushed out perpendicularly to the electron's



117

orbit, probably because the orbit radius decreases during radiation.
Because of this, the ether vortex has a form close to that of a very long,
needle thin solenoid; with ether rotating as a solid body inside, and
slipping outside (zero curl field outside).  Figure 41 is greatly compressed
lengthwise and expanded in diameter.

     Although originally there is a circulating charge (the orbiting electron
generating the photon vortex), once the vortex leaves the atom it is a free
vortex, moving at velocity 0 c , with no attached circulating charge.  This
indicates that it is an energyless magnetic field (see Section IV, pg.12).  It
also explains why a photon has no magnetic moment.  It is well known
that vortices can travel considerable distances without significant
change.  The photon vortex has the advantage that the ether is a
frictionless fluid, and thus the vortex is essentially indestructible.  Only
when it finds a compatible particle that unwinds it can it vanish.
     Any disturbance in the ether causes the formation of waves−!
(longitudinal waves), so it is assumed that an  wave−!  propagates inside
the vortex and moves along with it.  Photons are also known to exhibit
circularly polarized t-wave (transverse wave) characteristics, so there is
also a t-wave propagating inside the vortex and moving along with it.
Without the vortex, these waves would behave like antenna radiation and
would exhibit no particle properties.  Both waves propagate, in the
direction of the vortex axis, inside the rigid body region. Outside, the slip
prevents coherent wave propagation.
     No complete quantitative analysis of the complicated ether flow
pattern during the radiation exists.  Moreover, no complete quantitative
description of the photon is available.  However, some progress has been
made (see PHSICS 2001Rev, Chapter 10).
The Neutrino
     None of the sources available, that discuss the neutrino, indicate the
size or shape of that elusive particle.  It is often illustrated as a small
sphere.  The neutrino was first postulated, in connection with the
conversion of a free neutron into a proton and electron, in order to save
the conservation of energy law.  However, with hindsight, its most
important function is to allow spin conversion. This is understood by
considering the decay of the −µ  unon, first described in Table V, pg. 57.

Figure 41 Photon vortex (compressed in length
 10 times and expanded in diameter 810  times)
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     The conversion process, in its simplest form, starts with the  −µ  at
rest, buffeted by the datum fluctuations.  After a certain delay time, the

−µ  begins to ooze outward from the 2nd layer position; and, at the end of
the conversion, an electron with its maximum electric energy at the 1st

layer position is formed.  Almost all of the rest energy of the −µ  must be
carried away as kinetic energy, and the fact that the −µ  vortex velocity
distribution is much more compact than the final e−  vortex velocity
distribution means that some process of circulation reconfiguration must
also take place.  The method nature uses to do the latter is to simply
remove the −µ  spin vortex ( µν ) from the conversion region, and generate
an electron neutrino/antineutrino pair of spin vortices, one ending up
inside the electron and the other ( eν ) also leaving the conversion region.
All three final particles can carry kinetic energy away with them.
The Neutrino Vortex and ! -Wave
     The neutrino has almost the same structure as the photon, but it has
no transverse wave.  It is most often generated by a spinning  unon.  As
described in Section V, pg.12, the unon spin velocity forms an energyless
dipole field that turns as a rigid body in a small central region but slips
outside.  There is no orbiting electron as in photon generation.  During

−µ  decay, for example, it is the expansion of the particle to the lower
energy electron that causes the spin field to leave the −µ .  Here as in
photon generation, the vortex is stretched out, but it is much smaller in
cross section ( ≤0.06 er ) than the photons.  The neutrino vortex and its
plane wave−!  are depicted in Figure 42.

Figure 42 ! -wave inside the propagating µν  vortex.

     The more formal photon analysis in PHYSICS 2001Rev, Chapter 10 is
directly applicable to the neutrino also.  It does not appear that there is
any recoverable magnetic energy associated with the neutrino.  Since all
of its distributed charge is in the end structures, the chance that it has
any significant magnetic moment is slight.  Nevertheless, it does have the
external slip field of V , so some miniscule magnetic effect might be
measurable.  Again, this is an open question.
     At the present time, there is much speculation that the neutrinos
oscillate from one type ( e, ,µ τν ν ν ) to another and back.  Since nature was
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forced to remove the µν  and replace it with the eν  in the µ  decay, and
since it seems to be the rule that one whole spin structure must be
replaced with another whole spin structure, it is unlikely that the
individual neutrinos can oscillate.
     At this point, very little more is known about these untouchable
particles; but the visualization presented here does help to understand
many of the odd situations that involve neutrinos.

XXIV  THE GRAVITIC FIELD

Introduction
     Around 1590, Galilei measured the acceleration of falling bodies.  In
1687, after thinking about the problem on and off for about twenty years,
Newton published his Principia, which expounded the Law of Universal
Gravitation (attraction between large neutral bodies).  To explain why
neutral bodies attracted each other, Einstein "geometrized" space-time in
his 1916 General Theory of Relativity.  From that time to this,
investigators have been trying to combine that space-time geometrization
with a theory of electricity and magnetism; but this has failed.  In the
1950's Kirkwood32 adopted the ether as the gravitic medium, and
succeeded in developing a gravitic field theory that has the correct
properties.  The present section is essentially an elaboration of
Kirkwood's gravitic field theory with minor modifications.  The full
importance of his theory is not recognized at present33, but its influence
is strong in every chapter of PHYSICS 2001Rev(2009).
The Gravitic Field
     Layerons have gravitic fields, c-ons do not. In Section XV, the gravitic
field of the most elementary layeron, the electron, was shown to be a
standing ! -wave with density sφi  and velocity sVi  (coexistent with the
traveling ! -wave) that just quivers in and out at frequency ωe .  All the
other layerons also have similar standing wave fields varying at their own
characteristic frequencies. The travelling ! -wave fields of charged
layerons produce bulk distortions that interact so strongly with other
charged layerons that the gravitic forces are negligible.  However, in
neutral layerons, neutral atoms and larger neutral composites, the
traveling ! -waves go directly from the negative to the positive layers, and
so only a short distance away from the neutral combination, the standing
gravitic wave is dominant.
     Conventionally, gravitation is approached as a "force" between neutral
bodies.  The ether view is that, since there is no "force", the interaction
is  just a  condition  of acceleration of the primary inertial system at each
 ___________________________________________________________________________________________________________
 32. Kirkwood, R.L., PhD Thesis, Stanford U. Physics Dept., (1950).
       …………………., Phys. Rev., 92, 1557 (1953).  Phys. Rev., 95, 1051 (1954).
 33. ……………….…, Project RAND, D-7210, (1960).  The RAND Corp., RM-3146-RC, (1962).  J. Math. Phys.,
                                11, 2983 (1970).  Int.  J. Theor. Phys., 6, 133 (1972). Loc.cit. 7, 391 (1973).
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point in the field.  Establishing the motion of the primary inertial system
about a neutral body is the key to the problem.
Gravitostatics
     Here the emphasis will be on the field around a "large", spherical,
neutral (uncharged) body at rest relative to the absolute observer.  The
conditions for a gravitostatic field are:

       Conditions
           for                              (232)
      Gravitostatics

When these conditions are substituted into the standing ! -wave Eq.(89),
that equation reduces to,

                                                2 2 0∇ =Vi      .                                    (233)
It was shown, in Section XV (pg. 39), that Eq.(233) has a solution,

                                           gK
ˆ cos t

r
= ωV ri      ,                              (234)

where gK  and ω are, as yet, unspecified and r is greater than the source
mass radius.  Again, from Section XV,

                                                  
gd

3
2

K3 sin t
2 r

φ
φ = ω

ωi      ,

and as discussed there, this standing ! -wave has a time average
acceleration,

                                        g
2

K
ˆ  

4r
= ∇ = −a V V ri ii     ,

where gK is not the same as that of the electron.  Here again, it is the
time average acceleration of the neutral body standing ! -wave that
produces the gravitic effect on other bodies.
Sources of the Gravitic Field
     A hydrogen atom is composed of a proton and an electron.  To act
together as a single object they must adjust their individual frequencies

pω  and eω  to a single composite ! -wave frequency that is slightly greater

than pω ( 3
p0E 1.50328 10 ergs−= × ) because of the added electron rest

energy   ( 3
e0E 0.00082 10 ergs−= × ).  The negative interaction energy

( 11
epE  4.3574 10 ergs−= − × ) is so small that the reduction from

24
h 1.42626 10 rad/secω = ×  is not measurable.  If another hydrogen atom

is added to the first, the two often combine to form a molecule, and all
the particles must adjust to a new ! -wave frequency, roughly twice the
original  hω ,  because of  the  increased  energy.  However, when many
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atoms are joined in a  large neutral body,  they don't appear to go to
higher frequencies, but simply combine their fields.  The exact cutoff is
not yet understood.
     Nevertheless, it is well known that the time average acceleration field
of a composite body is,

                                              2
GMˆ  
4 r

= −
π

a r      ,                                 (235)

where M is just the sum of the rest masses of all the components.  So,
working back to Eq.(234), the ! -wave velocity field is then,

                                          GMˆ cos t
r

= ω
π

V ri      .

If the body consists of N hydrogen atoms, then,

                                          gNK
ˆ cos t

r
= ωV ri      ,

where gK  is the constant for a single atom.
The Gravitic Primary Inertial Systems
     Earlier sections have provided characteristics of particles, e.g., rest
energy, frequency, charge, etc., as seen in inertial systems or by an
absolute observer.  In 2001Rev, Chapter 12, the technique for dealing
with bodies moving in non-inertial regions, e.g. inside the vortex of a
solenoid, was examined.  It used the fact that, at any point in the flow,
laws of physics held in the differential inertial system that translated and
rotated with the fluid at the point.  Then, the motion in that differential
system was transformed to the absolute system by a Galilean
transformation.
     In considering particle/field interactions, particularly neutral
particle/field interactions, one controlling influence is the particle's
motion factor (or distortion factor),

                                          
2

e
2
0

1 
( )1

c

γ =
−− u V

     ,                             (236)

where e V  is the effective velocity of the differential primary inertial
system at the particle's location and u  is the particle's velocity, both as
seen by the absolute observer conducting the measurements.  From
another viewpoint, the absolute observer can find the primary inertial
system at any point in the field by finding a test particle's velocity that
results in a  γ  of unity (only rest energy in the particle).  In Section XVIII,

e 0= =V V  because the datum ether is at rest relative to the absolute
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observer.  In Section XXII (Rod contractions), the same conditions
applied.  However, in 2001Rev (Section 12.4), e 0= ≠V V .  In most cases,
the time average ether velocity V  establishes the primary inertial system
velocity.
     One outstanding exception to this is the gravitic field of a large
neutral body, because there 0=V  and the test particle distortion that
establishes e V  is caused by opposing the acceleration a .  In 2001Rev
(Section 13.3), several figures show various accelerated particles and the
asymmetrical bunching distortion in their fields due to acceleration.  The
gravitic acceleration produces just such distorted particles if their motion
in step with a  is impeded or augmented.  To determine the primary
inertial system in a spherical gravitic field, allow a free-space test particle
at very large distance from the source body to free-fall toward it.  As it
falls, its velocity e=u V  increases.  At each point in the field, the primary
inertial system inward velocity can be found by integrating a  from  r = ∞
to r, with the result,

                                             e
GMˆ  
2 r

= −
π

V r      .                               (237)

Any test body that moves at that inward velocity is in free-fall and is at
rest in the differential primary inertial system.  It feels no acceleration and
has only its rest distortion ( e  ,   =1= γu V ).
     One of the strangest facts about the gravitic field is that at each point
there appear to be only two primary inertial systems.  To see this, start a
test body at the source surface with the outward escape velocity given by,

                                             e
GMˆ   
2 r

= +
π

V r      ,                              (238)

and let it free-fall to infinity where its velocity will be zero.  All during
that outward free-fall, the test body is at rest in the differential primary
inertial system.  It feels no acceleration and has only its rest distortion
( e  ,   =1= γu V ).
     In practical problem solving, the velocity u  is not always along a
radius, but varies both in magnitude and direction as the body moves
through the a  field.  Since eV  appears in Eq.(236), that applies to the
test body's motion, at any given point the proper sign of eV  must be
selected (see 2001Rev).  It is determined by the sign of the r component
of u , i.e. by ru dr/dt= i .  The sign of  eV  must always be chosen to be
the same as the sign of  ru dr/dt= i .  For example, in elliptic orbit

problems, for the half of the orbit where r is increasing, eV  is positive;
but, for the other half, r is decreasing and eV  is negative.
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Figure  43
Circling mass clock.

Test Body Mass in a Gravitic Field
     Once the primary inertial system motion field is established, Eq.(236)
leads directly to the energy and mass relationships,
                                        0E E= γ     ,    0m m= γ      ,                        (239)
where 0E  and 0m  are the tests body's rest energy and mass.  The
concept of a body's rest energy, in all preceding sections, was fixed by its
energy distortion content when it was at rest in the datum ether.  That
definition still applies in a gravitic field.  However, a semantic problem
arises when a test body is at "rest" ( 0=u ) in a gravitic field, since
Eqs.(236) and (239) indicate that its rest mass is augmented by its
motion relative to the primary inertial system in the field.  Here, to avoid
confusion, a test body with zero velocity, as seen by the absolute
observer, will be described as "fixed" in the gravitic field.
     Notice that, when a body is "fixed" in the field ( 0=u ), Eq.(236) gives
the same value of γ  for both the inward and outward inertial system

values of eV ,

                                            

2
0

1
GM1

2 c r

γ =
−

π

     .        ( 0=u )             (240)

Eq.(239) then indicates that a test body held fixed at smaller distances
from the source has greater mass.  It is smallest at r → ∞ , 0m m= ; and
increases, when it is fixed at the surface, to,

                                       
1
2

0 2
0 s

GMm m 1
2 c r

−
 

= − π 
     ,                          (241)

where sr  is the source body radius.

Clock Rate in a Gravitic Field
     Now it is possible to understand the observed slowing of clocks in a

gravitic field.  Just as in Section XXII (pg.100), only one
simple circling mass-on-a-string clock will be analyzed.
In the gravitic case, for simplicity, the circling is in a
plane perpendicular to the a  field, so that the only
effect of the field on the mass particle is the change in
energy and momentum.  Figure 43 shows the physical
layout.  At r → ∞ , the circling mass has energy 1 0Eγ

and momentum 2
1 1 0 0u E /cγ .  If the clock is moved

toward the source body, and held fixed at the distance
2r , the energy of the circling mass changes to

2 2 0E E= γ , but its momentum 2
1 1 0 0u E /cγ  remains the

same, since no force was applied in the plane of the



124

orbit.  Therefore, 2 2 2 2 0 1 1 0u E u E u E= γ = γ  and, because iu  is

perpendicular to eV ,

                                     21
2 221 e22 2 20 0 0

uu

u u1 1c c c

=

− − − V
     .

This can be solved to show that,

                                        1
2

uu =
γ

    ,    2 1T T= γ      ,

where,

                                           
2
e 2

2 0
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1 1
GM11 2 c rc

γ = =
−− π

V
     ,

so the clock runs slower, closer to the source body.  This is true of all
types of clocks.
     If this process is reversed, that is, start the clock at the surface and
then move it far from the source ( r → ∞ ), the clock runs faster at greater
distances.
     The lowered clock rate at the surface of a star, for example, explains
what is known as the "gravitational red shift".  A photon emitted at the
star surface has a lower frequency than the value measured on the less
massive earth (red shifted), and that frequency remains constant as the
photon travels outward from the source body because daφ = φ  and 0c c= .
A Test Body Held Fixed in a Gravitic Field
     An external force is required to hold a test body fixed ( 0=u ) against
the acceleration of a source body gravitic field.  The field is assumed to
be irrotational ( 0=w ), and because 0=u  and r is fixed, Eq.(240)
indicates that γ  is constant and it follows that dm/dt 0=i .  Thus, the

equation of motion reduces to, m= −F a .  Taking the value of a  from
Eq.(235),

                                       0
2 2

GMmGMmˆ ˆ
4 r 4 r

= = γ
π π

F r r      .                        (242)

This is the external force that must be exerted on any body of mass γ 0m

held fixed in the gravitational field of a source body.  More fundamental
is the acceleration of the object when that support is removed.
Gravitic Energy
     In educational institutions the gravitic field is presented in two
completely different ways.  Undergraduates are given a simple picture of
"force" and "work" that leads directly to the concept of "potential energy"
in the field.  The farther apart two neutral objects are, the greater the
potential energy stored between them.  On the other hand, graduate
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students are introduced to the General Theory of Relativity, and
bombarded with such a horde of math symbolisms that the fact that the
experimental evidence precludes gravitic energy stored in the field is lost.
The ether theory allows this to be demonstrated quite simply.
     Since the gravitic field is just an acceleration in a standing ! -wave
field, and since ! -waves carry no energy, it appears, right from the start,
unlikely that there can be energy stored in the field.  In the following it
will be shown that all energy observed in gravitic field experiments
appears to be electric or possibly magnetic.
Force and Work in a Gravitic Field33

     The nature of gravitic energy can be pursued by studying a small,
neutral test body moving radially in the field of a large mass M, where

0=w .  In 2001Rev the motion is described by the reduced equation,

                 0 0
ext2 2 2

0

d( m ) GMm 1 1 1 GMˆ   r F
dt 2 r4 r c

  γ  
= − − +    γ ππ γ    

u r
i

#    .    (243)

where extF  is radially outward.  Only three specific cases are needed to
describe the gravitic energy problem.
     The first is a test body fixed in the Earth's field.  Eq.(242) indicates
that the external upward force required to hold the body fixed is,

                                           0
ext 2

GMmˆ 
4 r

= γ
π

F r      .                               (244)

Present day interpretations of energy in relativity are a strange mix of
Newtonian ideas and "relativistic" motion factors.  Conventionally, the
work (energy) required to slowly raise such a test body from the Earth's
surface to infinity is defined as,

                                 
ea

2 s
ext 0 0

sr

1W F  dr m c
∞  γ −

= =∫  γ 
     ,                     (245)

where sγ , is the value at the Earth's surface.
     In gravitic energy situations, sγ  is usually so close to unity that it is
useful to introduce the increment 1δ = γ −  instead.  To get some idea of
the amounts of the energies involved, Eq.(245) becomes

2
s 0 0 s 0W m c E≅ δ = δ , where 10

s 7 10−δ ≅ × .  Thus, energies involved in test
body motion are smaller than the body's rest energy by a factor of about

910− , and essentially a negligible fraction of the source body energy.
With this in mind, if a test body is slowly lifted from the Earth's surface
to outer space, using an hypothetical elevator attached to Earth, work or
energy s 0Eδ  (Newtonian) or slightly less than s 0Eδ  (relativistic, Eq.245) is
required conventionally.  Actually the test body energy is lowered from

s 0Eγ  to 0E , and the elevator gives s 0Eδ  back to the source (Earth).
____________________________________________________________________________________________________________
 33. R.H.Dishington, Apeiron, 5, 1 (1998).  Presented at Symposium The Present Status of the Quantum theory
       of Light, York University, Toronto, Canada, August (1995).
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     The second case is that of a test body free-falling in the field from
r → ∞  to the Earth's surface, neglecting air friction.  Since extF 0= , if the
initial velocity is 0=u , then the test body remains at rest in the primary
inertial system all the way down, so that e=u V  and, from Eq.(236),

1γ = .  This reduces Eq. (243) to,

                                               = −
π 2

d GMˆ 
dt 4 r
u r
i

     .                                 (246)

Just before making contact with the Earth's surface, the test body
velocity is,

                                              = −
π

ea
s

ea

GMˆ 
2 r

u r      .                                (247)

     In test body cases, the slick Newtonian approximation obscures the
true problem.  It describes a free-falling mass as converting "potential" to
"kinetic" energy and carrying the latter to the source body, which
ultimately absorbs the "kinetic" energy as heat.  However, in connection
with Eqs.(246) and (247), the free-falling body ( 0E  at ∞ ) is at rest in an
inertial system, its 1γ = , undergoing no physical change all the way to the
ground.  After the inelastic collision with the Earth, the test body's energy
is s 0Eγ  (See Eq.241), so it has gained energy s 0Eδ .  This is borne out by
the observed change-of-clock-rate and red-shift in a gravitic field.  In
addition, there is an equal amount of heat generated, so a total of s 02 Eδ
suddenly appears in the collision.  Clearly it comes from the source, not
the test body, meaning that all of these energies are electric, localized in
the bodies and conserved.  Since the "binding" energy is just that lost to
heat, it also is localized and electric in nature.  So, the "kinetic" and
"potential" energies of Newtonian theory are just artificial bookkeeping
tricks to allow easy calculation of the heat energy generated, ignoring the
energy increase of the body after it is stopped.
     The third case is that of a test body shot vertically from the earth's
surface with a velocity the negative of that given in Eq.(247), again
neglecting air friction. With extF 0= , it follows that,

                                            e
GMˆ
2 r

= =
π

u V r      ,                              (248)

1γ = , and the body decelerates to 0 as r → ∞ .  From the instant it is free,
its energy is 0E  with all other energy adjusted out through the driving
mechanism.  Being at rest in the primary inertial system, it rises with
neither "kinetic" nor "potential" energy change, escaping with energy 0E .
     At present, most of what conventionally appear to be gravitic energy
phenomena actually are localized electric energy exchanges. Without a
few new solutions to certain presently intractable accelerating charge
problems, the final word on localized, stored gravitic energy cannot be
said.



127

General Relativity
     In the name of brevity, of the three famous tests for General
Relativity, demonstrations of two are not included here.  The
"gravitational red shift" was derived above, but the "advance of the
perihelion" and the "bending of a light beam" are not.  They are, however,
carried out in detail in PHYSICS 2001Rev, with each step visualizable
and following cause and effect.  No curved space, relativity or other exotic
concept is used to get the well-known results.

XXV  THE CONSERVATION LAW

Introduction
     For more than 150 years, starting with mechanical systems, the fact
that certain quantities such as energy, momentum, etc. are constant in
physical processes has led to an increasing number of conservation laws.
With the advent of quantum physics, new conserved quantities, such as
baryon and lepton numbers, have been found.  In these new cases, the
question of just what is being conserved arises.  Moreover, it is clear that
the same lack of understanding applies to the "classical" laws, since no
conventional theory explains just what "energy" or "momentum" really
are, for example.
     Recently, much emphasis has been placed on the related
transformation symmetry properties, and the realization that gauge
transformation symmetries are the source of certain quantum
conservation laws.  However, in spite of the insight this approach has
provided, in no case has true understanding of "what it is" that is
conserved been forthcoming.
     The following account suggests that, rather than the multiplicity of
conservation laws now in use, a single conservation law produces all of
the effects now ascribed to the many; and further, the one quantity that
is being conserved is shown to be the ether.
The Conservation Law34

     In Section VI the conservation of ether was described by the kinematic
relationship known as the continuity equation,

                                           ( ) a
a  

t
∂φ

∇ φ = −
∂

Vi      ;                               (248)

and in APPENDIX C its separated forms are given as,

                         ( ) { }a
a a0    ,    0

t t
∂φ ∂φ

∇ φ + = ∇ φ + =
∂ ∂

V V i
i

i i      .            (249)

Each of these equations is a derived conservation law that holds because
of the basic ether conservation law of Eq.(248).  The second equation
indicates that ether is  conserved during the passage of any ! -wave.  The
________________________________________________________________________
  34. R.H.Dishington, Apeiron, 5, p.1, Jan-Apr (1998)
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first equation ensures that ether is conserved in bulk motion.  It is often
written as,

                                             ( ) 0
t
∂φ

∇ φ + =
∂

ui      .                               (250)

Charge Conservation
     The conservation of charged particles is well known and easily derived
using Maxwell's macroscopic equations.  It has an exact parallel in the
microscopic case.  To show that the distributed charge distortion in the
ether is conserved, add the divergence of Eq.(75) to the partial time
derivative of Eq.(72) and transpose the signs, with the result,

                                  ( )
2

2
2 2
0

1 
t c t
∂ρ ∂

∇ ρ + = −∇
∂ ∂

ui
C

C +      ,

where,

                                         a
a( ) 0

t
∂φ

∇ φ + =
∂

ViC =      .                          (251)

So because, and only because, ether is conserved according to Eq.(249),
distributed charge distortion is conserved.
E & B form of Maxwell's equations
     It is instructive to review the conventional form of Electrodynamics.
The electric field E  and the magnetic field B  are defined in terms of
forces on whole charged particles.  Maxwell's "force field" equations, i.e.
written in terms of E and B , can be derived, for the case of free charges
in space (absence of matter), from the bulk Eqs.(2), with the result,

                   2
0 00

1 1 1   ,   
t c t cc

∂ ∂ ∇ = ρ − ∇ × = ρ + + ∇ ∂ ∂ 
EE B ui

C
C    ,       (252)

and the identities,

                                  0∇ =Bi     ,    
0

1
c t

∂
∇ × = −

∂
BE     .                      (253)

Eqs.(252) reduce to the usual forms only because ether is conserved
( 0)=C .  Both Eqs.(252) and (253) are valid macroscopically and
microscopically.
Energy Conservation
     In contrast to the simplicity of charge conservation, energy
conservation is complicated.  First, energy comes in so many forms.
Second, no conventional visualization of the internal mechanism is
available in many situations. Finally, the whole conventional structure of
equivalent energies in the different forms is based on "forces".  As
discussed in 2001Rev, Chapter 12, in the ether, there are no forces.
Particles flow.  Here the concept of work (force) is used as a convenience,
whereas the different forms of energy have been given a visualizable
mechanism (see Eqs.65 and 24).  Still, there is, as yet, no overall energy
conservation equation, and each of these different forms must be dealt
with individually, as is the custom.  There are still certain aspects of
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energy that are not understood, even in the context of the unified field
theory.
Other Conservation Laws
     It is clear from the earlier discussion that the conventional
description of the quantities being conserved required revisions.  The
other conservation laws can be understood by considering those same
revisions.  For example, as described in Section XVIII, momentum and
inertia derive from the fact that it takes time for electric energy distortion
in a particle to physically redistribute itself into another particle and be
separated from the first.  Ether conservation is again central to the
process. Even in cases involving presently unexplained phenomena such
as baryon and lepton number conservation, it is simple to show ether
conservation to be the basis.
     In particle experiments, conversion occurs when a single pseudo-
stable particle redistributes to a less distorted configuration, or splatter
produces a number of by-products during a cataclysmic collision in an
interaction between particles (see Section XVIV, pg.55).  In analyzing
which interactions are possible and which are not, it has been found that
certain numbers assigned to particles are always conserved, leading to
baryon and lepton number conservation. What is conserved in these
interactions is ether.
     A simple example of this is one used by Feynman.35  Proton-proton
bombardment is used to produce anti-protons by the reaction,

                                         P P P P P P+ → + + +      ;
but not by,
                             P P P P P + → + +/     or    P P P P+ → +/      .           (254)
Violation of baryon number conservation is the conventional explanation.
However, from Section XVIV, P  and P  have opposite charge distortions
and the φ  ether density patterns are also opposites.  Thus, P P+
represents zero net ether increment, whereas P P+  represents a large
ether increment.  To conserve ether, there must be the original P P+
increment and no more.  P P+  adds no more.  Both of the interactions of
Eq.(254) violate ether conservation.  In fact, if vortex conservation is
included, all of the cases of baryon and lepton conservation, as
conventionally described, are seen to be cases of ether conservation.
     All conservation laws can be traced back to the single conservation of
ether law.   In the future, new conservation laws can be found by
examining phenomena in the light of the ether physics involved.  Much
more is discussed in 2001Rev.  Still to come will be a total energy
conservation law, probably to be derived  using a four dimensional
formalism along the lines investigated by Kirkwood.
 ___________________________________________________________________________________________________________
  1. R.P.Feynman, R.B.Leighton, and M.Sands, The Feynman Lectures on Physics, 3, p 25-4, Addison-Wesley
     Publ. Co., Reading, Mass. (1965).
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APPENDIX A

EQUATIONS OF THE UNIFIED FIELD

Maxwell's Macroscopic Equations

2
2

2 2
0

1  
c t

∂ φ
∇ φ − = − ρ

∂
      ,      

2
2

2 2
0

1 ( )( )  
c t

∂ φ
∇ φ − = − ρ

∂
uu u       , 

t
∂φ

∇ φ = −
∂
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Unified Microscopic Equations

! -wave equations

        ( )
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∂
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the bridge equation
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bulk equations
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Maxwell's microscopic equations
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APPENDIX B

UNITS

Table B.1

To obtain the quantity in HLU, multiply the MKS quantity by the factor
given.  To go from HLU to MKS, divide.

Table B.2

4

5

                                      HLU                     MKS

Electric Potential                             9.40967 10 Volts

Magnetic Vector-                             2.82095 10   Webers/m
Pot

−φ ×

×A

7

ential

Energy                                                             10 Joules
Energy Density                                                 10 Joules

Charge                              q       

ε
E

10

4

10

       1.06274 10 Coulombs

Charge Density                               1.06274 10 Coulombs/m

Current                             i               1.06274 10 Amperes

Resistance                         

×

ρ ×

×
-14

13

14

              8.85419 10 Ohms

Capacitance                                    1.12941 10 Farads

Inductance                                      8.85419 10 Henrys

Electric Intensity              

−

×

×

×

R

C 

L 
6

3

6

               9.40967 10  Volts/m

Magnetic Induction                         2.82095 10 Teslas

Electric Displacement                     1.06274 10

Magnetic intensity                          3.54

−×

×

×

E
B
D

H 3 Amp Turns491 10
m

−×

−ε = ε

=E E

3 1 3
e mks

-7
mks

Electric Energy Density     (ergs/cm ) 10 (Joules/m )

Energy                               (ergs)  10 (Joules)
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Table B.3

Starred quantities are Gaussian.  Listed quantities are substituted
directly.  Quantities along rows are equal.

8

mks m s
0 0

                                  HLU         MKS               EMU               ESU      

10 1 1Electric Potential                               *
c 4 c 4 4
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φ φ φ φ
π π π

A
6

mks s
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−
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π π π
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APPENDIX C

SEPARATION EQUATIONS

φ = φ + φi                 = +V V Vi                 = +a a ai

aa d d            φ = φ + φ = φ + φ + φ = φ + φi i

t
∂

= + ∇ + ∇
∂
Va V V V Vi ii i        ,       { }

t
∂

= + ∇ + ∇ + ∇
∂
Va V V V V V Vi

i i i i i i
i i i

aaφ = φ + φV V Vi i       (bulk)      ,    { } { }aaφ = φ + φ + φV V V Vi i i ii i
     ( ! -wave)

a

φ
= −

φ

VV i i      if     ( a 0φ =V )       ,       = ∇a V Vi ii     if     ( 0=V )

a
a ( ) 0

t
∂φ

∇ φ + =
∂
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∂φ
∇ φ + =

∂
V i
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a
a( ) ( ) 0

t
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∇ φ + ∇ φ + =
∂

V Vi ii i     ,    (Bulk)

 { }a( ) ( ) 0
t

∂φ
∇ φ + ∇ φ + ∇ φ + =

∂
V V V i
i i i i i

i i i ,   ( ! -wave)
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APPENDIX D

TRUNCATION INTEGRALS
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−

−

×

×

12

7

     x                      T(x)                         x                  T(x)

   0.05             4.7024 10               7.00             4.5615

   0.10             3.8302 10                7.50 
−

−

−

×

×

×

5

4

4

            4.9971

   0.15             2.2539 10                8.00             5.4365

   0.20             1.9929 10                8.50             5.8794

   0.25              7.9955 10             
−

−

−

×

×

×
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3

3

  9.00             6.3254

   0.30              2.1277 10               9.50             6.7742
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−
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×

×

×
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         11.0             8.1345

   0.45              1.2674 10               12.0             9.0512

   0.50              1..8767 10               13.0            9.9743

   0.55              2.6207 10−

−×

2

2

               14.0          10.9029

   0.60              3.4990 10                15.0          11.8362
   0.65                  0.04508                  16.0          12.7737
   0.70                  0.05645                  17.0          13.7149
   0.75                  0.06903                  18.0          14.6593
   0.80                  0.08279                  19.0          15.6067
   0.85                  0.09766                  20.0          16.5567
   0.90                  0.11361                  25.0          21.3385
   0.95                  0.13057                  30.0          26.1594
   1.00                  0.14850                  35.0          31.0076
   1.20                  0.2288                    40.0          35.8759
   1.40                  0.3214                    45.0          40.7595
   1.60                  0.4241                    50.0          45.6552
   1.80                  0.5351                    55.0          50.5608
   2.00                  0.6532                    60.0          55.4746
   2.50                  0.9734                    65.0          60.3952
   3.00                  1.3207                    70.0          65.3216
   3.50                  1.6881                    75.0          70.2531
   4.00                  2.0709                    80.0          75.1890
   4.50                  2.4660                    85.0          80.1287
   5.00                  2.8710                    90.0          85.0719
   5.50                  3.2842                    95.0          90.0181
   6.00                  3.7044                  100.0        

→ ∞ → − e

  94.9671
   6.50                  4.1304          x   ,  T(x) x log x




