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TEXTBOOKFIX

     Faraday and Maxwell didn't know about electrons. Maxwell had a
vague idea that electric current in conductors was a fluid.  In his treatise
of 1873, he gave two sets of equations for the electromagnetic field.  One
set assumed the fundamental field quantities were "forces" that would act
on minute test charges if placed in the field, and the other set was
thought to be a simplifying mathematical manipulation in terms of a
scalar and a vector potential.  The remaining errors in classical E&M,
still ignored or repeated in most textbooks, can best be understood and
corrected by looking at Maxwell's equations for "matter free" space.
     The "force" equations are written (Heaviside-Lorentz units):
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The potential equations are written (Heaviside-Lorentz units):

     
2

2
2 2
0

1
c t

∂ φ
∇ φ − = −ρ

∂
   ,   

2
2

2 2
00

1
cc t

∂
∇ − = −

∂
A JA    ,   

0

1
c t

∂φ
∇ = −

∂
Ai    ,       (2)

Any φ  and A  found from Eqs.(2) give the proper values of E  and B
through the connecting equations:
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To find E  and B  from Eqs.(1), four equations must be solved; from
Eqs.(2), essentially half that number.
     Most modern textbooks label E  and B  as the fundamental fields, E
is called the "electric" field and B  is called the "magnetic" field.  These
definitions lead to the major source of error in classical E&M.  A
significant amount of experimental and theoretical work makes it
obvious that the fundamental fields are φ  and A ; so that, from Eqs.(3),
E  is a mixture of the electric field φ  and the magnetic field A , and B  is
an incomplete part of the magnetic field A .
     Most of the difficulties appear in the microscopic regime of particle
structure.  At present, the most commonly used scalar potential in
Eqs.(2) for a spherically symmetrical, charged particle at rest is the
"point" charge which, with its infinities, is not a "physical" solution.  As
explained in the Short Book, a much simpler and easier to work with
finite form is,
                                            i2r /r

0(1 )e−φ = φ −      .                                  (4)
This potential has only two significant features, the center value 0φ
(positive or negative) and the radius ir  of the inflection point (Figure 1).
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Figure 1

     The corresponding charge density
distribution,
                          2( )ρ = −∇ φ      ,                    (5)
is a smooth shell of charge distortion that
peaks at half ir .  Integrated over all space, the
total charge is                     .

     Again, the at rest electric energy density
distribution,

                                                                     21
e 2 ( )ε = ∇φ      ,                 (6)

is a smooth shell of energy distortion that peaks at the inflection radius
ir .  Integrated over all space, the resulting finite energy is                     .

     So far, the finite particle solution is satisfactory; but it still must be
shown to give the constant velocity total energy 0Eγ , where u is the
velocity and γ is defined as,
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The calculation begins by going back to Eqs.(2) and looking for a finite
potential of the full changing field scalar equation,
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     Paralleling Eq.(4), the potential of the constant velocity field, moving in
the x direction at velocity u, is,

                                            i2r r '
0(1 )−φ = γφ − ε      ,                                 (9)

where, 2 2 2r x R′ = γ +  in cylindrical coordinates.  Eq.(9) differs from the
spherical case of Eq.(4) mainly in that the equipotentials are oblate
spheroids; not because of any longitudinal contraction, but because the
potential φ  expands laterally.  The longitudinal contraction of E  is
always emphasized, but the lateral expansion of φ  is more significant in
relation to energy and charge.
     The potential in Eq.(9) can be checked by using a Lorentz
transformation on the rest potential of Eq.(4).  If the charge density ρ
found from Eqs.(8) and (9) is integrated over all space, the total moving
electron charge is found to be 0 i q 8 r= πφ , the same as for the charge at
rest, a well established fact.

2
0 0 iE 2 r= πφ

0 iq 8 r= πφ
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     To find the total field energy of the moving particle, the correct energy
density must be integrated over all space.  This is the second point at
which the classical E&M theory of particle structure breaks down.
     In most modern textbooks the expression for electric energy density is
commonly written,
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In a way, this form works for radiation propagation (where ∇φ  is zero),
but in other applications (in association with the Poynting theorem) it
has led to a long, confusing literature of strange paradoxes and
suggested alternatives.  If Eq.(10) is integrated over all space, it fails to
give a total energy 0Eγ .  Combinations of Eq.(10) and the B  field also fail
(consult the Short Book).
      One hint as to the failure of Eq.(10) relates to the success of Eq.(8) in
defining moving microscopic charge density, for there is an alternative
picture of elementary particle structure that gives insight into the basic
nature of microscopic charge and electric energy densities.  If it is
assumed that the potential φ  is the only physical entity in the electric
field, then the construct in Figure 1 is the total essence of an elementary
particle's bulk nature, i.e. a specific distortion.  In the "point charge"
model, charge is "something" at the point producing the field.  Electric
energy density is even more evanescent.  However, the nature of φ  in the
preceding allows a different approach.  The microscopic Eqs.(5) and (6)
can be considered to define two secondary implicit distortions, 21

2 ( )∇φ and
2−∇ φ , automatically present if φ  is present.  They do not cause the field,

they are the result of it.
     An erroneous assumption, adopted almost unanimously around 1900
and still held today, is that, in the microscopic case, the elements of
distributed charge ρ inside a single particle, for example, individually obey
Coulomb's law just as whole charged particles do in the macroscopic case.
Lorentz had doubts, but they did not prevail.  However, there is no direct
experiment to support this assumption, and electrons, for example, do
not fly apart.  Thus, microscopically, there is no reason to expect the
distributed "elements" of the φ  field to produce distant actions on each
other such as the Coulomb force, which, macroscopically, results from two
whole particle fields interacting.  That Eq.(8) gives the  correct moving
microscopic charge density bears this out. Now that the physical nature
of ρ  and eε  as secondary implicit distortions dependent upon φ , rather
than as sources of φ , has been indicated, the path to the correct form of
moving electric energy density eε  is clear.  It should be formulated in
exactly the same way that moving charge density ρ  was.
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     In going from the rest Eq.(5) to the moving Eq.(8), because of the finite
rate of propagation, the charge density in time variable fields is assumed
to change as,

                 2ρ = −∇ φ       →        
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That this is true is a well verified fact.  Considering the similar natures of
ρ  and eε  as auxiliary distortions implicit in the shape of φ , it would be
surprising if electric energy density did not have the simple definition,
parallel to Eq.(11),
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for changing fields.  Thus,

is offered here as the correct, complete definition of electric energy
density.  It deserves serious attention, because it not only resolves the
many paradoxes, but also leads to Lorentz invariance like Eq.(11).  Its
success in providing the correct energy of the constant velocity particle
warrants its adoption.  This can be seen as follows: the implication is
that, in addition to spreading out laterally, at each point in the moving
field the rest electric energy density distortion found from Eq.(6) has
increased, and when integrated over all space gives a total electric energy

0Eγ , a well established fact.  Thus, a reasonable finite charged particle
description has been demonstrated, and the correct form of the moving
electric energy density has been derived.
     The third major breakdown in classical E&M relates to the description
of energy flow in the fields using the Poynting theorem.  The old Poynting
theorem leads to weird and erroneous visualizations of field energy flow,
because E  and B  are not the true electric and magnetic fields.  A new
Poynting theorem must be derived from the φ  and A  equations.  This
leads to a simple visualization of energy flow with no apparent
paradoxes.  Consult the Short Book and PHYSICS 2001Rev.
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