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Abstract
"Point" leptons lead to difficulties. The following presents a simple, finite
solution of Maxwell's equations that applies to the e, p and t leptons.
With minor modification it also applies to all other leptons except

photons and neutrinos.

A Finite Solution of Maxwell's Equations
A solution of the scalar equation (Heaviside-Lorentz units),
Vi=-p (1)
must be found that eliminates the infinities of the "point" charge. A

simple, spherical trial solution is,
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The Figure below indicates that this potential has only two significant

features, the center value ¢, (positive or negative) and the radius r, of

the inflection point.
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The corresponding charge density distribution required to complete
the solution is found by substituting the trial solution Eq.(2) in Eq.(1) to
yield,
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a smooth shell of charge distortion that peaks at half r,. This
distribution is a reasonable one. Integrated over all space, the total
charge is q = 8nd,r; .

Similarly, the electric energy density distribution is found from,
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a smooth shell of energy distortion that peaks at the inflection radius t;.

If ¢, is integrated over all space, the resulting finite energy is E, = 2ndgt,; -

Just to get some idea of the magnitudes involved, if the potential in

Eq.(2) is assumed to represent an electron, then using
E, =8.18711x10"ergs (0.511 MeV) and q=-e=-1.7027 x10  hlcoul
(-1.6022x107'°C), the center potential and inflection point radius are
by = ~1.9233 x10%hlvolts (approx. — 2x10°V) and I, = 3.522x10 " cm.

It is important to notice that the expansion of the gradient of Eq.(2),
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reduces, for the electron, to d¢/dr = e/4nr> ( for r > 200r, ), the Coulomb

field of the "point" charge. This explains why the well known collision
experiments! that appear to support the "point" charge electron model
are also in complete agreement with the present, finite solution. At low

collision energies, the principal interaction is out in the Coulomb region.

1. D.P. Barker, et. al., Phys. Rev. Lett., 43, 1915 (1979); Phys. Rev. Lett., 45, 1904
(1980).



As the collision energy is increased, the Lorentz contraction of the
gradient causes the inner, non-Coulomb volume to shrink, and the

interaction never catches up with that inner region.

The Energy Compaction Relationship
Combining the rest energy E, and charge q found from Egs.(4) and

(3), for whole charge leptons e, un andr,
2
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a relationship called the energy compaction equation. It indicates that

=2.8838x10*erg—cm (5)

the more energetic leptons are smaller. The true importance of Eq.(5)
appears when analyzing the fractional charge leptons and composite

particles such as the proton.

Lepton Size and Stability
Here, again, the leptons of interest will be limited to the series of
whole charged particles, i.e. e, u, t©, ..., that can exist alone and be
observed for some finite time. Using the energy compaction relationship
derived earlier, and the known values of E, for each of the leptons, the

values for ¢, and r, are listed in the TABLE along with each particle's

observed mean life.

LEPTONS, THE "PREFERRED" VACUUM STATES

E, (ergs) r, (cm) ¢ (hlvolts) mean life (s)

e 8.1871x1077 1 =3.5224x107"* 1.9233x10° Stable
u 1.6929x10* r,=1.7035x107'° 3.9768x10° 2.1970x10°

T 2.8472x107° 1, =1.0129x107"" 6.6886x10° 2.9100x107"°




The interesting features of the TABLE are that, first, although each of
these leptons has the same charge te, the more energetic particles have
higher potentials; and, their energy being packed into a smaller volume
correlates with their being less stable. Second, it appears that the lepton
sequence is a set of preferred states that can exist as "stable" particles

because of some fundamental property of the vacuum.



UNITS

To obtain the quantity in HLU, multiply the MKS quantity by the
factor given. To go from HLU to MKS, divide.

Electric Potential

Magnetic Vector
Potential

Energy
Energy Density

Charge

Charge Density
Current

Resistance
Capacitance
Inductance

Electric Intensity
Magnetic Induction
Electric Displacement

Magnetic intensity

MKS

0.40967 x 10 *Volts
2.82095x 10°

10’ Joules
10 Joules

1.06274 x 10" Coulombs
1.06274 x 10" Coulombs /m®
1.06274 x 10" Amperes
8.85419 x10 *Ohms
1.12941x 10" Farads
8.85419x10 “*Henrys
9.40967 x 10 °Volts/m
2.82095 x 10° Teslas
1.06274 x10°

3.54491 x 102 AP Turns
m




UNITS

Starred quantities are Gaussian. Listed quantities are substituted
directly. Quantities along rows are equal.
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TRUNCATIION INTEGRALS

[e/Ydy = T(x) The truncation integral.
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0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.20
1.40
1.60
1.80
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50

T(x)
4.7024 x 10712
3.8302 %107
2.2539x107°
1.9929 x10™*
7.9955x107*
2.1277%x107
4.4403x1073
7.9190x107°

1.2674 x1072
1..8767 x1072
2.6207 x 1072
3.4990 x 1072

0.04508

0.05645

0.06903

0.08279

0.09766

0.11361

0.13057

0.14850

0.2288

0.3214

0.4241

0.5351

0.6532

0.9734

1.3207

1.6881

2.0709

2.4660

2.8710

3.2842

3.7044

4.1304

X
7.00
7.50
8.00
8.50
9.00
9.50
10.0
11.0
12.0

13.0

14.0

15.0
16.0
17.0
18.0
19.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0
95.0
100.0

T(x)
4.5615
4.9971
5.4365
5.8794
6.3254
6.7742
7.2254
8.1345
9.0512
9.9743

10.9029

11.8362
12.7737
13.7149
14.6593
15.6067
16.5567
21.3385
26.1594
31.0076
35.8759
40.7595
45.6552
50.5608
55.4746
60.3952
65.3216
70.2531
75.1890
80.1287
85.0719
90.0181
94.9671

x> o , T(x)—> x-log, x




