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Abstract

 "Point" leptons lead to difficulties.  The following presents a simple, finite

solution of Maxwell's equations that applies to the e , µ  and τ  leptons.

With minor modification it also applies to all other leptons except

photons and neutrinos.

A Finite Solution of Maxwell's Equations

     A solution of the scalar equation (Heaviside-Lorentz units),

                                                 2∇ φ = −ρ     ,                                         (1)

must be found that eliminates the infinities of the "point" charge.  A

simple, spherical trial solution is,

                                           i2r /r
0(1 )−φ = φ − ε     ;                                (2)

The Figure below indicates that this potential has only two significant

features, the center value 0φ  (positive or negative) and the radius ir  of

the inflection point.
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     The corresponding charge density distribution required to complete

the solution is found by substituting the trial solution Eq.(2) in Eq.(1) to

yield,

                                            i
2

2r /r0 i
4
r4

r
e−φ

ρ =     ,                                   (3)

a smooth shell of charge distortion that peaks at half ir .  This

distribution is a reasonable one.  Integrated over all space, the total

charge is 0 iq 8 r= πφ .

     Similarly, the electric energy density distribution is found from,

                                     i
2 2

4r /r2 0 i1
e 2 4

r( ) 2
r

e−φ
ε = ∇φ =     ,                            (4)

a smooth shell of energy distortion that peaks at the inflection radius ir .

If eε  is integrated over all space, the resulting finite energy is 2
0 0 iE 2 r= πφ .

     Just to get some idea of the magnitudes involved, if the potential in

Eq.(2) is assumed to represent an electron, then using
7

0E 8.18711 10 ergs−= ×  (0.511 MeV) and 9 q e 1.7027 10 hlcoul−= − = − ×

( 191.6022 10 C−− × ), the center potential and inflection point radius are

3
0 1.9233 10 hlvolts φ = − × (approx. 6  2 10 V− × ) and 14

i r 3.522 10 cm−= × .

     It is important to notice that the expansion of the gradient of Eq.(2),

                                  
2

0 i i i
2 2
rd r r 2 1 2 2 ...

dr rr r
 φφ

= − − + − 
 

           i r r>

reduces, for the electron, to 2d dr e 4 rφ ≅ π  ( for ir 200r  > ), the Coulomb

field of the "point" charge.  This explains why the well known collision

experiments1 that appear to support the "point" charge electron model

are also in complete agreement with the present, finite solution.  At low

collision energies, the principal interaction is out in the Coulomb region.

_______________________________________________________________________
 1.  D.P. Barker, et. al., Phys. Rev. Lett., 43, 1915 (1979); Phys. Rev. Lett., 45, 1904

      (1980).
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As the collision energy is increased, the Lorentz contraction of the

gradient causes the inner, non-Coulomb volume to shrink, and the

interaction never catches up with that inner region.

The Energy Compaction Relationship

     Combining the rest energy 0E  and charge q found from Eqs.(4) and

(3), for whole charge leptons e, µ  and τ ,

                             
2

20
0 i

eE r 2.8838 10 erg cm
32

−= = × −
π

    ,                     (5)

a relationship called the energy compaction equation.  It indicates that

the more energetic leptons are smaller.  The true importance of Eq.(5)

appears when analyzing the fractional charge leptons and composite

particles such as the proton.

Lepton Size and Stability

     Here, again, the leptons of interest will be limited to the series of

whole charged particles, i.e. e, µ ,  τ , …, that can exist alone and be

observed for some finite time.  Using the energy compaction relationship

derived earlier, and the known values of 0E  for each of the leptons, the

values for 0φ  and i r  are listed in the TABLE along with each particle's

observed mean life.

LEPTONS, THE "PREFERRED" VACUUM STATES

       0E  (ergs)             ir  (cm)                  0  (hlvolts)φ       mean life (s)
___________________________________________________________________

e    78.1871 10−×    14
1r 3.5224 10−= ×    31.9233 10×         Stable

µ   4 1.6929 10−×    16
2r 1.7035 10−= ×    53.9768 10×     62.1970 10−×

 τ    32.8472 10−×   17
3r 1.0129 10−= ×    66.6886 10×     132.9100 10−×
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     The interesting features of the TABLE are that, first, although each of

these leptons has the same charge e± , the more energetic particles have

higher potentials; and, their energy being packed into a smaller volume

correlates with their being less stable.  Second, it appears that the lepton

sequence is a set of preferred states that can exist as "stable" particles

because of some fundamental property of the vacuum.
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UNITS

To obtain the quantity in HLU, multiply the MKS quantity by the
factor given.  To go from HLU to MKS, divide.

4

5

                                      HLU                     MKS

Electric Potential                            9.40967 10 Volts

Magnetic Vector                             2.82095 10
Potential

Energy

−φ ×

×A

7                                                            10 Joules
Energy Density                                                10 Joules

Charge                              q             1.06274

ε

×

E

10

4 3

10

10 Coulombs

Charge Density                              1.06274 10 Coulombs/m

Current                             i              1.06274 10 Amperes

Resistance                                      8.

ρ ×

×

R -14

13

14

85419 10 Ohms

Capacitance                                    1.12941 10 Farads

Inductance                                     8.85419 10 Henrys

Electric Intensity                            9.40

−

×

×

×

E

 

L 
6

3

6

3

967 10 Volts/m

Magnetic Induction                        2.82095 10 Teslas

Electric Displacement                    1.06274 10
Amp TurnsMagnetic intensity                         3.54491 10

m

−

−

×

×

×

×

B
D

H
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UNITS

Starred quantities are Gaussian.  Listed quantities are substituted
directly.  Quantities along rows are equal.

8

mks m s
0 0

                                  HLU         MKS               EMU               ESU      

10 1 1Electric Potential                               *
c 4 c 4 4

Magnetic Vector                   

φ φ φ φ
π π π

A
6

mks s

0
mks 0 m s

0
mks 0 m

10 1                              *
4 4

Potential

c 4
Charge                          q        q      c 4  q       4  q *

10
c 4

Current                         i         i       c 4  i       
10

π π

π
π π

π
π

A A

s

6

mks m s
0 0

3
mks m s

0

 4  i *

10 1 1Electric Intensity                           *
c 4 c 4 4

1 1Magnetic Intensity               4 10      *   
4 c 4

                                                  (A.T./m)

E

−

π

π π π

π
π π

E E E E

H H H H

5 0
0 mks m s

4
0

mks m s

c 1lectric Displacement         4 10 c             *
4 4

c10 1Magnetic Induction                        *       
4 4 4

                                                   (Teslas)

Magne

−π
π π

π π π

D D D D

B B B B

3
mks m s

0
2

20
mks 0 m s9

9

mk2
0

            

4tic Moment                 10 4        4           *
c

4 c
Conductivity                                  4 c           4 *

10
10Resistance                    

4 c

π
µ π µ π µ µ

π
σ σ π σ πσ

π
R R s m s2

0
2

20
mks 0 m s9

9

mks m s2 2
0 0

            

            

1 1               *
44 c

4 c
Capacitance                          4 c           4 *

10
10 1 1Inductance                                   *

44 c 4 c

ππ

π
π π

ππ π

R R

C C C C

L L L L
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TRUNCATIION INTEGRALS
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−
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+ + + − 
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12

7

     x                      T(x)                         x                  T(x)

   0.05             4.7024 10               7.00             4.5615

   0.10             3.8302 10                7.50 

−

−

×

×
5

4

4

            4.9971

   0.15             2.2539 10                8.00             5.4365

   0.20             1.9929 10                8.50             5.8794

   0.25              7.9955 10             

−

−

−

×

×

×
3

3

3

  9.00             6.3254

   0.30              2.1277 10               9.50             6.7742

   0.35              4.4403 10               10.0             7.2254

   0.40              7.9190 10      

−

−

−

×

×

×
2

2

         11.0             8.1345

   0.45              1.2674 10               12.0             9.0512

   0.50              1..8767 10               13.0            9.9743

   0.55              2.6207 10

−

−

×

×

× 2

2

               14.0          10.9029

   0.60              3.4990 10                15.0          11.8362
   0.65                  0.04508                  16.0          12.7737
   0.70                

−

−×

  0.05645                  17.0          13.7149
   0.75                  0.06903                  18.0          14.6593
   0.80                  0.08279                  19.0          15.6067
   0.85                  0.09766                  20.0          16.5567
   0.90                  0.11361                  25.0          21.3385
   0.95                  0.13057                  30.0          26.1594
   1.00                  0.14850                  35.0          31.0076
   1.20                  0.2288                    40.0          35.8759
   1.40                  0.3214                    45.0          40.7595
   1.60                  0.4241                    50.0          45.6552
   1.80                  0.5351                    55.0          50.5608
   2.00                  0.6532                    60.0          55.4746
   2.50                  0.9734                    65.0          60.3952
   3.00                  1.3207                    70.0          65.3216
   3.50                  1.6881                    75.0          70.2531
   4.00                  2.0709                    80.0          75.1890
   4.50                  2.4660                    85.0          80.1287
   5.00                  2.8710                    90.0          85.0719
   5.50                  3.2842                    95.0          90.0181
   6.00                  3.7044                  100.0        

e

  94.9671
   6.50                  4.1304          x   ,  T(x) x log x→ ∞ → −


