Give up "point" particles for a finite solution of Maxwell's equations

R. H. Dishington

October 2003

Abstract

"Point" leptons lead to difficulties. The following presents a simple, finite solution of Maxwell's equations that applies to the e, μ and τ leptons. With minor modification it also applies to all other leptons except photons and neutrinos.

A Finite Solution of Maxwell's Equations

A solution of the scalar equation (Heaviside-Lorentz units),

$$
\begin{equation*}
\nabla^{2} \phi=-\rho, \tag{1}
\end{equation*}
$$

must be found that eliminates the infinities of the "point" charge. A simple, spherical trial solution is,

$$
\begin{equation*}
\phi=\phi_{0}\left(1-\varepsilon^{-2 \mathrm{r}_{\mathrm{i}} / \mathrm{r}}\right) \tag{2}
\end{equation*}
$$

The Figure below indicates that this potential has only two significant features, the center value ϕ_{0} (positive or negative) and the radius r_{i} of the inflection point.

The corresponding charge density distribution required to complete the solution is found by substituting the trial solution Eq.(2) in Eq.(1) to yield,

$$
\begin{equation*}
\rho=4 \frac{\phi_{0} r_{i}^{2}}{r^{4}} e^{-2 r_{i} / r} \tag{3}
\end{equation*}
$$

a smooth shell of charge distortion that peaks at half r_{i}. This distribution is a reasonable one. Integrated over all space, the total charge is $\mathrm{q}=8 \pi \phi_{0} \mathrm{r}_{\mathrm{i}}$.

Similarly, the electric energy density distribution is found from,

$$
\begin{equation*}
\varepsilon_{\mathrm{e}}=\frac{1}{2}(\nabla \phi)^{2}=2 \frac{\phi_{0}^{2} \mathrm{r}_{\mathrm{i}}^{2}}{\mathrm{r}^{4}} \mathrm{e}^{-4 \mathrm{r}_{\mathrm{i}} / \mathrm{r}}, \tag{4}
\end{equation*}
$$

a smooth shell of energy distortion that peaks at the inflection radius r_{i}.
If ε_{e} is integrated over all space, the resulting finite energy is $\mathrm{E}_{0}=2 \pi \phi_{0}^{2} \mathrm{r}_{\mathrm{i}}$.
Just to get some idea of the magnitudes involved, if the potential in Eq.(2) is assumed to represent an electron, then using $\mathrm{E}_{0}=8.18711 \times 10^{-7} \mathrm{ergs}(0.511 \mathrm{MeV})$ and $\mathrm{q}=-\mathrm{e}=-1.7027 \times 10^{-9} \mathrm{hlcoul}$ $\left(-1.6022 \times 10^{-19} \mathrm{C}\right)$, the center potential and inflection point radius are $\phi_{0}=-1.9233 \times 10^{3}$ hlvolts (approx. $-2 \times 10^{6} \mathrm{~V}$) and $\mathrm{r}_{\mathrm{i}}=3.522 \times 10^{-14} \mathrm{~cm}$.

It is important to notice that the expansion of the gradient of Eq.(2),

$$
\frac{\mathrm{d} \phi}{\mathrm{dr}}=-2 \frac{\phi_{0} \mathrm{r}_{\mathrm{i}}}{\mathrm{r}^{2}}\left(1-2 \frac{\mathrm{r}_{\mathrm{i}}}{\mathrm{r}}+2 \frac{\mathrm{r}_{\mathrm{i}}^{2}}{\mathrm{r}^{2}}-\ldots\right) \quad \mathrm{r}>\mathrm{r}_{\mathrm{i}}
$$

reduces, for the electron, to $\mathrm{d} \phi / \mathrm{dr} \cong \mathrm{e} / 4 \pi \mathrm{r}^{2}$ (for $\mathrm{r}>200 \mathrm{r}_{\mathrm{i}}$), the Coulomb field of the "point" charge. This explains why the well known collision experiments ${ }^{1}$ that appear to support the "point" charge electron model are also in complete agreement with the present, finite solution. At low collision energies, the principal interaction is out in the Coulomb region.

1. D.P. Barker, et. al., Phys. Rev. Lett., 43, 1915 (1979); Phys. Rev. Lett., 45, 1904 (1980).

As the collision energy is increased, the Lorentz contraction of the gradient causes the inner, non-Coulomb volume to shrink, and the interaction never catches up with that inner region.

The Energy Compaction Relationship
Combining the rest energy E_{0} and charge q found from Eqs.(4) and (3), for whole charge leptons e, μ and τ,

$$
\begin{equation*}
\mathrm{E}_{0} \mathrm{r}_{\mathrm{i}}=\frac{\mathrm{e}^{2}}{32 \pi}=2.8838 \times 10^{-20} \mathrm{erg}-\mathrm{cm}, \tag{5}
\end{equation*}
$$

a relationship called the energy compaction equation. It indicates that the more energetic leptons are smaller. The true importance of Eq.(5) appears when analyzing the fractional charge leptons and composite particles such as the proton.

Lepton Size and Stability

Here, again, the leptons of interest will be limited to the series of whole charged particles, i.e. e, μ, τ, \ldots, that can exist alone and be observed for some finite time. Using the energy compaction relationship derived earlier, and the known values of E_{0} for each of the leptons, the values for ϕ_{0} and r_{i} are listed in the TABLE along with each particle's observed mean life.

LEPTONS, THE "PREFERRED" VACUUM STATES

E_{0} (ergs)	$\mathrm{r}_{\mathrm{i}}(\mathrm{cm})$	$\phi_{0}(\mathrm{hlvolts})$	mean life (s)	
e	8.1871×10^{-7}	$\mathrm{r}_{1}=3.5224 \times 10^{-14}$	1.9233×10^{3}	Stable
μ	1.6929×10^{-4}	$\mathrm{r}_{2}=1.7035 \times 10^{-16}$	3.9768×10^{5}	2.1970×10^{-6}
τ	2.8472×10^{-3}	$\mathrm{r}_{3}=1.0129 \times 10^{-17}$	6.6886×10^{6}	2.9100×10^{-13}

The interesting features of the TABLE are that, first, although each of these leptons has the same charge $\pm \mathrm{e}$, the more energetic particles have higher potentials; and, their energy being packed into a smaller volume correlates with their being less stable. Second, it appears that the lepton sequence is a set of preferred states that can exist as "stable" particles because of some fundamental property of the vacuum.

To obtain the quantity in HLU, multiply the MKS quantity by the factor given. To go from HLU to MKS, divide.

	HLU	MKS
Electric Potential	$\overline{\bar{\phi}}$	9.40967×10^{-4} Volts
Magnetic Vector	A	2.82095×10^{5}
Potential		
Energy	\mathcal{E}	10^{7} Joules
Energy Density	ε	10 Joules
Charge	q	1.06274×10^{10} Coulombs
Charge Density	ρ	1.06274×10^{4} Coulombs $/ \mathrm{m}^{3}$
Current	i	1.06274×10^{10} Amperes
Resistance	\mathbb{R}	8.85419×10^{-14} Ohms
Capacitance		1.12941×10^{13} Farads
Inductance	\mathbb{L}	8.85419×10^{-14} Henrys
Electric Intensity	E	9.40967×10^{-6} Volts $/ \mathrm{m}$
Magnetic Induction	B	2.82095×10^{3} Teslas
Electric Displacement	D	1.06274×10^{6}
Magnetic intensity	H	$3.54491 \times 10^{-3} \frac{\text { Amp Turns }}{\mathrm{m}}$

UNITS

Starred quantities are Gaussian. Listed quantities are substituted directly. Quantities along rows are equal.

	HLU	MKS	EMU	ESU
Electric Potential	$\overline{\bar{\phi}}$	$\frac{10^{8}}{\mathrm{c}_{0} \sqrt{4 \pi}} \phi_{\mathrm{mks}}$	$\frac{1}{\mathrm{c}_{0} \sqrt{4 \pi}} \phi_{\mathrm{m}}$	$\frac{1}{\sqrt{4 \pi}} \phi_{\mathrm{s}} \text { * }$
Magnetic Vector	A	$\frac{10^{6}}{\sqrt{4 \pi}} \mathbf{A}_{\mathrm{mks}}$		$\frac{1}{\sqrt{4 \pi}} \mathbf{A}_{\mathrm{s}} \text { * }$
Potential				
Charge	q	$\frac{\mathrm{c}_{0} \sqrt{4 \pi}}{10} \mathrm{q}_{\mathrm{mks}}$	$\mathrm{c}_{0} \sqrt{4 \pi} \mathrm{q}_{\mathrm{m}}$	$\sqrt{4 \pi} \mathrm{q}_{\mathrm{s}}$ *
Current	i	$\frac{\mathrm{c}_{0} \sqrt{4 \pi}}{10} \mathrm{i}_{\mathrm{mks}}$	$\mathrm{c}_{0} \sqrt{4 \pi} \mathrm{i}_{\mathrm{m}}$	$\sqrt{4 \pi} \mathrm{i}_{\mathrm{s}}$ *
Electric Intensity	E	$\frac{10^{6}}{\mathrm{c}_{0} \sqrt{4 \pi}} \mathbf{E}_{\mathrm{mks}}$	$\frac{1}{\mathrm{c}_{0} \sqrt{4 \pi}} \mathbf{E}_{\mathrm{m}}$	$\frac{1}{\sqrt{4 \pi}} \mathbf{E}_{\mathrm{s}} \text { * }$
Magnetic Intensity	H	$\begin{gathered} \sqrt{4 \pi} 10^{-3} \mathbf{H}_{\mathrm{mks}} \\ \text { (A.T. } / \mathrm{m} \text {) } \end{gathered}$	$\frac{1}{\sqrt{4 \pi}} \mathbf{H}_{\mathrm{m}} \text { * }$	$\frac{1}{\mathrm{c}_{0} \sqrt{4 \pi}} \mathbf{H}_{\mathrm{s}}$
Electric Displacement	D	$\sqrt{4 \pi} 10^{-5} \mathrm{c}_{0} \mathbf{D}_{\mathrm{mks}}$	$\frac{\mathrm{c}_{0}}{\sqrt{4 \pi}} \mathbf{D}_{\mathrm{m}}$	$\frac{1}{\sqrt{4 \pi}} \mathbf{D}_{\mathrm{s}} \text { * }$
Magnetic Induction	B	$\frac{10^{4}}{\sqrt{4 \pi}} \mathbf{B}_{\mathrm{mks}}$ (Teslas)	$\frac{1}{\sqrt{4 \pi}} \mathbf{B}_{\mathrm{m}} \text { * }$	$\frac{\mathrm{c}_{0}}{\sqrt{4 \pi}} \mathbf{B}_{\mathrm{s}}$
Magnetic Moment	μ	$10^{3} \sqrt{4 \pi} \mu_{\mathrm{mks}}$	$\sqrt{4 \pi} \mu_{\mathrm{m}}$	$\frac{\sqrt{4 \pi}}{\mathrm{c}_{0}} \mu_{\mathrm{s}}$ *
Conductivity	σ	$\frac{4 \pi \mathrm{c}_{0}^{2}}{10^{9}} \sigma_{\mathrm{mks}}$	$4 \pi \mathrm{c}_{0}^{2} \sigma_{\mathrm{m}}$	$4 \pi \sigma_{\mathrm{s}}$ *
Resistance	\mathbb{R}	$\frac{10^{9}}{4 \pi \mathrm{c}_{0}^{2}} \mathbb{R}_{\mathrm{mks}}$	$\frac{1}{4 \pi c_{0}^{2}} \mathbb{R}_{\mathrm{m}}$	$\frac{1}{4 \pi} \mathbb{R}_{\mathrm{s}}$ *
Capacitance	\mathbb{C}	$\frac{4 \pi \mathrm{c}_{0}^{2}}{10^{9}} \mathbb{C}_{\mathrm{mks}}$	$4 \pi \mathrm{c}_{0}^{2} \mathbb{C}_{\mathrm{m}}$	$4 \pi \mathbb{C}_{\text {s }}$ *
Inductance	\mathbb{L}	$\frac{10^{9}}{4 \pi \mathrm{c}_{0}^{2}} \mathbb{L}_{\mathrm{mks}}$	$\frac{1}{4 \pi \mathrm{c}_{0}^{2}} \mathbb{L}_{\mathrm{m}}$	$\frac{1}{4 \pi} \mathbb{L}_{\mathrm{s}}$ *

TRUNCATIION INTEGRALS

1. $\int_{0}^{\mathrm{x}} \varepsilon^{-1 / \mathrm{y}} \mathrm{dy}=\mathrm{T}(\mathrm{x}) \quad$ The truncation integral.
2. $\int_{0}^{x} \varepsilon^{-a / y} d y=a T\left(\frac{x}{a}\right)$
3. $\int_{0}^{x} y \varepsilon^{-a / y} d y=\frac{x^{2}}{2} \varepsilon^{-a / x}-\frac{a^{2}}{2} T\left(\frac{x}{a}\right)$
4. $\int_{0}^{\mathrm{x}} \mathrm{y}^{2} \varepsilon^{-\mathrm{a} / \mathrm{y}} \mathrm{dy}=\left(\frac{\mathrm{x}^{3}}{3}-\frac{a \mathrm{x}^{2}}{2 \cdot 3}\right) \varepsilon^{-\mathrm{a} / \mathrm{x}}+\frac{\mathrm{a}^{3}}{2 \cdot 3} \mathrm{~T}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)$
5. $\int_{0}^{\mathrm{x}} \mathrm{y}^{3} \varepsilon^{-\mathrm{a} / \mathrm{y}} \mathrm{dy}=\left(\frac{\mathrm{x}^{4}}{4}-\frac{a \mathrm{x}^{3}}{3 \cdot 4}+\frac{\mathrm{a}^{2} \mathrm{x}^{2}}{2 \cdot 3 \cdot 4}\right) \varepsilon^{-\mathrm{a} / \mathrm{x}}-\frac{\mathrm{a}^{4}}{2 \cdot 3 \cdot 4} \mathrm{~T}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)$
6. $\int_{0}^{x} y^{n} \varepsilon^{-a / y} d y=\left(\frac{x^{n+1}}{n+1}-\frac{a x^{n}}{n(n+1)}+\frac{a^{2} x^{n-1}}{(n-1) n(n+1)}-\ldots \ldots\right.$.

$$
\left.\ldots \ldots \ldots \ldots \pm \frac{\mathrm{a}^{\mathrm{n}-1} \mathrm{x}^{2}}{(\mathrm{n}+1)!}\right) \varepsilon^{-\mathrm{a} / \mathrm{x}} \mp \frac{\mathrm{a}^{\mathrm{n}+1}}{(\mathrm{n}+1)!} \mathrm{T}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)
$$

7. $\int_{0}^{\mathrm{x}} \frac{\varepsilon^{-\mathrm{a} / \mathrm{y}}}{\mathrm{y}^{2}} \mathrm{dy}=\frac{\varepsilon^{-\mathrm{a} / \mathrm{x}}}{\mathrm{a}}$
8. $\int_{0}^{\mathrm{x}} \frac{\varepsilon^{-\mathrm{a} / \mathrm{y}}}{\mathrm{y}^{3}} \mathrm{dy}=\frac{\varepsilon^{-\mathrm{a} / \mathrm{x}}}{\mathrm{a}^{2}}\left(1+\frac{\mathrm{a}}{\mathrm{x}}\right)$
9. $\int_{0}^{\mathrm{x}} \frac{\varepsilon^{-\mathrm{a} / \mathrm{y}}}{\mathrm{y}^{4}} \mathrm{dy}=\frac{2 \varepsilon^{-\mathrm{a} / \mathrm{x}}}{\mathrm{a}^{3}}\left(1+\frac{\mathrm{a}}{\mathrm{x}}+\frac{\mathrm{a}^{2}}{2 \mathrm{x}^{2}}\right)$
10. $\int_{0}^{x} \frac{\varepsilon^{-a / y}}{y^{n}} d y=\frac{(n-2)!\varepsilon^{-a / x}}{a^{n-1}}\left(1+\frac{a}{x}+\frac{a^{2}}{2!x^{2}}+\frac{a^{3}}{3!x^{3}}+\ldots \ldots+\frac{a^{n-2}}{(n-2)!x^{n-2}}\right)$
11. $\mathrm{Q}(\mathrm{x})=\varepsilon^{1 / \mathrm{x}} \mathrm{T}(\mathrm{x}) \quad, \quad \mathrm{T}(\mathrm{x})=\varepsilon^{-1 / \mathrm{x}} \mathrm{Q}(\mathrm{x})$
12. $\frac{\mathrm{dQ}(\mathrm{x})}{\mathrm{dx}}=1-\frac{1}{\mathrm{x}^{2}} \mathrm{Q}(\mathrm{x})$

x	T(x)	x	T (x)
0.05	4.7024×10^{-12}	7.00	4.5615
0.10	3.8302×10^{-7}	7.50	4.9971
0.15	2.2539×10^{-5}	8.00	5.4365
0.20	1.9929×10^{-4}	8.50	5.8794
0.25	7.9955×10^{-4}	9.00	6.3254
0.30	2.1277×10^{-3}	9.50	6.7742
0.35	4.4403×10^{-3}	10.0	7.2254
0.40	7.9190×10^{-3}	11.0	8.1345
0.45	1.2674×10^{-2}	12.0	9.0512
0.50	$1 . .8767 \times 10^{-2}$	13.0	9.9743
0.55	2.6207×10^{-2}	14.0	10.9029
0.60	3.4990×10^{-2}	15.0	11.8362
0.65	0.04508	16.0	12.7737
0.70	0.05645	17.0	13.7149
0.75	0.06903	18.0	14.6593
0.80	0.08279	19.0	15.6067
0.85	0.09766	20.0	16.5567
0.90	0.11361	25.0	21.3385
0.95	0.13057	30.0	26.1594
1.00	0.14850	35.0	31.0076
1.20	0.2288	40.0	35.8759
1.40	0.3214	45.0	40.7595
1.60	0.4241	50.0	45.6552
1.80	0.5351	55.0	50.5608
2.00	0.6532	60.0	55.4746
2.50	0.9734	65.0	60.3952
3.00	1.3207	70.0	65.3216
3.50	1.6881	75.0	70.2531
4.00	2.0709	80.0	75.1890
4.50	2.4660	85.0	80.1287
5.00	2.8710	90.0	85.0719
5.50	3.2842	95.0	90.0181
6.00	3.7044	100.0	94.9671
6.50	$4.1304 \mathrm{x} \rightarrow \infty, \mathrm{T}(\mathrm{x}) \rightarrow \mathrm{x}-\log _{\mathrm{e}} \mathrm{x}$		

