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Abstract

     It is generally agreed that the principal factor missing from the

Standard Model is the ability to calculate the particle masses.  The

available method for handling the "point" leptons also can lead to

difficulties.  The following presents an approach to these two problems by

finding a simple, finite solution of Maxwell's equations that applies to all

leptons except photons and neutrinos.

       The "point" quarks in the Standard Model are replaced by these

finite components, and the structure and rest energy (mass) of the proton

are calculated rigorously and exactly, from scratch; using only measured

data from the leptons e, µ  and τ .
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I.  INTRODUCTION

     Around 1900, the search was on for a purely electromagnetic solution

of Maxwell's equations to describe the electron and the few other known

particles.  This did not work out.  Both then and now, the most popular

solution has been the "point" charge, with its infinities and other

complications.  At present, with hindsight, it is possible to replace the

"point" charge with a simple, finite solution of Maxwell's equations that

appears to describe all leptons except photons and neutrinos.  When the

"point" quarks of the Standard Model are replaced by these finite

components, the 1900 particle structure goal of Abraham, Lorentz,

Einstein, Mie, etc. is attainable.

     Using the finite lepton solution, an energy compaction relationship is

derived, in the form 2
0 iE r e 32= π  (Heaviside-Lorentz units throughout),

for leptons with charge e± ; where 0E  (ergs) and ir  (cm) are the rest

energy and effective lepton radius respectively, and e is in hlcoulombs.

     Next, the measured energies of the leptons with charge e±  are used

with the energy compaction relationship to determine the leptons'

effective radii.  Being the simplest, whole charge particles, these are

considered as preferred states of the vacuum, and these preferred radii

are later shown to be preserved in the structures of mesons and baryons.

     Finally, the finite Maxwell's equation solution is applied to multiple

layer particles, and a generalized solution is provided.  This formalism is

used to calculate the three component self energies and three interaction

energies of the proton, starting only with the charge/layer configuration.

No proton measurements are used in the calculation, only the three

"preferred" radii found from the e, µ  and τ  leptons.  The final calculated

energy is the same as the measured rest energy of the proton.

     Conclusions are drawn about particle structure in general.
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II.  A FINITE PARTICLE SOLUTION OF MAXWELL'S EQUATIONS

     A solution of the scalar equation (Heaviside-Lorentz units),

                                                 2∇ φ = −ρ     ,                                         (1)

must be found that eliminates the infinities of the "point" charge.  A

simple, spherical trial solution is,

                                               φ = φ − ψ2
0(1 )     ;                                  (2)

where ψ  is the shape factor, ir /re−ψ = .  Figure 1 indicates that this

potential has only two significant features, the center value 0φ  (positive

or negative) and the radius ir  of the inflection point.

Figure 1

     The corresponding charge density distribution required to complete

the solution is found by substituting the trial solution Eq.(2) in Eq.(1) to

yield,

                                            i
2

2r /r0 i
4
r4

r
e−φ

ρ =     ,                                   (3)

a smooth shell of charge distortion that peaks at half ir .  This

distribution is a reasonable one.  Integrated over all space, the total

charge is 0 iq 8 r= πφ .

     Similarly, the electric energy density distribution is found from,

                                     i
2 2

4r /r2 0 i1
e 2 4

r( ) 2
r

e−φ
ε = ∇φ =     ,                            (4)
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a smooth shell of energy distortion that peaks at the inflection radius ir .

If eε  is integrated over all space, the resulting finite energy is 2
0 0 iE 2 r= πφ .

     Just to get some idea of the magnitudes involved, if the potential in

Eq.(2) is assumed to represent an electron, then using
7

0E 8.18711 10 ergs−= ×  (0.511 MeV) and 9 q e 1.7027 10 hlcoul−= − = − ×

( 191.6022 10 C−− × ), the center potential and inflection point radius are

3
0 1.9233 10 hlvolts φ = − × (approx. 6  2 10 V− × ) and 14

i r 3.522 10 cm−= × .

     It is important to notice that the expansion of the gradient of Eq.(2),

                                  
2

0 i i i
2 2
rd r r 2 1 2 2 ...

dr rr r
 φφ

= − − + − 
 

           i r r>

reduces, for the electron, to 2d dr e 4 rφ ≅ π  ( for ir 200r  > ), the Coulomb

field of the "point" charge.  This explains why the well known collision

experiments1 that appear to support the "point" charge electron model

are also in complete agreement with the present, finite solution.  At low

collision energies, the principal interaction is out in the Coulomb region.

As the collision energy is increased, the Lorentz contraction of the

gradient causes the inner, non-Coulomb volume to shrink, and the

interaction never catches up with that inner region.

III.  THE ENERGY COMPACTION RELATIONSHIP

     Combining the rest energy 0E  and charge q found from Eqs.(4) and

(3), for whole charge leptons,

                             
2

20
0 i

eE r 2.8838 10 erg cm
32

−= = × −
π

    ,                     (5)

a relationship called the energy compaction equation.  It indicates that

_______________________________________________________________________
 1.  D.P. Barker, et. al., Phys. Rev. Lett., 43, 1915 (1979); Phys. Rev. Lett., 45, 1904

      (1980).
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the more energetic leptons are smaller.  The true importance of Eq.(5)

appears when analyzing composite particles such as the proton.

     Larger particles (mesons and baryons) are formed by combining

components of the type shown in Figure 1, which can have individual

radii that differ from one another.  The analysis depends upon identifying

an effective radius er , of the combined components.  It appears that the

energy compaction relationship of Eq.(5) is more general than might be

thought, and it applies to all whole charge particles, in the form,

                                                
2

0 e
qE r

32
=

π
    ,                                      (6)

where er  is the whole composite particle's effective radius.

IV.  LEPTONS

A. Lepton size and stability

     Here, again, the leptons of interest will be limited to the series of

whole charged particles, i.e. e, µ ,  τ , …, that can exist alone and be

observed for some finite time.  Using the energy compaction relationship

derived earlier, and the known values of 0E  for each of the leptons, the

values for 0φ  and i r  are listed in TABLE I along with each particle's

observed mean life.

TABLE  I

LEPTONS, THE "PREFERRED" VACUUM STATES

       0E  (ergs)             ir  (cm)                  0  (hlvolts)φ       mean life (s)
___________________________________________________________________

e    78.1871 10−×    14
1r 3.5224 10−= ×    31.9233 10×         Stable

µ   4 1.6929 10−×    16
2r 1.7035 10−= ×    53.9768 10×     62.1970 10−×

 τ    32.8472 10−×   17
3r 1.0129 10−= ×    66.6886 10×     132.9100 10−×
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     The interesting features of TABLE I are that, first, although each of

these leptons has the same charge e± , the more energetic particles have

higher potentials; and, their energy being packed into a smaller volume

correlates with their being less stable.  Second, it appears that the lepton

sequence is a set of preferred states that can exist because of some

fundamental property of the vacuum.  Later on, in analyzing the more

massive, composite particles, it is apparent that there are at least two

more preferred states, 4 and 5; but their great compactness and

instability may make their existence possible only inside the composite

particles and not observable as leptons of higher order.

B.  Quarks

     From the 1960's on, it has been understood that the more elaborate

particles are constructed of objects, now called quarks, that sometimes

behave in a manner similar to leptons but have fractional charges e/3±

and 2e/3± .  They are thought to be "point" charges like the conventional

electron model.  Little is known about the spatial arrangement of these

objects inside a composite particle.

     In interactions between quarks and external projectile particles, the

quarks behave as if they were independent entities, but no individual

quark has ever been observed outside its housing particle.  This suggests

that the composite particles might be made up of very flexible constructs

similar to the finite leptons described earlier, but having fractional

charges, two components for the mesons and three for the baryons.  In

that case, although the components might freely move for short

distances, if one of the components were forced out of a composite

particle, because of its fractional charge it would not qualify as one of the

preferred lepton solutions of Eq.(1) listed in TABLE I, and so would

decay; as would the remaining debris from the original particle.  If this is

a correct description of composite particles, then all of the properties of
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the Standard Model are preserved and yet a greater flexibility results.

V.  PARTICLE CLASSIFICATION

     The classification scheme described here includes all whole charge

particles, but not photons and neutrinos.  Using the Standard Model as a

guide, the two "point" quarks that make up mesons and the three "point"

quarks that make up baryons are replaced with the finite solutions of

Figure 1.  To avoid confusing the properties of the "point" quarks with

these constructs, the term quark will not be used to describe the particle

components.

     Whereas the quarks have specific charges assigned, the present

scheme first indicates only the number of components a particle has.

For example, the leptons listed in TABLE I are single potential structures

called unons and symbolized by iU , where the subscript identifies the

size and shape of the component (see TABLE I).

     The mesons or bions have two components and are symbolized by ijB

( i j≤ ); and the baryons or trions have three components symbolized by

ijkT   ( i j k< < ).  In all these cases, the Figure 1 constructs take on only the

preferred radii listed in TABLE I, so the subscripts indicate the size and

shape of the components.  For example, the proton will be shown to have

the structure 123T ; i.e. a component 1φ  with energy radius 1r , a larger

component 2φ  with smaller energy radius 2r  and a very large component

3φ  with a still smaller energy radius 3r .  On the other hand, there could

be another trion 245T  with components 2φ , 4φ  and 5φ  and energy radii

2r , 4r  and 5r .  Only those "preferred" radii given in TABLE I and the

possible 4r  and 5r , still to be determined accurately, ever appear in the

components of multiple particles.  For now, only educated guesses of the

energies and radii of possible components 4 and 5 are available.
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     The increased flexibility of this system comes from the fact that the

fractional charges of each component have yet to be specified.  Now it

appears that all independent, observable particles have total charges that

are integral multiples of e.  Because of this empirically determined fact, it

is convenient to set up the next step in the classification system on the

basis of the smoothed out charge shell of Eq.(3) rather than the potential

of Eq.(2) or the energy shell of Eq.(4) , since the total integrated charge of

any shell is constant, even when the particle is in motion.  For example,

the proton will be identified as the trion 122
 123 T
− + +

, where the superscripts

indicate that the fractional charges of the components are  e/3− ,

2e/3+ , 2e/3+ .  The neutron has been tentatively identified as 121
 123 T
− + −

.

     Bions are classified into three groups:

ij

ii

1.  Concentric shell bions       
  B

2.  Eccentric shell, inside orbiters
3.  Outside orbiters                          B





Group 1 bions have two shells, one inside the other, with a common

center.  Group 2 bions have two shells, one inside the other, with centers

displaced and both orbiting a common center.  Group 3 bions, like

positronium, have two separate, equal, opposite charge shells, orbiting a

common center.  Observed concentric bions are tentatively identified as

s ,D ,D  and B± ± ± ±π .  Inside orbiter bions are probably 0 0 0 0
sK ,D ,B  and B ,

and outside orbiter bions are most likely 0
c, , ,  and ′π η η η ϒ .  The latter

decay like positronium and, similarly, produce two photons.

     All bions are unstable.  Thus, their correct analysis must address the

transient case, which has many mathematical difficulties.  Therefore, the

measured bion energies are always slightly smaller than the values

calculated from the "concentric, static" approximation.

     The trions come in combinations of concentric shells, or eccentric

inside orbiters.  Although work is in progress, the only exactly calculable
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concentric trion at this time is the stable proton.  The great majority of

trions appear to be inside orbiters, none of which has been finally

identified yet due to mathematical intractability.  The success of the

proton analysis demands that the much more difficult problem of the

orbiter trions be pursued, particularly that of the neutron.

VI.  PARTICLE  ANALYSIS

A.  Multiple layer particles

     The proton will be analyzed here, but it is straightforward to

generalize the process for any concentric particle.  The principal idea is

that the only physical presence is the sum of the potentials i φ  of its

layers,

                                         1 2 3 .....φ = φ + φ + φ +     ,                                 (7)

where,

                                          i
i 0i i

e

q I (r)
4 r

φ = φ −
π

    ,                                   (8)

and,

                                            
2r
i

i e 2
0

I (r) r dr
r
ψ

= ∫     .                                     (9)

     If the layer energies added in a similar fashion, the task would just

involve the sum of those energies.  However, when two or more layers are

combined, there  is   "interaction"   energy  between  each  pair,  and  the

 energy density for the proton is,

 2 2 2 21 1 1 1
e 1 2 32 2 2 2( ) ( ) ( ) ( )ε = ∇φ = ∇φ + ∇φ + ∇φ  1 2 1 3 2 3+∇φ ∇φ + ∇φ ∇φ + ∇φ ∇φi i i    (10)

Integrating Eq.(10) over all space gives the total particle energy as,

                               0 1 2 3 12 13 23E E E E E E E= + + + + +     ,                    (11)
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where the iE  are the layer self energies and the ijE  are the interaction

energies.  The next step is to determine how the interaction energies

affect the particle's effective radius er .  Clearly, the simple unon shape

factors ir /r
i e−ψ =  cannot determine the radius of a composite particle.

What is needed is a general solution of Eq.(1) that has the same form as

Eq.(2) but  more flexible shape factors.

     It can be shown that the same trial potential of Eq.(2) with a modified

shape factor,

                                            
e

i 2 e

r r[1 K E ( )]rr
i e

− +
ψ =     ,                                (12)

provides such a layer solution, with 2 eE (r/r )   representing the

exponential integral of the second kind2 and iK  an, as yet, undefined

constant.  For iK 0= , the solution reduces to that of the unons.

However,  in the multi-layer particles,  each layer has a different value  of

iK  that relates the effective radius er  of the whole particle to the

preferred energy radii of the layers, listed in TABLE I, through the

expression,

                                          i er /ri
i

e

rK 1
r

e 
= − 
 

    .                                 (13)

     If a layer is very far out from the main energy of the particle, the iK  of

that layer is a very large number.  If a layer is close to er  , iK  approaches

zero.  For a layer smaller than er  , i1 K 0− < < .

     That Eq.(12) is a useful shape factor is supported by the fact that,

when the layer charge densities,

                                      ( )e
2

r/ri e i
i i 4

q r 1 K
2 r

e− ψ
ρ = +

π
    ,                           (14)

are integrated over all space, their charges are found to be independent

________________________________________________________________________
2. Handbook of Mathematical Functions, (National Bureau of Standards, AMS 55, p228).
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of iK .  This is what makes the choice of layer charge for the classification

scheme the most useful.

B.  Energy calculations

     From Eqs.(8) and (10), the various energies can be written,

                             
2
i

i i
e

qE J ( )
8 r

= ∞
π

    ,   
4r
i

i e 2
0

 J (r) r  dr
r
ψ

= ∫     ,                 (15)

and,

                            i j
ij ij

e

q q
E J ( )

4 r
= ∞

π
     ,    

2 2r i j
ij e 2

0
J (r) r  dr

r
ψ ψ

= ∫     .            (16)

The integrals iI ( )∞ , in Eq.(9), and i J ( )∞  have been evaluated numerically

and tabulated, as functions of er , for rough calculations and also

computerized, for more accurate calculations.  For very large iK , Eq.(13)

goes out of range, so the integrals are found from,

                                           e
i i

i

rI ( ) J ( )     .
r

∞ ≅ ∞ →             i

e

r
100

r
>

     The interaction energies can be found by defining 1
ij i j2K (K K )= + .

Then, from Eq.(13), an effective  K is,

                                             

ij er /rij
ij

e

r
K 1

r
 

= − ε 
      ,

which can be used with the iJ (r) integral table or computer calculation

values to find ijJ ( )∞ .

     It should be noted that Eqs.(6) and (11) are two independent equations

in the two unknowns 0E  and er , and both equations must be satisfied.

Thus, once the charge/layer structure is specified, say 122
 123 T
− + +

 in the case

of the proton, by choosing a succession of values for er , and comparing

the results from Eqs.(6) and (11), the values of 0E and er can be found

without knowing them in advance.  However some care must be used in
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these calculations.  For example, in comparing the theory with the

experimental data, it is assumed that the measured data give the true 0E

of the proton, i.e. 3
0 E 1.5033 10−= ×  (938.27 MeV ).  Now, since Eq.(6)

involves no approximations in calculating er , it is assumed that

17
e r 1.9183 10−= ×  is the true effective proton radius.  On the other

hand, the calculations of the layer and interacting energies using Eq.(11)

involves certain approximations in evaluating the energy integrals.  Also,

the simple quiescent model may be influenced by other conditions, such

as the zero point fluctuations, and this should be kept in mind.

     In the case of 122
 123 T
− + +

, the calculations using Eqs.(15) and (16) indicate

that, for 17
er 1.9183 10 cm−= × ,

7
1 E 3.6387 10−= ×     ,    4

2E 2.5390 10−= ×     ,    4
3 E 7.0631 10−= ×

6
12E 1.4555 10−= − ×     ,    6

13E 1.4555 10−= − ×     ,    4
23E 5.3612 10−= ×

When these energies are added together as in Eq.(11),
3

0E 1.4938 10 ergs−= ×  (932.36 MeV ), which is just 0.63% lower than the

measured rest energy of the proton.  No measurements of the proton were

injected into the calculations.

If the 0E  vs. er  curve, in the region where 17
er 1..9183 10−≥ × , is

computed using Eq.(11), the results are those listed in TABLE II.  It

crosses the 0E  curve found from Eq.(6) at 17
er 1.9450 10 cm−= × ,

3
0E 1.4785 10 ergs−= ×  (922.81 MeV ); but, by raising this curve at every

point by 0.63%, the crossover point moves to the measured values.  The

TABLE II

e 1 2 3 12 13 23 0
17 7 4 4

       r                     E                     E                    E                 E  & E               E                 E

1.9183 10    3.6387 10    2.5390 10    7.0631 10    -1.4555 1− − − −× × × × × 6 4 3

17 7 4 4 6 4 3

17 7 4 4 6

0    5.3612 10    1.4938 10

1.9300 10    3.6387 10    2.5342 10    7.0235 10    -1.4555 10    5.3553 10    1.4888 10

1.9400 10    3.6387 10    2.5317 10    6.9873 10    -1.4555 10    

− − −

− − − − − − −

− − − − −

× ×

× × × × × × ×

× × × × × 4 3

17 7 4 4 6 4 3

5.3488 10    1.4842 10

1.9500 10    3.6234 10    2.5240 10    6.9541 10    -1.4578 10    5.3319 10    1.4785 10

− −

− − − − − − −

× ×

× × × × × × ×
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source of the 0.63% error is not yet known, but it is under investigation.

VIII.  CONCLUSIONS

     The theory has been extended far beyond this presentation, but it is

too elaborate to easily organize for presentation.  For example, the

magnetic moments of the proton layers have been calculated and added

in the proper orientation.  They give an overall moment 5.6% lower than

the observed value.  However, a slight tilt of one of the layers raises the

value to the one observed.  With greater elaboration, many of the

quantum mechanical properties of particles are understandable, but

these must wait until the available material can be condensed.

     The success of the stable proton analysis and the static

approximation results for the concentric mesons lends credence to the

system presented here.  The inherent difficulty of the transient, inside

orbiter analysis of the unstable baryons indicates that much remains to

be done.  Nevertheless, the results presented here point the way ahead.
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UNITS

To obtain the quantity in HLU, multiply the MKS quantity by the
factor given.  To go from HLU to MKS, divide.

4

5

                                      HLU                     MKS

Electric Potential                            9.40967 10 Volts

Magnetic Vector                             2.82095 10
Potential

Energy

−φ ×

×A

7                                                            10 Joules
Energy Density                                                10 Joules

Charge                              q             1.06274

ε

×

E

10

4 3

10

10 Coulombs

Charge Density                              1.06274 10 Coulombs/m

Current                             i              1.06274 10 Amperes

Resistance                                      8.

ρ ×

×

R -14

13

14

85419 10 Ohms

Capacitance                                    1.12941 10 Farads

Inductance                                     8.85419 10 Henrys

Electric Intensity                            9.40

−

×

×

×

E

 

L 
6

3

6

3

967 10 Volts/m

Magnetic Induction                        2.82095 10 Teslas

Electric Displacement                    1.06274 10
Amp TurnsMagnetic intensity                         3.54491 10

m

−

−

×

×

×

×

B
D

H
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UNITS

Starred quantities are Gaussian.  Listed quantities are substituted
directly.  Quantities along rows are equal.

8

mks m s
0 0

                                  HLU         MKS               EMU               ESU      

10 1 1Electric Potential                               *
c 4 c 4 4

Magnetic Vector                   

φ φ φ φ
π π π

A
6

mks s

0
mks 0 m s

0
mks 0 m

10 1                              *
4 4

Potential

c 4
Charge                          q        q      c 4  q       4  q *

10
c 4

Current                         i         i       c 4  i       
10

π π

π
π π

π
π

A A

s

6

mks m s
0 0

3
mks m s

0

 4  i *

10 1 1Electric Intensity                           *
c 4 c 4 4

1 1Magnetic Intensity               4 10      *   
4 c 4

                                                  (A.T./m)

E

−

π

π π π

π
π π

E E E E

H H H H

5 0
0 mks m s

4
0

mks m s

c 1lectric Displacement         4 10 c             *
4 4

c10 1Magnetic Induction                        *       
4 4 4

                                                   (Teslas)

Magne

−π
π π

π π π

D D D D

B B B B

3
mks m s

0
2

20
mks 0 m s9

9

mk2
0

            

4tic Moment                 10 4        4           *
c

4 c
Conductivity                                  4 c           4 *

10
10Resistance                    

4 c

π
µ π µ π µ µ

π
σ σ π σ πσ

π
R R s m s2

0
2

20
mks 0 m s9

9

mks m s2 2
0 0

            

            

1 1               *
44 c

4 c
Capacitance                          4 c           4 *

10
10 1 1Inductance                                   *

44 c 4 c

ππ

π
π π

ππ π

R R

C C C C

L L L L
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TRUNCATIION INTEGRALS

x
1/y

0

x
a /y

0

2 2x
a /y a /x

0

3 2 3x
2 a /y a /x

0

1.     dy      = T(x)       The truncation integral.

x2.     dy       = a T
a

x a x3.     y dy    = T
2 2 a

x ax a x4.     y dy    = T
3 2 3 2 3 a

−

−

− −

− −

ε∫

 ε∫  
 

 ε ε −∫  
 

  ε − ε +∫   
 i i

4 3 2 2 4x
3 a /y a /x

0

n+1 n 2 n 1x
n a /y

0

x ax a x a x5.     y dy    = T
4 3 4 2 3 4 2 3 4 a

x ax a x6.     y dy    = .......
n 1 n(n 1) (n 1)n(n 1)

                 

                                      

− −

−
−





   ε − + ε −∫    
  


ε − + −∫  + + − +

i i i i i

n-1 2 n 1
a /x

a /y a /xx

2
0

a /y a /xx

3 2
0

a /y a /x 2x

4 3 2
0

a /yx

n
0

a x a x ............ T
(n 1)! (n 1)! a

7.       dy   
ay

a8.       dy   = 1
xy a

2 a a9.       dy   = 1+
xy a 2x

10.      dy   
y

+
−

− −

− −

− −

−

  ± ε  + +  
ε ε

=∫

ε ε  +∫  
 

 ε ε
+∫  

 

ε
∫

∓

a /x 2 3 n-2

n 1 2 3 n 2

1/x 1/x

2

(n-2)! a a a a= 1 +......+
xa 2!x 3!x (n 2)!x

11.    Q(x) T(x)     ,     T(x) Q(x)

dQ(x) 112.     1 Q(x)
dx x

−

− −

−

 ε
+ + + − 

= ε = ε

= −
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12

7

     x                      T(x)                         x                  T(x)

   0.05             4.7024 10               7.00             4.5615

   0.10             3.8302 10                7.50 

−

−

×

×
5

4

4

            4.9971

   0.15             2.2539 10                8.00             5.4365

   0.20             1.9929 10                8.50             5.8794

   0.25              7.9955 10             

−

−

−

×

×

×
3

3

3

  9.00             6.3254

   0.30              2.1277 10               9.50             6.7742

   0.35              4.4403 10               10.0             7.2254

   0.40              7.9190 10      

−

−

−

×

×

×
2

2

         11.0             8.1345

   0.45              1.2674 10               12.0             9.0512

   0.50              1..8767 10               13.0            9.9743

   0.55              2.6207 10

−

−

×

×

× 2

2

               14.0          10.9029

   0.60              3.4990 10                15.0          11.8362
   0.65                  0.04508                  16.0          12.7737
   0.70                

−

−×

  0.05645                  17.0          13.7149
   0.75                  0.06903                  18.0          14.6593
   0.80                  0.08279                  19.0          15.6067
   0.85                  0.09766                  20.0          16.5567
   0.90                  0.11361                  25.0          21.3385
   0.95                  0.13057                  30.0          26.1594
   1.00                  0.14850                  35.0          31.0076
   1.20                  0.2288                    40.0          35.8759
   1.40                  0.3214                    45.0          40.7595
   1.60                  0.4241                    50.0          45.6552
   1.80                  0.5351                    55.0          50.5608
   2.00                  0.6532                    60.0          55.4746
   2.50                  0.9734                    65.0          60.3952
   3.00                  1.3207                    70.0          65.3216
   3.50                  1.6881                    75.0          70.2531
   4.00                  2.0709                    80.0          75.1890
   4.50                  2.4660                    85.0          80.1287
   5.00                  2.8710                    90.0          85.0719
   5.50                  3.2842                    95.0          90.0181
   6.00                  3.7044                  100.0        

e

  94.9671
   6.50                  4.1304          x   ,  T(x) x log x→ ∞ → −


