
diagram in Fig. 8 assumes that for correct Q the output of
the Q model is K times as large as its input so that for
correct Q the inputs of the comparator are equal. The DC
error signal VQ resulting from the comparison is fed back
to the Q model circuit to adjust the bias voltages appro-
priately, as well as to the filter. In these two interacting
control loops, the frequency loop will converge indepen-
dently of the Q control loop, but to converge on the correct
value of Q, the frequency must be accurate. Hence, the two
loops must operate together. The correct operation and
convergence of the frequency and Q control scheme in Fig.
8 has been verified by experiments (see Schaumann et al.
[3], Chapter 7, pp. 410–486) but because of the increased
noise, power consumption, and chip area needed for the
control circuitry, the method has not found its way into
commercial applications.
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1. INTRODUCTION

The circular waveguide is occasionally used as an alter-
native to the rectangular waveguide. Like other wave-

guides constructed from a single, enclosed conductor, the
circular waveguide supports transverse electric (TE) and
transverse magnetic (TM) modes. These modes have a
cutoff frequency, below which electromagnetic energy is
severely attenuated. Circular waveguide’s round cross sec-
tion makes it easy to machine, and it is often used to feed
conical horns. Further, the TE0n modes of circular wave-
guide have very low attenuation. A disadvantage of
circular waveguide is its limited dominant mode band-
width, which, compared to rectangular waveguide’s max-
imum bandwidth of 2–1, is only 1.3. In addition, the
polarization of the dominant mode is arbitrary, so that
discontinuities can easily excite unwanted cross-polarized
components.

In this article, the electromagnetic features of the cir-
cular waveguide are summarized, including the trans-
verse and longitudinal fields, the cutoff frequencies, the
propagation and attenuation constants, and the wave im-
pedances of all transverse electric and transverse mag-
netic modes.

2. TRANSVERSE ELECTRIC (TEZ) MODES

The transverse electric to z (TEz) modes can be derived by
letting the vector potential A and F be equal to

A¼ 0 ð1aÞ

F¼ âazFzð r;f; zÞ ð1bÞ

The vector potential F must satisfy the vector wave equa-
tion, which reduces the F of (1b) to

r2Fzð r;f; zÞþ b2Fzðr;f; zÞ¼0 ð2Þ

When expanded in cylindrical coordinates, (2) reduces to

@2Fz

@r2
þ

1

r
@Fz

@r
þ

1

r2

@2Fz

@f2
þ
@2Fz

@z2
þ b2Fz¼ 0 ð3Þ

whose solution for the geometry of Fig. 1 is of the form

Fzð r;f; zÞ¼ ½A1Jmð brrÞþB1Ymð brrÞ�

� ½C2 cosðmfÞþD2 sinðmfÞ�

� ½A3e�jbzzþB3eþ jbzz�

ð4aÞ

where

b2
rþ b2

z ¼ b2
ð4bÞ

The constants A1, B1, C2, D2, A3, B3, m, br, and bz can be
found using the boundary conditions of

Efð r¼a;f; zÞ¼0 ð5aÞ

The fields must be finite everywhere ð5bÞ

The fields must repeat every 2p radians in f ð5cÞ

1This article is derived from material in Advanced Engineering

Electromagnetics, by Constantine Balanis, Wiley, New York, 1989,
Sect. 9.2.
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According to (5b), B1¼ 0 since Ym(r¼ 0)¼N. In addition,
according to (5c)

m¼ 0; 1; 2; 3; . . . ð6Þ

Consider waves that propagate only in the þ z direction.
Then (4) reduces to

Fþz ðr;f; zÞ¼AmnJmð brrÞ½C2 cosðmfÞ

þD2 sinðmfÞ�e�jbzz
ð7Þ

From Eq. (7), the electric field component of Eþf can be
written as

Eþf ¼
1

e
@Fþz
@r

¼ br
Amn

e
J0mðbrrÞ½C2 cosðmfÞ

þD2 sinðmfÞ�e�jbzz

ð8aÞ

where

0

¼
@

@ð brrÞ
ð8bÞ

Applying the boundary condition of (5a) in (8a), we then
have that

Eþf ð r¼a;f; zÞ¼ br
Amn

e
J0mð braÞ½C2 cosðmfÞ

þD2 sinðmfÞ�e�jbzz¼ 0

ð9Þ

which is satisfied only provided that

J0mðbraÞ¼ 0) bra¼ w0mn ) br¼
w0mn

a
ð10Þ

In (10) w0mn represents the nth zero (n¼1, 2, 3,y) of the
derivative of the Bessel function Jm of the first kind of or-
der m(m¼ 0, 1, 2, 3,y). An abbreviated list of the zeros
w0mn of the derivative J0m of the Bessel function Jm is found
in Table 1. The smallest value of w0mn is 1.8412 (m¼ 1,
n¼ 1).

Using (4b) and (10), bz of the mn mode can be written as

ðbzÞmn¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
� b2

r

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
�

w0mn

a

� 	2
r

when b > br¼
w0mn

a

8>>><
>>>:

ð11aÞ

ðbzÞmn¼ 0 when b¼ bc¼ br¼
w0mn

a

�
ð11bÞ

ðbzÞmn¼

�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
r � b2

q
¼ � j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0mn

a

� �2

�b2

s

when bobr¼
w0mn

a

8>>>><
>>>>:

ð11cÞ

Cutoff is defined when (bz)mn¼ 0. Thus, according to (11b)

bc¼oc
ffiffiffiffiffi
me
p
¼2pfc

ffiffiffiffiffi
me
p
¼ br¼

w0mn

a
ð12aÞ

ðfcÞmn¼
w0mn

2pa
ffiffiffiffiffi
me
p ð12bÞ

By using (12a) and (12b), we can write (11a)–(11c) as

ðbzÞmn¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
� b2

r

q
¼b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

br
b

� �2
s

¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

bc

b

� �2
s

¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

w0mn

ba

� �2
s

¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

fc

f

� �2
s

when f > fc¼ ðfcÞmn

8>>>>>>>><
>>>>>>>>:

ð13aÞ

ðbzÞmn¼ 0 when f ¼ fc¼ ðfcÞmn

�
ð13bÞ

Figure 1. Cylindrical waveguide of circular cross section.

Table 1. Zeros w0mn of Derivative J 0mðw0mnÞ= 0 (n¼1,2,3,y) of Bessel Function Jm(x)

m¼0 m¼1 m¼2 M¼3 m¼4 m¼5 m¼6 m¼7 m¼8 m¼9 m¼10 m¼11

n¼1 3.8318 1.8412 3.0542 4.2012 5.3175 6.4155 7.5013 8.5777 9.6474 10.7114 11.7708 12.8264
n¼2 7.0156 5.3315 6.7062 8.0153 9.2824 10.5199 11.7349 12.9324 14.1155 15.2867 16.4479 17.6003
n¼3 10.1735 8.5363 9.9695 11.3459 12.6819 13.9872 15.2682 16.5294 17.7740 19.0046 20.2230 21.4309
n¼4 13.3237 11.7060 13.1704 14.5859 15.9641 17.3129 18.6375 19.9419 21.2291 22.5014 23.7607 25.0085
n¼5 16.4706 14.8636 16.3475 17.7888 19.1960 20.5755 21.9317 23.2681 24.5872 25.8913 27.1820 28.4609
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ðbzÞmn¼

�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
r � b2

q
¼ � jb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
br
b

� �2

�1

s
¼ � jb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bc

b

� �2

�1

s

¼ � jb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0mn

ba

� �2

�1

s
¼ � jb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fc

f

� �2

�1

s

when fofc¼ðfcÞmn ð13cÞ

8>>>>>>>><
>>>>>>>>:

The guide wavelength lg is defined as

ðlgÞmn¼
2p
ðbzÞmn

ð14aÞ

which, according to (13a) and (13b), can be written as

ðlgÞmn¼
2p

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

fc

f

� �2
s ¼

lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

fc

f

� �2
s when f > fc¼ ðfcÞmn

8>>>><
>>>>:

ð14bÞ

ðlgÞmn¼f1 when f ¼ ðfcÞmn ð14cÞ

In (14b) l is the wavelength of the wave in an infinite me-
dium of the kind that exists inside the waveguide. There is
no definition of the wavelength below cutoff since the wave
is exponentially decaying and there is no repetition of its
waveform.

According to (12b) and the values of w0mn in Table 1, the
order (lower to higher cutoff frequencies) in which the
TEz

mn modes occur is TEz
11, TEz

21, TEz
01, and so on. It should

be noted that for a circular waveguide, the order in which
the TEz

mn modes occur does not change, and the bandwidth
between modes is also fixed. For example, the bandwidth
of the first single-mode TEz

11 operation is 3.042/1.8412¼
1.6588 : 1, which is less than 2 : 1. This bandwidth is fixed
and cannot be varied. A change in the radius only varies,
by the same amount, the absolute values of the cutoff fre-
quencies of all the modes but does not alter their order or
relative bandwidth.

The electric and magnetic field components can be
written from Eq. (7) as

Eþr ¼ �
1

er
@Fþz
@f

¼ � Amn
m

er
JmðbrrÞ½�C2 sinðmfÞ

þD2 cosðmfÞ�e�jbzz

ð15aÞ

Eþf ¼
1

e
@Fþz
@r

¼Amn

br
e

J0mðbrrÞ½C2 cosðmfÞ

þD2 sinðmfÞ�e�jbzz

ð15bÞ

Eþz ¼0 ð15cÞ

Hþr ¼ � j
1

ome
@2Fþz
@r@z

¼ � Amn

brbz

ome
J0mðbrrÞ½C2 cosðmfÞ

þD2 sinðmfÞ�e�jbzz

ð15dÞ

Hþf ¼ � j
1

ome
1

r
@2Fþz
@f@z

¼ � Amn
mbz

ome
1

r
JmðbrrÞ

� ½�C2 sinðmfÞþD2 cosðmfÞ�e�jbzz

ð15eÞ

Hþz ¼ � j
1

ome
@2

@z2
þ b2

� �
Fþz ¼ � jAmn

b2
r

ome
JmðbrrÞ

� ½C2 cosðmfÞþD2 sinðmfÞ�e�jbzz

ð15f Þ

where

0

¼
@

@ðbrrÞ
ð15gÞ

By using (15a)–(15f), the wave impedance ðZþ z
w Þ

TE
mn of the

TEz
mn ðH

z
mnÞ modes in the þ z direction can be written as

Zh
mn¼ ðZ

þ z
w Þ

TE
mn¼

Eþr
Hþf
¼ �

Eþf
Hþr
¼

om
ðbzÞmn

ð16aÞ

With the aid of (13a)–(13c) the wave impedance of (16a)
reduces to

Zh
mn¼ ðZ

þ z
w Þ

TE
mn¼

om

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

fc

f

� �2
s ¼

ffiffiffi
m
e

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

fc

f

� �2
s ¼

Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

fc

f

� �2
s

when f > fc¼ ðfcÞmn

8>>>>>><
>>>>>>:

ð16bÞ

Zh
mn¼ ðZ

þ z
w Þ

TE
mn¼

om
0
¼1 when f ¼ fc¼ ðfcÞmn

n
ð16cÞ

Zh
mn¼ ðZ

þ z
w Þ

TE
mn¼

om

�jb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fc

f

� �2

�1

s ¼ þ j

ffiffiffi
m
e

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fc

f

� �2

�1

s ¼ þ j
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fc

f

� �2

�1

s

when fofc¼ ðfcÞmn

8>>>>>><
>>>>>>:

ð16dÞ

By examining through (16b)–(16d), we can make the
following statements about the impedance.

1. Above cutoff it is real and greater than the intrinsic
impedance of the medium inside the waveguide.

2. At cutoff it is infinity.
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3. Below cutoff it is imaginary and inductive. This in-
dicates that the waveguide below cutoff behaves as
an inductor that is an energy storage element.

3. TRANSVERSE MAGNETIC (TMZ) MODES

The transverse magnetic to z (TMz) modes can be derived
in a similar manner as the TEz modes of Section 2 by
letting

A¼ âazAzðr;f; zÞ ð17aÞ

F¼ 0 ð17bÞ

The vector potential A must satisfy the vector wave equa-
tion, which reduces for the A of (17a) to

r2Azðr;f; zÞþ b2Azðr;f; zÞ¼ 0 ð18Þ

The solution of (18) is obtained in a manner similar to that
of (2), as given by (4), and it can be written as

Azðr;f; zÞ¼ ½A1JmðbrrÞþB1YmðbrrÞ�

� ½C2 cosðmfÞþD2 sinðmfÞ�

� ½A3e�jbzzþB3eþ jbzz�

ð19aÞ

with

b2
rþ b2

z ¼ b2
ð19bÞ

The constants A1, B1, C2, D2, A3, B3, m, br , and bz can be
found using the boundary conditions of

Efðr¼a;f; zÞ¼ 0 ð20aÞ

or

Ez¼ ðr¼a;f; zÞ¼ 0 ð20bÞ

The fields must be finite everywhere ð20cÞ

The fields must repeat every 2p radians in f ð20dÞ

According to (20c), B1¼ 0 since Ym(r¼0)¼N. In addi-
tion, according to (20d),

m¼ 0; 1; 2; 3; . . . ð21Þ

Considering waves that propagate only in the þ z direc-
tion, (19a) then reduces to

Aþz ðr;f; zÞ¼BmnJmðbrrÞ½C2 cosðmfÞ

þD2 sinðmfÞ�e�jbzz
ð22Þ

The eigenvalues of br can be obtained by applying either
(20a) or (20b).

From Eq. (22), we can write the electric field component
Eþz as

Eþz ¼ � j
1

ome
@2

@z2
þ b2

� �
Aþz

¼ � jBmn

b2
r

ome
JmðbrrÞ½C2 cosðmfÞ

þD2 sinðmfÞ�e�jbzz

ð23Þ

Application of the boundary condition of (20b) using (23)
gives

Eþz ðr¼a;f; zÞ¼ � jBmn

b2
r

ome
JmðbraÞ

� ½C2 cosðmfÞþD2 sinðmfÞ�e�jbzz¼ 0

ð24Þ

which is satisfied only provided that

JmðbraÞ¼ 0) bra¼ wmn ) br¼
wmn

a
ð25Þ

In (25) wmn represents the nth zero (n¼ 1, 2, 3,y) of the
Bessel function Jm of the first kind of order m (m¼0, 1, 2,
3,y). An abbreviated list of the zeros wmn of the Bessel
function Jm is found in Table 2. The smallest value of wmn

is 2.4049 (m¼ 0, n¼ 1).
By using (19b) and (25), bz can be written as

ðbzÞmn¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
� b2

r

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
�

wmn

a


 �2
q

when b > br¼
wmn

a

8><
>: ð26aÞ

Table 2. Zeros vmn of Jm(vmn)¼0 (n¼1, 2, 3,y) of Bessel function Jm(x)

m¼0 m¼1 m¼2 M¼3 m¼4 m¼5 m¼6 m¼7 m¼8 m¼9 m¼10 m¼11

n¼1 2.4049 3.8318 5.1357 6.3802 7.5884 8.7715 9.9361 11.0864 12.2251 13.3543 14.4755 12.8264
n¼2 5.5201 7.1056 8.4173 9.7610 11.0647 12.3386 13.5893 14.8213 16.0378 17.2412 18.4335 19.6160
n¼3 8.6537 10.1735 11.6199 13.0152 14.3726 15.7002 17.0038 18.2876 19.5545 20.8071 22.0470 23.2759
n¼4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801 20.3208 21.6415 22.9452 24.2339 25.5095 26.7733
n¼5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178 23.5861 24.9349 26.2668 27.5838 28.8874 80.1791
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ðbzÞmn¼ 0 when b¼ bc¼br¼
wmn

a

n
ð26bÞ

ðbzÞmn¼

�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
r � b2

q
¼ � j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wmn

a

� 	2
�b2

r

when bobr¼
wmn

a

8>><
>>:

ð26cÞ

By following the same procedure as for the TEz modes,
we can write the expressions for the cutoff frequencies
(fc)mn, propagation constant (bz)mn, and guide wavelength
(lg)mn as

ðfcÞmn¼
wmn

2pa
ffiffiffiffiffi
me
p ð27Þ

ðbzÞmn¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
� b2

r

q
¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

br
b

� �2
s

¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

bc

b

� �2
s

¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

wmn

ba

� �2
s

¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

fc

f

� �2
s

when f > fc¼ ðfcÞmn

8>>>>>>>>>>><
>>>>>>>>>>>:

ð28aÞ

ðbzÞmn¼ 0 when f ¼ fc¼ ðfcÞmn

�
ð28bÞ

ðbzÞmn¼

�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
r � b2

q
¼ � jb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
br
b

� �2

�1

s
¼ � jb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bc

b

� �2

�1

s

¼ � jb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wmn

ba

� �2

�1

s
¼ � jb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fc

f

� �2

�1

s

when fofc¼ðfcÞmn

8>>>>>>>>>>><
>>>>>>>>>>>:

ð28cÞ

ðlgÞmn¼
2p

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

fc

f

� �2
s ¼

lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

fc

f

� �2
s when f > fc¼ ðfcÞmn

8>>>><
>>>>:

ð29aÞ

ðlgÞmn¼f1 when f ¼ fc¼ ðfcÞmn ð29bÞ

According to (27) and the values of wmn of Table 2, the
order (lower to higher cutoff frequencies) in which the TMz

modes occur is TM01, TM11, TM21, and so forth. The band-
width of the first single-mode TMz

01 operation is 3.8318/
2.4059¼ 1.5927:1. Comparing the cutoff frequencies of the
TEz and TMz modes, as given by (12b) and (27) along with
the data of Tables 1 and 2, the order of the TEz

mn and TMz
mn

modes is that of TE11 (w011¼ 1:8412), TM01, (w01¼2.4049),
TE21 (w021¼ 3:0542), TE01 ðw001¼ 3:8318Þ¼TM11

ðw011¼ 3:8318Þ, TE31 (w031¼4:2012), and so forth. The dom-
inant mode is TE11 and its bandwidth of single-mode op-
eration is 2.4049/1.8412¼ 1.3062:1. Plots of the field
configurations over a cross section of the waveguide,

both E and H, for the first 30 TEz
mn and/or TMz

mn modes
are shown in Fig. 2 [1].

It is apparent that the cutoff frequencies of the TE0n

and TM1n modes are identical; therefore they are referred
to here also as degenerate modes.

The electric and magnetic field components can be
written using (22) as

Eþr ¼ � j
1

ome
@2Aþz
@r@z

¼ � Bmn

brbz

ome
J0mð brrÞ

� ½C2 cosðmfÞþD2 sinðmfÞ�e�jbzz

ð30aÞ

Eþf ¼ � j
1

ome
1

r
@2Aþz
@f@z

¼ � Bmn
mbz

omer
Jmð brrÞ

� ½�C2 sinðmfÞþD2 cosðmfÞ�e�jbzz

ð30bÞ

Eþz ¼ � j
1

ome
@2

@z2
þ b2

� �
Aþz

¼ � jBmn

b2
r

ome
JmðbrrÞ

� ½C2 cosðmfÞþD2 sinðmfÞ�e�jbzz

ð30cÞ

Hþr ¼
1

m
1

r
@Aþz
@f
¼Bmn

m

m
1

r
Jmð brrÞ

� ½�C2 sinðmfÞþD2 cosðmfÞ�e�jbzz

ð30dÞ

Hþf ¼ �
1

m
@Aþz
@r
¼ � Bmn

br
m

J0mð brrÞ

� ½C2 cosðmfÞþD2 sinðmfÞ�e�jbzz

ð30eÞ

Hþz ¼ 0 ð30f Þ

where

0

¼
@

@ð brrÞ
ð30gÞ

By using (30a)–(30f), the wave impedance in the þ z di-
rection can be written as

ðZþ z
w Þ

TM
mn ¼

Eþr
Hþf
¼ �

Eþf
Hþr
¼
ðbzÞmn

oe
ð31Þ
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With the aid of (28a)–(28c) the wave impedance of (31)
reduces to

ðZþ z
w Þ
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mn ¼

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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fc

f

� �2
s
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8>>>><
>>>>:
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�
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m
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fc

f

� �2

�1

s

when fofc¼ ðfcÞmn

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð32cÞ

Examining (32a)–(32c) we can make the following state-
ments about the wave impedance for the TMz modes.

Figure 2. Field configurations of first 30 TEz and/or
TMz modes in a circular waveguide. (Source: C. S. Lee,
S. W. Lee, and S. L. Chuang, Plot of modal field distri-
bution in rectangular and circular waveguides, IEEE

Trans. Microwave Theory Tech., r 1985, IEEE.)
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1. Above cutoff it is real and smaller than the intrinsic
impedance of the medium inside the waveguide.

2. At cutoff it is zero.

3. Below cutoff it is imaginary and capacitive. This
indicates that the waveguide below cutoff behaves
as a capacitor that is an energy storage element.

Whenever a given mode is desired, it is necessary to
design the proper feed to excite the fields within the wave-
guide and detect the energy associated with such modes.
To maximize the energy exchange or transfer, this is ac-
complished by designing the feed, which is usually a probe

or antenna, so that its field pattern matches that of the
field configuration of the desired mode. Usually the probe
is placed near the maximum of the field pattern of the de-
sired mode; however, that position may be varied some-
what in order to achieve some desired matching in the
excitation and detection systems. Shown in Fig. 3 are sug-
gested designs to excite and/or detect the TE11 and TM01

modes in a circular waveguide, to transition between the
TE10 of a rectangular waveguide and the TE11 mode of a
circular waveguide, and to couple between the TE10 of a
rectangular waveguide and TM01 mode of a circular wave-
guide.

Figure 2. (Continued).
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4. ATTENUATION FROM OHMIC LOSSES

It has been shown that the attenuation coefficients of the
TE0n (n¼ 1,2,y) modes in a circular waveguide monoton-
ically decrease as a function of frequency [2,3]. This is a
very desirable characteristic, and because of this the ex-
citation, propagation, and detection of TE0n modes in a
circular waveguide have received considerable attention.
The attenuation coefficient for the TEz

mn and TMz
mn modes

inside a circular waveguide are given, respectively, by

TEz
mn

ðacÞ
TEz

mn ¼
Rs

aZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

fc

f

� �2
s

�
fc

f

� �2

þ
m2

ðw0mnÞ
2
�m2

" #
Np=m

ð33aÞ

TMz
mn

ðacÞ
TMz

mn ¼
Rs

aZ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
fc

f

� �2
s Np=m ð33bÞ

where

Rs¼

ffiffiffiffiffiffiffi
om
2s

r
ð34Þ

Plots of the attenuation coeficient versus the normalized
frequency f/fc, where fc is the cutoff frequency of the dom-

inant TE11 mode, are shown for six modes in Fig. 4a and b
for waveguide radii of 1.5 and 3 cm, respectively. Within
the waveguide is free space and its walls are made of cop-
per (s¼ 5.7 � 107 S/m).

It is evident from the results of the preceding example
that as fc/f becomes smaller the attenuation coefficient de-
creases monotonically (as shown in Fig. 4), which is a de-
sirable characteristic. It should be noted that similar
monotonically decreasing variations in the attenuation
coefficient are evident in all TE0n modes (n¼ 1,2,3,y).
According to (15a)–(15f), the only tangential magnetic
field component to the conducting surface of the wave-
guide for all these TE0n (m¼ 0) modes is the Hz compo-
nent, while the electric field lines are circular. Therefore
these modes are usually referred to as circular electric
modes. For a constant power in the wave, the Hz compo-
nent decreases as the frequency increases and approaches
zero at infinite frequency. Simultaneously the current
density and conductor losses on the waveguide walls
also decrease and approach zero. Because of this attrac-
tive feature, these modes have received considerable
attention for long-distance propagation of energy, espe-
cially at millimeter-wave frequencies. Typically attenua-
tions as low as 1.25 dB/km (2 dB/mi) have been attained
[2]. This is to be compared with attenuations of 120 dB/km
for WR-90 copper rectangular waveguides, and 3 dB/km
at 0.85 mm, and less than 0.5 dB/km at 1.3mm for fiberoptic
cables.

Although the TE0n modes are very attractive from the
attenuation point of view, there are a number of problems
associated with their excitation and retention. One of the
problems is that the TE01 mode, which is the first of the
TE0n modes, is not the dominant mode. Therefore in order
for this mode to be above its cutoff frequency and propa-
gate in the waveguide, a number of other modes (such as
the TE11, TM01, TE21, and TM11) with lower cutoff fre-
quencies can also exist. Additional modes can also be
present if the operating frequency is chosen well above
the cutoff frequency of the TE01 mode in order to provide
a margin of safety from being too close to its cutoff fre-
quency.

To support the TE01 mode, the waveguide must be
oversized and it can support a number of other modes.
One of the problems faced with such a guide is how to ex-
cite the desired TE01 mode with sufficient purity and sup-
press the others. Another problem is how to prevent
coupling between the TE01 mode and undesired modes.
The presence of the undesired modes causes not only high-
er losses but also dispersion and attenuation distortion to
the signal since each exhibits different phase velocities
and attenuation. Irregularities in the inner geometry, sur-
face, and direction (bends, nonuniform cross sections, etc.)
of the waveguide are the main contributors to the coupling
to the undesired modes. However, for the guide to be of
any practical use, it must be able to sustain and propagate
the desired TE01 and other TE0n modes efficiently over
bends of reasonable curvature. One technique that has
been implemented to achieve this is to use mode conver-
sion before entering the corner and another conversion
when exiting to convert back to the desired TE0n

mode(s).

Figure 3. Excitation of TEmn and TMmn modes in a circular
waveguide: (a) TE11 mode; (b) TM01 mode; (c) TE10 (rectangular)–
TE11 (circular); (d) TE10 (rectangular)–TM01 (circular).
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Another method that has been used to discriminate
against undesired modes and avoid coupling to them is
to introduce filters inside the guide that cause negligible
attenuation to the desired TE0n mode(s). These filters in-
troduce cuts that are perpendicular to the current paths of
the undesired modes and parallel to the current direction

of the desired mode(s). Since the current path of the un-
desired modes is along the axis (z direction) of the guide
and the path of the desired TE0n modes is along the
circumference (f direction), a helical wound wire
placed on the inside surface of the guide can serve as a
filter that discourages any mode that requires an axial

Figure 4. Attenuation for TEz
mn and TMz

mn

modes in a circular waveguide: (a) a¼1.5 cm;
(b) a¼3 cm.
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component of current flow but propagates the desired
TE0n modes [3,4].

Another means to suppress undesired modes is to in-
troduce within the guide very thin baffles of lossy material
that will act as attenuating sheets. The surfaces of the
baffles are placed in the radial direction of the guide so
that they are parallel to the Er and Ez components of the
undesired modes (which will be damped) and normal to
the Ef component of the TE0n modes that will remain un-
affected. Typically two baffles are placed in a crossed pat-
tern over the cross section of the guide.

A summary of the pertinent characteristics of the TEz
mn

and TMz
mn modes of a circular waveguide are found listed

in Table 3.
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COAXIAL LINE DISCONTINUITIES
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Various types of coaxial-line discontinuities have been dis-
cussed in the literature [1–4], including: capacitive gaps,

open-ended configuration, impedance steps, capacitive
windows, T junctions, small elliptical and circular aper-
tures, aperture coupling between two coaxial lines, and
bifurcation of a coaxial line. The configurations and the
equivalent circuits for some of the discontinuities are
shown in Fig. 1. The mode-matching technique with
variational formulation is the commonly used approach
to arrive at the equivalent-circuit parameters of disconti-
nuities. The available results for some of these disconti-
nuities are summarized in the following sections.

1. CAPACITIVE GAPS IN COAXIAL LINES

A gap in the center conductor of a coaxial line, as shown in
Fig. 1a, introduces mainly a series capacitance in the line.
This type of discontinuity finds common use in microwave
filters, DC blocks, and coaxial-line reentrant cavity.
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Figure 1. Discontinuities in coaxial lines
and their equivalent circuits.
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If the gap width is small compared to the wavelength,
the problem can be treated electrostatically and the equiv-
alent circuit of the gap discontinuity may be formulated as
shown in Fig. 1a. For the purpose of analysis, the equiv-
alent circuit may be written as shown in Fig. 2. The series
and shunt capacitances are determined by computing
three capacitances: total capacitances of a length of line
(1) with a short circuit at plane AA, (2) with an open cir-
cuit at the plane AA, and (3) with no discontinuity. The
section of line must be sufficiently long to ensure that an
undisturbed field distribution is obtained at the end lo-
cated away from the discontinuity. This condition is ful-
filled if the linelength is equal to or greater than the
diameter of the outer conductor. Numerical results
for various gap widths and diameter ratios are given in
Table 1 [3].

Gap capacitances for diameter ratios 5–1 and 7–1 are
also given in Refs. 3 and 4. The values of capacitances C1

and C2 of Table 1 can also be utilized to determine capac-
itances for the open-end configuration and for the config-
uration shown in Fig. 3. The open-end capacitance is given
by C2 when s-N. The capacitance with the short-circuit-
ing plane at a distance s from the inner conductor is C, and
is given by (2C1þC2). A closed-form expression for the
capacitance C is written as follows [3,4]:

C¼
pa2e0er

s
þ4ae0er ln

b� a

s

� �
ð1Þ

This equation is valid under the condition l0b(b�a)bs.
The first term in (1) is the parallel-plate capacitance be-
tween the face of the inner conductor and the short-cir-
cuiting plane. The second term is the fringing capacitance.

It may be observed from Table 1 that C2 approaches zero
for vanishingly small gap width and therefore, the series
capacitance C1 is dominant in (1). As gap width increases,
C2 increases linearly but the decrease in C1 is faster.
Expression (1) is accurate to within 5% for small gaps
(s/ao0.1) For a 50-O line the error is less than 1.5%.

Variational analysis of the geometry of Fig. 2 shows
that the capacitances C1 and C2 increase with frequency
[5]. Variation of these capacitances with normalized fre-
quency k0b is shown in Fig. 4 for s/a¼ 0.25 and 0.025 in a
50-O line [5]. It is seen that while the shunt capacitance C2

increases very slowly (almost negligibly) with frequency,
the series capacitance C1 increases much more rapidly
and shows a sharp increase near the cutoff frequency of
cylindrical waveguide TM01 mode. Variational analysis of
a gap in the central conductor of a rectangular coaxial line
has been reported [6]. The behavior of gap capacitances
with gap width and frequency is similar to that in a cy-
lindrical coaxial line. The gap capacitance in the coaxial
line can also be described in terms of the associated
reflection coefficient G. Eom et al. have used the mode-
matching method to determine G for a coaxial line termi-
nated in a gap [7]. A rapidly converging series for G has
been obtained. The effect of dielectric inhomogeneity in
the gap has been included.

2. OPEN-ENDED COAXIAL LINE

The schematic of an open-ended coaxial line with an infi-
nite flange and its equivalent circuit are shown in Fig. 1b.
The equivalent circuit consists of a parallel combination

Zo C2

2C1 A

A

Short or
open circuit

T

Figure 2. Equivalent circuit for the evaluation of capacitive gap
discontinuities.

T A

A

S

T

C

Figure 3. Coaxial line with short circuit (coaxial-line reentrant
cavity) and its equivalent circuit.

Table 1. Capacitances C1 and C2 of Equivalent Circuit of Fig. 1a for Gaps in Coaxial Lines (pF/2pb, b in cm)

Diameter Ratio (b : a)

10 : 9 4 : 3 5 : 3 2 : 1 2.3 : 1 3 : 1

Gap Ratio (s/b) C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

0.05 0.367 0.0354 0.275 0.0143 0.188 0.0082 0.138 0.0061 0.109 0.00509 0.0702 0.0039
0.075 0.238 0.0486 0.183 0.0206 0.127 0.0120 0.0946 0.0089 0.0757 0.00746 0.0498 0.0057
0.100 0.173 0.0598 0.136 0.0265 0.0960 0.0156 0.0719 0.0116 0.0578 0.00972 0.0384 0.0074
0.150 0.106 0.0767 0.0858 0.0366 0.0623 0.0221 0.0474 0.0166 0.0384 0.0139 0.0259 0.0105
0.200 0.0718 0.0890 0.0598 0.0450 0.0443 0.0277 0.0340 0.0210 0.0277 0.0176 0.0188 0.0133
0.250 0.0516 0.0985 0.0436 0.0520 0.0328 0.0327 0.0254 0.0248 0.0217 0.0208 0.0143 0.0157
0.300 0.0383 0.1060 0.0328 0.0579 0.0249 0.0369 0.0194 0.0281 0.0161 0.0235 0.0109 0.0178

Source: Table 6 of H. E. Green, The numerical solution of some important transmission line problems, IEEE Trans. Microwave Theory Tech. MTT-13:676–692

(Sept. 1965) (r 1965 IEEE).
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of a capacitor C and a resistor R at the flange. The capac-
itance C arises from the fringing electric field between the
center conductor and outer conductor of the coaxial line.
The shunt resistance R represents the power loss due to
radiation from the open end. Quasistatic analysis of the
open-ended coaxial line has been described [8]. The aper-
ture admittance at the flange may be written as [8]

YL¼Grþ jB ð2Þ

where Gr¼ 1/R and B¼oC and

B¼
2oe�

½lnðb=aÞ�2
I1 �

k2I2

2

� �
ð3Þ

Gr¼
k3poe�

12

b2 � a2

lnðb=aÞ

� �2

ð4Þ

k2¼o2m0e
�

where e�¼ e0 � je00 represents the terminating medium
at the flange. The coefficients I1 and I2 are defined as

follows:

I1¼

Z b

a

Z b

a

Z p

0

cosf0

ðr2þ r02 � 2rr0 cosf0Þ1=2

�df0dr0dr

ð5aÞ

I2¼

Z b

a

Z b

a

Z p

0
cosf0ðr2þr02 � 2rr0 cosf0Þ1=2

�df0dr0dr

ð5bÞ

Computed values of integrals I1 and I2 for a few commer-
cially available coaxial lines are given in Table 2 [8].

It may be pointed out that the first term in (3) describes
the upper bound for the static capacitance of the opening,
while the second term gives the frequency-dependent part
of the capacitance. Comparison with the data based on fi-
nite-element method (FEM) or method-of-moment (MoM)
analysis shows good agreement [8].

Using the values of I1 and I2 from Table 2, the following
expressions for the capacitance C may be derived from (3):

For a 3.6-mm Teflon-filled coaxial line in free space (f in
MHz):

C ðpFÞ¼ 0:0221þ 0:3453� 10�11f 2 ð6aÞ

For a 6.4-mm Teflon-filled coaxial line in free space (f in
MHz):

CðpFÞ¼ 0:03999þ1:9687� 10�11f 2 ð6bÞ

An open-ended coaxial line exciting a monopole probe (Fig.
5) has been used for permittivity measurements of biolog-
ical materials. The biological tissues consist essentially of
water; free ions such as Naþ , Kþ , Ca2þ , Cl� ; and a num-
ber of proteins. This composition makes the dielectric
properties of the tissues similar to those of saline solu-
tions, which are characterized by a high loss factor at
microwave frequencies. The probe is used as a sensor
for permittivity measurements. The sensor is placed in
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Figure 4. Frequency dependence of gap discontinuities of Fig. 2.
[From Figure 3 of S. Sen and P. K. Saha, Equivalent circuit of a gap
in the central conductor of a coaxial line, IEEE Trans. Microwave
Theory Tech. MTT-30:2026–2029 (Nov. 1982) (r 1982 IEEE).]

Table 2. Value of Integrals I1 and I2 for a Few Coaxial
Lines

Line (mm) b (cm) a (cm) I1 (�10�3) I2 (�10� 9)

14 (air) 0.7145 0.3102 5.88293048 �103.784060
7 (air) 0.35 0.1520 2.88055348 �12.194870
8.3 (Teflon) 0.362 0.1124 4.21373732 �17.5606001
6.4 (Teflon) 0.2655 0.0824 3.09155881 �6.92967372
3.6 (Teflon) 0.1499 0.0455 1.77531131 �1.2618826
2.2 (Teflon) 0.0838 0.0255 0.99058927 �0.22018405

Source: Table 1 of D. K. Misra, A quasi-static analysis of open-ended co-

axial lines, IEEE Trans. Microwave Theory Tech. MTT-35:925–928 (Oct.

1987) (r 1987 IEEE).
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contact with the material under test, and the reflection
coefficient G is measured. Knowledge of the relationship
between the measured G and the permittivity e then al-
lows one to determine the latter. A number of models have
been developed to determine e, including the capacitive
model, the antenna model, the equivalent transmission-
line model, and the rational function model. A compara-
tive study of these models for a lossy material is available
in Ref. 9, where it is concluded that the equivalent trans-
mission-line model for biological tissue characterization is
adequate.

3. REFLECTION STANDARD FOR COAXIAL LINES

A short-circuited coaxial line can be used as a reflection
standard only at one frequency for which it is a quarter-
wave long. However, an open-circuited coaxial line with
extended outer conductor as shown in Fig. 1c, can be used
as a broadband reflection standard with minimal losses.
Also, this reflection standard can be fabricated easily us-
ing commercially available components. Variational
analysis of this device has been reported elsewhere in
the literature [2,10–12]. If the coaxial line/circular
waveguide combination is operated below the cutoff
frequency of the dominant mode in circular waveguide,
the signal will get attenuated in the waveguide. In addi-
tion, if the waveguide is sufficiently long to attenuate the
signal by B50 dB, the radiation from the waveguide will
be negligible. Therefore, the coaxial line/waveguide junc-
tion will be capacitive in nature. Bianco et al. [12] have
computed the junction capacitance. The variation of junc-
tion capacitance with frequency for a 50-O 7-mm airline
(2b¼ 7 mm, er¼ 1.000640) is given by the following ex-
pression [12]

C¼
Cð0Þ

ð1� ðfMHz=34450Þ2Þ1=2
ð7Þ

where C(0) is the static capacitance and is 79.70 fF for the
7-mm line.

4. STEPS IN COAXIAL LINES

The step in a coaxial line can be due to (1) an abrupt
change in the diameter of either the inner conductor
(Fig. 1d) or the outer conductor (Fig. 1e) or (2) a simulta-
neous change in diameters of both the conductors. In other
words, the step discontinuity may arise when two coaxial
lines with different characteristic impedances are connect-
ed in cascade. Here, a1 and b1 are the radii of the inner and

outer conductors of one coaxial line and a2 and b2 repre-
sent the same for the other coaxial line. The step discon-
tinuity may also result when a coaxial line is butt-
terminated in a connector with the same impedance. The
equivalent circuit of a step can be described by a shunt
capacitance at the plane of the step as shown in Figs. 1d
and 1e. The capacitance does not vary appreciably with
frequency if the cross-sectional dimensions of the line at
the plane of discontinuity are small fractions of the wave-
length.

Discontinuity capacitance can be computed using the
mode-matching technique for determining the difference
in capacitances between that of the structure with the
discontinuity, and that computed by adding the contribu-
tions of two single unperturbed lines with cross-sectional
dimensions and lengths equal to the actual lines on each
side of the step. The lines may be terminated by magnetic
walls after a distance equal to one diameter on each side of
the step. This technique has been used in Refs. 1 and 13.
Gogioso et al. [14] have used the variational method
to calculate the discontinuity capacitance. FEM has
been used in Ref. 15 to analyze the double-step disconti-
nuity; computed results for a butt transition between a
coaxial line and a 7-mm precision connector are presented
there.

Somlo [13] has obtained closed-form expressions for the
discontinuity capacitance:

Step on the inner conductor (i.e., b1¼ b2¼ b; Fig. 1d):

C

2pb
ðF=mÞ¼

e
p

a2þ 1

a
ln

1þ a
1� a

� 2 ln
4a

1� a2

� �

þ1:11� 10�15ð1� aÞðt� 1Þ

ð8Þ

where a¼ (b�a2)/(b�a1) and t¼ (b/a1). The maximum
error in (8) is 730 fF/m for 0.01rar1.0 and
1.0otr6.0. In the limiting case when a1-0, t-
N, an expression for the step discontinuity obtained
from Fig. 1 of Ref. 13 is given as follows:

C

2pb
ðF=mÞ¼

2e
p
ð1:477� ln 4aÞ ð9Þ

where a¼ (b�a)/b. Equation (9) may be used to deter-
mine C(0) for (7) [e.g., one obtains C(0)¼ 80.7 fF for
50-O 7-mm airline; this compares favorably with the
computed value of 79.7 fF].

Step on the outer conductor (i.e., a1¼a2¼a; Fig. 1e):

C

2pa
ðF=mÞ¼

e
p

a2þ 1

a
ln

1þ a
1� a

� 2 ln
4a

1� a2

� �

þ4:12� 10�15ð0:8� aÞðt� 1:4Þ

ð10Þ

Probe

Dielectric
under test

2a 2b

Figure 5. Coaxial-line-excited monopole probe for permittivity
measurement.
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where a¼ (b1�a)/(b2�a) and t¼ (b2/a). The maximum
error in (10) is 760 fF/m for 0.01rar0.7 and
1.5rtr6.0. The stepsize decreases as a increases
from 0 to 1. For simultaneous steps in both the con-
ductors, the discontinuity capacitance can be deter-
mined approximately from the discontinuity
capacitances associated with step in either (inner
or outer) conductor [3,4].

The frequency dependence of step capacitance has been
included in Ref. 13 through a multiplier factor K that has
been plotted for five different combinations of a and t. This
plot is included here as Fig. 6. The S matrix for a step
discontinuity in the inner conductor of rectangular coaxial
lines has been described by Xu et al. [16]. The mode-
matching method in conjunction with FEM has been em-
ployed to improve accuracy and efficiency.

5. T JUNCTION OR STUB IN COAXIAL LINES

The configuration of a T junction and its equivalent circuit
are shown in Fig. 7. The branchline can be viewed as a
shunt circuit in parallel with the mainline. Experimental
results for a specific set of parameters are available for
l0¼ 10 cm [17]. The T junction finds application in branch-
line couplers, filters, and other components and has been
analyzed in a rectangular coaxial line [16] using mode
matching, and FEM techniques. The analysis has been
extended to a branchline directional coupler.

Other types of discontinuity in coaxial lines that occur
less frequently, such as capacitive windows in a coaxial
line, aperture coupling between two coaxial lines, bifur-
cation of a coaxial line, small elliptical and circular aper-
tures in the outer conductor, and a coaxial line with
infinite central conductor, are discussed in Ref. 1.

(b2−a1)/�

0.01 0.1 1.0

K

2.0

1.1

1.01

1.001

Step on inner
� = 0.2 � = 1.5

Open circuited 50 Ω line
� = 0.5657 � = ∞ 

Step on inner

Step on outer

Step on inner

� = 0.5 � = 3

� = 0.7

� = 0.25

� = 5

� = 3

Figure 6. Frequency correction factor K for
step capacitance versus (b2�a1)/l. [From Fig-
ure 3 of P. I. Somlo, Computation of coaxial-
line step capacitance, IEEE Trans. Microwave

Theory Tech. MTT-15:48–53 (Jan. 1967)
(r 1982 IEEE).]
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1. INTRODUCTION

Starting with Maxwell’s theoretical concept of wave prop-
agation in the 1870s, followed by Heinrich Hertz’ experi-
mental proof of the transmission of electromagnetic wave
energy in the 1890s, RF–microwave technologies saw ex-
traordinary advances during the nineteenth and twenti-
eth centuries. Progress in this field, particularly its
application in high-frequency wired and wireless commu-
nications technology, has hinged most critically on the ef-
ficient transmission and reception of electromagnetic
energy through various media. Without carefully designed
transmission lines, RF and microwave technologies could
not have undergone further development and modern civ-
ilization could certainly not have reached the present ‘‘in-
formation age.’’ In everything from a handheld GPS
receiver to a jumbo jet, transmission-line design is of cru-
cial importance to proper operation. The sheer diversity of
RF–microwave devices available today means that RF–
microwave designers must spend most of their time tun-
ing transmission lines, matching various sections, and de-
signing controlled attenuation to other parts of the
system. For example, while a mobile phone consists of
high-frequency microstrip transmission lines in planar
multilayered circuits, a jumbo jet has 275 km of cables of
various forms, including low-frequency lighting, high-fre-
quency navigation tools, and wireless terrestrial and sat-
ellite navigation and communication equipment. Just as
High-frequency devices and gadgets such as radios, tele-
vision sets, satellite ground stations, and satellite pay-
loads are useless without efficient transmission lines,
adapters, and assemblies in the same way that the main
engine block in an automobile is useless without conduits,
nuts, and bolts. Transmission lines are guiding structures
that convey high-frequency electromagnetic energy from
one block to another. Their careful design for amplitude
and phase matching is therefore extremely important.

The high-frequency transmission line industry is a
huge enterprise. According to http://www.global-
spec.com, 186 coaxial cable manufacturing companies
and 60 waveguide manufacturing companies operate
in the United States alone. Moreover, 585 companies

T T

T T

T′

T′

n:1

B

Figure 7. T junction and its equivalent circuit.
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manufacture cable assemblies, including connectors,
adapters, and attenuators. In the year 2000, the market
volume increased by about 25%. This is due to rapid
growth of wireless mobile communications and other sec-
tors. With the emergence of new innovative technologies
in the twenty-first century, such growth is expected to
continue at a still higher rate.

High-frequency cables, waveguides, and accessories are
usually very expensive items because they require manu-
facturing to high standards and tolerances. The most com-
mon forms of such transmission lines are coaxial cables
and waveguides. For RF–microwave frequencies, which
span anything from a few MHz to 30 GHz, the coaxial line
is the oldest and most widely used devices for transferring
RF energy from one point to another. Heinrich Hertz used
coaxial cables in his experiments to prove Maxwell’s the-
ory of electromagnetic wave propagation. Hertz used co-
axial lines to generate the standing waves. In the 1930s
when radios became very popular, coaxial transmission
lines were used exclusively at low frequencies such as
VHF and UHF applications. The shielding properties of
coaxial lines minimize the static interference of charge
leakage at low frequencies. For higher-frequency applica-
tions such as 1 GHz and above, waveguide structures are
generally used. The waveguide is preferred because of its
low transmission losses and high power-handling capabil-
ities. In 1897, Lord Rayleigh mathematically proved the
concept of wave propagation through single-conductor
rectangular and circular waveguides. He also proved the
existence of a cutoff frequency below which no wave can
propagate through the waveguide. Following the example
of Lord Rayleigh, Sir Jagadish Chandra Bose invented
waveguides and used these waveguides in his wireless ex-
periments in 1894. He also invented waveguide horn an-
tennas for millimeter-wave transmission and reception.
Sir Jagadish Bose extensively used scientific demonstra-
tions of EM wave propagations and detections in his
teaching classes in the Presidency College of Kolkata,
India. Also in 1894, Sir Oliver Lodge observed direction-
al radiation when he surrounded a spark oscillator with a
metal tube. Because high-frequency sources were not
widely available, not much work was conducted on wave-
guides until about 1930. After this time, scientists from
AT&T and MIT radiation laboratory rediscovered the
waveguide and developed a theoretical framework to ex-
plain the cutoff frequencies and propagation modes. Dur-
ing and after World War II, the design and use of various
coaxial cables and waveguides advanced with new thrusts
for emerging applications in radars and wireless commu-
nications.

In this article we first describe the classical theory in
which transmission lines are assumed to be a distributed
section of series resistance and inductance, as well as
shunt capacitance and conductance. This model is then
evolved into the ‘‘telegrapher equation,’’ which explains
the wave nature of electromagnetic energy guided by a
two-conductor transmission line. Basic characteristic pa-
rameters such as the propagation constant, phase velocity,
and characteristic impedance are derived. This general-
ized transmission line theory can be applied to any trans-
mission-line type. Finally, the field theory of transmission

lines is used to derive coaxial transmission-line theory.
Practical examples of various coaxial cables and cable as-
semblies available on the market are also presented. Dif-
ferent waveguide configurations such as parallel-plate,
rectangular, circular, and elliptical waveguides are dis-
cussed and propagation modes in the waveguide are de-
fined. Planar waveguides such as microstrip lines,
slotlines, and coplanar waveguides are also presented.

2. CLASSIFICATION OF TRANSMISSION LINES

Most practical waveguide structures rely on single-mode
propagation in a particular direction. They can conse-
quently be conveniently classified according to the polar-
ization properties of the electromagnetic waves they carry:
transverse electromagnetic (TEM), transverse electric
(TE), or transverse magnetic (TM) modes. TEM modes
have both electric and magnetic fields transverse to the
direction of propagation. In TM mode, the magnetic field is
transverse to the direction of propagation and in TE mode,
the electric field is transverse to the direction of propaga-
tion. Mathematically, these modes for a wave propagating
in the z direction can be represented as follows:

1. TEM waves: Ez¼ 0, Hz¼ 0

2. TM waves: Eza0, Hz¼ 0

3. TE waves: Ez¼ 0, Hza0

4. Hybrid waves: Eza0, Hza0

Transmission lines can be classified with respect to po-
larization, as shown in the tree diagram in Fig. 1. TEM is
the dominant mode of propagation in coaxial lines and
parallel-plate transmission lines where two conductors
are involved. TE and TM propagation modes are typical-
ly found in single-conductor waveguides, which have rect-
angular, circular, elliptical or ridge-type cross sections.
Other than TEM, TE, or TM modes, hybrid modes are also
known that contain all six components (Ex ,Ey, Ez, Hx ,
Hy,Hz) of electric and magnetic fields. Examples of trans-
mission lines that support hybrid modes of propagation
include microstrip (MS) transmission line, slotline (SL),
and coplanar waveguide (CPW) structure.

The various forms of transmission lines are shown in
Fig. 2. Figure 2a illustrates the most typical such lines: a
parallel, two-conductor transmission line in which the
conductors are uniformly separated by an air dielectric.
The evolution of waveguides away from the two-conductor
transmission line can perhaps be best understood in terms
of the theory of quarter-wave transformers. A quarter-
wave section of a short-circuited transmission line is
transformed by an operating frequency into an open cir-
cuit at the input end of the line. The waveguide is then
considered to be two short-circuited, quarter-wave sec-
tions along the two-wire transmission line. The cutoff in
the waveguide’s frequency dependence can be understood
in terms of the behavior of the quarter-wave section of
the line.

Figure 2b depicts a coaxial cable where the center con-
ductor is concentric with the outer cylindrical conductor,
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which is usually the ground for the transmission line. As
such, it acts as the shield for outside interference. The
uniform gap between the two conductors is filled with a

dielectric material. The advantage of the coaxial cable is
its high immunity to interfering signals due to the shield-
ing provided by the outer conductor of the information-
carrying signal.

Other forms of high-frequency transmission lines are
dielectric waveguides (not shown here), parallel-plate
waveguides (Fig. 2e), and planar transmission lines such
as microstrip lines (Fig. 2f) and striplines (Fig. 2g).

Table 1 compares the three most popular transmission
lines used in modern microwave circuits and systems: co-
axial cables, waveguides, and microstrip lines. As can be
seen, each line has its own advantages and disadvantages.
While coaxial cables are popular in network-related, low-
and medium-frequency operation, waveguides are pre-
ferred in high-frequency and high-power applications. At
high frequencies, both coaxial cables and microstrip lines
exhibit high power losses and signal distortions. Because
of their better power-handling capability, waveguides are
popular for radars and similar high-power, high-frequency
applications in which their physical bulk is not a hin-
drance. For compact and portable, lightweight gadgets
such as mobile phones, handheld GPS receivers, and some
solid-state, high-power amplifier modules, microstrip lines
are preferred. To compensate for the losses they suffer as a
result of high attenuation, amplifiers are typically used.
Transmission lines and circuit formats are therefore se-
lected according to their specification requirements and
applications.

3. TRANSMISSION LINE THEORY: LUMPED-ELEMENT
CIRCUIT MODEL

A transmission line is often schematically represented by
a two-wire line, because transmission lines for TEM wave
propagation always have at least two conductors. Figure 3
illustrates a differential length (Dz) of a two-conductor
transmission line represented by a distributed parameter
network. The voltages and currents vary in magnitude
and phase over its length. The distributive parameters are

R¼ resistance per unit length

L¼ inductance per unit length

TEM

Coaxial
MS CPWSlot line

TE TM Hybrid

Transmission line

Parallel plate

Rect. waveguide
Circ. waveguide
Ridge waveguide

Conventional

MMIC coaxial line

Figure 1. Classification of transmission lines based on a single mode of wave propagation.

(a) (b)

(c) (d)

(e) (f)

(g)

Metal strip

Grounded
conducting plane

Dielectric
substrate

Grounded
conducting plane

Figure 2. Commonly used waveguide structures: (a) open two-
wire line; (b) coaxial line; (c) rectangular waveguide; (d) circular
waveguide; (e) parallel-plate waveguide; (f) microstrip line;
(g) stripline.
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G¼ conductance per unit length

C¼ capacitance per unit length

Dz¼ incremental length

One can determine the current and voltage relations
for the short length of line Dz. Kirchhoff ’s voltage and
current laws are applied along the transmission line
shown in Fig. 3. In the derivation, the line length of
Dz-0 is assumed. Equations for the instantaneous volt-
ages and currents and for time-harmonic equivalents are
as follows:

Instantaneous equations

�
@v

@z
¼RiþL

@i

@t
ð1Þ

�
@i

@z
¼GvþC

@v

@t
ð2Þ

Time-harmonic equations where ejot is assumed

�
dV

dz
¼RIþ joLI ð3Þ

�
dI

dz
¼GV þ joCV ð4Þ

The solution for instantaneous voltages and currents is

vðz; tÞ¼Re½VðzÞejot�; iðz; tÞ¼Re½IðzÞejot� ð5Þ

Wave equations for time-harmonic voltages and currents
are rewritten as

�
dV

dz
¼ ðRþ joLÞI

�
dI

dz
¼ ðGþ joCÞV

)

�
d

dz

dV

dz

� �
¼ ðRþ joLÞ

dI

dz

d2V

dz2
¼ ðRþ joLÞðGþ joCÞV

8>>>><
>>>>:

ð6Þ

The final expressions for time-harmonic voltage and cur-
rent wave equations along the line are

d2V

dz2
¼ g2V ð7Þ

d2I

dz2
¼ g2I ð8Þ

The propagation constant g for the line is defined as

g¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþ joLÞðGþ joCÞ

p
¼ aþ jb ð9Þ

where a is the attenuation constant (Np/m) and b is the
propagation constant (rad/m).

The traveling-wave solutions are

VðzÞ¼V þ ðzÞ þV�ðzÞ¼V þ0 e�gzþV�0 eþ gz ð10Þ

IðzÞ¼ Iþ ðzÞþ I�ðzÞ¼ Iþ0 e�gzþ I�0 eþ gz ð11Þ

The plus sign indicates the forward-traveling wave, and
the minus sign indicates the backward-traveling wave.
Applying (11) to the voltage of (3) gives the current on the
line:

IðzÞ¼
� 1

Rþ joL

dVðzÞ

dz
¼

g
Rþ joL

½V þ0 e�gz � V�0 eþ gz� ð12Þ

The characteristic impedance of the line is

Z0¼
V þ0
Iþ0
¼

Rþ joL

g
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ joL

Gþ joC

s
ð13Þ

To relate the voltage and current on the line;
Z0¼ ðV

þ
0 =Iþ0 Þ ¼ � ðV

�
0 =I

�
0 Þ. The wavelength of the wave

along the line is

lg¼
2p
b

ð14Þ

Table 1. Comparison of Common Transmission Lines and
Waveguides

Characteristic Coaxial line
Rectangular
Waveguide Microstrip line

Preferred mode TEM TE10 Quasi-TEM
Dispersion None Medium Low
Bandwidth High Low High
Power-handling

capacity
Medium High Low

Loss/attenuation Medium Low High
Physical size Large Large Small
Ease of

fabrication
Medium Medium Easy

Integration with
other components

Hard Hard Easy

i(z, t )

v (z, t )

+

−

+

−

i (z + ∆z, t )

v (z + ∆z, t )

R ∆z L ∆z

G ∆z

∆z

C ∆z

N

Figure 3. Lumped-element equivalent-circuit model of the dif-
ferential length of a transmission line.

COAXIAL LINES AND WAVEGUIDES 661



and the phase velocity of the wave along the transmission
line is

vp¼
o
b
¼ lf ð15Þ

For lossless transmission lines, R¼G¼ 0; the propagation
constant is g¼ jo

ffiffiffiffiffiffiffi
LC
p

¼ aþ jb. Therefore, the attenuation
constant a¼ 0 and b¼o

ffiffiffiffiffiffiffi
LC
p

. The characteristic imped-
ance is

Z0¼

ffiffiffiffi
L

C

r
ð16Þ

The general solution of a lossless transmission line is

VðzÞ¼V þ ðzÞþV�ðzÞ¼V þ0 e�jbzþV�0 ejbz ð17Þ

IðzÞ ¼ Iþ ðzÞþ I�ðzÞ¼ ðV þ0 =Z0Þe
�jbz � ðV�0 =Z0Þe

jbz ð18Þ

The wavelength of the wave along the line
lg¼ ð2p=bÞ¼ ð2p=o

ffiffiffiffiffiffiffi
LC
p

Þ and the phase velocity of the
wave along the transmission line is vp¼ (o/b)¼ lf.

3.1. Coaxial Lines

The key feature of coaxial lines is that their characteristic
impedance is very broadband. The fundamental mode of
operation is TEM, where the electric and magnetic fields
are transverse in the direction of propagation. A typical
coaxial cable, shown in Fig. 4, consists of two concentric
conductors of inner and outer radii a and b, respectively,
with the space between them filled with a dielectric (er)
such as Teflon or polyethylene. In this section we perform
a field analysis on a coaxial cable to calculate the equiv-
alent circuit parameters such as R, G, L, and C as defined
earlier in the telegrapher equation.

Let the voltage between the conductors be V0 e7jbz and
the current I0 e7jbz. The fields of a traveling TEM wave
inside the coaxial line along the þ z direction are then
given as follows:

E¼
V0r̂r

r lnðb=aÞ
e�gz ðV=mÞ ð19Þ

H¼
I0f̂f
2pr

e�gz ðA=mÞ ð20Þ

The conductors are assumed to have a surface resistivity
Rs. The material filling the space between the conductors
is assumed to have a complex permittivity e¼ e0 � je00, and
the permeability is m¼ m0mr. We now determine the trans-
mission line parameters R, G, L, and C.

The time-average magnetic energy store is defined as

Wm¼
m
4

Z
S

HH�ds¼LjI0j
2=4 ð21Þ

The self-inductance per unit length is

L¼
m
jI0j

2

Z
S

HH�ds ðH=mÞ

¼
m
2p

lnðb=aÞ ðH=mÞ

ð22Þ

The time-average electric energy stores is defined as

We¼
e
4

Z
S

EE�ds¼CjV0j
2=4 ð23Þ

The self-capacitance per unit length is

C¼
e
jV0j

2

Z
S

EE�ds ðF=mÞ¼
2pe0

lnðb=aÞ
ðF=mÞ ð24Þ

The power loss per unit length due to the finite conduc-
tivity s of the metallic conductor is

Pc¼
RS

2

Z
C1 þC2

HH�dl¼RjI0j
2=2

where the surface resistivity is defined as RS¼ 1/sdS,
where dS is the skin depth of the conductor. The series re-
sistance R per unit length of the line is

R¼
RS

jI0j
2

Z
C1 þC2

HH�dl ðO=mÞ

¼
RS

2p
1

a
þ

1

b

� �
ðO=mÞ

ð25Þ

(a) (b)

b

Water proof
outer jacket

Aluminum
shield

Dielectric

Inner
conductor

Braided
copper

�r

a

Figure 4. Coaxial cable: (a) cross-sectional
view; (b) isometric view.
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Due to the ‘‘lossy’’ dielectric, the time-average power dis-
sipated per unit length is

Pd¼
oe00

2

Z
S

EE�ds¼GjV0j
2=2 ð26Þ

The conductance per unit length is

G¼
oe00

jV0j
2

Z
S

EE�ds ðS=mÞ¼
2poe0 0

lnðb=aÞ
ðS=mÞ ð27Þ

So far we have calculated the equivalent-circuit model pa-
rameters of a coaxial cable with the radii of the outer and
inner conductors of b and a, respectively. Now we opt to
calculate the characteristic impedance of the coaxial line
Z0, which is frequency-independent and can be calculated
as

Z0¼
V0

I0
¼

ffiffiffi
m
e

r
ln

b

a

� �
¼

60ffiffiffiffi
er
p ln

b

a

� �
ðOÞ ð28Þ

The approximate cutoff frequency of the cable can be cal-
culated from (29), at which point the first non-TEM mode
of propagation begins. At a frequency above fcutoff [5], other
propagation modes dominate and the characteristic im-
pedance becomes frequency-dependent:

Fcutoff ðGHzÞ¼
7:51ffiffiffiffi
er
p

1

aþ b

� �
ð29Þ

The line parameters L, R, C, and G of coaxial lines can be
calculated from

C¼
55:63er

ln b
a


 � ðpF=mÞ ð30Þ

L¼ 200 ln
b

a

� �
ðnH=mÞ ð31Þ

R¼ 10
1

a
þ

1

b

� � ffiffiffiffiffiffiffiffiffi
fGHz

s

r
ðO=mÞ ð32Þ

G¼
0:3495erfGHz tanðdÞ

ln
a

b

� 	 ðS=mÞ ð33Þ

where tand is the loss tangent of the dielectric material, s
is the conductivity of the conductor in S/m, and fGHz is the
signal frequency in GHz.

3.1.1. Cable Losses. The losses in a coaxial cable arise
from two sources: resistance of the conductors and the di-
electric losses between the two conductors. The conductor
losses are ohmic and increase with the square root of the
frequency due to the skin effect. The dielectric loss is due
to the finite conductivity of the dielectric material and in-
creases linearly with the frequency. Figure 5a shows the
attenuation per foot and power-handling capability of a
MegaPhase TM Series test cable. As can be seen in Fig. 5a,
the per unit length attenuation increases with frequency.
In Fig. 5b the power-handling capacity of the cable reduc-
es with frequency. The frequency dependence of the at-
tenuation and the power-handling capability is explained
in the following section.

The transmitted power can be expressed in terms of the
voltage or maximum value of the electric field inside the
line:

PT¼
1

2Z0
jVj2¼

1

Z
jEaj

2ðpa2Þ ln
b

a

� �
ð34Þ

The attenuation coefficients due to conductor and dielec-
tric losses are

P0loss¼
1

2
Rs½ð2paÞjHaj

2þ ð2paÞjHbj
2�

¼
RsjI

2j

4p
1

a
þ

1

b

� � ð35Þ

ac¼
P0loss

2PT
¼

Rs

2Z

1

a
þ

1

b

� �

ln
b

a

� � ð36Þ
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Figure 5. Attenuation per foot and power-handling capability of a coaxial cable as a function of
frequency. (Source: http://www.megaphase.com/html/test02.html.)
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ad¼
w

2c
tanðdÞ ð37Þ

Total losses will be

a¼ acþ ad¼
Rs

2Z

1

a
þ

1

b

� �

ln
b

a

� � þ o
2c

tanðdÞ ð38Þ

where the surface resistivity is

Rs¼

ffiffiffiffiffiffiffiffiffi
om0

2s

r
ð39Þ

3.1.2. Types of Coaxial Cable. There are various types
of coaxial cables available in the commercial market. They
are broadly categorized as flexible cables and semirigid
cables. Flexible cables are most widely used as measure-
ment tools for test and characterization. There are two
varieties of flexible cable available. The overall cable di-
ameters vary from o0.25 in. to 41 in. depending on the
power-handling capability of the wire. Some cables use a
stranded inner conductor, while others employ solid wire
with single braid or double-braided outer conductor. The
outer jacket plays no part in the electrical performance of
the cable—it simply holds everything together and sup-
plies a waterproof covering. Selection of cable types de-
pends primarily on the characteristic impedance of the
cable, capacitance per unit length, power-handling capa-
bility, outer diameter, and attenuation per unit length at
the specific frequency. Preference is also given to double-
shielded/braided cable over the corresponding single-
shielded cable due to the resilience against interference
and physical ruggedness. Figure 6b shows an air-filled co-
axial cable with spiral dielectric fin support. This cable
displays low loss due to the air dielectric; the phase veloc-
ity is very close to that of the free space.

3.1.3. Semirigid Cables. Another popular transmission
line is semirigid cable. Both inner and outer conductors
are solid, and the two conductors are uniformly separated
with dielectric material. Semirigid cables can be bent to
moderate angles but, once bent, cannot be brought back to

their original shape. Cables of this type are neither rigid
nor flexible; hence their name. Semirigid cables have bet-
ter shielding capabilities and are more immune to outside
interference than are flexible cables. Semirigid cables also
have reduced attenuation and enhanced power-handling
capabilities. Figure 7 shows various forms of semirigid
cables soldered with SMA connectors at both ends. The
inner conductors are made from various materials such as
silver-coated copper, silver-plated copper-clad steel, and
silver-plated aluminum. The dielectric filling is typically
polyethylene, polytetrafluoroethylene (TFE Teflon),
polytetrafluoroethylene–hexafluoropropylene (FEP Tef-
lon), or kapton. The outer conductor is made of copper,
aluminum, stainless steel, and special copper alloys. Se-
lection of a particular type of semirigid cable involves con-
sideration of factors such as power-handling capability,
attenuation per unit length, size, higher-mode cutoff fre-
quency, dielectric strength, and breakdown voltages (co-
rona discharge voltage).

3.1.4. Coaxial Connectors. Coaxial cable is no use if in-
terfacing with various components in a system is made.
Various types of coaxial connectors and cable assemblies
are used. Each type of connector can be attached to a cable
in several waves: direct solder, crimpon, and screwon.
Figure 7 shows various bent coaxial cable assemblies.

Interfacing cables with connectors and adapters need
special care. Bending also requires special jigs to ensure
minimum distortion of its regular shape. The cable must
be cut to the exact length and then bent to the shape
required. After shaping, the inner conductors are made in
exact lengths such that they can be inserted into the inner
conductor of a connector. Then solder is applied to
the outer jacket to electrically connect the adapter and
the cable. Adapter assemblies of this type are shown in
Fig. 8.

3.1.5. More Recent Developments of Coaxial Line. Coax-
ial cables are nonplanar in nature, and compatibility with
modern monolithic microwave integrated circuits
(MMICs) and microelectromechanical structures
(MEMS) is an issue. MMIC and MEMS support planar
transmission lines such as microstrip lines, striplines,
slotted lines, and coplanar waveguides (CPWs). More
recently, with the advent of new processing techniques,

Water proof
outer jacket

(a) (b)

Water proof
outer jacket

Braided 
copper

Braided 
copper

Inner 
conductor

Inner 
conductor

Al 
shieldsAl 

shields
Al 

shields

Spiral
spacer

Dielectric Dielectric

Figure 6. Flexible coaxial cable (coax) configurations: (a) double-braided solid-filled coax; (b) air-
filled coax with spiral dielectric fin support.
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MMIC and MEMS coaxial lines have been developed.
These lines are designed for use in extremely wide fre-
quency ranges from DC to THz. Monolithic implementa-
tion of coaxial lines in silicon and gallium arsenide (GaAs)
substrate up to 40 GHz (c.f. Fig. 9a) has been reported [12].
The MMIC line is composed of a center conductor sur-
rounded by a homogeneous dielectric (Polmide) covered
entirely with a gold-plated ground plane. The pure TEM
mode propagation of the proper mode is verified from the
measurement. The authors also theoretically verify the
losses up to 1000 GHz frequency band, and the transmis-
sion loss is about 15 dB/mm. The line has a measured
maximum attenuation of 1.6 dB/mm at 40 GHz.

Developments in MEMS technology have made many
breakthroughs in RF and microwave technologies. This
state-of-the-art manufacturing technology supports IC
batch processing on silicon wafers. A MEMS microcoaxi-
al transmission line with inclined shields has been devel-
oped by the Korea Advanced Institute of Science and
Technology [13]. With the removal of dielectric between
the conductors, a very low attenuation of 0.03 dB/mm at
10 GHz has been obtained from the fabricated microcoax-
ial transmission line. Investigation reveals that the mi-
crocoaxial line fabricated on a glass line is less lossy than
that fabricated on a silicon device. The MEMS microcoax-
ial line is shown in Fig. 9b.

Thus far, we have discussed the two main types of mi-
crowave transmission lines, namely, coaxial cables and
waveguides, including their historical perspectives and
more recent market statistics. The basic transmission-line
theory of the telegrapher equation is presented. The the-
ories of coaxial lines based on lumped elements as well as

field theory have been presented. Two types of coaxial
lines—flexible and semirigid cables—are discussed. Dif-
ferent connectors and adaptors of coaxial cables and cable
assemblies are presented. Finally, the most recent devel-
opment in MMIC and MEMS microcoaxial lines at higher
frequencies are presented. In the following section, we will
discuss waveguides.

3.2. Waveguide

In the preceding section, we discussed various types of
coaxial transmission lines. In this section we shall discuss
various nonplanar and planar waveguide structures and
their modes of operations. Waveguides are extensively
used to transfer electromagnetic energy efficiently from
one point to another in a wide spectrum of frequency.
Nonplanar waveguides are hollow tubes in which waves
can propagate only at certain frequencies and cannot
propagate below the cutoff frequencies. The cross section
of the enclosed boundaries of the waveguide is transverse
to the direction of propagation. Waveguides are used at
microwave frequencies for two reasons: (1) they are often
easier to fabricate than are coaxial lines and (2) they can
be made to have less attenuation. Coaxial lines require the
center conductor to be supported by the solid dielectric in
the center of the outer cylindrical jacket. In contrast, a
waveguide does not need any center conductor and its di-
electric is air. Because of the high losses in a coaxial line
over any distance (42 ft), along with the cable leakage at

Figure 7. Various semirigid cable bends. (Source: http://

www.shibata.co.jp/etxt/3_g_g6.htm.)

Figure 8. Various coaxial cable assemblies. (Source: http://
www.gordontech.com.au/.)
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Figure 9. (a) MMIC rectangular coaxial line
on GaAs [12]; (b) MEMS microcoaxial
line [13].
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higher frequencies, the waveguide structure is preferred
at higher frequencies. If the waveguide boundaries change
direction within reasonable limits, the wave is bound to
follow the changing direction without much distortion and
discontinuity. In practice, such bends and junctions are
very common in high-power radar systems where wave-
guides carry high-power high-frequency EM energy from
the transmitter to the antenna. In waveguides, the waves
are guided according to the distributions of the EM fields
in the waveguide and their dependence on currents and
charges on the conducting boundaries and the reflections
of the fields in the conducting boundaries.

The most common hollow waveguides have rectangular
or circular cross sections; however, the rectangular wave-
guides are preferred over circular ones for many applica-
tions. Figure 10 illustrates various forms of rectangular
waveguides. Very often rectangular waveguides are de-
signed such that one side of the rectangular wall is twice
the length of the other side. This cross-sectional dimen-
sion has the advantage of enabling the operator to control
the polarization of the wave to be transmitted. The elec-
trical fields remain parallel to the smaller dimension of
the waveguide cross section. If the dimension is made
much larger, the electric field does not remain parallel to
the side any more. On the other hand, if the dimension is
made much smaller, then there will be considerable
attenuation. The dimensions of the waveguide are gene-
rally designed such that only the fundamental or domi-
nant mode can propagate. All other higher-order modes
attenuate quite rapidly. Furthermore the dimensions
are to be chosen such that there is a significant difference
between the cutoff frequencies of the successive modes.
This is necessary to ensure that only one designed mode
may propagate.

Another popular type is the circular waveguide. In con-
trast to the rectangular waveguide, a circular waveguide
lacks the sense of polarization of the wave that is being
transmitted through. This is because there is no preferred
direction across the circular cross-sectional plane. Fur-
thermore, the cutoff frequencies of different modes are
very close. As a consequence, it is very hard to determine
an operating frequency that will yield a low attenuation
for the dominant mode and high attenuation for the other
higher-order modes. The advantage of the circular wave-
guide is exploited from its circular symmetry. Rotary
joints use circular symmetry. For rotating antenna feeds
used in radars, rotary joints are employed. The quality (Q)
factor of the circular waveguide cavity is higher than that
of the rectangular waveguide. This inherent characteristic
is exploited in frequency meters.

Before proceeding further with the discussion of the
hollow metallic waveguides, we shall first examine wheth-
er any wave can propagate within the waveguide (i.e., in a
guide whose conducting boundaries form a simple con-
nected region) and, if so, how the propagation takes place.
As mentioned earlier with respect to coaxial cables, a TEM
wave can propagate through the two-conductor transmis-
sion line. In contrast, in the single-conductor hollow wave-
guide such a TEM wave cannot propagate. This can be
proved by field theory and solving the Helmoltz wave
equation. Another very simple and interesting concept
has been developed [14]. The waveguide can be perceived
by a two-conductor transmission line supported by two
quarter-wavelength short-circuited sections as shown in
Fig. 11. Since the short-circuited quarter-wavelength sec-
tion transforms into an open circuit (with infinity imped-
ance, which is electrically invisible) at its input, there is no
effect on power transmission. In many sections of this
type, a rectangular waveguide such as that shown in
Fig. 11 is used. To preserve the transmission-line proper-
ty of the waveguide, the dimension d must not be less than
one wavelength. Any frequency in the dimension a less
than a half-wavelength (i.e., o0.5l) causes the circuit to
become an inductive shunt (joL), which prevents propa-
gation. The frequency at which the a dimension is a half-
wavelength is called the cutoff frequency.

Complete solutions to field equations are known for a
limited number of structures with a well-defined geometry
that is compatible with the coordinate system. Each mode

Figure 10. Different forms of waveguides:
(a) rectangular waveguide; (b) twist polarizer;
(c) circular waveguide; (d) rectangular wave-
guide bend.

d
b

a

�/4

Figure 11. A rectangular waveguide derived from a two-wire
transmission line supported by two quarter-wavelength short-
circuited sections.
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can be characterized by its electrical and magnetic com-
ponents and can be visualized as field patterns by its elec-
tric and magnetic vectors.

In wave propagating structures, the transmission of
microwave energy takes place in a region surrounded by
boundaries, in most cases a metallic wall; and, for analyt-
ical purpose, these are assumed lossless. Other assump-
tion is that, within the frequency of interest, a waveguide
can support at least one propagating mode above its cutoff
frequency, which is the function of waveguide geometry.

The time-harmonic electric and magnetic fields are
assumed to have the following forms

Eðx; y; z; tÞ¼Eðx; yÞejwt�jbz ð40Þ

Hðx; y; z; tÞ¼Hðx; yÞejwt�jbz ð41Þ

where b is the propagation constant along the guide di-
rection. The corresponding wavelength is the guide wave-
length (lg¼ 2p/b):

lg¼
l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
fc

f

� �2
s ð42Þ

where l0 is the wavelength of a plane wave propagating in
an infinite medium. Two important features can be noted
from this equation: (1) at higher operating frequency l¼ l0

and (2) as f approaches fc, lg becomes infinite and the cor-
responding mode does not propagate. Therefore, for a
given mode of propagation, the operating frequency is
always selected above the cutoff frequency.

3.2.1. Parallel-Plate Waveguide. The parallel-plate
waveguide normally supports TM and TE modes. It can
also support the TEM mode of propagation as it is formed
with two flat plates or strips as shown in Fig. 2e. The
stripwidth W is assumed to be much greater than the sep-
aration distance d so that the fringing field and any
x components of the field can be ignored. A material
with relative permittivity er and permeability m0 is
assumed to fill the region between the plates.

3.2.1.1. TEM Modes. The TEM mode solution can be
obtained by solving Laplace’s equation as in (43) for the
electrostatic potential f between the two plates:

r2
t fðx; yÞ¼ 0 for 0 
 x 
 W and 0 
 y 
 d ð43Þ

The initial boundary conditions for potentials are

fðx; 0Þ¼ 0

fðx;dÞ¼V0

ð44Þ

Since there is no variation in the x plane, the equation can
be solved with given boundary conditions and the trans-
verse electric field and magnetic field components can be
calculated. Once the electric field is derived, the voltage
and the current on the top plate can be calculated from the

electric field component and the surface current density,
respectively. The characteristic impedance of the parallel
plate can be found as follows:

Z0¼
V

I
¼

dZ
o

ð45Þ

The Z0 depends only on geometry and the material pa-
rameter. The attenuation due to dielectric loss is given as
follows:

ad¼
k tan d

2
ðNp=mÞ ð46Þ

The conductor attenuation for different mode of propaga-
tion can be calculated from the following equations:

ac¼
Rs

Zd
ðNp=mÞ ðfor TEM modeÞ ð47Þ

ac¼
2k2

c Rs

kbZd
ðNp=mÞ ðfor TEn modeÞ ð48Þ

ac¼
2kRs

bZd
ðNp=mÞ ðfor TMn modesÞ ð49Þ

The cutoff frequency and propagation constant for TEn and
TMn modes are

fc;TM¼
Z

2d
ffiffiffiffiffi
me
p ð50Þ

and the propagation constant is

bTE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �

np
d

� 	2
r

ð51Þ

The wave impedance of TEn and TMn modes are frequen-
cy-dependent and are given as

ZTM¼
�Ey

Hx
¼

bZ
k

ð52Þ

ZTE¼
Ex

Hy
¼

kZ
b

ð53Þ

The attenuation due to conductor loss for TM1, TE1, and
TEM modes in a parallel-plate waveguide is shown in
Fig. 12. At the cutoff frequency the attenuation reaches
infinity, prohibiting the propagation of modes.

3.2.2. Rectangular Waveguide. The rectangular wave-
guide can propagate TM or TE modes, but not TEM modes.
The uniform rectangular waveguide structure is shown in
Fig. 13. The propagation is in the z direction.

The cutoff frequency for TEmn modes can be calculated
as follows:

fc;mn¼
1

2p
ffiffiffiffiffi
me
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp
a

� 	2
þ

np
b

� 	2
r

ð54Þ
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The mode with the lowest cutoff frequency is called the
dominant mode. As we have assumed previously that
a4b, the lowest fc occurs for the TE10 mode (for m¼ 1
and n¼ 0):

fc;10¼
1

2a
ffiffiffiffiffi
me
p ð55Þ

The propagation constant of TE mode is

bTE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

c

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �

mp
a

� 	2
�

np
b

� 	2
r

ð56Þ

The wave impedance that relates the transverse electric
and magnetic fields is

ZTE¼
Ex

Hy
¼

kZ
b

ð57Þ

where Z¼
ffiffiffiffiffi
me
p

, the intrinsic impedance of the material
filling the waveguide.

The attenuation due to dielectric loss is shown in
Fig. 14 for various TE and TM modes of rectangular wave-
guide WR-90 with an aluminum wall.

3.2.3. Circular Waveguide. The cross sectional view of a
circular waveguide is shown in Fig. 15. Circular wave-
guides support TE and TM modes of propagation. Circular
waveguides also used in many applications as guiding
structures in the propagation of microwave energy.

The field equations are solved in cylindrical coordinates
for both TEmn and TMmn modes as

@2

@r2
þ

1

r
@

@r
þ

1

r2

@2

@j2
þ k2

c

� �
hzðr;jÞ

ezðr;jÞ
¼ 0 ð58Þ

where hz and ez respectively are electric and magnetic
fields. The dominant mode in circular waveguide is TE11

mode. The propagation constant and cutoff frequency for
TEmn modes are expressed as follows:

bTE;nm¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

c

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �

r0nm

a

� �2
s

ð59Þ

fc;nm¼
kc

2p
ffiffiffiffiffi
me
p ¼

r0nm

2ap
ffiffiffiffiffi
me
p ð60Þ
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Figure 12. Attenuation due to conductor loss for TEM, TM1, and
TE1 modes of a parallel-plate waveguide.

X

b

0 a

Ey = 0 at x = 0

Ez = 0 at x = 0

Z

Y

Figure 13. Coordinate system and electric field distribution in a
rectangular waveguide.
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For TMmn modes the propagation constant and cutoff fre-
quency are expressed as

bTM;nm¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

c

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �

rnm

a

� 	2
r

ð61Þ

fc;nm¼
kc

2p
ffiffiffiffiffi
me
p ¼

rnm

2ap
ffiffiffiffiffi
me
p ð62Þ

where r and r0 are the mth roots of Bessel’s functions Jn(x)
and its first derivatives Jn

0ðxÞ with order n, respectively.
The attenuation due to conductor loss in an aluminum
circular guide with radius 2.45 cm for different modes is
shown in Fig. 16. As can be seen, the attenuation decreas-
es to a very small quantity at higher frequency of opera-
tion. The transverse field patterns and the cutoff
frequencies of various modes are shown in Figs. 17a and
17b, respectively.

3.2.4. Elliptic Waveguide. The elliptic waveguide is a
cylindrical waveguide where the transverse section is of
elliptical form, as shown in Fig. 18.

The readers are referred to other sources [1–3] for
quantitative information on elliptic waveguides. The

dominant mode in elliptic waveguide is the eH11 mode.
One major application of elliptical waveguide is imped-
ance matching. The transverse electric and magnetic field
patterns of several lower order modes in an elliptical
waveguide with eccentricity e¼ 0.75 are shown in
Fig. 19 [2].

3.2.5. Microstrip Line. The microstrip line is one of
the most popular transmission lines [10] because it can be
fabricated using the photolithography process and easily
integrated with other active and passive microwave
devices up to the millimeter-wave frequency band. The
geometry of the microstrip transmission line is shown in
Fig. 20.

The broad range of microwave components such as fil-
ters, resonators, diplexer, distribution networks, and
matching circuits are made with microstrip lines. Al-
though the microstrip structure is physically simple, the
theoretical analysis is rather complex. A number of meth-
ods are employed to analyze the behavior of the microstrip
line. However, there are closed-form analytical expres-
sions for the characteristic impedance and propagation
velocity [11]. The microstrip line supports quasi-TEM
mode as the pure TEM mode is impossible because of
the air–dielectric interface. Most of the power is confined
to the region bounded by the width of the microstrip
line,called the fringing field. Due to the presence of air
in the fringing-field region, some of the power may radiate
into free space. However, using a high-dielectric substrate
and shielding the structure, the power loss due to radia-
tion can be minimized. The microstrip medium is disper-
sive and supports higher-order modes. Nevertheless, its
popularity is the result of the ease in integration with
surface mountable chip components such as chip capaci-
tors, chip resistors, and other lumped elements with good
thermal dissipation properties of the medium without dis-
turbing the RF propagation.

To design a basic microstrip line, it is important to
know the characteristic impedance and effective permit-
tivity, which is normally frequency-dependent. Many
varieties of approximations have been reported in the
literature [3]. However, the fairest and most accurate
method in determining the characteristic impedance and
effective permittivity [7] is outlined below:

Z0¼
Z

2p
ffiffiffiffiffiffi
ere
p ln

8d

W
þ0:25

W

d

� �
for

W

d

 1

� �

Z0¼
Zffiffiffiffiffiffi
ere
p

W

d
þ1:393þ0:667 ln 1:444þ

W

d

� �� ��1

for
W

d
� 1

� �
ð63Þ

where W is the width of the microstrip line, h is the height,
and ere is the effective relative permittivity of the dielectric
slab.
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Figure 15. Cross sectional view of a circular waveguide.
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The effective permittivity can be expressed as
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With these equations, the characteristic impedance and
effective dielectric constant of a microstrip line can be
evaluated. All modern microwave computer-aided design
tools are equipped with these calculations for the charac-
teristic impedance, linewidth, and effective dielectric con-
stant of microstrip lines. At higher-frequency operation
other factors such as decreased Q factors, radiation loss,
surface-wave loss, and higher-order mode propagation are
very critical in the design of microstrip lines. Figure 21
illustrates variation in the characteristic impedance and
effective dielectric constants with respect to width for a
microstrip line designed for two different substrates of

y

a

x

b

Figure 18. Geometry of the elliptical waveguide.
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Figure 17. (a) Transverse field patterns of various modes in circular waveguide; (b) locations of
cutoff frequencies of the first few TE and TM modes.
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dielectric constant of 2.0 and 10.5. As can be seen in Fig.
21a, the characteristic impedance decreases with the
width–height ratio of the dielectric substrate. With high-
er dielectric constants the characteristic impedance is
lower for the same dimension of line. As shown in Fig.
21b, the effective dielectric constant increases with the
width–height ratio of microstrip lines. A microstrip real-
ization of a quadrature direct conversion receiver [15] de-
signed on RT Duroid substrate of dielectric constant of

10.5 and 0.635 mm thickness is presented in Fig. 22. As
can be seen in the figure, all active and passive microwave
devices such as quadrature hybrid coupler, asymmetric
coupled-line bandpass filters, lowpass filters, Wilkinson
power divider, and even harmonic mixer (EHMIX) are de-
signed using photolithographic processes. The lumped
components such as chip resistors, capacitors, and diode
mixers are soldered on the microstrip lines. Thus micro-
strip lines have created a revolution in high-frequency and
microwave circuits.

3.2.6. Slotline. Slotlines are planar transmission-line
structures that are widely used in MMIC circuits. The
basic slotline structure, shown in Fig. 23, consists of a
dielectric slab with a narrow slot etched on the ground
plane on only one side of the dielectric slab. This geometry
is planar and well suited for MIC/MMIC designs. The
wave propagates along the slot with the major electric
field component oriented across the slot while the mag-
netic field is in the plane perpendicular to the slot. The
mode of propagation in slotline is non-TEM in nature.
Unlike the conventional waveguide, in the slotline there is
no cutoff frequency and propagation occurs at all frequen-
cies down to zero. Because of the slotline’s non-TEM

eH01 eE01

eH11 eE11

oH11 oE11

Figure 19. Field distribution of modes in
elliptic waveguides [2].

Wd 

Substrate GND plane

Microstrip line

�r

Figure 20. Structure of the microstrip line.
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nature, the characteristic impedance and phase velocity
are not constant but vary with frequency at a slow rate.
The characteristics of the slotline with regard to dielectric
thickness are shown in Fig. 24 [6]. Readers are referred to

the literature [3] for a detailed theoretical analysis of slot-
line structures.

3.2.7. Coplanar Waveguide Transmission Line. The ge-
ometry of coplanar waveguide (CPW), shown in Fig. 25,
consists of two slots of width w etched on the ground
plane of a dielectric substrate and separated by a spacing
s. This structure is also referred to as a uniplanar struc-
ture as the signal-carrying line lies along with the
ground plane in the same plane. This structure often
demonstrates better dispersion behavior than does the
microstrip line [4,5]. As a result of low parasitic effects,
this structure is a good choice for higher-frequency oper-
ation. The characteristic impedance of the line depends
primarily on the width of slots and their spacing for a
given substrate.

The characteristic of a CPW line are shown in Fig. 26.
The variation of effective dielectric constant and charac-
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Figure 21. The characteristic of microstrip line. The variation of
(a): characteristic impedance and (b): effective permittivity of the
medium as a parameter of width.
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Figure 23. Slotline geometry.
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teristic impedance as line parameters can be a useful
tool for the design of the CPW line and its associated
components. A detailed analysis and closed-form expres-
sions of CPWs are reported in Ref. 8.

Figure 27 is a photograph of various MMIC slot anten-
nas on coplanar waveguides designed on GaAs substrate
near 24 GHz. The slot dipole is fed through a CPW
line, and the calculated and measured performances of

the antenna is shown in Fig. 28. The details of antenna
design are reported in Ref. 9.

4. CONCLUSION

This article has presented a historic perspective of coaxial
cables and waveguides and has reviewed market poten-
tials of coaxial cables, waveguides, and accessories. The
classifications of various transmission lines according to
the modes excited in the particular transmission lines
have been shown. Two-wire transmission lines such as co-
axial cables, parallel-plate waveguides, and microstrip
lines support TEM mode fields. The single-conductor
transmission lines support non-TEM mode fields such as
TE and TM modes. Next, the classical transmission line
theory has been derived in the ‘‘telegrapher’’ equation.
Next, the coaxial cable has been discussed. The design
parameters, higher-order mode cutoff frequency, and at-
tenuation of coaxial cables were presented. The two main
types of coaxial cable are flexible and semirigid coaxial
cables. The most recent developments of extremely high-
frequency coaxial cables exploiting MMIC and MEMS pro-
cessing techniques were presented. It was shown that
MEMS microcoaxial cable is low-loss even at very high
frequencies such as in the millimeter-wave range.

Various waveguides in the form of parallel-plate wave-
guides and rectangular, circular, and elliptical waveguides
were presented in terms of their cutoff frequencies and
attenuation. Finally different planar waveguides such as
microstrip lines, slotlines, and coplanar waveguides were
presented. Their design formulas were also given for the
benefit of designers.
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Figure 26. The characteristics of a CPW line: (a) variation of ef-
fective dielectric constant; (b) variation of characteristic imped-
ance of Z0 with CPW line parameters [8].

Figure 27. Photograph of a coplanar-waveguide-fed MMIC an-
tenna on GaAs substrate near 24 GHz. (Courtesy PWTC,
Nanyang Technological University, Singapore.)
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Figure 25. The geometry of a CPW line.
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COMBLINE FILTERS

CHI WANG

Orbital Sciences Corporation
Dulles, Virginia

1. INTRODUCTION

Combline filters are one of the most widely used types of
bandpass filters in many communication systems and other
microwave applications because of many of their unique
merits. The first combline filter was introduced by Mat-
thaei in 1963 [2]. The design equations and procedures of
the rectangular bar combline filter with narrow to mod-
erate bandwidth, using the coupled rectangular bar de-
sign data from Getsinger [3], were also given by Matthaei
[1,2]. Cristal [4,5] later presented the data for coupled cir-
cular cylindrical rods between parallel ground planes;
thus, more manufacturing-advantageous and cost-effec-
tive cylindrical rod combline filters can be designed with
reasonable accuracy and excellent electrical performance.
Although Matthaei’s design equations were based on
approximations, the results were shown to be reasonably
good for narrow-to-octave bandwidth applications.
Wenzel’s exact analysis approach or full-wave electromag-
netic simulations can be used for more accurate designs
[9–11]. Combline filters with elliptic function frequency
responses, first presented by Rhodes and Levy, give great
flexibility in their configuration and responses [6].

With the rapid development of satellite communica-
tions since the 1970s and mobile communications since
the 1980s, generalized filters with elliptic function re-
sponses having cross-couplings between nonadjacent res-
onators are widely used [6–8,13,22–27]. Combline filters
are particularly suitable for achieving elliptic function re-
sponse and for high-volume, low-cost production, because
all the resonator rods can be mounted or built in on the
common surface of the filter housing, while all the tuning
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Figure 28. (a) CPW-fed slot dipole antenna at 24 GHz; (b) calculated and measured return loss of
the antenna [9].
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screws are mounted in a single cover. In addition, the res-
onator locations of the combline filter may be flexibly ar-
ranged according to the filter’s coupling matrix and
system mechanical requirement. The combination allows
filters with large numbers of resonators and complicated
cross-coupling configuration to be tuned nearly to theo-
retical performance without excessive cost.

In the physical realization of combline filters, the input
and output couplings can be achieved by a short-circuited
coupled line as part of an impedance transforming section,
or an inductively coupled loop, a capacitive coupled probe,
or by a direct, tapped-in line. The direct-tapped input/out-
put configuration makes the combline filter more compact
and easy to fabricate and therefore is more advantageous
than other types of input/output structures [14–20]. This
method was first described in the literature by Dishal [15]
for small-percentage-bandwidth interdigital filters, and by
Cohn [16] for combline filters. Cristal [17] gave exact gen-
eral equivalent circuits for combline and interdigital ar-
rays using graph transformations; thus the tapped line
can be designed with high accuracy.

It is well known that the difference between the mea-
sured results and the design based on the conventional
TEM combline theory can be as much as 30% depending
on the filter’s bandwidth [21]. Using full-wave electromag-
netic computer-aided design (CAD) tools, combline filters
can be designed in high accuracy with arbitrary resonator
and coupling aperture dimensions [21,48]. The unloaded
Q and the spurious responses of the resonators can be
computed accurately from the electromagnetic simulators.
Furthermore, the temperature characteristic and power
handling capability of combline filters can be accurately
determined [50–52].

Ceramic combline filters were introduced in the
1980s to satisfy the needs for miniature filters for
mobile communications taking advantage of the develop-
ment of high-dielectric-constant, low-loss dielectric
materials. They have been widely used in many commu-
nication systems [40–47]. Ceramic combline filters can be
manufactured using single or multiple solid ceramic
blocks with a metallized exterior. The resonator rods are
realized by a series of metallized holes that are grounded
at one end of the block, where the opposite ends of the
blocks are kept open. Therefore, the resonator lines are
around a quarter-wavelength long at resonance. Cou-
plings between adjacent resonators can be achieved by ei-
ther series capacitors or apertures [42,48]. These ceramic
combline filters can be designed and manufactured with
high accuracy, and are very suitable for low-cost mass
production.

Combline filters are most suitable for applications re-
quiring relatively low insertion loss in the frequency range
between 500 MHz and 12 GHz, and they have following
attractive features:

1. They are compact. The length of the resonator rods
may be designed to be l0/8 or less at resonance. The
unloaded Q of the resonator cavity is a function of its
cross section. Therefore the size of the combline fil-
ter can be varied depending on the applications.

2. Combline filters possess the ability to be tuned over
a wide range of frequencies without suffering signif-
icant degradation in performance [2,12]. The tuning
range is a function of the amount of capacitance ad-
justment provided by the tuning screw.

3. The combline resonator has very high unloaded Q:
volume ratio compared with other types of resona-
tors, such as empty waveguide cavity and dielectric
loaded resonators, although the combline resonator
doesn’t give the highest unloaded Q value.

4. They have strong stopbands, and the stopband
above the primary passband can be made very
broad. Combline filters may be designed to be spu-
rious-free over 3–4 times the center frequency of the
filter.

5. Adequate coupling can be maintained between reso-
nator elements with sizable spacing between such
resonator lines.

6. They are reliable, low in cost, and very suitable for
manufacturing. All resonator rods can be mounted
or built in to the filter housing, and all tuning screws
can be directly attached to the housing or cover. In
addition, all the materials are readily available and
can be modified easily.

2. CONFIGURATIONS

A combline filter usually consists of a conductive enclosure
and a number of parallel conductive rods serving as res-
onators, which are short-circuited at one end and open-
circuited at the other end. The open ends of the resonator
rods are usually close to one side of the enclosure in order
to create sufficient capacitance between the rod and the
ground. Coupling between resonators is achieved by way
of the EM coupling between resonator lines. The input and
output coupling may be achieved in several ways as stated
in the introduction.

Figure 1 shows a combline bandpass filter in transmis-
sion-line form. The resonators of the filter consist of
TEM-mode transmission-line elements that have a
lumped capacitor Cs

k between the open end of each reso-
nator line element and ground. Lines 1 through n and
their associated capacitances Cs

1 to Cs
n constitute resona-

tors, while lines 0 and nþ 1 are not resonators but part of
impedance transforming sections at both ends of the filter.

With the lumped capacitors present, the resonator lines
will be less than a quarter-wavelength long at resonance,
and the coupling between resonators will be predominant-
ly magnetic in nature. It is usually desirable to make the
capacitances of the combline filter sufficiently large so that
the resonator lines will have a length of l0/6 or less at
resonance.

The second passband of the combline filter occurs when
the resonator line elements are somewhat over a half-
wavelength long, so if the resonator lines are l0/8 long at
the primary passband, the second passband will be cen-
tered at somewhat over 4 times the frequency of the first
passband [2]. Therefore, the combline filters can have
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extremely broad spurious-free stopband compared with
other types of filter.

Figure 2 shows the original four-pole combline filter
having the configuration shown in Fig. 1 published by
Matthaei in 1963 with its top cover removed. Figure 3
shows an alternate configuration of the combline filter
that is currently widely used in the industry and is more
favorable for manufacturing. The cross section of the res-
onator rods may be rectangular or circular; the circular
configuration is more common because it is easier to man-
ufacture. Each resonator rod has a counterbored hole at
its open end. A tuning screw in the cover can be adjusted
to penetrate in or out concentrically to the resonator rod to
adjust the resonant frequency of the resonator to the de-
sired value. The tuning screws between the resonator rods
are used to adjust the coupling coefficient between the
resonators.

The input/output coupling can be achieved by short (or
open)-circuited impedance transformer bars as shown in
Matthaei’s original configuration [2], or by direct tap as
shown in Fig. 3. The input/output coupling can also be
achieved by a coupling loop or probe. As the later input/
output coupling methods do not need an extended trans-
mission rod at each end of the combline filter, the filter is
more compact.

The resonator rods can be separate parts mounted into
the filter housing, using screws to achieve good contact, or
can be built into the filter housing so that resonators and
enclosure constitute a single piece, with only a top cover,
tuning screws, and connectors needed to complete the fil-
ter. The couplings between resonators can be controlled by
the spacing between them or by varying the aperture di-
mension on a conductive wall between two resonators. The
resonators can be arranged in a row or in any desired lay-
out depending on the coupling structure of the filter.

Significant progress in microwave filter technology has
taken place since the 1970s, particularly the use of elliptic
function responses using nonadjacent couplings between
resonators together with compact filter configurations
[6–8,13,22,23]. Transmission zeros can be achieved on
the lower, higher side or both sides of the filter’s passband
depending on the attenuation requirements. The resul-
tant filter may have sharper attenuation response; thus
fewer resonators are required, which results in a more
compact filter with lower insertion loss. Figure 4 shows an
example of an elliptic function combline filter with built-in
resonators and a very compact configuration [39].

There are several ways to design a combline filter, but
the most popular method is to use a lowpass prototype fil-
ter. This is transformed into the desired bandpass filter,
and then the physical dimensions are determined by
either approximation or full-wave 3D electromagnetic
simulations. Figure 5 shows the typical design procedure
of a combline filter based on this approach. First, the
specifications are used to determine the desired filter
parameters, such as number of resonators, bandwidth,
passband ripple, and the desired ideal frequency respons-
es from the lowpass prototype filter. Then the filter topol-
ogy and equivalent-circuit parameters, such as filter
element values gk, the admittance inverters Jk,kþ 1, impe-
dance inverters Kk,kþ 1, or coupling matrix Mk,kþ 1, are

θ0 1 2 3 n

n+1

n−1

1 2 3 n−1 n
C1

S C2
S C3

S CS
n−1 Cn

S

YB = YAYA

Impedance
transformer

Resonator
Rod

Figure 1. A combline filter with
short-circuited input/output lines.

Figure 2. The original combline filter [1].
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determined. The required unloaded Q of the resonators is
determined, and the basic cavity and rod dimensions can
then be decided. Finally the rod, spacing, or aperture di-
mensions can be obtained from Matthaei’s approximate
design equations using Getsinger’s or Cristal’s design
charts. A prototype is mode to verify the correctness of
the design and to perform some minor adjustments. Other
practical issues such as temperature compensation and
power handling capability should also be considered.

3. LOWPASS PROTOTYPE

Figure 6 shows a typical Chebyshev response of a lowpass
prototype filter and that of the corresponding bandpass
filter. The lowpass prototype filter is usually chosen to
have unit bandwidth o1

0 for convenience, while the

bandwidth of the bandpass filter can be arbitrarily
specified.

The relationship between the lowpass prototype re-
sponse and the corresponding bandpass filter is given as
[1,2]

LAðoÞ¼L0Aðo
0Þ ð1Þ

where

o0 ¼
o01
o

o
o0
�

o0

o

� �
ð2Þ

o¼
o2 � o1

o0
; o0¼

ffiffiffiffiffiffiffiffiffiffiffiffi
o2o1
p

ð3Þ

The mapped lowpass prototype filter response has the
same characteristics as that of the bandpass filter, or vice
versa. Therefore, if the desired bandpass filter has n re-
turn loss poles in passband and m finite transmission ze-
ros in stopband, the corresponding lowpass prototype
filter will also have n poles in passband from �o1

0 to o1
0

at location ai (i¼ 1, 2,y, n) and m zeros in stopband at
location bi (i¼ 1, 2,y, m). The insertion loss and return
loss of the lowpass prototype filter versus frequency can be
expressed in terms of the poles and zeros as

LA ¼ 10 log
1

1þ e f
�� ��2

 !
ð4Þ

LR¼ 10 log
e f
�� ��2

1þ e f
�� ��2

 !
ð5Þ
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TUNING SCREW
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A - A′

COUPLING
TUNING SCREW

Figure 3. A combline filter with tapped-in input/output couplings.

Figure 4. A 12-pole elliptic function combline filter [39].
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where

f¼
P o0ð Þ
Q o0ð Þ

¼

Qn
i¼ 1 o0 � aið ÞQm
i¼ 1 o0 � bið Þ

ð6Þ

e¼ 10LAr=10 � 1 ð7Þ

The approximation problem is to find the locations of the
poles with locations of the given zeros to determine the
equal-ripple passband response. The pole and zero loca-
tions of the transfer function can be determined by opti-
mizing the polynomial function P(o0) through iterations
[7] or by the recursive technique shown by Cameron [26].
For a Chebyshev response, all the transmission zeros are
at infinity, and a closed-form expression for the pole loca-

tions exists, as follows:

ai¼ cos
ð2i� 1Þp

2n

� �
; i¼ 1; 2; . . . ;n ð8Þ

Figure 7 shows the attenuation characteristics for a 0.01-
dB-ripple Chebyshev filter versus number of poles. The
0.01-dB passband ripple gives better than 25 dB return
loss for the ideal case; therefore it is often used as the
starting point for a practical filter design.

Given the transfer function and pole–zero locations of
the lowpass prototype filter, the circuit element values of
the lowpass and bandpass filters can be obtained by net-
work synthesis. The commonly used forms for the proto-
type filter circuits are shown in Fig. 8 using gk (k¼ 0, 1,y,
n, nþ1) as the element values. The prototype filters in
Fig. 8a using the shunt capacitor as the first element and
in Fig. 8b using the series inductor as the first element
have identical responses and gk values; therefore, either
form may be used depending on the applications. When
converting a prototype filter to a bandpass filter, a lowpass
prototype with n reactive elements leads to a bandpass
filter with n resonators.

For Chebyshev filters having passband ripple LAr dB,
g0¼ 1, and o01¼ 1, the remaining g values can be obtained
analytically as follows:

g1¼
2a1

sinh
b

2n

� � ð9Þ

gk¼
4ak�1ak

bk�1gk�1
ð10Þ

gnþ1¼

1 for n odd

coth2 b
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Figure 6. Lowpass prototype and corresponding bandpass filter
responses.
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Figure 5. Typical combline filter design procedure.
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Here

b¼ ln coth
LAr

17:37

� �
ð12Þ

ak¼ sin
ð2k� 1Þp

2n

� �
ð13Þ

bk¼ sinh2 b
2n

� �
þ sin2 kp

n

� �
ð14Þ

Table 1 presents the computed g element values for
Chebyshev filters for n¼ 1 through 10 with 0.01- and
0.1-dB passband ripple levels.

The g values of the lowpass prototype filter given in
Eqs. (9)–(11) are normalized to unit input impedance g0¼

1 and unit bandwidth o01¼ 1. For filters having different
input port impedance and bandwidth, the desired induc-
tance or capacitance values can be easily scaled from the
normalized g values by the following equations

L¼
R0

o0
L0 ð15Þ

C¼
C0

R0o0
ð16Þ
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Figure 7. Attenuations of the 0.01-dB-ripple Chebyshev filters.
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Figure 8. Lowpass filter circuit and parameters (a) a shunt capacitor as first element; (b) a series
inductor as first element.
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where the values of the normalized inductor L0 and ca-
pacitor C0 are equal to the particular g value of the pro-
totype filter.

The lowpass prototype filter circuits in Fig. 8 consist of
both inductors and capacitors. However, in bandpass and
bandstop filter designs, it is desirable to use the same type
of resonator having all inductors or all capacitors in the
prototype filters.

This can be achieved by using the impedance inverter
(K inverter) or admittance inverter (J inverter) as
shown in Fig. 9. The inverters act like frequency-
independent quarter-wavelength lines, so that only
inductors exist in the K-inverter prototype, and only

capacitors in the J-inverter prototype networks.
Figure 9 also gives the equations for converting the g
value of the lowpass filter prototype to these forms.
The components value such as R, L, C, or G in the
prototype circuit using J or K inverters can be chosen
arbitrarily. The frequency responses of the inverter
circuits in Fig. 9 are identical to those of the original pro-
totype filters.

Another commonly used analysis method in the cavity-
type bandpass filter design is to use the coupling matrix.
Figure 10 presents the equivalent circuit of a generalized
coupled bandpass prototype filter using the coupling
matrix [7,26].

Table 1. Element Values for Chebyshev Filters Having g0¼1, x0
0 ¼1 for 0.01- and 0.1-dB Ripples

Value of n g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

0.01 dB ripple
1 0.0960 1.0000
2 0.4488 0.4077 1.1007
3 0.6291 0.9702 0.6291 1.0000
4 0.7128 1.2003 1.3212 0.6476 1.1007
5 0.7563 1.3049 1.5773 1.3049 0.7563 1.0000
6 0.7813 1.3600 1.6896 1.5350 1.4970 0.7098 1.1007
7 0.7969 1.3924 1.7481 1.6331 1.7481 1.3924 0.7969 1.0000
8 0.8072 1.4130 1.7824 1.6833 1.8529 1.6193 1.5554 0.7333 1.1007
9 0.8144 1.4270 1.8043 1.7125 1.9057 1.7125 1.8043 1.4270 0.8144 1.0000
10 0.8196 1.4369 1.8192 1.7311 1.9362 1.7590 1.9055 1.6527 1.5817 0.7446 1.1007

0.1 dB ripple
1 0.3052 1.0000
2 0.8430 0.6220 1.3554
3 1.0315 1.1474 1.0315 1.0000
4 1.1088 1.3061 1.7703 0.8180 1.3554
5 1.1468 1.3712 1.9750 1.3712 1.1468 1.0000
6 1.1681 1.4039 2.0562 1.5170 1.9029 0.8618 1.3554
7 1.1811 1.4228 2.0966 1.5733 2.0966 1.4228 1.1811 1.0000
8 1.1897 1.4346 2.1199 1.6010 2.1699 1.5640 1.9444 0.8778 1.3554
9 1.1956 1.4425 2.1345 1.6167 2.2053 1.6167 2.1345 1.4425 1.1956 1.0000
10 1.1999 1.4481 2.1444 1.6265 2.2253 1.6418 2.2046 1.5821 1.9628 0.8853 1.3554
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Figure 9. Modified prototype using impedance and
admittance inverters.
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A general solution of the narrowband coupled cavity
filter described above has been presented in a paper by
Atia and Williams in the form of the loop equations as [7]

½Z� � ½I� ¼ ½V� ð17Þ

ð½R� þ s½I� þ j½M�Þ

i1

i2

..

.

in�1

in

2
6666666664

3
7777777775
¼

e1

0

..

.

0

0

2
666666664

3
777777775

ð18Þ

where

s¼ jo0 ð19Þ

M½ � ¼

l11 M12 M13 � � � M1;n�1 M1n

M12 l22 M23 � � � M2;n�1 M2n

M13 M23 l33 � � � M3;n�1 M3n

..

. ..
. ..

. . .
. ..

. ..
.

M1;n�1 M2;n�1 M3;n�1 � � � ln�1;n�1 Mn�1;n

M1n M2n M3n � � � Mn�1;n lnn

2
6666666666664

3
7777777777775

ð20Þ

The matrix R has all-zero entries except for the (1, 1) and
(n, n) elements, which are R1 and Rn, respectively. M is the
so-called coupling matrix and has general entries of Mij for
iaj, and lii for i¼ j. lii gives the resonant frequency of
each resonator mapped to the lowpass prototype domain
according to Eqs. (2) and (3).

The coupling matrix of the bandpass filter can be de-
termined by the network synthesis method as described in
Refs. 7 and 26 or by optimization from the pole and zero
locations of the filter’s transfer function [24]. For the case
of direct network optimization, the coupling matrix ele-
ments are the optimization variables and the objective er-
ror function can be established by determining the

difference between the transfer function frequency re-
sponse of the prototype filter and the frequency response
of the optimized filter. The Chebyshev coupling matrix of
the same order can be used as the starting guess of the
coupling matrix.

For filters with Chebyshev frequency responses, the
coupling matrix of the filter can be obtained analytically
from the g values of the prototype filter as

R1¼
1

g0g1
ð21Þ

Mi;iþ 1¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gigiþ 1
p ð22Þ

Rn¼
1

gn�1gn
ð23Þ

where the remaining elements in the coupling matrix are
zero.

As in the case of the lowpass prototype filter, the cou-
pling matrix shown in Eq. (20) is normalized to the pass-
band from –1 to þ 1 and zero center frequency. For a
bandpass filter with center frequency f0, and bandwidth
BW, the required couplings of the filter are the normalized
filter’s coupling elements multiplied by the bandwidth
with the unit same as that of the bandwidth.

4. DIRECT-COUPLED COMBLINE FILTER DESIGN

Matthaei gave the approximate design equations for the
direct-coupled combline filter shown in Fig. 1 in terms of
the resonator rod’s self-capacitance to ground Cj per unit
length, and the mutual capacitance Cj,jþ1 per unit length
between neighboring resonator bars j and jþ 1 [1,2]. The
design equations use the lowpass prototype filter param-
eters gj (i¼ 0,1,y,n,nþ 1) to achieve the desired frequency
responses. The equations are sufficiently accurate for the
applications of narrow bandpass filters with bandwidths
up to octave.

By specifying the width of the filter enclosure and
the resonator rod dimension, the admittance Yaj of the
resonator lines can be computed. It is usually desirable

M1,n

M12
M2,i

M2,n

M1,i

M1,n–1

M2,n–1
Mn–1,n

Mi,n–1
Mi,n

e0
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R2
..... .....

i1 i2 ii in–1 in

(1) (2) (i) (n–1) (n)

Figure 10. A bandpass filter equivalent circuit.
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to choose the ratio of enclosure width to resonator line-
width in the range between 3 and 4 so that optimum
unloaded Q can be achieved. In addition, the electrical
length y0 of the resonator lines ranges between p/4 and
p/3 at center frequency so that the filter will have both
wide spurious-free stopband and less unloaded Q degra-
dation due to excessive end loading in case shunt resona-
tors are used.

4.1. Design Equations

The normalized J-inverter parameters of the combline fil-
ter can then be computed as

GT1¼
ðo2 � o1Þb1

g0g1o0o01
ð24Þ

Jj; jþ 1¼
ðo2 � o1Þ

o0o01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bjbjþ 1

gjgjþ 1

s
ð25Þ

GTn¼
ðo2 � o1Þbn

gngnþ1o0o01
ð26Þ

where

bj¼Yaj
cot y0þ y0 csc2 y0

2

� �
ð27Þ

The normalized self-capacitances per unit length between
each resonator rod and ground are

C0

e
¼

Z0YAffiffiffiffi
er
p 1�

GT1

YA

� �
ð28Þ

C1

e
¼

Z0YAffiffiffiffi
er
p

Ya1

YA
� 1þ

GT1

YA
�

J12

YA
tan y0

� �
þ

C0

e
ð29Þ

Cj

e
¼

Z0YAffiffiffiffi
er
p

Yaj

YA
�

Jj�1; j

YA
tan y0þ

GTn

YA
�

Jj; jþ 1

YA
tan y0

� �
;

j¼ 2 to n� 1

ð30Þ

Cn

e
¼

Z0YAffiffiffiffi
er
p

Yan

YA
� 1þ

GTn

YA
�

Jn�1;n

YA
tan y0

� �
þ

Cnþ 1

e
ð31Þ

Cnþ 1

e
¼

Z0YAffiffiffiffi
er
p 1�

GTn

YA

� �
ð32Þ

The normalized mutual capacitances per unit length be-
tween two adjacent resonator rods are

C01

e
¼

Z0YAffiffiffiffi
er
p �

C0

e
ð33Þ

Cj; jþ 1

e
¼

Z0YAffiffiffiffi
er
p

Jj; jþ 1

YA
tan y0

� �
; j¼ 1 to n� 1 ð34Þ

Cn;nþ 1

e
¼

Z0YAffiffiffiffi
er
p �

Cnþ 1

e
ð35Þ

The required lumped capacitances Cs
j between the open

end of the resonator rod and ground are

Cs
j ¼Yaj

cot y0

o0
; j¼ 1 to n ð36Þ

Knowing the desired self- and mutual capacitances of the
combline filter resonator rods, we can determine the spac-
ing between the adjacent resonators from the Getsinger or
Cristal’s design curves for the parallel-coupled rectangu-
lar or circular bars as described in the following section.

4.2. Parallel-Coupled Bars

The resonator bars of a combline filter can be considered
as an array of the parallel lines. The cross section of the
bar is usually rectangular or circular. The dimensions of
the lines can be related to the various line capacitances
per unit length. The self- and mutual capacitances ob-
tained from Eqs. (28)–(36) can be used to determine the
bar dimensions from Getsinger’s parallel-coupled rectan-
gular line curves for the rectangular cross section resona-
tor rod combline filters, or from Cristal’s parallel-coupled
cylindrical rod design data for the circular cross section
resonator rod combline filters.

4.2.1. Coupled Rectangular Bars between Parallel Pla-
tes. The cross section of a parallel-coupled rectangular
bars under consideration and various line capacitances
are shown in Fig. 11. There are two parallel ground planes
spaced a distance b apart, and a pair of rectangular bars
located parallel to and midway between the ground
planes. Assuming that Ca is the self-capacitance per unit
length between line a and ground, Cab is the mutual ca-
pacitance per unit length between lines a and b, and Cb is
the capacitance per unit length between line b and
ground, then, in terms of odd- and even-mode capacitanc-
es for lines a and b, respectively, we have

Ca
oo¼Caþ 2Cab; Ca

oe¼Ca ð37Þ

Cb
oo¼Cbþ 2Cab; Cb

oe¼Cb ð38Þ

In Fig. 11, the capacitance per unit length of each line has
been separated into component parts by their contribu-
tions. Cp is the parallel-plate capacitance per unit length
from the top or bottom side of one bar to the adjacent
ground plane, C0fe is the fringing capacitance per unit
length to ground from the inner corner when the bars
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are excited in the even mode, and C0fo is the fringing
capacitance per unit length to ground from the inner cor-
ner when the bars are excited in the odd mode. The ca-
pacitance C0f is the fringing capacitance per unit length for
any of the outer corners of the rods. Assuming that all the
coupled bars have the same height and thickness, so that
the fringing capacitances are the same for both bars, the
total self- and mutual capacitances of the coupled bars are

Ca¼ 2ðCa
pþC0f þC0feÞ ð39Þ

Cab¼ ðC
0
fo � C0feÞ ð40Þ

Cb¼2ðCb
pþC0f þC0feÞ ð41Þ

Figures 12–14 give the normalized design charts by Get-
singer [3], which relate DC/e, C0fe=e, C0fo=e, and C0f=e to the
rectangular bar dimensions, where

DC¼Cab ð42Þ

To design a combline filter with rectangular cross section
resonator bars, first compute the Cj and Cj, jþ 1 values of
the filter using Eqs. (28)–(36), and then select a convenient
value for t/b, and use Fig. 12 of DC/e and Cfe

0/e versus s/b
to determine sj, jþ 1/b and also Cfe

0/e. Using t/b and Fig. 14
of Cf

0/e versus t/b, Cf
0/e can be determined. As the par-

allel-plate capacitance Cp/e is given by

Cp

e
¼ 2

w=b

1� t=b
ð43Þ

C′f

C′1

C′f
C′fe C′fe C′fe

C′fe

C′fe

C′fe
C′feC′fe C′fe

C′f Ca
p

Ca
p

s
b

Cb
p

Cb
p

Line a Line b t b

�

wa was

Electric wall for odd mode
Magnetic wall for even mode

t
b = 0.80

0.60

0.40

0.20

0.10
0.05
0.0

0.05
0.0

0.025

0.60
0.40

0.20
0.10

0.025

�

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
0.01

0.02

0.03
0.04
0.05
0.06
0.08
0.10

0.20

0.30
0.40
0.50
0.60
0.80
1.0

2.0

3.0
4.0
5.0
6.0
8.0

10.0

∆c

C
′ f e

ε
ε

∆c
O

R

t
b = 0.80

Figure 12. Fringing capacitances for coupled rectangular bars.
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when the ground-plane spacing b is specified, the desired
bar width wj can be determined as follows:

wj

b
¼

1

2
1�

t

b

� �
1

2

Cj

e

� �
�
ðC0feÞj�1;j

e
�
ðC0feÞj; jþ 1

e

� �
ð44Þ

wj

b
¼

1

2
1�

t

b

� �
1

2

Cj

e

� �
�

C0fe
e
�

C0f
e

� �
ð45Þ

4.2.2. Coupled Circular Rods between Parallel
Plates. Combline filters made from circular cylindrical

resonator rods can achieve the same excellent electrical
performance and at the same time may offer manufactur-
ing advantages. Cristal has given design data for coupled
circular cylindrical rods between parallel ground planes
[4] that can be used to accurately design a combline filter
with circular resonator rods. Figure 15 shows the geome-
try of the periodic, circular cylindrical rods between par-
allel ground planes under consideration. The circular rods
have diameter d and are spaced periodically at a distance
c. The ground planes are separated at distance b.

The spacing between adjacent rod surfaces is denoted
by s and is given by

s¼ c� d ð46Þ

The total static capacitances of the rods are related to the
mutual capacitance between two adjacent rods Cm and the
self-capacitance Cg of each rod. The total capacitance
measured between one rod and ground when the rods
are driven in the odd mode is

Co¼Cgþ 4Cm ð47Þ
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Figure 13. Odd-mode fringing capacitances for coupled rectangular bars.

t b

0.0
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

1.00.90.80.70.60.50.40.30.20.1
t
b

C
′ f

C′f
C′f

�

Figure 14. Fringing capacitance for an isolated rectangular bar.

c g

2

c g

2

c g

2

c g

2

c g

2

c g

2

c m c m

c
s

b d

Figure 15. Cross section of parallel-coupled circular rods.

684 COMBLINE FILTERS



assuming that both sides of the rod are having the same
potential conditions. The total capacitance measured be-
tween one rod and ground when the rods are driven in the
even mode is

Ce¼Cg ð48Þ

From Eqs. (47) and (48) we can obtain

Cm¼
1
4ðCo � 4CeÞ ð49Þ

Cristal’s design graphs of the normalized capacitance C/e
versus normalized spacing s/b are given in Fig. 16 for Cm/
e and in Fig. 17 for 1

2 Cg=e.
As in the rectangular cross section resonator bar case,

to design a combline filter with circular cylindrical reso-
nator rod, one first needs to compute the Cj and Cj; jþ 1

values of the filter using Eqs. (28)–(36), where

Co¼Cj ð50Þ

Cm¼Cj; jþ 1 ð51Þ

and then use Fig. 17 of Cm/e to determine the rod spacing
sj; jþ 1=b and use Fig. 16 of Cg/e to determine the normal-
ized rod diameter d/b.

4.3. Tapped-Line Input and Output

For a tap point located around the bottom 20% of a l/4-long
resonator rod, the relationship between the tap point and
the resulting loaded Qe is given approximately by [15]

Qe¼
p
4

R

Z0

� �
1

sin2
½ðp=2Þðl=LÞ�

" #
ð52Þ

Qe¼
f0

R1BW
ð53Þ

where l is the height of the tap point to the bottom of the
resonator rod; L is the equivalent height of the resonator
rod, which is equal to l/4; R is the impedance of the input
or output port; R1 is the element of the filter’s coupling
matrix; and Z0 is the impedance of the resonator rod.
Figure 18 shows the graph of the equation for the
loaded Q.
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Cristal [17] later presented a general open-wire equiv-
alent circuit considering the effects of the coupled resona-
tors using a graph transformation process for combline
and interdigital filter designs. In previous papers he as-
sumed that the input or output port will be directly
connected to the tapped-in point. However, for practical
applications, the tapped line will have an impedance
different from that of the input/output port and resonator
rod with a given electrical length. The tapped-line length
and impedance can have significant effect and therefore
should be included in the analysis of the combline filter
input/output couplings. Figure 19 shows an equivalent
circuit of the tapped-line input/output coupling neglecting
the effect of the rest of the resonators. In Cristal’s ap-
proach, the graph transformation process or a circuit sim-
ulator can be used to solve the tapped-line coupling
circuit.

5. FILTER TOPOLOGIES

The combline filter design equations presented in the pre-
vious sections are approximate and based on the direct-
coupled filter type, typically exhibiting Chebyshev fre-
quency responses. The stopband attenuation level is de-
termined mainly by the number of stages of the filter. The
use of nonadjacent or cross-couplings in the narrow-band-
width bandpass filter with elliptic function response per-
mits great flexibility in the choice of the frequency
response. As a result, a smaller number of resonators
are required to meet the attenuation specification.

Theoretically, cross-coupling can be applied between
any two nonadjacent resonators of the filter, and also in-
cluding the input and output ports. However, in practical
applications the cross-couplings that can be applied are
usually limited by the physical layout and complexity of
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the filters. The advantage of the filter with an extra num-
ber of cross-couplings may be offset by the layout limita-
tion, with much more development effort and the
sensitivity of the filter network, leading to longer tuning
time and poorer temperature stability.

Combline filters with either asymmetric or symmetric
frequency response may be realized to meet the desired
attenuation characteristics by applying the proper cross-
coupling topology and values. For each desired filter trans-
fer function, the configuration or topology that can achieve
the targeted frequency response is not unique. However, it
is usually preferable to achieve the desired frequency re-
sponse by using known simple topologies. Figure 20 shows
typical canonical-form coupled resonator filters with
cross-couplings that can achieve the asymmetric frequen-
cy response in part (a), and symmetric frequency response
in part (b) [13]. Topologies for so-called CQ and CT filters
are shown in Fig. 21.

Filters having complicated cross-coupling structures as
shown in Fig. 20 can achieve more transmission zeros us-
ing a minimum number of cross-couplings. However, each
cross-coupling may affect more than one transmission zero
location, which usually makes them more difficult to tune.
For commercial applications when cost is a main concern,
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the filter topology that makes the filter easy to design and
to tune will be very attractive to filter designers.

The cascaded triplet (CT) or cascaded quadruplet (CQ)
sections are relatively simple to tune. Each section is typ-
ically responsible only for the transmission zeros that it
generates and therefore can be used as a basic building
block to create more complicated filter structures.
Figure 22 presents the examples using two CT or CQ
sections in the cascaded filters.

A CT filter consists of cascaded groups of three cavities
or nodes, each with one cross-coupling between first and
third resonators in the CT section. The cross section will
introduce one transmission zero at either the lower or the
higher side of the passband depending on the sign of the
cross-coupling. A cross-coupling with negative sign or ca-
pacitive-type coupling will generate the transmission zero
at the lower side, while the positive or inductive cross-
coupling will generate the transmission zero at the higher
side. An aperture between two combline resonators usu-
ally achieves positive coupling unless the aperture is at
the top of the cavity and the electrical length of the comb-

line rod is over 751 [48]. A coupling bar or probe between
the top of the resonators can usually achieve the required
capacitive coupling.

Similarly, a CQ filter consists of cascaded groups of four
cavities or nodes, each with one cross-coupling between
the first and fourth resonators in the CQ section. When
the cross-coupling is capacitive, one symmetric pair of
transmission zeros one at each side can be achieved. For
inductive cross-coupling, a pair of zeros will be on the real
axes, and as a result the group delay frequency response of
the filter may be equalized.
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If the quadruplet section has two cross-couplings as
shown in Fig. 23, two asymmetric transmission zeros may
then be achieved. The locations of the zeros depend on the
relative sign of the couplings. Assuming that all the adja-
cent couplings are inductive, Table 2 summarizes the lo-
cations of the zeros corresponding to the sign of the cross-
couplings. Similarly, a general five-resonator section with
three transmission zeros can be analyzed [25]. Figure 24
gives an example of an eight-pole combline filter having
five transmission zeros using multiple cross-coupling four-
and five-resonator sections. The three high-side zeros are
realized by the 1–5 cross-coupled five-resonator section,
while the two low-side zeros are realized by the 5–8 cross-
coupled four-resonator section.

As a general rule, a simple Chebyshev response filter
that meets the passband, but not the stopband, require-
ments would be used as the starting point of the design.
By bringing transmission zeros from DC or infinity to
finite frequencies, the desired stopband characteristics
can be achieved. In most cases, the overall degree of the
filter can be reduced compared with a Chebyshev design
that meets the same requirements.

6. EM SIMULATIONS

To realize narrowband combline filters with relatively
complex resonator topologies, all physical parameters
such as cavity and aperture dimensions need to be deter-
mined from the given coupling matrix. Such filter designs
are now increasingly dependent on accurate electro-
magnetic (EM) computer simulations, due to complexity
of the filter structures. As a result, strong interaction

between resonators cannot be neglected and should be
considered in the design. These requirements usually can
be satisfied only by EM simulation. As shown in Fig. 5, the
approximate design equations from Eqs. (24)–(53) for
space-coupled combline cases can be replaced completely
by EM simulations.

6.1. EM Simulators and Methods

Three-dimensional (3D) EM simulation software is usual-
ly preferred for use in cavity-type combline filter design.
The most commonly used numerical techniques for arbi-
trary structures are the finite-element method (FEM) and
the finite-difference time-domain method (FDTD). These
methods can analyze complex structures but usually re-
quire large amounts of memory and long computation
time. Other computer software can solve some common
structures very efficiently (using much less memory) by
utilizing the properties of the structure, such as the mode-
matching (MM) and transmission-line matrix (TLM)
methods. For planar structure problems, the method of
moment method (MoM) is usually used.

The commonly used commercial EM simulators are
Ansoft or Agilent’s HFSS using FEM, CST’s Microwave
Studio using the FDTD method for 3D arbitrary struc-
tures, Agilent’s Momentum using FEM, Sonnet’s Em, and
Zeland’s IE3D using MoM for 3D planar structures.

For narrow-bandwidth-coupled resonator filter design,
it is usually convenient to divide the filter into individual
pieces to determine the cavity and aperture dimension
separately when using the EM simulation software to
perform the design from the efficiency and memory usage
point of view; otherwise too much simulation time will be

4 3

1 2
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M34

M23
M24M14

M12

Figure 23. Generalized quadruplet section for two-transmission-
zero implementation.

Table 2. Locations of Transmission Zeros for Generalized
Quadruplet Section

Case M14 M24 Number of Zeros (of0,4f0)

1 ¼0 o0 1 (1, 0)
2 ¼0 40 1 (0, 1)
3 o0 ¼0 2 (1, 1)
4 40 ¼0 2 (j, j)
5 40 40 2 (0, 2)
6 40 o0 2 (2, 0)
7 o0 o0 2 (1, 1)
8 o0 40 2 (1, 1)

2 1 8 7

3 4 5 6

2 8 7
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Figure 24. An eight-pole combline filter with five transmission
zeros: (a) equivalent circuit; (b) layout; (c) measured frequency
response.
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needed. Most of the parameters will be fine-tuned by tun-
ing screws at the prototype stage and during production.

6.2. Resonant Frequency

An EM simulator can model the resonator and determine
the resonant frequencies of both the fundamental and
higher-order modes. In addition, the field distributions of
the resonant cavity can be obtained, including the tuning
screw as shown in Fig. 25. Figure 26 presents the typical
higher-order mode chart of the combline resonators with
the airgap between the rod and enclosure as a variable. It
is shown that TM02 and HE11 are the first two higher-or-
der modes of the typical combline resonator. For the small-
gap case, a resonator with a shorter length has a larger
mode separation. The resonant frequency of the first
higher-order mode can be 3–5 times the dominant

mode resonant frequency when the height of the cavity
is 0.5–1.0 times the diameter of the cavity. The typical
small-gap reentrant cavity bandpass filter can achieve
a spurious-free range of more than twice the center
frequency. This mode separation ratio decreases as the
gap increases.

6.3. Unloaded Q

Accurate determination of the unloaded Q factor of the
resonator is very important for combline filter design,
since it directly relates to loss, size, and cost of the filter.
Empirically, the unloaded Q of a combline resonator can
be estimated from the measurements of many practical
filters using the equation [21]

Q¼Kb
ffiffiffiffi
f0

p
ð54Þ

where b is the width of the cavity in inches, f0 is the res-
onant frequency in gigahertz, and K is a constant approx-
imately equal to 1600 with b less than 0.08l for a practical
silver-plated combline resonator. However, when b is
above 0.08l, K increases, and can be as much as 2800 for
b¼ 0.18l. Figure 27 shows the measured unloaded Q of
the combline resonator expressed in K values with b/l in
terms of K as a function of b/l in the range between 0.12
and 0.20. The practical Q is dependent on factors such as
surface roughness, plating quality, tuning screw penetra-
tion, and possible surface contact problems, which partial-
ly explains the spread in the K values of various designs
having the same b/l.

EM simulation software can compute the unloaded Q of
a cavity accurately. Since a combline resonator has small

Figure 26. Typical mode chart of a combline resonator relative to
dominant mode as a function of gap.
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loss, a perturbation method is usually incorporated for
this kind of computation. Figure 28 shows the computed
unloaded Q of the combline resonators versus the ratio of
the outer/inner diameter ratio D2/D1 with different rod
lengths. It is shown that maximum unloaded Q of the res-
onators occurs when D2/D1 is approximately 3.6. Longer
rod length yields higher unloaded Q for the same D1

and D2.
Both the resonant frequency and unloaded Q decrease

when the tuning screw penetrates into the cavity. The
tuning screw may have a strong effect on unloaded Q of
the combline resonator, which should be considered in the
filter design. Figure 29 shows the computed unloaded Q of
a combline resonator versus resonant frequency change by
the tuning screw.

7. TYPICAL APPLICATIONS

Combline filters have been widely used in many commu-
nication systems and microwave applications. They have
become more and more important for low-loss microwave
filters in the 0.5–12 GHz frequency band for both narrow-
and wideband applications. Applications of combline fil-
ters also include diplexers (duplexers), multiplexers, and
delay-line filters. When a combline cavity is filled with a
high dielectric constant material, it results in a dielectric
resonator having significantly reduced dimensions.

Another application for combline filters is to replace the
lowpass filter to achieve a very wideband spurious-free
response in the system [49]. For this type of application,
the bandwidth of the filter is usually relatively large and
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therefore does not require very high unloaded Q; thus the
filter can be very small in size. As the combline resonator
can have superior stopband performance, wideband spu-
rious-free performance with a sharp rolloff skirt can be
achieved easily with combline resonator filters.

Multiplexers, particularly duplexers, are frequently re-
quired by communication systems for RF front ends to
separate or combine both transmit and receive signals
[28–37]. A schematic drawing of a commonly used paral-
lel-connected multiplexer with N channels is shown in
Fig. 30. The multiplexer consists of channel filters and a
susceptance annulling network, which in turn consists of
transmission lines series-connected to each channel filter

and a shunt susceptance element at a common input port
to help provide a nearly constant total input admittance
[33–38]. The susceptance annulling network is achieved
by optimizing the length and characteristic impedance of
the transmission lines and the shunt susceptance element
value to minimize the interaction among the channels. For
narrowband applications, the suceptance jB0 of the an-
nulling network can be maintained by offsetting the res-
onant frequency of the first cavities of the channel filters
to cancel the susceptance of the channel filters. Figure 31
is a photograph of a DCS (digital communication system)
duplexer consisting of two 6-pole combline filters. Each
channel filter has two CT sections having two transmis-
sion zeros at one side. Figure 32 presents the measured
frequency response of the duplexer.
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1. CONSTITUTIVE RELATIONS

For most media, the general form of constitutive relations
that account for multiple effects resulting from interaction
between electromagnetic waves and media can be ex-
pressed by [1]

Di¼ eijEjþ gE
ij@tEjþ xE

ijkDjEk

þbE
ijBjþ aE

ij@tBjþ ZE
ijkDjBkþ � � �

ð1aÞ

Hi¼ m�1
ij Bjþ gB

ij@tBjþ ZB
ijkDjBk

þ bB
ijEjþ aB

ij@tEjþ ZB
ijkDjEkþ � � �

ð1bÞ

where Ek and Hi are the electric and magnetic field
components; Di and Bk are electric and magnetic induction
components; and eij, gij

B, ZE
ijk, and so on are constitutive

tensors of different ranks. The space Dj and time @t

derivatives take into account spatial and temporal varia-
tions of the field.

For linear, stationary, and dispersive bianisotropic
media in the frequency domain, their constitutive rela-
tions can be described by a set of equations as follows
[2–25] (ejot):

D
*

¼ e0 eðoÞ½ �E
*

þ
ffiffiffiffiffiffiffiffiffi
m0e0
p

xðoÞ½ �H
*

ð2aÞ

B
*

¼m0 mðoÞ½ �H
*

þ
ffiffiffiffiffiffiffiffiffi
m0e0
p

ZðoÞ½ �E
*

ð2bÞ

where o is the operating angular frequency; the tensors
[e(o)], [m(o)], [x(o)] and [Z(o)] are the relative permittivity,
permeability and magnetoelectric tensors, respectively.
Apparently, Eqs. (2a) and (2b) are applicable for the
constitutive description of electromagnetically anisotro-
pic, biisotropic chiral, uniaxially, or biaxially bianisotropic
media [26–45]. Therefore, Eqs. (2a), and (2b) can incorpo-
rate most practical applications of complex linear media
used in RF engineering.

2. CLASSIFICATION OF BIANISOTROPIC1 MEDIA

2.1. Continuous Groups of Symmetry (CGS)

In Eqs. (2a) and (2b), four constitutive tensors are usually
described by a 3� 3 matrix, respectively. However, accord-
ing to the theory of continuous groups of symmetry (CGS)
developed by Dmitriev [1,46–49], the number of indepen-
dent elements in [e(o)], [m(o)], [x(o)] and [Z(o)] for a given
bianisotropic medium is completely governed by a certain
magnetic group of symmetry. From CGS theory, we can
understand the four constitutive tensors if the CGS of
medium is known. Typically, these tensors correspond to
the following CGSs:

D4hðD2dÞ; D4hðD2hÞ; C4hðS4Þ; C4hðC2hÞ;

D4ðD2Þ; D2dðS4Þ; D2dðD2Þ; D2dðC2vÞ;

C4vðC2vÞ; D2hðD2Þ; D2hðC2hÞ;

D2hðC2vÞ; S4ðC2Þ; C4ðC2Þ; D2ðC2Þ; C2hðCiÞ;

C2hðC2Þ; C2hðCsÞ; C2vðC2Þ;

C2vðCsÞ; CiðC1Þ; C2ðC1Þ; CsðC1Þ
ð3Þ

1The term bianisotropic denotes the property of being biisotropic
and/or anisotropic.
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The constitutive tensors for these 23 linear complex media
are given as follows [1]:

1
ðD4hðD2dÞ: Nf ¼ 5Þ: ½e� ¼

exx 0 0

0 exx 0

0 0 ezz

2
666664

3
777775
;

½m� ¼

mxx 0 0

0 mxx 0

0 0 mzz

2
666664

3
777775

½x� ¼

0 xxy 0

xxy 0 0

0 0 0

2
666664

3
777775
; ½Z� ¼ ½x�

ð4aÞ

2
ðD4hðD2hÞ: Nf ¼4Þ: ½e� ¼

exx 0 0

0 exx 0

0 0 ezz

2
666664

3
777775
;

½m� ¼

mxx 0 0

0 mxx 0

0 0 mzz

2
666664

3
777775
;

½x� ¼ ½Z� ¼ ½0�

ð4bÞ

3
ðC4hðS4Þ: Nf ¼6Þ: ½e� ¼

exx 0 0

0 exx 0

0 0 ezz

2
666664

3
777775
;

½m� ¼

mxx 0 0

0 mxx 0

0 0 mzz

2
666664

3
777775

½x� ¼

xxx xxy 0

xxy �xxx 0

0 0 0

2
666664

3
777775
;

½Z� ¼ ½x�

ð4cÞ

4
ðC4hðC2hÞ: Nf ¼4Þ: ½e� ¼

exx 0 0

0 exx 0

0 0 ezz

2
666664

3
777775
;

½m� ¼

mxx 0 0

0 mxx 0

0 0 mzz

2
666664

3
777775
;

½x� ¼ ½Z� ¼ ½0�

ð4dÞ

5
ðD4ðD2Þ: Nf ¼7Þ: ½e� ¼

exx 0 0

0 exx 0

0 0 ezz

2
666664

3
777775
;

½m� ¼

mxx 0 0

0 mxx 0

0 0 mzz

2
666664

3
777775

½x� ¼

xxx 0 0

0 xyy 0

0 0 xzz

2
666664

3
777775
;

½Z� ¼ � ½x�

ð4eÞ

6
ðD2dðS4Þ: Nf ¼8Þ: e½ � ¼

exx exy 0

�exy exx 0

0 0 ezz

2
666664

3
777775
;

m½ � ¼

mxx mxy 0

�mxy mxx 0

0 0 mzz

2
666664

3
777775

x½ � ¼

xxx xxy 0

xxy �xxx 0

0 0 0

2
666664

3
777775
;

Z½ � ¼

xxx �xxy 0

�xxy �xxx 0

0 0 0

2
666664

3
777775

ð4f Þ
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7
ðD2dðD2Þ: Nf ¼6Þ: e½ � ¼

exx 0 0

0 exx 0

0 0 ezz

2
66664

3
77775;

m½ � ¼

mxx 0 0

0 mxx 0

0 0 mzz

2
66664

3
77775

x½ � ¼

xxx 0 0

0 xxx 0

0 0 xzz

2
66664

3
77775;

Z½ � ¼

xxx 0 0

0 xxx 0

0 0 xzz

2
66664

3
77775

ð4gÞ

8
ðD2dðC2vÞ: Nf ¼6Þ: ½e� ¼

exx 0 0

0 exx 0

0 0 ezz

2
66664

3
77775;

½m� ¼

mxx 0 0

0 mxx 0

0 0 mzz

2
66664

3
77775

½x� ¼

0 xxy 0

xyx 0 0

0 0 0

2
66664

3
77775;

½Z� ¼ � ½x�

ð4hÞ

9
ðC4vðC2vÞ: Nf ¼6Þ: ½e� ¼

exx 0 0

0 exx 0

0 0 ezz

2
666664

3
777775
;

½m� ¼

mxx 0 0

0 mxx 0

0 0 mzz

2
666664

3
777775

½x� ¼

0 xxy 0

xyx 0 0

0 0 0

2
666664

3
777775
; ½Z� ¼ ½x�

ð4iÞ

10
ðD2hðD2Þ: Nf ¼9Þ: ½e� ¼

exx 0 0

0 eyy 0

0 0 ezz

2
666664

3
777775
;

½m� ¼

mxx 0 0

0 myy 0

0 0 mzz

2
666664

3
777775

½x� ¼

xxx 0 0

0 xyy 0

0 0 xzz

2
666664

3
777775
; ½Z� ¼ ½x�

ð4jÞ

11
ðD2hðC2hÞ: Nf ¼8Þ: ½e� ¼

exx exy 0

�exy eyy 0

0 0 ezz

2
666664

3
777775
;

½m� ¼

mxx mxy 0

�mxy myy 0

0 0 mzz

2
666664

3
777775

½x� ¼ ½Z� ¼ ½0�

ð4kÞ

12
ðD2hðC2vÞ: Nf ¼8Þ: e½ � ¼

exx 0 0

0 eyy 0

0 0 ezz

2
666664

3
777775
;

m½ � ¼

mxx 0 0

0 myy 0

0 0 mzz

2
666664

3
777775

x½ � ¼

0 xxy 0

xyx 0 0

0 0 0

2
666664

3
777775
;

Z½ � ¼

0 xyx 0

xxy 0 0

0 0 0

2
666664

3
777775

ð4lÞ
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13
ðS4ðC2Þ: Nf ¼9Þ: e½ � ¼

exx 0 0

0 exx 0

0 0 ezz

2
666664

3
777775
;

m½ � ¼

mxx 0 0

0 mxx 0

0 0 mzz

2
666664

3
777775

x½ � ¼

xxx xxy 0

xyx xyy 0

0 0 xzz

2
666664

3
777775
;

Z½ � ¼

xyy �xxy 0

�xyx xxx 0

0 0 xzz

2
666664

3
777775

ð4mÞ

14
ðC4ðC2Þ: Nf ¼9Þ: e½ � ¼

exx 0 0

0 exx 0

0 0 ezz

2
666664

3
777775
;

m½ � ¼

mxx 0 0

0 mxx 0

0 0 mzz

2
666664

3
777775

x½ � ¼

xxx xxy 0

xyx xyy 0

0 0 xzz

2
666664

3
777775
;

Z½ � ¼

�xyy xxy 0

xyx �xxx 0

0 0 �xzz

2
666664

3
777775

ð4nÞ

15
ðD2ðC2Þ: Nf ¼13Þ: e½ � ¼

exx exy 0

�exy eyy 0

0 0 ezz

2
66664

3
77775;

m½ � ¼

mxx mxy 0

�mxy myy 0

0 0 mzz

2
66664

3
77775

x½ � ¼

xxx xxy 0

xyx xyy 0

0 0 xzz

2
66664

3
77775;

Z½ � ¼

�xxx xyx 0

xxy �xyy 0

0 0 �xzz

2
66664

3
77775

ð4oÞ

16
ðC2hðCiÞ: Nf ¼12Þ: e½ � ¼

exx exy exz

exy eyy eyz

�exz �eyz ezz

2
666664

3
777775
;

m½ � ¼

mxx mxy mxz

mxy myy myz

�mxz �myz mzz

2
666664

3
777775

x½ � ¼ Z½ � ¼ ½0�

ð4pÞ

17
ðC2hðC2Þ: Nf ¼13Þ: e½ � ¼

exx exy 0

exy eyy 0

0 0 ezz

2
666664

3
777775
;

m½ � ¼

mxx mxy 0

mxy myy 0

0 0 mzz

2
666664

3
777775

x½ � ¼

xxx xxy 0

xyx xyy 0

0 0 xzz

2
666664

3
777775
;

Z½ � ¼

xxx xyx 0

xxy xyy 0

0 0 xzz

2
666664

3
777775

ð4qÞ
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18
ðC2hðCsÞ: Nf ¼12Þ: e½ � ¼

exx exy 0

exy eyy 0

0 0 ezz

2
666664

3
777775
;

m½ � ¼

mxx mxy 0

mxy myy 0

0 0 mzz

2
666664

3
777775

x½ � ¼

0 0 xxz

0 0 xyz

xzx xzy 0

2
666664

3
777775
;

Z½ � ¼

0 0 xzx

0 0 xzy

xxz xyz 0

2
666664

3
777775

ð4rÞ

19
ðC2vðC2Þ: Nf ¼13Þ: e½ � ¼

exx exy 0

�exy eyy 0

0 0 ezz

2
666664

3
777775
;

m½ � ¼

mxx mxy 0

�mxy myy 0

0 0 mzz

2
666664

3
777775

x½ � ¼

xxx xxy 0

xyx xyy 0

0 0 xzz

2
666664

3
777775
;

Z½ � ¼

xxx �xyx 0

�xxy xyy 0

0 0 xzz

2
666664

3
777775

ð4sÞ

20
ðC2vðCsÞ: Nf ¼12Þ: e½ � ¼

exx 0 0

0 eyy eyz

0 �eyz ezz

2
666664

3
777775
;

m½ � ¼

mxx 0 0

0 myy myz

0 �myz mzz

2
666664

3
777775

x½ � ¼

0 xxy xxz

xyx 0 0

xzx 0 0

2
666664

3
777775
;

Z½ � ¼

0 �xyx xzx

�xxy 0 0

xxz 0 0

2
666664

3
777775

ð4tÞ

21
ðCiðC1Þ: Nf ¼21Þ: e½ � ¼

exx exy exz

exy eyy eyz

exz eyz ezz

2
666664

3
777775
;

m½ � ¼

mxx mxy mxz

mxy myy myz

mxz myz mzz

2
666664

3
777775

x½ � ¼

xxx xxy xxz

xyx xyy xyz

xzx xzy xzz

2
666664

3
777775
;

Z½ � ¼

xxx xyx xzx

xxy xyy xzy

xxz xyz xzz

2
666664

3
777775

ð4uÞ
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22
ðC2ðC1Þ: Nf ¼21Þ: e½ � ¼

exx exy exz

exy eyy eyz

�exz �eyz ezz

2
666664

3
777775
;

m½ � ¼

mxx mxy mxz

mxy myy myz

�mxz �myz mzz

2
666664

3
777775

x½ � ¼

xxx xxy xxz

xyx xyy xyz

xzx xzy xzz

2
666664

3
777775
;

Z½ � ¼

�xxx �xyx xzx

�xxy �xyy xzy

xxz xyz �xzz

2
666664

3
777775

ð4vÞ

23
ðCsðC1Þ: Nf ¼21Þ: e½ � ¼

exx exy exz

exy eyy eyz

�exz �eyz ezz

2
666664

3
777775
;

m½ � ¼

mxx mxy mxz

mxy myy myz

�mxz �myz mzz

2
666664

3
777775

x½ � ¼

xxx xxy xxz

xyx xyy xyz

xzx xzy xzz

2
666664

3
777775
;

Z½ � ¼

xxx xyx �xzx

xxy xyy �xzy

�xxz �xyz xzz

2
666664

3
777775

ð4wÞ

It is obvious that the constitutive features of normal
uniaxially anisotropic media such as microwave laminates
can be represented by the CGSs of C4hðC2hÞ or D4hðD2hÞ.
Uniaxially bianisotroic media, such as chiroomega media,
can be described by D2dðC2vÞ or C4vðC2vÞ. For gyroelectric
and gyromagnetic anisotropic media, their constitutive
features can be represented by D2hðC2hÞ. On the other
hand, it should be pointed out that in these constitutive
tenors, each element could be the function of operating
frequency, or even a complex quantity. The interaction

features of electromagnetic waves with various composite
bianisotropic structures can be found in the literature
[50–54]. The constitutive tensors of some CGSs of bianiso-
tropic media are described in detail below.

2.2. Ferroelectric Materials [55–57]

Ferroelectric thin films can be used as the substrate or
superstrate of various microstrip- or coplanar-waveguide-
based microwave devices (Fig. 1) that possess certain
tunabilities in their electromagnetic features. When the
crystalline principal axes of the ferroelectric film are
oriented in the coordinate directions, the film is reduced
to the simplified case of the CGS described above, namely,
D2hðC2vÞ and m½ � ¼m0 I

¼

, xxy¼ xyx¼ 0. The film’s permittiv-
ity tensor Iefm in the unbiased condition, the biasing
electric field ~EEbias¼0, can be expressed by

½ef ð0Þ� ¼

exxð0Þ 0 0

0 eyyð0Þ 0

0 0 ezzð0Þ

2
664

3
775 ð5Þ

When the biasing DC electric field is applied, Iefm becomes

½ef ðE
*

biasÞ� ¼

exxðE
*

biasÞ 0 0

0 eyyðE
*

biasÞ 0

0 0 ezzðE
*

biasÞ

2
66664

3
77775 ð6Þ

Here, each element ½ef ðE
*

biasÞ� can be a function of each of
the three bias field components Ex;y;z;bias. If we assume, for
simplicity, diagonal functional projection of the bias field
components onto the permittivity tensor Iefm elements,
then we have

½ef ðE
*

biasÞ� ¼

exxðEx;biasÞ 0 0

0 eyyðEy;biasÞ 0

0 0 ezzðEz;biasÞ

2
664

3
775 ð7Þ

Using the hexagonal perovskite crystalline form for
BaxSr1�xTiO3 (BSTO) thin film, with the c axis parallel to
the y axis and having properties different from those in the
a- and b-axis directions parallel to the xz plane and having
the same effects, Iefm takes an uniaxial form as

½ef ð0Þ� ¼

exxð0Þ 0 0

0 eyyð0Þ 0

0 0 exxð0Þ

2
664

3
775 ð8Þ
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In the case of Ebias¼Ex, the ferroelectric effect renders
Iefm as

½ef ðEbiasÞ� ¼

exxðEx;biasÞ 0 0

0 eyyð0Þ 0

0 0 exxð0Þ

2
664

3
775 ð9Þ

and Ief (Ebias)m is biaxial.
It is understood that, as a rule, the losses in ferro-

electrics decreases with decreasing temperature. So, after
the discovery of high-temperature superconductivity
(HTS), much effort has been devoted to combining HTS
with ferroelectrics to realize the tunability of microwave
devices in a low-loss situations. The modified microstrip
structure in Fig. 1 consists of a dielectric substrate (LAO

or MgO, typically 254mm thick), a ferroelectric thin-film
layer with thickness ranging from 300 to 2000 nm for
various applications, and a gold or YBCO thin film of
0.35 or 2mm thick for the top strip, respectively.

On the other hand, in order to achieve the desired
propagation characteristics of a ferroelectric microstrip
line or coplanar waveguide, an additional ferrite layer can
also be introduced in the substrate or superstrate–
substrate structures presented above.

2.3. Sapphire

A nonmagnetic sapphire is also very important for high-
frequency applications, and its relative permittivity tensor
can be expressed by

½e� ¼

exx exy 0

eyx eyy 0

0 0 ezz

2
664

3
775 ð10aÞ

exx¼ exðTÞ cos2 yeþ eyðTÞ sin2 ye

exy¼ eyxðTÞ¼ ½eyðTÞ � exðTÞ� sin ye cos ye

eyy¼ exðTÞ sin2 yeþ eyðTÞ cos2 ye; ezz¼ ezðTÞ ð10bÞ

where ye ð0
 
 ye 
 360
Þ is the misalignment angle be-
tween the coordinates of the line and principal axes of Iem
with respect to the x direction in x–y plane, ex;y;zðTÞ are the
three principal-axis permittivities, and T is the operating
temperature of sapphire.

2.4. Gyroelectric Media [58–61]

A great deal of attention has been paid to the microwave
propagation in gyroelectric or solid-state magnetoplasmas
in the past a few decades, since this type of medium (Ixm¼
IZm¼ 0) can be used to make various nonreciprocal de-
vices for microwave and millimeter-wave applications,
such as gyroelectric waveguides and planar microstrip
transmission lines, as shown in Figs. 2a–2d. These models
provide a basis for further developing planar integrated
nonreciprocal devices, where the bulk gyroelectric media
present the advantage of a very good coupling between the
wave and the media. So, owing to the good mobility of the
media, the losses are reduced.

In Fig. 2a, the longitudinal DC magnetic field is along
the z-axis direction. On the other hand, if the DC magnetic
field is wrapped around the z axis into a cylindrical shape,
it forms an azimuthally magnetized solid-state plasma-
filled coaxial waveguide that can support the cylindrically
symmetric TM01 mode, and the corresponding permittivity
tensor can be written as [61]

e½ � ¼

exx 0 exz

0 eyy 0

�exz 0 exx

2
664

3
775 ð11Þ

LA O D2

D1
t

X

(a)

(b)

Y

Z

YMgO(LaAlO3)

2a

D3

(HTS)(HTS) (HTS

s w

BSTO

s

)

LA O

BSTO

D2

D1
t

WSS
(HTS)TS)

X

Y

Z

YMgO(LaAlO3)

2a

D4

D3
(HTS) (HTS) (HTS)

s w s

BSTO2
BSTO1

(�0, �0)

(�0, �0)

.

.

Figure 1. Cross-sectional views of two composite ferroelectric
coplanar waveguides: (a) BSTO substrate; (b) BSTO superstrate-
substrate.
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In Fig. 2b, there is a transversely magnetized plasma
between two perfectly conducting parallel plates sepa-
rated by a distance 2d, where the static magnetic field
is applied in the x direction and wave propagation is in
the z direction. If the plasma is magnetized in the y
direction, normal to the conducting plates, the modes are
not, in general, separable into TE and TM modes.
Here the relative permittivity tensor can be written in
the form

½e� ¼

exx 0 0

0 eyy eyz

0 �eyz ezz

2
664

3
775 ð12Þ

where each element in (12) is given in Ref. 61. Figure 2c
shows a suspended single-slotline structure and Fig. 2d, a
suspended coplanar waveguide.

When the biasing DC magnetic field B
*

0 of the solid-
state plasma in Fig. 2 is in an arbitrary direction (j0,y0),
its permittivity tensor can be described by (ejot)

½eðoÞ� ¼

exxðoÞ exyðoÞ exzðoÞ

eyxðoÞ eyyðoÞ eyzðoÞ

ezxðoÞ ezyðoÞ ezzðoÞ

2
664

3
775 ð13aÞ

exxðoÞ¼ e1ðoÞþ ½e2ðoÞ � e1ðoÞ� sin2 n cos2 c

exyðoÞ¼ � jgðoÞ cos nþ ½e2ðoÞ � e1ðoÞ� sin c cos c sin2 n

exzðoÞ¼ fjgðoÞ sin cþ ½e2ðoÞ � e1ðoÞ� cos c cos ng sin n

eyxðoÞ¼ jgðoÞ cos nþ ½e2ðoÞ � e1ðoÞ� sin c cos c sin2 n

eyyðoÞ¼ e1ðoÞþ ½e2ðoÞ � e1ðoÞ� sin2 n sin2 c

eyzðoÞ¼ f�jgðoÞ cos cþ ½e2ðoÞ � e1ðoÞ� sin c cos ng sin n

ezxðoÞ¼ f�jgðoÞ sin cþ ½e2ðoÞ � e1ðoÞ� cos c cos ng sin n

ezyðoÞ¼ fjg cos cþ ½e2ðoÞ � e1ðoÞ� sin c cos ng sin n

ezzðoÞ¼ e1ðoÞ sin2 nþ e2ðoÞ cos2 n

ð13bÞ

In (13b), two consecutive rotations of angles c and n are
determined by the spherical angles j0 and y0 by

cos c¼
sin y0 cos j0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsin2 y0 cos2 j0þ cos2 y0Þ

q ð13cÞ

cos n¼ sin y0 sin j0 ð13dÞ

e1ðoÞ ¼ es �
o2

pðo� jt�1Þ

oe0½ðo� jt�1Þ
2
� o2

c �
ð13eÞ

(a)

(d)

B0

s sw

b

Gyroelectric
substrate

D3

D2

D1

(b)

y

x

z

+d

B0

−d

Gyroelectric
medium

propagatio
n

(c)

w

D4

D2

D1

b

D3�
d

B0

Gyroelectric
substrate

X

Z

Y

PEC

Gyroelectric
medium

B0 Perfect 
conductor

Figure 2. Schematic diagrams of gyroelectric
waveguides and planar transmission lines:
(a) circular; (b) planar; (c) slotline; (d) copla-
nar waveguide.
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e2ðoÞ¼ es �
o2

p

oe0ðo� jt�1Þ
ð13f Þ

gðoÞ¼ �
o2

poc

oe0½ðo� jt�1Þ
2
� o2

c �
ð13gÞ

where op¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðne2=e0m�Þ

p
represents the plasma frequency;

oc¼ eB0=m�, the cyclotron frequency; n, the carrier con-
centration; e, the electron charge; m*, the electron effective
mass (kg) (i.e., 0.067 me for GaAs); me, the electron rest
mass; B0, the DC magnetizing field; j, the orientation
angle of B0 in the x–y plane; t, the momentum relaxation
time of the semiconductor material; and es, the relative
dielectric permittivity of the semiconductor.

2.5. Ferrites

Ferrites have been widely used as important elements in
microwave and millimeter-wave devices, such as phase
shifters, resonance isolators, circulators, and superstrates
or substrates of microwave integrated circuits (MICs).
One of the main advantages of using magnetized ferrites
is that their characteristic parameters, as in Fig. 2, can be
controlled by adjusting an applied DC magnetic bias field.
Hence, various tunable microwave devices can also be
designed when we combine ferrites with other materials,
as shown in Fig. 3.

In Fig. 3b [62], a high-temperature superconductor
(HTS) strip (2) of a width W is located on top of the
dielectric substrate (1) and separated by a dielectric layer
(3) from an epitaxial ferrite film (4) deposited on a di-
electric substrate (5). The structure may contain either an
HTS or metal bottom electrode (0), the microstrip resona-
tor, or two HTS electrodes (Fig. 2a), placed at a distance
W1 from each other, the CPW resonator. The thickness of
the HTS electrodes (2), ferrite layer (4), bottom electrode
(0), and dielectric layers (1), (3), and (5) are t, tf, t0 and t1,
t3, t5, respectively. An external DC biasing magnetic field
He is applied parallel to the plane of the structure and
makes an angle f with the central stripline direction.

When the biasing DC magnetic field �BB0 takes an
arbitrary orientation (j0,y0), the permeability tensor
[m(o)] of ferrites can be written as [34]

½mðoÞ� ¼

mxxðoÞ mxyðoÞ mxzðoÞ

myxðoÞ myyðoÞ myzðoÞ

mzxðoÞ mzyðoÞ mzzðoÞ

2
664

3
775 ð14aÞ

mxxðoÞ¼ mðoÞþ ½1� mðoÞ� sin2 y0 cos2 j0

mxyðoÞ¼ ½1� mðoÞ� sin j0 cos j0 sin2 y0

� jk cos y0

mxzðoÞ¼ jk sin j0 sin y0

þ ½1� mðoÞ� sin y0 cos y0 cos j0

myxðoÞ¼ ½1� mðoÞ� sin j0 cos j0

� sin2 y0þ jk cos y0

myyðoÞ¼ mðoÞþ ½1� mðoÞ� sin2 y0 sin2 j0

myzðoÞ¼ � jk cos j0 sin y0

þ ½1� mðoÞ� sin y0 cos y0 sin j0

mzxðoÞ¼ � jk sin j0 sin y0þ ½1

� mðoÞ� sin y0 cos y0 cos j0

mzyðoÞ¼ jk cos j0 sin y0þ ½1

� mðoÞ� sin y0 cos y0 sin j0

mzzðoÞ¼ 1� ½1� mðoÞ� sin2 y0

mðoÞ¼ m1ðoÞ � jm2ðoÞ

m1ðoÞ¼ 1þ
o0om½o2

0 � o2ð1� a2
mÞ�

Fm

m2ðoÞ¼
oomam½o2

0þo2ð1þ a2
mÞ�

Fm

kðoÞ¼ k1ðoÞ � jk2ðoÞ

k1ðoÞ¼ �
oom½o2

0 � o2ð1þ a2
mÞ�

Fm

k2¼ �
2omo0amo2

Fm

Fm¼ ½o2
0 � o2ð1þ a2

mÞ�
2þ 4ðoo0amÞ

2

ð14bÞ

where o¼ jgjH0; om¼ jgjMs, Ms is the saturation magne-
tization of the ferrite, g denotes to the gyromagnetic ratio
(¼ � 2.21 � 105 rad .m/C), am identifies the Landau
damping coefficient, and the loss is taken into account.

2.6. Biisotropic Chiral Medium

Since the early 1990s many researchers have explored the
diverse chirality effects in biisotropic chiral media on
electromagnetic wave propagation, radiation, and scatter-
ing. Electromagnetic waves in chiral media show some
very interesting features, such as optical rotatory disper-
sion (ORD), which causes the rotation of polarization; and
circular dichroism, due to the different absorption coeffi-
cients of right- and left-handed circularly polarized waves.
Some component models using chiral media have been
proposed, such as chirowaveguides, chirolens, chirodomes,
chirostrip antennas, chiral resonators, and chiral-mode
transformers [63–83].

The constitutive equation for biisotropic chiral media
can be easily obtained from Eqs. (2a) and (2b), as
follows

D
*

¼ e0er E
*

þ
ffiffiffiffiffiffiffiffiffi
m0e0
p

xH
*

ð15aÞ

B
*

¼ m0mrHþ
ffiffiffiffiffiffiffiffiffi
m0e0
p

ZE
*

ð15bÞ
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where we let ½e� ¼ er I
¼

, ½m� ¼ mr I
¼

, ½x� ¼ x I
¼

¼ jk I
¼

, and
½Z� ¼ x� I

¼

¼ � jk I
¼

, where I
¼

is the unit dyad, k is the
chirality parameter, and the frequency-dependent prop-
erty of constitutive quantities should be understood but
here o is suppressed. In a chiral medium, the eigenmodes
are the left- and right-handed circular polarized waves, as
observed in ferrites. However, there is no biasing DC
magnetic field needed. Some models of chiral devices are
outlined as follows.

2.6.1. Chirowaveguides. Figure 4 shows the geometries
of circular (a) and a rectangular (b) chirowaveguides,
which have been extensively studied by some researchers.

The guided-mode characteristics in chirowaveguides in
Fig. 4 are completely controlled by chirality parameter. It
can be predicated that the ordinary modes of transverse
electric TEnm, transverse magnetic TMnm, or transverse
electromagnetic (TEM) modes cannot be supported in
circular bianisotropic waveguides. The propagating modes
along z axis are always hybrid, but they can be classified
into hybrid modes HEnm and EHnm. The descriptor EHnm

is used here for hybrid modes originating in ordinary
TMnm modes, and HEnm is used for hybrid modes stem-
ming from ordinary TEnm modes. Here n(¼ �N,y,
0, y,N) and m(¼ 1,y,N) respectively denote the azi-
muthal and radial quantum numbers, of which n implies
an azimuthal variation e�jnj and m implies that the mode
is number m when ordered after increasing cutoff fre-
quency for given n.

The longitudinal components Ez and Hz are coupled
with each other; however, Ez and Hz can be decoupled as
follows

Ez¼SþUþ þS�U� ð16aÞ

Hz¼ qþUþ þ q�U� ð16bÞ

where U7 are determined by

r2
t U� þS�U� ¼0 ð16cÞ
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chiral media

Perfect electric conductor

(bi)(an)Isotropic
chiral medium

Perfect electric conductor

R2

R1

2

(a)

(b)

Figure 4. Geometries of chirowaveguides: (a) circular; (b) rec-
tangular.
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and more generally, by

S� ¼
�ðC1þC4Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC1 � C4Þ

2
þ 4C2C3

q

2
ð16dÞ

q� ¼
�S�ðS� þC1Þ

C2
ð16eÞ

C1¼
joðA43ZzzþA41ezzÞ

D0
; C2¼

joðA43mzzþA41xzzÞ

D0

C3¼ �
joðA21ezzþA23ZzzÞ

D0
; C4¼ �

joðA21xzzþA23mzzÞ

D0

D0¼A21A43 � A23A41 ð16f Þ

Further, the transverse components electric and magnetic
fields inside the chirowaveguide can be expressed in terms
of Ez and Hz as follows [31,32,35,69–71]

Ex

Ey

Hx

Hy

2
666664

3
777775
¼

A22 A21 A42 A41

�A21 A22 �A41 A42

A24 A23 A44 A43

�A23 A24 �A43 A44

2
666664

3
777775

@Ez

@x

@Ez

@y

@Hz

@x

@Hz

@y

2
6666666666664

3
7777777777775

ð17aÞ

where

A21¼
a3b2þa4b3 � a2b1

D
; A22¼

a1b1þa4b2 � a3b3

D

A23¼
a1b2þa2b3 � a4b4

D
; A24¼

a3b4 � a1b3 � a2b2

D

A41¼
a1b5þa2b8 � a6b9

D
; A42¼

a2b5 � a3b6þa4b7

D

A43¼
a1b7þa3b9þa2b10

D
; A44¼

a1b6þa2b8þa4b9

D

b1¼a2
7þa2

8; b2¼a6a7 � a5a8; b3¼a6a8þa5a7;

b4¼a2
5þa2

6; b5¼a3a8 � a4a7

b6¼a1a7 � a3a5; b7¼a4a5 � a1a8;

b8¼a2a7 � a3a6; b9¼a1a6 � a2a5

a1¼ � ðgþoZxyÞ; a2¼ joZxx; a3¼ � omxy;

a4¼ jomxx; a5¼oexy; a6¼ � joexx

a7¼ � ðg� oxxyÞ; a8¼ � joxxx

D¼a1ða1b1þa2b4 � a3b3Þþa2ða2b1 � a4b3 � a3b2Þ

þa3ða3b4 � a2b2 � a1b3Þ

þa4ða1b2 � a2b3þa4b4Þ ð17bÞ

where g is the mode propagation constant. In Fig. 4a, six
field components of the guided hybrid modes HE(EH)nm

can be expressed in a set of closed-form equations. For
example, in the inner chiral region (rrR1) in Fig. 4a, the
tangential field components are given by [69]

Eð1Þz ¼ ½D
ð1Þ
1 Sð1Þþ Jnð

ffiffiffiffiffiffiffiffi
Sð1Þþ

q
rÞþDð1Þ2 Sð1Þ� Jnð

ffiffiffiffiffiffiffiffi
Sð1Þ�

q
rÞ�e�jnj ð18aÞ

Eð1Þj ¼fD
ð1Þ
1 ½�Mð1Þþ J0nð

ffiffiffiffiffiffiffiffi
Sð1Þþ

q
rÞ �

jnNð1Þþ
r

Jnð

ffiffiffiffiffiffiffiffi
Sð1Þþ

q
rÞ�

þDð1Þ2 ½�Mð1Þ� J0nð
ffiffiffiffiffiffiffiffi
Sð1Þ�

q
rÞ �

jnNð1Þ�
r

Jnð

ffiffiffiffiffiffiffiffi
Sð1Þ�

q
rÞ�ge�jnj

ð18bÞ

Hð1Þz ¼ ½D
ð1Þ
1 qð1Þþ Jnð

ffiffiffiffiffiffiffiffi
Sð1Þþ

q
rÞþDð1Þ2 qð1Þ� Jnð

ffiffiffiffiffiffiffiffi
Sð1Þ�

q
rÞ�e�jnj ð18cÞ

Hð1Þj ¼fD
ð1Þ
1 ½�Xð1Þþ Jn

0ð

ffiffiffiffiffiffiffiffi
Sð1Þþ

q
rÞ �

jnY ð1Þþ
r

Jnð

ffiffiffiffiffiffiffiffi
Sð1Þþ

q
rÞ�

þDð1Þ2 ½�Xð1Þ� Jn
0ð

ffiffiffiffiffiffiffiffi
Sð1Þ�

q
rÞ �

jnY ð1Þ�
r

�Jnð

ffiffiffiffiffiffiffiffi
Sð1Þ�

q
rÞ�ge�jnj

ð18dÞ

where D1
(1) and D2

(1) are unknown mode-expanding con-
stants to be determined. Here, Jn and Jn

0 are the Bessel
function of the first kind and its derivative, respectively.
After some mathematical treatments, the mode dispersion
and attenuation characteristics in chirowaveguides can be
understood.

As in normal waveguides, various discontinuities may
also exist in chirowaveguides, as shown in Fig. 5. This
structure is symmetric in the z-axis direction, and the
scattering of the guided mode may be analyzed in terms of
the symmetric and asymmetric excitations as indicated in
Ref. 79.

Figure 6 shows two cases of a normal waveguide
partially filled with bianisotropic chiral media, and these
may be easily met in the measurement of chiral parameter
using some standard waveguide methods.

In the case of coaxial line filled with a biisotropic chiral
medium, the influence of permittivity and length of chiral
sample W on the amplitude of scattering parameters
is depicted in Fig. 7, where a¼ 3.04 mm, b¼ 7.0 mm,
c¼6.0 mm, xc¼10�4 mho, and m¼ m0.

2.6.2. Chiral Resonators. Chiral media can be used to
produce circular cylindrical and spherical dielectric reso-
nators that are further used in filters and antennas.
Figure 8 shows the configurations of two chiral spherical
resonators [81].
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The inner and outer electromagnetic fields of the chiral
sphere shown in Fig. 8a can be expressed by

~EEð1Þchiral¼ �
X
m;n

fjamn½
~NNð1Þe;mnðkþ rÞþ ~MMð1Þe;mnðkþ rÞ

þ jbmn½
~NNð1Þo;mnðkþ rÞþ ~MMð1Þo;mnðkþ rÞ�

þ cmn½
~NNð1Þe;mnðk�rÞ � ~MMð1Þe;mnðk�rÞ�

þdmn½
~NNð1Þo;mnðk�rÞ � ~MMð1Þo;mnðk�rÞ�g

ð19aÞ

~HHð1Þchiral¼
1

Zc

X
m;n

famn½
~NNð1Þe;mnðkþ rÞþ ~MMð1Þe;mnðkþ rÞ

þbmn½
~NNð1Þo;mnðkþ rÞþ ~MMð1Þo;mnðkþ rÞ�

þ jcmn½
~NNð1Þe;mnðk�rÞ � ~MMð1Þe;mnðk�rÞ�

þ jdmn½
~NNð1Þo;mnðk�rÞ � ~MMð1Þo;mnðk�rÞ�g

ð19bÞ

and

~EEfree¼ �
X
m;n

½jemn
~NNð4Þe;mnðk0rÞþ jfmn

~NNð4Þo;mnðk0rÞ

þ gmn
~MMð4Þe;mnðk0rÞþhmn

~MMð4Þo;mnðk0rÞ�

~HHfree¼
1

Z0

X
m;n

½�jgmn
~NNð4Þe;mnðk0rÞ � jhmn

~NNð4Þo;mnðk0rÞ

þ emn
~MMð4Þe;mnðk0rÞþ fmn

~MMð4Þo;mnðk0rÞ�

ð19cÞ

where amn, bmn, cmn, dmn, emn, fmn, gmn, hmn, are unknown
coefficients that can be determined by boundary condi-

tions at r¼R1; ~MMð1;4ÞeðoÞmnðkþ ð0ÞrÞ and ~NNð1;4ÞeðoÞmnðkþ ð0ÞrÞ are

spherical vector wavefunctions. In the case of a multilayer
chiral spherical resonator, as shown in Fig. 8b, the elec-
tromagnetic fields in each layer can be easily obtained as
given in Refs. 72 and 73. Straightforwardly, a set of
characteristic equations can be derived after some math-
ematical treatments, and the Q factor as a function of
chirality parameter is shown in Fig. 9 for hybrid modes of
different orders [81]. As an example, the Q factor of hybrid
mode HEm22 varies from 30 to 500 as xr increases from
zero to one.

2.6.3. Chiral Striplines and Chiral Slotlines. A chiral
medium can also be combined with other materials, such
as ferrites, to form some novel nonreciprocal chirostrip
transmission lines. Figure 10 shows the shielded
chiralstripline and two chiral slotlines with chiral and
ferrite substrates [42].
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chiral medium
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Figure 5. Cross-sectional view of a chirowaveguide grating [79].
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Using the technique of exponential matrix in the
spectral domain, together with the Galerkin MoM
(method of moments) procedure, the mode dispersion
characteristics in these structures can be understood. As
an example, Fig. 11 shows the frequency dependence
of effective permittivity eeff þ in the structure shown in
Fig. 10b, and both chirality and gyrotropy are considered
here. The parameters chosen for calculation are assumed
to be f¼ 40 GHz, a¼ 3.556 mm, D1¼D4¼3.3935 mm, D2¼

D3¼0.1625 mm, ½eð2ÞðoÞ� ¼ 12:6 I
¼

, Ms
(2) m0¼0.275,

oð2Þ0 =oð2Þm ¼ 0:30, að2Þm ¼ 0:0, yð2Þ0 ¼ 90
, jð2Þ0 ¼ 0
, ½xð2ÞðoÞ� ¼
½Zð2ÞðoÞ�� ¼ 10�6 I

¼

; eð3ÞðoÞ
� �

¼ 2:2 I
¼

; mð3ÞðoÞ
� �

I
¼

, xð3ÞðoÞ
� �

¼

Zð3ÞðoÞ
� ��

¼ j0:5 I
¼

ðaÞ, and j0:8 I
¼

ðbÞ.
In Fig. 11, the ferrite substrate is magnetically biased

by a magnetic field fixed to the x-axis direction with
saturation magnetization Mð2Þs m0¼ 0:275; oð2Þ0 =oð2Þm ¼ 0:3.
Physically, such a unilateral chiral ferrite slotline is a
nonreciprocal structure, but only the effective dielectric
constant of forward wave is demonstrated here. It is
obvious that, at high frequency f¼40 GHz and for strong
chirality, eeff decreases rapidly with increasing the slot
width.

2.6.4. Faraday Chiral Media. Faraday chiral media are
classified as chiroplasmas or chiroferrites in which the
effects of both gyrotropy and chirality are combined
[49,84]. Corresponding to the CGS of C1, their four
constitutive tensors can be described by

C½ � ¼

Cxx �jCxy 0

jCxy Cxx 0

0 0 Czz

2
664

3
775; C¼ e; m; x; Z ð20Þ

where these tensors contain a total of 12 scalar quantities.
When a circular waveguide is filled with Faraday chiral
media, as shown in Fig. 4a, the longitudinal components
Ez and Hz can be decoupled and expressed by Eqs. (16a)
and (16b). Following a procedure similar to that described
in Refs. 32 and 35, the field distribution in each layer can
be derived, and also the mode dispersion characteristics
can be understood. Some hybrid analytical and numerical
techniques, as proposed in Refs. 85–89, can be employed to

study the combined effects of gyrotropy and chirality
on the guided hybrid mode characteristics. On the other
hand, it should be mentioned that to design and fabricate
Faraday chiral media, and further to extract their consti-
tutive parameters at microwave frequencies, is very chal-
lenging work. Although some methods have been proposed
[90], many difficult problems need to be explored by the
researchers in both material and microwave fields.

3. TYPICAL METHODOLOGIES

3.1. Exponential Matrix Technique in the Spectral Domain

Among the techniques used to deal with the interaction of
an electromagnetic wave with multilayer bianisotropic
media, we should mention the exponential matrix
technique proposed by Tsalamengas [4], which has been
successfully used to study source radiation and wave
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Figure 8. A single- (a) and a multilayer (b) chiral resonators.
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706 COMPLEX MEDIA



propagation problems related to single-, double-, and
multilayer bianisotropic structures [34,38–40,42,50–54]
as shown in Fig. 12. Here, we let the z axis of a rectangular
coordinate system be normal to all boundaries and the x
and y axes lie in the plane of the top interface. In the z-axis
direction, the geometry has discrete variation in material
characteristics, and this structure may be with or without

a backed plane at z¼ � dðNÞ ðdðNÞ ¼
PN

i¼ 1 DðiÞÞ. For the
nonbacked case the regions z40 and zo�d(N) are usually
assumed to be free space ðe0;m0Þ. The thickness of each

layer is denoted by D(1),y,D(i)
ðjdðiÞ � dði�1ÞjÞ; . . . ; and D(N).

Mathematically, the four constitutive tensors ½eðiÞðoÞ�,
½mðiÞðoÞ�, ½xðiÞðoÞ�, and ½ZðiÞðoÞ� (i¼ 1,y, N) of each layer
may take any type of the above mentioned 23 CGSs or
even another form [1].

Assuming that a linearly polarized electromagnetic
wave is obliquely incident on a multilayer bianisotropic
medium, as shown in Fig. 12, four propagating modes with
different phase velocities can be generated in each layer.
After propagation through the medium, the polarization of
the transmitted field is rotated with respect to the polar-
ization of the incident wave. Now we introduce the
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one-dimensional Fourier transform domain defined by

~ccðkx; zÞ¼
1

2p

Z þ1
�1

cðx; zÞejkxxdx ð21aÞ

cðx; zÞ¼
Z þ1
�1

~ccðkx; zÞe
�jkxxdkx ð21bÞ

into the following Maxwell equations ðejotÞ:

r� �HHðiÞ ¼ jofe0½eðiÞðoÞ� �EEðiÞ

þ
ffiffiffiffiffiffiffiffiffi
m0e0
p

½xðiÞðoÞ� �HHðiÞg;
ð22aÞ

r� �EEðiÞ ¼ � jofm0½m
ðiÞðoÞ� �HHðiÞ

þ
ffiffiffiffiffiffiffiffiffi
m0e0
p

½ZðiÞðoÞ� �EEðiÞg
ð22bÞ

Following a procedure similar to that proposed in Ref. 4,
the transverse field components in each layer of multi-
layered bianisotropic slabs can be expressed as

d

dz

~EEðiÞx ðkx; zÞ

~EEðiÞy ðkx; zÞ

~HHðiÞx ðkx; zÞ

~HHðiÞy ðkx; zÞ

2
6666666664

3
7777777775
¼

qðiÞ11 qðiÞ12 qðiÞ13 qðiÞ14

qðiÞ21 qðiÞ22 qðiÞ23 qðiÞ24

qðiÞ31 qðiÞ32 qðiÞ33 qðiÞ34

qðiÞ41 qðiÞ42 qðiÞ43 qðiÞ44

2
6666666664

3
7777777775

�

~EEðiÞx ðkx; zÞ

~EEðiÞy ðkx; zÞ

~HHðiÞx ðkx; zÞ

~HHðiÞy ðkx; zÞ

2
6666666664

3
7777777775

ð23Þ

where the matrix elements q11
(i)
� q44

(i) are functions of
spectral variable kx and material parameters (all the
elements of ½eðiÞðoÞ�, ½mðiÞðoÞ�, ½xðiÞðoÞ� and ½ZðiÞðoÞ�). After
some mathematical manipulations, their exact expres-
sions can be derived and presented [38]. Furthermore,
the general solution to the vector differential Eq. (23) can
be written as follows:

~EEðiÞx ðkx; zÞ

~EEðiÞy ðkx; zÞ

~HHðiÞx ðkx; zÞ

~HHðiÞy ðkx; zÞ

2
666666666664

3
777777777775

¼

TðiÞ11ðz
$
Þ TðiÞ12ðz

$
Þ TðiÞ13ðz

$
Þ TðiÞ14 z

$
Þ

TðiÞ21ðz
$
Þ TðiÞ22ðz

$
Þ TðiÞ23ðz

$
Þ TðiÞ24ðz

$
Þ

TðiÞ31ðz
$
Þ TðiÞ32ðz

$
Þ TðiÞ33ðz

$
Þ TðiÞ34ðz

$
Þ

TðiÞ41ðz
$
Þ TðiÞ42ðz

$
Þ TðiÞ43ðz

$
Þ TðiÞ44ðz

$
Þ

2
666666666664

3
777777777775
~zz¼�ðzþdðiÞÞ

�

~EEðiÞx ðkx;�dðiÞÞ

~EEðiÞy ðkx;�dðiÞÞ

~HHðiÞx ðkx;�dðiÞÞ

~HHðiÞy ðkx;�dðiÞÞ

2
666666666664

3
777777777775

ð24Þ

The matrix ½TðiÞðz
$
Þ�4� 4 in (24) is a transmission matrix,

which physically relates to the tangential electromagnetic
fields on one surface z¼ �d(i) to the tangential fields on
another surface in the ith layer. Further, ½TðiÞðz

$
Þ�4� 4 can

be expressed in the form of exponential matrix as follows:

½TðiÞðzÞ�4� 4¼ ez½qðiÞ �4� 4 ð25Þ

The procedure for calculating the exponential matrix in
(25) can be followed as described in Ref. 4, and is omitted
here.

The incident plane wave in the spectral domain can be
expressed as a superposition of TM and TE (with respect
to the y axis) as follows:

~EEincðkx; zÞ

~HHincðkx; zÞ

2
64

3
75¼

�ETM
inc~eey � ETE

inc~eeþ

½�ETM
inc e
!

þ þETE
inc~eey�=Z0

2
64

3
75

� e�jk0ðx sin y0�z cos y0Þ

ð26Þ

where y0 is the incident angle, k0¼o
ffiffiffiffiffiffiffiffiffi
m0e0
p

; kx¼ k0 sin y0,
Z0¼

ffiffiffiffiffiffiffiffiffiffiffiffi
m0=e0

p
, ~ee� ¼ �~eex cos y0þ~eez sin y0, and ~eex, ~eey, and ~eez

are the three unit vectors, respectively. The reflected wave
fields in the spectral domain can be written as a super-
position of TM and TE (to y)

~EEðrÞðkx; zÞ

~HHðrÞðkx; zÞ

2
64

3
75¼

�ETM
0 ~eey � ETE

0 ~ee�

½�ETM
0 ~ee� þETE

0 ~eey�=Z0

2
4

3
5

� e�jk0z cos y0

ð27Þ

(�(i), �(i), �(i),  �(i)) 

X

Z

z = − d(1)

z = − d(2)

z = − d(3)

z = − d(i−1)

z = − d(i+1)

z = − d(N−1)

z = − d(N)
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1
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	0

Figure 12. Cross section of multilayer bianiostropic medium
with(out) backed plane.
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where E0
TM and E0

TE refer to the TM and TE components in
the reflected waves, respectively. In Fig. 12, if there is no
backed plane at z¼ �d(N), the transmitted waves into
region zo�d(N) are denoted by

~EEðtÞðkx; zÞ

~HHðtÞðkx; zÞ

2
64

3
75¼

�ETM
2 ~eey � ETE

2 ~eeþ

½�ETM
2 ~eeþ þETE

2 ~eey�=Z0

2
4

3
5

� ejk0ðzþdðNÞÞ cos y0

ð28Þ

where E2
TM and E2

TE refer to the TM and TE components in
transmitted waves, respectively. Furthermore, E0,2

TM and
E0,2

TE above can be determined by enforcing the boundary
conditions at each interface in Fig. 12. When the structure
shown above is backed by a perfectly conducting backed
plane, we have

ETE
0

ETM
0

" #
¼

R11 R21

R12 R22

" #
ETE

inc

ETM
inc

" #
ð29Þ

where R11,22 denotes for the copolarized reflection coeffi-
cients and R12,21 represents the cross-polarized reflection
coefficients [4]. In the no-backing case, the transmitted
matrix is determined by

ETE
2

ETM
2

" #
¼

T11 T12

T21 T22

" #
ETE

inc

ETM
inc

" #
ð30Þ

where T11,12 and T12,21 are the co- and cross-polarized
transmission coefficients, respectively. A more detailed
study on the co- and cross-polarized reflection and trans-
mission characteristics of different layered omega(chiro)-
ferrite geometries can be seen in Ref. 53. As an example,
Fig. 13 shows the variations of the co(cross)-polarized
reflection and transmission coefficients as a function of
the incident angle for a chiroferrite slab in free space, and
we let

eð1Þxx ¼ eð1Þyy ¼ 5:0; eð1Þzz ¼ 6:0; eð1Þxy ¼ � eð1Þyx ¼ j0:3

mð1Þxx ¼ mð1Þyy ¼ 0:9; mð1Þzz ¼ 1:5; mð1Þxy ¼ � mð1Þyx ¼ j0:4

xð1Þxx ¼ Zð1Þxx ¼ xð1Þyy ¼ Zð1Þyy ¼ j0:5; xð1Þzz ¼ Zð1Þzz ¼ j0:9

xð1Þxy ¼ Zð1Þxy ¼ j0:1; xð1Þyx ¼ Zð1Þyx ¼ � j0:1

The biasing DC magnetic fields �HH0 of all chiroparticles are
all along the z axis.

On the other hand, the technique described above,
combined with the Galerkin MoM procedure, can also be
extended to treat bianisotropic microstrip structures, as
shown in the literature [39,40,42,54]. However, it should
be mentioned that to deal with the mode dispersion
characteristics in a microstrip transmission line with
bianisotropic material, a general multilayer model is
shown in Fig. 14. It is evident that this model can
incorporate various applications [55–57]. However, we

need to be careful about the destroy in image symmetry
of the constitutive tensors [54,91].

3.2. Extended Finite-Element Method (FEM)

The extended FEM as well as the FEM–boundary-element
method (FEM-BEM) is able to treat wave propagation and
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Figure 13. R(T)pq (pq¼11,22,12,21) as a function of the in-
cident angle y0 for a single-layer chiroferrite slab in free space
(solid dotted lines—T11;12;21;22; empty dotted lines—R11;12;21;22),
D(1)/l¼0.5 (where l is the incident wavelength).
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Figure 14. Cross-sectional view of a multiple microstrip trans-
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radiation problems related to complex bianisotropic media
[26,92,93]. Figure 15 shows the geometry of a bianisotro-
pic waveguide with an arbitrary cross section, where the
filled bianisotropic medium can be lossless or lossy. More
generally, the bianisotropic region may consist of several
types of bianisotropic media, but the structure must be
homogeneous in the z-axis direction.

Following a procedure similar to that used in Refs.
92–94, for admissible test functions ~EEtest and ~HHtest, we
must have

X
e

Z Z
e

f~EE�test
. ½jr� ~HHþoð e½ �~EEþ x½ � ~HHÞ�

þH
*�

test
. ½�jr� ~EEþoð m½ � ~HHþ Z½ �~EEÞ�dx dy¼0

ð31Þ

where the appropriate interelement and boundary condi-
tions are handled during the assembly

P
e over all ele-

ments. Here, both the necessary continuity requirements
on ~nn� ~EE and ~nn� ~HH and the additional requirements on ~nn �
~BB and ~nn � ~DD are, as described below, explicitly enforced on
the test and expansion functions. The six components of
the electric and magnetic test and expansion fields are
approximated on each element in terms of the values at
each nodal point according to

~EE

~HH

( )
¼ N½ �T

Exf g

Ey

� �
Ezf g

Hxf g

Hy

� �
Hzf g

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

e�jbz ð32aÞ

where

N½ � ¼

Z0 Nf g 0f g 0f g 0f g 0f g 0f g

0f g Z0 Nf g 0f g 0f g 0f g 0f g

0f g 0f g �jZ0 Nf g 0f g 0f g 0f g

0f g 0f g 0f g Nf g 0f g 0f g

0f g 0f g 0f g 0f g Nf g 0f g

0f g 0f g 0f g 0f g 0 �j Nf g

2
666666666664

3
777777777775

ð32bÞ

and Z0¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m0=e0

p
. The real m� 1 column vector {N} is the

element shape function vector, m is the number of nodal
points on each element, {0} is a m� 1 null vector, and the
superscript ‘‘T’’ denotes a matrix transposition. The col-
umn vectors {Ex}, {Ey}, {Ez}, {Hx}, {Hy}, and {Hz} are m� 1
complex field vectors representing the nodal point values
of, respectively, Ex/Z0, Ey/Z0, jEz/Z0, Hx, Hy, and jHz on
each element.

By employing the standard Galerkin procedure with
the expansion in (32a) and (32b), we can obtain the
following generalized eigenvalue equation

o P½ � þ b Q½ � þ R½ �
� �

Exf g

Ey

� �
Ezf g

Hxf g

Hy

� �
Hzf g

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼ 0f g ð33Þ

where the column vector is composed of all the nodal point
variables used to represent ~EE and ~HH throughout the
waveguide cross section. Note that both the complex
propagation constant b and the real angular frequency o
may be treated as the eigenvalue, depending on which is
numerically most advantageous or of primary interest.

By expanding (31) in component form, the quadratic
sparse matrices [P], [Q], and [R] take forms similar to
those in Ref. 94, and

Q½ � ¼ � Z0

X
e

ZZ
e

0f g 0f g 0f g 0f g � Af g 0f g

0f g 0f g 0f g Af g 0f g 0f g

0f g 0f g 0f g 0f g 0f g 0f g

0f g Af g 0f g 0f g 0f g 0f g

� Af g 0f g 0f g 0f g 0f g 0f g

0f g 0f g 0f g 0f g 0f g 0f g

2
666666666664

3
777777777775

dx dy

ð34Þ

X
Z

Y
PEC

O

(bi)(an)Isotropic
chiral media

Figure 15. The bianisotropic waveguide with an arbitrary cross
section.
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½R� ¼Z0

X
e

ZZ
e

0f g 0f g 0f g 0f g 0f g � Cf g

0f g 0f g 0f g 0f g 0f g Bf g

0f g 0f g 0f g � Cf g Bf g 0f g

0f g 0f g Cf g 0f g 0f g 0f g

0f g 0f g � Bf g 0f g 0f g 0f g

Cf g � Bf g 0f g 0f g 0f g 0f g

2
666666666664

3
777777777775

dx dy

ð35Þ

and

A½ � ¼ Nf g Nf gT ð36aÞ

B½ � ¼ Nf g
@ Nf gT

@x
ð36bÞ

C½ � ¼ Nf g
@ Nf gT

@y
ð36cÞ

The continuity of n
*
� ~EE, n

*
� ~HH, n

*
. ~DD, and n

*
. B
*

, where
~nn is the unit normal vector perpendicular to an element
side in the transversal x–y plane, is enforced. Also, the
sample third-order triangular mesh is shown in Fig. 16,
and in order to satisfy the interelement conditions, it is
sufficient to apply the following at each nodal point along
each internal side

~nn�ðEp �
~EEqÞ¼ 0 ð37Þ

~nn� ð ~HHp �
~HHqÞ¼0 ð38Þ

~nn . ð ep

� �
~EEpþ xp

� �
~HHp � eq

� �
~EEq � xq

� �
~HHqÞ¼ 0 ð39Þ

~nn . ð mp

� �
~HHpþ Zp

h i
~EEp � mq

� �
~HHq � Zq

h i
~EEqÞ¼ 0 ð40Þ

where fE
*

p; ~HHpg and fEq; ~HHqg represent unconnected field
components in adjacent elements, p and q. To satisfy the
external boundary conditions at each nodal point along
each external side it is sufficient to enforce

~nn�E
*

p¼ 0 ð41aÞ

~nn . ð mp

� �
~HHpþ Zp

h i
~EEpÞ¼ 0 ð41bÞ

on electric walls and

~nn� ~HHp¼ 0 ð42aÞ

~nn . ð ep

� �
~EEpþ xp

� �
~HHpÞ¼ 0 ð42bÞ

on magnetic walls. From these equations, it can be found
that the total number of unknown is r6Np, where Np is
the number of nodal points.

As indicated in Ref. 94, the most important property of
the eigenvalue problem (30) now is the O(1/N) density of
the matrices [P], [Q], and [R]. This property ensures that

the maximum number of nontrivial matrix elements on
each row is independent of the dimension of the matrices.
Thus an upper bound of the densities becomes
r¼NNz=N2 � Oð1=NÞ, where Nz is the maximum number
of nonzero elements on each row and N is the matrix
dimension. Therefore, for large problems, sparse eigenva-
lue codes can be used to save significant amounts of
computer time an memory.

3.3. Extended Method of Line (MoL)

The normal method of line (MoL) [28] is very useful in the
analysis of planar radiative and transmissive microwave
components. This method was developed by mathemati-
cians and physicists in order to solve partial-differential
equations in the electromagnetic analysis of optical and
microwave devices, for the numerical solution of the
partial-differential Helmholtz equation. Originally devel-
oped to study planar waveguides, MoL was also extended
to study stratified microwave components with arbitrarily
shaped cross sections and microstrip discontinuities, in-
cluding one-dimensional and bidimensional resonators
and antennas. The latest extensions of this method have
been achieved to study gyrotropic media and microwave
components mounted on cylindrical or spherical struc-
tures.

The standard version of MoL, does not allow for the
study of elements with bianisotropic superstrate–sub-
strates. More recently, an extended MoL numerical pro-
cedure, which allows for the analysis of components in
the presence of any linear, inhomogeneous, or lossy
bianisotropic medium, has been developed [28]. Such an
extension is based on the generalization of the transmis-
sion-line equations for a general linear medium.

n

Element p

Element q

Figure 16. A portion of a sample of third-order mesh in the
bianisotropic region.
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Applying the curl Maxwell equations in a sourceless
bianisotropic region, and after some mathematical manip-
ulations, a set of transmission-line equations for a biani-
sotropic medium in Cartesian coordinates can be derived
as follows ðejotÞ

@½Et�

@ �zz
¼

Axx Axy

Ayx Ayy

" #
½Et� þ

Zxx Zxy

Zyx Zyy

" #
½ ~HHt� ð43aÞ

@½Ht�

@ �zz
¼

Yxx Yxy

Yyx Yyy

" #
½Et� þ

Bxx Bxy

Byx Byy

" #
½ ~HHt� ð43bÞ

where ½Et� ¼
Ex

Ey

" #
; ½Ht� ¼

Hx

Hy

" #
, ½ ~HHt� ¼ Z0½Ht�, and Z0¼

ffiffiffiffiffiffiffiffiffiffiffiffi
m0=e0

p
.

The 16 operatorial tensor elements Aij;Bij;Yij;Zij, where i,
j¼ x, y, z, involve both the constitutive tensor entries and
the transverse derivatives and are given in Ref. 28 and
omitted here, and are very similar to the expressions
shown in Ref. 34.

It should be noted that Eqs. (43a) and (43b) can be
decoupled only for particular bianisotropic media whose
constitutive parameters allow the coupling matrices [A]
and [B] to vanish. The necessary and sufficient condition
on the medium constitutive tensors to obtain decoupled
equations, independently from the excitation, can be
written in the following form [28]

e½ � ¼

exx exy 0

eyx eyy 0

0 0 ezz

0
BB@

1
CCA; m½ � ¼

mxx mxy 0

myx myy 0

0 0 mzz

0
BB@

1
CCA;

x½ � ¼

0 0 xxz

0 0 xyz

xzx xzy 0

0
BB@

1
CCA; Z½ � ¼

0 0 Zxz

0 0 Zyz

Zzx Zzy 0

0
BB@

1
CCA ð44Þ

which represents the CGS of C2hðCsÞ above. Under such
circumstances, a standard MoL procedure similar to that
expressed in (43) can be used, and we have

@2½Et�

@ �zz2
¼ � ½PE�½Et�;

@2½Ht�

@ �zz2
¼ � ½QE�½Ht�: ð45a;bÞ

This set of equations can be easily discretized in two
dimensions and then diagonalized, and the electromag-
netic characteristics of the structure, as shown in Figs.
17a and 17b, can be further understood.

In the general case, an extended version of MoL needs
to be developed, as discussed in Ref. 28. Starting from
(43a) and (43b) and discretizing in the transverse plane as
in the standard MoL, a set of equations involving trans-

verse field components can be derived as follows

d½ÊEt�

d �zz
¼ ½ÂA�½ÊEt� þ ½ẐZ�½ĤHt� ð46aÞ

d½ĤHt�

d �zz
¼ ½ŶY�½ÊEt� þ ½B̂B�½ĤHt� ð46bÞ

where the symbol ^ stands for bidimensional discretiza-
tion. Here [ÊEt] and [ĤHt] depend only on z, respectively, as
shown in Fig. 18, where ÊEx and ĤHy are calculated on lines
denoted by ‘‘o’’, while ÊEy and ĤHx are sampled on lines
denoted by K. The other two sets, denoted by empty and
solid square dots, respectively, contain the lines in which
the central-difference derivatives are computed.

In Fig. 18, dx and dy are the discretization steps for the
central-difference operators along x and y, respectively.
The matrices ½ÂA�; ½ẐZ�; ½ŶY�; and ½B̂B� are obtained from
Eqs. (4), given in Ref. 28, substituting their elements
with discretized quantities. First of all, partial derivatives
are substituted with central-difference matrices ½D̂D�, also
including the boundary conditions.

0
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Figure 17. Microstrip transmission lines and antenna on biani-
sotropic substrates.
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Figure 18. Rectangular patch with discretization lines.
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Equations (46a) and (46b) are the algebraic discretized
versions of the generalized transmission line equations,
and they can be changed into

d½ĉc�
d �zz
¼

ÂA ẐZ

ŶY B̂B

" #
½ĉc� ð47Þ

where ½ĉc� ¼ ÊEt ĤHt

� �T
and the superscript ‘‘T’’ represents

the transpose of matrix. It is evident that the solution to
(47) is in the form of an exponential matrix, which is well
documented in Ref. 4 and used elsewhere in the literature
[34,38–40,50–54] by enforcing certain boundary conditions.

As a numerical example, Fig. 19 shows the geometry of
a patch cavity resonator loaded with a bianisotropic sub-
strate, and the resonant frequency versus patch side
length is depicted in Fig. 20 for er¼ 2:0, D¼ 0.8 mm, and
a¼ b¼10 cm.

In Fig. 18, the bianisotropic substrate is characterized
by the CGS of D2dðC2vÞ, and

e½ � ¼ e0er

1 0 0

0 1 0

0 0 1

2
666664

3
777775
; m½ � ¼ m0

1 0 0

0 1 0

0 0 1

2
666664

3
777775
;

x½ � ¼ c�1
0

0 jx 0

jx 0 0

0 0 0

2
666664

3
777775
; Z½ � ¼ � x½ �

ð48Þ

where c0¼ 3� 108 m=s. It is seen that, compared to the
isotropic case, the resonant frequency changes very little
for a given patch width, and this is because the bianiso-
tropic substrate is supposed to be very thin and the
magnetoelectric coupling effect is very weak [28].

3.4. Finite-Difference Time-Domain Method (FDTD)

The finite-difference time-domain (FDTD) method [95] is
the most popular three-dimensional full-wave numerical
algorithm that has been used to model electromagnetic

phenomena and interactions in various fields. The simpli-
city and effectiveness of FDTD method stem from the
utilization of a Cartesian grid from the discretization of
the structure, with appropriate staggering of the un-
known discrete values of the components of the electric
and magnetic field vectors in such a manner that the curl
operations in Maxwell’s equations can be approximated in
terms of second-order accurate finite differences. The
staggering of the fields is known as the Yee lattice. This
discretization results in a state space representation of the
discrete values of all six components of the electric and
magnetic fields on the grid. The simplicity and versatility
of the FDTD algorithm, combined with its suitability for
parallel implementation, has prompted aggressive re-
search and development toward its further enhancement.

In the time domain, the constitutive equations of
biisotropic chiral media can be expressed by

~DDðtÞ¼ e~EEðtÞþ
w
c0

~HHðtÞ �
1

c0

Z t

0
k0ðtÞ ~HHðt� tÞdt ð49aÞ

~BBðtÞ¼ m ~HHðtÞþ
w
c0

~EEðtÞ �
1

c0

Z t

0
k0ðtÞ~EEðt� tÞdt ð49bÞ
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Figure 19. A patch cavity resonator loaded
with a bianisotropic substrate.
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and (49a) and (49b) respectively can be further discretized
as

~DDðnÞ¼ e~EEðnÞþ
w
c0

~HHðnÞ

�
1

c0

Xn�1

m¼ 0

~HHðn�mÞ

Z ðmþ 1ÞDt

mDt

k0ðtÞdt

ð50aÞ

~BBðnÞ¼ m ~HHðnÞþ
w
c0

~EEðnÞ

�
1

c0

Xn�1

m¼ 0

~EEðn�mÞ

Z ðmþ 1ÞDt

mDt

k0ðtÞdt

ð50bÞ

The complex time-domain chirality parameter k̂k0ðtÞ is
defined as [95]

k̂k0ðtÞ¼ � j
to2

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q e½�xo0tþ jðf�o0

ffiffiffiffiffiffiffiffi
1�x2
p

t� ð51Þ

while the time-domain chirality parameter should be the
real part of k̂k0ðtÞ, and

k0ðmDtÞ¼

Z ðmþ 1ÞDt

mDt

k0ðtÞdt ð52aÞ

k̂k0ðmDtÞ¼

Z ðmþ 1ÞDt

mDt

k̂k0ðtÞdt ð52bÞ

In the time domain, the time dependences of both permit-
tivity and permeability are described by the following
equations:
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Further, (50a) and (50b) respectively become [95]
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where

~̂cc~cc
F

jðnÞ¼
Xn�1

m¼ 0

~FFðn�mÞĵjðmÞ ð54cÞ

Finally, the general algorithm for dispersive biisotropic
chiral media can be found, and in this algorithm [95],
we must

1. Update the y component of the electric displacement
Dy
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weiþð1=2Þ
n�

1

2

� �
eð�xe þ j

ffiffiffiffiffiffiffiffi
1�x2

e

p
Þo0e

Dt

þ
w
c0

Hy
iþð1=2Þ nþ

1

2

� �

�
Re½k̂k0ð0Þ�

c0
Hy

iþð1=2Þ nþ
1

2

� �

�
1

c0
Re½ĉcHy
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2. Update the x component of the electric displacement
Dx

i ðnþ 1Þ and the magnetic flux density Bx
iþ 1ðnþ 1Þ

by
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On the basis of (56a) and (56b), the interaction of a
transient microwave signal with biisotropic media can be
fully understood, in particular the material dispersion and
loss effects.

To use biisotropic and bianisotropic chiral media to
fabricate certain microwave devices, there are still many
challenging problems that need to be explored further,
such as the control or optimization of material parameters
and their measurements.
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