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Algebra of Vectors and Tensors

Whereas heat and mass are scalars, fluid mechanics concerns transport of momentum, which
is a vector. Heat and mass fluxes are vectors, momentum flux is a tensor. Consequently, the
mathematical description of fluid flow tends to be more abstract and subtle than for heat and
mass transfer. In an effort to make the student more comfortable with the mathematics, we will
start with a review of the algebra of vectors and an introduction to tensors and dyads. A brief
review of vector addition and multiplication can be found in Greenberg,E|pages 132-139.

Scalar - a quantity having magnitude but no direction (e.g. temperature, density)

Vector - (a.k.a. 1st rank tensor) a quantity having magnitude and direction (e.g. velocity,
force, momentum)

(2nd rank) Tensor - a quantity having magnitude and two directions (e.g. momentum
flux, stress)
VECTOR MULTIPLICATION

Given two arbitrary vectors a and b, there are three types of vector
products are defined:

0
Notation Result Definition
b
Dot Product a-b scalar ab cos0
Cross Product axb vector ab | sin® | n

where 0 is an interior angle (0 < 6 < n) and n is a unit vector which is normal to both a and b.
The sense of n is determined from the "right-hand-rule'El

Dyadic Product ab tensor

In the above definitions, we denote the magnitude (or length) of vector a by the scalar a.
Boldface will be used to denote vectors and italics will be used to denote scalars. Second-rank
tensors will be denoted with double-underlined boldface; e.g. tensor T.

* Greenberg, M.D., Foundations Of Applied Mathematics, Prentice-Hall, 1978.

* The “right-hand rule”: with the fingers of the right hand initially pointing in the direction of
the first vector, rotate the fingers to point in the direction of the second vector; the thumb then
points in the direction with the correct sense. Of course, the thumb should have been normal to
the plane containing both vectors during the rotation. In the figure above showing a and b, axb
is a vector pointing into the page, while bxa points out of the page.
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Definition of Dyadic Product

Reference: Appendix B from Happel & Brenner[¥] The word “dyad” comes from Greek:
“dy” means two while “ad” means adjacent. Thus the name dyad refers to the way in which this
product is denoted: the two vectors are written adjacent to one another with no space or other
operator in between.

There is no geometrical picture that I can draw which will explain what a dyadic product is.
It's best to think of the dyadic product as a purely mathematical abstraction having some very
useful properties:

Dyadic Product ab - that mathematical entity which satisfies the following properties
(where a, b, v, and w are any four vectors):

1. ab-v = a(b-v) [which has the direction of a; note that ba-v = b(a-v) which has the
direction of b. Thus ab # ba since they don’t produce the same result on post-dotting with
v.]

2. v-ab=(v-a)b [thus v-ab = ab-v]
3. abxv = a(bxv) which is another dyad
4. vxab = (vxa)b

5. ab:vw = (a-w)(b-v) which is sometimes known as the inner-outer product or the double-
dot productﬂ

6. a(v+w) = av+aw (distributive for addition)
7. (vtw)a=vatwa

8. (s+f)ab = sab+rab (distributive for scalar multiplication--also distributive for dot and cross
product)

9. sab = (sa)b = a(sb)

¥ Happel, J., & H. Brenner, Low Reynolds Number Hydrodynamics, Noordhoff, 1973.

* Brenner defines this as (a-v)(b-w). Although the two definitions are not equivalent, either can
be used -- as long as you are consistent. In these notes, we will adopt the definition above and
ignore Brenner's definition.
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DECOMPOSITION INTO SCALAR COMPONENTS

Three vectors (say e], ep, and e3) are said to be linearly independent if none can be
expressed as a linear combination of the other two (e.g. i, j, and k). Given such a set of three LI
vectors, any vector (belonging to E3) can be expressed as a linear combination of this basis:

V=v1€q + Vr€y + V3€3

where the v; are called the scalar components of v. Usually, for convenience, we choose
orthonormal vectors as the basis:

L (lifi=y
%G =0 V0t v

although this is not necessary. §;; is called the Kronecker delta. Just as the familiar dot and
cross products can written in terms of the scalar components, so can the dyadic product:

VW = (Vl 61+V262+V3 63)(W1 e1+w2e2+W3 63)

= (viep(wiep)t(vie)(wrex)t ...
= V1W16161+V1W2€162+ (nine terrns)

where the e;e; are nine distinct unit dyads. We have applied the definition of dyadic product to
perform these two steps: in particular items 6, 7 and 9 in the list above.

More generally any nth rank tensor (in E3) can be expressed as a linear combination of the 37
unit n-ads. For example, if n=2, 3=9 and an n-ad is a dyad. Thus a general second-rank tensor
can be decomposed as a linear combination of the 9 unit dyads:
I =Tieje;tTpe1ext ... =20y 32X, 37€€; tensors
Although a dyad (e.g. vw) is an example of a second-rank tensor, not
all 2nd rank tensors T can be expressed as a dyadic product of two
vectors. To see why, note that a general second-rank tensor has nine
scalar components which need not be related to one another in any
way. By contrast, the 9 scalar components of dyadic product above
involve only six distinct scalars (the 3 components of v plus the 3
components of w).

After a while you get tired of writing the summation signs and limits. So an abbreviation was

adopted whereby repeated appearance of an index implies summation over the three allowable
values of that index:

This is sometimes called the Cartesian (implied) summation convention.
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SCALAR FIELDS

Suppose I have some scalar function of position (x,y,z) which is continuously differentiable,
that is

J=Rxy.2)

and 0f/ox, of/0y, and 0f/0z exist and are continuous throughout some 3-D region in space. This
function is called a scalar field. Now consider f at a second point which is differentially close to
the first. The difference in f between these two

points is called the total differential of f:

fx+dx,y+dy,z+dz) - fix,y,z) =df

For any continuous function f(x,y,z), df is linearly
related to the position displacements, dx, dy and dz.
That linear relation is given by the Chain Rule of
differentiation:

df = Zldx+%dy+%dz

X oy 0z

Instead of defining position using a particular
coordinate system, we could also define position using a position vector r:

r=xi+yj+zk

The scalar field can be expressed as a function of a vector argument, representing position,
instead of a set of three scalars:

f=Ar)

Consider an arbitrary displacement away from the point r, which we denote as dr to emphasize
that the magnitude |dr| of this displacement is sufficiently small that f{r) can be linearized as a
function of position around r. Then the total differential can

be written as f

df = f(r+dr)— f(r) dr

GRADIENT OF A SCALAR fraf
r+dr

We are now is a position to define an important vector 0

associated with this scalar field. The gradient (denoted as VY)

is defined such that the dot product of it and a differential

displacement vector gives the total differential:

Copyright © 2000 by Dennis C. Prieve
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df =dr-Vf
EXAMPLE: Obtain an explicit formula for calculating the gradient in Cartesia coordinates.
Solution: r=xi+yj+zk
r+dr = (x+dx)i + (y+dy)j + (z+dz)k
subtracting: dr = (dx)i + (dy)j + (dz)k
V= (Vi + (V) + (VNk

dr-Vf=[(doi+..]-[(VH,d+..]

df = (V) + (Vf)ydy + (V))dz (1)
Using the Chain rule: df = (0f1ox)dx + (of/oy)dy + (0f10z)dz (2)

According to the definition of the gradient, and are identical. Equating them and
collecting terms:

[(V)x-(8fiox)Jdx + [(V/),~(afioy)]dy + [(V/)-(0fl0z)]dz = 0

Think of dx, dy, and dz as three independent variables which can assume an infinite number of
values, even though they must remain small. The equality above must hold for all values of dx,
dy, and dz. The only way this can be true is if each individual term separately Vanishes

So (V) = dflox, (Vf), = dfldy, and (Vf), = dficz,
leaving Vf:@i+zj+zk
ox oy Oz

Other ways to denote the gradient include:

Vf= gradf= of/or

*Named after French philosopher and mathematician René Descartes (1596-1650), pronounced
"day-cart", who first suggested plotting f{x) on rectangular coordinates

** For any particular choice of dx, dy, and dz, we might obtain zero by cancellation of positive
and negative terms. However a small change in one of the three without changing the other two
would cause the sum to be nonzero. To ensure a zero-sum for a/l choices, we must make each
term vanish independently.
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Geometric Meaning of the Gradient

1) direction: Vf{(r) is normal to the f/~const surface passing through the point r in the direction
of increasing f. Vf also points in the direction of steepest ascent of /.

2) magnitude: |[Vf[ is the rate of change of f with
distance along this direction

What do we mean by an "f=const surface"? Consider 7 = 27 vT
an example.
Example: Suppose the steady state temperature ‘ (3;3’3)

profile in some heat conduction problem is given by: \
z
T(xy,2) =x2 +)2 + 22 -

Perhaps we are interested in VT at the point (3,3,3)
where 7=27. VT is normal to the 7=const surface:

x2+y2+22=27
which is a sphere of radius /27 El
Proof of 1). Let's use the definition to show that these geometric meanings are correct.

df = dr - Vf

Vf

Consider an arbitrary /. A portion of the f~const surface
containing the point r is shown in the figure at right.
Choose a dr which lies entirely on f=const. In other
words, the surface contains both r and r+dr, so

Ar) = fir+dr)
and df = f(r+dr)-f(r) =0

Substituting this into the definition of gradient:

df=0=dr-Vf= ldr| | Vf|cos®

Since |dr| and |Vf| are in general not zero, we are

* A vertical bar in the left margin denotes material which (in the interest of time) will be omitted
from the lecture.
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forced to the conclusion that cos6=0 or 6=90°. This means that Vf'is normal to dr which lies in
the surface.

2) can be proved in a similar manner: choose dr to be parallel to Vf. Does Vf point toward
higher or lower values of f?

Applications of Gradient

. find a vector pointing in the direction of steepest ascent of some scalar field

+ determine a normal to some surface (needed to apply b.c.’s like n- v = 0 for a boundary which
is impermeable)

« determine the rate of change along some arbitrary direction: if n is a unit vector pointing
along some path, then

n-Vf:Z—j;

is the rate of change of f with distance (s) along this path given by n. 9/ /ds is called the
directed derivative of f.

CURVILINEAR COORDINATES

In principle, all problems in fluid mechanics and transport could be solved using Cartesian
coordinates. Often, however, we can take advantage of symmetry in a problem by using another
coordinate system. This advantage takes the form of a reduction in the number of independent
variables (e.g. PDE becomes ODE). A familiar
example of a non-Cartesian coordinate system is:

z
€

Cylindrical Coordinates RN €y

r=(x2+y2)12 x = rcosO o

0 = tan-1(y/x) y = rsin®

z=z z=z

Vectors are decomposed differently. Instead of

in R.C.C.S.: v=vyitv)j+vk
in cylindrical coordinates, we write
in cyl. coords.: V=v,e,Tvgegtv,e,
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where e,, eg, and e, are new unit vectors pointing the », 0 and z directions. We also have a
different set of nine unit dyads for decomposing tensors:

e, e.ey, e.e,, ege,, elc.

Like the Cartesian unit vectors, the unit vectors in cylindrical coordinates form an orthonormal
set of basis vectors for E3. Unlike Cartesian unit vectors, the orientation of e, and ey depend on
position. In other words:

e.=e.0)

eg = ep(0)

Spherical Coordinates

U4 g% —r
£ g
v l

Spherical coordinates (7,0,0) are defined relative to Cartesian coordinates as suggested in the
figures above (two views of the same thing). The green surface is the xy-plane, the red surface is
the xz-plane, while the blue surface (at least in the left image) is the yz-plane. These three planes
intersect at the origin (0,0,0), which lies deeper into the page than (1,1,0). The straight red line,
drawn from the origin to the point (r,6,¢)E| has length », The angle 6 is the angle the red line
makes with the z-axis (the red circular arc labelled 6 has radius » and is subtended by the angle
0). The angle ¢ (measured in the xy-plane) is the angle the second blue plane (actually it’s one
quadrant of a disk) makes with the xy-plane (red). This plane which is a quadrant of a disk is a

* This particular figure was drawn using » = 1, 8 = n/4 and ¢ = 7/3.
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¢=const surface: all points on this plane have the same ¢ coordinate. The second red (circular)
arc labelled ¢ is also subtended by the
angle ¢.

A number of other ¢=const planes are
shown in the figure at right, along with a  1.57
sphere of radius »=1. All these planes
intersect along the z-axis, which also
passes through the center of the sphere.

l_

0.5

x =rsinBcosd r:+\1x2+y2+22 Z 0
rsin Osin ¢ 0=tan! (\/xz + y? 057

-1

<
Il

z=rcos0 ¢ = tan~! (»/x)
-1.57

The position vector in spherical
coordinates is given by

r = xityjtzk =r ¢,(0,9)
In this case all three unit vectors depend on position:

€= e}"(e:d))a €g = ee(esd))a and e(]) = e(j)(d))

where e;. 1s the unit vector pointing the direction of increasing r, holding 6 and ¢ fixed; ey is the
unit vector pointing the direction of increasing 0, holding  and ¢ fixed; and e is the unit vector
pointing the direction of increasing ¢, holding » and 6 fixed.

These unit vectors are shown in the figure at right.
Notice that the surface ¢=const is a plane containing
the point r itself, the projection of the point onto the
xy-plane and the origin. The unit vectors e;. and eq
lie in this plane as well as the Cartesian unit vector k
(sometimes denoted e;).

If we tilt this ¢=const
x " plane into the plane of
ﬂl the page (as in the sketch at left), we can more easily see the
€. relationship between these three unit vectors:
unit circle on

¢ = const e, =(cos0)e, —(sin0)e

surface = = (cosb)e, ~(sin0)eg
This is obtained by determined from the geometry of the right
triangle in the figure at left. When any of the unit vectors is position
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dependent, we say the coordinates are:
curvilinear - at least one of the basis vectors is position dependent

This will have some profound consequences which we will get to shortly. But first, we need to
take “time-out” to define:

DIFFERENTIATION OF VECTORS W.R.T. SCALARS
Suppose we have a vector v which depends on the scalar parameter #:
v =v(?)
For example, the velocity of a satellite depends on time. What do we mean by the “derivative” of

a vector with respect to a scalar. As in the Fundamental Theorem of Calculus, we define the
derivative as:

dv _ lim {V(tJrAt)-V(t)}

dt At—0 At

Note that dv/dt is also a vector.
EXAMPLE: Compute de,/d6 in cylindrical coordinates.

Solution: From the definition of the derivative:

B AO—0

de, lim [e, (0+A0)—e.(0)] _ lim [Ae,
o A0-0 AO AO

Since the location of the tail of a vector is not
part of the definition of a vector, let's move
both vectors to the origin (keeping the
orientation fixed). Using the parallelogram
law, we obtain the difference vector. Its
magnitude is:

¢,(0+A0) - €,(6)
K«g\ sin(A0/2)

le,-(0+A0) —e,.(0) =2 sin%e
Its direction is parallel to eg(0+A06/2), so:

e, (0+A0)—e,(0)= 2sin%9ee(6+%9)
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Recalling that sinx tends to x as x—0, we have

Agfo{e, (0+A0)—e,(0)} = ABey(0)

Dividing this by AB, we obtain the derivative:
de,/d0 = eq
Similarly, deg/dd = -e,

One important application of “differentiation with respect
to a scalar” is the calculation of velocity, given position as a
function of time. In general, if the position vector is known,
then the velocity can be calculated as the rate of change in
position:

trajectory

x(7)

r=r(?)
v = dr/dt

Similarly, the acceleration vector a can be calculated as the
derivative of the velocity vector v:

a=dv/dt

EXAMPLE: Given the trajectory of an object in
cylindrical coordinates

r=r(f), 0 = 0(¢), and z = z(¢)

Find the velocity of the object.

Solution: First, we need to express r in in terms of the
unit vectors in cylindrical coordinates. Using the
figure at right, we note by inspection thaiﬂ

r(r,0,z) =re,(0) + ze,

Now we can apply the Chain Rule:

*Recalling that r = xi + yj + zk in Cartesian coordinates, you might be tempted to write r = re, +
Oeg + ze, in cylindrical coordinates.  Of course, this temptation gives the wrong result (in
particular, the units of length in the second term are missing).
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dr = (a"j dr + (@j do + (@j dz = e,dr + regdd +edz
0,z r,z r,0

ar o0 oz
%/_’/ %f_/
e, de,(0) e,
"o

Dividing by dt, we obtain the velocity:

_dr_dr(t) +rd6(t)n .\ dz(t)

Tt ot a4 0T f
— — ——
v, Vo v,

VECTOR FIELDS

A vector field is defined just like a scalar field, except that it's a vector. Namely, a vector field is
a position-dependent vector:

v =v(r)

Common examples of vector fields include force fields, like the gravitational force or an
electrostatic force field. Of course, in this course, the vector field of greatest interest is:

Fluid Velocity as a Vector Field

Consider steady flow around a submerged object. What do we mean by “fluid velocity?”
There are two ways to measure fluid velocity. First, we could add tracer particles to the flow and
measure the position of the tracer particles as a function of time; differentiating position with
respect to time, we would obtain the Velocity|3| A mathematical “tracer particle” is called a
“material point:”

Material point - fluid element - a given set of fluid molecules whose location may change
with time.}¥]

¢ Actually, this only works for steady flows. In unsteady flows, pathlines, streaklines and
streamlines differ (see “Streamlines, Pathlines and Streaklines” on page 65).

* In a molecular-level description of gases or liquids, even nearby molecules have widely
different velocities which fluctuate with time as the molecules undergo collisions. We will
reconcile the molecular-level description with the more common continuum description in
Chapter 4. For now, we just state that by “location of a material point” we mean the location of
the center of mass of the molecules. The “point” needs to contain a statistically large number of
molecules so that r(7) converges to a smooth continuous function.
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Suppose the trajectory of a material point is given by:

r=r(?)
. : o dr
Then the fluid velocity at any time is V= % 3)

A second way to measure fluid velocity is similar to the “bucket-and-stopwatch method.” We
measure the volume of fluid crossing a surface per unit

time:
\4
A > n
n-v= lim {_q} >
Aa—0Aa —>»
—>
where Aa is the area of a surface element having a unit —»
area Aa

normal n and Ag is the volumetric flowrate of fluild —»
crossing Aa in the direction of n.

When Aa is small enough so that this quotient has

converged in a mathematical sense and Aa is small enough so that the surface is locally planar so
we can denote its orientation by a unit normal n, we can replace Aa by da and Ag by dg and
rewrite this definition as:

dg=n-vda 4)

This is particularly convenient to compute the
volumetric flowrate across an arbitrary curved

surface, given the velocity profile. We just — 7
ha ibuti —>» V(r /
ve to sum up the contribution from each @ // Y .
surface element: — N
) | n
: \\ n
0= Jn-vda > 4{!
A

-

surface 4

PARTIAL & MATERIAL DERIVATIVES

Let f:f(rat)

represent some unsteady scalar field (e.g. the unsteady temperature profile inside a moving fluid).
There are two types of time derivatives of unsteady scalar fields which we will find convenient to
define. In the example in which f represents temperature, these two time derivatives correspond
to the rate of change (denoted generically as df /df) measured with a thermometer which either is
held stationary in the moving fluid or drifts along with the local fluid.
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partial derivative - rate of change at a fixed spatial point:

o _ (i)
ot \dt )y

where the subscript dr=0 denotes that we are evaluating the derivative along a
path] on which the spatial point r is held fixed. In other words, there is no
displacement in position during the time interval df. As time proceeds, different
material points occupy the spatial point r.

material derivative (a.k.a. substantial derivative) - rate of change within a particular
material point (whose spatial coordinates vary with time):

D_f_(ﬂj
Dt ) dt dr=vdt

where the subscript dr = v df denotes that a displacement in position (correspon-
ding to the motion of the velocity) occurs: here v denotes the local fluid velocity.
As time proceeds, the moving material occupies different spatial points, so r is not
fixed. In other words, we are following along with the fluid as we measure the
rate of change of f.

A relation between these two derivatives can be derived using a generalized vectorial form of the
Chain Rule. First recall that for steady (independent of ¢) scalar fields, the Chain Rule gives the
total differential (in invariant form) as

df = f(r+dr)- f(r)=dr-Vf

When ¢ is a variable, we just add another contribution to the total differential which arises from
changes in ¢, namely dt. The Chain Rule becomes

df = f(r+dr,t+di)— f(r,0) = g—f;dz+dr-vjf

The first term has the usual Chain-Rule form for changes due to a scalar variable; the second
term gives changes due to a displacement in vectorial position r. Dividing by dt holding R fixed
yields the material derivative:

* By “path” I mean a constraint among the independent variables, which in this case are time and
position (e.g. x,y,z and 7). For example, I might vary one of the independent variables (e.g. x)
while holding the others fixed. Alternatively, I might vary one of the independent variables (e.g.
t) while prescribing some related changes in the others (e.g. x(7), y(¢) and z(¢)). In the latter case, I
am prescribing (in parametric form) a trajectory through space, hence the name “path.”
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b)) g
Dt \dt)grayar  O\dt)geayar \ ) ix=var

1 \%

D_f:@+v.
Dt ot

But (dr/df) is just v, leaving: Vf

This relationship holds for a tensor of any rank. For example, the material derivative of the
velocity vector is the acceleration a of the fluid, and it can be calculated from the velocity profile
according to

We will define Vv in the next section.

Calculus of Vector Fields

Just like there were three kinds of vector multiplication which can be defined, there are three
kinds of differentiation with respect to position.

Shortly, we will provide explicit definitions of Notation Result
these quantities in terms of surface integrals. Let

me introduce this type of definition using a more Divergence Vv scalar
familiar quantity: Curl Vxv vector
Gradient Vv tensor
GRADIENT OF A SCALAR (EXPLICIT)
Recall the previous definition for gradient:
f=f(r): df=dr-Vf (implicit def’n of Vf)

Such an implicit definition is like defining £’ (x) as that function associated with f(x) which
yields:

f=1(): df= (dx) [ (implicit def'n of /")

An equivalent, but explicit, definition of derivative is provided by the Fundamental Theorem of
the Calculus:

/(%) EAxliiO{f(ijix;_f(x)}:% (explicit def’n of f)
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We can provide an analogous definition of Vf’

Vf = th ! I \fd (explicit def’n of Vf)
= —_ n
0 a explicitacrn o

where /= any scalar field

A = a set of points which constitutes any
closed surface enclosing the point
r at which Vfis to be evaluated

V= volume of region enclosed by 4

da = area of a differential element
(subset) of 4 surface A

volume V
n = unit normal to da, pointing out of

region enclosed by 4

lim (V—0) = limit as all dimensions of 4 shrink to zero (in other words, 4 collapses about
the point at which Vf'is to be defined.)

What is meant by this surface integral? Imagine A to be the skin of a potato. To compute the
integral:

1) Carve the skin into a number of elements. Each element must be sufficiently small so that

e clement can be considered planar (i.e. m is practically constant over the
element)

e fis practically constant over the element
2) For each element of skin, compute nf da
3) Sum yields integral

This same type of definition can be used for each of the three spatial derivatives of a vector field:

DIVERGENCE, CURL, AND GRADIENT

. lim |1
Divergence V-v = — Jn- vda
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Iim |1
Curl Vxvs= —jnxvda
V>0V
. Iim |1
Gradient Vv = — Jnvda
V—->0|V y

Physical Interpretation of Divergence

Let the vector field v = v(r) represent the steady-state velocity profile in some 3-D region of
space. What is the physical meaning of V - v?

e n-vda = dg = volumetric flowrate out through da (cm3/s). This quantity is positive
for outflow and negative for inflow.

) 4 n-V da = net volumetric flowrate out of enclosed volume (cm3/s). This is also
positive for a net outflow and negative for a net inflow.

(1/¥) |y n-v da = flowrate out per unit volume (s-)

> 0 for an expanding gas (perhaps 7' T or pl)

°
<
<

Il

= 0 for an incompressible fluid (no room for accumulation)

< 0 for a gas being compressed

V - v = volumetric rate of expansion of a differential element of fluid per unit volume
of that element (s-1)

Calculation of V - v in R.C.C.S.

Given: V= Vx(X,y,Z)i + Vy(xayaz)j + VZ()C,y,Z)k

Copyright © 2000 by Dennis C. Prieve
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Evaluate V -v at (x,,,y,.2,)-

Solution: Choose 4 to be surface of rectangular y
parallelopiped of dimensions Ax,Ay,Az with one
corner at x,,,,Z,-

Spring, 2001

So we partition 4 into the six faces of the
parallelopiped.  The integral will be computed
separately over each face:

Jn-vda: _[n-vda+ _[n-vda+-~-+ _[n-vda /xo 7777777
A

4 4> %
Surface 4 is the x=x,, face: n=-i

n-v=-i-v=-v.(x,2)

z,+Az y,+Ay
J n-vda = J J vy (x,,y,2)dydz
Al Zo Yo
Using the Mean Value Theorem: = -vylx,.)" .2 )AyAz
where Vo <V <y, tAY
and 2,2z <z, +Az
Surface 4, is the x=x,+Ax face: n=+i

n-v=i-v=v./(x,TAx,y,z)

z,+Az y,+Ay
_[ n-vda = _[ _[ v(x, +Ax,y,z)dydz
Al Zo Yo

Using the Mean Value Theorem: = v, (x,+Ax,y".z")AyAz
where Vo V' Sy, tAY
and Zo,<Z" <z,tAz

The sum of these two integrals is:

[+ ] =D + A y2) = v (xg 2 Jav Az
A A
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Dividing by V' = AxAyAz:

_Vx (x, +Ax,»",2") = v, (x,,Y",2")
Ax

J n-vda

1
V A1+A2

Letting Ay and Az tend to zero:

lim 1 J- nevda b = Ve(Xp +AX,Y,20) =V (X0, V052p)

N Ax

Finally, we take the limit as Ax tends to zero:

lim |1 J- . Ovy
V-0 VA1+A2 ox Xy1V0rZe
Similarly, from the two y=const surfaces, we obtain:
fim 1 J n-vda ; = 6&
V—0 VA3+A4 oy N
and from the two z=const surfaces:
lim |1 J- - ov,
V-0 VA5+A6 Oz X9:Vo %0

Summing these three contributions yields the divergence:

0
oV, N vy N ov,
ox Oy Oz

Vv =

Evaluation of Vxv and Vv in R.C.C.S.

In the same way, we could use the definition to determine expressions for the curl and the

gradient.
Vayo| Oz P i+(avx —aVij+ Wy O
oy 0Oz 0z  Ox ox Oy
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The formula for curl in R.C.C.S. turns out to be expressible as a determinant of a matrix:
i j k
e L N
ox Oy Oz oy 0z 0z  Ox ox Oy
vZ

\% \%

x y

But remember that the determinant is just a mnemonic device, not the definition of curl. The
gradient of the vector v is

where x| =x, xy =y, and x3 = z, v| = v,, etc.

Evaluation of V - v, Vxv and Vv in Curvilinear Coordinates
Ref: Greenberg, p175

These surface-integral definitions can be applied to any coordinate system. On HWK #2, we
obtain V - v in cylindrical coordinates.

More generally, we can express divergence, curl and gradient in terms of the metric
coefficients for the coordinate systems. If u,v,w are the three scalar coordinate variables for the
curvilinear coordinate system, and

x = x(u,v,w) y = y(u,y,w) z = z(u,v,w)
can be determined, then the three metric coefficients — 41, A and h3 — are given by

hl(u,v,w) = xbzl "‘J’th +ZL2l

hy (u,v,w) = xg +y5 +Z§

s (u,v,w) = va +y$v +Z$V

where letter subscripts denote partial differentials while numerical subscripts denote component,
and the general expressions for evaluating divergence, curl and gradient are given by

1Y T 1Y

=—— +———e
hy Ou hy Ov 2 3

gradient of scalar: Vf
h3 ow

1t
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divergence of vector:

1 0 0 0
= —(hyh —(hh — (/A
v hihyhs [au( 2 3V1)+av( 1 3V2)+6w( 1 2V3)}

ey hyey hzes

1
. _ 5) 15) 15)
curl of vector: Vxv= hyhyhs éu /av /6w
vy hyvy  h3vs

These formulas have been evaluated for a number of common coordinate systems, including
R.C.C.S., cylindrical and spherical coordinates. The results are tabulated in Appendix A of BSL
(see pages 738-741). These pages are also available online:

rectangular coords.

cylindrical coords:

spherical coords:

Physical Interpretation of Curl

To obtain a physical interpretation of Vxv, let’s consider a particularly simple flow field
which is called solid-body rotation. Solid-body rotation is simply the velocity field a solid
would experience if it was rotating about some axis. This is also the velocity field eventually
found in viscous fluids undergoing steady rotation.
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Imagine that we take a container of fluid
(like a can of soda pop) and we rotate the
can about its axis. After a transient
period whose duration depends on the p——* At A~ A A
dimensions of the container, the steady-
state velocity profile becomes solid-body 2 r I

rotation. . .
side view

A material point imbedded in a solid le ”
would move in a circular orbit at a i d

constant angular speed equal to Q £(00)
radians per second. The corresponding
velocity is most easily described using
cylindrical coordinates with the z-axis
oriented perpendicular to the plane of the
orbit and passing through the center of
the orbit. Then the orbit lies in a z=const
plane. The radius of the orbit is the radial
coordinate » which is also constant. Only
the 0-coordinate changes with time and it
increases linearly so that d0/d¢ = const =

Q.

e(6(1)

e,(6(0))

e.(6(0))
>

top view

In parametric form in cylindrical coor-
dinates, the trajectory of a material point
is given by

r(t) = const, z(¢) = const, 6(¢) = Qt

The velocity can be computed using the formulas developed in the example on page

d
V= r(t)c, +7r de(t)ce + dz(t)cz =rQlegy
dt dt dt
— — —
0 rQ 0

Alternatively, we could deduce v from the definition of derivative
of a vector with respect to a scalar:

_Dr_ . Ar_rdoey _ do

V= = lim =r—eg =rQey
Dt At—0 At dt dt

More generally, in invariant form (i.e. in any coordinate system)
the velocity profile corresponding to solid-body rotation is given

by
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)=Qxr (5)

where Q is called the angular velocity vector and rp is the position Vectorﬂ whose origin lies
somewhere along the axis of rotation. The magnitude of Q is the rotation speed in radians per
unit time. It’s direction is the axis of rotation and the sense is given by the “right-hand rule.” In
cylindrical coordinates, the angular velocity is

Q=Qe,

and the position vector is r

p =T€,. tze;

Taking the cross product of these two vectors (keeping the order the same as in :

V(r) =rQe, xe, +zQe, xe, =rQeg

€ 0

To obtain this result we have used the fact that the cross product of any two parallel vectors
vanishes (because the sine of the angle between them is zero — recall definition of cross product
on pl).

The cross product of two distinct unit vectors in any right-handed coordinate r

system yields a vector parallel to the third unit vector with a sense that can / \v
be remembered using the figure at right. If the cross product of the two unit

vectors corresponds to a “clockwise” direction around this circle, the sense . 0
is positive; in a “counter-clockwise” direction, the sense is negative. In this

case, we are crossing e, with e, which is clockwise; hence the cross product y—

is +eg.

Now that we have the velocity field, let’s compute the curl. In cylindrical
coordinates, the formula for the curl is obtained from p739 of BSL:

0
VXxv= lavz _% er+(avr _6Vz)ee+ l (FVO)_laV,, e
r 00 0z 0z or r or r 00

Substituting V=0 Vg =1Q) v, =0

we obtain Vxv=2Qe, =2Q

€ .9

* The subscript “p” was added here to avoid confusing the cylindrical coordinate » with the

rp‘:\/r2+zz 7.

magnitude of the position vector. Note that in cylindrical coordinates,
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Thus the curl turns out to be twice the angular velocity of the fluid elements. While we have
only shown this for a particular flow field, the results turns out to be quite general:

Vxv=2Q

Vector Field Theory

There are three very powerful theorems which constitute “vector field theory:”
e Divergence Theorem
e Stokes Theorem

e [rrotational << Conservative <>Derivable from potential

DIVERGENCE THEOREM

This is also known as “GaussB Divergence Theorem” or “Green’s Formula” (by Landau &
Lifshitz). Let v be any (continuously differentiable) vector field and choose A4 to be any
(piecewise smooth, orientable) closed surface;
then

§n-vda = JV'VdV
A 14

where V' is the region enclosed by 4 and n is the
outward pointing unit normal to the differential
surface element having area da. Although we
will not attempt to prove this theorem, we can
offer the following rationalization. Consider the
limit in which all dimensions of the region are surface A
very small, i.e. V—>0. When the region is

sufficiently small, the integrand (which is

volume V

* Carl Friedrich Gauss (1777-1855), German mathematician, physicist, and astronomer.
Considered the greatest mathematician of his time and the equal of Archimedes and Isaac
Newton, Gauss made many discoveries before age twenty. Geodetic survey work done for the
governments of Hanover and Denmark from 1821 led him to an interest in space curves and
surfaces.
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assumed to vary continuously with position)* is just a constant over the region:
V- v =const. inside V'
Jn-vda = JV'VdV = (V-V) J dVv |= (V-V)V
A V V

Solving for the divergence, we get the definition back (recalling that this was derived for V—0):

1
Vev =— J n-vda
Vv
A
Thus the divergence theorem is at least consistent with the definition of divergence.

Corollaries of the Divergence Theorem

Although we have written the Divergence Theorem for vectors (tensors of rank 1), it can also
be applied to tensors of other rank:

[nfda=[vfav
V

A

Jn-gda = JV-EdV
4 v

One application of the divergence theorem is to simplify the evaluation of surface or volume
integrals. However, we will use GDT mainly to derive invariant forms of the equations of
motion:

Invariant. independent of coordinate system.

To illustrate this application, let’s use GDT to derive the continuity equation in invariant form.

The Continuity Equation

Let p(r,f) and v(r,f) be the density and fluid velocity. What relationship between them is
imposed by conservation of mass?

* This is a consequence of v being “continuously differentiable”, which means that all the partial
derivatives of all the scalar components of v exist and are continuous.
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For any system, conservation of mass means:
rate of acc. net rate of
of total mass| |mass entering
Let's now apply this principle to an arbitrary
system whose boundaries are fixed spatial
points. Note that this system, denoted by V' can
be macroscopic (it doesn’t have to be
differential). The boundaries of the system are
the set of fixed spatial points denoted as 4. Of gyrface 4

course, fluid may readily cross these
mathematical boundaries.

volume V

Subdividing » into many small volume
elements:

dm = pdV

M =[dm=[pav
V

a _d IpdV :J’é_pdV
dt dt 7 V&‘t

where we have switched the order of differentiation and integration. This last equality is only
valid if the boundaries are independent of 7#. Now mass enters through the surface A.
Subdividing 4 into small area elements:

n = outward unit normal
n - v da = vol. flowrate out through da (cm3/s)

p(n - v)da = mass flowrate out through da (g/s)

{ rate of } = [p(nv)da=[m(pv)da = [ V-(pv)dV

mass leaving y
The third equality was obtained by applying GDT. Substituting into the general mass balance:

| Z—‘;dV =—[V-(pv)ar
14 V
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Since the two volume integrals have the same limits of integration (same domain), we can
combine them:

j[% + v-(pv)]dV =0

v

Since V is arbitrary, and since this integral must vanish for all V, the integrand must vanish at
every pointﬂ

op
r.iy. =0
o V)

which is called the equation of continuity. Note that we were able to derive this result in its
most general vectorial form, without recourse to any coordinate system and using a finite (not
differential) control volume. In the special case in which p is a constant (i.e. depends on neither
time nor position), the continuity equation reduces to:

V-v=0 p=const.

Recall that V - v represents the rate of expansion of fluid elements. “V-v = 0” means that any
flow into a fluid element is matched by an equal flow out of the fluid element: accumulation of
fluid inside any volume is negligible small.

Reynolds Transport Theorem

In the derivation above, the boundaries of the system were fixed spatial points. Sometimes it
is convenient to choose a system whose boundaries move. Then the accumulation term in the
balance will involve time derivatives of volume integrals whose limits change with time. Similar
to Liebnitz rule for differentiating an integral whose limits depend on the differentiation variable,
it turns out that{*|

* If the domain V were not arbitrary, we would not be able to say the integrand vanishes for every
point in the domain. For example:

jz"cosede - jz’“smede —0
0 0
Jjn(cose —5sin0)do =0

does not imply that cosf = sinf since the integral vanishes over certain domains, but not all
domains.

* For a proof, see G:163-4.
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di [s@nar |= | ‘Z—Sdm [ s@r.0)(n-w)da (6)
! V(1) V(t) ! A1)

where w is the local velocity of the boundary and S(¢) is a tensor of any rank. If w = 0 at all
points on the boundary, the boundary is stationary and this equation reduces to that employed in
our derivation of the continuity equation. In the special case in which w equals the local fluid
velocity v, this relation is called the Reynolds Transport T. heoremEl A6

1

EXAMPLE: rederive the continuity equation using a control volume
whose boundaries move with the velocity of the fluid.

Solution: If the boundaries of the system move with the same velocity as
local fluid elements, then fluid elements near the boundary can never
cross it since the boundary moves with them. Since fluid is not crossing
the boundary, the system is closed.ﬂF or a closed system, conservation of
mass requires:

i{mass of} 0

dt | system
aM  d
or — dry =0 7
dr di J p ™

40

Notice that we now have to differentiate a volume integral whose limits of integration depend on
the variable with respect to which we are differentiating. Applying@ with w=v (i.e. applying
the Reynolds Transport Theorem):

3 j o(r,)dV | = j ‘Z—pdm j o(r,1)(n-v)da
a0 rio Y

which must vanish by . Applying the divergence theorem, we can convert the surface integral
into a volume integral. Combining the two volume integrals, we have

¢ Osborne Reynolds (1842-1912), Engineer, born in Belfast, Northern Ireland, UK. Best known
for his work in hydrodynamics and hydraulics, he greatly improved centrifugal pumps. The
Reynolds number takes its name from him.

* When we say “closed,” we mean no net mass enters or leaves the system; individual molecules
might cross the boundary as a result of Brownian motion. However, in the absence of
concentration gradients, as many molecules enter the system by Brownian motion as leave it by
Brownian motion. v is the mass-averaged velocity.
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which is the same as we had in the previous derivation, except that V' is a function of time.
However, making this hold for all time and all initial V" is really the same as holding for all V.
The rest of the derivation is the same as before.

STOKES THEOREM
Let v be any (continuously differentiable)

vector field and choose A4 to be any (piecewise
smooth, orientable) open surface. Then

Jn-(Vx v)da = §V-dr
A C

where C is the closed curve forming the edge of

A (has direction) and n is the unit normal to 4

whose sense is related to the direction of C by the “right-hand rule”. The above equation is
called Stokes Theorem [*|

Velocity Circulation: Physical Meaning

The contour integral appearing in Stokes’ Theorem is an important quantity called velocity
circulation. We will encounter this quantity in a few lectures when we discuss Kelvin’s
Theorem. For now, I’d like to use Stokes Theorem to provide some physical meaning to velocity
circulation. Using Stokes Theorem and the Mean Value Theorem, we can write the following:

Stokes' Mean Value
Theorem Theorem

fv-dr = [n-(Vxv)da = (n-(Vxv))4=2(Q,)4
C A

Finally, we note from the meaning of curl that Vxv is twice the angular velocity of fluid
elements, so that n-Vxv is the normal component of the angular velocity (i.e. normal to the
surface 4). Thus velocity circulation is twice the average angular speed of fluid elements times
the area of the surface whose edge is the closed contour C.

* Sir George Gabriel Stokes (1819-1903): British (Irish born) mathematician and physicist,
known for his study of hydrodynamics. Lucasian professor of mathematics at Cambridge
University 1849-1903 (longest-serving Lucasian professor); president of Royal Society (1885-
1890).
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Example: Compare “velocity circulation” and
“angular momentum” for a thin circular disk of fluid

. . . ) : Q
undergoing solid-body rotation about its axis. S

Solution: Choosing cylindrical coordinates with the

z-axis aligned with axis of rotation. Solid-body § Az
rotation corresponds to the following velocity profile
(see page 23):
>
v =1Qeg R
and Vxv=2Qe,

Finally the unit normal to the disk surface is n = e,. Then the velocity-circulation integral
becomes

§V-dr = jn-(V x V)da = Jez -(2Qe, )da = 2QnR?
C A A

According to L&L Vol E page 25, the angular momentum L of a mass m undergoing motion at
velocity v is the lever arm r times the linear momentum (p = mv): i.e. L = rxp. Summing this
over differential fluid mass in our disk with dm = p dV, the net angular momentum of the disk is:

L= j(r x V)pdV = pAzJ(r x v)da
V A

Since the disk is of uniform thickness Az and density p, we can write the second equation above.
If the disk is sufficiently thin that we can neglect the z contribution to the position vector, then
we can approximate r = re, in cylindrical coordinatesEl Substituting into the second integral
above

R
L= pAzJ(ereZ)da = pAzQerrz 2nrdr = §R4pAZQeZ
A 0

Dividing this by the velocity circulation integral:

* Landau & Lifshitz, Mechanics and Electrodynamics (Course of Theoretical Physics: Vol. 1),
Pergamon, 1959.

¢ Actually this assumption isn’t necessary since any z-component of r will produce an r-
component in the cross-product and this »-component will integrate to zero as long as V' is a body
of rotation about the same axis.
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T 4

L ER paz2 1 p2 12 M
z__ _ 5 =—R°pAz=—"—-nR " Azp =~

fv-ar  20nR* 4 AT 4n

C

where M is the mass of fluid in the disk. This could be rewritten as
L
§V -dr = 47 HZ
C

So the velocity-circulation integral is just proportional to the angular momentum per unit mass.

DERIVABLE FROM A SCALAR POTENTIAL

A very special class of vector fields consists of those vectors for which a scalar field exists
such that the vector can be represented as the gradient of the scalar:

Suppose: v =v(r) and f=f(r)
If fexists such that: v=Vf

for all r in some domain, then f{r) is called the scalar potential of v and v is said to be derivable
firom a potential in that domain.

An example of a vector field which is “derivable from a potential”
is the gravitational force near sea level:

Fgrav = -Mgk - T
grav

and the associated potential energy is:

earth
0(z) = Mgz

Note that V= Mgk

is identical to the force, except for the sign (introduced by convention). This example also
suggests why ¢ is called the “potential” of v. Not every vector field has a potential. Which do?
To answer this, let's look at some special properties of such vector fields.

Property I if v=V¢ then Vxv=0 (irrotational)

Proof: Recall that Vx(V¢) = 0 (see HWK #2, Prob. 4¢). A vector which has this property is said
to be irrotational. This name is an allusion to Vxv representing the rotation rate if v is the fluid
velocity. Vxv=0 means the fluid elements are not rotating.
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Property II. if v=V¢ then fﬁv ~dr=0 (conservative)
C

for any closed contour in the region.

Proof: Using Property I, we know that Vxv=0. Then we can deduce the value of this closed-
contour integral from Stokes’ Theorem:

vedr=|n-(Vxv)da=0
-

A vector field which has this property is said to be conservative. This name is an allusion to the
special case in which v represents a force, like gravity. Then v-dr (force times displacement)
represents the work required to move the object through the force field. Saying that the contour
integral vanishes means that the work required to lift a weight can be recovered when the weight
falls. In other words, energy is conserved.

If C is open, v=V¢ is still quite useful:

Property III: let C, be an open contour connecting points 4 and B. Co

Ifv=V¢ then J.CoV -dr = ¢(rp)-d(ry) /\/B

A
for any contour connecting 4 and B.

Proof: Note that V¢ - dr = d¢ (from our definition of gradient). Then

[ vedr={do=0o(rp)-0o(ry)

C C

o o

We call this property path independence. Of course, Property II is just a special case of this for
which 4=B so that ¢(rg) - ¢(r4) = 0.

THEOREM 111
We have just shown that properties 1 and II are implied by v = V¢; it turns out that the

converse is also true, although I’m not going to prove it here. We can distill these properties and
their converse into a single statement:

Vxv=0 o= (I)(r) exists jgv-dr — 0 for every
forallr ; < {suchthatv=V¢; <= ¢
in Region in Region closed C in Region
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TRANSPOSE OF A TENSOR, IDENTITY TENSOR

The transpose of a tensor 1 is denoted 1/ and is defined so that:

ver=1l-v
and T-v=v-t
for all vectors v. For example:
if t=ab
then t/=ba

More generally, in terms of scalar components of 1, we can write the relationship between a
tensor and its transpose as:

t.=1.
Vi = i
Symmetric Tensor: =z

An example of a symmetric tensor is the dyad aa.
Identity Tensor: Also known as the Idem Factor. Denoted as I and defined so that:
v-l=v=1-v

for any vector v. Clearly I is symmetric, but in addition, dotting it with another vector gives that
vector back (like multiplying by one). In any coordinate system, I can be calculated from:

_or

I=Vr=—
= or

where r is the position vector expressed in terms of the unit vectors in that coordinate system.
Recalling from that gradient can be thought of as the partial derivative with respect to
position, I can be thought of as the derivative of the position vector with respect to itself. In
R.C.C.S., recall that:

r=xi+yj+zk

or;
and Vr = —Jee.
Zz:%: 6)(1' e

where 7; is the jth component of the position vector r and x; is the ith coordinate. In Cartesian
coordinates, the position vector components are related to the coordinates according to:
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r=x1=x,rp=xy=y,and r3 =x3 =2z:
o

then =9
6)(1' Y

which is 0 if i#j or 1 if i=j. This leaves:

Vr=>)>" e,-ejEl
i J

SO I=ii+jj+kk

As a partial proof that I has the desired properties which make it the identity tensor, consider
dotting it with an arbitrary vector v:

v (iitjjtkk) =v-ii+ v-jj+ v-kk
= (v-Di+ ()it (v-kk
=vit

witvk=v

Thus we have shown that v - I=v, as advertised.

DIVERGENCE OF A TENSOR

In presenting the corollaries to the Divergence Theorem, we have already introduced the
divergence of a tensor. This quantity is defined just like divergence of a vector.

Iim |1
V-et= —Jn-rda
= V-0 VA =

Note that this definition uses a pre-dot not a
post-dot. In R.C.C.S.

T=XXTjje/e;

On the x=x,, face:

n=-ej

* This expression for the identity tensor is valid for any set of orthonormal unit vectors (not just
the Cartesian ones for which we have derived it here).
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II<-I

=2, > Tjeree; == Tyl e
i j X

Similarly, on the x=x,+Ax face, we obtain:

n=+tej

II<-1

=2 T ¢
J
After integrating over the area, we obtain:

J n-tda = Z{le lx, +Ax =71 Ix, }ej AyAz
A1+A2 J

Dividing by V-

1 T1j |x +Ax T |x
y | owa Z{ Ax J
J

Al +A2
Taking the limit as V—0:
lim 1 6’51]-
il ctda b = .
V—->0|V J e Zda Z X €]

A1+A2 ]

Adding on similar contributions from the y=const and z=const faces:

oT;;
lzzz axll] J

J

ot,,

V1= a‘txx + a’l?yx + atzx i+ afxy n aryy " 8sz j+ ﬁ"txz N a’tyz N
= Oox oy 0z ox oy Oz Ox dy
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Introduction to Continuum Mechanic

In this course, we will treat fluids like continua; in other words, we are going to ignore the
molecular granularity of matter. This is an assumption which we, as engineers, often make in
describing transport of heat, mass, or momentum although we don’t always state this assumption
explicitly. To make the nature of this assumption clearer, it might help to discuss the alternative.

Fluids are composed of molecules. In principle, if you tell me the initial location of every
molecule in the fluid and its initial velocity, I can compute the position and velocity at some later
time using Newton’s laws of motion (i.e. F = ma). The difficulty with this approach is that the
number of molecules in any volume of fluid of interest to us make such a detailed calculation
impractical. For example:

1 cm3 of water — 3.3x1022 molecules — 10 million years

Even with a computer operating at 100 mfops, it would take 10 million years to do just one
multiplication for each molecule. Molecules of a liquid collide on the average of once every 10-
12 seconds. To describe one second of real behavior, I would need 1012 x 10 million years.
Clearly, this is an absurd length of time. Although computers get faster every year, this will
remain an absurdly long time for the foreseeable future. The alternative is:

CONTINUUM HYPOTHESIS

A detailed description at the molecular level is not required in order to predict macroscopic
behavior of any material. For example, it is not necessary to know the precise location of every
molecule of fluid; it turns out that all that is needed for most applications is the distribution of
mass described by the density profile p(r) of molecules in some region:

3 lim 1
o m

where m; is the mass of molecule i, the sum is over all the r v
molecules inside surface 4, and V is the volume. In fluid

mechanics, as in heat and mass transfer, we make an assumption

known as the "continuum hypothesis."

* Reference: G.E. Mase, "Continuum Mechanics," Schaum's Outline Series, McGraw-Hill, 1970.
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Basically this assumption is that the limit above will Ym;
converge long before the dimensions of V shrink to

: 14
molecular size.
Similarly, we don't need to know the translational,
rotational, vibrational and electronic energy of each P
molecule. We usually need only to know the internal
energy per unit volume as a function of position, 0

which in turn, manifests itself macroscopically as
temperature.

A more precise statement of the continuum hypothesis
is:

Continuum Hypothesis - the region to be described can be subdivided into a set of
(infinitesimal) volume elements, each of which simultaneously:

1) is small enough to be considered uniform (i.e. any spatial variations in properties -- such as
p, v, T, p -- inside the volume element are negligible); and

2) is large enough to contain a statistically large number of molecules.

In other words, we are assuming that dV exists such that the two conditions above are both
satisfied. Materials which obey this “hypothesis” as said to behave as a continuum. Generally,
the continuum hypothesis works well provided all the dimensions of the system are large
compared to molecular size. An example of a situation in which the continuum hypothesis does
not work is the flow of dilute gases in small pores, where the mean free path (for the collision of
molecules) is comparable to the dimensions of the pore. This situation is called “Knudsen
diffusion.”

The basic problem in continuum mechanics is to describe the response of material to stress. A
quantitative statement of that response is known as:

Constitutive Equation - model which describes how a material will respond to stress.
Familiar examples of constitutive equations include:

1) Hooke's law of elasticity (solids)

2) Newton's law of viscosity (fluids)

Many materials, like toothpaste and polymer melts, have characteristics of both solids and fluids
and do not obey either of these simple "laws." Such fluids are called viscoelastic.
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CLASSIFICATION OF FORCES

Having derived an equation (the Continuity equation) to describe the relationship among the
variables which is imposed by conservation of mass, the remaining fundamental principle of
physics is Newton’s second law (Z;F; = ma) which, as it turns out, is equivalent to conservation
of momentum. To apply this principle, we will need to list the forces which can act on fluid
systems. Forces tend to fall into one of two different categories, depending on the range over
which they act: long-range (compared to molecular size) forces are computed as volume integrals
(called “body forces™) and short-range forces are computed as surface integrals (called “surface
forces”).

Of course, gravitational forces have the longest range of any known force. For example,
gravitational forces between planets and the sun determine their orbits. In particular, all fluid
elements (not just those at the system boundary) feel a gravitational force of interaction with the
rest of the universe outside the system boundaries. Thus gravity is a “body force.”

body forces: those which act on every fluid element in body (e.g. gravity):
dF, = (dm)g=pg dV

At the other end of the spectrum are forces short-range interactions between
which have very short range. If the range is of "interior" elements cancel
molecular dimensions, then only fluid
elements experience a nonzero interaction
with the wuniverse outside the system.
Although interior fluid elements might interact
with one another through this short-range
force, this interaction is not considered in a short-range interactions between

force balance, because the “action” and "surface" elements do not cancel

“reaction” forces cancel, leaving no net

contribution to the force on the system. When

only surface elements feel a particular force from outside, that force is called a “surface force.”

At the molecular scale, pressure arises from the momentum transferred during collisions between
molecules outside and molecules inside the system. Since only surface molecules will be struck
from outside, pressure is a surface force.
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surface forces: those which act only on surfaces
(including mathematical boundaries)

One example is hydrostatic pressure:
dF,, = -pn da

where dF), is the force exerted on the system
(through the surface element da) by the fluid
outside, and n is a unit outward (to system)
normal. For a proof that this is the correct form for
hydrostatic pressure, see Batchelor, Section 1.3.

Hydrostatic Equilibrium

If our material is a fluid and if it is at rest (no velocity and no acceleration), then gravity and
hydrostatic pressure forces are usually the only forces acting on the system. At equilibrium, the
forces must be balanced. Thus Newton’sE| 2" law, which generally requires ZFi = Ma,

i
reduces to ZFZ- = 0 at mechanical equilibrium.

1

In our case, this means Fg + Fp =0
F,=lypgdV

F,= {ympda = - [, VpdV

To obtain this last result, we applied one of the corollaries of the Divergence Theorem.
Substituting back into the force balance and combining the two volume integrals leads to:

F,+F,=)[pg-VpldV=0

Since Vis arbitrary, we conclude that the integrand vanishes:

Vp =pg air
This says that the pressure increases in the direction of the water lower p
acceleration of gravity (downward), which correctly describes
g le
. . .. higher p
* Sir Isaac Newton (1642—1727), English mathematician and nati ) R t);

considered by many the greatest scientist of all time; invented differential calculus and
formulated the theories of universal gravitation, terrestrial mechanics, and color.
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(for example) how the pressure increases with depth in an ocean.

Flow of Ideal Fluids

Now let's consider fluids in motion. The simplest analysis is for:

ideal fluid - deformation of fluid elements is an isentropic process (i.e. adiabatic and
reversible):

u=0and k=0

where p is the viscosity and & is the thermal conductivity. Generally this means that any viscous
forces are negligible (since viscous forced represent friction arising between fluid elements and
friction gives rise to irreversibility). Furthermore, to keep the process adiabatic, the thermal
conductivity must also be negligible.

EULER'S EQUATION

Suppose these conditions on the fluid are met. Thus consider the isentropic deformation of
an ideal fluid for an arbitrary macroscopic system. In addition to pressure and gravity, we must
also consider inertia when the system accelerates. Newton's law requires:

Ma=">3.F. trajectory
o of material
point

v(t1)

v(tp) v(23)

Let r(#) denote the trajectory of one particular
fluid element inside the system. Then the

velocity of the fluid element is: r(f3)
Dr
vV=—0
Dt

while the acceleration is:

_Dv

a=
Dt

We use the material derivative here, since we are following a particular material point.
Multiplying the acceleration by the mass of the fluid element gives the inertia:

(dm)a = p(dV)%

To get the net inertia of the entire system, we must repeat this calculation for each of the fluid
elements composing the system and add them up:
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Dv
Ma)=|p—dV
(Ma)=[p—
V
I’ve put carets (<...>) around the Ma to indicate that this is the position-average inertia of the

system (since the local (dm)a varies from point to point within a general system). Newton's
second law requires us to equate this with the net force acting on the system:

Dv
JpEdV =F, +F, = Jpng— anda
V V A
_[VpdV
4

Using the divergence theorem to convert the surface integral into a volume integral, we have
three volume integrals over the same domain. Combining these three volume integrals leaves:

D
J[p—v—pgjth}dV =0
; Dt

Since this must hold for any choice of V, the integrand must vanish at each point in the domain.
After dividing by p:

=g Vp ®)
P

which is called Euler's Equation (1 755).ﬂ

Significance: When combined with a statement of continuity, Euler’s equation of
motion provides as many equations as unknowns.

Another relationship among the unknowns is the continuity equation (see page , which
comes from the mass balance.

op
—+V- =0
Ot (pv)

* Euler, Leonhard, 1707-83, Swiss mathematician. The most prolific mathematician who ever
lived, he worked at the St. Petersburg Academy of Sciences, Russia (1727-41, 1766-83), and at
the Berlin Academy (1741-66). He contributed to areas of both pure and applied mathematics,
including calculus, analysis, number theory, topology, algebra, geometry, trigonometry, analytical
mechanics, hydrodynamics, and the theory of the moon's motion.
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For an incompressible fluid, p = const. w.r.t. both time and position. Then the continuity
equation reduces to:

imcompressible fluid: V-v=0, )

To see that we now have as many equations as unknowns, note that the unknowns in [8)|and

[9)]are

unknowns: 4 scalars vand p

which represents the 3 scalar components of v plus p, for a total of 4 scalar unknowns. To
evaluate these unknowns, we have equations [8)|and

equations: 4 scalars Euler + continuity

but Euler’s equation is a vector equation, which can be expanded into 3 independent scalar
equations. When added to continuity (a scalar equation), we obtain a total of 4 independent
scalar equations, the same number as of scalar unknowns. Thus we are now in position to begin
solving problems involving fluid flow. We will call and “Euler’s equations of motion for
incompressible fluids.”

EXAMPLE. Water in a partially filled tank undergoes
uniform* acceleration a in the horizontal plane. Find the
angle 0 B“ inclination of the water’s surface with respect ~  f———— - —
to the horizontal plane. 7§

Solution. The key to solving this problem is to recognize
that, regardless of the angle of inclination, the pressure is
equal to 1 atm everywhere on the free surface. Then the
pressure gradient Vp must be normal to this plane. If we
can find the orientation of Vp we will have the orientation of the free surface. Recall Euler's
equation of motion for an ideal fluid:

Dv 1
—=g——V
Dt 5 p P
——

a

* By “uniform acceleration” I mean the same acceleration is experienced at each point and at
each time. For a fluid, uniformity at each position occurs only in the steady state after a transient
which is nonuniform.
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Dv/Dt is just the acceleration of the fluid in a stationary reference frame. 1 Vp

At steady state, all of the fluid will undergo the same uniform acceleration ol g
as the tank; so Dv/Dt is just a. Solving for the gradient, we have

le=g—a
p -a

Using vector addition in the drawing at right, we can see that the angle of
inclination of the free surface (relative to the horizon) is just

0= tan_l(ﬁj
g

We were lucky in the previous example, because we knew the left-hand side of so instead
of 4 scalar unknowns, we only had one: p. The solution was relatively easy. In the more general
problem, the left-hand side of is an unknown nonlinear partial differential equation:

ﬁ+V-VV:g—le (10)
ot p
In this form, we have expanded Dv/Dt using the relationship between material derivative and

partial derivative (see page . Now we have 4 scalar unknowns: the three scalar components of
v and pressure: vy, v, and p. Coupled with the continuity equation (for an incompressible
fluid)

Vy,

V-v=0

Euler’s equation also gives us 4 scalar equations. One important class of solutions has the form v
= V¢, which is called “potential flow.” In the next section, we discuss how this form comes
about and identify which physical problems have this form.

KELVIN'S THEOREM
An important precursor to the theory of potential flow is the principle of conservation of

circulation. Before stating this principle, let me define a quantity which Landau & LifshitzE| call
the velocity circulation:

* L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Vol. 6 of a Course of Theoretical Physics),
Pergamon, New York, 1959.
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I'= §V-dr
C
contours
of material points
for any closed contour. Recall that we showed on P

: . ) ) : at different times . C(22)
page 30 that this contour integral is associated with the .

averagelangular momentum of fluid elements located
on the surface whose edge is C. Kelviht showed that
this velocity circulation is conserved:

trajectory of a
material point

0 e ~————a material point

E:

for any set of material points forming a closed
contour in an ideal fluid. This result is called Kelvin's
Theorem.

Partial proof:|f| Since the contour C is composed of material points, the time derivative of this
contour integral is like the material derivative:

r D ? D
=y e =g D
t tC C t

Since we are always integrating over the same set of material points, a boundary term does not
arise when we interchange integration and differentiation operators, although the set of spatial
points is time-dependent: C = C(¢). Of course, we have not rigorously shown this step to be
valid, thus we only claim the proof is “partial.” Next, we substitute Euler’s equation and write
each term as the gradient:

At Loy lar=6l-ve - V2| gr=— Pl =
dt_ﬂg pr) dr ﬂ Vo, vp) dr iv(¢g+p) dr =0

In the second equality above, we have introduced the potential energy per unit mass, ¢,. Recall
that gravity is a conservative force field (see page|32)). For an object of constant mass (e.g. a

* Lord Kelvin (William Thomson), 1st Baron, 1824-1907, British mathematician and physicist;
b. Ireland. He was professor (1846-99) of natural philosophy at the Univ. of Glasgow. His work
in thermodynamics coordinating the various existing theories of heat established the law of the
conservation of energy as proposed by James Joule. He discovered what is now called the
“Thomson effect” in thermoelectricity and introduced the Kelvin scale, or absolute scale, of
temperature. His work on the transmission of messages by undersea cables made him a leading
authority in this field.

¥ For a more rigorous proof, see Batchelor p269. For a more intuitive proof, see L&L, p15.
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brick), Theorem III guarantees that a scalar field ¢(r) exists such that F, = mg = -V¢. For an
object of constant mass, we could divide both sides of this equation by m and bring m inside the
gradient operator: g = -V(¢/m). Similarly, a differential volume element dV would have a
differential mass dm and a differential potential energy d¢, such that g = -V(dd/dm). So generally
we can write:

= Vi, an

otential ener
where by = P &
mass

The next-to-last expression (in the equation for dI'/df) must vanish, because it has the form
Vs - dr = ds: integrating any total differential around a closed contour yields zero. Thus

§V-dr = const. w.r.t. time
C

Keep in mind that this applies only if C is composed of material points and only for ideal flow.
Since C is composed of material points (which in general move with different velocities), the
contour may change shape or move. Given the meaning of this contour integral (I" = angular
momentum), this result implies that (in the absence of friction) angular momentum of fluid is a
constant. In general, we change the angular momentum of some object by applying a torque. So
this result (i.e. Kelvin’s theorem) means that (in the absence of friction) there is no way to apply
a torque to ideal fluid elements.

If you think about it, this makes sense: the usual way to apply a torque (with
our hands to a cylinder, say) is to hold the cylinder between our hands and
then move our hands in opposite directions, as shown in the sketch at right.
We thus rely on friction between our hands and the cylinder to exert the
torque. If the cylinder were greased and our hands slipped over its surface,
we would not be able to apply the torque. This is the essence of what
Kelvin’s theorem is saying.

IRROTATIONAL FLOW OF AN INCOMPRESSIBLE FLUID

As an example, consider towing a submerged object through an “ideal fluid” which is
otherwise stagnant.

submerged object
v(r,=0)=0 moving through
stagnant fluid

Consider an arbitrary closed contour in the fluid far
from the disturbance caused by the motion of the submerged object. The contour integral
vanishes since v vanishes:
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§V-dr:0 for =0 sincev=10
C

for every such contour C. Now at some later time the submerged object moves into the vicinity
of C which causes v to be nonzero. Despite this, Kelvin’s Theorem still requires

Efv -dr =0 forallt  althoughv=0
C

This is also true for every closed contour in the region (since every contour initially had zero
value for this integral).

Applying Theorem III: Vxv =0 for all r,z (12)

which is sometimes called the persistence of irrotationality. Also from Theorem III, we know
o(r,f) exists such that:

V=V (13)

where ¢ is called the velocity potential.

Significance: Knowing that the solution has the form given byl(_l_l)Jallows us to
decouple the four scalar equations represented by [8)]and

Substituting [13)]into [9)]yields Laplace’s equation in the velocity potential:
into @I V2¢ =0

Instead of 4 equations in 4 unknowns, we now have a single equation which can be solved for ¢
and v = V¢, without any coupling to Euler’s equation Although Euler was the first to suggest
this approach, this is called Laplace's Equatiorﬂ after the French mathematician who solved this
equation in so many cases.

Knowing the velocity profile v, we can now determine the pressure profile p from Euler's
equation:

@+V-szg—le (14)
ot p

* Pierre Simon de Laplace (1749-1827), French mathematician and astronomer, noted for his
theory of a nebular origin of the solar system and his investigations into gravity and the stability
of planetary motion.
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We will now integrate this vector equation to obtain a single scalar equation for the pressure
profile. Each term in can be expressed as a gradient of something. For example, we’ve
already seen in that:

g= 'V(I)g

1 p=const p
Similary, if p=const, then: —-Vp = V(—) (15)
p p

For potential flow, the unsteady term becomes

ov 0 od
=2 (V) =V = 16
ot ot (Ve) (6‘t j (16)
Finally, for the convective term, we can apply identity A.3E|
V-VV:lez—vx(va) (17)
2
0
where v-v =12

where v=|v/|. In our particular case, the second term vanishes because Vxv = 0 for potential

flow. Substituting and through into

% v P
(at+ 5 +¢g+p]_0

which is called Bernoulli’s Equation.El It implies that

a¢-|-—+(|)g+£—constwrtr (18)

o 2 p

¢ “Identity A.3” in this equation refers to one of the mathematical identities summarized on the
handout titled “Useful Identities in Vector Notation”.

*Daniel Bernoulli (1700-1782, Swiss) has often been called the first mathematical physicist; the
teacher of Leonhard Euler. His greatest work was his Hydrodynamica (1738), which included
the principle now known as Bernoulli's principle and anticipated the law of conservation of
energy and the kinetic-molecular theory of gases developed a century later. He also made
important contributions to probability theory, astronomy, and the theory of differential equations.
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is spatially uniform, but it might depend on time. Once the velocity profile is obtained (by
solving Laplace’s equation), both ¢ and v are known, leaving p as the only unknown.

Potential Flow Around a Sphere

To solve a typical problem involving potential flow, we would first solve Laplace's equation
to obtain the velocity profile and then we can evaluate the pressure profile using Bernoulli's
equation. Let's illustrate the procedure using an example:

EXAMPLE: Find the velocity and pressure profiles for potential
flow caused by a sphere of radius R moving through a stagnant V = 0 Y
fluid with velocity U.

Solution: If the fluid behaves ideally, it undergoes potential flow
and the velocity profile must satisfy Laplace’s equation:

PD.E.: V2% =0

Boundary conditions can be formulated by recognizing that fluid far from the sphere is
unperturbed:

b.c. #1: v = 0 far from sphere

while fluid near the sphere cannot penetrate the sphere. To express this mathematically, recall
our “bucket-and-stopwatch” method for defining fluid velocity (see page [13). Modifying it
slightly to account for the movement of the surface element at velocity U, the flowrate across a
surface element of area da is given by:

dg=n-(v-U)da=0
For an impenetrable sphere, the flowrate must vanish
b.c. #2: n-(v-U) =0 on sphere

To solve this problem, we adopt a new reference Let reference frame move with object:
frame in which the origin moves along with the

center of the sphere. It turns out that the PDE does /\

not change upon this shift in reference frame for ggizrdm flow
velocity: the new velocity potential must also

) , stationary object
satisfy Laplace's equation: e
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P.D.E.: V=0

However, the boundary conditions are
changed. In this moving coordinate system,

the sphere appears to be stationary and the b
fluid at infinity is undergoing uniform flow oy
b.c. #1: v—>-U=Ukasr— o a1y -

—»

where U is the velocity of the sphere in the »
original stationary reference frame.

For a stationary sphere, no fluid entering the
sphere means dg = n-vda =0, or

b.c. #2: n-v=v.=0atr=R

Next we rewrite the b.c.’s in terms of the velocity potential in spherical coordinates. In terms of
velocity potential, [19)]becomes:

Vo= Uk

Now we need to translate k into the unit vectors in spherical coordinates

unit circle on
® = const
surface

Referring to the figure above (see page , we note that e,, ey, and e, = k all lie in the same
®=const plane (shaded region of left-hand figure above). If we shift all three unit vectors to the
origin (recall that the origin is not part of the definition of any vector) and re-orient the ®=const
plane to coincide with the plane of the page, then we get the figure above at right, from trigono-
metry of the right triangle it is apparent that

k =(cosb)e, —(sinB)eg

* Here @ is the spherical coordinate, while ¢ is the velocity potential. For more on spherical
coordinates, see BS&L p733.
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Thus the b.c. can be written as

as r— oo V¢ - UcosOe,—UsinOegy
%/_/ H_/
% 1%
or r 00

Equating corresponding components:

@zUcose and l@:Usine
or r 09
Integrating either PDE leads to
b.c. #1: ¢ — UrcosO +eenst as r— o

where we have arbitrarily selected a value of zero for this “const”[] In order to translate b.c. #2,
use tables (see spherical coord{*) to express the gradient in spherical coordinates:

v=Vo
0 10 1 0b

Vv.e,. +Vgeg tVpep = ger +;%ee + rsin@@#‘)eq}

Dotting both sides by the unit vector n = e,, then using b.c. #2:
b.c. #2: v, = 0¢/0r =0 at r=R

edge view of
@ = const
surfaces

We look for a solution which is independent of ®:

¢ = ¢(r.0)

This implies that the fluid does not have any ®-
component of velocity. In other words, the
trajectory of any fluid element remains entirely on a
single ®=const surface. The sketch at right shows
some edge views of ®=const planes (looking along
the z-axis which passes through the center of the
sphere).

end view of
line parallel

From p740 of BS&L, we have V2¢ in spherical
coordinates:

* Like most energies in thermodynamics, the reference state for potential is arbitrary and can be
chosen solely for convenience.

¢ http://www.andrew.cmu.edu/course/06-703/Vops_sph.pdf
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izﬁ(ﬂ@} ! i(sinO@j=0 20)
7 or or r2sine 00 00

o¢/or =0 at =R (21)

¢ = UrcosB as r— o (22)

Although there are systematic procedures, like “separation of variables,” for solving P.D.E.'s
which work in many cases, one should first check to see if there is a simple solution. The
problem appears formidible, but notice that the trivial solution:

$=02

satisfies the P.D.E. and the b.c. at /=R. Unfortunately, it does not satisfy the b.c. at ¥— o, so we
will have to try another guess. Since the failure occurred with the b.c. at ¥— o, we look there for
the form of our second guess:

¢ = Arcos0 ?

This too satisfies the P.D.E. and the b.c. at ¥— « (provided A=U) but to satisfy the b.c. at =R, 4
must be chosen as 0. The tells us that 4 should have different values at different 7's. So we try a
third guess which is slightly more general than the second:

¢(r,0) = f(r)cosO (23)

Substituting [23)]into [20)}{22)] we find that cos6 cancels out, leaving:

P 2f =2 =0
f'=0 atr=R

f=Urasr— o
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Thus we have reduced the problem of solving the P.D.E. to one of solving an O.D.E. We
recognize this O.D.E. to be a Cauchy-Euler equationE which always has at least one solution of
the form f=r". The general solution turns out to be:

fir)y=Ar2+Br

Using the b.c.'s, we can evaluate 4 and B. The particular solution to this problem is:

f(r)zU[er%R—j]

Substituting this back into [23)]leaves: gn v, =0
>
R
3 - vg(r,0=1)
R EA )
1 \
d)(r,e):U[V‘f‘Er—zJCOSO [
et
v, (r,m) v, (1,0)
o0 R 3 — 0» > —_»O
vr:—zUl—(—) cos0 Ve = Ve =
or r
i
Lol v, =0
10 LR T
Vo —;E——U(1+Er—3]sm9 > Ve(l’,6=37n)

Notice that for 6=n (6=0), v4=0 but v, decreases (in absolute

magnitude) from -U at 7= to 0 at /=R. At 6=n/2, v,=0 but vq increases from U to (3/2)U. This
increase is necessary to make up for the decrease in flow caused by the sphere blocking part of
the flow path.

Having solved for the velocity profile, we can determine the
pressure profile from Bernoulli's equatio). Assuming —>
steady state: s

—

n

N
* The general form of an Nth-order Cauchy-Euler equation is Zanx" d i/
n=0 dx

the N linearly independent solutions has the form y(x) = Ax®. Substituting this form leads to

=0. At least one of

N
agAx® + Y a,ola—Da—-2)..(a—n+DAx* =0

n=1

Dividing out the common factor Ax®, we obtain an Nth-order polynomial for a. Each distinct
root of the polynomial leads to a separate solution. In this example, the roots are oo = -2 and +1.
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2
v—+£+¢g = const
2. p

independent of position. The "const" can be evaluated using any point where we know both the
velocity and the pressure. Suppose the pressure of the undisturbed fluid is known in the
reference plane for the gravitational potential (¢, = 0):

atr—>oo,(])g=0: p:pooandvzzUz
2 2
Thus V—+£+¢g =2y P
2 p 2 p
or p(r,O):pw—p¢g+%p(U2—v2)
2 2 2
where vo=v.v= [v, (r,O)] + [ve (r,O)]

Substituting the known velocity profile, we obtain the pressure profile. Let's focus on the
pressure profile over the surface of the sphere:

forr=R:  p(R,0)= po —pd, +%pU2(900526—S)
%ﬁ—/

hydrostatic head dynamic head
Pn(R.6) pa(R.0)

In the sketch at right, we plot the dynamic pressure (dropping Pd
the contribution from hydrostatic equilibrium). Note the lpU 2 | \
location of regions having high and low pressure. The sphere is 2 |
being pushed in at the poles and allowed to expand at the 7‘1 >0
equator. This is why a large bubble rising through stagnant
water tends to become distorted from spherical shape. Such
bubbles tend to become extended in the horizontal plane and
compressed in the vertical direction by the higher pressure.

Sl

lop

lop

U
S hi p

moderate p

lo p

after deformation
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d'Alembert's Paradox

What is the net force on a rigid sphere owing the pressure profile developed by potential flow
around it? The answer turns out to be:

F,= —§npda = —Efn(ph +pg)da = —ffnph da ~ ffnpd da =—pgV’ (24)
A A 4 4
pgV 0

where V' is the volume of the sphere.

Proof: first consider the contribution from dynamic pressure:
P4 = %pU2(9cos2 6—5)

The n in is a unit vector normal to the surface, pointing outward. In spherical coordinates,
with their origin at the center of the sphere, this vector is the unit vector in the r-direction:

n = e,(6,9)

which direction depends on location on the surface. Although its length is a constant, its
direction varies with position of the sphere; thus n cannot be treated as a constant. Anticipating
that any net force will be parallel to the direction of fluid flow, we
dot both sides of [24)]by k:

F,=k-F :—J k-n pda
——
4 cosO

For the contribution from dynamic pressure, p (r=R,0) depends
solely on 6, so we choose the strip of width R d6 and length
2nRsin® as our differential area da. On this strip 6 is virtually
constant.

7sin®

T
Fyp = [ c0s0 py(R,0) (2nRsin0)(Rd0)
5\/_—/
0 f(cos0)

T
= 2nR2J0056 f(cos®) (—sinBdb)
N —
0 d cosH

x=cos0

-1
= 2nR? ><%pU2 Jx(9x2 —S)dx =0
1

| S
0
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The nonzero contribution from comes from the hydrostatic head. We will leave this
calculation as an exercise for the reader (HWK #4, Prob. 1). The net force due to pressure is

F,=— [ (po-pbg)nda— | [§9U2(9cos29—5)}nda:_pgy
sphere sphere
—-pgV 0

The net force on the sphere is the sum of its weight and the net pressure force:
F, +F, =—pgV +p.gV =(p; —p)gV #0

which is the difference in weight of the sphere and the weight of the fluid displaced by it.
Because the pressure force is independent of the speed of motion of the sphere through the fluid,
the particle will continue to accelerate forever, without ever reaching a “terminal velocity.” Of
course, experiments show that falling particles reach a terminal velocity which implies that the
gravitational force is balanced by some other force. The other force is fluid drag (friction), which
is not predicted by potential flow. This serious discrepancy between the predictions of potential
flow theory and experiment is known as:

d 'Alembert'sEpamdox - potential flow predicts no drag but experiments indicate drag.

Despite this, potential flow is still useful:

Uses of potential flow — predicts lift (but not drag) on e Fiin
streamline objects moving through stagnant — lo
fluid at high Reynolds numbers (but still sub- g
sonic, 1.e. v << ¢). : hi p
—»

» correctly predicts v(r,t) and p(r,f) except very near the
surface of the object (i.e. inside boundary layer) and in wake [see pressure profile on airfoil
shown below].

» for asymmetric shapes (e.g. airplane wings), it correctly predicts a lift. [See lift force shown
below as a function of the angle of attack.]

* Jean le Rond d’Alembert (1717-83), French mathematician and philosopher, a leading figure
of the Enlightenment. His treatise on dynamics (1743) enunciated d'Alembert's principle, which
permitted the reduction of a problem in dynamics to one in statics. He did important work on the
mechanics of rigid bodies, the motions of fluids and vibrating strings, and the three-body
problem in celestial mechanics.
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Figs. 1.12 and 1.13 taken from Schlichting, 6th ed., p22f.

Stream Function

Before we resolve d’Alembert’s paradox by adding viscous forces, let's step back for a
moment and review what we have accomplished for potential (or irrotational) flow. The
mathematical problem might be stated as: find v(x,?) such that:

Vxv=10 (25)
and V-v=0 (26)

Egs. and represent four partial differential equations in the components of the unknown
vector field[¥| Recognizing that the solution is derivable from a potential allows us compress
these four equations into one scalar equation in one unknown:

v=V¢: V2¢ =0

which is quite a remarkable trick. The potential is not the only scalar field which a vector field
can be expressed in terms of. Velocity can also be expressed in terms of a stream function.

* Although it might appear that we have overspecified the problem by specifying both the
divergence and curl (which represent four scalar equations in the three components of v), this
turns out not to be true. In general, both the divergence and curl must be specified throughout
some region in space before the vector field can be determined in that region.
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Potential ($) — a scalar field whose relationship to v is carefully selected to automatically satisfy
irrotationality

V=V Vxv=10

Whereas the relation between velocity and scalar potential is chosen to automatically satisfy
the relationship between velocity and stream function is chosen to automatically satisfy

v=f(y)>V-v=0

Stream Function (y) — a scalar field whose relationship to v is carefully selected to
automatically satisfy continuity.

It turns out that it is sufficient to express v as the curl of another vector. According to Identity
C.6, the divergence of the curl of any vector is zero (See HWK #2, Prob. 4d):

v=Vxu—>V-v=0

A vector which can be expressed as the curl of another vector is said to be solenoidal. u is called
the vector potential of v. Of course, knowing that v = Vxu isn't always of much help because
we just trade one unknown vector for another. Fortunately, there are several broad classes of
flows for which the form of the vector potential is known:

Two-D FLOWS

When nothing happens along one of the three directions in R.C.C.S., we have 2-D flow:

V= Vx(an/)i + Vy(an/)j

or v,=0,0/0z=0
|:| identity
E3
v=Vx[yxyle,] = Vy+yVxe,
—
For such a flow,* 0 (27)
= a—wex+@ey xezza—wexxez+6—weyxez
ox oy ox —— 0oy — =
—e

y €x

In terms of its scalar components, the velocity is:

* “Identity E.3” in this equation refers to one of the mathematical identities summarized on the
handout titled “Useful Identities in Vector Notation”.
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oy v

Vv, = =—— v, =0 28
=G y= . (28)
Next we substitute this form for v into
identity
C.6
V.v= V-[Vx(\yez)] = 0

which automatically satisfies continuity for any choice of y(x,y). The scalar field y(x,y) is
called the stream function. For irrotational flow, the problem would be to determine y(x,y) such

thatis satisfied:
Vx[Vx(ye,)] =0
We can reduce this to a scalar equation. Using identity E.5 from handout:

Vx[Vx(ye,)] = V[V - (ye,)] - V2(ye,)

but V- (ye,) =0y/oz=0
and V2(ye,) = (V2y)e,
Thus Vxv = -(Vzw)ez

So for irrotational flow, the streamfunction must also satisfy Laplace's equation:

-0 20—
Vxv =0: Voiy =0
Unlike the scalar potential, the streamfunction can be used in all 2-D flows, including those for
which the flow is not irrotational. Indeed, we will use the streamfunction to solve Stokes flow of
a viscous fluid around a sphere, in which the fluid is not even ideal.

AXISYMMETRIC FLOW (CYLINDRICAL)

Another general class of flows for which a streamfunction exists is axisymmetric flow. In
cylindrical coordinates (7,0,z), this corresponds to:

vV =vrz)e, +v,(rz)e,
or vg=0and 6/06 =0

Then V - v = 0 can be satisfied by seeking v of the form:

v =Vx[f(rz)eg]
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7

The second expression usually leads to somewhat simpler expressions for Vxv and is the one
used in the table on p131 of BS&L:

Loy _low

B Croor

%
r z
r Oz

Computing the curl in cylindrical coordinates and setting it equal to zero leads to the following
PDE in vy (the details are left as an exercise):

2
va:—(E W)eezﬂ — > E’y=0
r

2 2
where Ez\uza w_l&‘_\u_i_a hd
orr ror g2

%y oy v

Note that E2y = V2y : V3 (r,z
e vir) ot ror g2

AXISYMMETRIC FLOW (SPHERICAL)
In spherical coordinates (7,0,¢), axisymmetric flow means
v =v,r,0)e, + vy(r,0)eq
or vy =0and 0/ =0
where ¢ is the azimuthal angle. Then V - v=0 can be satisfied by seeking v of the form:

v =Vx[y "(r,0)ey]

,0
or v=Vx Me :;a_\uer_ 1 a_\ljee
rsin0 +2 sino 00 rsin® or
—

v
v, 0

Again, the second expression is the one used in the table on p131 of BS&L (except the signs are
reversed). Taking the curl (HWK #4, Prob. 6a):

e
Vxv=-—C 2y =0
7sin0

Copyright © 2000 by Dennis C. Prieve



06-703 60 Spring, 2001

which requires E2y=0

2 .
where E2\|/= v +s1n6i( ! 6\|1)

ol 2 00\sind 60

Note that E2y # V2y:

2
V2 (r,e):a \v+36_\u+ I 9o sinea—w
v 20

o2 ror  yZsing o0

ORTHOGONALITY OF y=CONST AND (|)=CONST

A contour on which y=const is called a streamline.
A contour on which ¢=const is called a iso-potential
line. It turns out that these two contours are orthogonal
at any point in the fluid. To see this first note that

v=Vo

From the geometric meaning of gradient (see page@ of
Notes), we know that V¢ and hence v is normal to a
d=const surface (see figure at right). Second, recall that
v can also be written in terms of streamfunction as

for R.C.C.S. v =Vyxk (29)

Recall that the cross product is a vector which is
orthogonal to two vectors being multiplied. Thus v,
Vy, and k are mutually orthogonal. Since v and V¢  pytential Flow Around Sphere. Lines lie
point in the same direction, V¢ and Vy must also be in plane of page, which could be any
Orthogonal. ®d=const. plane.

STREAMLINES, PATHLINES AND STREAKLINES

Streamline - a contour in the fluid whose tangent is everywhere parallel to v at a given instant of
time.

Path Line - trajectory swept out by a fluid element.

Streak Line - a contour on which lie all fluid elements which earlier past through a given point in
space (e.g. dye trace)

For steady flows, these three definitions describe the same contour but, more generally, they are
different.
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PHYSICAL MEANING OF STREAMFUNCTION

The precise meaning of streamfunction is
somewhat different for 2-D and axisymmetric flows.
Let's focus on 2-D flows normal to a cylinder (not | |
necessarily ~with  circular  cross-section,  axis V=v2 40 =(y, - vz
corresponds to z-axis in R.C.C.S.). To motivate the
somewhat lengthy analysis which follows, we first Y=V1
state the physical meaning. First we observe that y=0
material points follow trajectories which can be
described as y=const. Three such trajectories are
shown at right which lie in the xy-plane. When these
trajectories are (mathematically) translated along the
z-axis a distance L they sweep-out y=const surfaces.

No fluid crosses these surfaces: there are like the walls of a tube. Since no fluid leaves or enters
this “tube”, conservation of mass means the mass flowrate must be a constant at any point along
the tube. For an incompressible fluid, the volumentric flowrate is also constant. Suppose we
denote the volumetric flowrate between any two of these y=const surfaces as AQ; then it turns
out that

AQ

T=W2—\V1

Thus vy might be interpreted as the volumetric flowrate per unit length between this particular
streaming surface and the one
corresponding to y=0.

Now let’s show this. Consider Ya
an arbitrary open contour (C) in the
xy-plane, cutting across the flow. _--
Next, consider the surface (A4)

{ - surface 4

z
formed by translating this contour a
distance L parallel to the z-axis. The
volumetric flowrate across 4 is:
Q= [m-vda

where n is a unit normal to 4. Since nothing changes with z, we choose a short segment of the
contour, having length ds and of length L as our differential area element.

da=Lds,
0 ?
The flowrate becomes: 7 = I n-vds= _[ Vy-dr (30)
C C
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where n is now normal to C and lies in the xy-plane. The key to this proof is deriving the second
equality in the expression above.

First, v can be expressed in terms of the gradient of the streamfunction using :
v=Vyxk

Both v and Vy lie in the plane of the page, whereas Kk is
perpendicular to this plane (points out of page). Post-crossing 0
Vy by the unit vector k does not change the magnitude but
rotates Vy by 90° clockwise. If instead, we pre-crossed by k
we would rotate Vi by 90° counter-clockwise. In either case, C
the cross product of k and Vy is a vector lying in the plane of
the page and of the same magnitude as V.
dr 7 Vy
The other term in the integrand of
%{is n ds, where c{s 18 the 0 Jrxk
itude of a differential p
displacement along the contour,
which we will call dr: Vi xk

ds = |dr|

Since n is a unit vector n ds has the same magnitude as dr but is
rotated by 90°. Both n ds and dr lie in the plane of the page. Just as
in we can rotate one vector into the other by crossing with k:

dr xKk =nds (31)

Substituting [27)]and (31)] into [30)|yields

n-vds=v-nds=(Vyxk)-(drxk)=Vy-dr =dy (32)

The 3™ equality above says that the dot product of the two rotated vectors is the same as the dot
product of the two vectors without rotation (since they are both rotated by the same amount).

:3__21|into yields:

%: _[ n-vds = _[ d\lf:‘lf(Q)_‘V(P)

CP—)Q CP—)Q
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To extract the physical meaning of this results, consider
two contours, denoted as C; and C, in the figure at
right. Notice that if C| coincides with a streamline, the
velocity is parallel to the contour at every point any no V=V2

fluid crosses it: 0))
Ci

Y=y

then: Q/IL=0

and v(Q) =vw(P)=v,
Thus y = const. along a streamline

On the other hand, if the contour cuts across two

streamlines (see contour C, in figure at right), then the difference in value of y corresponding to
two different streamlines is just the volumetric flowrate of fluid held between the two streamlines
(per unit length in the z-direction):

Ay =AQ/L

INCOMPRESSIBLE FLUIDS

By “incompressible fluid” we are usually referring to the assumption that the fluid’s density
is not a significant function of time or of position. In other words,

op
P 4v-(pv)=0
o V)

can be replaced by V-v=0

For steady flows, op/ot = 0 already and the main further requirement is that density gradients be
negligible

Identity C.1
V-pv) = p(V-v)+v-Vp=p(V-v)

Since flow causes the pressure to change, we might expect the fluid density to change — at least
for gases. As we shall see shortly, gases as well as liquids can be treated as incompressible for
some kinds of flow problems. Conversely, in other flow problems, neither gas nor liquid can be
treated as incompressible. So what is the real criteria?

For an ideal fluid (i.e. no viscous dissipation to cause VT), density variations come about
primarily because of pressure variations. For an isentropic expansion, the compressibility of the
fluid turns out to be:
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(@] _ 1
ap S 02

where ¢ = speed of sound in the fluid

Thus changes in density caused by changes in pressure can be estimated as

1
Ap= —2Ap (33)
c

According to Bernoulli’s equation, pressure changes for steady flow are related to velocity
changes:

LY _const. or Ap=-1p NS (34)

p 2 2
[ 1 [ ] :
(33 into (33): Ap~—PAY
The largest change in density corresponds to the largest change in v2, which is v,, .2 - 0:

2
(ﬂ] :l("maxj
P max 2 ¢

If the fraction change in density is small enough, then it can be neglected:

Criteria I: Viax << €
for air at sea level: ¢ =342 m/s = 700 mph
for distilled water at 25°C: ¢ = 1500 m/s = 3400 mph

For unsteady flows, a second criteria must be met:

. /
Criteria 2: T>>—
c

where T = time over which significant changes in v occur

[ = distance over which changes in v occur
l/c = time for sound to propagate a distance /

For steady flow t = o and Criteria 2 is always satisfied.
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Any fluid can be considered incompressible if both criteria are met.

Viscous Fluids

To resolve d’Alembert's paradox, we need to introduce another force into our force balance.
This force can be thought of as resulting from friction between the fluid elements. Friction gives
rise to viscous heating which represent an irreversible conversion of mechanical energy into
heat. Indeed, friction is the main difference between an ideal fluid and a real fluid.

friction — irreversible deformation — nonideal flow

TENSORIAL NATURE OF SURFACE FORCES

Friction is a surface force like hydrostatic pressure, but unlike pressure, friction is not
isotropic:

isotropic - independent of orientation (direction)

We say that pressure is isotropic because the magnitude of the pressure force is independent of
the orientation of the surface on which it acts. Recall:

dF,, = -npda
|d¥,| = pda

which is independent of n (orientation). Viscous friction
does not have this property:

[dF # depends on n
but it's magnitude is proportional to da:

Thus it makes sense to talk about the force per unit area, which we usually call pressure. In the
more general case in which the magnitude of the force per unit area might depend on the
orientation of the surface, we use the name stress. In general, all surface forces can be lumped
together and written as

dF surf= t(n) da

Copyright © 2000 by Dennis C. Prieve



06-703 66 Spring, 2001

where t(n) denotes the surface force per unit area acting on the body through the surface element
whose orientation is given by the unit outward normal n. We call this quantity the stress vector.f]
In what follows, I will try to convince you that the effect of orientation of the surface can be
expressed as

tn)=n-T

where T is called the stress tensor. While T depends on position and possibly time, it does not
depend on the orientation of the differential surface element da, which is given by n. T is
sometimes call the “state of stress” of the fluid.

First, let’s try to understand better what we mean when we say a F . r
material experiences some “stress”. Consider a block of some i N
material which bears some externally applied equilibrium load (see S
figure at right). By “equilibrium” I mean there is no net force and no h

net torque applied to the body: thus it is at mechanical equilibrium
and has no tendency to accelerate. The material might be a fluid or a
solid, but what we are about to say is easier to imagine if we
think of material as a solid block.

Now consider some mathematical surface inside the material t(ny)A4 F
(indicated by the dotted line in the figure above). What are the
forces exerted across this mathematical surface? To answer
this question, suppose we actually separated the block into two
pieces by physically cutting along this surface without
changing the loading. Block “1” now experiences an
unbalanced load -F while block “2” experiences an unbalanced
load +F. Once separated, both blocks would tend to accelerate
in opposite directions.

Why don’t the two halves accelerate when connected? Apparently, half “2” must have exerted a
force on half “1” which we denote as t(n;)4, where 4 is the area of the cut face, and which
equals

t(nl)A =+F
while half “1” exerted an equal but opposite force on half “2”
t(ny)4 =-F = -t(n)4 (35)

When expressed per unit area, this internal force between the two halves (when they are
physically connected) is what we mean by the “stress” experienced by the material under load.
Given that n; = -n,, tells us that

*see Whitaker, Introduction to Fluid Mechanics, Chapt. 4.
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t(ny)=—t(-n;)

Spring, 2001

More generally, for any mathematically surface having orientation n, we can write t(n) = —t(—n)

or t(-n) = —t(+n)

In essence, this is just a statement of Newton’s Third Law (for
every action, there is an equal but opposite reaction).

Now let’s generalize to three dimensions. Suppose we know
the distribution of stress (i.e. the “loading™) on all six faces of a
block of material. Furthermore, suppose this loading is an
equilibrium loading (no net force and no net torque on the block).
Let’s try to calculate the stress on a mathematical surface cutting
through the material at an arbitrary angle. Let the orientation of
the mathematical surface be given by the unit normal n.

Problem: given the surface stress on mutually perpendicular
planes [i.e. given t(i) for x=const plane, t(j) for y=const plane, and
t(k) for z=const plane], calculate the surface stress on a plane of
arbitrary orientation specified by the unit normal n.

Given: t(i), t(j), and t(k)

Find: t(n)

(36)

Solution: We choose the tetrahedron ABCO as our “system.” For the surface forces to be

balanced[]

jﬁt(n)da =0
A

We evaluate this surface integral by subdividing the surface 4 into the four faces of the
tetrahedron: planes ABC, BCO, AOC, and ABO. For each surface, we need to evaluate the

outward normal n, the stress vector t and the surface area A. The results are tabulated below:

*More generally, in our force balance, we should include body forces and inertia as well as
surfaces forces. If we let =0 then the volume integrals for body forces and inertia vanish more
rapidly than surface forces. Thus for the surface 4 enclosing a tiny volume ¥V, we must still

require §tda = 0 for the surface of every differential volume element.

A
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Outward Stress
Plane Normal Area Vector
ABC n A t(n)
BCO -i n-i4 t(-i)
AOC -j n-jA t(-j)
ABO -k n- k4 t(-k)

Applying the Mean Value Theorem to our surface integral:

§tda=0=[(t(n))+(n-i)(t(-i)) + (n-j)(t(~J)) + (n-K)(t(k))] 4

Dividing by A cancels the 4 out of our expression for the integral. Taking the limit as all the
dimensions of the block vanish (i.e. as 4—0) allows us to replace the unknown averages with
their limit, which is the value of the vector at the point that the tetrahedron collapses about.

t(n) + (n-i)t(-i) + (n-j)t(-j) + (n-Kk)t(-k) =0
or t(n) = -(n - Dt(-i) - (n - Ht(-j) - (n - K)t(-k) (37)
Next we apply Of course, we can replace n in with i or j or k. Using in
t(n) = (n - Dt(i) + (n- H(j) + (n - K)t(k)
Recalling the definition of dyadic product, we could re-write this expression as
t(n) = n-it(i) + n-jt(j) + n- kt(k)
t(n) = n-[it(i) + jt(j) + kt(k)]=n-T

The sum (inside square brackets) of these three dyadic products is some second-rank tensor,
which is independent of n. We denote this tensor by T.

Significance: to calculate the surface force on some differential surface area da having
orientation n, we just multiply this expression for the stress by the area:

d¥g,r =n-Tda (38)

where T is called the stress tensor and dF,,,, represents the net surface force (all contributions)
acting on the body whose outward normal is n. While T does not depend on n, it might depend
on position inside a solid which is nonuniformly stressed; thus

I=1I(r)

represents the state of stress of the fluid. In terms of the components of the tensor, we say that
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T;= jth component of the force acting on a r; = const surface

To make this more understandable, it might help to express T in terms of other variables in a
familiar problem, say an ideal fluid.

For an ideal fluid: T=-pl

To show that this is correct, we will compute the surface force and show that it reduces to the
familiar force due to pressure:

dFgypf=n-Tda=n-(-pDda = -p(n-Dda = -pnda = dF),

GENERALIZATION OF EULER'S EQUATION

Recall that Euler’s equation was derived by applying Newton's Second Law (F=ma) to any
fluid element. To generalize this result to include friction, we replace the “pressure force” by the
surface force.

Dv

Instead of: JpEdV:Fg+Fp :Jpng—anda
V V A
Dv
we have: JpEdV:Fg+FSWf :jpng+Jn-1da

14 A

Applying the Divergence Theorem and combining the three volume integrals:

J(p&—pg—V-TjdV =0
y\ Dt =

Since this must result for all choices of V in some region, the integrand must vanish at every
point in that region, or:

%=g+ V. (39)

=

1
p
which is a more generalized version of Euler's Equation.

For an ideal fluid: T=-pl

identity
C.11
and V-T=-V-(pl) = -Vp
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For a proof of identity C.11, see Hwk #3, Prob. 4. For a real fluid, there is an additional
contribution to T from friction:

For a real fluid: T=-pl+z (40)
where t is called the viscous stress or the deviatoric stress (since it represents the deviation from
ideal). Note that:

CAUTION: T in these notes (and in Whitaker) — -t in BS&L

By convention, 7; in these notes is positive for fensile stresses (which result from stretching a
solid rod) whereas 7; in BS&L is positive for compressive stresses (which result from putting a
fluid under pressure). Although BS&L's notation might make more sense for fluids (which
usually do not experience tensile stresses), we will use the other convention because it is more
commonly used in continuum mechanics: in particular, this is the convention used by Whitaker.

When written in terms of scalar components, the above equation between T and 1 represents
9 equations in 10 unknowns (the nine components of t plus p). Clearly p and £ cannot yet be
uniquely determined, given the state of stress T. One additional relationship is required. For a
real fluid, we somewhat arbitrarily define p as the average of the three diagonal components of T:

pz_%@:;) 41)
where 1=£=(ZzﬂyeiejJ=(Zekek)=ZZZTIJ(ei'ek)(ej'ek):ZTkk
i k i j ok Tﬁr& k
ik Sjk
or, in Cartesian coords.: T:1=T T, +T,,

In any coordinate system, T :1 is called the #race of T. Then p can be thought of as the isotropic
contribution to stress (that part of the normal stress which acts equally in all directions) while 1
represents the remainder, or the nonisotropic part. might be regarded as decomposing t into

an isotropic part and a nonisotropic part, which is a common thing to do with tensors.

The choice of p made in also represents the thermodynamic pressure; i.e. the
hydrodynamic p is now the same as the p appearing in the thermodynamic equation of state:

p=pp,T)

To summarize, we decompose the state of stress into two contributions: an isotropic pressure:

__1(y.
p=-5(T:1)
and a deviatoric stress: t=T-(1/3)(T:DI
Taking the divergence of V- T=-Vp+V-z
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and substituting it into Euler's Eq.

Dv
—= -Vp+ V-1
P Dt PE=YP —=
new for
real fluids

MOMENTUM FLUX

Up to this point we have spoken of T as the stress on the fluid. T can also be thought of as
momentum flux. To convince yourself that momentum is being transported (like heat and
mass), consider the problem of unsteady simple shear flow. At time =0, an initially quiescent
fluid confined between infinite parallel plates is disturbed by imposing motion on the upper
plate. The velocity profile gradually develops into
linear shear flow.

_> U
Note that, like all other fluid elements, the fluid
element at y=h/2 undergoes acceleration:
ovlot > 0 at y=h/2 o vel profile for
! Increasing
In other words, the fluid element is gaining 3

momentum. How can it acquire momentum?
Answer: momentum is transported to y=h/2 from
above through friction between fluid elements.
There are two directions associated with transport (v )|
of momentum: Hly= A ———————

1) direction of the momentum being
transported (in this example, x-momentum
is transported)

\/

2) direction in which the momentum is
transported (y)

For this reason momentum flux must be a 2nd rank tensor. It turns out that:
-T = diffusive flux of momentu

pvv = convective flux of momentum

* "Diffusive" means it results from random collisions between molecules.
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In multicomponent systems, the flux of any species i due to convection is written as the product
of concentration and velocity:

conv. flux of species i = ¢;v [=] mol-cm-2-s-! [=] rate/area
where ¢; [=] mol/cm3
More generally, by “flux,” I mean:

flux — that tensor (of whatever rank), which when pre-dotted by nda, gives the rate of
transport through the surface element having area da in the direction of its unit
normal n.

For example, the flux of fluid mass by convection is
pv [=] g-cm-2-s-1 [=] rate/area
Proof: pre-dotting by nda we obtain:
(nda)- (pv) = pn - vda = p(dq) [=] g/s

which represents the mass flowrate across da. Indeed the convective flux of total fluid mass also
has the form of concentration times velocity since

p = concentration of mass [=] mass/vol.

It might come as less of a surprize that pvv is the convective flux of momentum if you realize
that

pv = conc. of momentum [=] momentum/vol.
After all, momentum is mass times velocity. So
(pv)v = pvv = conv. flux of momentum

Example: Apply conservation of linear momentum to an arbitrary fluid system. Thus prove that
T and pvv are momentum fluxes, as claimed.

Solution: We choose a system that has fixed boundaries in the laboratory reference frame: in
other words, V' # V(f). Referring to the discussion above in which pv is the concentration of
momentum, pvv is the momentum flux by convection, and -T is the momentum flux by
diffusion, conservation of momentum requires

A A 4

accumulation  in by convection in by diffusion in by external forces

%JpvdV = —§n-pvvda —ﬁn-(—T)da +Jpng
V
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Applying the divergence theorem, combining the resulting volume integrals, and invoking the
result for arbitrary V, we would obtain

g(pv) + V-(pvww) -V-T-pg=0
ot — =

0 ov

ai;wrpg [V-(pv)]v+pV-Vv

Expanding the partial time-derivative of the product and expanding the divergence of the dyadic
product using identity C.8

dp } ov
PV (ov) v+ o +ov-Vy—V-T—pg =0
[& (pv) p—, +P T-pg

-
0

Finally, we recognize the factor inside square brackets must vanish according to the general
continuity equation. After this term is dropped, the remainder is Euler's equation:

p%+pv-Vv =V-T+pg

Comment: In writing the statement of conservation of momentum, we have a term representing
transport of momentum into the system by the action of external forces. Clearly, an object falling
from rest in a gravitational field acquires momentum through the action of gravity. Does this
acquisition represent transport to the body from outside, or does it represent a "generation" term?
If it is spontaneous momentum generation, then momentum is not conserved.

With a little reflection, we can convince ourselves that the action of gravity is “transport” and not
“generation.” Some of the earth's momentum is being transported to the falling object. When the
object eventually collides with the earth and comes to rest again, that momentum is transported
back to the earth. The total momentum of the universe has not changed: momentum is
conserved.

Actually, the term we call “diffusion of momentum” also arises from the action of an external
force: this time it's the action of “surface” forces, rather than “body” forces.
RESPONSE OF ELASTIC SOLIDS TO NORMAL (UNIAXIAL) STRESS

By generalizing, the force balance plus the mass balance now contain more unknowns than
equations:

T, v, and p — 9+3+1 = 13 unknowns

Euler + Continuity — 3+1 = 4 equations
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Missing is the constitutive equation which is an empirical description of how the fluid or solid
material responds to stress. Obtaining this relationship is an important objective of that field of
science known as continuum mechanics.

Let's start by considering solids, whose response is more familiar. Suppose I try to stretch a
rectangular bar by applying a tensile force,

F. _
// L
: . / yoy
We will attempt to describe the response of +F == —+—> -F
the bar under conditions of mechanical i / L,
equilibrium. To have the bar stretch instead ‘8’ « L. >
e

of accelerating as a result of the force, I
must apply an equal but opposite force to
the other end. Let the x-axis be aligned with the direction of the applied force:

F,=|F|
At equilibrium, the length of the bar will increase by an amount §,. Hooke's law tell us that:

oc FXLX

8
Y LL,

but

is the applied stress. The two subscripts on stress denote the two directions associated with it:
the first subscript denotes the orientation of the surface the force is applied to (x=const) while the
second denotes the direction of the applied force (x).

Since the deformation is proportional to the original length of the bar, it makes sense to define
the deformation per unit length, which is called:

strain: Exx = I
X

Later we will see that strain is a second-rank tensor. For now, we will interpret the order of the
subscripts as follows: the first subscript gives surface (in the
above case, an x=const surface), while the second subscript gives
the direction of the deformation (in the above case, the
x-direction). T

Experiments show that the strain increases with the applied stress
as shown in the figure at right. At low stress levels, the strain is E

\
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directly proportional to the applied stress: Hooke's law™ for purely elastic solids is:
Ty = Egyy
E [=] force/area

where E is called the Young's Modulus. 1t turns out that deformation also occurs in the y and z
directions:

€y T €77 T Ve
where v is called Poisson's ratio. For most materials

0.28 <v<0.33

RESPONSE OF ELASTIC SOLIDS TO SHEAR STRESS

Instead of a normal force, suppose I apply a shear force on the upper face. To keep the object
from translating, I must apply an equal but opposite force on the
lower face. Fy

This generates a force couple or torque, which will cause the body L,

to spin. To prevent a steady increase in rotation speed, I must y{ L } F,
apply an equal but opposite torque. Recalling that torque is force '
times lever arm:

Fy
FL,=F,L,
F F,
Dividing by L,.L,L_: L =
whykz LyL, L,L,
or Ty=Ty

where 7),, = x-component of force/area acting on y=const surface. Note that this implies that the
stress tensor is symmetric. This turns out to be true for virtually all
loadings [

Y exaggerated

This loading produces a shear deformation in which

8y oc Ly,

* Robert Hooke (1635-1703). English experimental physicist. Hooke’s law first stated in 1660.

* For a proof based on the assumption of local equilibrium, see W:4.3
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and Sy o L,

The corresponding definition of shear strain is:

Since we applied a symmetric stress, by applying forces in both the x and y directions, we
average the strains in the x and y directions to obtain a symmetric strain. Moreover, this
definition yields a strain which is invariant to rotation of the xy axes. As with normal stress,
shear stress produces a shear strain in direct proportion to the stress:

Ty, =2Gey, (pure shear)
where G is call the modulus of elasticity for pure strain. Although the units are the same, the
value of 2G is different from that of E.

GENERALIZED HOOKE'S LAW

Now let's try to generalize to some arbitrary loading which might involve both shear and
normal stresses.

Consider two arbitrary material points relative

in the material. Let x denote the 5= displacement
. . . = of two material

position of the second material point points by load

relative to the first, before the load is

applied. After the load is applied,

both material points move as shown  before load
by the dashed lines in the figure at
right. After the load the position of
the second material point relative to
the first becomes x+8, where

x+3
after load

8(x) = relative displacement

of two material points initially located at x. The resulting strain can be generalized as:

(X2}

_ %[V§+(V§)t]

or 8~-=l @_FaSi
Y 2 Gxi 8x]
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Note that this general definition of strain reduces to earlier expression for strain in the cases of
pure normal or pure shear stress:

00 00 0
unixial normal stress: €, = %( 3 L+ a—xj = L_x and T, =FE ¢,
x s N
05, 05 o 8
pure shear: Exy = %(a—; + a—;} = %(L—y + L—x] and Txy =2G Exy
x Y

If the strain components are all small, we might reasonably suppose that Hooke's law generalizes
into a linear relationship between any component of strain and the nine components of stress (or
vice versa):

3 3
T; =Y > Ciutn (42)
k=1 1=1
There are then nine coefficients for each component of stress, making a total of 81 possible
coefficients. But just by requiring:
o symmetry of T (7;=T};)

e isotropy of material (e.g. same Young's modulus applies to uniaxial stress in x-
direction as for y and z)

it can be shown that the number of independent constants is reduced from 81 to only 2. It is
customary to express the stress tensor as the sum of two tensors: one isotropic [(e:I)I] and the
remainder [¢ - (¢:D)I]. Denote the two independent constants as & and k, and use them as
weighting factors in the sum:

T=k[e-(:1)1]+ ks (e:1)1

e —
remainder isotropic
This can be rearranged T=kie+(ky—k )(g 1)1

Sometimes the constants are choosen as the two coefficients in this new form
T =2ng +(e: 1)1

which represents the generalization of Hooke's law of elasticity. Thus of G, E and v, only two
are linearly independent properties of the material; using the above relationship we can show
(HWK Set #5, Prob. 1) that
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E
v=—n--1
2G

RESPONSE OF A VISCOUS FLUID TO PURE SHEAR

Suppose I have a thin layer of fluid held between parallel plates and I apply a force F), to the
upper plate. To cause deformation, rather than

simple translation of the system, I must apply an F, ¥ o
equal but opposite force to the lower plate. " - Ix
As before, this produces a force couple or torque. — >
To keep the system from rotating, I must apply an - v
opposing torque. Once again this equilibrium 7, — >
state corresponds to a symmetric stress tensor. —
From our experience, we know that eventually the —> .
upper plate will slide past the lower plate at some —~———
steady relative speed U,. F, E
)}

F.L
response: U, < s

Lx LZ

This speed represents a rate of deformation:

s,
dt

U, =

and the speed per unit thickness represents a rate of strain:

dd
Ue "V :1[6_x]:d8yx

L, L, dl\L,) a

Finally, the applied force divided by the area over which it's applied represents a shear stress:

F)C
L.L. =Ty =Tyx =Ty

Rewriting the proportionality as an equality, we have:

de

Tyx = H dt

which is called Newton's Law of Viscosity (1686). Alternatively, BSL point out that
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GENERALIZED NEWTON'S LAW OF VISCOSITY

This generalization of Newton's law of viscosity to arbitrary loading parallels that of Hooke's
Law with the strain tensor replaced by the rate of strain. The main difference is that now the
deformation is a function of time:

displacement
3(x,?) = displacement of material pt. d(7)= of material point

= deformation by load

The trajectory of a material point initially located before load

_l’_
at x(0) is given by: x+3(1)

after load.is
x[x(0),¢] = x(0) + §[x(0),7] o applied for time #

Keeping the material point fixed (i.e. x(0) is
constant) while we take the time derivative is the same as taking the material derivative of
position. Thus the rate of deformation of fluid elements is:

ds _ Dx _

= =V (rate of deformation)
dt Dt

given by the fluid velocity. Just like we define the gradient of the deformation to be the strain:

e

— %[V§ + (V§)t] , (strain)

the gradient of the rate of deformation must be the rate of strain:

%[V§+(V§)t] = %{Vll))—?{ ZD)_?)I} )

Newton’s law of viscosity is a linear relationship between the stress and the rate of strain.
Generalizing that linear relationship again leads to a relationship like except that the strain
tensor gy is replaced by the rate of strain tensor dj;. Once again, in order for the stress tensor T
or 1 to be symmetric and for the material to be isotropic, only two of the 81 coefficients Cyj; are
independent. We use the two independent coefficients to multiply the isotropic part of t and its
remainder:

D
Dt

hm

[f=¥

[Vv + (Vv)t ] (rate of strain)

Nl»—
Nl»—

©=2pd+(x - 2p)(d: D1
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where p is the usual viscosity and «k is called the second coefficient of viscosity. d:1 has a
special significance, which we will now point out. As we showed on page, d: 1 is the trace of
d:

d:1=dj) +dy +ds3

.. . . 1 ov; avj
Writing in terms of the velocity v: d; = 0 Ly —~

SO (=1£ =

So the trace of the rate of deformation tensor is just the divergence of the velocity. Newton's law
of viscosity becomes:

£:2ud+(K—%u)(V-V)£

For an incompressible fluid: V-v=0

leaving T=2pd=p |:VV + (VV)tJ (incompressible)

NAVIER-STOKES EQUATION

Once again, let’s go back to Euler's equation, generalized to account for the tensorial nature
of viscous friction:

pDv/Dt=pg-Vp+V-1
For an incompressible fluid, V-v=0 and
T=2pd = p[VvH(Vv)]
V-t=p[V-Vv+V-(Vv)]
but using identity C.10: V-(Vv)=V(V-v)=0

leaving V-1=pV-Vv=pnuVviy
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. D
Euler's equation becomes: pj‘; =pg—Vp+ qu v (p,u=const)

which is known as the Navier-Stokes Equation (1822)E| Now we have as many equations as
unknowns:

v, p — 4 unknowns

N-SE, Continuity — 4 eqns

BOUNDARY CONDITIONS

But to successfully model a flow problem, we need more
than a sufficient number of differential equations. We also
need boundary conditions. phase 1

A typical boundary is the interface between two immiscible

phases -- either two fluids or a fluid and a solid. One such phase I
boundary condition which can generally be applied is the no

slip condition:

interface

vl =viI

For example, in the problem of uniform flow around a stationary solid
sphere, this requires: —>

atr=a: Vi=vg=0 —>
which means that there is no flow of fluid across the boundary: —
atr=a: v,=0

We also assumed this boundary condition when we solved the
potential flow problem. But “no slip” also means:

atr=a: vg=10

Note that our potential flow solution did not satisfy this second equation:

* Sir George Gabriel Stokes (1819-1903): British (Irish born) mathematician and physicist,
known for his study of hydrodynamics. Lucasian professor of mathematics at Cambridge
University 1849-1903 (longest-serving Lucasian professor); president of Royal Society (1885-
1890).
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for pot’l flow: v,{(a,0) =0

ve(a,0) =-(3/2)Usinb = 0
In addition to d'Alembert's paradox, potential flow fails to satisfy the no-slip conditionﬂ

For a fluid-solid interface, in which the velocity of the solid phase is known, the no-slip
condition is sufficient. But in the case of fluid-fluid interface, the velocity of the second fluid is
usually unknown. Then no-slip just relates one unknown to another.

A second boundary condition can be obtained by considering the F phase 1 ¥
stresses acting on the material on either side of the interface.
Suppose we were to apply a loading as on pa@66 to a two-phase .

phase

region straddling the interface, as suggested in the figure at right.
Note that the loading is balanced: that is there is no net force on the
system.

If we were to split the system into two parts along the
interface, each of the two halves would tend to accelerate.
This suggests that, when the two phases are in contact,
each exerts an “internal” force on the other, as shown in
the figure at right. These forces are equal but opposite:

F

Flon2
Fion2=-Foon1 =F

which might be thought of as “Newton’s Third Law”: for
every action, there is an equal but opposite reaction. Using (on page to express the
forces in terms of the stress tensor:

Ilz -ZIAZ —Ill 1214 =F

where 4 is the area of the interface and where n; is the normal to the interface pointing out of
phase i. However, from the geometry, we can deduce that

n;=-n, =n

Newton’s Third Law becomes: n-l =n-

U

) (43)

When the interface is highly curved (e.g. a small oil droplet in water), then surface tension can
produce a discontinuity in the normal components of the above force, which has not been

* Although "no slip" is usually applicable, there are at least two situations where no slip might
not be applicable: 1) when the mean-free path of gas molecules is comparable to the geometric
dimension, and 2) when a liquid does not wet the solid.
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included in the above analysis [see L&L, Chapt. 7 or Hunter, Vol L., p237f]. The more general
form of this boundary conditon is

n-(I; - Tp)=y(Vs-mn (44)
where y is another property of the fluid called the surface tension and
Ve=(1-nn)-V

is the surface component of the V operator. We will have more to say about this
near the end of the course. For now, we will neglect surface tension effects.

V- n = curvature of surface [=] m-!

For a flat surface, n is independent of position along the surface so that Vg-n =0

and (44) reduces to [43)]

Exact Solutions of N-S Equations

Exact solution of the Navier-Stokes equations presents a formidible mathematical problem.
By “exact” I mean:

exact — neither viscous nor inertial terms are neglected (i.e. approximated by zero, as
opposed to being identically zero)

One difficulty is the non-linear inertial term. Most of the powerful mathematical techniques
(such as eigenfunction expansions, used in “separation of variables”) only work when the P.D.E.
is linear.

Of course, if we can neglect the higher-order viscous terms, then we can cope with the non-
linearity using a velocity potential, as we did earlier in solving problems in potential flow.
However, viscous terms are seldom completely negligible and leaving them in the equation
makes the problem much more difficult by increasing the order of the P.D.E. Nevertheless, it is
possible to find exact solutions in certain cases, usually when the inertial terms vanish in some
natural way. We will now examine a few of these problems having exact solutions.

PROBLEMS WITH ZERO INERTIA

First, let’s consider problems in which the fluids elements travel along straight streamlines at
constant velocity. Then their acceleration vanishes identically.
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Flow in Long Straight Conduit of Uniform Cross Section

Suppose we have pressure-driven flow in a long straight
conduit whose cross section does not vary along the flow. In
mathematical terms, the conduit is a cylinder of arbitrary y
cross-section. Define Cartesian coordinates such that the axis '
of the cylinder corresponds to the z-axis. In a very long pipe,
we expect that v, will depend on z (as well as x and y) near the 2V

entrance and exit of the pipe. wall of
x  conduit
\ - J
Entrance Fully Exit
region developed region

YY

In particular, near the entrance, we say the velocity profile is “developing”; i.e. evolving with z.
Outside the entrance and exit regions v, will be independent of z. This situation is called fully
developed flow. For fully developed, steady flow:

vz = V%)
ve=»=0
Note that this automatically satisfies the Continuity Equation:
V-v=0v,/0z=0
For this form of solution, it turns out that the nonlinear inertial terms automatically vanish:
v-Vv=10

To convince yourself of this, consider steady flow. Since the velocity of a fluid element is
constant along a straight streamline:

for steady flow: v-Vv=Dv/Dt=a=0

In other words, fluids elements are not accelerating. Thus inertial forces are identically zero in
steady pipe flows. Strictly speaking, Reynolds number should not be thought of the ratio of
inertial to viscous forces in this problem, since inertia is zero for laminar flow although the
Reynolds number is not zero.

For a steady flow, the N-S equations are:

0=uv2v-Vp+opg
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Note that for a vertical pipe p=p(2)
but more generally for a horizontal or inclined pipe:

P =p(x,y,2)

where the dependence on position in the cross section arises from the contribution to pressure
from the hydrostatic head (i.e. from g). For this and some other problems, it’s helpful to
decompose the total pressure into contributions from gravity (i.e. hydrostatic pressure, p;) and
from flow (called the dynamic pressure, P)

p=pp+P
Vp=Vp, + VP
—
pg

From our earlier analysis of hydrostatic equilibrium (see page @I), we know that Vp;, =pg.
Note that Vp—-pg=VP

Next, we substitute this into the N-S Equation. Expanding them in component form:

oP
X - component: 0=- ™
X
op(P= P(z)
y - component: 0=——
oy
z-component: 0= MVZ v, — le—P (45)
z

where we have written the last term as the total derivative instead of the partial derivative
because the first two equations require that P be a function of z alone. We can immediately
deduce that P must be a linear function of z

HVZVZ = d_P
S0

since the dP/dz is independent of x and y, while the velocity profile is independent of z, so
requires that the two functions of different variables be equal:

g(x,y) =f(z) = const. w.r.t. x,,z

* In the absence of gravity, dp/0x and dp/dy must vanish: see the x- and y-components of (45).
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which can only be true if both functions equal the same constant: thus P(z) must
be a linear function. For steady flow in a circular conduit of radius a, the “no- a
slip” b.c. requires

atr=a: v,=0 (46)

Since neither the b.c. nor the differential equation contain any dependence on 6,
we expect the solution to be axisymmetric about the z-axis:

v, =V, ()
[ ] 1d( dv,) 1dP
becomes: ——|r = ——= const
rdr\ dr n dz
The general solution of this equation is:
1 dP -
v (r)=——r " +cyInr+c

Requiring the solution to be bounded at the center of the tube (as »—0) forces us to choose ¢;=0
while the remaining constant can be chosen to satisfy the no-slip condition The particular
solution is the familiar parabolic velocity

profile:
da
v,(r)= Ld—P(rz —az) (area of
4p dz shaded
region)
The volumetric flowrate through the
conduit is computed from:
0= Jn-vda - Joa v, (r)(2mr)dr side view end view
A
4
or 0= (_ d_Pj
8u dz

which is called Poisueille's Formula. This formula was been derived for a number of different
cross sections. In general

o-tt(4)
1) dz
where A = cross-sectional area of duct

and where £ is some constant which depends on the shape of the duct; e.g.
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circle: k=1/8n=0.0398

square: k=0.0351

ellipse: S
4n(1+¢)

where ¢ = b/a < 1 is the ratio of the minor to major axis.

Flow of Thin Film Down Inclined Plane

Suppose we have fluid overflowing some reservoir
and down an inclined plane surface. Although there
might be some entrance or exit effects (at the upstream
and downstream ends of the plane), if the plane is
sufficiently long compared to these regions, then what
we see in experiments is a region in which the fluid
flows downward as a film of uniform thickness. Let's
try to analyze this central region in which the film in
uniform.

4——__ air/water

surface

Let the x-axis be oriented parallel to the inclined plane in the direction of flow and let the y-axis
be perpendicular to the plane. One of the boundary conditions will no “no-slip” at the solid
surface:

at y=0: V=0

At the very least, there must be flow in the x-direction: otherwise there could be no viscous force
to balance gravity. In addition, the x-component must vary with y: v, must vanish at y=0 (no
slip) and be nonzero for y>0. The simplest form of solution which is consistent with those
constraints is:

v =vv)ey

Note that this form automatically satisfies the requirement of continuity for an incompressible
fluid:

V-v=0v/ox=0

Substituting this velocity field into the Navier-Stokes equations:

x: 0 = -op/ox + pd?v,/dy? + pg, 47)
y: = -0p/oy + pg, (48)
z: 0=-dploz
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where g, =g-e.=gcosp
and g, =g-e,=-gsin
Integrating with respect to y:
plx.y) =-pgysinp + c(x) (49)

where the integration constant might depend on x, but cannot depend on z (according to z
component above) or y. Now let's turn to the boundary conditions. Continuity of stress across
the interface yields:

at y=4: n- lliq =n- lgas =n- ('pgas; + lgas)

Now the viscosity of air is about 0.001 times that of water. Then it is reasonable to treat the air
as an inviscid fluid: i.e. neglect 14, This leaves

n 'lliq ® NPous = NPy (50)

where p,,=latm. Now e, is the unit normal to the interface in this problem

ey - lllq = ey : (-p; + i) = -pey + 'Zj/xex + Tyyey + Z.-)/ZeZ

When v, = v(y), the only nonzero components of the deviatoric stress tensor are rxy=ryxE|
Dropping the other terms, becomes:

Py T 7€y = € Damm
Equating separate components:
X-component: Tx(x,y=8) =0 (51
y-component: PXY=8) = Pagm
With this result, we can evaluate the integration constant in
Px,y=08) = -pgdsinp + c(x) = Py

Thus c(x) = pypm + pgOsIn

* For a Newtonian fluid, the 9 scalar components of the stress tensor are expressed in terms of
the derivatives of the velocity field on p145 of Whitaker. These expressions (except for a change
in sign) can be found on p88 of BSL or at the website for our course —

http://www.andrew.cmu.edu/course/06-703/NLV_RCCS.pdf.

Copyright © 2000 by Dennis C. Prieve



06-703 89 Spring, 2001
[49)lbecomes: PX.Y) = Pagn + pg(3-y)sinf
Thus dp/ox =0 and [47)|becomes:
ud2v,/dy? = -pgcosp
No-slip at the wall requires:
at y=0: V=0

whereas if the stress(Sl) is evaluated using
Newton's law of viscosity, we also require:

aty=4: Ty = dvy/dy =0

Using these two boundary conditions, the velocity
profile can be uniquely determined:

()= P80 e [2@) ; (gﬂ

side view
By integrating over a plane perpendicular to the flow,
we can evaluate the flowrate:
w
w6
Q=Jn-vda = J J v, (¥)dydz ;
4 0 0 dy|
3 y
pgWd” cosP
0= =28
3u
end view

where W is the width of the plane.
Time Out: The main novelty of this problem is the

treatment of the free surface. We treated the air as if it was inviscid, although it has some
viscosity. How important is the drag imposed by the air? This is the subject of Hwk #6, Prob. 2
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To answer this question, let’s consider a vertical film of water y
in contact with a vertical film of air, as shown in the sketch at
right. Let’s re-solve the problem and see how large 3, must be
for a given §,, before we can neglect the effect of the air. For
fully developed flow, the velocity and pressure profiles should 'x
have the form:
Vx = Vx (y )
v, =v,=0
=1at
p(x,y,z)=1atm 5, n
NSE, becomes:
2 ww
for water: 0=p,, 2x +P,g
dy
d2 a
for air: 0=p, Vz)c
dy

where we have taken p, = 0. Applying “no slip” at each of the three interfaces
at y=0: vy (0)=0
at y=3,,: vy (8,)=vi(8,)=U
at y=238,,+3,: ve(8,, +8,)=0
The particular solutions to the two ODE’s are

w Pw& Y

=—=(05,, — +U—
() o, (3 =)y 5
d,, +6, —
V)ccl( ): USw T0, Y

at y=9,,: T;;Vx (Byw)= T?}x (3w)

For Newtonian fluids, the stresses can be related to velocity profile:
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dvy dv?
My dx =Hg dx
4 y=0, 4 y=0,
Using the velocity profiles of and this stress matching yields:
1 U
—5Pw&0y F Wy T =Hg
2 w w w BW a 8a
Solving for U: U= 1 Pw8w
2Ry Mg
7+7
8y Bg
The flowrate of the water is
o 83 53 4%%4
2: V;v(y)dy: pwg w +lU8W — pwg w w a (54)
"o 12, 12p,, Hw | Ha
Sy, Bg

If the air film is very thick, the flowrate becomes

9 , Pgdy

=% = |im {Q} —rws-w (59)
5, >0 3py,

which is the same expression we had in the Notes when the viscosity of air was completely

ignored. Dividing [54)|by

og)

gMw  Ha 4 Hw  Ow
0 :l 8y  dg4 :l Hg By
O 4 Mw Mo 4 Hyw Oy
8W 861 Ha 861

When the viscosity of water is 1000 times larger than air (i.e. p,, = 1000 p,, ), this gives

w

4000+ —
o

a

On 4 1000+2W

a

0 0.99, for which the air film thickness must be

To reduce the flowrate by 1% means
o0

Copyright © 2000 by Dennis C. Prieve



06-703 92 Spring, 2001
5, =00745,,
So even if the air is stilled by a nearby boundary, the drag of the air on the free surface of the

water will be negligible (provided the boundary is not too close). In the absence of a rigid
boundary in the air, negligible error is made by treating the air as inviscid.

Time In!

PROBLEMS WITH NON-ZERO INERTIA

L&L list only three flow problems in which both including viscous and inertial terms are
important and in which exact solutions are known:

1) rotating disk
2) converging (or diverging) flow between nonparallel planes
3) the submerged jet

Rotating Diskf] |

A
We will now examine the solution of the first z Roxw

problem — the rotating disk — because it is used as a

model system for transport experiments. An infinite g —9
plane disk immersed in a viscous fluid rotates uniformly
about its axis. Determine the motion of the fluid caused

by this motion of the disk. This problem was first solved ®
. . . . - || *=
by von Karmen (1921) using cylindrical coordinates with
the z-axis coinciding with the axis of rotation. T
Define: €= z\/§
\Y%
where v =u/p [=] cm?/s

is called the kinematic viscosity.
Then: vi(r,z) = roF(C)

vo(7,2) = roG(C)

* See S:p93 (6th Ed); L&L:p79.
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v,(z) =+vo H()

p(2) = poP(Q)

Continuity and N-S become: 1.0
2F+H'=0 0.8+ G B
r: F2+F'H-G2-F" =0 0.6
0: 2FG+HG'-G"=0 0.4
z: P+HH'-H"=0 0.2 1 F
where the prime (") denotes differentiation with 0 ,
respect to . Boundary conditions take the form: 1 Z 3 4
z=0: F=H=P=0, G=1
Z=00: F=G=0

An important property of this solution is that the z-component of velocity depends only on z. For
this reason, convective heat and mass transfer problems becomes one-dimensional.

This is perhaps the only problem in which there is flow normal to a wall where the mass-transfer
coefficient can be determined analytically. For this reason, the rotating disk is a favorite tool of
researchers in mass transfer.
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Creeping Flow Approximation

CONE-AND-PLATE VISCOMETER

The cone-and-plate viscometer consists of a flat plate, on which

is placed a pool of liquid whose viscosity is to be measured, and Q

an inverted cone which is lowered into the liquid until its apex 0
just touches the plate. The cone is then rotated at some angular ‘p
velocity, 2, and the torque required to turn the cone or to keep <
the plate stationary is measured.

Spherical coordinates are most convenient to describe this
problem, since the surface of the cone and of the plate can be
defined as O=const surfaces:

surface of cone: 0=a
surface of plate: 0=mn/2

The cone is undergoing solid-body rotation (see HWK #4, Prob.
3):

for 0<a.: v(r) = Qxr

In spherical coordinates, the position vector is
r=re,(6.9)
while the angular velocity is (see figure and :
Q = Qe, = Q[(cosb)e, - (sinb)eg] (56)

Substituting into the expression for solid body rotation:

0<a: v = Qxr = rQsind €y

The principle direction of flow is the ¢-direction. “No-
slip” requires:

at 6=o: vy = r€2sina
v, =vg=0
at 6=n/2: Ve=V,=vyg=0

The simplest velocity profile which is consistent with these boundary conditions is:
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Vo = vy(r.,0)
v, =vg=0

Next, I’d like to argue that the pressure profile can be expected to be independent of ¢.
p=p(r.9)

Since there exists only a ¢-component of velocity, fluid streamlines will turn out to be circles (the
contour corresponding to r=const and 6=const). The circle corresponds to 0 < ¢ < 2.

By analogy with the last problem, you might guess (incorrectly) that pressure must decrease
along the direction of flow. However, in steady flow p cannot continously decrease with ¢ for all
¢. At the very least, pressure must be periodic in ¢; in other words, p(r,6,0) = p(r,0,0+2n). So
any decreases in pressure over part of the cycle will have to be balanced by increases over the
remaining part. Why should the pressure be higher at some points along the streamline than at
other? There is no geometrical asymmetry with respect to ¢ and no reason to expect any ¢-
dependence in the pressure.

The velocity profile automatically satisfies continuity:
Vv = (rsin@)1ov,/op = 0

Ignoring gravity, the Navier-Stokes equations in spherical coordinates become:E|

re -pvy2/r = -oplor (57)
0: -pvy2cotd/r = -r-15p/o6 (58)
ov ov v
b: o=pl L O], 2 20| 1 Ofg aPe)| Y (59)
2 or or 72 sin@ 00 0o 72 sin” 0

Notice that the pressure and velocity fields have been separated. We can first solve the
¢-component for the velocity profile and then substitute the result into the » and 6-components to
solve for the pressure profile. Based on the boundary conditions, we might try a solution of the
form:

ve(r,0) = f(0)

When this is substituted into the ¢-equation above, the r-dependence cancels out, leaving a
second order ordinary differential equation in f{6). The solution leads to:

* http://www.andrew.cmu.edu/course/06-703/NSE_sph.pdf
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g(0)

Vo =rQdsina—— (60)

g(a)

where

_l’_
2(0) = cotd + l1n(1 cosb )sine
2 \1-cosH
This function is plotted in the figure at right. Notice that — _,,
in the center (i.e. for 6 near n/2) the function is nearly 0
linear. A more careful asymptotic analysis would reveal
that

lim {g(e)}:za+0(85) 61)

¥
9—)2

aleo

where € -0

n
2

Notice that this is a linear function of 6 as expected
from the plot above.

Velocity Profile for Shallow Cones. Most cone-
and-plate viscometers are designed with cone
angles near to n/2. The reason for this will be
apparent in a moment. Note the arc lengths 7 and
rep on the figure at right. For shallow cones (i.e. as |
a—1/2), re asymptotically becomes the vertical
distance from some arbitrary point (7,0) in the fluid
to the plate,

lim {re} =z

kg
9—)2

while r¢| becomes the vertical distance between the plate at the cone:

lim {re;}=h(r)

T
91—)2

So in this limit we can use to replace

z
as a—>m/2: g(0)>2e =2~ cone
r
z
h
Copyright © 2000 by Dennis C. Prieve
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h .
and g(a)—>2¢=2= and sina—1
r
Then simpliﬁes to linear shear flow (at least locally)
z
for a—n/2: vy =rQ—
h
Notice that the rate of strain is independent of position:
w_ o _m o

for a—n/2: = — = const.
aZ h (7") 7’81 81

This is an important advantage for a rheometer, since all the fluid experiences the same strain
rate. Later, we will show that stress is also spatially uniform for shallow cones.

Torque. To use this device as a viscometer, we need to interpret torque
measurements. So let’s try to evaluate the torque for a given velocity
profile. Recall that torque is force times lever arm:

T= (rsina)F

Using vector notation:

0 T=rxF

* n origin
4 In our problem, the force F is not ¢

€0  concentrated at one point, but instead

"side view" is distributed over the surface of the

‘ plate. Let’s consider the contribution to force and torque from
some differential element of surface having area da.

Once the velocity profile is known, we can evaluate the stress
field from Newton’s law of viscosity. Given the stress field,
da we can calculate the force on any differential solid surface
element of area da from:

0=mn/2 plane

dF =n-Tda

where n is a unit normal pointing out of the body dF acts on.
Similarly, we calculated the contribution to the torque by
crossing this force with the local lever arm:

"top view" dT=rxdF =rx(n-Tda)

Copyright © 2000 by Dennis C. Prieve



06-703 98 Spring, 2001

Let’s calculate the torque exerted by the fluid acting on the stationary plate. Then we want to
choose n to point out of the plate or

= -e,
The net force exerted on the lower surface is:
F=[dF=-|ey Tda
Similarly, the torque exerted on the lower surface is:
T= [yrxdF = [yrx(-ey- T)da (62)
First let’s consider: ey L =Tge,. + Togeg + Togey

To evaluate the torque, we need to first cross this vector with the lever arm, which is the position
vector. In spherical coordinates, the position vector is:

r(r,0,0) = re(6,0)
rX(ee . l) = rTer(e,,xer) + I”Tee(erxee) + FT9¢(erxe¢)
:rT96e¢-VTe¢ee

Anticipating that the torque vector T will have the same direction as the angular velocity Q, we
dot both sides by e, which equals -eg on the plate (6 = n/2):

% = —ee‘[l’ X (—ee°1)] = ee°[l’ X (eel)] = ee'[l"Teee(I) — I"Ted)ee] = —I’Ted)

Now we substitute Newton’s law of Viscosity:E|

ui .. .0 Yo 1 ovg
Tog = oo = | sin0- + 63
00 = 700 r{sm 66(sin6] Sin0 0 9

What’s left is to substitute our velocity profile from into which yields

¢ where C=-2uQ sha

sin® 0 g(a)

Tyy = (64)

* http://www.andrew.cmu.edu/course/06-703/NLV_sph.pdf
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and where o is the cone angle. On the surface of the flat plate, 6 = n/2 and sin6 = 1. Ty,
(evaluated at 6=n/2) will be independent of ¢; then we can choose da to be a ring of radius » and
thickness dr, leaving:

T, = [\R(-rT, 9¢)(2nrdr)

sin o

g(a)

where R is the radius of the region of the plate which is wetted by the fluid.

7 =3mR’Q (65)

Shear Stress and Torque for Shallow Cones. If the cone angle a is very shallow (i.e. a—n/2)
then T, will be practically independent of position: from

lim Ty (0) = C = 22

a—>0->7 2e

for any 6. This means the entire fluid experiences the same stress. This has a number of
important advantages for rheological studies making the cone-and-plate viscometer one of the
important viscometric flows. Substituting into

lim [7] = %nuRS Q
€

e—0
Comment on Solution. There is a problem with our solution to NSE: when is
substituted back into [(57) and[(58), there is no single function p(r,0) which will satisfy them. In

other words, |(60) is not an exact solution. It turns out that is a reasonably good
approximation if Q is not too large. The exact solution has the form:

v =rQsina g(e) €y +0(Q2)

g(a)

where O(Q2) means that this term vanishes like Q2 as Q
—0. The centripetal force on fluid elements undergoing

I

l
a circular orbit causes those fluid elements to be “thrown !
outward” in the +r-direction. Since fluid elements near 2 | i
the rotating cone are rotating faster than fluid elements !

near the stationary plate, we have outflow near the cone |
supplied by inflow near the plate. The resulting - and 6-
components of velocity are called secondary flow,
whereas the original ¢-component is call the primary

flow.

Q2 (the secondary flow) vanishes faster than Q (the primary flow), so for small Q, the
leading term is approximately correct. This is called the creeping-flow approximation.
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CREEPING FLOW AROUND A SPHERE (Re—0)

Let’s return to the problem of flow around a X
sphere (or motion of a sphere through a stagnant —UK
fluid). For boundary conditions, we impose “no slip” —>
on the surface of the sphere and far from the sphere
the flow is undisurbed:

—
Z
at r=a: v=20 —>
—> ,
as r—o0: v—o>U Y

Here an exact solution to the Navier-Stokes

equations is not possible. Of course, the vector equation can be converted into a scalar equations
using the stream function, but that yields a 4th order nonlinear P.D.E. Although this could be
solved numerically, considerable simplification can be obtained if either the viscous terms or the
inertial terms can be neglected — even if they are not identically zero. One limiting case is
creeping flow which corresponds to the limit in which the Reynolds number is small (i.e. Re—0).
In this limit the inertial terms in the Navier Stokes equations can usually be neglected.

Scaling

To show that inertial terms are neglibible, let’s try to estimate the order of magnitude of
viscous and inertial terms for uniform flow at speed U over a sphere of radius R.

pv-Vv=-Vp+ uV2V
inertia viscous

We will use a technique called scaling (akin to dimensional analysis). We start by listing all the
parameters in the problem. In this problem, the parameters are

parameters: U,R,pand n

A characteristic value for each term in the equations of motion is then written as a product of
these parameters raised to some power:

each term oc U4Rbpepd
For example, throughout most of the region, the fluid velocity is undisturbed:
V= U

where the symbol “~” should be read as “scales like” In “scaling” we ignore any position
dependence as well as any numerical coefficients, so |v| scales as U, although |v| might be
significantly less than U near the surface of the sphere. From the boundary conditions, v changes
from 0 at /=R to U at r=0. To estimate the magnitude of the gradient Vv we need to estimate
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over what distance most of this change occurs. In the solution of the potential flow problem, the
velocity profile along the rear stagnation line is

R 3 AY:
v, (r,0=0)= U[l(—) }cose
r Up—7 ==
We expect something similar for Stokes flow. Two of the 3 U
nine scalar components of Vv are R R
] e . 0 R 2R 3R
Yr _ 3 coshx =
5]’ r4 R

3
1ov, 1l R\ o U
r 00 roo4 R

r

We again ignore the position dependence: we scale » as R and treat cos6 and sin6 as “1”. Then
both components above scale as U/R as do other components of Vv associated with derivatives
of vg. So

Likewise the velocity gradient can be expected to decay from a maximum value of U/R near the
sphere surface to zero in the bulk; this change occurs over a distance on the order of R.

‘Vzv‘ N A|VV| N % _ U
Ar R R?

With these estimates, we can further estimate the magnitude of viscous and inertial forces:

L U\ pU?
I't = .V ~ U —_— = —
inertia p|v V| p( )(R) 2
viscous = u|V2V| ~ u%
R
. . )
inertia _ pU /R _ pUR _ Re

viscous MU/RZ 1
where Re is the Reynolds number. So as Re—0, we should be able to neglect inertial forces

for Re<<1: 0=-Vp+puv2v (66)

Copyright © 2000 by Dennis C. Prieve



06-703 102 Spring, 2001

atr=R: v=0
as r—oo: v->Up-p,

Eq. called Stokes Equation, is common to all low-Reynolds number problems; it’s not
specific to the sphere. A common trick to reduce the number of unknowns is to take the curl of
both sides of the equation:

0 =-VxVp + uVxVv2y (67)
But VxVp =10

Moreover, using identity F.1,

viy = V(V-v)=Vx(Vxv)= —curl?v
0

for incompressible flow. Then [67)]becomes:

curl’v =0 (68)

Velocity Profile
We might try to seek a solution having the form of potential flow:
v=Vo (69)
since Vxv=VxVp=0

is automatically satisfied. But we know that the potential flow solution for the sphere does
not satisfy the no slip boundary condition. On the other hand, the boundary conditions are
axisymmetric:

vy=0,0/0p =0

so we might seek a solution using the stream function:

e
7sin0 ¢

Computing the curl in spherical coordinates using the tables
(http://www.andrew.cmu.edu/course/06-703/Vops_sph.pdf) (also see HWK #5, prob. 1):
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e
curl( (I)\V]:V: ! 6\\Ve— ! 6\—We

rsin 0 7°sin@ 00 rsin® or

v
V. 0

Taking the curl a second time, using the same tables:

curl? (ﬂ) SVxve .. =t (_p2y) (70)

rsin 0

where E2 is a partial differential operator given by:

Ez\u:

62\V+sin6i( 1 a_w)
o2 2 00\sin6 00

Since we have to take the curl twice more, it might look like we have a lot of algebra to look
forward to. But, as it turns out, the rest is easy. We need to evaluate:

2
ey —F \If)
CllI'13V = Cur12 (V X V) = cur12 {d)(—}
rsin0

where the second equality is The argument of this final curl-squared has exactly the same
form as that of the left-hand side of Eq. , except that the scalar +y, which is a function of 7,9,
is replaced by -E2y, which is also a scalar function of 7,6. So all I have to do is to replace y by -
E2y on the right-hand side of

_g2
onte-ant (M) - e

To satisfy which represents the curl of the Navier-Stokes equation, we choose the
streamfunction to satisfy:

E2(E2¢)=0
Translating the boundary conditions at 7=R in terms of stream function:
v,=0: oy/00 =0 at =R
vg=0: oy/or=10
Translating the boundary conditions at »—o0 in terms of stream function (see HWK #5, Prob. 1a):

as r—m: v — (1/2)Ur2sin20 (71)
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The trivial solution y = 0 satisfies the P.D.E. and the b.c. at /=R, but not the b.c. at . Based
on the form of this nonhomogeneous b.c., we guess the solution has the following form:

Try: y(7,0) = f(r)sin20

E2y = E2[f(r)sin20] = ... = (f"-2r-2f)sin20 = g(r)sin20
where: g(r)=1"2r2f
Then: E2(E2y) = (g"-2r2g)sin20

The Navier-Stokes equation become

E2(E2y)=0: g"-2r2g=0 (72)
defnof g: 11212 = g(r) (73)
b.c.’s: f— (12)Ur2 as r—» (74)

f=f’=0atr=R (75)

These two coupled second-order O.D.E.’s can be combined to produce a single fourth-order
O.D.E. in f(r). The result is a Cauchy-Euler equation whose general solution is (see footnote on

page [52)):
fir)=cyrl + cor + 312 + cqr?
Applying b.c. : c4=0
c3=(12)U

As r becomes large, terms which are proportional to higher power of » dominate those of lower
power. To have the third term win over the fourth, requires us to kill the fourth term by setting
its coefficient to zero. The remaining constants are evaluated in a straightforward manner. The
result is:

2
r r .
W(V,e)_UR2[27ZE+%(Ej :lSlnze (76)
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Stokes flow potential flow

The figure at right compares the streamlines for /k

Stokes flow with those for potential flow. The

streamlines correspond to values of the Ay=0.395
streamfunction which are uniformly spaced at
about the same interval for both profiles.

Displacement of Distant Streamlines

From the figure above, you can see that streamlines in Stokes flow are displaced away from
the sphere — even those streamlines which are quite distant — especially compared with potential
flow, in which the distant streamlines become straight. It turns out that all streamlines are
displaced away from the sphere in Stokes flow.

Consider the streamline in the figure at right
which corresponds to y = y. Far upstream, the
coordinates of the streamline correspond to r—oo

and 0—~ such that »sin® — const, which we will
denote as y (see Hwk #5, Prob. la). The
relationship between y and y( can be deduced

from

. 2 .2
lim y(r,0) > LUr? sin? 0
r— o 2
0—>mn y

yo =20y’ (77)

At the equatorial plane 6 = /2, the » coordinate of the streamline must satisfy

2
R 7 7
100, %) =y = URZ[ L 3790 11790 -8
v (r99,75) = Vo {4% e (78)

Eliminating y( between and
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3
2 2 3 1R
y= =roo = Rrgo + 25—

2 1”90

o o L3R I(RY
y 20 2 1”90 2 I"90

For distant streamlines, 9o will be very large compared to R, so that R/rgq << 1. Then the
square-root in the expression above is unity plus a small correction, which can be estimated as

the first term in a Taylor series expansion of the square-root function: V1+¢& =1+ Let...

2
2
Yy =ry l—ii +0i z1”90—§R
4 o) 90 4

where the “O(R/rgp)?” means that these terms decay to zero like (R/rgg)? as R/rgp—0. When
R/rgq 1s sufficiently small, we can neglect these terms compared to the others. This is how the
second (approximate) equality above was obtained.

Finally lim {ryo—y}=3=2R

rgp —>©

Thus, even streamlines infinitely far away are displaced a distance equal to % R.

Pressure Profile
Once the velocity profile is known, the pressure can be determined from

Vp = szv

Z—p = 3},lURl”_3 cos
Substituting v: r

1% = é;,tURr_3 sin 0
roo 2

and then integrating with p—p_ at r—o as the
b.c. yields:

3 cosO

p(r,0) = py, — = nUR U \
T2 2 o, hi p 6) lop

This profile corresponds to a higher pressure on moderate p
the upstream side of the sphere (6=n) than on
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the downstream side (6=0). Thus it appears as if a drag will be produced by this solution.
-Jypnda = ... = 2npRUK

is called the form drag which arises from normal stresses. This however is not the total drag.
More generally, we expect the net force exerted on the particle by the fluid is:

szﬁn-l‘da: —Ei;npda + Eﬁn-gda = 6muRUK
A

if_—/ L/—/
2nuRUK 4muR UK
(form drag)  (skin friction)

where 4 is the surface of the sphere =R
n=e,

From symmetry, we expect that this force will have only a z-component (the direction of bulk
motion); so let’s concentrate on finding that component:

F,= le - (e,-D)da (79)

Substituting

(=
I~

=-pltz
e.-L=-pe.-I)te. 1
=-pe.t et

€T = T,€ T T9€g T Tr$€o

For the determined velocity profile, Newton’s law of viscosity in spherical coordinates (W:146)
yields t,,=0 for all r and t,,=0 at r=R:

atr=R: e,.- T =-pe.+1,9€
k-(e.-T)=-p(k-e,) + 1,9(k-eg)
Using k = e, from k- (e,-T)=-pcosO - 1,4sin0

Finally, we can integrate using an azimuthal strip of width Rd6 and
of radius Rsin®:

da = 2n(Rsin0)(Rd0)
becomes:
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T
F, = 2nR2j[—p(R,6)sinecose —7,0(R,0)sin’ O]de
0

Finally 1,4 is expressed in terms of the velocity profile using Newton’s law of viscosity and
subsequent integration yields:

F,=2muRU + 4nuRU

We have already noted that the contribution from the pressure profile is call form drag. The
second contribution is call skin friction. The total drag force is

Firag = 6TURU (moving reference frame)

which is known as Stokes Law (ISSO)EI In the expression above, U is the velocity the distant
fluid flowing around a stationary sphere. If we switch back to the original (stationary) reference
frame (see page #8]), Stokes Law becomes

Firqg = —0muRU (stationary reference frame)

Fdrag ‘ ’ U

where now U is the velocity of the sphere moving through otherwise
stagnant fluid. Note that the drag force acts in a direction opposing the
direction of motion of the sphere.

Experimental results for the drag force around submerged bodies are
usually expressed in terms of a dimensionless drag coefficient. The
quantity that is used to make this drag force dimensionless is

K.E. force
2PUPE] =

vol area

This quantity also can be shown (according to Bernoulli’s equation) to represent the Ap required
to stop fluid which is flowing at speed U. Multiplying this by the projected area gives the force
required to stop the flow, which would otherwise pass through the sphere:

Cr = Fdrag
PUlut e 2
2p

projected area

* Sir George G. Stokes (1819-1903), born in Shreen, Ireland, educated at Cambridge; theoretical
physicist.
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where nR? is the projected area of the sphere; in other words, nR? is the area of the sphere’s
shadow cast along the direction of flow. Using this definition, Stokes equation for the drag force
on a sphere yields:

c 12
D - ——
Re
pUR
where Re=——
0
10* T
|
5 !
Y T N
10° \“
5
- AN
g 3
e N
¥
210
g
» -
s, *\\ i
P A\ (]
§ 10 \\\\ |
é 5 \\\\\
£ Asymptote f = 24 > \
2 ! NN |
1 ! 27\ [~
5 = [éﬁ‘ S~
i n
s I~ = 044 h -
Stokes's law intermediate law Newton's law———
% T Mt T Y o s T Y T M N
10—32 5 102 2 5 10—12 5 1 2 5 10 2 5 102 2 5 103 2 s 104 2 5 105 2 106

Reynolds number Re = Du,, pfu

Comparison with experimental results confirm that this works very well for Re<0.1. The
reproduction above (taken from BSL, p192) uses the diameter for Reynolds number, rather than
the radius. The “friction factor” on the y-axis differs by a factor of two from the drag coefficient
defined above.

CORRECTING FOR INERTIAL TERMS

For larger Re, Stokes law underestimates the drag force. Of course, this is due to the
increasing importance of inertia which has been neglected. A number of investigators have
attempted to extend the validity of Stokes law by including inertial terms in the analysis. We
will now summarize some of these and hint at the difficulties involved.

First, note that as Re —0 for flow around a sphere, the NSE approximated by
szv =Vp

which is called Stokes equation. Stokes (1850) solved this equation to obtain:
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F = 6nuRU.

The usual approximation to solving differential equations containing a small parameter (i.e. Re)
is to perform a perturbation expansion. Basically, the idea is to perturb the small parameter
away from zero value by means of a Taylor series.

PERTURBATION EXPANSION

time out: Let’s illustrate the main idea behind this powerful mathematical technique by means of
a simple example (Example 25.1 from Greenberg). Find the solution y(x;e) to the following
ODE involving a small parameter which we denote as «:

Yy te?=0 (80)
subject to the initial condition: y(0)=cos ¢ (81)

where the independent variable spans the range 0 < x < o and the parameter ¢ is small: 0 <e << 1.
Note that the solution of this problem is almost trivial in the special case of =0 (first-order linear
ODE)

y(x;0) = e

but obtaining a solution when ¢ # 0 is more challenging (because the ODE becomes nonlinear).
The general idea behind a perturbation expansion is to “perturb” the easily obtained solution
away from =0 by seeking a solution in the form of a Taylor series expansion about £=0:

P . 62 .
y(x;S):y(x;O)+—y(x’8) 8+L—y(x,s) &2 4.
—— 68 _0 2' 882
yo(x) # e=0
yl(x) ) (x)

Of course, this assumes that y(x,¢) is “analytic” about s=OE It remains to be seen if the solution
has this property or not. Renaming the unknown coefficients (i.e. the partial derivates), we look
for a solution having the form

y(x,e) = yo(x) + y1(x)e + yy(x)e? + ... (82)

Note that the coefficients y, y, v, ... are not functions of the parameter ¢. Substituting into

(o ty1etyher+. )+ (o tyetmed+.) teygtyietye+..)2=0 (83)

* “Analytic” means that these partial derivatives exist and that the series converges to y(x,g).
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Next we expand the squared sum by distributing each term of the first series over each term in
the second series:

(ot y1etyE2 +.. )2 =t yie type2 + ) tyie e + 1)

2
Yo tV1€+ e +...

2
Yo t V€T Y€ +...

2 2
Yo tyone+yore +...
22
y0y18+y18 +...

2
Yoya& +...

2 2 2
Y0 +2yoy18+(y1 +2yoyz)8 +o.

Substituting this result for the squared sum in to and collecting terms of like power in &:

Solution continues ... and will be completed in the next revision of the notes.

First, let’s write the equation in dimensionless form: we will denote the dimensionless variables
using an asterisk:

P~ P SERe:M

nU/R u

r¥=

v V#*= RV pt=

\4 r
U R
The Navier-Stokes equations for steady flow become:

evH-V xyE = v %2 V-V p
We then look for a solution having the form of a Taylor series expansion about ¢ = 0:

V¥(r*,0;e) = vo(r*,0) + e vi(r*,0) + €2 vo(r*,0) + ...

Similarly for the pressure profile. Substituting this infinite series into the Navier-Stokes equation
(dropping the *’s)

g(vo +evi+ ) (Vvg +eVv i+ = (Vzvo +8V2v1+---)—(VpO +eVpy+)
0’ +(vy -VV0)81+'~'= (VZVO —Vpo)ao +(V2v1 —Vp1)81+-~-

Next we bring all terms to the right-hand side of the equation. We then collect terms of like
order in the small parameter (i.e. terms which are multiplied by ¢ raised to the same power). To
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obtain zero for the sum for all values of € we cannot rely on cancellation of positive and negative
terms.* Instead, the coefficient of each ¢” must vanish separately. This leaves the following
equatilons:

£0: 0=V2vy—Vpo (84)
el: Vo'VVO = Vle —Vpl (85)

and so on ... Note that[(84) is just Stokes equation. The solution for v, can then be substituted
into leaving a linear equation to be solved for v; and p;.

This is the approach used by Whitehead (1889)E| In many problems, this procedure works.
Unfortunately, the solution for the higher order terms in the current problem cannot satisfy the
boundary conditions. This result is known as Whitehead’s Paradox[*| Another method must be
used.

As an alternative, Oseen (1910) used an entirely different approach. He approximated the
inertial terms and solved:

pU-Vv= uv2v -Vp
thus obtaining: F = 6muRU[1 + (3/8)Re]

In principle, one could refine the solution further by substituting the resulting solution for v in
place of U and then re-solving for an improved v. In practice, although the Oseen equations are
linear, their solution is sufficiently difficult that no second approximations are known.

In 1957, Proudman & Pearson obtained the next order correction using a different technique
called matched-asymptotic expansions. In this technique a different form for the expansion is
sought near the sphere (which is called the “inner expansion™):

r=R: Vi = voi(r,0)+v,i(r,0)(Re)+v,i(r,0)(Re)>+...

* If the sum of different functions of ¢ vanished for one particular value of ¢ (as a result of
cancellation of positive and negative terms), then this same sum of functions evaluated at a
different value of ¢ would not necessarily vanish. The only way we can guarantee that the sum
vanishes for every value of ¢ is to make every term vanish for value of €. See also footnote on
page 27 which concerns integrals rather than sums.

Y Alfred North Whitehead (1861-1947), English mathematician and philosopher, who
collaborated with Bertrand Russell on Principia Mathematica (1910-13) and, from the mid-
1920s, taught at Harvard University and developed a comprehensive metaphysical theory.

¢ See Van Dyke, p152-3.
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and far from the sphere (which is called the “outer expansion™):

r>>R: VO = v0(p,0)+v2(p,0)(Re)+v,2(p,0)(Re)?+...

where p=rRe

The inner expansion is identical with Whitehead’s which can be made to satisfy the no slip
condition at 7=R but the result does not have the correct form far from the sphere. Rather, the
outer expansion is made to satisfy the boundary condition far from the sphere and then
appropriately match with the inner solution to determine the remaining integration constants.
The result is:

F = 6nuRU[1 + (3/8)Re + (9/40)Re2InRe + ...]
The term inside square brackets can be thought of as a correction to Stokes equation:

Re= 0.01 0.1 1.0
[...]= 1.004 1.032 1.375

Comparing the bracketed term with unity gives some idea of the error incurred by neglecting
inertia.
FLOW AROUND CYLINDER AS RE—0

Now let’s look at the analogous problem of uniform flow normal to a cylinder at very low
Reynolds number. If we drop the inertial terms in the Navier-Stokes equation, we obtain:

szv =Vp

7—00: v—->U —>
=R: v=0 —>
> end view of

For flow normal to the cylinder, we expect the velocity profile to cylinder
correspond to 2-D flow:

v,=0and d/0z=0
So that a solution can be found using the stream function:
v=Vx[y(r0)e.]

For slow enough flows, we expect that inertial terms can be neglected, leaving Stokes Equation
After the pressure is eliminated (by taking the curl of Stokes equation), we obtain a single
equation in the unknown velocity profile :
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recall @ curl3v = 0 = curl4(ye,) = V2(V2y)e,

The boundary conditions are determined in a manner similar to those for a sphere (see Hwk #7,
Prob. 1):

r—>00: v — Ursin®
=R: oy/or =0y/00 =0

Based on the b.c. at ¥~ (which is the only nonhomogeneous part of the problem), the stream
function should have the form:

w(7,0) = f(r)sind
Requiring V2(V2\|/) =0

generates an ODE for f(r) whose general solution can be obtained. Unfortunately, none of the
particular solutions can satisfy all of the b.c.’s (see HWK #7, Prob. 1). This is known as:

Stokes Paradox (1850) - Stokes equation for uniform flow normal to a cylinder has no
solution.

As it turns, the inertial terms dropped by Stokes are not entirely negligible -- no matter how small
Re is. Lamb (191 1E| obtained a solution for the circular cylinder as Re—0 using Oseen’s
approximation:

pU-Vv=uV2V-Vp
V-v=0

Lamb’s solution for the drag force per unit length of cylinder is:

where y = 0.577... is Euler’s constant. Notice that, unlike Stokes’ solution for the sphere, Re
appears explicitly in this result. No matter how small Re, this logarithm term in the denominator
is never negligible.

* Sir Horace Lamb (1839-1934), English mathematician who contributed to the field of
mathematical physics. He wrote Hydrodynamics (1895) which was, for many years, the standard
work on hydrodynamics. His many papers, principally on applied mathematics, detailed his
researches on wave propagation, electrical induction, earthquake tremors, and the theory of tides
and waves
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Boundary-Layer Approximation

FLOW AROUND CYLINDER AS Re— o

pv-Vv=-Vp+ uV2V
inertia viscous

We have just seen that restricting attention to the limiting case of very small Reynolds
number allows an analytical solution to the Navier-Stokes equation by neglecting or
approximating the inertial terms. Similarly, we might expect that, in the opposite limit of very
large Reynolds number, we might be able to obtain an approximate solution by neglecting or
approximating the viscous terms.

Let's return to the problem of flow normal to a cylinder, but at very large Re. If we just drop
the viscous terms from the Navier-Stokes equation, we get Euler's equation for an ideal fluid.
Recall that a solution which satisfies the differential equation and the boundary condition far
from the cylinder is potential flow. From HWK #4, Prob. 4a:

|
L
2 | [
E——
vr(l’,e):U[l—(E) }cose i
4 e —
I
; |
% -
vg(r,0) = —U{l—i—(—) }sine : -
r >
Atr=R: v.(R,0)=0 IR\ |
|
|
and vg(R,0) = —2Usin 0 r-R |
R | potential
which violates the no-slip boundary condition. An exact Ro=1 | flow
solution of the NSE's can be obtained numerically. 1 10: 100
Comparing the solution for Re>>1 to the potential flow 0- T >
solution (see figure at right), we see that the exact 0 _ 1000
solution follows potential flow everywhere except in a sin

narrow region near the surface of the cylinder where the
exact solution turns downward in order to satisfy the no-slip condition.

In the potential flow solution the velocity gradient goes like

outside b.l.: % ~ 1%
or R
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This is also the behavior of the exact solution outside the boundary layer. By contrast, near the
surface (inside the boundary layer) as the Reynolds number increases, the velocity gradient gets
steeper. A closer analysis (which we will perform in a few lectures) reveals

inside b.L.: lim {%

Re—ow | OF

} ~ v vRe
r=R R
The thickness of this region in which the two solutions differ decreases as the Re gets larger.

This region is known as the:

boundary layer: a very thin region near to a boundary in which the solution has a gradient
which is orders of magnitude larger than its characteristic value outside the
region.

MATHEMATICAL NATURE OF BOUNDARY LAYERS
Boundary layers arise in solutions of differential equations in which the highest order
derivative is multiplied by a small parameter. To illustrate the mathematical singularity which

results, consider a simple example:

Example: find asymptotic solution to the following problem as ¢ — 0:

ey +y'+y =0
subject to: y(0)=0
y)=1

Problem is to find the asymptotic behavior of y(x) as e—> 0. This problem was presented
PrandtlEl (the father of boundary-layer analysis) to his class on fluid mechanics at Goettingen U.
during the winter semester of 1931/2.

Solution: For ¢ sufficient small, you might guess that the first term can be neglected, leaving
y'+y=0

whose general solution is: V(x) = Aexp(-x)

* Ludwig Prandtl (1875-1953), German physicist who is considered to be the father of
aerodynamics. His discovery (1904) of the boundary layer, which adjoins the surface of a body
moving in air or water, led to an understanding of skin friction drag and of the way in which
streamlining reduces the drag of airplane wings and other moving bodies.
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Now A can be chosen to satisfy either of the boundary conditions, but not both. To satisfy
¥(0) = 0, we must choose 4=0 which does not satisfy y(1) = 1:

Y0)=0 — A=0 — yx)=0forallx — y(1)=0=1

On the other hand, if we choose A=e to satisfy y(1) = 1, then we cannot satisfy y(0) = 0:

=1 —-> A=e —> yx)=exp(l-x)forallx — p0)=e=0

The reason we can’t satisfy both boundary conditions with this approximation is that, by
neglecting the first term, the order of the differential equation reduced from 2 to 1. With a first
order O.D.E., we can only satisfy one boundary condition. Thus =0 is singularly different from

¢ being arbitrarily small, but not identically zero.

¢=0 — O.D.E. is 1st order
€ 0 — O.D.E. is 2nd order

Now the exact solution to this linear O.D.E. with constant coefficients is easily determined:

sinh(x Ji-4¢ )

y(x;€) = eXp( 2_ x) 218
& sinh( \/1—48)

2¢e

1— I

y ¢ y X¢ e
0 I
0 0 0 0
X

Comparing the exact solution to that obtained by neglecting the term containing the small
parameter for the case of €=0.05, we see that the approximation is good except near x=0. For
smaller €, the region in which the exact and approximate solutions differ shrinks. To see what's
happening to cause this problem, let's take advantage of knowning the exact solution and deduce
its asymptotic behavior inside the boundary layer. In particular, let's look at the initial slope:
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1
exp| —
1-4¢ p(28)

2e sinh(1 NI 48)

y'(0;¢) =
2¢

Now consider the limiting behavior as e 0.

Ji—4g > 1

and 12 >

, . 1 exp(zlsj 0
[»'(0;8)]= lim| ———=£ | > —
)]

lim
e—>0 e>0| 2¢ .
sin
2¢

Clearly this limit is highly indeterminant as both exp and sinh “blow up” fairly quickly as their
arguments become large. This indeterminancy cannot be resolved with the help of L’Hopital's
rule because, no matter how many times you differentiate exp or sinh, they still “blow up.” The
indeterminancy can be resolved instead by comparing the asymptotic behavior of sinh with that
of exp:

.. . e" —e
Recall the definition of sinh: sinhz = T ~ %ez as z— +owo
cXp\zZ
SO ,p()—>2 as z— +oo
sinh(z)

As z — +oo, the second term of this definition becomes negligible compared to the first. Thus the
ratio of exp to sinh approaches 2 and our expression above becomes:

V'(0;6> 0)~ 1/e >

So the derivative of our function at this boundary is very strongly dependent on the value of the
small parameter. In particular, the derivative is not bounded in the limit e 0. This singularity
is the essential nature of any boundary layer. In the above analysis, exp/sinh was bounded
although both functions become unbounded as their arguments becomes large. We say that the
singularity of these two functions in this limit is of the same order and we write this as:

sinh(z) = O(e?) as z— o
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which is called the Big "Oh' notation (Bachman—LandauE[). More generally, when we say that

fix)=0[g(x)] as x—> a

we mean fix)/g(x) is bounded as x— a
Likewise, we could say that: ¥'(0,e) =0(e’!) ase—> 0
We could also show that ¥"(0,e) = O(2) as e— 0

which means that the second derivative blows up even faster the the first. This notation gives us
a convenient way of describing the strength of a pole.

at x=0: " + y' +y=0 (86)
—— — -
0 8_1) 0(8_1) 0

Thus at the boundary, the first term of the O.D.E. is the same order of magnitude as the second
term. So no matter how small € becomes, the first term can never be neglected. This is the root
of the problem. One way to obtain the correct order in ¢ of the solution using a Taylor series
expansion would be to transform the independent variable:

Let X=x/e and Y(X;&)=y(x;e)

_d_dvdy _ jay
dx dX dx dX
——

8—1

Then y'

,_dy d(dy)_i(g-lﬁj d(g-lﬂ)dg_g-zﬁ
dx) B

and =—==— =—
YV T ac\" ax ) ax " ax Jax X2
-1

€
Note that if dY/dX and d?Y/dX? are O(g0) as ¢ — 0, we will obtain the correct order for y’ and y".

This is the basic idea behind “stretch transformation” which is part of the “inner expansion”
which will presented in the second half of the next section.

* This is the German mathematician Edmund Landau, not the Russian physist Lev Davidovich
Landau.
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MATCHED-ASYMPTOTIC EXPANSIONSEI

Matched-asymptotic expansions is a very general technique for coping with singularities like
boundary layers. MAE is one type of singular perturbation expansion. Greenberg describes it
as “one of the most important advances in applied mathematics in this century.” Although the
beginnings go back to the 19th century and such names as Lindstedt and PoincaréE it was not
until the 1960's that singular perturbation techniques became part of the standard analytical tools
of engineers, scientists and mathematicians. Since boundary layers frequently arise in transport
phenomena, let’s apply this technique to solve the simple problem posed by Prandtl.

EXAMPLE: Use Matched Asymptotic Expansions to find the asymptotic behavior of the
solution y(x;¢) to the following problem as e— 0.

ey" +y'+y=0 (87)
subject to: y(0)=0
y)=1

Solution: Following Prandtl (1905), we divide the domain into two regions:
inner region: 0<x<3, y=) satisfies inner b.c.
outer region: d<x<1 y=y0 satisfies outer b.c.

where & is the thickness of the boundary layer located near x=0. Within each region, we seek a
solution which is a Taylor series expansion of the function y(x,e) about ¢=0:

a . 62 .
y()c;és):y(x;O)+M LM &2 +...
Oe a0 21 e ~
yO(x) —_ e=0
yl(x) b2 (x)

e The outer problem. The solution outside the boundary layer can often be found as a regular
perturbation expansion:

1o(x,€) = yo(x) + y1(X)e + yp(x)e? + .. (88)

* The example problem introduced above was solved using MAE’s by Greenberg, pS08ff.

*(Jules) Henri Poincaré (1854-1912), French mathematician, theoretical astronomer, and philo-
sopher of science who influenced cosmogony, relativity, and topology and was a gifted
interpreter of science to a wide public
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which is just a Taylor series expansion about £=0. into

80}0 ”+8y1 "+.)+ (y0'+8y1 +..)+ (y0+8y1+...) =0
Collecting terms of like power in &:
0 y0)e? + (o "ty el +... =0
In order for this sum to vanish for all values of ¢, each coefficient must separately vanish:
g0: Yo' tyo=0 (89)
el: yi'Fyi=-v" (90)

and similarly for higher order terms. Note that we have succeeded in obtaining a set of O.D.E.'s
for the set of coefficient functions whose solution can be easily uncoupled. If we start with
yo(x) can be determined so that it is known when we solve [(90)} The outer solution must be
subject to the outer boundary condition:

y)=1
Expanding this in a Taylor series about £=0:

Yo(D) + y1(De + yp(1)e? + .. = (1)e0 + (0)e! + (0)e2 + ..

Thus yo(H)=1 o)
yih=0
and so on. The solution to subject to is:
yo(x) = exp(1-x) (92)

We could now substitute into [90)]and obtain the solution for y;(x). Similarly, we could
obtain y,(x), y3(x) and so on. If we stop after the leading term, the outer solution becomes:

2 =ypx) + O(e)
10(x,e) = exp(1-x) + O()  as e—0 (93)

e The inner problem. To cope with the boundary-layer, we transform the independent
variable using a stretch transformation, whose general form is

X =X (n>0)
gl

X =

where x is the location of the boundary at which the boundary layer arises. In this
transformation the distance from the boundary (x-x;) is magnified (“stretched”) by an amount
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depending on the small parameter. In our problem, the boundary layer arises at x(=0, so the

transformation becomes

X="
81’1

Rewriting in terms of the new variables X and Y(X) = y(x):

T
dx dX dx

Similarly yr =g Y
where Y denotes dY/dX
Substituting into @ el 4 eV +Y =0 (94)

The purpose of the stretch transformation is to make Y,Y,Y all O(g?):
as e—0 (X=const): Y,Y,Y =0(0)
whereas yy'y" = 0(e2),0(™),0(e72")

Now we are in a position to choose a value for n. Recall from the exact solution [see that
the second-derivative term is not negligible inside the boundary layer. This is generally the most
important consideration in choosing n: we select the value of the parameter n such that we do not
loose the term containing the highest order derivative (afterall, dropping the highest order
derivative is what lead to the outer expansion, which we have shown fails in the inner region).
To keep the highest order derivative,

 This term must be lowest 0rderE| in € (otherwise it will be swamped by a lower order term)

« This term must not be the only term which has this order (if this is the only term of that order,
O.D.E. requires it to vanish identically)

As a first attempt, we might try to make all terms of the same order:
1-2n=-n=0

which is impossible for any single value of n. Next, we might try balancing first and third:

*The “order” of a term with respect to a small parameter ¢ (as opposed to the order of the
derivative) refers to the exponent (power) to which ¢ is raised. For example, we say that a term
which tends to vanish like &” as ¢—>0 is “of order n.”
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1-2n=0 or n=1/2
Orders (i.e. the exponent of €) of the three terms then are:
0,-1/2,0

This is no good, because highest order derivative (i.e. the first term) is not lowest order in &.
Finally we try to balance first and second term:

1-2n = -n, or n=1
Now the orders of each term is: -1,-1,0
which is OK. Using n=1, becomes (after multiplying by ¢€):
Y+Y+e¥Y=0 (95)

Instead of we seek a solution inside the boundary layer which has the following form:

for x<5: Yi(x,e) = Y(X,e) = Yo(X) + Y1(X)e + Yo (X)e2 + ... (96)
into and collecting term of like order in &:

el Yo+Y =0

whose general solution is: Yo(X) = 4 + Bexp(-X)

Applying the inner boundary condition: Yy(0)=0
we can evaluate B = -4. This leaves us with
Yo(X) = A[1-exp(-X)] 97)

Similarly, we could determine Y;(X), Y»(X) and so on. If we stop after the leading term, we have
for our inner solution:

y' = A[1-exp(-X)] + O(e)

This remaining integration constant 4 must be chosen so as to match the inner and outer
solutions. One possible choice is to take the outer limit of the inner solution [denoted (3%)°] and
equate it with the inner limit of the outer solution [denoted (1°)]:

li
X > x—0

() )

lim [yi(X,s)] = lim [yo(x,a)]
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which is called the Primitive Matching Principle and was originally used by Prandtl. Taking the

limit of as x—0 and the limit of as X—>o0:

A=e
The inner expansion becomes: i = e[l-exp(-X)] + O(¢)
which means that for x<8: v~ e[l-exp(-x/e)]
whereas for x>8: vy = exp(1-x)

A convenient choice of § is where ) 30
and y° intersect. Of course, this 3
intersection point depends on &: (o)t ‘Y

(yi)o

d=10(g) 5 |
which is O(g) in this problem. From
the figure at right, neither y? nor y° is
a good approximation to y in the 11 boundary
vicinity of 8. However, in most layer
transport problems, the quantity of 1
greatest interest is dy/dx at x=0 and
dyi/dx does seem to match dy/dx at o > T
x=0 quite well. If required, y and y° X, x

can be blended together to obtain a

single smooth function over the entire domain:

yc =yl+y0 _ (yl)O

which is called the composite solution. For the present example, this is obtained by adding
and expressing them in the same independent variable, and subtracting e:

c

y = el =¥ +e(1—e_X/g)

—eze(e_x _e—x/s)
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The plot at right compares y¢ (the dotted curve), and
the exact y (the solid curve). Note that »© is a
reasonably good approximation to y. The agreement
gets much better as ¢ — 0. Better agreement could
be obtained for any ¢ by including the next order term
in the expansions. Greenberg (p508f) obtains the
second term in both the inner and outer expansions;
the corresponding composite solution for € = 0.05 is
virtually indistinguishable from the exact solution.

MAE’S APPLIED TO 2-D FLOW AROUND
CYLINDER

Let’s now try to apply MAE’s to solve the problem of
flow around a cylinder at high Reynolds number. First, let’s
write the equation in dimensionless form: we will denote the
dimensionless variables using an asterisk:

v = % r*= % V*= RV
98) = end view of
p¥= P=Pn . _ H _pel cylinder
pU? pUR

This nondimensionalizing differs from our previous attempt which was for the opposite limit of
small Reynolds number (see of Notes). First, we have used pU? to nondimensionalize the
pressure instead of pU/R. This is because the disturbance to pressure caused by flow is
proportional to pU? in the potential flow solution (see Hwk #4, Prob. 4). The second difference
is that ¢ is defined as the reciprocal of the Reynolds numbers, rather than the Reynolds number
itself. This choice makes ¢ a small parameter in the limit Re—oo.

The Navier-Stokes equations for steady flow become:

VEVEyE= gV 2 yE Y (99)
and V*.v¥=0 (100)
Boundary conditions are
as r*—oo: v¥—>e, and p*—>0 (101)
at r*=1: v¥=0 (102)

Expecting a boundary layer to arise at 7*=1 as Re—o (or as e—>0), we will now use the technique
of MAE to solve it:
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Outer Expansion

In the outer region, the regular perturbation expansion in powers of ¢ uses * as the position
variable:

V¥(r*,0;e) = vo(r*,0) + e vi(r*,0) + 2 vo(r*,0) + ...
PH(r*05e) = p o(r*,0) + & p 1(r%,0) + &2 p o (r*,0) + ...

Substituting this perturbation expansion into[(99) through [(101), collecting terms of like order in
¢, and setting their coefficients to zero, produces a series of well-posed mathematical problems
for the coefficient functions. The first problem (the only one we will worry about in this
analysis) is (dropping the *’s):

€0 vo - Vvy=-Vpy (103)
V-vg=0 (104)

The outer expansion is required to satisfy the outer boundary condition:

as r—oo: vo—e, and py—0 (105)

Although we should not generally require the outer expansion to satisfy the inner b.c.’s, when we
later match inner and outer expansions (see footnote on page), the outer expansion will have
to satisfy:

vo=0 at r=1 (106)

Note that the viscous term does not appear in this result because the lowest order viscous term is
O(gl), whereas other terms are O(g0). It turns out that (103)|through (106)lis the same problem
we previous solved by potential flow:

vo =Vo
where ¢(7,0) is chosen to satisfy V2 =0
For potential flow, Vxv(=0 and becomes:
V( Po + %vg ) =0
which is just Bernoulli's equation for the pressure profile. After imposing the outer boundary

conditions in (and v,=0 at r=1) we get the potential flow solution (see Hwk Set #4,
Prob. 4). Eventually, we will need the inner limit of the outer solution for matching:
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vg(r=1,0)=-2sin0
. 2
p°(r:1,e):#

Inner Expansion
For the inner expansion, we use a “stretched” radial coordinate:

r*—1

81’1

Y = or r*=1+¢gy

and rename the tangential coordinate X=0

Spring, 2001

(107)

(108)

(109)

Unlike our simple example problem in the last section, the stretching parameter # in this problem
is not an integer. More generally, the inner expansion should be a power series in ¢ rather that a

power series in ¢ itself:

vo (r*,0;8) = ug (X, Y) + &"uy (X, Y) + €2 up (X, Y)+...

v:(r*,e;a) :vO(X,Y)+8”v1(X,Y)+s2nv2(X,Y)+...

p*(r*,0;8) = po(X,Y) + " pi(X,Y) +&>" py (X, Y)+...

In cylindrical coordinates for 2-D flow, the equation of continuity {(100)|becomes:

*
olr*v *
oo L) o

r* or* r* 00
We construct the first term using through

*
rEy, :(1+8"Y)(v0 +s"v1+...):v0 +(Yvg +vp)e" +...

8(r*v:) Y o

or*t  or*oy
——

€ n
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olr*v 1
—( r)=(1+s”Y) aﬂa”+ vo+}’6ﬂ+av1 0,
r* or 0 oy o0
1-g"Y+...
= %s_” +(v0 +—1j80+
oY

-1
In the analysis above, we needed to expand (1+8" Y ) as a power series in ¢”. This was
accomplished using the Binomial Series, which will be quite useful in later problems as well:

ala-1 o alo-Da-2) ;3
x”+ 3 X7+

A+x0)* =1+ox+

which is just a Taylor series expansion about x=0. The Binomial Series is known to converge
provided |x/<1.

Ovp _ Oy +¢g" oy +o.
00 oX oX

Similarly

The continuity equation becomes:

aﬂs_” +| vo +al+% e¥4..=0
oY oY oX

To satisfy “no slip” at the inner boundary, we must require:
at Y=0: uy=u; =...=0 and vyg=v;=.=0 (113)
Setting the coefficients of each term separately to zero:

gn: % =0 forallY
oY

vo(Y) = const =0
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which means that vy must be constant inside the boundary layer. To satisfy the no-slip condition
the constant must be zero. Then vy must vanish everywhereEl The next term of the
continuity equation is more useful:

g0 Vo +al+%:
ry oY oX
or Guo_, Ov1 _ (114)
oX oY

Next, we will look at the principle component of the NSE, which will be the component tangent
to the surface. For steady 2-D flow, the 6-component of is (BSL, p85):

NSEq: v

r or

“or  r 0 r  ro0 |or 220 r 00

0 0 d 0°
Vo . Yo 9o . VrVo __la_p%{;[l (We)}% Vo +3%}
r r

Next, we transform each term using through with vy =0:

2
NSEy: L PN R/ RO o L W (115)
oY oX o0X or?
— — ——
0(80) 0(80) 0(80) 0(81—2n)

As a general rule, we don't want to lose the highest order derivative inside the boundary layer, so
we want this term to be lowest order in €, but not the only term with this order. The largest
inertial terms are O(g0), so we choose 7 such that 1-2n = 0:

1-2n=0: n= (116)

N [ —

After collecting like-power terms, the r-component of [99)]s:

_1
NSE},I u% +...=—¢& é%_%ﬁ'
—~

0(80 or Q'Y_J
0(871/2 0(80

*This result could be used to evaluate the undetermined integration constant in the outer
expansion. Since v represents the leading term in the inner expansion for v,, this result means
that the outer limit of the inner expansion for v, is zero, and this must match with the inner limit
of the outer expansion. Indeed, our expressions for the outer solution already make use of this
result.
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The lowest order term in this equation is dpy/0Y. Since there is no other term with this order, we
must require that:

&1/2 of NSE,. %Po _
oY
which integrates to yield: Po = cX)

where the integration “constant” ¢(X) can be evaluated by matching the outer limit (Y— ) of
this inner solution with the inner limit (»— 1) of the outer solution

- 2
1-4 X
Po = c(X):—Szm (117)

We still have two unknowns: u and v;. We can formulate two equations from the above:

[] 2
&0 of (T13): uy 210y G0 OTUO _ g i X cos X (118)
oX oY  py?

and';‘)l. Gup M _, (119)

ox oYy

No slip requires:
at Y=0: uy=v;=0 (120)
Matching the outer limit of the inner solution with the inner limit of the outer solution requires:

as Y— oo: uy —> -2sinX (121)

Boundary Layer Thickness
Recall the definition for “boundary layer” from page m

boundary layer: a very thin region near to a boundary in which the solution has a gradient which
is orders of magnitude larger than its characteristic value outside the region.
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So how thick is the boundary layer for 2-D flows like the
one we just analyzed? A typical profile for the
tangential component of velocity inside the boundary
layer is sketched at right. On the scale of this sketch, the

l
velocity appears to approach (vg) which is the inner

|
|
limit of the outer solution. Actually, the nearly :
horizontal dotted line isn’t quite horizontal: it has a |
small negative slope, but its slope is so small compared !
to the slope inside the boundary layer, that the outer !
solution appears to be flat on the scale of this drawing. 6 y=r-R

We might define the thickness of the boundary layer as
the distance we have to go away from the surface to reach the apparent plateau. From the
geometry of this sketch this distance, which we denote as 8, is approximated using

(Vg )i _ ovh
5§ oy

(122)

y=0

where all of the quantities in this equation have units. Let’s try to “scale” and solve for 5.
Recall that the outer solution corresponds to potential flow. From HWK Set #4, Prob. 4:

v8(,0) = U[l +[§ﬂsme

i
so that (vg) = lim v§(r,0) =2U sin0
r—>R
i
or (vg) ~U

In dimensionless quantities, the inner solution is given by Substituting n = 1/2, we have

vo (%,0) = ug (X, Y) + £ 2uy (X, Y)+...

v} ovg _
Vo :g Vo :Z oY il:uO(X,Y)+s%ul(X,Y)+...:|:8 hv %4_
oy Ror* ROr*oY R| 0Y

—— ——

8*% 0(80)

Dropping any multiplicative constants, we obtain
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i
6\/9 N 8_% 2
oy R

Substituting this result into and solving for the boundary-layer thickness &:

UeehY
) R
or 8%\/ER: R

VRe

Thus & is proportional to R and inversely proportional to the square-root of Reynolds number.
The boundary layer gets ever thinner as the Reynolds numbers increases. This is true for all
boundary layers in 2-D flows.

PRANDTL’S B.L. EQUATIONS FOR 2-D FLOWS

Let’s now summarize the mathematical problem which must be solved to obtain the velocit
profile inside the boundary layer. The mathematical problem is represented by equations
121)| For clarity, let’s rewrite these equations using variables having dimensions [recall

110)}{112)]and [116)]. For example, uy is given by [110)and {98)]as

* Vo
Uy =Vvp :U

while Y is given by [109)]and [116)|as

1/2
y_r*=1_r=R _y» :(pUR] r—R

/2 R i R
1/2
SO dY = [M] dr
n R

82u0 _ o R_282V9
or? pUR U 2

Thus

Making similar transformations to dimensional variables of each term, then multiplying both
sides of the equation by pU 2 / R, @becomes

2 2
Yoo, Mo | 9V _PUT G 6coso (123)
R " or ot R
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| vy 0

"1‘1'_9‘)'|bec0rnes 1ov + (124)
R 06 or

(120)|becomes v,=vg=0 at r=R

(121)|becomes vo=-2Usin6 at r—oow

Notice that and are approximations to NSE, and continuity in cylindrical
coordinates.

Although the above equations for the velocity

profile inside the boundary layer were derived for v
the specific geometry of a circular cylinder, it turns ¥
»

out that very similar equations are obtained for any
2-D flow, provided we express them in terms of a  —>

local Cartesian coordinate system (x,)). — X
. —
e x = arc length measured along the surface in the
direction of flow -
—

e y = distance from the surface measured along a
normal to the surface

The more general equations for any 2-D flow are given by

2
p(vx ovy 6vx] 0“v, dpg

+v =u -
ax Y oy oy’ dx (125)
ov
8Vx n y —0
ox Oy

where py is the inner limit of the pressure profile in potential flow, which is given by [(117):

po(x)z lim [pPF(r,O)]

r—->R
For boundary conditions, we impose “no slip” at the wall:

at y=0: Vy (x,O) =Vy (x,O) =0

Remaining integration constants are evaluated by matching the outer limit of the inner solution
with the inner limit of the outer solution:

as y—>oo: ve(x,y) > Up(x)

wher Uy(x) is the inner limit of the outer solution for the tangential component of velocity:
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Up(x) = lim [véDF(r,G)]

r—>R
is the inner limit of the potential flow solution.

The the main difference from one geometry to another is a different potential flow solution
applies to different geometries. From Bernoulli’s equation, we have

po(x) N Ug () oo
p

nst

Differentiating with respect to x and rearranging:

_1dpg :ldU(% _u. Yo
p dx 2 dx 0 ax
Substituting into
o o o dU
y, Zx vy&— Yx — U £ = known £ (x)
ox oy 8y2 dx
(126)
% avy 0
ox 0Oy

where v = w/p. These PDE’s are called Prandtl’s boundary layer equations. Appropriate b.c.’s
include

at y=0: ve=»=0
as y—oo: v, = Up(x)
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ALTERNATE METHOD: PRANDTL’S

SCALING THEORY" U
—»
Now we will repeg the analysis of boundary e
layers using Prandtl’s analysis, which is more 7~
intuitive. Consider uniform flow normal to a  —»
long cylinder. Of course this is 2-D flow: e
—»

v,=0,0/0z=0 magnified

At high Reynolds number, we expect the
viscous terms to become negligible everywhere
except inside the boundary layer. Dropping the
viscous terms from the problem yields potential
flow:

r-R>§: v=V¢

where 9 is the thickness of the boundary layer.
Prandtl’s analysis of this problem assumed that:

e outside the b.l., viscous << inertia, such that the velocity and pressure profiles are those
obtained from potential flow. Recall the potential-flow solution from HWK 4, Prob. 3:

PF R\’
v, = U{l - (—j }cose for -R > 5
r

R 2
véDF =-U 1+(—) sin©
r
e J8<<R so that fluid elements inside b.l. don't “see” the curvature of the cylinder (we call this
“Postulate #17).

¢ inside the b.l., inertia = viscous (we call this “Postulate #2”).

Defining a local Cartesian reference frame, the continuity and Navier-Stokes equations become:

. o ov
continuity: % + 8_y =0
X y

*Schlichting, 6th ed., p117-21.
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X: Ve —— ———+V

oV, ov, 1 op 82vx 82vx
+v = +—=
o Y oy p Ox ox’ oy’

2 2
: Py, Py Lop [0V, Oy
y: vy +v,, = +v 5 ;
y p oy ox oy

where v = p/p. Next, Prandtl estimated the order of magnitude of each term, hoping that some
can be dropped. This is called scaling. In this estimate, we are not concerned about factors of 2
or 3, but with orders of magnitude: we will try to guess the asymptotic behavior of each term in
terms of the characteristic physical parameters. In particular, in scaling we try to express each
term in the form of the product of the physical parameters raised to some power: In this problem
the physical parameters are R, U, v, and 8. Thus we will try to express each term as

Ra Ub ve §d

Let’s start with the primary (x) component of velocity. Across the boundary layer, v, must vary
between zero at the surface (no-slip) and

at y=0: V=0

at y~5: v, = -vgt'F' = 2Usin0
2UsinB

which is the potential flow solution. The assumption

here is that the outer edge of the b.l. corresponds to

the inner edge of the potential flow solution.

VX
So v, = U
vy Avy U
oy Ay 9
0
oy? Ay 0-8 52

Now x is measured along the surface of the cylinder.
Thinking of x as the arc length measured from the
forward stagnation point, then:

dx=-R do

Integrating with x=0 at 6=mn:

x = R(n-0)
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PF
Thus Qvy _ v 49 _ (2U cose)(—lj Y
ox 00 dx R R
2 2_PF 2 2
Similarly, Ove _ 0% (@j = (2U sin e)(—i) _a
ox? 002 \dx R) R?

Next, we look at the equation of continuity:

Py _ v U
oy ox R

ov
Integrating across the b.1.: v, = J z dy ~ 2U cosH ~ uvs

Y dy R *°R
ov, /ox

“ vy NE(_ 2Uycose) do _Us

o 09 R J)dx R*

-1/R
Estimating the inertial and viscous terms in the x-component of N-S:
inertia: v, 0v,/ox ~ (U)(U/R) = U?/R
v, 0vy /oy ~ (US/R)(UIS) = U?/R
viscous: voZv,/ox? ~ vU/R?
vo2v,/oy? ~ vU/82

Now let's summarize our results as to the magnitude of each term in the x-component of the
NSE:

vy  ov,  lap vy v,

x: Vv, =———+v +v
Ox oy p Ox ox? o>
T — —_— —
1% U? ? vu vU
R s e 2

Since 3<<R (according to “Postulate #1”), the first viscous term must be negligible compared to
the second:

S§<<R: vU/R2 << vU/82

02v,/ox2 << &2v,/oy?
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So we can neglect this term.

Ignoring the negligible term, we have established the following orders of magnitude for the terms
in the x-component of the Navier-Stokes equation:

2
ov ov 1 0°v
x: vy O gy, O __ 1o, OV (127)
Ox oy p Ox o>
T —_— —_—
u U? ? vU

R R 572

Now let's apply Prandtl’s second postulate: Inside the boundary layer, viscous and inertial terms
are of the same magnitude:

inertia = viscous
U2/R ~ vU/&?
This allows us to estimate the thickness of the boundary layer:
82 = vR/U = R2/(RU/v)

R

or o= (128)
v Re
where Re=RU/v

is the Reynolds number. Note that this correctly predicts that the boundary layer gets thinner as
0— 0 as Re— «

The remaining term in which has not yet been estimated is the pressure gradient. We can
obtain some idea of its magnitude by looking at the potential flow solution, in which the pressure
profile is given by Bernoulli's equation:

for y>3: plp +v2/2 = const

Now the kinetic energy can be decomposed into contributions from the x- and y-components,
whose orders of magnitude we have already estimated:

v=v2+n2an?
Now v,2~U? while v,2~(U5/R)?, so v,2<<v,? which leaves:
plp ~ const - v,2/2

Differentiating: (1/p)op/ox = vyovylox = U2/R (129)
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So this means we cannot neglect the pressure gradient in since it is the same order of
magnitude as the inertial terms. Scaling of the terms of the y-component of the Navier-Stokes
equation yields:

ov vy, 16 0% 0%y
y: RS NS N (130)
“a Va T pav ol o2
U26 U2s ? vUs vU
R R? R SR

Substituting Eq. for 6 shows that viscous and inertial terms again have the same
magnitude:

2 2
inertia ~ uss ~U—,/% ~ U%R_%v%

R2 R2
viscous z£~ﬂ — ~UAR / /
OR R VR
SO inertia =~ viscous

What remains to be determined is the pressure gradient. At most, the pressure gradient in this
equation has the same order of magnitude as the other terms:

(1/p)oploy < U28/R? (131)

Comparing this with the partial derivative in the other direction, by dividing (13 l)|by|( 129)}

(dp/oy)/(op/ox) < 8/R — 0 as Re—

which means that variations in pressure across the boundary layer are becoming insignificant at
large Re. In other words, a good approximation would be to take:

p=pX)

Since the pressure at the outer edge of the b.l. must correspond to that just outside, where
potential flow occurs, we can calculate this pressure using the Bernoulli's equation and the
potential flow solution:

for y>3: plp +v2/2 = const (132)
In potential flow at =R : v, =0

V2(R,0) = v42(R,0) = U,2(x) (133)
[133)]into [132)] plp + U,2/2 = const
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(1/p)oplex + U,dU, Jdx = 0 (134)
I ov v, % U,
134) into (127): vy —>+v, —* —v—2> =Uy—— = known (135)
X y 0
ox oy o2 dx

The right-hand side of this equation is known because U is the inner limit of the potential-flow
solution:

Up(x) = lim [véDF(r,G)]

r—>R

Together with the continuity equation, we now have two equations in two unknowns:

2 unknowns: vy and v,
2 equations: Continuity

which are known as Prandtl's Boundary-Layer Equations for 2-D flows.

SOLUTION FOR A FLAT PLATE

Reference: Schlichting, 6th ed., pl25-33,

Whitaker p430-440. Y y
—»
. . . 4>
Before we continue with the analysis of flow  —» X
around a circular cylinder, let's look at the o
simpler problem of flow tangent to a semi- : semi-infinite
infinite flat plate. The analysis begins by plate

computing the potential-flow solution.

e Step 1: find potential flow solution

If the plate is infinitesimally thin, the uniform velocity profile is not disturbed:
P.F.: v = U for all (x,y)

and p =p,, for all (x,y)

Of course, this doesn't satisfy “no slip,” on the plate, but then neither did potential flow around a
cylinder.

Step 2: apply Prandtl’s b.l. equations
From this potential-flow solution, we can calculate the U, appearing in Prandtl's equation:

U,(x) = v, F(x,0) = U (a const.)
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U,dU,/dx =0
Eq. becomes: VOV /Ox + 1,00, /0y = v52v,/Oy?
Ovy/ox + 0wy /oy =0
Appropriate boundary conditions are:
no slip: vy =V, = 0at y=0, x>0
and outside the boundary layer, we obtain potential flow:
vi,—>Uasy—> o
Step 3: re-write the b.l. equations in terms of the streamfunction
We can contract the two equations into one by using the stream function:
v =Vx[y(x,y)k]

which automatically satisfies continuity. Written in terms of the stream function, the problem
becomes:

\Vnyy - Wnyy = V\Vyyy (136)
at y=0,x>0: vy =y, =0
as y—> oo: v —> Uy

where the subscripts denote partial differentiation.
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}
!
i

4
}
s
i

.“

The development of the laminar boundary layer along a flat plate is visualized by the
hydrogen bubble method. A fine electrode wire is introduced upstream of the flat plate and
a voltage pulse is applied reapeatedly at regular intervals. The boundary layer thickness is

seen to increase with the distance downstream for the leading edge. Photo taken from

Visualized Flow, Pergamon, New York, p17 (1988).

Flow visualization studies show that the
boundary-layer grows in thickness as you move g

downstream from the leading edge (see sketch at : S(x)
right). This can be rationalized by considering  —»
the inverse problem of a plate moving througha «»
stagnant fluid. — x

—>

—>

Focus your attention on an intially stationary

fluid element in the path of the moving plate.

The longer the fluid is disturbed by the moving plate, the more time there is for momentum to
diffuse away from the plate.

Time Qut: Flow Next to Suddenly Accelerated Plate

First consider the much simpler problem of a infinite

plate suddenly put in motion at /=0. Initially, the fluid

and wall are at rest; but at time =0 the wall is set in %
motion in the x-direction with a steady speed U. The

initial and boundary conditions are: X

at =0 for all y>0: v, =0
at y=0 for all £~0: v,=U

as y—o: v,—>0
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The solution can be expected to have the form: v, = v(y,?), v, = v, =0. The NSE becomes:

ovy _ X

v 0%y
ot o>

where v = pw/p. The solution to this problem is well known

vx(y,z):Uerfcu%)

n
2 _n? lasm—0
where erfcnzl——Je " dn' - 1
T 0 Oasm— oo

erf n

is the complementary error function; the integral itself is the error function.

At any fixed ¢, the velocity decays monotonically from U at y=0 to zero as y—>o. As ¢ gets
larger, more and more fluid begins to move; we say “the motion penetrates deeper into the fluid.”
Suppose we wanted to know how far from the wall we have to go before the velocity drops to 1%
of the wall value.

vy (y=8,1)=001U: B S”t) - erfc(

)
=0.01
\/4th

£l -9 | =1—erf 8j=0.99
cr (WJ erc(m

Looking up the appropriate value in a table of error functions, we obtain:

8
= 1825
avt
or § =365 vt (137)

This gives us some idea how far the motion “penetrates” into the stagnant fluid. Notice that the
penetration depth increases with the square-root of time.

* see BSL, p124f.
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Time In: Boundary Layer on Flat Plate

Now let’s apply this result to our original problem: the boundary-layer next to a semi-infinite
flat plate. Fluid farther downstream from the leading edge has been in contact with the moving
plate longer; and estimate of the “contact time” is:

t=x/U (138)
Ll—}S}lintOLB%-l § oc v o (VY (139)
U

e Step 4: solve b.l. equation using “similarity 5,

transform” —>
o 3
4> - ]
Judging from the boundary conditions alone, we —> | << )
would expect v, to vary from 0 at y=0to U at y=6 — » P ~d i~ >
with sort of a parabolic shape, with § getting >~

larger as we move downstream. Notice that the X

basic shape of this profile is not really changing

with x, only the range of y-values over which the solution departs from potential flow is
increasing as we move downstream. This suggests a solution of the form:

v/U=f"(/8) (140)
Let's define a new independent variable which is scaled to the boundary-layer thickness:

Y Y

Let Ol N =n(x,y)

To get this guess in terms of the stream function, recall:

v
y
X,y n
thus V= J ve(x,y) dy = USJf’(n)dn =U3 f(n)
—_
x,y=0 urr  8dn 0
substituting & froml(_]_TQ_)l y(x,y) =+ vUxf(n) (141)
In terms of f{n), the boundary-layer equations become:
ff”+2f’lV:O
subject to: f=f"=0atn=0
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f'>lasn—> o

Now we have an ordinary two-point boundary-value problem, which can be easily solved. This
solution was first obtained by Blasius (1908), who was a Ph.D. student of Prandtl.

8 1
7 | 0.8604 ya
5] ]
fn) 1 Y
4 1 051 Uy
1 Yy Ux
2 U v
0 e —
0 -
0 2 AIJ 1/26 8 0 2 4 6 8
n = WU/vX) = y(U/vx)m

Notice that the velocity component normal to the plate (i.e. vy) does not vanish far from the plate:

v,

lim {M} = 08604, — %0 = — — i

y—>00 U Ux I::
Consider a fluid balance around the shaded E: > ' >
rectangle in the figure at right. Owing to the |—> j > }’ 3(x)
need to meet the “no slip” condition on the [ >~ _ > F >
surface of the plane, the flowrate out the right —>

side of the system is less than the flow in the
left side. The excess has to go out the top, causing v, > 0 there.

Boundary-Layer Thickness

The definition of boundary layer thickness is somewhat arbitrary. Although we are tempted
to say that d is that value of y at which the boundary-layer solution for v,(y) equals U (potential
flow), v, approaches U only asymptotically as y—oo; therefore, this "definition" yields the
unhelpful result that 5 is «o. There are several ways to assign a more meaningful finite value to
3(x).
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One way to define the boundary-layer
thickness, 6, is that value of y at which the U
velocity is 99% of the asymptotic value.

e Defnl: Vy(x,81) = 0.99U(x) -

For flow over a flat plate, this convention >
yields: —>

5 (x) = 5.0\/%"

Another way to define 6 was suggested by Nernst who was
concerned with boundary layers which arose in mass
transfer problems. Nernst chose the diffusion boundary-
layer thickness as the thickness of a hypothetical stagnant
film which has the same diffusion resistance.

P
y=0 dy

y=0

Graphically, this 6 can be determined by drawing a tangent
to the concentration profile at the surface (y=0). By
analogy, concentration of mass is like concentration of
momentum, which is just the fluid velocity.

If we define 6 for momentum transfer in the same way, replacing concentration by v, then:

e Defn2: %

oy

_ Avy _ Uo(x)_o

Ay 82 —0

y=0

For flow tangent to a flat plate, this definition yields:

85 (x) = 3.0\/2E

Recall that the normal component of the velocity profile was nonzero far from the plate:

v, (x,
lim {M} = 08604,/ — =0
y—>00 U Ux

except far downstream from the leading edge:
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v, (x,
lim {M} = lim {0.8604‘ /l} —0
y—o0 U X—>00 Ux

X—>0

This means that the streamline moves away
from the plate. A third definition for 0 is the
distance the streamline is displaced away
from the plate. U
—> streamline

Suppose that, far upstream, a streamline is . > ( W = const_ _

ro

'

e __[Q
given by >y 50

——

> la
X—>-00: y=a e Y_

— 1

XV F%

Thus the streamline is initially a distance a

from the x-axis. If downstream from the

leading edge of the plate, the streamline is a distance b from the x-axis, then the displacement of
the streamline is given by:

83 =b-a

To evaluate this displacement, recall (from the definition of streamline) that the flowrate in the x-
direction between y=0 and the streamline is the same all along the streamline. Thus:

0 b(x)
\|/=W=aU= E[vxa’y

where W is the width of the plate (assumed to be arbitrarily wide). Adding 33U to both sides:

b
(a+83)U = [vydy+85U (142)
0

The left-hand side of this expression can be rewritten as:

b
(a+83)U =bU = [Udy (143)
0

— b

_[Udy = J-vx dy + 33U
0 0
b

03U = J(U_Vx)dy
0

(142) becomes:
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Of course, the upper limit » will depend on the particular streamline we have chosen. In other
words, different streamlines are displaced differently depending on how close to the plate they
were initially. Thus the displacement distance 83 is not unique. However, distant streamlines
are all displaced by the same distance (since the integral converges as b—). So let's define the
boundary-layer thickness as the displacement of external streamlines:

o0
e Defn 3: 83U = J(U—vx)dy
0

For flow tangent to a flat plate, this yields:

85(x) = 1.72\/";’6

Notice that all three of these definitions yield a boundary-layer thickness which is proportional to
Jvx/U although the proportionality constant varies considerably.

3(x) oy o (144)

We showed (see page [132) for any 2-D flow (which this is) that:

R VR
S~ = /— 145
VvRe U (145)

where R is the radius of the cylinder. For noncircular cylinders, R is some characteristic
dimension of the cross section (e.g. the major or minor axis of an ellipse). A semi-infinite flat
plate is somewhat unusual in that it has no characteristic dimension. However, if the plate were
finite with length L along the direction of flow, it would seem natural to choose L as the
characteristic length. If one can reasonably assume that what happens downstream with a longer
plate does not significantly effect the boundary layer thickness for a plate of length L (i.e. “exit
effects” don’t propagate upstream). For an semi-infinite plate, the same result is obtained by
choose x as the characteristic length; then

8z1/2 and Rezﬂ
U %

which is consistent with and with Prandtl's more general result.

Drag on Plate

The net force exerted by the fluid on the plate is calculated from:
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F=[yn-Tda=-[ypnda + [yn-1da

Choosing n = +j on the upper surface and n = -j on the
lower surface, the integral involving the pressure vanishes —> v n=+j
owing to cancellation of the contributions from the upper — T

and lower surfaces (the pressure is the same, but n has > -

opposite direction on the two surfaces). This leaves —>

X
0

Fx :2MJ % dx
0 Y ly=0

The “2” comes from addition of the two contributions from the upper and lower surface.
Evaluating the integral and expressing the result in dimensionless form:

F.

X
132
Cp=-Pa__ 328

%pU2 - v Re

where Re = Ux/v. In defining drag coefficient this way, we have departed somewhat from the
convention which uses the projected area along the direction of flow (i.e., the area of the shadow
cast by the object if the light source were located very far upstream). In the case of a plate this
projected area is zero, so we have used the area of the plate instead.

SOLUTION FOR A SYMMETRIC CYLINDER
Let’s now return to the problem of flow around a

cylinder at large Reynolds number. We follow the same U
general steps as we did in solving flow tangent to a flat —>

plate: — > X R 0
| | e [c 20
e Step 1: find potential flow solution and Uj(x) >
—»

We accomplished this in HWK #4, Prob. 4. The velocity 5
profile in the potential flow solution is

r=tf1-[2] o

e Step 2: apply Prandtl’s b.1. equations (see page
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2
: ovy v, ovy _V6 Vs Ly dU
Ox oy o° dx
% vy -0
ox Oy

From this potential-flow solution, we can calculate the U, appearing in Prandtl's equation:

Up(x)=—-vg(R,0)=2U sinf =2U sin%
sin(n—x):sinx
R R

where x is the arc length, measured from the forward stagnation line,

and 6 is the polar coordinate, which is measured from the rear x
stagnation line. The two are related by “
x=R(n-0) or O=m1-—
R

Prandtl’s boundary-layer equations become

Appropriate boundary conditions are:

no slip: vy =V, =0aty=0

and outside the boundary layer, we obtain potential flow:
v, = Up(x) asy — o

The main difference between a circular cylinder and the flat plate the left-hand side of the first
equation, which represents a pressure gradient along the direction of flow inside the boundary
layer.

dUy __ldp

U
0 ax p dx

e Step 3: re-write the b.l. equations in terms of the streamfunction

In terms of the streamfunction, Prandtl’s boundary-layer equations are:
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— -V —4U—2sinicosi
dU,
U Y
0 dx
at y=0: vy =y, =0
as y— oo: v = Uy(x)y

Blausius obtained the solution to this problem, which in fact works for cylinders of much more
general shape — not just circular cylinders.

What is required is that the potential flow solution must be an odd function of x:
U,(x) = ux + u3x3 + ugxd + ..
Then Blausius obtained a solution with the form (see S:154-158):

w(xy) = (Vup)V2[upxfi(m) + duzxfz(n) +
+ 6usxSfs(nsup,uz,is) +...]

where n = y(uy/v)12

The velocity profile obtained this way for a circular cylinder is sketched below:

/

& > et

E 8(?C)/ R 0

This result is quite different from what was obtained with the flat plate. With the flat plate, the
velocity profile v, as a function of y had the same shape for different x’s. Indeed the shape at
different x’s were similar and we were able to use a “similarity transform.” Here, for flow
perpendicular to a circular cylinder, the basic shape changes with x (or a or 6). In particular
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notice that the initial slope (6v, / 8y)|y: 0 is positive for o=0 and becomes zero for a=108.8°. At

even larger a’s, the initial slope becomes negative.

This turning around of the velocity profile coincides with a profound event called boundary-
layer separation. Separation does not occur on the flat plate. The main difference in Prandtl’s
boundary-layer equations which causes separation is the form of the pressure gradient.

Boundary-Layer Separation

To see what boundary-layer separation is and why it comes about, let's first recall the
potential flow solution for the pressure on the surface of the cylinder. Using the velocity profile
obtained in Hwk #4, Prob. 4, we can calculate the kinetic energy per unit volume at any point in

the flow
2 4
lv2 :U2|:l+(1—20052 9)(5) +l(5) }
2 2 r 2\r

Then using Bernoulli’s equation:

we can compute the pressure profile around the cylinder.

Consider a fluid element approaching the cylinder

U
—»
along the stagnation line shown in the sketch at —»
right. As the fluid element moves toward the — 7 B \ \
stagnation point 4 (6 = n and r changes from o to > A C
—
—»
—
—»

R), the pressure rises to a maximum. Moving away
from Point 4 along the surface of the cylinder (» =
R and 6 decreases from = to m/2), the fluid element
now accelerates until reaching its maximum speed
and minimum pressure at Point B and so on.
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The results for the pressure changes or kinetic P Do
energy changes during this journey are summarized Cp
on the graph at right. Note that Bernoulli's equation
balances an increase in kinetic energy with a
decrease in pressure and vice versa. So that the sum
of the two curves equals a constant. Inside the
boundary-layer, the same pressure gradient applies
but we also have viscous dissipation in addition to
kinetic energy. The upshot is:

just outside b.l.: potential flow (no irrev. loss of
energy). The kinetic energy of the fluid at B is
just enough to overcome the pressure hill at C.
Fluid elements arrive at C with v=0 (no kinetic
energy to spare).

potential flow

inside b.l.

inside b.l.: dp/dx same, but viscous dissipation
consumes some of the kinetic energy, leaving
insufficient energy to climb the pressure hill.

Consequently fluid elements in the boundary layer
stop their forward advance at some point before reaching C,

which we will label S. Fluid elements between S and C are 5\5\? ul
driven toward S by falling down the pressure hill. &
/ ce \\

To conserve mass, fluid must be pushed away from the / \
cylinder at S. This is known as separation of the boundary
layer.

The x-component of flow is toward the separation point on
either side of S. Thus at y=0 dv,/dy>0 for x<xg and
dv,/dy<0 for x>xg. At the separation point the derivative
changes sign:

oy Jxmxs
Y |X=Xg
y=0
which serves as a convenient way to locate the separation
point in any mathematical solution to the flow problem. é{
Necessary conditions for separation include: ae LN @ _o

1. decelerating flow or Dp/Dt>0

2. irreversible losses of energy
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Drag Coefficient and Behavior in the Wake of the Cylinder

Blausius solution does not apply downstream from the separation point (i.e x>x,). Indeed, the
boundary layer is not thin enough to be described by Prandtl’s equations. Since the behavior on
the downstream side significantly inflences the drag and since this behavior is not predicted by
Blausius solution, Blausius solution does not correctly predict the drag force. Measurements of
the drag coefficient for flow normal to a circular cylinder are summarized below.

109 i 0
& : i T 111
. ofnat |
0 JIRE . or
Cp Lamb's . o1
20 - ] 2.3
solution 17| fessured
16 4/ - a0 e
K = ——t—l e L8 liWiesetsberger
& fe 420 F——1H
! s &0
4 .y * 0.0
2 H“':‘Qﬂn_“_ ---Theoy e to Lamd
] o] l -
UL
1 . 2 =
pa stationary vortex N1 turbulent
ok vortex shedding k;:‘ bdy. Lyr.
2.7 —i—rat —————
or | Lo L LLE 1| JHI b
gt “8%pa 7 G BB T 88,2 L6827 V68,7 « 88,5 7 LG8
k=22

o

taken from Schlichting, 6th ed., p17

Several different regions are apparent in this log-log graph. Some of these correspond to major
changes in the shape of the velocity profile.

Re << 1. Upstream and downstream halves of streamline are
mirror images. This is what you would expect if you looked

for a streamfunction solution with the form (see Hwk #7, Prob.
2):

y(7,0) = f(r)sind

Although inertial terms are never negligible. The measured
drag coefficients agree well with the prediction of Lamb.

As we increase the Reynolds number, inertia becomes more
important. Generally large inertia has a tendency to make
streamlines straight.

1 <Re < 6. Streamlines are no longer symmetric about 6=m/2.
Streamlines are somewhat farther from the cylinder on the
downstream side.

Drag coefficients are significantly smaller than predicted by
Lamb.
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6 < Re < 40. Two stationary vortexes are formed in the wake of
the cylinder -- a consequence of boundary-layer separation.

¥ Re > 40. Periodic vortex shedding. Large vortices, the size of
the cylinder, are created on a periodic basis. These vortices
detach and move downstream. Vortex shedding alternates
between the top and bottom of the cylinder. Vortexes shed from
the top have a vorticity (Vxv) with a sign opposite from vortexes

shed from the bottom.
/) \
_ \

= fq |

Re=140

These vortices persist many cylinder diameters downstream from the cylinder. Most of the
irreversible losses of energy occur in forming these vortices, whose ultimate fate is to dissipate
their kinetic energy as heat.

Re ~ 4x10°. Onset of turbulence in the boundary layer. Point of separation moves further back
toward rear stagnation point. Drag is significantly reduced -- almost a discontinuous drop.
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The Lubrication Approximation

Consider a plate sliding on a lubricating film
past a second stationary surface. If the distance
separating the two plates is small compared to the ‘

dimensions of the plate, we can assume fully

developed flow applies through out most of the oil N

film. Then: Ty h
A X

for h<<L: Vy (y) = U%

Since the pressure is same inside the film as outside the slide, the sliding motion of two parallel
surfaces produces no lateral component of force.

F,=0
Now suppose the slider is inclined ever so I |
slightly relative to the stationary plate. We
might guess, that if o is small enough, the w ]
velocity profile will not be affected. But, y j\Ah
owing to the inclination, # is no longer X Th(x) T ——
independent of x, so our guess leads to: it K_ o
0 U—

= JUR(x) = f(x) (146)

which violates continuity. It turns out that continuity is preserved by a nonzero pressure gradient,
dp/dx, which causes pressure-driven flow. Thus even the primary component of the velocity
profile is affected by this slight inclination. More significantly, it turns out that this inclination
will produce a different pressure in the film from the fluid outside the slider block which, tends
to push the two surfaces together or apart.

Fy;tO
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Let’s try to estimate this force. It turns out to be no
more difficult to obtain the result for an arbitrary gap L
profile A(x) (see figure at right), since the essential
difficulty arises from the fact that 4 is not constant
with respect to x.

Suppose the thickness of the gap is everywhere very
small compared to the dimensions of the slider block.

h(x)<<L forallx

Essentially, this is a geometry with two very different

length scales characterizing variations in the different

directions x and y: we expect slow variations with x and rapid variations with y. We will exploit
this difference using a regular perturbation in the ratio of the two length scales.

We will start by nondimensionalizing the equations of motion:

Vx Vy

Let X —
U Ve

Y

L
L h,.

L is an obvious choice for the characteristic value of x (since 0<x<L) and U is a obvious choice
for the characteristic value of v, (since v, = U at y=0). Since 0<y<Ah(x) some characteristic value
h. of the film thickness seems like a logical choice to scale y.[f| The choices of characteristic
values for v,, and p are not obvious; so we will postpone a choice for now and just denote these

y
values as v, and p,..

We seek a solution in the form of a regular perturbation:

where o= h—c
L

vy (x%,,0) = Un(X,Y,0) = Ulug(X,Y) + ouy (X, Y )+...] (147)

vy (x,y,(x) = vcv(X,Y,(x) =V, [VO (X,Y)+0w1 (X,Y)+...] (148)

p(x.,0) = poy = pe P(X,Y,0) = p[ Po(X.Y) + 0P (X,Y)+.. ] (149)

As usual an important aspect of this form is that all derivatives of the dimensionless velocity
components ¢ and v with respect to the dimensionless coordinates X and Y are O(aV):

* For definiteness, we might select the largest value of A(x) to be /...
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ouloX, ou/dY, ovioX and ov/eY are  O(a0) (150)

The choice of v. becomes apparent when we nondimensionalize the continuity equation:

ov
continuity: % +—2=0 (151)
ox Oy
Substituting [147)|and [(148) [into [151)}
Uodu _ v v ou 1 v, ov ou v, Ov

———= or —=——— or —=-— —
L oX h. 0Y oX h./L U oY oX aU oY

(151)|requires the two terms in the continuity equation to be equal but opposite; and to be exactly

the same order of a. Since ou/6X and 6v/0Y are O(a?) according to [(150)| we are forced to

choose v, such that v, /aU is O(a). So let’s choose

v.=al (152)

Substituting (147)}{149)Jand {152) finto (151)] the leading term is

0: Gup Mo _ (153)
oxX oY
Next we examine the principle component of the Navier-Stokes equation:
ov ov 1 op o%v. 0%
NSE,: vx—x+vy L=——— v —2x+—2x (154)
ox oy p Ox Ox dy
Substituting (147)}{149)and (152)linto (154)]
U’ ou oU? ou p.oP U d°u U o°u
— U—F—V—=———F+ V— +v
L 06X oL 0Y pLOX 2 pox? (ocL)2 or?
0 0 9 0 —_—
o) o) T Ta) T

The last term in the equation is lowest-order in the small parameter o: it’s O(a-2). All the other
terms in the equation (except possibly for the pressure gradient) are O(a). Unless we have some

2
other term in the equation of the same order, we will be forced to take 0 %Yz = 0, which yields

linear shear flow to all orders in a. We already know that this solution violates macroscopic
continuity. To avoid this situation, we choose p. so that the pressure gradient term is also of
O(a-2):
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pC:pLx Y = (155)

<5
)
o

Q
o

t~

With this choice, the leading term in NSE, is

2
a2: 0w _ Ry (156)
oY? oX

So far we have two equations [[(153) and [(156)] in three unknows (ug, vy and Py). We need
another equation. So we turn to the secondary component of NSE:

ov 10 o%v, 0%y
R ATENVN S I AT LA 4

NSE,: v
* ox Y oy p oy ox? 8y2

Y

Introducing our dimensionless variables, we have:

_aU2 uﬂ+_(aU)2 y v wu op eU o%v vy 0%
L X ok o (f2L)ar)® 1% x> (ar)’ oY’

o) (o)

After substituting the perturbation expansions [(147)}(149), [(152)| and then collecting
terms, the leading term is:

oFy _
oY

a3: 0 or Py=constw.r.t. ¥ (157)

This conclusion suggests that the pressure gradient in can be treated as a constant with
respect to Y-

2
o _ 4Py _ onstwrty (158)
or? ax

We might be tempted to set this pressure gradient to zero since:

P(0)=p(L)=p,

Of course the pressure gradient is zero when the two plates are parallel. But we already suspect
that the pressure gradient is needed to avoid linear shear flow, which violates continuity. So we
avoid this temptation and leave dPy/dX nonzero.
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From this point on, we will resort to the dimensional variables, using what we
have learned from the leading terms of the perturbation expansion. In essence,

we are truncating after the first nonzero term.

Integrating '%ltwice: Vy (x,y) = i Z—iyz +c (x)y + ) (x)

Boundary conditions are given by the “no slip” requirement:
v, = 0 at y=h(x)
v, = Uaty=0

Evaluating the two integration constants leads to:
vx(x,y): U(l—l) + Ld—p(yz—yh)
h 21 dx

— -
linear shear flow  pressure-driven flow

The volumetric flowrate per unit width of plate is calculated as:

h 3
0 Uh R dp
¥ _ Y)dy =—-——2 159
W {v)‘(xy)y 2 Dpdx (159)

0 can be made to be a constant at each x if dp/dx is allowed to take on non-zero values. The
necessary values can calculated from

dp _ 60U _12u O (160)

/W=const.:
0 dc B2 B w

Integrating with respect to x from x=0 where p=p, to any other x.

T d td
p(x) - po =6pU | h_;_m“%Jh_;c (161)
0

The pressure is the same at the downstream end of the gap. Then:

L L
dx O rdx
pP\L)—po=0=06uU | ——12p=|—
() =0- o] 8]

Knowing the overall pressure drop is zero allows us to compute the flowrate:
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Q_UH (162)
w 2
L L
where H = Id—; Id—;c
0"/ oh

is an average gap width. If 4(x) is a linear function whose value changes from

h(0) = hy
to h(L):h2 <h1
then H=2——= fnhy or i:l i+i
hl +h2 H 2 hl hz

which is called the “harmonic mean” of 4 and 4,. (162)into | 160)| gives the pressure gradient:

d_pzﬂ(l_ﬁ) P =Dy A F
dx  p? h e

| /4
Note that hy <H<h |

|
at x=0: h=hy>H — dpldx>0 |

|
at x=xp: h=H — dp/dx=0 Xy L x
atx=L: h=h <H — dpldx<0

Thus H represents not only an average gap width (with respect to flowrate) but it is also the width
at the point where pressure is a maximum.

Now we are in a position to evaluate the force exerted on the plate by the fluid. The x-
component of the force is

dv,

F, Wj dex—WJu dx = WL ;+0(s

y:O

_h—h
L

where

is the angle of tilt between the two plates ( |e| <<1). This result is the same (neglecting the O(¢)
correction) as would be obtained for two parallel plates. More interesting is the y-component.
For a linear gap:
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F, L 6uUL? By 2(hy —h
_y:J [p(x)_po]dx:“—z 1n_1_M
w 0 (hl _h2) h2 hl +l’l2

Does this reduce to zero when the two surfaces are parallel (i.e. ~1;=h;)? Although it might
appear that F),—oo as h1—hy, it turns out that the terms inside the square brackets tend to zero
faster than the denominator outside the brackets. In the limiting case that

e<<l: hy=hy=h,

and hl-hz < mil’l(hl,hz),
F 3

then we obtain: L= lpU(éj €
w2 h

So we do recover zero force for parallel plates. The main difference between two parallel- and
two nonparallel-plates is the occurance of the nonzero y-component of lift which would not occur
for parallel plates. Notice that F,>0 if >0 (h;>h;) and F)<0 if <0 (h1<hp). Thus either
repulsion or attraction of the two plates is possible, depending on the direction of tilt relative to
the direction of flow.

TRANSLATION OF A CYLINDER ALONG A
PLATE

The lubrication approximations developed for the
slider block can be easily extended to other geometries.
For example, instead of a planar slider block, suppose I
try to drag a cylinder parallel to a plate. What will be
the force tending to push the two surfaces apart? The
same perturbation expansion done with the slider block T
applies here, except we have a different profile A(x) for _ﬁ U
the gap between the two surfaces. !

To deduce the gap profile, recall the equation of a
circle

¥
(x—)cc)z—i-(y—yc)zzR2 / \Ji_—/
X
—

where (x,, y.) is the location of the center of the circle
and R is its radius. Substituting the coordinates of the
center in our problem and y(x) = A(x), we have

x2+(h=R-hy)* = R?
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Dividing by R?

2 2
x—+(h_h0 —1) —1
R? R

Recognizing that h-h is very small compared to R, we can use the Binomial Series, truncated
after the second term, to obtain an approximation to the second term:

2 2
(h ho—l] (12 e —1- 261 0(e2) ~1-2 70
R R R

€

The “1” cancels with the “1” on the right-hand side of the equation, leaving:

x2

hx)=ho + - (163)

provided that 4-hy << R which requires that x remain small compared to R.

dh x
ao=—=—<<1
dc R

where we have moved x=0 to the center of the gap, which is now symmetric about x=0.
Although is only valid for x very small, it turns out virtually all of the contribution to the
force comes from the region Where is valid — provided that 4 is sufficiently small
compared to R. In any case, let's assume tha is valid. If that bothers you, then replace the
circular cylinder by a parabola.

As with the flat slider, the pressure profile is cylinder
determined by the need to have the volumetric flowrate
through any x=const plane be the same for all such

planes. Eq.[159)/becomes:

parabola

2 _ 207 _onstwrt x (164)
w2 12udx

If we view Q/W as an unknown integration constant,
then we will need two boundary conditions to evaluate
the two integration constants we will have after
integrating this. Since the fluid held between the
cylinder and the wall is in contact with the same
reservoir at either end of the gap, we can require:

p=pgatx=-om+o
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By “infinity”, we simply mean far from the origin. It might seem more reasonable to specify
x=R, but if R is sufficiently large compared to %y, no significant error will be incurred by
extending the limit to infinity. The counterpart to is:

X X
dx' dx'
p(x)—pm=6uUJ hiz—lhtg_[ hx3
—00

- (165)

Applying the other boundary condition at x=+o allow us to evaluate . The counterpart of
is

Q_UH (166)
w2
where
is an average gap width.
Substituting (163)] H="4h
As long as /(x) is an even function of x, then P—Po
p(x) must be odd: e
ho
h(x)=even — p(x)=odd A
Thus the pressure profile given@l%) | 7
looks as shown at right. The extrema [ A
correspond to: ' I g
dp/dx=0 | X
| JRhy
Subsituting[ (166) and dp/dx=0 ihto (] 64)
yields:
dpldx=0: h=H=2%h

Substituting and solving for x:

dp/dx=0: X = iJ%RhO

Because p is an odd function, there will be no normal force tending to separate the two surfaces:
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F o0
p=odd: Wy - j [p(x)— po]dx=0
—00
F, % [2R
—= | 1, (x)dx =2npU |—
CAVITATION

However, there is an important phenomenon which we have not discussed which can cause a
lift force to push the two surfaces apart. That phenomenon is

cavitation - formation of gas bubbles caused by a lowering of pressure

If the absolute pressure of the fluid drops below the vapor pressure of the liquid, we will have
boiling of the liquid and cavitation. Because pressures generated in lubrication problems can be
significant compared to atmospheric, cavitation is not an uncommon event.

sources of gas bubbles:

« vapor of liquid (if p<pyapor)
o air (if p<Pgaturation)

Many liquids are kept in contact with air at one atmosphere and therefore become saturated with
air. If the pressure on the liquid is suddenly lowered, the air will be supersaturated and air
bubbles will form.

What effect will cavitation have on the pressure
profile? Although an exact analysis would require
consideration of two-phase flow, we can anticipate
that — at the very least — the absolute pressure
cannot drop below saturation.

A P— Do

. . Psat —Po _/‘:> \ P
If any of the negative portion of the pressure profile N

is chopped off, the profile loses its anti-symmetry.
A repulsive force pushing the surfaces apart
becomes likely. The resulting profile might be
expected to look something like that shown at right.
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SQUEEZING FLOW

The above two problems both involve the sliding of two F
surfaces past one another. A related lubrication problem is
the squeezing motion between two bodies. Consider the
“squeezing” motion in a thin film of liquid held between a

I
circular disk and a parallel flat plate in the limit in which R i circular
h<<R. In the limit e=A/R — 0, a solution to the Navier- | $: disk I
Stokes equation can be found via a regular pertubation h i
expansion of the form: .

| plate

|

v, (r.z,8) = uou(p,G,€) = uJug(p.C) + eup (p.C)+.. ]

v, (r.2.€) = Uv(p.C.e) = Ulvo (p.C) + v (p.C)+.. ]
P(r.2,€) = P = P P(p.G,€) = pe[ Po(p.C) + &1 (p.C)+.. ]

where U=

Note by using the arbitrary u,. as our characteristic radial velocity, we are delaying the choice
until we have a chance to inspect the continuity equation:

Lo(rve) vy

continuity: - =0 167
oy r or 0z (167)
0
Nondimensionalizing: ”_clM + Uo =0
Rp op haog
o(pu
Dividing by U/k: eug 10(p) __ov (168)
U p Op o¢
— [

Boundary conditions on v, include:
at z=0 or (=0: v,=0 or v=0
at z=h or (=1: v,=U or v=1

This means that v, /0z (and 0v/dC) is not zero; so that the other term in the continuity equation

is not zero either. The only way the two sides of can have the same order in ¢ is for
the coefficient to be O(g0). This is accomplished by choosing:
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u.=elU

Next we examine the principle component of the Navier-Stokes equation. Although the flow is
caused by motion in the z-direction, the r-component is much larger (u,. >> U for ¢ << 1).

2
. Loy v Lap op o af1dm)| w0y,
"or %oz pypOr pyorir or Pr o072

Here we have added the subscript “/ 7 on the fluid density to avoid confusion with the
dimensionless radial coordinate. Nondimensionalizing:

2
-1
Mu%+8_ll]2 V@_— Pe 8_p+H8_lUi|:la(pu):|+ HS_IU 821/{

of=) of=?) ofc ) T o)

Clearly, the first viscous term and both inertial terms are negligible compared to the second
viscous term. Unless we have some other term in the equation of the same order, we will be

2
forced to take a%gz = 0, which (after no slip is applied) yields u = 0 for all {. This would

violate continuity. Thus we choose p,. so that the pressure derivative has the same order as the
second viscous term:

-1
Pe _ be U Orp:uU
C
prR pf(gR)2 &R

Finally, we look at the secondary component of the Navier-Stokes equation:

2
)+L&
Pr 022

Do Do L w100
" or ? 0z pr 0z pyror( or

Nondimensionalizing:

Po

o) o) ) o) o)

-1 MU
(= U)Uu@+uzv@_ 43Rap+u Ula(av)+u U o
T & o0r 22000\ 0] 0 (o2 AF2

R op &R OC preR 0C pys R* pOp Pr (sR)” OC

Note that OP/0C is the lowest order term in this equation. Moreover, it is the only term which is

O(e#). Therefore when the perturbation expansions are substituted, and terms of like order are
collected, the leading term is
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R _
ot

e 0 or Py=Plp) (169)

so that the z-dependence of pressure can be neglected compared to the r-dependence. The
resulting problem to solve (going back to dimensional quantities) is:

0
Continuity: 1) ove (170)
r or 0z
2
NSE,: al = . _ const. w.r.t. z (171)
622 dr

Since the right-hand side is independent of z, we can integrate immediately to obtain the general
solution:

dp 22
=——+ci(r)z+cr(r
Wy dr 2 1( ) 2( )
Boundary conditions are:
atz=0: v, =v,=0
atz=h: v,=0,v,=-U
1 ' . |
Applying the b.c.'s we get: | ¢ ¢ ¢ | ¢ ¢ ¢ |
1 dp 1
Vv, =——2z(z—h 172 h
Gl a72) & i =
|
|
As before, dp/dr is determined such that continuity is Side View
satisfied. = Now, however, macroscopic continuity
requires:
h
I vy (r,z)2nrdz = WU (173)
0 flow in
through top

flow out through
walls of cylinder

(172)]into [173)|and requiring that the result be satisfied
for any r yields:

dp r
2 — _oulU — 174
dr H 3 (174
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Requiring that: P(R) =py
we can integrate to obtain the pressure profile: P—DPop

2_ 2

R
p(r)=po =3uU i

which is sketched at right. Substituting (174)|into|(172)}

v, (r.z) = 3U%[(2)—(2)2] (175) R r

The other component of velocity can be determined by
applying microscopic continuity. Using|(151)|and (175)

=)

e Oatl

Integrating subject to v, =0 at z = 0:

v, (r,z)= U[3 (%T - 2(%}3] (176)

To calculate the force exerted by the plate on the fluid, we
use the unit normal pointing out of the fluid: n=k:

dF=k-Tda

From the axisymmetry of the problem, we anticipate that + n=k
there will only be a z-component of this force, which we can
calculate by post dotting the above by k:

dF,=k-T-kda=(-ptrt,,)da
In this problem, the normal component of the deviatoric stress (t..) vanishes. Using (176);
T, = L OV,/0z],—p, = W(-U)[62h72 - 622h73]|,—;, = 0

This leaves just a contribution from the pressure. Since p(r,/) is independent of 6, we choose da
= (2nr)dr to be a thin annulus of radius » and thickness dr:

R 4
—-F, = 2njrp(r,h)dr = M
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Notice that, for a fixed U, the force required becomes unbounded as #— 0.

REYNOLDS EQUATION

Sliding motion and squeezing motion are quite different. Yet the lubrication approximation
for each has a lot in common. In particular, note that in either case, pressure can be taken as as a
constant along a normal to either surface (compare|( 157) and|(169)). In either case, the dominant
velocity component is tangent to the surfaces and the principle component of the NSE is
approximated by a balance between viscous shear stress on the surface with the pressure gradient
along the surface (compare|(158) and |(171)). It turns out that the lubrication approximation can
be generalized to handle an arbitrary combination of squeezing and sliding motion in 3-D.

Consider two bodies of arbitrary (but smooth) shape _
moving slowly through a viscous fluid in the near v=Usex +1aey + Wae;
vicinity of each other. A rectangular Cartesian \ AZ
coordinate system is chosen so that the z-axis coincides PN hy (x,y)
with a straight line connecting the two surfaces at the 5 P
points of minimum approach. The origin is located at ! hy(x,)
some arbitrary point along this line. §; represents the
distance (along the z-axis) from the origin to the surface
of body i (i=1,2), while z=-h;(x,y) and z=h,(x,y) v=Ue, +1je, + Me,
describe a portion of their surfaces nearest the origin.

Let R;, and R;, be the radii of curvature of body i in the
x- and y-directions, respectively.

For distances /,(x,y) much less than both R;, and R;,,, h; can be approximated byE|

iy
2 2
B (x,) = 8; + =t 2
2R;, 2R,-y
The total distance between the two surfaces is
h(x,y)=h(x,y)+h (x )—5+i+i
Y 106,y 2 (X, Y 2R, 2Ry

where 8 =8 + 8, and R; (j = x,y) can be considered to be the radii of curvature of the film:

* Actually, this assumes that the principle radii of curvature of both surfaces lie either in the x- or
y-directions. Should one of the surfaces be rotated around the z-axis by an angle 6, the function
acquires an addition term which is proportional to xy sin6 cos6.
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1 1 1
S

Rj Rij Ry

As in the two previous examples, scaling leads us to the following equations for the velocity
profile in the film:

vy _op
oz> Ox
. 62vy _ o
oz2 oy

where the pressure profile is independent of z:

p =px,y)

Since pressure is independent of z, these equations can be easily integrated to yield the velocity
profile in the film, which again turns out to be the sum of linear shear flow (from the sliding
motion) and a parabolic pressure-driven flow.

v, :a—pi[z2 2y —hl)—h1h2]+£(z+h1)+U1 177)
ox 21 h
op 175 AV
v, =L (22 zhy —hh]+— 2 hy) 4V,
Yo m (hy —hy) —hyhy P (z+mh)+N
where AU=U,-Uy and AV=V,-V;

Still unknown is the pressure profile, which is found by requiring the velocity profile to satisfy
the continuity equation. In particular, since pressure is independent of z, we will choose p to
satisfy the integral of the continuity equation with respect to z

hy (x,y,t)

J (V-V)dz =0

—hy (x,,1)

Expanding the divergence and separating derivatives with respect to z from those with respect to
x and y:

hy hy 5
.
j (V-v)dz = _[ e S LS P (178)
ox oy Oz
—h —hy

Applying Leibnitz’ rule for differentiating an integral whose limits are functions of the
differentiation variable:
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hy (x,7) hy (x,7)

0 I I v oh, o(=h)
— v.(x,y,z)dz = —dz+v, (x,v,h ) —=—v,.(x,y,—h
ox x( yZ)Z éxZMG‘x LJ,}—L) ox
—hl(x,y) —hl(x,y) U, Uy
%5 " ohy  oh
Vy 0 J' 2 |
SO dz=— | vy (x,y,2)dz—-Uy —=-U; — 179
6xZ ox x( yZ)Z 2 ox Dox (179)
—hy —h
Substituting the velocity profile (177)|into {(179)|and integrating leads to:
" Iy +h (h+h) 4
vadZI 1 2(U1+U2)—¥—p
2 12n  ox
_hl
o't 1 ARG
Differentiating — I vedz =—(Uy +Uy )| 4+ =% |- — 2P
ox f 2 ox Ox ox| 12p ox
—h
where h=h;+hy
L] e 1 o(,5ap) 1, oAk
(179) becomes I Vx gy = ———(/P —pj At (180)
ox 12p ox ox) 2 Ox
_hl
where Ah=hy - hy
There is a very similar result for the integral of ov,, / oy :
hy 5
v
_de:_Li h35‘_p —lAV@ (181)
oy 12u oy oy ) 2 oy
_hl
Finally the result for the integral of dv, /oz:
hy hy
ag; dz = I dv, =v, (X, y,h) = v, (x,y,—h ) = AW (182)
—h —n W, W

Adding [(180)l (181)|and [182)] setting to zero (to satisfy (178)) and rearranging:
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i(lﬁa—p}ri 3P =—6MAU@—6MAV@+12MAW (183)
Ox ox) oy oy 0x oy

which is called Reynolds lubrication equation. The solution to this equation yields the pressure
profile in the gap for any prescribed translation of the two bodies. Outside the gap, the pressure
must approach the bulk pressure, which is taken to be zero

p— 0as (x24)2) -

In the special case in which upper and lower surfaces are surfaces of revolution around the same
axis, polar coordinates (7,0) are more convenient than (x,y) since then 4| = h(r) and hy = hy(7).
[ 183 ) can be written in invariant vector notation:

v, -(h3VSp):—6u(V2 —v;)-(ny —my) (184)

where v; is the velocity of body i (i = 1or 2) and n; are local normals to body 7 (not necessarily of
unit length). In particular n, is defined as:

n; = Vf;
where S1ey.2) =hi(x,y) +z
and f‘Z(xayaZ) = hz(xay) -z

That n; are local normals to body i follows from the fact that f] is a constant on surface #1
(defined as z = -h) and f; is a constant on surface #2 (defined as z = +h,). If we decompose the
velocity of the two bodies into contributions along the z axis and in the xy plane

Vi = Vg + I/Viez

then becomes
3
Vs (h Vsp)=—6M(Vs2 _Vsl)'vs (h2 _hl)+ 120AW (185)
—~
sliding motion squeezing motion
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Example #1. Let’s reformate the sliding-flow problem
for a plate sliding past a cylinder (see page [162). In
this problem the equation of the lower surface (the
plate) is just

hy(xy)=0
The equation of the upper surface is

2 £ \
h =l +— .
2(X) ot R

The total gap between the two surfaces is

h(x) = hy + hy = hy +§
For Reynolds equation, we also need
Ah = hy - hy = h(x)

The velocity of the lower surface is

uy=U V=0 Ww;=0
while the upper surface is stationary:

Uy=0 V=0 W,=0
The following quantities appear in Reynolds equation

AU=-U AV=0 AW=0

Reynolds equation becomes i(h3 d_p) = 6uU dh
dx dx dx

which is identical to the derivative of Solving this 2™ order ODE leads to the same
pressure profile we determined earlier.

Example #2.

Now let’s reformulate the squeezing flow problem on page . In this problem the equation of
the lower surface (the plate) is just

hi(x,y) =0

The equation of the upper surface is hy(x,y)=h
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The total gap between the two surfaces is
h=h+hy=h
For Reynolds equation, we also need
Ah=hy-hy=h
The velocity of the upper surface is
Uy=0 V,=0 W,=-U
while the lower surface is stationary:
Uy =0 V=0 w=0
The following quantities appear in Reynolds equation becomes

AU=0 AV=0 AW=-U
lresylbecomes v, -(h3VS p) — _12uU (186)

Because the upper surface is a circular disk and the gap is uniform, we expect squeezing flow to
be axisymmetric in cylindrical coordinates. In other words, we expect that p = p(r) (i.e. no 6-
dependence). In cylindrical (7,6,z) or polar coordinates (7,0), the gradient isEl

op
Vip=—"=0¢
sP T
while the divergence is V- (h3vsp) = li(r d_p)
rdr\ dr
'%lbecomes li(ﬂﬁ d_p) =—-12uU
rdr dr

Multiplying through by » and integrating:

i’ a = —6uUr2 +c
dr

* see http://www.andrew.cmu.edu/course/06-703/Vops_cyl.pdf
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Dividing by rh3: ap = —6uUL 4+ €

dr A

When this is integrated a second time, the second term will lead to a logarithmic singularity at
r=0. To keep pressure finite, we choose ¢=0 and then the above equation is identical to
Solving this 2" order ODE leads to the same pressure profile we determined earlier.

Example #3. Sliding of a plate past a sphere

n this problem the equation of the lower surface (the
plate) is just

hi(x,y) =0

The equation of the upper surface is

r2

hz(l")zl’lo +ﬁ

The total gap between the two surfaces is

r2

h(r)zhl+hz:ho+ﬁ (187)

For Reynolds equation, we also need
Ah=hy - hy=h(r)
The velocity of the sphere is purely along the x-axis
vy = v, = Ue, = e, UcosH - ey Usin®

Uy=U V,=0 W,=0
while the lower surface is stationary: vi=v =0
The following quantities appear in

dh
VS (l’lz _hl) = Vsh = ;er

r r

(V2 = Vg1)-Vg(hy—h)=(Ucosbe, —Usin6 ee)-(?e,sz%cose
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] 3
zgw a_pj+13£h_a_p

(185) becomes = —6uUﬁcose
r or or) roo| r 00 dr

For the particular case in which h is given by (187)] the solution is

N 6uUr cos9

p(7,0)=py
(r.0) o

This produces no force in the z-direction (pressure profile is antisymmetric) but of course a force
must be applied to the sphere to get it to move:

16 R 0
F, —?nuURlng+O(8 ) as 5— 0
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Turbulence

GENERAL NATURE OF TURBULENCE

In all the problems we have analyzed to date, the fluid elements travel along smooth predictable
trajectories. This state of affairs is called:

laminar flow - fluid elements travel along smooth deterministic trajectories

These trajectories are straight parallel lines for simple pipe flows. However, this is not the only
solution to the equations of motion. Consider the following experiment

Reynolds Experiment (1882) - inject a thin stream of dye into a fully developed flow in a pipe;
observe the dye downstream. (see S:37)

FIOW ; I T T
. 32 Waiar, upper: we . 4 s

Direction I, ke wile=o 1y B4 cmvs, Mi .5 = 10, pipe 1D 14w

 for laminar flow: dye stream appears as a straight colored thread

As the total flow rate of fluid in the pipe is increased, a sudden change in the appearance of the
dye stream occurs. The thread of dye becomes more radially mixed with the fluid and, far
enough downstream, its outline becomes blurred.

+ for turbulent flow: irregular radial fluctuations of dye thread

Using a pipe with a sharp-edge entrance, Reynolds determined the critical flow rate for a large
number of fluids and pipe sizes. He found in all cases, the transition occurred at a critical value
of a dimensionless group:

p<‘72 >D

v
e ——
Re

=2300£200
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where <\72> is the cross-sectional average velocity (= volumetric flowrate / pipe area). Today, we
know this dimensionless group as the Reynolds number.

origin of turbulence - instability of laminar-flow solution to N-S eqns
instability - small perturbations (caused by vibration, etc.) grow rather than decay with time.

That the laminar-flow solution is metastable for Re>2100 can be seen from Reynolds experiment
performed with a pipe in which disturbances are minimized:

e reduce vibration
e fluid enters pipe smoothly
e smooth pipe wall

Under such conditions, laminar flow can be seem to persist up to Re = 104, However, just
adding some vibrations (disturbance) can reduce the critical Re to 2100. The onset of turbulence
causes a number of profound changes in the nature of the flow:

e dye thread breaks up -- streamlines appear contorted and random
¢ sudden increase in Ap/L

e local v, fluctuates wildly with time

e similar fluctuations occur in v, and v

As a consequence of these changes, no simplification of the N-S equation is possible: v, vy, v,
and p all depend on r, 6, z and ¢.

TURBULENT FLOW IN PIPES

Velocity profiles are often measured with a pitot tube, which is a device with a very slow
response time. As a consequence of this slow response time, the rapid fluctuations with time
tend to average out. In the descriptions which follow, we will partition the instantaneous velocity
v into a time-averaged value Vv (denoted by the overbar) and a fluctuation v’ (denoted by the
prime):

vV=vV+V'

Cross-sectional area averages will be denoted by enclosing the symbol inside carets:
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R
JVZ(F)2nrdr
—\_0 _ 0
<VZ>_ R _nRZ
J2nrdr
0

In laminar flow, the velocity profile for fully developed flow is parabolic in shape with a
maximum velocity occurring at the pipe center
that is twice the cross-sectional mean velocity:

o Re =100
In turbulent flow, the time-averaged velocity ;
profile has a flatter shape. Indeed as the Reynolds Re - £o 000
number increases the shape changes such that the v, —
profile becomes even flatter. The profile can be fit (v,) 1-- - e —-
to the following empirical equation: . |
Un cerﬁlepr?ine i
_ _ R-r |
v, (r) = Yz, max (Tj y \

k—/d pipe walls \_j

where the value of the parameter n depends on Re:

Re = 4.0x103  23x104  1.1x105  1.1x106 2.0x106 3.2x100
n= 6.0 6.6 7.0 8.8 10 10
Vinax! <Vz> 1.26 1.24 1.22 1.18 1.16 1.16

The reduction in the ratio of maximum to
average velocity reflects the flattening of
the profile as n becomes larger. Of course, |
this equation gives a “kink” in the profile . 08
at =0 and predicts infinite slope at /=R, SO Vz,max

it shouldn’t be applied too close to either / nnnd
boundary although it gives a reasonable fit 06 F‘f e BET T |

i

1.0

~

otherwise.

How big are the fluctuations relative to the
maximum velocity? Instantaneous speeds /7 i
can be obtained for air flows using a hot- 024 - | |
wire anemometer. This is simply a very - | | —
thin wire which is electrically heated 0.0 || : I P N S P
above ambient by passing a current 0.0 02 04 0.6 08 1.0
through it. As a result of electrical heating R-r
(I2R) the temperature of the wire will R
depend on the heat transfer coefficient,

which in turn depends on the velocity of
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flow over the wire:
v T->h T > Tyipe-Tair

It’s easy to determine the temperature of the wire from its electrical resistance, which generally
increases with temperature. The reason for making the wire very thin is to decrease its thermal
inertia. Very thin wires can respond rapidly to the rapid

turbulent fluctuations in v,.

Anyway, the instantaneous speed can be measured. Then the
time-averaged speed and the fluctuations can be calculated.
The root-mean-square fluctuations depend on radial position,
as shown at right. Typically the axial fluctuations are less
than 10% of the maximum velocity whereas the radial
fluctuations are perhaps half of the axial.

Note that the fluctuations tend to vanish at the wall. This is a
result of no-slip (applies even in turbulent flow) which
requires that the instantaneous velocity must vanish at the
wall for all time, which implies that the time average and the instantaneous fluctuations must
vanish.

TIME-SMOOTHING

As we will see shortly, these fluctuations profoundly increase transport rates for heat, mass, and
momentum. However, in some applications, we would be content to predict the time-averaged
velocity profile. So let’s try to time-average the Navier-Stokes equations with the hope that the
fluctuations will average to zero.

First, we need to define what we mean by a time-averaged quantity. Suppose we have some
property like velocity or pressure which fluctuates
with time:

s =s(t)

We can average over some time interval of half width
At:

(1) = 1 rt+As Mt
s=5 [0 s

We allow that the time-averaged quantity might still
depend on time, but we have averaged out the rapid
fluctuations due to turbulence.

Now let’s define another quantity called the fluctuation about the mean:
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s'(t)=s(t)—5(¢)

TIME-SMOOTHING OF CONTINUITY EQUATION

The simple functional form of our experimentally measured velocity profile -- v, (r) -- is exactly

the same as for laminar flow. This suggests, that if we are willing to settle for the time-averaged
velocity profile, then I might be able to get the result from the NSE. Let’s try to time-smooth the
equation of motion and see what happens. We will start with the equation of continuity for an
incompressible flow:

V-v=0
Integrating the continuity equation for an incompressible fluid and dividing by 2A¢:

A A
LA g = L1 Yoar = 0
2AL Jt—At 2AL Jt—At

Thus the right-hand-side of the equation remains zero. Let’s take a closer look at the left-hand
side. Interchanging the order of differentiation and integration:

t+ At t+ At
Lo v-va’z'zv-{Lj+ vdt'}:V-V
2At YAt 2AL Jt—At

Substituting this result for the left-hand side of the continuity equation, leaves:
V-v=0

Thus the form of the continuity equation has not changed as a result of time-smoothing.

TIME-SMOOTHING OF THE NAVIER-STOKES EQUATION

Encouraged by this simplification, we try to time-smooth the Navier-Stokes equation:

p%+pv-VV:—Vp+uV2V+pg

After integrating both sides with respect to time and dividing by 2A¢, we can break the integral of
the sum into the sum of the integrals. Most of the terms transform in much the same way as the
left-hand side of the continuity equation. The result is

p%+pv-VV:—Vﬁ+uV2V+pg

With a little additional massaging (see Whitaker), the remaining term can be expressed as
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pv-Vv = pV-VV+V-(pW)

If the second term on the right-hand side were zero, then NSE after time-smoothing would have
exactly the same form as before time-smoothing. Unfortunately, this term is not zero. Although
the average of the fluctuations is zero, the average of the square of the fluctuations is not zero.
So this second term cannot be dropped. Thus the time-smoothed Navier-Stokes equation
becomes:

pg—:+pV-VV=—Vﬁ+pV2V+pg+V-z(t)

where z(t) = —pw

has units of stress or pressure and is called the Reynold’s stress. Sometimes it is also called the
turbulent stress to emphasize that arises from the turbulent nature of the flow. The existence of
this new term is why even the time-averaged velocity profile inside the pipe is different from that
during laminar flow. Of course, our empirical equation for the v, () is also different from that

for laminar flow.

Although we don’t yet know how to evaluate this Reynolds stress, we can add it to the viscous
stress and obtain a differential equation for their sum which we can solve for the simple case of
pipe flow. Here’s how we do it. First, recall that for incompressible Newtonian fluid, the stress
is related to the rate of strain by Newton’s law of viscosity. Time smoothing this constitutive
equation yields:

=1 v+ (V9)']
Taking the divergence: V.= uvz \

If we now make this substitution, NSE becomes

p§+pV-VV=—V[_)+V-f+pg+v-f(t)
ot = = (188)

:—Vﬁ+pg+V-z(T)

where T =747

is the total stress, i.e., the sum of the time-averaged viscous stress and the Reynolds stress. Thus
we see that the Reynolds stress appears in the equations of motion in the same manner as the
viscous stress. Indeed the sum of the two contributions plays the same role in turbulent flows
that the viscous friction played in laminar flow.
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ANALYSIS OF TURBULENT FLOW IN PIPES

We can make the same assumptions (i.e. the same guess) about the functional form of the time-
averaged velocity and pressure profile in turbulent flow that we made for laminar flow: we will
assume that the time-averaged velocity profile is axisymmetric (vg=0, 0/06=0) and fully
developed (6/6z=0).

where P is the time-averaged dynamic pressure. This form of this equation was obtained using
the tables in BSL (top half of p85, eqn C), after replacing the instantaneous quantities by their
time averages, except that the instantaneous viscous stresses t has been replaced by (minus) the
total stress (1), Expecting the time-averaged flow to be axisymmetric (6/06 = 0) and fully
developed (0/0z = 0, except for pressure), the last two terms in this equation can be dropped and
the second term is a function of 7 only. This leaves us with the same equation we had for laminar
flow: a function of 7 only equal to a function of z only. The only way these two terms can sum to
zero for all  and z is if both equal a spatial constant:

dP _1d (7). AP
dz rdr

This implies that pressure P varies linearly with z. Solving for the total stress %§ZT ) by
integrating:

(189)

The integration constant ¢ was chosen to be zero to avoid having the stress unbounded at =0.
Now this is the total stress: the sum of the Reynolds stress

(0 _ B
Ty = —PVyVg
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and a viscous contribution from time-smoothing Newton’s law of viscosity:

N
Eelom

The latter can be determined by differentiating the time-averaged
velocity profile. If we subtract this from the total we can

determine ?SQ -- one of the components of the Reynolds stress

tensor. The result is shown in the figure at right. Notice that the
turbulent stress tends to vanish near the wall. This can be
explained by noting that at the wall, “no slip” between the fluid
and the stationary wall requires that the instanteous velocity, as
well as its time average, must be zero:

v, =\72=03vé=03?£? =—pv,v. =0

In terms of the relative importance of these two contributions to the total, one can define three
regions:

1. turbulent core: t(0>>1. This covers most of the cross section of the pipe.

2. laminar sublayer: 1)<<t. Very near the wall, the fluctuations must vanish (along with
the Reynolds stress) but the viscous stress are largest.

3. transition zone: 10~t. Neither completely dominates the other.

When applied to the situation of fully developed pipe flows, continuity is automatically satisfied
and the time-smoothed Navier-Stokes equations yields only one equation in 2 unknowns:

2 unknowns: v,(r) and pv,v]
Clearly another relationship is needed to complete the model. This missing relationship is the
constitutive equation relating the Reynolds stress to the time-smoothed velocity profile. One

might be tempted to define a quantity like the viscosity to relate stress to the time-averaged
velocity.

] dav.
Tg) ZM(t) d_rz

But if you define the “turbulent viscosity” this way, its value turns out to depend strongly on
position.

() =100 near pipe centerline
0 at pipe wall
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So unlike the usual viscosity, u(t ) is not a material property (since it depends on position rather
than just the material).

PRANDTL’S MIXING LENGTH THEORY

The first successful constitutive equation for turbulence was posed by Prandtl in 1925. Prandtl
imagined that the fluctuations in instantaneous fluid velocity at some fixed point were caused by
eddies of fluid which migrate across the flow from regions having higher or lower time-averaged
velocity.

eddy - a packet of fluid (much larger than a fluid element) which can undergo random migration
across streamlines of the time-smoothed velocity field.

These eddies have a longitudinal velocity which corresponds to the time-average velocity at their
previous location.

A
As this eddy moves across the streamlines, it .
gradually exchanges momentum with the Y
surrounding fluid which is moving at a different eddy migrating
longitudinal velocity. But this exchange does not —_— randomly
occur instantaneously. The eddy retains its _ > across flow
iginal velocity for a brief period of time. We '
original velocity for a brief period of time. We
might call this the mixing time. During this time,
>

the eddy migrates laterally a distance / called the V; o)
mixing length:

mixing length (/) - characteristic distance an eddy

migrates normal to the main flow before mixing

Although momentum exchange between eddies occurs continuously in actual turbulent flow,
Prandtl imagined that a migrating eddy keeps all of its original velocity until it migrated a
distance / and then suddenly it exchanges it. This is like molecules of a gas retaining its
momentum until it collides with another gas molecule, which causes a sudden exchange of
momentum. Indeed, you might find it helpful to think of the mixing length as being the analogue
of mean-free-path in the kinetic theory of gases.

Recall that:

mean-free path - average distance a gas molecule
travels before colliding with another gas molecule.

y+l y BV x( y+ l)
Now suppose we are monitoring the instantaneous ¢
velocity at a distance y from the wall when an eddy YV | " —>
drifts into our location from y+I/. Because this
migrating eddy has a higher velocity than the average
fluid at y, we will observe an positive fluctuation

vo
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when the eddy arrives. To estimate the magnitude of the fluctuation, we can expand the time-
smoothed velocity profile in Taylor series about y=y:

_ _ dv
ey D= v )+

2_
1d™e| o

[+
2 dx2
y

y

Assuming that / is sufficiently small that we can truncate this series without introducing
significant error:

_ _ dv
(v’lc)above =vy(y+D)=-vi(y) =!I dx

where the subscript “above” is appended to remind us that is the fluctuation resulting from an
eddy migrating from above. At some later time, another eddy might migrate to our location from
below, producing a negative fluctuation in velocity:

v,
dy

(VJ,C)below = Vx(y_l)_‘_’x(J’) ~ —l

Of course the average fluctuation is zero: Z = 0, but the average of the squares is not:

— \2
2 1 2 2 2( dvy
vi)T = 1l(vy + (V4 [ — 190
( x) 2{( x)above ( )below } ( dy j ( )
Now let’s turn our attention to vj,. This is related to how fast the eddies migrate, and the sign
depends on whether they are migrating upward or
downward.
If the eddy migrates from above, it t bovl)
¢ eddy migrates from above, it represents a /<0 >0
negative y-fluctuation (it is moving in the -y V>0 )
direction). Such an eddy will have a greater x- A
velocity than the fluid receiving it, consequently —
generating a positive x-fluctuation: > \
b ’ b b -_>
vy <O v >0 = vy, <0 X

On the other hand, if the eddy migrates from below,
it represents a positive y-fluctuation but has less x-
velocity than the fluid receiving it, generating a negative x-fluctuation:

vy 205w’ <0 > vy, <0

Finally, if there is no vertical migration of eddies, there is no reason for the x-velocity to
fluctuate:
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vy =0 o> v'=0

These three statements suggest that the y-fluctuations are proportional to the x-fluctuations, with
a negative proportionality constant:

Vy’ ~ '(X,Vx'
where o>0. Alternatively, we can write:
Vx IVy ! = 'a(Vx ')2

Time averaging and then substituting [ 190)}

— dv 2
Vi) = —oc(v)’c)2 e (—’C)

Absorbing the unknown o into the (still unknown) mixing length parameter:

S v\
) = —pviv] =p12(d—;] (191)

Comparing this result with Newton’s law of viscosity:
_ av,

Tyy = H dy

we could conclude that an apparent turbulent viscosity is given by:

vy

0 = 12
[ p dy

Of course, this viscosity is not a true fluid property, because it depends strongly on the velocity
profile.

For this theory to be useful, we need a value for the “mixing length” /. There are two properties
of / which we can easily deduce. First of all, / was defined as the distance normal to the wall
which the eddy travels before becoming mixed with local fluid. Clearly, this mixing must occur
before the eddy “bumps” into the wall, so:

Property #1: [<y

where y is the distance from the wall. Secondly, we know from no-slip that the fluctuations all
vanish at the wall. Consequently, the Reynolds stress must vanish at the wall. Since the velocity
gradient does not vanish, we must require that the mixing length vanish at the wall:
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Property #2: =0 at y=0

If it’s not a constant, the next simplest functional relationship between / and y which satisfies
both these properties is:

[=ay (192)

where a is some constant and 0<a<l.

PRANDTL’S “UNIVERSAL” VELOCITY PROFILE

The velocity profile in turbulent flow is essentially flat, except near the wall where the velocity
gradients are steep. Focussing attention on this region near the flow, Prandtl tried to deduce the
form for the velocity profile in turbulent flow. Recall from[(189) that in pipe flow, the total
stress varies linearly from 0 at the center line to a maximum value at the wall:

—(T 1 AP r
7D == =T, <0 (193)
where we have defined 10 = -(1/2)(R/L)AP > 0

which represents the stress on the wall. In the “turbulent core”, the Reynolds stress dominates

the “laminar” stress; then substituting through

) <D

2
p L2 (WJ mo[ —lj (194)
a2 dy R
or a dvy _ T—O\/(l—l)—v*\/( —Z)
dy p R R
——

The general solution to this 1% order ODE is

+ +
v ) = e+ 2 =2 Zann ! 1= 2 (195)
a RYT a RT

where C is the integration constant, v* is called the friction velocity and where we have
introduced dimensionless variables:
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| =ay (192)

where a is some constant and O<a<1.

PRANDTL’S* UNIVERSAL” VELOCITY PROFILE

The velocity profile in turbulent flow is essentidly flat, exoep;l the wal where the vdocity gradients
are deep.  Focussing attention on this region near the flow, Prandtl tried to deduce the form for the
veocity profilein turbulent flow. Recdl from (189) that in pipe flow, the total stress varies linearly from
0 a the center line to amaximum vaue & thewal:

1DP r
't'(T) =-—_— r=thp—<0 193
rz 2 L 0 R ( )
where we have defined to° -(V2)(RL)DP >0

which represents the stress on the wall. In the “turbulent core’, the Reynolds stress dominates the
“laminar” gtress; then subgtituting (191) through (193):

’[_g(ty) » ,[-g)

2
aav, 0 o)
r12 &=X2 »tgd-2L2 (194)
a5;,28 Y @ € Rp [ 1]
. - B
dy r R R
V*

The generd solution to this 1% order ODE is

2 T2 "
viy*)=c+ 2 1o L. Srant 1- Lo (195)
al” r* a R

where C is the integration congtant, v* is caled the friction velocity and where we have introduced
dimensonless variables:

<
I
<[

+ V¥ v*

=—y ad R =—
=5 n
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Near thewadl (i.e. for y<<Ror y*<<R"), we can smplify (195):

Spring, 2001

+ +
for y*<<R*: 1- Y _=1. Y _+0(y*?) (196)
R 2R
[ ] -
tanh? [1- Y = Ljn2R +0o(y*)
R+ 2 y+
Dropping the higher-order terms.
+( +\_ 2- Inl4rR") 1
Vv (y ):—+C+—Iny (197)
a a
C
where c isa collection of constants.
This result can be derived more eadly by sarting over with asmplified (194):
+
for y<<R ay&:v* or AV 1y _1dy (198)
d YL oay ay”
dv*
. . =+ 1 -+
which integrates to v =glny +C
where ¢ is some integration congant. When
plotted on semi-log coordinates, experimental T T T sz
velocity profiles do indeed show a linear . L '
regi ich extends over a couple of 5@ “
decades of y* vaues - —
T ®1 i i
Moreover, the dope and intercept of this L Re-smxw® |

draight line dont seem to depend on the
Reynolds number. Indeed, the dope and

- E. ¢ = ﬂxmﬂ
; vo - 4105 Nikuradse

e =23cf0% ‘

Ceo = 1wi0f) |

intercept also don't seem to depend on the . hﬁij:fw: _‘

shape of the conduit. Rectangular conduits - L..ﬁ;‘"___j. -

yidds the same vdocity profile on these { o
e

coordinates. This is cdled Prandtl’s
Universal Velocity Profile

yt>26: [ ] vF =25Iny* +55
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which applies for y*>26 (thd turblilent core). This coefficient of Iny* corresponds to a=0.4. so (192)
becomes.

[ ]
[ ] | =04y
Recall that we reasoned that a had to be in the range of 0 to 1 to be physicaly redidtic.

Inthe laminar sublayer, Reynolds stress can be totally neglected, leaving just viscous stress. This
closethewall, the total stressis practically a congtant equd to the wall shear stresst (y;

Tyy » T2
y<<R oy _
m——-= to
dy

Then we can integrate the above ODE for v, , subject to v, = 0 at y=0 (i.e. no dip):

[ ]

Dividing both Sdes by v* we can make the result dimensionless:
y+<5: vi=y® (200)

which aoplieEpLQeer+<5 (the laminar sublayer). Of course (199) dso does not gpply near the
center of the incethey* » Rt there, whereas (199) was derived by assuming that y* << R (see
(196)).

PRANDTL’SUNIVERSAL LAW OF FRICTION

Let's try to figure deduce the andog of Poisuelles Formula (see page 87) for turbulent flow.
Poisuellles Formulais the relationship between volumetric flowrate through the pipe and pressure drop.
Volumetric flowrate Q is caculated by integrating the axia component of fluid velocity of the cross
section of the pipe:

<\72> :p% —%J' rvz(r)dr

Now we are going to use (199) for the velocity profile, athough we assumed in (198) that y<<R (where
y=Rr).
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Although the derivation of (199) assumed that "y B B e S At e
we are very close to the wall (ft<<R*, see 134-—] I | S P
(196)), (199) works remarkly well right out , ] |
to the centerline y*=R*. The plot & right ¢« [
shows the velodity profiles (with different wall 77
roughness on the wadls) compared with 10
predictions based on (199). The ordinateis o L
— — — x © smaoth
M =t (R*)- vt ( & sir d \ gesor | |
v 7 o 126 |
:2.5(|nR+-|ny+):2.5|n- 61 . Rl N T
5l e . ) _
= 2.5InE =2.5In R PAEERN ‘
y R-r ]®\§ |
3 ORI . . — — —
1 TR |
Note that (199) predicts an infinite velocity- \\!‘%\ 1
difference a y=0, wheress the actual velocity T BB S
must be finite. Of course, (199) does not ) o P - 0?“»;{}
apply right up to the wall because very near ' ' ' oy
the wal the Reynolds dtresses are not R
dominant.
Subdtituting (199) and integrating:
(V2)=v* [2.5|n(" nR) + 175} (201)

Now the friction velocity can be related to the friction factor, whose usua definition can be expressed
interms of the varidblesin thisandyss.

Thus

Likewise, the usud definition of Reynolds number yieds
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g 2(vz)R
n
v*R_<\_/2>R, v* _Reyf
Ths IR (AR
R¢/2 TE

Relating v* to f and <\_/z> to Re, (201) can be written as:

if =177In(Re[T ) - 060
\

1
or F = 4.07'0910(R€«/T) - 060

which fits experimenta data remarkable well. A dightly better fit can be obtained by adjusting the
coefficients:

1
NG 40logyo(Rey/f ) - 040 (202)

which is cdled Prandtl’s (universal) law of friction. It gpplies virtudly over the entire range of
Reynolds numbers normally encountered for turbulent pipe flow: 2100 < Re < 5x106.

- | — —re————— L — i
T T T AT
X ! i | I*-__)Ik ‘|I" L !
9#— A «1— - | e e
! 1 | : R | l I
H 1 I : z \l‘: ! | 1
g [ R |, : ._i_l
1 : I | . ' ' '
? | & | \ % LA = Nikuradse -
if 7 R S S - ——— ¢ Sophond Soheter - |
. . L : i | | o Nussetf \ |
. : | : s Ombeck |
- — ' i o L o dakob and Erk
: 3 !_ | I| | v Stantonand Panne! |
| ] : i | Schitler and Hermamn |
55 ; — T i~ i |71
L \ ] . | |
“ S N S i
28 30 32 3% I8 A6 AP W2 wd AE 48 AP ARE 54
log(Re\)
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Electr ohydrodynamics

ORIGIN OF CHARGE ||||

Nearly al particles, bubbles or drops in water are charged.
We know this because when you apply an eectric field across
water containing a particle, bubble or drop, you can observe it

to move. Anexampleisthe red blood cdl experiment &t right. _‘ -0 '_ med
. | biood
Interface between the two immiscible phases of the particle and 1 el

water acquires charge by a number of mechanisms:
> adsorption of ions (e.g. SDS and FeOH*2)
» disolution of ions from ionic solids (eg. Agl)
» dissociation of acidic or basic Stes on interface
—COOH ® —COO- + H*
—NH, + H* ® —NHg*

Regardiess of how the surface acquires its charge, overal eectroneutraity must be obeyed. So the
solution must contain an excess of counterions. For example, if the surface acquires its charged by the
dissociation of COOH groups at the interface, the COO- remaining & the interface gives the interface a
negative charge, but the H* joins the rest of the ions in the agueous solution, thereby lending it a net
positive charge.

Counterions would experience an dectrogatic attraction for the surface which tends to pile up the ions
next to the interface. On the other hand, the ions undergo diffuson (Brownian mation) which tends to
disperse them uniformly throughout the phase. At equilibrium, a baance is achieved between these two
opposing tendencies. In this equilibrium ate, a diffuse
cloud of counter-ions is formed next to the charged

interface. | eounteriens

double layer - layer of charged fixed on interface +
diffuse cloud of counter-ions.

ion
concentrition

Even though there are equa concentrations of postive : e

and negative ions far from the surface, this is not true , >

ingde the counterion cloud. Huid dements indde the diffuse | distance
cloud iram interface
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cloud bear a net charge. Just like we define the mass per volume to be the dendty of the fluid, we can
define

r o(X,t) = locd charge dengity (charge/volume)
Globd eectroneutrdity requires.

¥

] S+Ire(y)dy:0

0

s = surface charge density (charge/areq)

[ ]

Gouy-CHAPMAN M ODEL OF DOUBLE LAYER

Let's try to quantify this description. In particular, we would like to know how thick this cloud is.
Because of the charge on the interface, ionsfed aeectrodatic force. The force per unit chargeis called
the electric field:

E(x) = ectric field (force/charge)
Like gravity, this vector fidd is conservative, thus there must exist an scalar potentid, y (x) such that:

E=-Ry (203)

Like the gravitationa potentid, the minus sgn is included by convention. y is cdled the electrostatic
potential .

y [=] volts (energy/charge)

In thermodynamics, we learn thet the criteria for phase equilibrium is equdity of chemical potential m
for each chemica speciesi in each phase. For anided solution, recall that changesin chemica potentid
at constant temperature and pressureis given by

(M] _KT or (dm); , =kTdIng (204)
6 Jrp G ’

where KT is the therma energy possessed by every ion or molecule and m is the chemical energy per

ion. When the species is charged, we must add an eectrica contribution to the chemica energy to
obtain the electrochemical potential of each species.

electricd potentia energy: zey
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where z is the number of ementa charges per unit ion (including sgn) and e (>0) is the magnitude of
the dementa charge (on proton); thus ze is the charge on one ion. At equilibrium, ionic species
digribute themsdves in an eectric fidd such that their eectrochemica potentid is congant everywhere:

e

n°(x) = m(x) + z ey (x) = const (205)

For example, diffusion of nonelectrolytes (i.e. z = 0) takes place so that m is congtant throughout the
solution, which means that the concentration ¢; is uniform at equilibrium. If the electrodtetic potentia
varies from one location to the next, the concentration of charged species will dso not be uniform.
(205) can be re-written in differentid form as

dm® =0=dm +zedy
After subgtituting (204), we have kTding +zedy =0

which relates changes in ion concentration to changes in potentid. This can be integrated to obtain
Boltzmann's Equation relating the local ion concentration to the loca dectrogtatic potentia

G (x)= Aexp{- %T(X)}

where A is some integration congtant. In our problem, we expect the ion concentration to depend only
ony and we expect that the ionic concentration will gpproach the bulk vaue cjy a some distance from
the charged interface. For this to happen, the eectrogtatic potentia must tend to some constant (say
y®0asy®R ¥)orE® O:

asy® ¥: CG® c¥,y® 0

To stisfy these boundary conditions, Boltzmann's equation can be rewritten as

i () = ciy exp[- %T(y)} (206)

Soif | knew they (y), | could calculate the concentration profile. But dasy (y) is ill unknown. | need
another equation. The extra equation is provided by Coulomb’s law of dectrodatics. If | knew the
digtribution of charges within a system, | could caculate the force on them using Columb's law. For a
continuum, Coulomb’s law can be written as:

N-E=—r, or I§I2y:-4—:re (207)

where e is another materia property caled the electric permittivity of the medium between the ions
(e.g. the water):
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2
evacuum = 11137 10710 NCO—‘:'nZ

|:| ewater = 78 €yacuum

This equation is cdled Poisson's Equation. The charge densty of the fluid arises from the charge
born by each ion. Adding up the charges from each species i, then subgtituting Boltzman's equetion,
gives

ziey (y)}

re(¥) = zec(y) = 4 zeciy exp[-
i | | - | | kT

Specia Case: symmetric binary dectrolyte, which means there are only two different species of ions and
they have the same magnitude of charge:

2,=-2=12
Ciy =Cy =Cy

Then Boltzmann's equation can be used to cdculate the charge dengity:

Z Z
re(y) = z.€c.y eXp|:- ;'(_T_y :l+ Z €C.y eXp|:‘ k—?:l

= oA &= inh| 22X
= ZeCy [exp( s J exp(+ s ﬂ 27eCy smh( T J

Substituting this into Poisson's equation, we get:

(208)

2
dy _ 8pecy sinh(zeyj
dy? e KT

The argument of the snh must be dimensonless, 0 let’s use this combinaion to define a new

di merﬁ potentiad

v o2
KT

We can make the y on the left-hand sde dimensionless by multiplying both sdes by ze/kT. Then we
have

— =k?sinhY (209)
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_ 8p22e20¥ 1

where k? [=]
KT om?2

Eqg. (209) isanonlinear ODE. Despite itsinnoccuous appearance, it is much more difficult to solve than
linear equations. However, aparticular solution is possble:

subject to: Y =Ygaty=0
Y =0at y=¥
Y
tanh[ﬁ} = tanh[ﬁ) e kY (210)
4 4
which is cdled the Gouy-Chapman model for the double layer. In the specid case in which the
surface potentid is small, these expressons smplify to:

IV o| <<kT/zey(y) = yo exp(-ky) and

Culy) = o1 720 6

3

cohechL

Clearly k is asociated with the thickness of the
diffusecloud. k-1 iscaled the Debye length:

iom

k1=10%m=1m for ¢y =101M

x — distance

dill _— .
This provides some idea of the thickness of the L:ll’.}lu:f [rom interface

charge cloud.

k1=106m=1mm for ¢y =10'M

ELECTROSTATIC BODY FORCES

Since the fluid insde the diffuse cloud is charged,

_ _ (ze K
from (208): re(y) = - 2zecy smh( k'I¥ j » - 2Z6Cy Zz_o e Y

%,_/
zey
KT

»

any dectric fidd in the fluid will exert a force on the fluid dements. This body force needs to be
included in the Navier-Stokes equations.

electrogdtatic body forcefvolume =r E
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which is andogous to the body force exerted by gravity:

gravitationa body forcelvolume=r g
Including eectrogtatics, but neglecting gravity, the Navier-Stokes equation becomes:
r Dv/Dt = niN2v - Np +r E

In the Gouy-Chagpman model described in the previous section, the fluid is stagnant. At hydrostatic
equilibrium, any dectric fied gpplied to a charged fluid eement will lead to a pressure gradient:

v=0: Np=rgE

To see how large the pressure gradient is, let’s return to the Gouy-Chapman mode where the dectric
fidd is oriented normd to the charged surface i.e. y = y(y). Then the pressure gradient must dso be
normd to thewall so that p = p(y). Hydrostatic equilibrium requires

9p_ reEy = [ 27eCy sinh[ﬂﬂ[- d_yj (211)

where the second equdity results from subgtituting (122) and (203). The right-hand side turns out to be
an exact differentia, so that the equation can be re-written as

dp _ Cy kTi(coshﬂ)
dy dy KT

Multiplying both sides by dy and integrating from y=y to y=¥:

p(y) y=y
¥
J'dp =cy kT J' d(coshﬂj =Cy kT[coshzey—(y) - coshi()
; yoy KT KT KT
y =

p(y)- py =Cy kT{cosh[%_ﬁy)} - 1}

The lagt sep involves subgtituting y (¥ )=0 and remembering that cosh(0)=1. Y ou might aso recdl that
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Xy X 1 forx=0
COShXO i: 4
>1 forxt O D

2

Thus the pressure indde the cloud is dways greater than cosh(x) 21 -
the pressure in the bulk solution outsde the cloud. Thisis 1
because the diffuse cloud is dways oppositely charged

compared to the surface, so the cloud is dso being pulled 0
by eectrogtatic forces toward the surface — just like X
gravity dways pulls us downward.

ELECTROKINETIC PHENOMENA

So far in our discusson, there has been no fluid motion. But snce the fluid ingde the diffuse doud is
charged, we can exert a force on it by applying an

electric field tangent to the surface. e E
Consider again the digtribution of ions near a charged / - > @
interface. The solution is not dectricaly neutrd. So if @ } - &
an electric field is applied tangent to the surface, the - A5 —— @~~~ —~__p dF ¢
fluid will experience an dectrogtatic body force: o D
G @ &P &
dFs = (dQ)E = (r (dV)E 0060666066
f e dFS -—

where dq is the net charge on a fluid dement having [ ]

volumedV. The solid is oppositely charged, so it feds
aforcein the opposite direction. Consequently, at Steady state, we can expect the fluid to move relive
to the solid, or vice versa.

At least two phenomena are associated with with the relative motion generated by this externdly applied
electrostatic force:

electrophoresis- migration of charged particles through an otherwise quiescent fluid
electro-osmosis - flow of fluid through a porous solid bearing a surface charge

In both cases, rdative motion between the fluid and the solid arises when an dectric fidd is gpplied
externaly. Conversdy, forcing afluid to move tangent to a charged interface generates an dectric fidd:

sedimentation potential - the eectrica potentid (gradient) which arises during sedimentation
of charged partidlesin agravitationd field

streaming potential - the eectrical potentid (gradient) which arises during flow of fluid
through a porous solid which bears a surface charge
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These four phenomena depend on the magnitude of the surface charge. Measurements of these induced
velocities or induced potentials are the most commonly used techniques for determination of surface
charge.

SMOLUCHOWSKI'SANALYSIS(CA. 1918) Y 5E

Condder an infinite plate in contact with an dectrolyte
solution.  Suppose the plate bears a uniform surface charge
density and we somehow externdly gpply an dectric fidd E, >
tangent to the surface in the +x direction. Let's try to find the
veocity profile v induced by this dectric fied.

continuity: N-v=0
NSE: r Dv/Dt = ni2v - Np +r E (212)

From the arguments above, we expect the fluid to move in the direction of the gpplied dectrostatic
force. The smplest solution to this problem which has this property is

Vyx = Vy(¥), vy =V,=0

Since vy isindependent of X, this solution automatically satisfies the mass balance. Of course, we must
dlow v, to vary with y so we can meet the no-dip condition at the surface. Note that at Steady-state,
theinertid termsidenticaly vanish (like gravity-driven flow down inclined plane).

In the absence of flow, the ion concentration profiles are independent of x [see (206)]. Any flow
tangent to the plate is not expected to perturb the ion concentration profiles because tangentid flow just
replaces fluid having g partiqular concentration with fresh fluid having the same composition (aso v- N
= 0). This suggedts that the charge dendity profile is not perturbed by flow caused ether by an
externdly applied dectric field (tangent to plate) or by an externdly applied pressure gradient:

|:|:req

where we will use the superscipt “eq” to denote the equilibrium gtate of the variable (in the absence of
flow); we will dso use the prefix 'd" to denote perturbations from equilibrium (caused by the gpplied
dectric fidd). Thus the above statement is equivadent to

ror®@+dr whee dr =0

[ ]
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If we used two large verticd plate electrodes to apply the

electric fied, as shown & right, we would expect the dectric

fidd lines to be straight and tangent to the surface” and the
electroddic potentid to vary linearly with distance from one 70
electrode to the other. Thus the applied eectrostatic forces
should act perpendicular to the eectrodes and parallel to our >
surface.  In other words, the applied dectric fidd is =

expected to have only an x-component which independent of ' J\
x andy.

Spring, 2001

P

o
This expectation isfulfilled if the dectrodtatic potentid hasthe ,/ '
following form: :

anr
Ll R
y(xy) =y H(y)+dy(x) /

3 eq / \
L\PB:ITJ. +%i I / -VTF’-“Hn
E g -OE ﬁ \

/ -t
wherey € is the equilibrium potentid found in the absence of /’/ >5.—

an externdly applied dectric field or an gpplied pressure \____ ,-/
gradient (see previous section on “Gouy-Chapman modd”), T

and where dy is the perturbation from equilibrium caused by
the externally applied eectric fidld or pressure gradient. The pressure fidld suffers asmilar perturbation:

p(xy) = p*(y)+dp

dy Ty
but adding the superscript eq to termsin (211) yidds.

eq
The y-component of (212) yidds dp~" | Tiop _ r ey

™

- Y

subtracting: % =0 or dp=dp(x)
y

=r &

* Thefidd lines might not be straight near the entrance or exit of the capillary. Thus what follows gtrictly
only appliesin the centrd region away from the ends.
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Poisson's equation (207) can aso be written as.

]

but in the absence of flow, Poisson's equation requires
RS = 4P g
e
subtracting leaves N dE=0
or ddEy _ 0 or dE, = const (213)
dx
The x-component of (212) becomes
2 -
md_szHequX :@:const ~PL-Po_g (214)
dy 8, L-0

a(y) T
By applying a pressure gradient along the surface, we could “pump” the fluid past the solid, but this is
not the problem we want to address. Thus we set the pressure gradient to zero (pg = pp) so thereisno
pressure-driven flow. Boundary conditionsinclude

at x=0: Vx = Vxs
aBSX® ¥: dvy/dy® 0 or vy ® Vyg

where v, s isthe velocity of the solid and vy ¢ is the velocity of the bulk fluid outside the dloud. The first
condition isjugt “no-dip” which saysthat & the interface between the fluid and the solid the two take on
the same velocity. The second condition says there is no shear force being applied to the fluid outsde
the double layer.

To go further, we need to know how r €d changeswith y. Thisis provided by Poisson's equation (207):

_ ed?¥™
req(y)_-4—p dy?

(215)

2 2, €q
dexzidy dE,,

(215) into (214): o a o
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Since dE,=congt, this can essily beintegrated to [ ]

n{vx(y) - Vx,s] = 4_T)[y (y)-y eq(o)]dEX

-Z

Subgtituting y €d(y) from (210), we obtain a veocity profile like that
shown & right.

Let Vy(¥)° Vy f

Then the above equation can be rewritten as

€z

dE (216)
4pm

Vs~ Vx f =

where z° y®€q(0) - yed(¥)
iscdled the

zeta potential - the eectrogtatic potential drop across the diffuse part of the double layer.

ELECTRO-OSMOSISIN CYLINDRICAL
PORFS

Congder a circular hole drilled through a plate.
If this is submerged in an dectrolyte solution and
becomes charged, then applying a voltage across the

length of the pore will give rise to eectro-osmoss
through the hole.

If the pore radius a is mugt larger than the Debye
length k-1, then the velocity profile is essentidly plug
flow except indde the double layer where the velocity
suddenly drops to zero at the stationary solid surface
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for dl r outsde the double layer. Here we have gpplied (216), but dropped the prefix 'd" snce we
have no further need to distinguish between the equilibrium and the gpplied fidds.

Example A typicd vaue of the z potentid for aqueous solutions is about 50mV. Plugging in the vaues
of the other parameters

ez/4pm= 3.5 m/s per V/cm
asatypica vaueof v{/E,.

Consequently, the volumetric flowrate through the pore is just this velocity times the cross-sectiond
area

ka>>1: Q = paZ(ez/4pmE,

So a measurement of the flowrate for a known gpplied dectric field dlows us to determine the zeta
potential.

- \%(—1
) \

ELECTROPHORESIS

Congder a rigid sphere immersed in a quiescent dectrolyte ’\
solution. Somehow we gpply an dectric fidd of srength E. In this

. . . . AN
case the .$|Id moves while the fluid far from the sphere remains -
dationary: E
_>
Vxf=0

(216) predictsthat vy g is
ka>>1: U = (ez/4pmE

where ez/4pmis now cdled the electrophoretic mobility. This reault is cdled Smoluchowski's
Equation.

This gpplies for particles which are large compared to the Debye length. In the opposite limit of very
smal smdl particles, another smple expression can be obtained:

ka<<1: U = (3/2)(ez/4pmE

which is cdled Huckel's equation. For the most generd case of intermediate Sze, the problem is
much more complicated. A numerica solutionis required (see Fig. 9.11.3, p560 of Hunter).
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STREAMING POTENTIAL

So far in our discusson of eectrokinetic phenomena, we have consdered the motion of ether fluid
or solid that results from the gpplication of an ectric fied:

Electrophoress, Electro-osmosis. EL0O® U0

Now we would like to consder the inverse stuation in which relaive motion across a charged interface
generates an eectric fidd:

Streaming Potentid,
Sedimentation Potentidl: Uto® E!0

Condder the pressure-driven flow through a

k-l<<a<<lL
L
Owing to the applied pressure drop, we generate P > Py P
a fully developed parabolic veocity profile so
familiar for laminar flow. R W A e Y
z 1?] a
Q. (1Y
Vp(r) =2—1- | —
@i a v, WY

(v2)
I

The main ideais that this flow causes convection

of charge in the counterion cloud which tends to generate a current. However in the absence of
electrodes in the two reservoirs, there is no way to form a complete dectric circuit. So charge tendsto
pile up in the reservoir — pogitive charges on one side of the membrane and negative charges on the
other. Coulomb's law exerts a force on these charges which tends to restore dectroneutrality to the
system and to prevent any steady-date rate of accumulation of charge.

Clearly any steady-date eectrica current would eventudly lead to infinite charge separation and infinite
atractive for only way to avoid thisisto have zero current a steady state. This is achieved
by an dectric fiddld which spontaneoudy arises insde the bulk of the fluid which creates an eectricd
current equa but opposite to the convective current:

I'=lcony + letec =0 (217)

The dectrogtatic potentid drop associated with this induced eectric field is cdled the streaming
potential. To cdculateit, let's first caculate the current generated by convection of charges ingde the
cloud.
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If the charge cloud is very thin compared to the pore radius, then we
need to concentrate on the velocity profile right next to the wal. Here

the velocity profile becomes linear: —
for s<<a: VAS) =Gs
[ 1] ’ |
where S° a-r
and G=-adv/dr¥s—, y Z

The net current through any surface S (open or closed) is just the
integra of the norma component of the current dendty over the
surface:

I :Inida [=] amps
S

In our case, we choose a disk of radius awhose normal is pardld to the tube axis.

| | | | I = Jarv 2prdr » 2paj¥ r Gsds (218)
conv 0 z 0

Since r =0 for most of the fluid (except for r»a), we can goproximate this integra as shown by the
second equality above. Next, we subgtitute Poisson's equation (215) for the space charge dengty:

r = -(eldp) d2y eJ/ds? (219)

(219) into (218) and integrating by parts:

The potential drop across the counterion cloud isthe zeta potential . Thus
|conv = -(1/8p)eaxz (220)

According to (217), this convective contribution to the current must be baanced an eectrica
contribution from an induced dectric field. The relationship between current and dectric fidd is given
by Ohm'’s law for eectrolyte solutions, which takes the form of

ielec =KE

where K is caled the specific conductance of the solution. Integrating over the cross-section of the
tube:
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a 2
l doc = jo KE,2prdr » pa’KE, (221)

where E,=-1y/Miz=const=-Dy/L

isrequired by (213), where L isthe length of the cylindricd pore. (220) and (221) into (217):

Dy =ezLG2paK (222)
Findly, we can rdae G to the applied pressure T,
drop by performing a macroscopic force baance N
on the tube. Re_cogni zing that the shear sresson - o) ‘| 2a )
the tubewall t ., is nulv,/ds¥4—, = NG, #} 7 >
|
nG(2pal) = Dp(pad) /
a —— T
or LG=—Dp (223)
2m

. _ e
(223) into (222): Dy = e Dp

which is Smoluchowski's equation for streaming potentid.

Surface Tension

MOLECULAR ORIGIN

Many of the fascinating effects we saw in Trefethen's film are a consequence of surface tension.
What is surface tenson and where does it come from?

o

Surface tension is a consequence of intermolecular forces which  VIR) 4
are dways present.  The interaction between two molecules is
often represented by the Lennard-Jones 6-12 formula

—
Born vdw

This expression is partly based on theory and partly empiricd.
The inverse 6" power term represents van der Waals
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attraction which is based on a rigorous theory. The inverse 12th power term is empirica. It
represents Born repulsion which results from the overlap of eectron clouds. s is caled the collision
diameter — this is the center-to-center distance a which the electron clouds begin to overlap and a
sgnificant repulsion is experienced.As a first gpproximation, we can think of condensation of a liquid
from avgpor in terms of the molecules faling into this potential energy well:

vapor: R® ¥ Vygpor =0

liquid: R»Ryn=112s  Vjjq=-E

The heat of vaporization is goproximately the energy gained by fdling in thiswell:
Uyap » ENp

Thisis al only approximate because we have only considered two-body interactions. In a condensed
date, multi-body interactions must dso be consdered. The exisence of surface tenson can be
expected from the difference in energy between molecules located in the bulk of a liquid and molecules
located at surface between the liquid and its vapor.

Let's pick a molecule from the bulk of the liquid phase. On the yapor ~
average, it will be some average distance Ry, from its nearest =
neighbor. If there are 7, nearest neighbors, the energy of this  liguid ./<~jl J ‘11

typical molecule from the bulk liquid is

J——

/ \ i
(Zouli/DE N rl/ﬂ \
Coulk = (Goulk . @ .% =
\\.'__ ___,/j N -/JI
where the factor of 2 comes from assgning hdf of the energy of

interaction between a pair of atoms to each atom. For a hexagona
close-packed array:

Zyyk =12

Now consider a molecule which resdes a the interface between the liquid and the vapor. The same
basic formula can be written for the energy of this surface molecule:

esurf = (Zaurf2E

Except that the number of nearest neighbors will be sgnificantly less. Again for a hexagond close-
packed array:

Zgyrf=6
then esurt > (U2)epyik

Now e < O for attractive interactions, o:
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Sulk < €surf<0

Thus molecules located at the surface do not have as low an energy as moleculesin the bulk. So when
we caculate the free energy of the liquid, we should treat the surface molecules differently from the bulk
molecules. Indeed, it turns out that this contribution to the free energy of the system is proportiona to
the number of surface molecules, which in turn is proportiona to the surface area. The free energy per
unit areais caled the surface tension:
o=(%)
AJr P

BOUNDARY CONDITIONSFOR FLUID FLoOw
Surface tendon causes a number of effectsincluding:

makes homogeneous nuclegtion of bubbles virtudly impossble boiling is usudly from
heterogeneous nuclegtion

increases the vapor pressure of small drops for same T: Kelvin effect
capillary rise
determines the shape of drops and bubbles

These are dl hydrodatic effects; there is no fluid flow occuring. Since surface tenson depends on
temperaure, temperature gradients can gradients in surface tenson, which in turn can generate flow.
Since the origin of surface tenson is intermolecular forces, which are very short range (range is a few
Angstroms), surface tenson does not change the form of the basc equations of motion. Instead,
surface tension is manifested in the boundary conditions gpplied to those equations.

Recdl| that when surface tension effects are negligible, the genera boundary condition on stress was
given by

0. n-

-

| =n

-

Surface tenson makes both@ormd and tangentid components of sress continuous across an
interface. The more generd boundary condition is
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n (I,-I)) =n(Ng n)g- Ng (224)

]
where N, is cdled the surface divergence; it represents two of the three
terms in the usud divergence. By convention, n is pointing from phase |
into phase Il.  For ple, suppose we define a loca rectangular
Cartesan coordinate Sﬁ] such that the z-axisis normd to the interface:

n=e,
The usud divergenceis given by
N v = Tovy + vy + v,

The surface divergence does not include the term which represents the ,
derivative dong the norma

Ng n=qyny +qyny, ° -2H [=] nrt

This paticular surface divergence represents the curvature of the
interface, often denoted by H or J.

Example caculate the curvature of asphere of radiusr. ‘
Solution: the unit norma to a gphere in spherical coordinatesis
n=e: n=1, ng=n;=0

In this particular case, the norma is indegpendent of the norma coordinate r so that the surface
divergence is the same as the regular divergence:

Ng n=r2y,(22) = 2/r

Thus the curvature isinversely proportiond to the radius of the sphere.
Smilarly the surface gradient represents that part of the usua gradient which liesin the surface
Ng= Tegex + Nygey (225)
Suppose | dot both sides of (224) by the norma
T, - T, = -2Hg

Thus the norma component of the stress is discontinuous at a curved surface. In the particular case of
hydrogtatic equilibrium, there is no deviatoric contribution to the stress — just the hydrostatic pressure

hydrogtatic equil: p! - pll = -2Hg=2gr
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