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It is shown that the vector field decomposition method, namely, the Helmholtz Hodge decomposition, can also be
applied to analyze scalar optical fields that are ubiquitously present in interference and diffraction optics. A phase
gradient field that depicts the propagation and Poynting vector directions can hence be separated into solenoidal
and irrotational components. © 2012 Optical Society of America
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1. INTRODUCTION
Helmholtz Hodge decomposition (HHD) allows a vector field
that is defined in a region Ω on a bounded domain and is twice
continuously differentiable to be separated into the diver-
gence-free part (solenoidal) and the curl-free part (irrota-
tional) [1–9]. It has been used in the solution of many
problems in electromagnetism, MRI data analysis [6], and fluid
and smoke simulations [7]. HHD helps in representing the
homogeneous data explicitly and visualizing and extracting
the critical points like sources, sinks, and vortices. In optics,
it has been suggested for vector fields [8] that include polar-
ization and in-phase reconstruction problems to correct wave-
front distortions [9]. So far, there are no reports on the use of
HHD on scalar optical fields, which, per se, are manifest in the
diffraction and interference phenomenon.

Orbital angular momentum (OAM) in scalar optical fields is
related to its phase and amplitude distributions [10]. The
vectorial nature that is due to the polarization of the wave
is disregarded in such fields. We show the usefulness of the
HHD in analyzing all such fields, including the ones obtained
in interference optics where a single state of polarization is
assumed.

We first construct a phase gradient field ∇ϕ from a scalar
field [11,12] by using the relation

∇ϕ � Im�ψ�∇ψ �
I

; (1)

where ψ is a scalar field resulting from interference or diffrac-
tion and I � ψ�ψ is the intensity distribution.

∇ϕ points in the direction of the local propagation vector
that is normal to the phase contour surfaces. The phase gra-
dient fields in a singular beam can be seen to have a nonzero
curl [13–21]. Hence, the solenoidal part that is an explicit com-
ponent of HHD carries the circulating internal energy of the
field. The irrotational part is then devoid of singularities and
depicts the spreading of optical energy.

The HHD technique and the method adopted for decompo-
sition is addressed in the next section. Henceforth, the tech-
nique is applied on a spherical beam to verify the approach,
and then it is applied onto random fields in which both
positive and negative curvatures are added. In a spherical
wave, the transverse phase gradient has either a positive or

a negative divergence, while a random wavefront containing
optical vortices exhibits a rotational phase gradient. As a third
example, an interference field formed by the superposition of
plane waves in the generation of vortex lattices [22–24] is in-
vestigated. It is envisaged that the solenoidal part of singular
optical fields carries a higher degree of internal circulating en-
ergy and, hence, would yield better functionality when used
for applications as in tweezer traps, micromachines, and span-
ners. The irrotational term is devoid of any singularities and
can be used as a vortex free field, wherever required. We be-
lieve that this method will augment the flow visualization of
velocity, pressure and temperature using optical methods [25].

2. HELMHOLTZ HODGE DECOMPOSITION
The HHD is based on the Helmholtz theorem [26], which states
that a vector field F that is on a bounded domain V inR3 and is
twice continuously differentiable and whose divergence ∇ ·
F � b�r� and curl ∇ × F � c�r� are known can be [2–4]
segregated into components f 1 and f 2, determined by

F � f 1 � f 2 ⇒ ∇φ�∇ × A; (2)

where φ�r� and A�r� are scalar and vector potentials, respec-
tively, that can be obtained from Poisson’s equations [26]

φ�r� � 1
4π

Z
V

b�r�
r

dv0; (3)

A�r� � 1
4π

Z
V

c�r�
r

dv0: (4)

These potentials, φ�r� and A�r�, allow the field f to be segre-
gated into the curl-free and divergence-free components.

The boundary conditions imposed in HHD ensure a normal
boundary flow on the curl-free component and a tangential
flow on the divergence-free component [5]. Considering n̂ as
the outward normal to the boundary Ω, this implies that for a
unique decomposition

(a) the irrotational component f 1 is normal to the bound-
ary dΩ of Ω, i.e., f⃗ 1 × n̂ � 0, and
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(b) the solenoidal component f 2 is parallel to the boundary
dΩ of Ω, i.e., f⃗ 2 · n̂ � 0.

The method adopted [27] to solve the HHD problem in-
volves minimizing the errors in the terms that are constructed
from the initial guesses. f 1 and f 2 are considered as the initial
guesses for the curl-free and the divergence-free component
fields of a vector field f .

The error terms/residuals ‖∇ × f 1‖, ‖∇ · f 2‖ and ‖f 1�
f 2 − f‖ are then reduced to a minimum.

In a Cartesian coordinate system, the difference operator
operating on a scalar function, f , is defined as

df⃗ � ∂f x
∂x

x̂� ∂f y
∂y

ŷ� ∂f z
∂z

ẑ: (5)

Using finite difference approximation [27,28], the ∂ operator
can be written as a matrix given by

∂ � 1
2

2
6666664

0 −1 0 � � � 0

1 0 −1 . .
. ..

.

0 1 0 . .
.

0
..
. . .

. . .
. . .

.
−1

0 � � � 0 1 0

3
7777775
: (6)

This is true for 1D but for 3D it is expanded as [27]

∂x;3D � Im ⊗ Im ⊗ ∂x ≈ ∂x; (7)

where Im is an m ×m Identity matrix and⊗ is the Kronecker
delta product. Similarly,

∂y;3D � Im ⊗ ∂y ⊗ Im ≈ ∂y; (8)

∂z;3D � ∂z ⊗ Im ⊗ Im ≈ ∂z: (9)

The curl, in the Cartesian coordinate system, is written using
the finite difference operator matrix as

∇ × f �
2
4 x̂ ŷ ẑ

∂
∂x

∂
∂y

∂
∂z

f x f y f z

3
5 �

2
4 0 −∂z ∂y

∂z 0 −∂x
−∂y ∂x 0

3
5
2
4 f x
f y
f z

3
5: (10)

Similarly, for divergence,

∇ · f � ∂f x
∂x

� ∂f y
∂y

� ∂f z
∂z

�
h
∂x ∂y ∂z

i24 f x
f y
f z

3
5: (11)

Fig. 1. (Color online) HHD of a spherical beam with positive divergence. (a) Transverse (x-y plane) phase profile for a spherical beam with a
positive curvature. The smooth variation of color from green to white depicts the shape of the wavefront. The phase distribution has maxima at the
center and decreases toward the boundaries, rendering it a spherical wavefront with a positive divergence. (b) Phase gradient field lines of
the beam superimposed on the phase profile. (c) Flow lines of the solenoidal component of the Hodge decomposed field. Inset, magnified view
of the beam near the center. (d) Irrotational component with field lines diverging from the center.
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Thus, the HHD can then be summarized as

2
666666664

0 −∂z ∂y 0 0 0
∂z 0 −∂x 0 0 0
−∂y ∂x 0 0 0 0
0 0 0 ∂x ∂y ∂z
I 0 0 I 0 0
0 I 0 0 I 0
0 0 I 0 0 I

3
777777775

2
666666664

f 1x
f 1y
f 1z
f 2x
f 2y
f 2z

3
777777775

�

2
666666664

0
0
0
0
f x
f y
f z

3
777777775
: (12)

The boundary condition considered is that the fields tend to
go to zero at infinity. By applying the abovementioned bound-
ary conditions, the system of equations can be efficiently
solved. Equation (12) can be solved as an equation of the form
Px � Q where P represents

2
666666664

0 −∂z ∂y 0 0 0
∂z 0 −∂x 0 0 0
−∂y ∂x 0 0 0 0
0 0 0 ∂x ∂y ∂z
I 0 0 I 0 0
0 I 0 0 I 0
0 0 I 0 0 I

3
777777775
; while

2
666666664

f 1x
f 1y
f 1z
f 2x
f 2y
f 2z

3
777777775

and

2
666666664

0
0
0
0
f x
f y
f z

3
777777775

are represented by x and Q respectively.

Since the system of equations is not full rank, appropriate
weights are applied to the residuals or error terms in order to
get a unique solution. The weight parameters α, β, and γ are
defined for the curl-free, divergence-free and the sum residual,
respectively.

Thus, one minimizes the expression ‖W�Px − Q�‖, where
W is a diagonal matrix defined as

W � diag��α α α β γ γ γ ��: (13)

The results obtained are shown in the next section. One
clearly observes the normal component of the field vanishing
at the boundaries, as seen in the solenoidal part. Similarly,
the tangential component of the field seems to vanish at
the boundaries, as is visible in the irrotational part. The
boundary conditions imposed ensure a unique and orthogonal
decomposition of the original field. The curl-free part is the
projection of the original field onto the space of solenoidal
fields. Similarly, the divergence-free part is the projection
of the original field onto the space of irrotational fields. This
is possible only when proper boundary conditions are
satisfied.

Fig. 2. (Color online) HHD of a spherical beam with negative divergence. (a) Transverse (x-y plane) phase profile for a spherical beam with a
negative curvature. The smooth variation of color from white to green depicts the shape of the wavefront. The phase distribution has minima at the
center and increases toward the boundaries, thus rendering it a spherical shape with a negative divergence. (b) Phase gradient field lines of
the beam superimposed on the phase profile. (c) Flow lines of the solenoidal component of the Hodge decomposed field. Inset, magnified view
of the beam near the center. (d) Irrotational component with field lines converging toward the centre.
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3. DECOMPOSITION OF SCALAR OPTICAL
FIELDS
In this section, the decomposition using HHD method for
some of the scalar optical fields is demonstrated. The simula-
tion work has been done using MATLAB.

Under the quadratic approximation, a unit amplitude sphe-
rical beam can be represented as ψ � exp�ik�x2 � y2�∕2zo�,
where zo represents the axial distance from the point source
to the observation plane. Because a spherical beam carries no
curl component, it has been considered as the first example
for verifying the HHD tool. The phase of the beam is shown in
Fig. 1(a). The phase gradient field, as computed by using
Eq. (1), is shown in Fig. 1(b). The same can be verified by find-
ing the gradient field mathematically. It is important to note
here that Eq. (1) plays a very important role when dealing with
phase gradients of optical scalar fields. First, it relates the
phase gradient directly to the expression for the field. The first
example considered is a spherical beam that has a simple ana-
lytical expression for the phase distribution, and, therefore, it
is easy to verify the gradient using mathematical treatment.
But, in reality, one comes across several stances in diffraction
and interference optics, where the phase distributions are not
expressed as simple analytical expressions, and hence, find-
ing the phase gradient is a complex task at hand.

Second, the computed phase distributions are usually
represented by wrapped phase maps. The 2π phase jumps
appear as discontinuities where the gradient field lines
reverse in direction. This is not the case in reality and leads
to misleading results. Such problems are not encountered
when Eq. (1) is used to compute gradients. Thus, the method
adopted for HHD works perfectly when operated on optical
scalar fields whose gradients are derived in the above men-
tioned way.

A spherical beam has an explicit divergence component,
and this can be seen in the cross sectional plane for the phase
gradient field in Fig. 1(b). The background to the field lines in
all the figures is the transverse phase distribution. The smooth
variation of color from green to white in Fig. 1 depicts the
shape of the wavefront. The phase distribution has maxima
at the center and decreases toward the boundaries. This is
the spherical wavefront with a positive divergence. One ob-
serves the field streamlines diverging from the central core
in Fig. 1(b). Figure 1(c) shows the Hodge decomposed diver-
gence-free part. As can be seen, the solenoidal field is zero in
the core area far away from the boundary. The normal com-
ponent of the field vanishes near the boundary, and the field
lines tend to get parallel here. The irrotational component
shows diverging field lines emanating from the center, as

Fig. 3. (Color online) HHD of a random vortex field added to a positively diverging spherical beam. (a) Transverse phase profile of a random
vortex field added to a spherical beam with a positive curvature. The smooth variation of color from green to white in the background shows that
the phase distribution has maxima at the center and reduces toward the boundaries exhibiting a positive divergence. (b) Phase gradient field lines
of the beam superimposed on the phase profile. (c) Flow lines of the solenoidal component of the Hodge decomposed field. The field lines circulate
about the vortex centers. (d) Irrotational component with diverging field lines. This is the vortex free field.
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shown in Fig. 1(d). As expected, the normal component tends
to be perpendicular at all points on the boundary. A similar
example is considered for a spherical beam with a negative
divergence. The smooth variation of color from white to green
in Fig. 2 depicts the shape of the wavefront. The phase distri-
bution has minima at the center and increases toward the
boundaries, thus rendering it a spherical shape with a negative
divergence. Figure 2(a) shows the transverse phase profile of
the beam. Figure 2(b) depicts the field lines converging to the
centre. Figures 2(c) and 2(d) show the Hodge decomposed
fields. The curl-free part in both the abovementioned exam-
ples is devoid of any rotational features, as can be seen in
Figs. 1(c) and 2(c). We thus visualize that the OAM, which
is associated with the circulating phase, is explicitly absent,
en masse, in a spherical wave.

Speckle fields are known to contain vortices. A random
field with embedded vortices is considered as a second exam-
ple. A positive/negative curvature that introduces a positively/
negatively diverging gradient is added to the former curling
gradient field. Thus, both the curl and divergence components
are manifested in it. Figures 3 and 4 show the HHD decom-
posed scalar fields. Figures 3(a) and 4(a) show the phase
maps of the original fields. Figures 3(b) and 4(b) show the

stream lines of the fields superposed on the phase profiles
of the beams. As can be seen in Figs. 3(c) and 4(c), these
vortex singularities are extracted out in the divergence free
component. The curl-free part, as in Figs. 3(d) and 4(d), is
completely devoid of them and shows diverging/converging
field lines, depicting clearly the curvature of the superposed
spherical beam. This is the vortex-free field. We envisage that
HHD can, hence, be used to produce speckle free fields wher-
ever required.

In the third example, a real life experimental result is mod-
eled as an original field for decomposition [23]. This is the
structured optical vortex lattice field. It is noteworthy that
a plane wave does not carry any vortex but when three or
more such waves interfere, the resultant field shows vortices
embedded in a lattice. One such lattice field is considered here
that has been constructed by a superposition of three plane
waves. The transverse phase map of the vortex distribution,
with the intensity profile in the inset, is shown in Fig. 5(a).
Figures 5(c) and 5(d) show the Hodge decomposed lattice
field. As expected, the solenoidal part seen in Fig. 5(c) carries
all the curl features from the original field. The phase gradient
contours circulate about the vortex centers. The irrotational
part as seen in Fig. 5(d) shows web-like gradient field lines

Fig. 4. (Color online) HHD of a random vortex field added to a negatively diverging spherical beam. (a) Transverse phase profile of a random
vortex field added to a spherical beam with a negative curvature. The smooth variation of color from white to green in the background shows that
the phase distribution has minima at the center and increases toward the boundaries exhibiting a negative divergence. (b) Phase gradient field lines
of the beam superimposed on the phase profile. (c), (d) Represent the Hodge decomposed field. (c) Flow lines of the solenoidal component of (b).
The field lines circulate about the vortex centers. (d) Irrotational component with converging field lines. This is the vortex-free field.
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about the singularities. This is the vortex free field. This can be
used in optics where a vortex free field is required or dis-
carded as a noise term.

There is no method reported so far for segregating the curl-
free and the divergence-free components for optical scalar
fields. This paper illustrates the same using the HHD techni-
que. HHD applied to an interference field has also been de-
monstrated. One can, on similar lines, decompose any field
obtained in interference/diffractive optics, and study its pro-
pagation dynamics and other topological features.

4. CONCLUSIONS
We have established that HHD, which has been, hitherto, ap-
plied only to vector fields, can also be used as a tool to analyze
scalar optical fields. Such fields are ubiquitous in diffraction
and interference optics. We have demonstrated that the HHD
can be dexterously applied to them, and the solenoidal and
irrotational components can be efficiently segmented. This
has been solved in the rectangular coordinate system with
general boundary conditions. The propagation of optical
beams in circular cross-sectional channels is also of interest.
The HHD method described above would also yield important
results in the study of propagation of optical beams. The seg-
regated component fields would give a lot of insight into the
generation and annihilation of optical vortices during

propagation. This is currently under investigation and shall
be produced in a later work. As already stated, the OAM,
and hence the Poynting vector, is directly related to the phase
gradient of these fields. We envisage that in the case of sin-
gular optical fields, the solenoidal part carries a higher degree
of internal circulating energy and hence, can be separated out
from the irrotational part. The former component, when used
directly for applications as in tweezer traps, micromachines,
spanners, etc., would yield better functionality. The latter
term, which is curl free, is sometimes regarded as the noise
term and hence, can be discarded. This is also the component
that is devoid of any singularities and can, therefore, be used
as a vortex free field wherever required. We believe that the
HHD will also augment the flow visualization using optical
methods [25] for several other fields including velocity,
pressure and temperature.
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