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APPLICATION OF HYPERBOLIC ANALYSIS TO
THE DISCHARGE OF A CONDENSER.

BY ALEXANDER MACFARLANE.

In recent years the theory of the discharge of an electric con-
denser has played a very important part in the advance of
electrical science; for it served as the starting point of the
experiments of Feddersen, Paalzow, Helmholz, Lodge, Hertz
and many others, which culminated in the demonstration of the
existence and properties of electromagnetic waves. The theory
of the discharge was first given by Lord Kelvin, then Professor
William Thomson, in a paper on “Transient Electric Currents”
published in the June number of the Philosophical Magazine
for 1853. The application to the phenomenon of the principle
of the conservation of energy leads to the differential equation

R dg | S
where R denotes the registance and L the inductance of the cir-
cuit, and C the capacity of the condenser which is practically the
capacity of the whole circuit. If ¢ = A ¢™ be assumed as the
solution of the equation, then 7 must be such that

w (g B 1) _
aem(m4Zmtpg)=0
which reduces to
m*4+2am-+5=0 @)

where for brevity a is wntten for £ and b for -1

2L Lo

According to the theory of the quadratic equation, there are
168
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two general cases separated by a transition case. If a® is greater
than b; there are two real values of m, namely
—a+ Y& —b and —a — ¥ a*—0b.

If a® is less than J, there are two imaginary values of m,
namely,

—a+ v—1vVT—@ md —a— y—1 yh—d

The transition or separating case is where a® = &; then there
is only one value for m, namely, what is common to the two
general values.

The following are the solutions which are usually given of the
differential equation. In the case of real roots

g=o0¢ —(a—Va'—b)t+ G € e (a+ Va'—b)t (3)
in the case of imaginary roots,
q=cle—(“" Y—_1 ¥Yb—a*)t + o @t Y—1 ¥b—a®)t, (4)
and in the transition case

g = (e +at). (5)
In the imaginary case, the apparently impossible solution is re-
duced to the form

g=Ae % sin (VP —a)t+ ¢] (6)
which shows that the change in the condenser at any time is given

by a sine wave of period and of amplitude which

Vo—a b
diminishes geometrically at the rate a.

As the limiting case separates the two complementary reglons
of the real and the imaginary, we expect that the real solution is
also capable of reduction to a form analogous to (6) and exhibi-
ting the function with equal clearness. 'We also expect the
transition solution to be evident from the two general solutions ;
but when they are in the above forms, the transition is not evident.
We observe that in the former general case the roots are treated
as simple algebraic quantities, while in the latter general case
they are treated as complex quantities. A complex quantity con-
sists of two components, one of which is real and the other

imaginary. If there is any thorough going analogy, it must be
possible to treat the real roots also as a species of complex
quantity.

A complex quantity @ 4~ & ¥ — 1 can be reduced to the form
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r (co8 8 + ¥ — 1sin 0); forr = V@ +F B, cos § =

V?a__—-:—z;, gin 6 = —ﬁ‘-;b———-—_!_—ﬁ. If we enquire into the geo-
metrical meaning of the 4 — 1 here appearing, we shall find
that it means a quadrant of turning round the axis perpendicular
to the plane of reference. Let 8 denote that axis, then g% de-
notes an angle of 6 radians round the axis 8, and

B = cos 8 4 sin 0 F.
Hence the ordinary complex quantities can be expressed in
the form

r g =r(cosﬂ+sin0‘81't),

and they are simply coaxial quaternions, the axis being commonly
left unspecified, as it is the same for all.

Let s 8 denote another complex quantity, than » & X & §* =
78 y +¢

= 78 [cos 8 cos ¢ — sin § sin ¢ - (cos ¢ sin 8 - cos O sin ¢) ﬁ!'!).

Here the product is formed according to the theorem for the
cosine and the sine of the sum of two circular angles. Now the
circular trigonometry has its complete counterpart in the hyper-
bolic trigonometry; consequently we expect to find a hyperbolic
complex number. This subject was investigated at length in
“Papers on Space Analysis,”* which I published 1891 to 1894.
In this paper I propose to show that by treating the real root as
a hyperbolic complex quantity, equation (3) can be reduced in
precisely the same way as equation (4).

The exponential expression for a circular angle « is e V12,

II
which expressed definitely is °%". By applying the exponential
theorem, we obtain a series which breaks up into two parts,
namely,

B

sitna
and S— o &
Vy—1| = §1+5—!‘—:|’

of which the former is the series for cos « and the latter the series
for sin #. Now because the terms of the sine series are all
affected by the sign ¥ — 1,they do not add directly to the other

1. “The Imaginary of Algebra.” Proc. A. A. A. S. vol. —, p. 50. Funda-
mental Theoremsof Analysis, p. 28. Definitions of the Trigonometric Functions,
p. 30. Principles of Elliptic and Hyperbolic Analysis, p. 17.
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terms, but are geometrically compounded as forming a perpen-
dicular component to the terms of the cosine series. 'We enquire
for the analogous exponential expression for a hyperbolic angle
@. Algebra furnishes none. It is not €%, for
. ® & o
f=1+e+7+5++

and here there is no ground for breaking up the series into two
components ; all the terms are real, and so add directly. For
the same reason, it cannot be ¢—%. But we know that

o e 2, o
cosbwf.1+_2!+_4!+6_!+,
. _ @, P | .
andslnhw_z+-3-!+5—!+,

there must therefore be some proper way of expressing the sum
by an exponential function.

P B
P
A o) A
A O‘ A M
l ’
8
Fie. 1. Fie. 2.

Before proceeding further, let us consider what is meant by a
hyperbolic angle.

In Fig. 2, let A ¢ be an arc of an equilatoral hyperbola, 0 A and
o B the equal semi-axes. The radius o p is derived from the
semi-axis o A by a hyperbolic versor which has a magnitude @
and an axis through o perpendicular to the plane. Now @ is not
the ratio of the arc A p to either the radius vector o p or the
semi-axis o A ; but the ratio of twice the area of the sector A o p
to the square on 0 A. In the circle, Fig. 1, the ratio of twice the
area of the sector A o P to the square on o A is equal to that of
the arc A p to the semi-axis o A; the symbol # may denote either.
But in the hyperbolic counterpart it is the ratio of the areas
which must be taken. If @ denotes the ratio of twice the area
of the hyperbolic sector A o P to the square on o A, then as a
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matter of truth, not mere definition, cosh @, by which is meant
the ratio of o M to o 4, is equal to

1+ 2428+
and sinh @, by which is meant the ratio of M p to o A, is equal to
o o
o +3—! +ﬂ+

‘We observe that o M and o A have the same direction, while M
8 at right angles to 0 A; hence we conclude that the second
series is really at right angles to the first. But instead if cos® «
+ sin? @ = 1, we have cosh? 2 — sinh? @ = 1; the fact that it
is the difference not the sum of the squares which is equal to 1
attaches a scalar # — 1 before the sinh series. We conclude that
the proper expression for the hyperbolic versor is

cosh ¢ 4 ¢ — 1sinh o §7%;

—_— I
and that the exponential expression is ¢ ¥ —128%, For brevity
we will donate ﬁ”‘ by 4. Thus ¢*2 denotes a circular angle, and

eV—Tiz 4 hyperbolic angle.

The process by which equation (4) is usnally reduced to equa-
tion (6) is highly obscure to the student. We shall state it in
a form, such that it will apply to the analogous hyperbolic case.
For brevity let n denote the square root of the difference of a*
and b; in the hyperbolic case n is less than a. Equation (4) may
then be written ’ '

g= e (01 es'nt _+_ e e--m),

The arbitrary constants ¢, and ¢, are circular complex quan-
tities ; they are not perfectly arbitrary, but are connected in such
a way that they involve only two independent quantities. Their
magnitudes are equal and their angles supplementary. Hence
we can write :

¢, = ¢ (cos ¢ + ¢sin ¢),
¢ = ¢ (— cos ¢ + 4 sin ¢);
then :
gtnt_ g—int

2

=¢20e— % (cos¢sin nt + sin ¢ coent)

S nt —int
+isin¢m__+§f’___ )

g=20ce—% (00950

=493 ¢ e %sin (nt + ¢).
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The ¢ is dropped, 2 ¢ is written 4, and thus equation (6) is
obtained. '

The assumptions usually made in redncing are

6 =c(cos ¢+ 28ingp) and ¢; = ¢ (cos ¢ — ¢ 8in ¢)
which is equivalent to making the angles conjugate. The solution
then is
g=12ce ¥ cos (nt+ ¢)

which is the horizontal instead of the vertical projection. The
analogous investigation shows that the former is the correct as-
sumption for the initial conditions of the discharge.

In the case of the hyperbolic roots

p—l (M V:I;'nt_’_c’e—i/——lim)_

Let
¢, = ¢ (coshg 4+ ¥ — 14 sinhgp),
and
6 =c(—cosh ¢ + ¥ —1 isinh ¢);
then

eV—lint — o—¥—1snt
2

g= ¥V —1ice ™ (COSh?

+ sinh ¢ eV—_li'nt..; e—f—'iim)

= ¥ —142 ce®sinh (nt + ¢),
and by dropping ¥ — 1 ¢ and writing 4 for 2 ¢,
g = A e ¥sinh (nt 4 ¢).

Were conjugate hyperbolic angles taken for the arbitrary con-

stants, the horizontal projection would be obtained, involving
cosh (nt + ¢) in which case the initial current could not be

zero. Either projection satisfies the differential equation, but it
is only the former which satisfies the initial condition that there
is no current at the beginning.
The meaning of these solutions is illustrated by Figs. 3 and 4.
- Fig. 8 represents the circular case. o P multiplied by ¢ repre-
sents ¢;, and o ¢! multiplied by ¢ represents ¢;; o @ multiplied
by ¢ e—* represents the first circular solution and o Q' multi-
plied by the same quantity represents the supplementary circular
solution. The multiples of o ¢ and o Q' are compounded, their
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resultant being 2 ¢ ¢~ of o u which represents sin (n¢ 4 ¢).

In the hyperbolic case (Fig. 4), o p multiplied by ¢ represents
¢, and o P! multiplied by ¢ represents ¢,; o @ multiplied by
¢ ¢ represents the first hyperbolic solution, and o ! multiplied
Ly the same ratio represents the supplementary hyperbolic solution.
The multiples of o ¢ and o Q' are compounded their resultant
being 2 ¢ 6% of o m, which represents the sine of the hyper-
bolic angle nt - ¢.’

By differentiation we deduce the solution for the current ; let

it be denoted by /. AsI= Zt

I = — A ¢ [asinh (nt 4 ¢) — n cosh (n¢ 4 ¢)]
=—A V@ —nt e [7_—

— V—,”’_7 cosh (n¢ + ¢)]

=— A ¥a*—n 6 %sinh (nt-{-go-—tanh— )

Fie. 8.

Thus the charge is in advance of the current by the hyperbolic
angle whose tangent is %, which is the hyperbolic angle at which

both ¢ and 7 have their maximum value. The same proposition
applies, mutatis mutandis, to the oscillating discharge.

‘Writers on this subject call }z the time constant for an expo-

 y as 1 1
nential discharge, and — et Va—i and — PRV er
the time constants for the non-oscillating discharge. But from
the above presentation of the subject it is evident that ¢ a®*—?%
is the analogne of # b — & in the circular case. There it means
the angular velocity of the auxiliary cirenlar motion; so here it
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means the angular velocity of the auxiliary equilateral-hyperbolic
2

motion. In the oscillating case V_-b”—a—’ gives the period; in

the non-oscillating case 7_-3_7"_—6 gives the hyperbolic period.

By the hyperbolic period is meant the time occupied by the
radius-vector of the equilateral hyperbola of unit semi-axis to
sweep out twice the area of the circle of unit radius. This defi-
nition of period applies to the circular case also.

The function A4 sin (n¢ -} ¢) represents the vertical projection
of a uniform circular motion of amplitude 4, angular velocity n,
and epoch ¢. Similarly the function A ¢ sin (n¢ -+ ¢) re-
presents (Fig. 5) the vertical projection of the circular spiral motion
of the point p having angular velocity #, epoch ¢ and logarithni-
cally decreasing amplitude 4 ¢~*. In the same manner the

B
B
A A
P
Q
B A
Fia. 5. Fie. 6.

function A4 ¢~ sinh (n¢ - ¢) represents (Fig. 6,) the vertical
projection of the hyperbolic spiral motion of the point » having
hyperbolic angular velocity n, epoch the hyperbolic angle ¢, and
amplitude 4 ¢—™. 1t will be observed that this spiral is conver-
gent, for n is less than a. 4
By putting in the conditions that 7/ = 0 and ¢ = ¢ when
t = 0, we obtain
qn Va—n
¢ = tanh 1;,andA=Qa'—n1‘-
consequently
o YE= g Lan
q—Q__T__e—“smh(nt-{-tanh a)
and 4
@ — n?
n

I=—¢ 6% sinh nt.
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These curves have a maximum value when the angle is

tauh—l ; hence when £ = o and ¢ = l tanh—12 respectlvely
They have a point of contrary ﬂexure, when the angle is

2 tanh™! z hence when ¢ = .1_ tanh—l —and ¢t = % tanh—1! 7’:
respectively. The properties of exther curve are given by the

general equation

am —_ am 41 )
am = C1m @ LT

sinh | n¢ — (m — 1) tanh~ 4;1:]
corresponding to
dnm - V(@ - ity —at
TE=(=1"e ——————(an"'") o

éin [nt— (m—1) tan“%]'

in the oscillating case.

The nature of the curves for the charge and the current in the
non-oscillating case has not been plain to some electricians of high
authority. In the first volume of his work, “Alternating Current
Transformer,” page 379, Professor Fleming represents the cur-
rent graphically by an exponential curve, which is far from
representing the current correctly. In the first volume of his
“Lecons sur IElectricité,” page 256, Professor Gerard represents
the charge by an exponential curve which has no maximum at
the beginning ; and the same representation is given by Professors
Jackson in appendix C of their * Alternating Currents.” The
curves are correctly represented graphically by Doctors Bedell
and Crehore in their “Alternating Currents,” and by Professor
Webster in his “ Theory of Electricity and Magnetism.”

‘We deduce the solution for the transition case hy means of the
principle that in form it must agree with what is common to the
two general solutions. Now for the hyperbolic case

g= 4 [neqt BHD +“’)'+]

and for the circular case

g=A4e [nt+§o—(nt+¢)s+:l
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hence for the transition case

g=A (¢ +nt).

As A ¢ is represented by a length, and A » by a linear velocity,
let them be denoted by the constants 2 cand 2v. Theng =

2 6% (¢ + vi).

In the case of the horizonta.l projections the only common
part is the first term of the series, namely 1; hence & denoting
an arbltrary length, we have 2 ¢—% b for that projection. Hence
the primary form of the solution of the differential equation in
the transition case is

g=e%{[b+ic+vt)] + [—b+i(c+2t)]}

This is represented in Fig. 7, which is the transition between
Figs. 8 and 4. o P represents b 4 ¢¢, and o P' represents
— b4 2¢; oq represents b 4 ¢ (¢ 4 v¢) and o Q' represents
— b+ ¢ (¢ + vt); oM represents half of the resultant of o q -
and o qQ'.

By putting in the conditions that 7= 0 and ¢ = @ when
t = 0, we obtain

g=@Q e (at+1)
and /= — Q ¢ d*t.
The general differential co-efficient is

‘fz't“' =(—1)" Q¢ ¥ o™ [at — (m — 1):].
Hence ¢ is & maximum when ¢ = o, and has a point of contrary

flexure when ¢ = %. ; and Z has a maximum when ¢ = .Z_and a

point of contrary flexure when ¢ = %. Thus we see that 1

_17?' - n

takes the place of tan or tanh 2 and that a takes the

place of n. .

Fig. 8 is the transition between Figs. 5 and 6. The point r
describes a uniform motion along the straight line; op is o ®
diminished at a uniform geometrical rate, o @ is the vertical pro-
jection of o p. The path of » is perpendicular to o A at the
point o, whereas in the hyperbolic case it makes an angle of 45°.

If attention is restricted to real roots, it is diflicult to see why
the transition solution is not of the form ¢ = A ¢, nor is the
matter made very clear in treatises on Differential Equations.
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The preceding investigation throws new light on the theory
of the quadratic equation. The current theory may be stated as
follows: A quadratic equation has either two real roots, or two
imaginary roots, the separating case béing when the roots are
equal. According to the results of the preceding investigation,
the theory should be stated as follows: So far as real roots are
concerned, a quadratic equation has either two such roots, or else
none, the separating case being where they are equal. The two
general cases are the real and the impossible. As regards com-
plex roots, & quadratic equation has either two conjugate hyper-
bolic roots, or else, two conjugate circular roots, the separating
case being where they are straight-line. Consider the quadratic
equation #* + 2 oo + b = 0.. If a® is greater than b, the roots
are hyperbolic, and

s =—a+ ¥—11i ¥a®—>%
z'2=—a— "—l": Va’—b

B
7 M Q
R
P P
Q
‘- A A
Fre. 7. Fie. 8.

If we substitute either root in the equation, we shall find, just
as in the case of the circular roots, that the terms which do not
involve ¢ cancel one another, and likewise the terms which do
involve ¢. The equation is doubly satistied by the independent
vanishing of the two parts.

The preceding investigation has an important bearing on the
theory of the complex quantity, a theory which lies at the
foundation of algebraic analysis. The eminent mathematician
Cayley maintained that the complex quantity @ - ¢b is the most
general magnitude considered by algebra, and that were it fully
investigated the science would become fotus teres atque rotun-
dus. The current doctrine among mathematicians is thus stated
in a recent able work on alternating currents, where from the
nature of the subject the circular complex quantity is a funda-
mental idea :
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“ Within the range of algebra no further extension of the
system of numbers is necessary or possible, and the most general
number i8 @ + ¢b, where ¢ and b can be integers or fractions,
Ppositive or negative, rational or irrational.” 'Letthe question be
limited to the algebra of the plane although that is in truth an
arbitrary restriction, for epherical trigonometrical analysis iz as
much algebra asis plane trigonometrical analysis. The preceding
investigation shows that the ordinary complex quantity is only
one-half of the whole subject of plane algebra ; for parallel with
the circular complex quantity we have a hyperbolic complex
quantity, and for every theorem about the former there is an
analogous theorem about the latter. 1f the one is within the
domain of algebra, so is the other. Here we have another in-
stance of the danger involved in predicating smpossible.

1. Steinmetz, *‘Alternating Current Phenomena,” p. 405.
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Discussion at Evior, M., JuLy 27, 1897.

Mg. Cras. P. Steinmerz :—I have been very much interested
in this paper of Dr. Macfarlane’s, since it offers a common method
of calculation for the two different classes of phenomena which
can take place, if a condenser discharges through a circuit of re-
sistance and inductance. Such a condenser discharge can either
be an oscillating current, that is, a current similar to an alterna-
ting current, but gradually decreasing in amplitude, or it may be
a steady discharge, that is a gradual dying out without reversal.
The former is the case if the resistance of the circuit is below,
the latter if it is beyond a certain critical value.

The usual method of investigation of these phenomena leads
to two different functions, an exponential function for the steady
discharge which becomes imaginary if the resistance is below
the critical value, and a trigonometric function for the oscillating
discharge which becomes imaginary if the resistance is above
the critical value. '

Both these two forms of discharge are apparently entirely
different from each other, nevertheless in reality they are of the
same nature and gradually change into each other as you will
best see by considering a mechanical analogon, as a pendulum in
motion. A pendulum, when set in motion in air, will make a
lesser or larger number of oscillations with gradually decreasing
amplitude, until it comnes to a standstill. The ratpidity of decrease
of oscillations depends upon the resistance of the medium in
which it moves, thus for instance in a more resisting mediam as
in water, the amplitude of oscillation of the pendulum will de-
crease much faster than in air and it will come to rest very shortly.
In a still more viscous medium the oscillations will die out still
more rapidly and only very few oscillations take place and ulti-
mately only a half oscillation, that is, the pendulum will be
brought to rest by the resistance of the medium without ever
{)aasing over the pogition of equilibrinm. The latter case is ana-

ogous to the steady discharge.

t is very gratifying to see in the paper these two sides of the
same phenomenon of condenser discharge, represented by the
same gymbolism.

There is, however, one sentence in the end of the paper in
reference to a statement which I made once regarding the posi-
tion of the complex imaginary quantity in algebra. I am sorry
to say that I cannot agree with Dr. Macfarlane on this point, but
have to maintain my former position.

All the eminent mathematicians of modern times as far as they
have taken position at all, have considered the complex imnaginary
quantity as the most general algebraic quantity, and that there
is no further extension of algebra possible outside of the complex
imaginary (ﬁmntity. It is obvious that these mathematicians
cannot possibly have been mistaken.
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In opposition hereto, Dr. Macfarlane takes the stand that there
are other complex imaginary quantities possible outside of the
complex imaginary one, and even offers here in the paper a
complex imaginary or hyperbolic quantity outside of the complex
qnantit{ of pure mathematics. It is evident that there must be
a mistake somewhere, and we can discover the mistake by look-
ing on page 165 of Dr. Macfarlane’s paper, where he introduced
this hyperbolic complex imaginary quantity. He says there in
the second line, “If we inquire into the geometrical meaning of
the 4#/'—1 here appearing, we shall find that it means a quadrant
of turning round the axis perpendicular to the plane of refer-
ence,” then he introduces the hyperbolic quantity. This shows
the source of the mistake. The quantity introduced here by Dr.
Macfarlane is a vector symbolism, that is the symbolic represen-
tation of a plane vector, or in other words, of a geometrical re-
lation, simif:n' as for instance the system of quaternions is a space
vector symbolism. A vector symbolism is not yet an algebraic
quantity, for instance the quarternions are not algebruic quantities.

Undoubtedly the number of possible vector symbolisms is un-
limited, the number of algebraic quantities is however limited.

We have thus to see what is the meaning of an algebraic
qnantit{

Ana
by the common rules of algebra, that is, multiply, divide, solve
equations, etc.

There is one fundamental principle underlying all algebraic
operation, that is the principle that if a product is zero one of
the factors must be zero.

Even the simplest calculations are based on this principle.

Takg f(;)r instance the case that you have measured a resistance
» and find,

5r=20
everybody will say herefrom,
r=4.
Explicitly the operations were,
5r =20
5»—20=0
5(r—4)=0
r—4=20
r=+4%

As you see in deriving this result » = 4 from 5» = 20, a
result which everybody would take for granted immediately, we
have made use of the fundamental principle of algebra by can-
celling with 5, that is assuming that if the product 5 (»r —4) =0
and the one factor 5 is not zero, the other factor » — 4 must be
zero. Thus if this principle does not hold, the calculation would

gebraic quantity is & quantity with which we can operate.
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be erroneous, or in other words, every possibility of calculation
would cease, and it is erroneous for quantities which are not
algebraic, as for instance for the hyperbolic vector quantity in-
troduced by Dr. Macfarlane.

Let us see now how the complex imaginary quantity stands
with regard to this fundamental principle of algebraic quantities. -

Leta 47 b be a complex imaginary quantity and « 4 j ¥
another complex imaginary quantity. t their product be zero,

that is,
@t+id@+ijy=0
If now a 4 j b is a quantity differing from zero, the above
mentioned fungamental principle of algebra requires that we can
cancel the equation with a 4 7 4 and thus get,

z2+jy=0
that is in other words, if (¢4 j8) (v +jy) =0and a 4458
differs from zero, # 4+ j y must be zero, if’ tze complex quantity
is an algebraic quantity.
From (a2 + 7 8) (@ + j y) = 0 it follows: )

@z +7by)+jl@y+ba)=0
or since 5> = — 1 by definition of the imaginary unit, it is

@z—by)+jley+bz)=0
since, however, j is a different kind of unit, either of the two
terms of the last equation must be zero, that is,

Since @ and & differ from zero, we can eliminate @ and & from
these two symmetrical equations and get the result,

d4+yP=0
This condition can be fulfilled only by
=20
y=0
that means # + j y = 0.
Thence from the equation,

@+jd+jy=0

z+jy=0v
that is the complex imaginary quantity is an algebraic quantity
and can be treated as such.

Take, however, the hyperbolic complex quantity introduced
by Dr. Macfarlane.

The hyperbolic imaginary unit of his is, ¥—1 g% or i ¥,
For brevity, we may denote: ¢ ¥—1 = %, It is defined by,
F=+4+1

v it follows,
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assuming again the product of two such complex quantities equal
Zero : )
(a-:{-kb)(:c+ky)=0
' @+ Rdby)+k(@ay+bdx)=0

or since £ = + 1 and the two terms of the last equation are of
, different nature, it follows, :

it follows

az—{—by:O
ay+bxz=0
or, eliminating a and b, we get,
F—y=0
that is,
r= vy

This means, if # = + y, the product (@ + £8) (z + £ y) can
be zero without either factor being zero.

Since # and y differ from zero it follows analogously, as con-
dition of zero value of the above given product, that,

a=Fb

that is, if in two hyperbolic complex imaginary quantities the
coefficient of the real term equals the coefficient of the imaginary
term, but the signs of the imaginary components are opposite,
the product of these two hyperbolic complex quantities is zero
without either factor being zero.

(@xka)@Fkae)y=0

Furthermore it follows that the h{;perbolic complex imaginary
quantity of this paper is not an algebraic quantity, and that equa-
tions in such quantities cannot be handled by the laws of algebra,
for instance, cannot be cancelled by a constant factor without
being liable to see an equality changed into an inequality. That
means the hyperbolic imaginary quantity, while a vector symbo-
lism, is not an algebraic quantity, and my statement that the
complex imaginary quantity is the only and most complete alge-
braic quantity still holds.

Dr. A. E. KenNeLLy:—I am sorry that Dr. Macfarlane is not
with us, because we might expect an animated discussion on the
points Mr. Steinmetz has raised. There are several matters of
great interest in this paper. I will only venture to call attention
to two of them.

We all know that if a plane cuts a right cone at right angles to
its axis, the curve of intersection is a circle. If the cutting plane’
is tilted, the circle becomes an ellipse; until, when the plane is
parallel to one side of the cone the curve becomes a parabola ;
and, finally when the planeis tilted beyond this position the curve
is & hyperbola. :

The results pointed out by the author may be expressed as fol-
lows: When a perfect condenser discharges through a perfectly
conducting circuit, <. ¢., a resistanceless circuit, containing induc-
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tance, the discharge is oscillatory without damping, and may be
represented by the motion of a point in an ellipse with equiang-
ular velocity around the centre, the angle being measured ellipti-
cally; or, by the motion of a point in a circle with equiangular
velocity, as a particular case of the ellipse.

‘When the discharging circuit is not perfectly conducting, but
offers a resistance, such that its magnetic time-constant is greater
than one-fourth of the static time-constant, the discharge, no longer
undamped, may be represented by equiangular velocity in an
ellipse—with the circle as a particular case—accompanied by a
logarithmic shrinking of the radius vector. The trace of the
point’s motion is therefore a logarithmic spiral, or an orthogonal
projection of the same on an inclined plane, 1. e., a logarithmic
elliptical spiral.

When the discharging circuit has so much resistance that the
magnetic time-constant is ter than one-fourth of the static
time-constant, the cutting plane of the cone must be tilted from
the elliptic curve to the ﬁyperbolic curve. The discharge of the
condenser may now be represented by equiangular velocity in the
hyperbola, a rectangular hyperbola as a particular case, accom-
panied by logarithmic shrinking of the radius vector. The trace
of the point’s motion is therefore a logarithmic hyperbolic spiral.

‘When the discharging circuit has critical resistance, so that the

etic time constant /7 is one-fourth of the static time constant
or ¢ /4, the cutting plane must occupy the intermediate position,
and the curve becomes a parabola. The discharge of the con-
denser may now be represented by equiangular velocity in the
parabola, accompanied by logarithmic sbrinking of the radius
vector. The trace of the point’s motion is therefore a logarith-
mic parabolic spiral.

1 X: not mean that the above statements are all in the paper
before us, although some of them are there. I mean that these
are conclusions to which the very interesting treatment in the
paper appears to lead.

he second point is of less interest to us as electricians, it is at
present almost wholly of mathematical interest. Thesquare root
of minus unity was originally called imaginary, because it was
regarded as a logical reduction to an impossible or unusual result.
Later it became readily interpreted geometrically as the operator
which rotates a line counter-clockwise in a plane through a right
angle. No other interpretation has hitherto been given to this
symbol so far as I know. Dr. Macfarlane now points out that
it is also capable of a new meaning in which it is not a versor
but a scalar.

Mke. StEiNMETZ :—] may add that whatever criticisms I have
made does not apply to the particular application of hyperbolic
imaginary ({uantlties made by Dr. Macfarlane, since in his paper
these complex quantities are never used as products, as for in-
stance, common complex imaginary quantities are used when
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deriving E. M. F. as product of current, impedance, etc. Itis
only in this latter case where it becomes essential that the com-
plex quantity is an algebraic tgxantity.

De. F. A. C. PegrrinE :—There is just one point—in speaking
of complex quantities, which are really not the subject of the

per, but nevertheless have been brought up in this discussion—
i respect to which I think there is an error that has been com-
monly committed and has interfered with the general under-
standing of ‘the complex quantity, and that is the error of
considering the introduction of the complex quantity solely, as
Mr. Kennelly says, for the geometrical interpretation of a partic-
ular mathematical symbol, and that our interpretation of the
complex quantity is that if we plot along one axis the value JJ,
and on the other axis the value of the real quantity—we will call
it A—than any vector may be represenbe((il by a sum which we
will call 4 4+ BJ. Now additions or subtractions may be per-
formed entirely geometrically. Let us attempt to obtain a
multiplication. Take another vector which we will call C+4 D J,
and commonly we refer this to a unit vector in order to obtain
multiplication, take this point as the unit vector, then the multi-
glication of these two quantities is performed by drawing on the

rst vector a triangle entirely similar to the triangle drawn by
joining the end of the unit vector and the second vector. This
will give us a third vector which, in the geometrical interpreta-
tion,%:as been sometimes called the product of these two vectors.
Now as an actual fact, that is not tEe product which we can use
in our analytical working, for the real product of these two
vectors is the product. of their scalar values times the cosine-of
the angle between them, which is an entirely different product
from tiis geometrical form of product. This is an error I have
never seen pointed out, though I have noticed more than one
writer, shortly after the World’s Fair, who began to explain the
system, and after reaching geometrical multiplication was com-
pelled to stolp, because the saying that this vector representation
of the complex quantity is a geometrical method of mterﬁreting
the square root of minus one, fails as soon as we accept the geo-
metrical method of multiplication which is the only methoge of
multiplication of the complex vectors which has been at all des-
cribe(}) in the chapters in the algebras on the complex quantities,
aud it leads to entirely wrong results, and it shows at once that
the true method of dealing with the complex quantities is an
algebraic method and not at all a geometric method.

Mg. SteinMETZ :—I agree with the last speaker that in multi-
plving complex imaginary quantities we have to deal algebraic-
ally, since in multiplying two complex imaginary quantities
geometrically, the product of the two quantities may have no
meaning. :

In the geometrical multiplication the vgroducl: of two complex
quantities as vectors is a vector again. Wherever the product of
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the two quantities represented by the complex numbers is not a
vector quantity, it is obvionslgr not feasible to represent it in the
i by a vector, and thus the geometrical multiplication
becomes meaningless. This ig for instance the case when multi-
lying current and k. M. F. to derive the power, since power is of
§onb e frequency and thus cannot be represented in the polar
vector diagram of single frequency.

Drz. Perrine :—That is perfectly true ; but at the same time
it is not as much a foregone conclusion as you might think ;
because I was taught to multiply these complex quantities in
that way by a man who had learned it from no less 8 man than
Weyerstrass in (ermany, and this was given to me as the sum of
knowledge in regard to complex quantities, and I think that a

- great many learners have been confused by exactly that error
1n the geometrical interpretation of complex quantities.

Me. StErnMETZ :—The geometrical multiplication of complex
quantities is obviously just as correct as the algebraical multi-
plication, wherever the product can be represented geometrically,
that is wherever the product is a vector, as for instance when
multiplying current with impedance or E. M. F. with admittance.
Only where the product of the two vectors is not a vector, as
when multiplging current and E. M. F., the geometrical multi-
plication which gives a vector as product, becomes meaningless.

Dr. Louis BeLL :—It seems to me that this discussion gives a
very beautiful example of how not to use certain mathematical
symbols. 1 think we owe to Mr. Steinmetz a great deal for his
clever manipulation of the imaginary quantity in the solution of
ghysical problems, but I do not know that anything has been

rought out more clearly in this discussion, than the necessity of
tying yourself up to your physical conceptions. Whenever you
let yourself loose and deal with imaginary quantities which have
not a close and precise physical meaninq, you are apt to get into
trouble. Just so long as you tie yourself up, keep out your sheet
anchor, look sharply as to the cﬁa.rwcter of the quantities with
which you are dealing, you will derive very valuable results.
As soon as you cease remembering that these imaginary quanti-
ties are means to an end, that they form a vastly convenient and
very precise method of dealing with certain physical things—
as soon as you forget that, and start with a free hand to swing
your complex quantities for the purpose of seeing what trans-
cendental results you can get, then you arealmost ready to get into
difficulty. Mr. Steinmetz has given us some beautiful examples
of the way in which it should be used, and Dr. Perrine has cer-
tainly given one or two examples of the way in which it should
not {)e used. That fact runs all through our physical mathe-
matics ; that as soon as you get out of sight of physical inter-
pretations and start out with a free sheet your cruise may bring
you to some place which you desire to reach; it may land you
in a place from which nothing but an all-wise providence can
extricate you.



