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ORIGINAL WORKS 

PARAMETRIC EXCITATION OF ELECTRIC OSCILLATIONS 

L. Mandelstam and N. Papalexi 

 

The article describes an approximate theory of the phenomena of oscillation excitation in electric 

oscillation system, where there are no obvious sources of electric or magnetic forces. The theory is based on 

periodic change in electric oscillation system parameters. It is rooted to the general methods (previously 

developed by Poincare) of finding periodic solutions to differential equations. The special cases of such 

excitation with the sinusoidal self-induction and capacity change in an oscillatory system with one degree of 

freedom, as well as with self-induction change in a regenerated system are considered here in a detail. The 

article describes the experiments for generating oscillations with mechanical parameter change in the system 

with regeneration as well as without it. These experiments prove a possibility of such excitation and are in 

agreement with the theory.  

The phenomenon of oscillation excitation by means of periodic change in the oscillatory 

system parameters well-known in physics already for a long time [Melde (1), Rayleigh (2,3,4) and 

others (5)] becomes currently interesting due to realization of such excitation in electric oscillatory 

systems. Although there were some indications of such excitation possibility (which we will briefly 

call “parametric excitation”) (3, 6) and it undoubtedly plays a significant but not always a clearly 

realized part, as, for instance, in case of normal current generation in the electric engineering, 

however, it was performed deliberately and systematic study has begun. Hegner (8) and later 

Gunther-Winter (9) described experiments on oscillation excitation in the electric oscillatory system 

in the field of acoustic frequencies by means of periodic magnetization of a self-inductor iron core. 

Afterwards, using the change of self-induction formed by the series connection of two phases both 

of the stator and rotor of three-phase generator during the rotor rotation Gunther-Winter (10) also 

performed the parametric oscillation excitation. Quite lately there appeared descriptions of I. 

Watanabe, T. Saito and I. Kanto`s (11) experiments on oscillation excitation by means of 

mechanical periodic change in the magnetic circuit of the system self-induction. 

We started the theoretical and experimental research on parametric oscillation excitation 

issues in 1927 (at NIIF (Research Institute of Physics) in Moscow and at the CRL (Central Radio 

Laboratory) and first we received and examined the oscillation excitation phenomenon (up to 

frequencies about 106 Hz) with a periodic change of an iron core magnetization of the system self-

induction (12). Later in LEFI (Electrophysical Measurements Laboratory) we studied the parametric 

excitation phenomena with mechanical change in parameters (12, 13), but we delayed publication of 

the results until now due to the patent reasons. As it is pointed in our article in TPJ,Volume III, № 



 2 

7, 1933, (References are given at the end of the work) besides the parametric oscillation excitation by 

means of mechanical self-induction change performed in early 1931, in LEFI we have recently 

received parametric excitation by means of mechanical change in capacity as well (16). As for the 

theory of parametric excitation phenomena it should be noted that we already have necessary 

preconditions for a complete analysis of oscillation excitation conditions provided in other 

scientific works. This issue as we know leads to the research of the so-called “unstable” solutions 

of linear differential equations with periodic coefficients, which are mathematically quite 

thoroughly researched in general and specifically in terms of the problem being discussed 

[Rayleigh (2, 8), Andronov and Leontovich (14), van der Pol and Strutt (15)]. However, the theory of 

these equations based on the linear ones cannot answer the questions about the value of the 

stationary amplitude, its stability, the process of setting, etc., adequate interpretations of these 

issues are possible only by means of nonlinear differential equations. The authors mentioned above 

(Gunther-Winter, Watanabe) stick only to a simplified conclusion on oscillation conditions based 

on the analysis of a corresponding linear differential equation and leave the question about the 

stationary amplitude unanswered. However, these problems are no less fundamental than the 

question about the oscillation excitation and the solution of which is necessary not only for a 

complete description of all phenomena, but also to make any calculations in this field possible.  

This article describes the approximate theory of the process of parametric oscillation 

excitation based on common methods of finding periodic solutions of differential equations given 

by Poincare. This work deals with the cases of periodically changeable self-induction and capacity, 

as well as some results of experiments made in 1931 and 1932 in LEFI. Other related experimental 

and theoretical information is represented in the articles by V. A. Lazarev, V.P. Gulyaev and V. V. 

Migulin provided below. 

The results of more detailed experimental research of the parametric excitation phenomena by 

means of periodic change in magnetization of self-induction core performed in CRL are provided in 

other works.  

In this paper we confine ourselves to considering in practice only the first approximation, 

perhaps, of the most significant case of parametric excitation, when frequency of the parameter 

change is approximately two times greater than the average proper frequency of the system. 

However, the methods used in this work allow making solution of the problem for other cases as 

well as finding further approximations. Some similar issues would be considered separately. 

THEORETICAL PART 

§ 1. On oscillation onset with parametric excitation. 

Some general arguments and conclusions 
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As we showed in the previous studies (13, 16), based on energy considerations it is easy to 

understand the physical side of the oscillation excitation process by means of periodic (abrupt) 

changes in capacity of the system, which do not contain any obvious sources of magnetic or electric 

fields. 

Let us briefly remind this argument for the case of self-induction change. Suppose there is 

current i in the oscillatory system having capacity C, ohmic resistance R and induction L at a period 

of time taken as the initial one. Let us change self-induction to the magnitude ∆L at this moment, 

which is equivalent to energy increase equal to 2

2

1
Li∆ . Now we leave the system to itself. In a 

period of time equal to ¼ of the system proper oscillations period, the entire system energy will 

transform from magnetic into electrostatic. At this moment, when the current = zero, we return the 

self-induction to its initial magnitude, which obviously can be performed without an effort, and 

then leave the system to itself again. In the next ¼ of the proper oscillation period the electrostatic 

energy will entirely transform into the magnetic one again, and then we can start a new cycle of 

induction change. If the energy introduced at the beginning of the cycle will be greater than the 

losses during the cycle, i.e., if    

23

1

2

1 22 T
RiLi >∆  

or  

ε>∆
L

L
 

where ε is a logarithmic decrement of the proper system oscillations, then the current at the end of 

each cycle will be greater than at the beginning. Thus, repeating these cycles, i.e. changing self-

induction with frequency that is twice as large as the average proper frequency of the system so that  

ε>∆
L

L
, 

it is possible to excite oscillations in the system with no affecting of any electromotive force, no 

matter how small a random initial charge is. Note that even without any random induction that 

almost always inevitably occur (electric line, Earth`s magnetic field, atmospheric charges), we 

fundamentally should always have random charges in the loop because of statistical fluctuations. 

Even having such a gross, rather qualitative analysis of the phenomena of oscillation 

excitation it is possible to derive two basic preconditions for its occurrence: 1) the need to achieve a 

specific relation between the frequency of the parameter changes and the “average” natural 

frequency of the system and 2) the need to keep to a certain relation between the magnitude of the 

relative parameter change - the so-called modulation depth and the magnitude of the average 

logarithmic decrement of the system.  
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The more profound analysis of oscillation phenomena at parametric excitation leads to the 

linear differential equations with periodic coefficients. For example, in case of change of the system 

capacity according to the law:  

                                           )sin1(
11

0

tm
CC

γ+=                                                      (1)  

we have the following equation for  ∫= idtq : 

 

                                      0)sin1(
1

0
2

2

=+++ qtm
Cdt

dq
R

dt

qd
L γ                                  (2)  

which by means of the transformation  

                                             
t

L

R

xeq 2
−

=                                                                  (3) 

can be reduced to:  

                                                                                 (4)  

 

where 

                        (5) 

 

Hence in the concerned case the mathematical problem is reduced to a simple linear second-

kind differential equation with periodic coefficients (4), known as Mathieu equation (14, 15). Note 

that many other problems are reduced to these types of equations: in astronomy, optics, elasticity 

theory, acoustics, etc. From the mathematic side they are well studied by Mathieu, Hill, Poincare, 

etc.  

As it is known the solution of the equation (4) can be represented as: 

                                     )()( 21 τχτχ −+= −hxhx eCeCx                                                (6) 

where  is a periodic function with the period π (or 2 π).  

Inserting this solution into (3) we obtain for q:  

                               )()( )(
2

)(
1 τχτχ τϑτϑ −+= +−− hh eCeCq                                             (7)  
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It follows from this expression that the problem of oscillation excitation is ended in finding 

the conditions, under which the amplitude q will increase consistently. We can see from the 

equation (17) that this will take place when the real part h is absolutely more than 0. Therefore the 

condition of parametric excitation is closely linked to the magnitude h, i.e. to the characteristic 

exponent of the Mathieu equation solution (4). Dependence of h on the parameters of this equation 

m and
ν
ωλ 12= can be qualitatively figured (Fig. 1), as did Andronov and Leontovich (14), having 

distinguished the areas, within which h has a 

real part, separately at the plane .  

As the figure shows, these areas that are 

the areas of “unstable” solutions of the 

equation (4) are located near the values 

...3,2,1
2 1 =
ν
ω

Having the damping, i.e. for the 

equation (2) these areas of instability are 

greatly reduced (dashed areas in Fig. 1).  

Using the method described by Rayleigh (3, 4), it is possible to determine approximately the 

boundaries of these instability areas. Thus the boundaries of the first instability area (about the 

value 1
2 1 =
ν
ω

) are given as curves up to m2:  

                                  2
2

1 4
4

1
2 ϑ
ν
ω −+= m

 and 2
2

1 4
4

1
2 ϑ
ν
ω −−= m

                      (8) 

 

This means that having the defined m and ϑ and the values 
ν
ω12

 that satisfy the inequations 

                                       2
2

12
2

4
4

1
2

4
4

1 ϑ
ν
ωϑ −−≥≥−+ mm

                        (9) 

the solution of the equation (2) is “unstable”. 

It is necessary to take account of the members m4 to determine the second “instability” area 

(about 2
2 1 =
ν
ω

). As shown by Andronov and Leontovich (14) in this case we have:  

                       2421242 64
3

2
4

2
64

3

2
4 ϑ

ν
ωϑ −−+≥≥−++ mmmm            (10) 

Hence the magnitude (width) of the “instability” area is depressed with its n as mn.  

The conditions (9) and (10) contain consequently the following additional conditions.  

 
Fig. 1. Instability areas (by Andronov and 
Leontovich). 
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For the first instability area:  

                                              2
2

4
4

ϑ>m
  or   ϑ4>m ,                                             (11) 

 

for the second one 

                                          24 64ϑ>m   or   ϑ22>m                                              (12) 

The equations (11) and (12) show that the condition of parametric excitation, with 

approximate setting of the system to a frequency that is equal to the frequency of parameter change, 

is much harder to fulfill than the excitation condition with setting of the system to a half-frequency, 

since it requires much greater depth of parameter modulation parameter m under given damping. 

There are even more severe conditions for parametric excitation under the frequency relation like 

...3,2
2 1 =
ν
ω

 etc. Therefore the case of 1
2 1 =
ν
ω

 is of more interest, which is almost entirely 

considered in this work.  

As it is shown above, the question of oscillation excitation conditions under a parametric 

stimulus is solved by means of the formulas (9) and (11). On the one hand, those specify the 

conditions that damping of the system must satisfy, in order that waves could occur in it under the 

given parameter change, but on the other hand, they show the extent of changes that we can make 

in system resistance (load) or the system detuning due to the exact parametric resonance, without 

compromising the possibility of oscillation excitation. However, these formulas do not and cannot 

answer the question of whether the stationary oscillation amplitude is settled and what value it has. 

In fact, the original equation (2) as a linear equation cannot answer this question. In other words, if 

the system is genuinely governed by this equation all the time, the oscillation amplitude will 

increase with no limit under the conditions (9).  

Hence a linear system cannot be an alternator. In order to set a stationary amplitude in the 

system, it is necessary to make it be governed by a nonlinear differential equation. The equation (2) 

that was considered may be only approximate for a finite amplitude interval. It remains the full 

meaning here and allows us to solve the question of oscillation excitation.  

The experiences described below also confirm that the phenomenon occurs the defined way. 

Without adding nonlinearity to the oscillation system, under periodic changes in its parameters we 

can see the following. As soon as the excitation conditions are observed current occurs in the loop 

whose amplitude increases constantly. In our experiences this increase reached the stage when the 

insulation of the capacitor or lead wires could not stand and we had to stop.  
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We had to add a nonlinear conductor to the system to obtain a stationary condition, like an 

iron-core coil, incandescent lamps, etc. Mathematically, in case of adding iron-core coil to the 

considered system we deal with the equation:  

                                               ∫ =+++Φ
0

sin1)(

0

idt
C

tm
Ri

dt

id ν
 

where the nonlinear relation between current and magnetic flux in the loop  (i) is a certain 

specified function i, e.g. in the form of a power series. 

Since the question is the theory of the observed phenomena, we need to investigate precisely 

this kind of nonlinear equations, moreover mathematically we have a two-fold task here: on the one 

hand it is required to find conditions, under which the equilibrium position of the system becomes 

unstable (oscillation excitation condition) and on the other hand it requires to find and investigate 

properties of periodic solutions of this equation (value of stationary amplitude, conditions of its 

stability, etc.). In the next section we consider this problem in a number of examples.  

§ 2. Formulation of the problem for particular cases 

Let us formulate the problem of oscillation excitation mathematically by means of a periodic change of 

the oscillation system parameter for a number of particular cases. First we will consider the following simple 

case. Let us have a circuit with total ohmic resistence R consisting of capacity C and two self-induction coils as 

an oscillation system. Let us suppose that one of the coils is a specified harmonic function of time:  

tlLL ω2sin1101 += , 

and the other coil is a some kind of reactor choke with a core of partitioned iron with very low hysteresis losses, 

so that the relationship between the magnetic flux through the coil and the current in it will be given as a unique 

function ϕ (i), such as an n-degree polynomial of i.  

For instance, the simplest case may be:  

                                                        32)( iiiCi γβαϕ +++=                                           (13) 

Then the instantaneous value of the magnetic flux in the circuit is expressed in terms of: 

                                                                            )(1 iiL ϕ+=Φ                                              (14)  

Anf hence the differential equation of the problem can be written as:  

                                                          ∫ =+++ 0
1

)]([ 1 idt
U

RiiiL
dt

d ϕ                                          (15)  

whence, we assume, 

∫ = qidt  

and after differentiation we obtain:  
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or taking into account (13) we obtain:  

                                                              (16)  

Hence the problem of parametric excitation leads to a nonlinear second order differential equation with 

periodic coefficients, which can not be solved in a general form. However, in cases when: 1) l1 and the variable 

(depending on q) component φ` (q) are small in comparison with L10 + α and 2) the eigen “average” 

logarithmic decrement of the circuit is small in comparison with one, it is possible to bring this equation to:  

                                                                                              (17)  

where µ is a a “small” parameter of the equation, and apply Poincare methods to finding its periodic solutions.  

Truly let us transform the equation 16.  

Introducing the new time scale  

tωτ =  

and assuming that:  

                                             (18)  

 

we obtain: 

 (191) 

instead of (16). 

According to the assumptions and ε are small in comparison with with one. This condition 

can be expressed somewhat differently, having denoted the greatest of these values (in absolute magnitude) 

through µ  in such a way that:  

µ
ϑ

µ
γ

µ
β

µ
,,, 11m

 and 
µ
ξ

 

must be less than one, where  

1<<µ . 

Hence we can assume:  

                   (20) 

so that the equation (191) can be written as:  
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                                                                         (21)  

Here, as we can see from (20), ƒ (x ,̀ x, τ, µ) is a periodic function of τ with the period .  

Thus we draw the conclusion that in the considered case the question of oscillation excitation by means 

of periodic change in self-induction of the oscillation system is reduced to solving an equation of the type (21), 

to which the methods used in our work  “N-th type resonance” (17, 18) may be applied.  

Before turning to the approximate solution of this equation let us consider some other cases of parametric 

excitation, which we have been dealing with during the experiments and the theory of which leads to the same 

differential equation.  

Under sinusoidal change in capacity, e.g. according to the law:  

0

2sin11

C

tm

C

ω+=  

and having the reactor choke with the considered above relationship between the magnetic flux and the current 

in the system, we have the following differential equation:  

                                                (161)  

or introducing the notation (18) we obtain:  

                                        (192)  

where we have again:  

 

  

where  

                            (201)  

Now let us consider the case of self-induction change in the regenerated system. As a typical regenerated 

system let us take a usual tube cyclic circuit with oscillation contour in the grid circuit (Fig. 2). Here we have 

the following differential equation for the oscillation circuit:  

                                                             (22) 
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Here  

2100 LLL += , 

where L2 is a coefficient of the closed loop coil self-induction, 

and L10 is a constant part of the periodically changiing self-

induction, like in the case considered above.  

Hence here  

102

1

LL

l
m

+
=  

 

Considering that the lamp has a very low transmittivity it is possible to assume ia as a function of only 

one grid voltage and then, for instance, as an n-th degree polynomial of q. We confine ourselves to the simplest 

case, where:  

                                                               32
0 qqqii aa γβα +++=                                               (23) 

 

Assuming that 

                                     
0L

M=ρ , αρα =1 , 102 ββρ =q  , 1
2
03 γγρ =q  and k=− ϑα 21     (181) 

we have:  

 

whence we have the equation (21) again, where  

 (202) 

As the last example consider a system that consists of an oscillation loop inductively linked to a 

nonperiodic circuit, besides let the mutual induction between circuit and loop be the parameter that changes 

periodically. This scheme basically corresponds the setting for a periodic change of self-induction described in 

the experimental section.  

In this case differential equations of the problem can be written as:  

)(
1

2111 Mi
dt

d
dti

C
iR

dt

d −=++Φ
∫  

 
Fig. 2.  The scheme of the regenerative 
system.    
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)(
)(

122
22 Mi

dt

d
iR

dt

iLd −=+  

If R2 = 0, this equation system can be replaced by a single equation:  

                                                                      







−=++Φ

2

1
2

1
11 L

iM

dt

d

C

q
iR

dt

d
                       (151) 

 

Let us analyze this equation closer in two particular cases.  

A)                                                         3
1

2
111

02 )2sin1(

iiiL

tmMMconstL

γβ
ω

++=Φ
+==

 

In this case we have 

                                             

where                                               







+−=

2
1

2

2

2
0

10

m

L

M
LL , 

02

2
0

1

2

LL

mM
m = , 

CL0

2
0

1=ω . 

Hence here 

                             

Comparing these formulas with the (20) we see that they differ only in presence of members containing 

cos4τ and sin4τ , which, as seen below, do not play any part in the first approximation when finding the “zero” 

solution.  

B)                    )2sin1(202 tmLL ω+= , )2sin1(0 tmMM ω+= , 3
11

2
1111 iiiL γβ ++=Φ . 

Since in this case  

)2sin1(
20

2
0

2

2

tm
L

M

L

M ω+=  

the equation (151) is brought to quite the same form as the equation (15).  
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§ 3. Finding periodic solutions of the equation (21) 

As it was already pointed finding periodic solutions of the equation (21) can be performed by means of 

the methods developed in the works stated above (17, 18).  

Using this method it is possible by means of the substitution:  

                                                                                                             (24) 

to replace this equation by a system of two first-order equations:  

                                                                                                       (25) 

Here                                                           

and both                                                                  and  

are given by the formulas (20), in which  and are expressed in u and υ according to the (24).  

To find the values u = a, υ = b, which are the first approximation for solving our equations, which is so-

called “zero” solution, we must solve the following system of equations:  

                                                                      











=

=

∫

∫
π

π

τττ

τττ
2

0

2

0

0sin)0,,,(

0cos)0,,,(

dbaf

dbaf

                                   (26) 

Because of the (21) this system of equations is identical to  

 

                                                                          











=

=

∫

∫
π

π

τττψ

τττψ
2

0

2

0

0sin),,(

0cos),,(

dba

dba

                                   (27) 

In order to make the solution obtained this way stable, it is necessary to be  

                                                                   0)2()2( 21 <+ ππ ED                                      (28) 

and  
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                                                                   0
)2(),2(

)2(),2(
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11 >
ππ
ππ
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ED
.                                   (29) 

Here                               
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
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υ
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2

0

2

2

0

2

2
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2

0

1
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d
f
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u

f
D

d
f
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u

f
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              (30) 

and the symbols 




∂
∂
u

f
 etc. mean that 




∂
∂
u

f
 etc. are taken for µ = 0, u = a, υ = b. 

As  







∂
∂=

















+
∂
∂−+

∂
∂

=




∂
∂

u
uu

u

f ψ
µχ

ψχµµχψ

2)1(

)1(
 

etc., and similarly  

                                                                                





∂
∂=




∂
∂

υ
ψ

υ
f

, 

then the conditions of the equations (28) and (29) are reduced to  

                                               0sincos
2

0

2

0

<





∂
∂+





∂
∂

∫∫ ττ
υ
ψττψ ππ

dd
u

                   

(281) 

             0cossinsincos
2

0

2

0

2

0

2

0

>





∂
∂⋅





∂
∂−





∂
∂⋅





∂
∂

∫∫∫∫ ττ
υ
ψττψττ

υ
ψττψ ππππ

dd
u

dd
u

      (291) 

Let us apply the recently reduced pattern of calculation to the considered particular cases. First consider 

the case of harmonic self-induction change.  

Here:  
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  (31) 

and consequently the equations (20) take the following form: 

                                          0
4

2
2

21 =





 ++






 + bXa
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                                          0
4

2
2

21 =





 ++






 − aXb

m γξϑ                                   

(322) 

where 222 baX +=  is a square of the amplitude of parametrically excited oscillations. 

It follows from these equations that either  

                                                              a = 0, b = 0,                                                   (33)  

or  

                                               2
22

21 4
44

ϑγξ −=





 + m

X .                                            (34)  

To find out which of these values are physically feasible in these conditions let us consider 

the stability conditions (28) and (29). 

 Since in this case:  
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 (35)                                                    

from (28) and (29) we have the following stability conditions. In case when a = 0, b = 0,  

                                                                  0>ϑ                                                        (361)  
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                                                              04
4

22
2

<−− ξϑm
                                      (362)  

and when a ≠ 0, b ≠ 0,  

                                                                 0>ϑ                                                        (371)  

                                                0
4

212
1 >














 +− XXmab

γξγ                                   (372)  

The condition (361) or its identical condition (371) is always fulfilled, but it leads to the 

following from the conditions (362) and (372). First of all it follows from (362) that if only 

                                                             22
2

4
4

ξϑ ≥−m
                                              (36)                                      

or if  

                                                    2
2

2
2

4
4

4
4

ϑξϑ −−≥≥− mm
                             (38)                                            

then the resting condition of the oscillation system is unstable.  

Thus the inequation (36) is a condition of oscillation excitation under periodic parameter 

change. If it is held, then a and b can not both be zero, and then the possible values of the stationary 

amplitude are obtained from the equation (34), i.e. given by the equation:  

                                                      2
22

1 4
44

ϑξγ −±−= mX
 .                                  (341)  

When the oscillation condition (36) is fulfilled the root is real and we have two possible 

values for X2. The stability condition (372) gives us the answer to the question of choosing the root 

sign.  

In fact, taking into account the equations (321) and (322) it is possible to write the latter 

condition as:  

                                                    0
4

212
1 >






 + XX

γξγ ,                                          (39)  

which shows that the root sign in the formula (341) is equal to the sign 1γ .  

Hence if 01 <γ  we have: 

                                                









−+= 2

2

1

2 4
4

4 ϑξ
γ

m
X ,                                      (401) 

whereas if 01 >γ we have  

                                              









−+−= 2

2

1

2 4
4

4 ϑξ
γ

m
X .                                        (402)  

Thus fulfilling the condition (36) and making a small adjustment of the system so that  
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                                                   2
2

4
4

ϑξ −−> m
, if 01 <γ                                      (411)  

and                                              2
2

4
4

ϑξ −< m
, if 01 >γ                                     (412)  

it is possible by means of periodic change of induction with frequency 2ω to excite oscillations of 

such frequency, the stationary amplitude of which will be given by the formulas (401) or (402), in 

the system that is approximately set to frequency ω.  

As we can see from the formulas (411) and (412), the theory restricts the mismatch ξ  at the 

first approximation only at one point, i.e. stable values of the amplitude outside the range of the 

values ξ  that is determined by the oscillation excitation condition are possible too. In other words, 

the oscillations excited parametrically are “pulled”. The obtained approximate formulas for the 

amplitude do not point the band that the considered “pulling area” covers. To answer one or another 

related question, we cannot confine ourselves to the considered “zero” approximation, it is 

necessary to take into account influence of the members that contain µ per amplitude of the 

fundamental harmonic as well as the role of overtones. It should be noted that the zero solution for 

the case similar results where the relationship between the flux and the current in the confining 

reactor choke is expressed by arkustangensoid (19), which is considered in the article of V.P. 

Gulyaev and V.V. Migulin, leads to the same results.  

Let us consider the nature of the dependence of the parametrically excited oscillation 

amplitude on the magnitudes that define it. The Fig. 3 and 4 show the curves of X2 dependence on 

the ξ mismatch, which can be named as the curves of the heteroparametric resonance. It is easy to 

see that these curves differ significantly both from the usual resonance curves and the 2nd type 

resonance curves. 

As we can see from the Fig. 3, whilst  

                                                           2
2

4
4

ϑξ −−< m
                       (if 01 <γ )  

there are no noticeable oscillations in the system.  

 

When:                             

2
2

1 4
4

ϑξ −−= m
 

parametric oscillations occur starting with very small amplitudes and increase with further increase 

of ξ. As this takes place, X2 increases rectilinearly until at some value 
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2
2

2 4
4

ϑξ −>′ m
 

oscillations abruptly die out. When we have a reverse mismatch, oscillations occur even if 

2
2

2 4
4

ϑξ −= m
 and then 

with further decrease of ξ 

they reduce until X2 is 

zero again if 

2
2

1 4
4

ϑξ −−= m
.  

Hence there is a 

“pulling loop” only at 

one point (Fig. 3). 

As we can see from 

the Fig. 4, if 01 >γ  we have a reversed situation: X2 increases with reducing of ξ and there is a 

pulling loop when ξ = ξ.1 The maximum magnitude of X2 within the oscillation excitation area is:  

1

2
2

2
max

4
4

8

γ

ϑ−
=

m

X , 

i.e. the less 1γ  is, the more the maximum magnitude is.  

We obtain quite similar results in case of a harmonic change in capacity. In fact in this case:  

     (42)                                                       

+ members that contain the highest harmonics. 

Comparing the members that contain sinτ and cosτ with the corresponding members of the 

formula (31), we can see that they are derived from the latter by means of replacing m by m (1 - ξ). 

Hence all the conclusions that were drawn in considering the problem with periodically changing 

self-induction can be directly extended to the case of capacity change. 

 

 

 

______________________ 
1 As experiments show (see the article by V.A. Lazarev) both of these cases can be realized. 

  
Fig. 3.  Heteroparametric 
resonance curve ( 01 <γ ). 

Fig. 4.  Heteroparametric 
resonance curve ( 01 >γ ). 
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In particular, in case of capacity the boundaries of the parametric excitation area can be 

expressed in:  

                                                   222
2

4)1(
4

ξϑξ >−−m
,                                        (43) 

whence  

                                   2
22

2
22

4
44

4
44

ϑξϑ −−−>>−+− mmmm
                        (44) 

that is identical to the formula (38) up to 
4

2m
.  

Up till now we have been considering the phenomenon of oscillation excitation by means of 

periodic parameter change in oscillation system without regeneration. Having parametric impact to 

the regenerative system we face a number of noteworthy features, therefore it is necessary to 

consider this case in more detail in the next section.  

§ 4. Parameter change in regenerative system 

Since in this case substituting (24) into (202) we have:  

                                                (45)  

                                         + members with higher harmonics  

the equations (271) and (272) for a and b take the following form:  
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ξγ

ξγ
                                    (46)  

whence we have either a = 0, b = 0 

or                                                         2
22

2
1 44

1 ξγ −=−





 + m

Xk                                     (47) 

or                                                         2
2

2
1 44

1 ξγ −±−= m
kX                                      (471)                             

To determine the physical conditions that are essential for existence of a particular solution 

we turn to the stability conditions.  

 

Since in this case:  



 19 

                                            
















+++=

+−=

+=

++−=

,
4

1

2

1

2
)2(

1
2

1
)2(

1
2

1
)2(

1
4

1

2

1

2
)2(

1

2
1

2
12

11

12

2
1

2
11

Xb
m

kE

abE

abD

Xa
m

kD

γγπ
π

γξπ
π

γξπ
π

γγπ
π

                         (48) 

then the conditions (28) and (29) take the following form:  

For the case a = 0, b = 0 

                                                                   0<k                                                      (491) 

                                                         0
4

2
2

2 >+− ξm
k                                             (492) 

For the case a ≠ 0, b ≠ 0  

                                                             0
4

1 2
1 <+ XR γ                                            (501) 

                                                                02
1 >RXγ                                                (502) 

Here R means 2
2

4
ξ−± m

.  

It is possible to draw the following conclusions from these formulas. First of all from (491) 

and (492) it follows that when k < 0, i.e. when the system is not self-excited (cf. the formula (36)), 

parametric excitation is possible only if  

                                                           22
2

4
ξ>− k

m
                                                  (51)  

Comparing this with the formula (36) for an over generated system we can see that we have 

here a smaller magnitude instead of 2ϑ  . Hence due to use of regeneration it is also possible to 

excite oscillations in the system parametrically even if the specified parameter modulation depth m 

is not sufficient to satisfy the condition (36). This conclusion formed the basis of some of the 

experiments described below.  

If the condition (51) is fulfilled, the system is unstable with α = 0, b = 0. In case of stationary 

periodic motion it is expressed by the formula (471). It follows from the conditions (501) and (502) 

that the condition expressed by them is stable only if both 01 <γ and R < 0 at a time. Thus we 

conclude that the amplitude of the stationary periodic oscillations is expressed by:  

                                                 







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
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−+= 2

2

1

2

4

4 ξ
γ

m
kX                                        (472)  
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This formula is right both for k < 0 (non-self-excited system) and for k > 0 (self-excited 

system). Let us consider the first case. First, note that the condition of the X realness coincides with 

the condition of parametric oscillation excitation (51). It follows thence that the phenomenon of 

“pulling” is missing both under autoparametric excitation and “soft” mode of excitation.  

If we compare the formula (472) with an appropriate formula for the amplitude of the 

oscillations excited autoparametrically: (18)  

                                             











−−+=

189

4 2
0

12

22
0

1

2 λγ
β
ξλ

γ
kX                                 (52) 

 

we will see that both formulas are quite similar and almost the same with small λ0. Hence the 

curves of the heteroparametric resonance in this case are quite similar to the curves of the 

autoparametric resonance considered earlier (17) and (18) (resonance of the 2nd type), moreover the 

external force is replaced here by the modulation depth m. The Fig. 5 shows the heteroparametric 

resonance curve found by the formula (472). As we can see here the resonance curve with the 

amplitude limited by nonlinear resistance differs significantly from heteroparametric resonance 

curve with the amplitude limited by nonlinear self-induction (cf. Fig. 3 and 4).  

When a parameter in the self-excited system (k > 0) is changed we can draw the following 

conclusions. First of all, the fact of the stable 

periodic solution existence (472) points that 

under the heteroparametric influence upon the 

self-oscillating system the phenomenon of 

forced synchronization occurs (“frequency 

dragging”). Now since the realness of X is 

dictated only by the realness of the root when 

k >0, we have the following formula for the 

“dragging area”:  

                                                               
22

mm −≥≥ ξ                                              (53)  

which implies that this area is larger than the excitation area in non-self-excited system (51). Note 

that the self-oscillations decrease significantly on both sides of the dragging area, where there is no 

periodic process, and with sufficiently large influence amplitude they are completely “damped”.  

Approximate theory of this phenomenon that is similar to the phenomenon of asynchronous 

damping will be given elsewhere.  

 

 
Fig. 5.  Heteroparametric resonance curve in 
the regenerative system (theoretical). 
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EXPERIMENTAL PART 

The following experiment was made to check the possibility of oscillation excitation in an 

oscillatory system by means of a single periodic change of its parameters without introducing any 

emf into it. As was shown above, such stimulation can be expected only if the condition  

                                                                ε
π
2>m                                                     (*)  

where m is the relative magnitude of the parameter (its so-called modulation depth) and ε is the 

average logarithmic decrement of the system. Thus it was necessary to realize, on one hand, a very 

efficient way to change the parameter and, on the other hand, the system probably with a smaller ε. 

Since further the maximum power of parametrically excited oscillations is equal to 

                                                                           2

4
CV

m
W ω= , 

then to get any sensible power with feasible frequency (2ω) of the parameter change, it is necessary 

to have capacity C of considerable value in 

the circuit that is able to withstand high 

voltage. Due to the complexity to fulfill the 

variable capacity of a required value that 

assumes an adequate modulation depth with 

wanted high frequencies in laboratory 

conditions, we refused to change the 

capacity and chose self-induction as a 

periodically varied parameter.                                                                                                                                                                                                        

Out of the various ways of the periodic self-

induction change, at first we stopped at the 

following for various reasons. If we 

introduced any conductive body into the 

variable field of the self-inductor L (in the 

simplest case it is a shading coil), then, as 

we know, the magnetic field energy and 

consequently the effective L would decrease 

in view of Foucault current induced in the 

body. On this basis we applied the following 

(Fig. 6, 7 and 8) as a widget that allowed 

changing the effective magnitude of the self-

induction periodically that occurred 
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conveniently and with required frequency. The variable induction here consisted of two groups of 

slab coils (7 in each) (Fig. 6) mounted on two parallel peripheral discs on two parallel circles, so 

that there was narrow space like a split between the coil sides facing each other. A metal rotating 

disk with peripheral teeth-like notches (7 like the number of coils) (Fig. 7) was placed inside of the 

split. The notches were placed in such a way that their middles coincided with the centers of the 

coils at some time during the rotation. Thus the periodic change of self-induction was achieved here 

by the fact that when you rotated the disk, the teeth got in and out of the field coils alternately. In 

the first case the effective self-induction obviously would be minimal and in the second - the 

maximum. Since such a disk (for example, of duralumin) could be rotated at very high rates (the 

peripheral speed was about 220 m/sec in our experiments), consequently, using the said way of 

induction change it was possible to perform high frequencies (1700-2000 per second) of parameter 

change and to obtain oscillations of sufficient power. Note that to increase the self-induction, as 

well as for greater field concentration in the space between the coils, they were provided with cores 

of divided iron.  

In our first experiments with oscillation excitation in the system with periodical change of 

self-induction in early 1931 to fulfill the excitation conditions we used the principle of regeneration 

by means of a vacuum valve for the excitation conditions, since the first made coil system has too 

much resistance, and the logarithmic decrement of the system ε was significantly greater than 0.12, 

whereas the measured (from the definition of the proper frequency of the system with two extreme 

positions of the disk (teeth in the field of coils and teeth outside the field of coils)) depth of self-

induction modulation was only 0.07, i.e. m was smaller than ε
π
2

.  

 

                                                                     Fig.8. 
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The regeneration scheme with parallel feed shown in Fig. 9 was chosen to avoid any obvious 

current and voltage in the oscillating loop in the initial state.  

Here the return coupling was performed through the capacity Cn, the change of which allowed 

us to adjust smoothly the value of coupling. Here is the scheme data. The oscillating loop consisted 

of the mechanically changeable self-induction L1 described above and the additional self-induction 

L2 = 0.1 henry and Hartmann & Braun variable inductor that allows the variation from 11.3 to 16.5-

2 H served for a coarse adjustment. The loop capacity consisted of the constant part C1 of 70,000 cm 

and the variable capacitor C2 (the maximum capacity is 11,200 cm) connected to it in a parallel way 

for a fine adjustment. The total ohmic resistance of the loop was about 90 ohms, not counting 

losses. The distance between the coils (split width) was 5 mm and thickness of the duralumin disk 

was 3 mm. The vacuum valve was Micro (translator’s note: Micro is the name of vacuum valves 

made in the USSR in 1920-1930). Anode voltage was 240 V. The disc was put on the axle, which 

was rotated by an engine with the reducing gear (1:10) of the high frequency machines` type, by 

V.P. Vologdin. With the number of engine turns that was equal to 1400-1500 turns/min (the 

number of disk turns is 10 times greater) we obtained the frequency of n self-induction change from 

1630 to 1750 per second having the disk of 7 teeth. 

The experiment was held in the following way. At first, having a fixed disk (or with rotation, 

the speed of which is not sufficient for oscillation excitation) the lamp’s regime was chosen, in 

order that with sufficient return coupling (adjusted by Cn) and small adjustment of the system to the 

half frequency of the parameter change soft self-oscillation excitation was obtained, if possible, and 

then the coupling would decrease so much that self-oscillations would nor occur within the entire 

area of the adjustment. After that the disk was set in motion. When it reached full speed, the 

oscillations, frequency of which was twice as little as frequency of self-induction change, occurred 

in the system. 

With a smooth change of loop capacity 

(i.e. proper frequency of the system) the 

oscillation frequency remained unchanged 

up to a certain detuning, after which the 

oscillations ceased. In fact, it was 

heteroparametric oscillation excitation that 

took place here and not half frequency 

oscillation excited in a regenerative system 

under the influence of variable current 

pulses, which were induced by any field (like earth's magnetic field) in the teeth during rotation of 

the disk and created emf of the parameter change frequency (case of resonance of the 2nd type), that 

 

Fig. 9. Parametric excitation scheme in the system 
with regeneration. 
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is all clear from the following. For instance, if the maximum current in the loop with self-excitation 

was equal to only 9 mA having a constant component of the anode current ia, which was equal to 

1.4 mA, then with heteroparametric excitation it would reach 40mA, when ia = 1,8 mA. Hence the 

loop was supplied with power by the disk due to the parameter change and not by the battery that 

fed the lamp as in the case of autoparametric excitation.  

Fig. 10 shows the curve of the relations 

between the amplitude of the oscillations 

that occur with the parameter change and 

the oscillatory system detuning. Since in 

this case Ca = 44° and the self-oscillation 

occurred only in the range from Ca = 77 ° 

to Ca = 93°, then there was no self-

excitation in the entire parametric 

excitation area: when the engine was 

stopped or rotation speed of the disk 

changed beyond the range for parametric excitation, the oscillations ceased in the loop. The 

oscillation frequency remained constant and exactly equal to a half of the parameter change 

frequency (n) over the whole curve of the parametric resonance (7 multiplied by the number of the 

disk turns per second). The measurements were made aurally by means of Siemens & Halske 

frequency meter.  

Except for the disk made of duralumin we also made experiments with a disk of iron of the 

same shape, but with thickness equal to 2 mm. Despite the fact that the stator coils were pulled 

together to the distance of 4 mm in order to enhance the field concentration, there was no 

parametric excitation effect. The control measurement of the self-induction modulation depth 

showed that, as might be expected, the iron disk, acting as iron towards increasing of L, on one 

hand, and as the metal towards decreasing, on the other hand, caused a much smaller change in 

induction, making at a time big losses in the system.  

Once the heteroparametric excitation 

effect in the regenerative system was 

specified, we began experimenting with the 

system without regeneration. For this 

purpose the stator coils were changed, the 

core of transformer iron was expanded 

(diameter - 2.2 cm, length - 6.5 cm) and the 

diameter of the coil block wire was 

 
Fig. 10. Heteroparametric excitation scheme in the 
system with regeneration (experemental). 

 
Fig. 11. Scheme of parametric excitation in the 

system without recycling.  
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increased (0.9 mm). Due to these measures we managed, on one hand, to increase the field 

concentration of coils and thus increase the self-induction modulation depth (14.5%), and, on the 

other hand, to reduce ohmic losses in the loop (the resistance of the stator coils was reduced from 

84.5 to 21 ohms. Since here ε ~ 0.14, so the condition (*) was satisfied and it was possible to expect 

the parametric oscillation excitation in this system without regeneration. In fact, when adjusting the 

oscillatory system (made by the scheme of Fig. 11, in which there are no obvious sources of current 

or voltage) to a frequency equal or similar to half frequency of the system self-induction change by 

means of the capacitor C2, powerful oscillations with frequency equal to a half of the self-induction 

change frequency appeared in it. The oscillation amplitude here increased rapidly until the 

insulation, loop capacitor or leads fault occurred. In our experiments the voltage used to reach 12-

15,000 V. In order to obtain stationary regime, it was necessary to introduce a conductor with 

nonlinear characteristic into the system in accordance to the theory. In our first experiments a 

number of incandescent bulbs (100 watt), which could be switched on in the loop in a parallel way, 

were taken as a conductor (Fig. 11). Here are the schema data. The loop capacity consisted of 17-20 

series-connected capacitors (2*F each) and oil capacitor of variable capacity C2 (11,000 cm), which 

was series-connected to constant capacity of 3,000 cm. The maximum and minimum values of self-

induction of the stator coils were  

                                    Lmax = 0,229 H,                            Lmin = 0,193 H.  

The lamp resistor mentioned above served as a load and the resistor R was taken for a smooth 

adjustment of the resistance introduced into the system. Coarse adjustment was made by changing 

the number of series-connected capacitors and more soft adjustment was made by means of the oil 

capacitor. It should be noted that due to the large instability of main voltage, which fed the engine, 

the number of the disk’s turns was much changed and it was necessary to make frequent 

adjustment, as the variable capacitor allowed adjusting the loop frequency only within fairly narrow 

limits. This fact greatly complicated the experiments and gave us no opportunity to make all 

measurements in this scheme.  

We mention the following out of all the experiments that were made. First of all, it should be 

pointed that the introduction of incandescent bulbs actually makes it possible to obtain and regulate 

the stationary oscillation amplitude in wide range (up to 5 A, since the engine power and the wire 

section of the coils did not allow a greater load). However, the filaments` thermal inertia sometimes 

causes peculiar phenomenon of “swaying” the amplitude, which lies in the fact that the amplitude 

increases wavily and not gradually: the  bulbs  burn  now  stronger,  now  weaker.   Sometimes  this  

__________________ 
1It should to be noted that designing, making and setting up of this and depicted in the following devices was 

performed with the significant participation of mechanical designer M. I. Rzyankin. 
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phenomenon, which is often associated with great overvoltage, lasts for several minutes. It is 

possible to avoid it notably by means of choosing a proper regime of the system. Also it should be 

noted that in the following experiments that were made in the present year and were depicted in 

detail by V. A. Lazarev in the following article, we applied a more convenient and technically 

perfect way to adjust a stationary amplitude magnitude based on the use of a nonlinear relationship 

between magnetic flux and current in a special choke introduced into the oscillating loop circuit.  

Here are some results of the measurements performed with incandescent bulbs as a load. The 

dependence of voltage on the capacitor on the 

resistance magnitude introduced into the system is 

shown in Fig. 12. As we can see here the voltage 

decreases gradually, while the load increases. The 

oscillation cease when the 28 ohms resistance is 

introduced. If we assume this value as an 

extremum and take into account all the other 

losses in the system, like the coil block resistance, 

losses in the duralumin disk, in iron, dielectric 

losses in capacitors, then the total logarithmic 

decrement ε of the proper oscillations of the system is about 0.20. Since the self-induction 

modulation depth measured in these conditions is 0.14, the ratio ε
π
2>m , which is the excitation 

condition, is still being fulfilled.  

The following, more detailed experiments were performed with a different experimental plant, 

in which the system of stator coils was changed in order  to increase the modulation depth (40%) 

and power (up to 4kV). These coils of thinner wire were wound around almost closed cores of 

divided iron. The experiments performed with this plant that confirmed both the qualitative and 

quantitative conclusions of the theory are described in detail the article by V. A. Lazarev placed 

below. We only note that except for the duralumin disk we applied also a copper disk in this plant, 

which gave approximately the same results.  

We have already reported in this journal on the experiments with the oscillation excitation by 

means of periodic change of the system capacity, also in accordance to the theory. 

In conclusion, we consider it necessary to express our sincere gratitude to I. M. Borushko and 

V. A. Lazarev, who took a significant part in the experiments described above.  
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ON ELECTRIC OSCILLATION EXCITATION BY MEANS OF PARAMETRIC CHANGE 

by L. Mandelstam and N. Papalexi  

 

In this work the theory of electric oscillation excitation in oscillatory system by means of 

periodic parameter change with no applied electromotive forces is given. This theory, which is 

based on general methods of differential equation periodic solution stated by Henri Poincare, will 

be applied to the special cases of parameter change. These are the cases of oscillation excitation 

(excitation conditions, stationary amplitude, etc.) that can be observed both with a sinusoidal self-

induction or capacity change in a nonlinear oscillatory loop (that contains an iron choke) or in a 

sinusoidal self-induction change in series-connected vacuum valves. The experimental part contains 

the description of the attempts to excite oscillations by means of periodic change in self-induction 

or capacity in accordance with the theory. 

 

__________________________ 
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