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ON THE PARAMETRIC EXCITATION OF ELECTRIC OSCILLATIONS

by
L.T.Mandel'shtam and N.D.Papaleksi

Abstract

An approximate theory is given for the excitation of oscillations
in an electric oscillatory system without explicit sources of
electric or magnetic forces, with the aid of periodic variations

in the system's parameters. The theory is based on general
Poincaré methods developed earlier for finding periodic solutions
of differential equations. Detailed discussion is given of special
cases of such excitation, with sinuscidal variation of self-
induction and capacitance in an oscillatory system having one
degree of freedom, and also with self-inductance variation in a
regenerated'system. Atlempts to generate oscillations by a mechan-
ical variation of parameters in systems with and without regeneration
are deseribed. These experiments confirm the possibility of such.

gxcitation, in accordance with the theory.

The phenomenon of the excitation of oscillations by periodic variation
of the parameters of an oscillatory system?-5 has currently galned renewed
interest in connection with producing such excitation in electric oscillatory

systems. Although the possibilities of such 'parametric excitation' were
J : P




already indicated in the past3’6, and the phenomenon undoubledly plays
a considerable though not often perceived role, e.g. in the usual generation
of current in electrical engineering, only in the last few years was the
effect really appreciated and began to be systematically studied. Thus,
attempts have been described8"9 at exciting oscillations in electric systéms
in the region of acoustic frequencies by periodic magnetization of an iron
core of a self-inductor. Using the changes occurring during rotor rotation
in the self-induction formed by successive combination of two phases of a
stator and two phases of a rotor of a three-phase generator, Winter-Guen’cher‘1
also achieved parametric excitation of oscillations. Ixperiments were
recently reported11 on the excitation of oscillations by mechanical pericedig
variation of a magnetic circuit of a self-inductor in a system.

In 1927 we began theoretical and experimental work on the problem
(at NIIF in Moscow and in TsRL)} and fi?st obtained and investigated oscill-
ations (up to frequencies of the order of 10 Hz ), b& periodic'changes in the
magnetization of an iron core of a self-inductorqa. .The phenomenon was later
studied by us at LEFI with mechanical variation of the parameters12’13, but

publication was delayed until now for patent considerations. As indicated
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in our communication in this journal, vol. 3, no. 7, 1933, apart

from the parametric excitation of oscillations by mechanical variation of
self-induction (at the beginning of 1931) we recently achieved at LEFI
parametric excitation by mechanical variation of the capacitance16.

As regards the theory of parametric excitation, the literature
already contains the necessary basis for a full analysis of the appearance
of oscillations. As is known, the question leads to the investigation of
so~called "unstable" solutions of linear differential equaﬁions with periodie
coefficients, which from the mathematical point of view have been studied in
sufficient detail both generalily and in épplicatian to the present problem
(refs. 2, 3, 14, 15). However, the theory taking these equations as linear
cannot provide information on the stationary amplitude, its stability, the
establishment process, etc., adequate treatment of which is only possible
with the aid of nonlinear differential equations. Winter-Guenther and
Watanabe limit themselves merely to a simplified derivation of the conditions
- for the appearance of oscillatiqns, based on consideration of the corres-

ponding linear differential equation, and leave completely untouched the

guestions of the stationary amplitude. However, these questions are no




Jess basic that the very problem of the appearance of oscillations, and
must be answered not only for a full description of the whole phenocuenon
but also to enable calculations in practical applications of the
phenomencn.

In the present paper we give an approximate theory of the whole
process of parametric excitation of oscillations, starting from Poircard's
method of finding periodic solutions of differential equations. The cases of
periodically varying self-induction and capacitance are considered, and the
results of some work done in 1931 and 1932 at LEFL are reportad. -Further
experimental and theoretical material is given in the following papers by
V.A, lazarev, V.P. Gulyayev, and V.V. Migulin.

The results of a more detailed experimental investigation of
parametric excitation by periodic variation of the magentization of the cofe
of a self-inductor, carried out at TsRL, will be reported elsewhere.

In the present paper we shall confine ourselves to considering in
the first approximation what is perhaps the most important case of parametric

excitation, when the frequency of the paraméter variation is roughly twice

the mean resonance frequency of the system. The methods used here make it




possible, however, to give a solution of the problem for other cases as

well, and also to find further approximations. A number of problems

‘associated with this will be considered at a later date.

THEORETICAL FPART

1a Appearance of oscillations during
parametric excitation. Somne general
considerations and conclusions
13,16

As we have shown earlier y starting from energy considerations
it is easy to account for the physical aspects of the excitation of oscill-
ations by periodic (stepwise) variation of the capacitance of an oscillatory
.system not containing any explicit sources of magnetic or electric fields.

We shall briefly repeat this argument for the case of variation of the
self-inductance. Suppose that a current i is flowing in an oscillatory
system consisting of a capacitance C, ohinmic resistance R, and self-

" inductance L, at some instant of time which we shall take as the starting
instgnt. At this moment we change L by AL, which is equivalent to

increasing the energy by %vlkldz. The system is now left to itself. After

a time equal to 1/ of the period of the tuned frequency of the system,




all the energy transforms from magnetic into electrostatic. At this

moment, when the current falls To zero, we return the self-induction

| to its original value, which can evidently be done wifiout expending worl,

and again we leave the system alone. After the next 1/4 period of
resonance osciliations the electrostatic energy transforms fully into magnetc
and we can begin a new cycle of variation in L, If the energy put in at

the beginning of the cycle exceeds that lost during the cycle, i.e. if
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where € is the logarithmic decrement of the natural OSCiliations of the
system, then the current will be larger at the end of each cycle than at the
beginning. Thus, repeating these cycles, i,e. changing L with a frequency

twice the mean resonance frequency of the system in such a way that

AL/L > £
we can excite oscillations in the system without any emf acting on it, no
matter how small the initial charge. Even in the absence of the practically
always present random inﬁuctions (due to power‘transmission lines, terrestrial

magnetic field, atmospheric charges) we can in principle always find random




charges in the circuit on account of statistical fluctuations.

Even this very rough, rather qualitative, argument shows thal the

two prerequisites for the arisal of oscillations are : 1) a certain

relationship betwzen the parameter-variation frequency and the "mean"

resonance frequency of the system, and 2) a certain relationship between

the relative change in the parameter {depth of modulation) and the mean

logarithmic decrement of the sysiem.

More detailed analysis of the

equations with periodic coefficients.

system's capacitance acoording to the

problem leads to linear differential
Thus, in the case of a change in the

law:

1. 1 .
C =g (1t msinvy ()
we have the following equation for d = Si dts
d dg , 1 .
L_zﬁ—%—lfﬂ—!g—}—c—o(l—i—msmvt)q_l—_(l, (2)
which by the transformation
: _R,.
g=gze * (3)
can be brought to the form
x—[{l%l -{—Iml'sin 2:)5::0, 7 (%)
in which | | '
.-:;‘&I‘; .-__'vt oy O 1 ~ I{
x it T mo‘,:za—o, 20:-——:—. ""12_“’0”"‘*32, (5)
] »
mi=”:::’ {}zﬁ’ 22 ﬂ:l




Thus, mathematically the problem reduces in this case to a
simple linear second-order differential equation (4) with periodic

by
’ 5. Man}" ather pI‘OblemS l=ad

coefficients, known as a Mathieu equation
to equations of this type, in astronomy, optics, elasticity theory, acoustics,
and so on. From the mathematical point of view, they have been well
investigated by Mathieu, Hill, Poincaré, and others.
Solution of eq. (4} may be put in tﬂe form
‘”=C“?ﬁ;l("“ﬁ”"““—‘): (6)
where X (T) is a periodic function with peried W (or 2T ).
Putting this in (3), we obtain for g:
q':CIth_a)zz(f}'foae_(rlﬂh7-_(_&‘:}' . -(7)
which shows the problem of excitation of oscilhtions reduces to finding the

conditions under which the amplitude g will constantly increase. From (17)*

* Translator's note: {(7)

we see that this will happen when the absolute magnitudeof his greater'than Ch
The condition of paramstric excitation is thus c¢losely connected with the

magnitude of h, i.e. with the characteristic ecxponent of the solution of



Mathieu eq. (). The dependence of h on the parameters of this equation m

and A = 2{&1/i’ may beﬂ+ gqualitatively represented graphically (Figure 1)
isolating §n the (m, 2 w,]/ v} plane individually the regions within which
h has a real part. Figure 1 shows that these regions, which are the

regions of the "unstable! solutions of (4), lie arocund 2co1/\p values of

1, 2, 3, etc. In the presence of damping, i.e. for eq. (2), these ia-

stability regions are strongly decreased (shaded areas in Figure 1).

Figure 1
Instability regions (after 14 7T
Andronov and Leontovich q) p !
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Using the method of refs. 3 and 4 we can determine approximately the
boundaries of these regions, Thus, the boundaries of the first instability
region (around the value 2 ma/hﬁ = 1), are given to within m2 by the

curves

g8

. /1_|_]/i_432 wad _m]/1~VE—48’ 3)
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This means that with given m and S and with 2 ¢ /\? values satis-

fying the inequalities

]/1+ M_,;qq}zwtgl/" ]7___439 S )

the solution of (2) is "unstable".

Ta determine the second "instability" region (around 2¢c1/¥’ =2)

we must allow for mll terms. In this case14:

4 4 Aafi— 2 : =
]/4 —|—§m’-’—,l—}fml~—64|}s;—?:;]/4—}——_;1"‘2— Vs —gavs. (10}
so that the width of the region decreases with its order n as m".

Conditions (9) and (10) contain the following additional conditlions.

For the first instability region:

s -

mt . .
-;->4l}2 or m > 40, (1)
and for the second
. i 6402 or - m > 2)/30, (12)

As can be seen from (11) and (12) the condition for parametric
excitation is considerably more difficult to satisfy when the system is
approximately tuned to the Irequency of the parameter variation than when

the system is tuned to half of this frequency, because with a given damping

it then requires a much greater depth of modulation m of the parameter. The




conditions for parametric excitation are even mors difficult for fregquency

ratios 2 w1/y> = 2, 3, ««s etec. Therefore the case of 2 MH/”P =1 is
- of the greatest practical interest, and the present investigation is devoted
almost entirely to this case.

The problem of the conditiqns for the appearance of ospillations
is thus determined by (9) and (11}, These relationships indicate wﬁat
conditions the dampinz must satisfy for oscillations to arise following
variation of a parameter, and also show within what limits we can vary the
resistance of the system (load) or detuns the system from exact parametric
resonance without eliminating the possibility that oscillations will arise.
However, these relationships cannot tell us if a stationary oscillation
amplitude will be established, and what will be the value of this amplitude.
In point of fact, being a linear equation, the starting eq. (2) caunnot give
an aunswer to this questionT In other words, if the system really obeyed
this euation at all times then when condition (9). was observed the amplitude
of the ose¢illations would increase without limit.

Thus a linear system cannot serve as an a-¢ generator. For a

stationary amplitude to be set up in a system, the latter must obey a non.
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jinear differentisl eguation. bg . (2) considered by us 1s only an approx-
imation for a certain finitelamplitude interval: here it retains full
significance and permits us to solve the problem about the appearance of
oscilhtionse.

The experiments described bzlow confirm that the phenomenon Occurs
precisely in this way. 1f nonlinearity is not introduced into the system,
the following picture w1ll be observed when the grsten's paraneters are
periodically varied. As soon as the conditicns for excitation are observed
current appears in the circuit, whose amplitude shows a continvous increase.
In our experiments thlg current increase led eventually to brealkdown of the
capacitor or leads insulation, thus ending the test.

To obitain a stationary state we included in the system a conductor
having a nonlinear characteristic, e.g. a coil with an iron coré, an incan-
descent lamp, etc. Mathematically speaking, as SOCN as we add to the systenm

e.g; a coil with an iron core the equation becomes
d(IJ(i)+R+1+msmvt‘/‘ i dt=0,

where the nonlinear dependence between the current and magnetic flux in the

circuit ¢ (i) is some pressi function of i, e.g. in the form of a power series.
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Since we are after a theory of the observad phenomena, we want to

investigate precisely such nbnlinear equations; mathematieally, wsz are
faced with a twofold problem: we must find the conditions under which
the system's equilibrium becomes unstabl?.(condition for the excitation of
oscillations), and we must determine and examine tﬁe properties of the periocdic
solutions of this eguation (the stationary amplitude, conditions for its
stability, etc.). In the following section we shall consider these problems

on a number of examples.

Formulation o f the problenmn for

special cases

We shall formulate mathematically the probtlem _5f exciting oscillations
by periodic variation of the parameters of an oscillatory system for several
special cases. We begin with the following simple example. Consider an
oscillatory system with a total ohmie resistance R, made up of a capac-
itance € and two self-inductors. Let the self-inductance of ons2 of the

coils be a certain preset harmonic function of time:
ILy=1I,-+1sin2at,

while the second coll is a choke with a split iron core having very small

hysteresis losszs, so that the dependence between the magnetic flux threugh




14
this coil and the current in it will be given by some single-valued function
gl(i), e.g. in the form of a polynomial of n~th order with respect to i.
As the‘simplest case we assume that:
¢()=C+aif-pi*-} 1% (12)
The instantaneous magnetic flux in the circult is then
@ = Lyi-}-9(i) (1%)
and conseguently the differential equation for the problem can be written
in the form:
ad ... ,. . - .
@b @+ Rid g [1a=o, - (15)

whence, putting

j‘i dt = g

and differentiating, we obtain:

@ (@ + Do hsin2e)§4 (R4 20], c0s 200 g + 5 q=0

or, taking (13) into account, we have:

(Lioto -l sinzet 23878 ¢
4 (Rf-2elcos200) 45 g==0. (16)

'The problem of parametric excitation thus leads to a nonlinear second-
order differential equation with periodic coefficients, which cannot be solved

in the general form. However, when (1) 11 and the variastls ({g-dependent)




,15
part of P '(q) are small relative to L10 +a , and (2) the natural
M"mean" logarithmic decrement of the circuit is small in comparison with unity,
this equation can be reduced to the form

zt+z=pf(z, 7,1, 8) (17)
in which 3 is a "small' parameter of the equation., We can now apply
Poincaré's methods to find the periodic solutions.

In point of fact, we transform eq. (16).

Introducing a new time scale:
T =t

and putting:

_ 9t — gl 2w ) ]
E—= pr b= ﬁLﬂqU" g, = 31;3-90’ e 1 ) {(18)
z e dlr b o
=g =g

we obtain in place of (16):
(t4msin2t-}-B,2 4 1,2%) 2--2(D - mcos2<) (1 —t) 2 =0, (19,)
According to our assumntions m, Bas Yqs &y, and % are all small
in compari son with unity. This condition can alsc be expressed in a slightly

different way, denoting by u the largest of these values (in absolute

magnitude), in such a way that:




should te smallar than unity, where
<<

We can then put

msin2t-+8, 247, 2 =uy (2,7)

and
(m Sin 2-:+ pli:_l— T].-'l.:e HIME) x-—-2(f}_}_ mcoszt) ézl"'q’(m’ é} .“.'): (20)
so that (791) can be written in the form:
- pliz, & 1) - .
9.':"‘—3—‘ ———ﬁ*—p_f(:c, x, T, ;1). (21)

Titez@ 9

Here, as can be seen from (20), f£(%, x, T , ») is a periodic function of [4
with period T .

Consequently, we come to the conclusion that in the case considerad

the problem of exciting oscillaticns by periodic variation of the selfl-

inductance of an oscillatory system reduces to solving an eguation of the iype

v

of (21), to which we can apply methods employed in our papgrs17’18 "On

resonance of the n-th king'.

Before passing to an approximate solutien of this eguation, we shall
consider some other cases of parametric excitation with which we dealt in exper-
iments and the thecry of which leads to the same differential equation.

When the capacitance changes sinusoidally, e.g.

accoraing to
1 _ 1-4mein2wf

C Cy
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and the system contains a choke with the avove-considered relationship between

the flux and the current, we have the equation:

. - o r o 14 mein2ei -
(Lm+a+2?q+3Tq-)q+.1fq+-—i—g‘;-~3—q'=0 (16,)
or, introducing the notation of (18):
(14-B, 541 a0z --208 4 (1-Fmsin2)(1—z =0, (19,)
whence we have again:
. Cpd(, o2, 7
Tfrx==——t e, _
where 214731(@’ L _
ph(x)=fatT2% |
and . : . _ . [ (20,)
p¢@;x,ﬂ:;ﬁ—anﬂ——QSM2144hx4ﬂnxﬂx——zﬁw_ 
Further, we shall consider the case of changing self -
induction in a regenerated sy s tie . We

take a usual tube network with feedback and an oscillatory grid circuit

(Figure 2).

Figure 2

Circuit of the regenerative

systenm
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For the oscillatory circuit we have the following differeatial

equation:

¢ i . .1 o di,

o7 Lo (U F-msin2et) gl 4 Rg+—pa=M G- (22)
Here, Ib = L10 + La

where L2 is the self-inductance coefficient of the feedback ceil and qu

as in the case considered above, is the constant part of the periodically
varying self-inductance.

Thus here

!
m—= .__.L__'__
* IJ! + 'Llﬂ

For a tube with very low penetration factor ia may be regarded
as a function only of the grid veltage, and may be represented as, e.g.; an
n-th order polynomial in q. We shall confine ourselves to the simpiest

case, il.e2. when @
i, =ittt (23)

Putting
o | (18,
Ph?l:; ay==ap, 2fpgy =P, Iypgi=y, E a,—28=F,

we have
(1+msin2:)$+2_(i}—]—mcoszr)x'—]—(l-_E)a;:'(ql_{_;gl,,_*_.ﬁ mn);;:,
whence we again arrive at eq. (21}, where

Yz, z, 7)== (k '.Jr 51:;—1—11:1:'3'_*-2?110052:):}:-{-(5—}—::: sin2<)x l
and o o (202)
1 (€, z, D)=msin2, I
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As our last example we shall take a system consisting of an oscill-

atory circuit coupled inductively with an aperiocdic circuit. The mutual

induction between the two will be varied. This system corresponds in

principle to the apparatus for periodic variation of self-induction,

described in the experimental part.

The differential equations for the problem can in this case be written:

+1ie1 ;L f i dt = & (2Fiy)

d {L .
LUZANEE FREIY |/3)

At R2 = 0 this system of equations can be replaced by:

do . o d M
a4 =505 (15,)

We shall consider this eguation more closely for two special cases.

A)
'.L§==const M=2M, (l-ktnsnlowt)
P == L1’1+ﬁ312+711 7

In this case we have:
. " . ’ . .

(2 +m (sinze — 3 cosde) 48,2 4-1,89) 5 -

-2 [0 -{—ml(cos 2c -2 sin 4:)]&:+(1 —t)

M@, owm? Mg
LO_L_____E (1 +?)’ 2 oo M

1
, R ¥ P ®o L, ¢
Thus here

[ ]
where

P“.'{Jl(zh f:’:, T)—-: H1y sin 2'.‘-—-—?.’10054-: . 1:2: ! 2‘:9 2
N it -0 .

: —}—E‘xHZ‘[ﬂ—}—-m,'(COS 2:-{—%511141)] :L, .
and R

.

v (55 =y (s 25 — 005 45 ) - 6,541y 3.
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Comparing these expressions with (20), we see that they differ only by the
presence of terms contzining cos 4t and sin 47T , which (as will belseen
later) do not play any part in the first approximation during the finding of

the M"zeroth'" solution.

B)  In=Lg(l-bmsin2ef), M=M(1+4-msin2o)
D= L4+ 842160

Since in this case

AR M : ;
'L’,:L_;.J(l -+ msin2«i),

£q. (151) is reduced to exactly the same form as eq. (15).

3 Finding the periodic solutions
o f e q. (21)
As already mentioned, in finding the solutions of (21) we shall use

the methods developed in refs. 17 and 18.

Using this, we can, by substituting

T=—uS8IiNT—vreost }
#=wucost-} vsin < (24)
replace eg. (21) by a system of two first-order equations:
;"'—'_.U'f(u: v, T, P‘)GOST !
o (25)
=pf(x v, 5 u}s07 |
Here
Y iz, 7,
,.f(u, l;, :JP i,*;.._.:f_m_'.:)_a (21)

1-tuy e %)
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q" (x) :L'r ."")

and .
x(z, <)

are given by (20}, in which x and % are expressed in terms of u and v

according to (24).

Po find the values u = a, v = b, which are the first approximations
to the solution of our equations by the so-called "zeroth" solutiom, we must

solve the following system of equations:

/.2

-_ff(ﬁ. b, t, 0) Costds =0
I ) .

2=
jf(a, b, 7, 0)sin < dz = 0.
/]

R | (26)

On the basis of (21), this system is identical with:

"E

Jua b, 9c0ss di=

0 - .

2: , )

./"f(“. b, x)sin T ds=0. ]
o | (27)

For the solutions obtained in this wey to be stable, it is necessary thatl

D,(2x)+E,(27) <0

(23)
and lpl(h)s E(2n) |.
1Dy (%), Ey(2m) | (59)
Here
21' . .2:' .
D25y = [ [Pleossds,  E(en= [ [¥],
1(27) E/[au} ¢os y L1(2“)—6/ [EEILOS":J:
. T . - ) (50)

NN RN T
Dg(z.‘)_./‘[d;] sinvdr, X, (2:}=j [gf]sin tds,
Co - . ¢ g .




and the symbols [8f/0ul etc. mean that af/du  etc. are taken for n =0,

u=a, Vv=Db. Since

b al Ce
df] [d:t +p0— P'du ] _[9¥)
du Qe 17 [Eﬁ]

etc., and similarly
af ]
[va [ Jv

then conditions (28) and (30) reduce to:

j‘[ ]cos:d--};/[ ]sm di1 < 0 (281)

£x b3 ’ 2x " Zr

J[%Tt] cf)s‘, T .dt- o/ [%ﬂ sin T--dr"_a/ [z;] ém d- 0/{%%] cosm:>o_(zs.}l)' (29,l )

We shall now apply the scheme of calculation to the special casss
considered. If the self-induction is varied "harmonically

we have:
e (v, v, -:)-—-u-{(v'g-»f—zi})u—}—[E—l (tﬂ—[—v‘*’)ilv}
H(F 2ot +E ) u}

. E,f-(‘”*—vﬂ) §in2: — B, 1 Cos 2 (31

n .
— [s (—2-+Tl-ﬂl’) [-—Vj'l,-ﬁ] cOsS 3T — [3 +1II 1‘.“)) F;_‘-flus:] s]na..

u|"

and therefore eas. (26) assume the form:

'(Trkzﬂ)a+(ﬁ+—m)b_o (32,)
(ml_gy)b_l_( _l_n\z) (32,)

2 2 .
where Xe =a + b is the square of the amplitude of parametrically

excited oscillations.
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From these equations it follows that either

a = 0' b = 01 (33)

or

(34)

Ny ‘1_132_3__ HE
(x-+% } =t i,

To Tind out which of these values are physically possible under

the conditions in question, we turn to the stability conditions {(28) and (29).

Since in the case under consideration:

’?1{2“)-= —% (’%—f— Al —][—-L-l'ab)
Dy(27) = x(E—}-Il;i\’j..[_%a‘z)
E (2r)=—= (E_;_i“;hj_l_ lfjlbﬂ)

E_,(zn)=x(§—zn+‘fjlab), ] (35)

we obtain, on the basis of (28) and (29), the following stability conditions.

In the case a =0, b =20

n? h>0, . (361)
— 425220, .
4 . (302)
and in the case a # 0, b # O:
" >0 (37,
TI[mab——- X2 (E'“k‘%x’)] >0 (372)

Condition (361), or the condition (371) identical with it, is

always satisiled. Conditions (}59) and (3?2) have the following conssquances:
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In the first place, it follows from (362) that the resting state of the
oscillatory system will be wstable only if
T e (3%)

or, in other words, if

PP, 4 (38)

Thus (36) is the condition for t he
appearance o f oscillations during
harmoniec variation of a | p arameter,

If it is satisfied, then a and b cannot both be zero, and the possible
values of the stationary amplitude are obtained fraom (3%), i.e. they are
given by

S ] At (38)
When (36) is satisfied, the root is real and we have two possible
values for Xa. The stability condition (3?2) tells us which sign of
the root to choose.
In point of fact, taking (32,) and (322) into account, we can

write this last condition in the form:

" ;Lz( 1N >0, (39)
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whence we sse that the sign of the root in (3#1) is the same as the sign
of Y1.

At Y., < 0 we consequently have:

1

PP |- moade),
X)“*|Tl|('7k i ,) ' (40,)

while at Y1 > O

xe=2 (- V= :Zsfz) (40,)

Thus, when condition (36) is observed, and the system is tuned so that:

E > ]/111"‘ 4[]2 if' Tl < 0 (f_{_‘l'l

S

and

c<]/’” —_—40-’ if 17, >0 (81,)

‘we can, by periodic variation of the self-induction with frequency 2w, exdte
in a system tuned approximately to frequency @, oscillations having
frequency « and a stationary amplitude which will be giveﬁ by (401) or (402).

As can be seen from (411) and (412), the theory in the first
approximation limits detuning § .only from one side, i.e. it is also possible
to obtain stable amplitudes outside the ¥ interval defined by the condition
for the appearance of ogcillations,. In other words, the parametrically

excited osecillations "persist'. To see how far this "range of persistence™
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(which can also be observed experimentally) extends, we cannot use the
approximate expressions for the amplitide. To obtain an answer to this

and related questions we can no longer confine ourselves to the "zeroth"
approximation, but must include the influence of terms containing p on the
amplitude of the main harmonic and also the role of overtones. It may be
noted that the zeroth solution leads to analogous results for the case
(anlaysed in the paper by V.P. Gulyayev and V.V. Migulin) in which the
relationship beiween the flux‘and current in the limiting choke is given by
an inverse tangent curvqu.

We shall consider more closely the character of the dependence of the
amplitude of excited oscillations on the magnitudes which affect it. Figures 3
and & show the variation of Xa with the detuning § ; these may be called
heteroparametric resonance curves. It is easy to see that tﬁese curves are
fundamentally different from.the usual resonance curves and from curves

of resonance of the second kind.

Figure 3 shows that, as long as
|
e e e L CU )

there are no apprecilable oscillations in the system.
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Parametric oscillations appear at

= — ) Py

beginning from very small amplitudes, and increase when % is increased further.
X2 rises linearly until, at a certain value

>]f Mg
the oscillations suddenly stop. With the reverse course of detuning,

oscillations appear already at

_]/-—-—-4!}2

and then decrease with a further decrease in % until, at

m- 4

‘l=

2 . . . . -
X" &gain becomes zero., Thus a persistence loop exists only on one side

(Figure 3).

| | A :
)4 I L le
~fEI g b 8 {404
Figure 3 Figure 4
Heteroparametric resonance Heteroparametric resonance

curve (Y1 < 0) curve (Y1 > 0)
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As may be seen from Figure 4, at Y4 2 0 we have the opposite

. ' 2 . . . , .
picture: X increases with decreasing %, and the Persisteace loop is
at* & = E1. The maximum value of X° within the region in which oscill-

ations appear is

8 ]/—3—": e U4
vro A S
foax [11] !

i.e. it is inversely proportional to T1.
Analogous results are obtained if the capacitance is subjected to

harmoniec variation, In this case

]

wl (. v, 2y = {[m(l__ )__qq],;_}_(g‘}gll.,\’ﬂ)n}sint‘ ! (42)

. '—'{[m(l--’)—L—Qb]u - ( -}—Tl,\h)- COST-|-

+ terms containing hlghe“ harmonics
Comparing the terms with sin 1T ang €03 T with the corresponding
terms of (31) we see that they are obtained from the latter by putting
m(1 - %) for m. Thus all conclusions obtained for the problem with periodic
variation of self-inductance can be extended directly to the case of capacitance
variation.
In particular,rin the case of the ¢apacitance the boundaries of

parameiric excitation are expressed hy :

——

* Experiments show (see the paper by V.A.Lazarev) that both cases may be
realized in practice,
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=i >z (43)

LR T AT PR m? w

whence 4 1/_4 49 P> {_]/— 4"““‘»
(44)

which is identical with (38) with accuracy to maﬂh

So far we considered pararr;etric excitation of an oscillatory system
without regeneration. When the system is regenerative we. encounter a whole
series of interesting features, which will be examined in closer detail in
the followinz section.

4. Parameter variation in a regenerative

systemn

Since in this case after substituting (24) into (202) we obtain

p {u, v, :)=[('k—1;+%4$9)?cMEv] cost | (45)
+[(k+-2‘~-’r1‘ XE)f#Eﬂ-] sin<

+ terms with higher harmonics

eqs. (27.) and {(27.) for a and b assume the following fTorm:
1 2 g

(15 oo

(46}
1
(k+F+gnuX)p=—t-qa,
50 that we have either | |
a=0, =0

or

1 WNT_ M s (47)
or (’"—{*ZY'X) + 7

T . ——— i
'}Tll"é:ﬂk:t}/%:—i'-’. MER
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To explain the physicsl conditions necessary for the existence
of one or other of thess solutions, we turn to the stability conditions.

Since in this case

1 L1 1.
;Dl(zﬂ)ﬂk—%—rg'“ ﬂg'-!—'ITl;\g W

1.
1D, (2n) ==t 1, ab

T (43)

1B en=—t4inab
1 : 1 401 -
';,"E-z(g’:)#k+%_’i“3‘11b2+'g'ﬁ}kza J
the conditions (28) and (29) assume the following form.
For a=0, b=20,
<0 ()
k22 HE>0 (49,)
and for a £ 0, b #O
. - ) O
R"l““i"‘f: ARV (5 1)
(50,)
TwhX2 >0 2

Here R denotes +4/ (m /%) - Ea—

Some cohclusions can now be drawn from these relationships. In the
first place, from (491) and (492) it follows that if k < 0, i.e, when
the system is not self-excited [cf. (35)], parametric excitation is possible

only when wt g 9 (51)




31

Comparing this with formula (36) for a nonregenerated system, we see that

instead of 20 we have here a smaller quantity, 2% - a@p . Regeneration

thus makes it possible to excite oscillations even when the given depth

of

modulation m is insufficient to satisfy condition (36). This conclusion

underlies some of the experiments described below.

If (51) is obeyed, then the state of the system at a = 0 and

=0

is unstable. If periodic motion is established, the state is given by (4?1)

the_

It follows from (501) and (502) that this state is stable only if at
same time Y1 <0 and R < 0. Thus wa come to the conclusion that the
amplitude of stationary psriocdic vibrations is expressed by the formula
- 4 . wE (l{-? )
SR (A
i I 4 ¢ 2

This is valid both for Kk <0 (no self-excitation) and for k<0 (self-

excited system)., We shall consider the case of k < O first. The condition

for the reality of X coincides with the condition for parametric excitation

(51).  This means that, as in autoparametric exclvalion, the "persistence!

bhencmenon is . here absent under the "soft" excitation regime.
If we further compare (h?g) with the corresponding formula for

s e . . PR I
oscilliation amplitude with autoparamaetiric excitation

the
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2

\ e 1 |z o @ l
A T [" FV ‘5_31"*""1118]’ (52}

I

we see that the two formulas are fully analogous and practically coilncide
at small )o‘ Thus the heteroparametric resonance curves in this case
are quite similar to the autoparametric resonance curves (resonance of the

1 . '
7'18, the external force being here replaced

second kind) considered earlier
by the depth of modulation m. As can be geen from Figure 5, showing the
heteroparametric resonance curve calculated by (4?2), when the amplitude
iz limited by a ronlinear resistance the resonance curve differs censiderably

from the heteroparametric resonance curve when the amplitude is limited by a

nonlinear self-inductance (Figures 3 and 4%).

Figure 5 X

Thecretical heteroparametric of =

resonance curve in a regen-

erative system

In the case of parameter variation in a self-excited system (k > 0),

L]

we come to the following conclusions. In the first place, from the very

existence of a stable pericdic solution (472) it follows that vhen a self-
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oscillatory system is subjected to heteroparametric action we encounter the
phenomenon of forced synchronization ("frequency entrainment”).  Moreover,
since the reality of X 1is determined at k > ¢ only by reality of the root,
we have the following inequalities for the "entrainment region":
>E>¥ﬂ : : (53)
so that this region is greater than the region of excitation in a system
without self-excitation (51). Note that on both sides of the entrainment
region, where the periodic process is absent, auto-oscillations become very
much weaker and, when the amplitude of the action is sufficiently.large, are
completely "damped out'.  An approximate theory of this phencmenon,

analogous to the phenomenon of asynchronous damping, will be given elsewhere.

EXPERIMNENTAL PART

To confirm the possibility of exciting electric oscillations in an
oscillatory system merely by ?eriédic variation of the system's parameters,
w%thout the introduction of any emf's, we first carried out the following

experiment. As we saw above, such excitation can only be expected if

n>(/w) e, )
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where m is the relative change in the parametef (its so-called depth of
modulation?, and ¢ is the mean logarithmic decrement of the system. We
must therefore provide a sufficiently effective method of varying the para-~
meter and have a system with small g . Since, moreover; the maximun powsr

of.parametrically excited oscillations is
1r=§mcw,

then to obtain any appreciable power at easily realizable frequencies (2 w)
of parameter variation, the capacitance € must be fairly large, capable of
withstanding high voltages. Since it is relatively difficuli to ootain
under laboratory conditions a variable capacitance of the reguired value,
permitting sufficiently large depths of modulation at the necessary high
frequencies, we chose instead self-inductance as the periodically varied
parameter. From the various possibilities we chose at first the following.
If a conductor {in the simplestlcase a closed i;op) is introduced into

the variable field of a self-inductor L, then owing to the eddy gurrents
jnduced in the conductor the magnetic field energy (and hgnce also effective

L) will be decreased. Starting from this basis, to vary the effective

self-inductance precisely and with the required freguency we used the
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apparatus shown in Figures 6-8. The variable self~indnctor consisted
of two groups of flat coils (7 1in each group; Figure 6), mounted on two
parallel plates along the periphery of two parallel circles so that a narrow

gap was left between facing coils. A metal rotatable disk was placed in

this gap, having 7 toothlike cutouts* along its rim (Figure 7) spaced out so

* Pranslator's note: This is rather deceptive. Further
description suggests rather a kind
of circular saw with 7 teeth.

that when the disk was rotating the tooth centers corresponded at certain
moments to the centers of the coils. Thus the inductance was here varied

periodically by the teeth alternately entering and leaving the coils' field

as the disk was made to rotate, making the self-inductance assume respectively

minimum and maximum values. Since such a disk (which can be made, for
example, from duralumin) permits very high speeds {in our experiments the
peripheral velocity reached up to 220 m/sec), the frequency of the parameter
variation could be very high (1700 - 2000 per second), obtaining oscillations
with sufficient power. Split iron cores were fitted into the coils to

increase the self-inductance and concentrate the field between the coils.




In our first experiments on exciting oscillations by periodic

variation of self-inductance as described above (at the beginning of 1631 )

we made use of the principle of regeneration with an electron tube to

satisfy the condition for excitation, because our first coll system had an

excessive resistance and € was considerably greater than 0.12, while the

depth of modulation of the self-inductance [measured from determinations of

trhe resonance frecuency of the system in the two extremal positions of the
p

metal disk (teeth in the field of the coils and teeth outside this field )]
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was only 0.07, i.e. m was smaller than (&/m )e.

To emliminate any explicit currents and potentials in the oscillatory
circuit in the initial state, we chose z regeneration circuit with parallel
supply, shown in Figure 9. Here the feedback occurred throwgh capacitance Ca,
and could bte adjusted smoothly by changing Ga' The oscillatory circuit
consisted of the above-described mechanically varied self-inductance Lq, an

additiconal self-inducter L2 = 0,1 H, and a Hartmann and Braun* variometer

* Translator'’s note: Spelling uncertain

o
for coarse tuning, permitting variation from 11.3 to 16.5 2 H. The

* Translator's note: Sic (?)

capacitance of this circuit consisted of a fixed component C, (70,000 cm) and
a variable capacitor C, (max. 11,200 cm) connected in parallel for fine
tuning. Not counting the losses introduced by the disk, the total ohmic
resistance of the circuit was 90 ohm. The distance between coils (gap width)
was 5 mm, and the duralumin disk was 3 mm thick. A '"Mikro'" type tube was used,

with an anode voltage of 240 v. The disk was mounted on an axis made to




rotate by a motor geared up in a ratio of 1:10, of the type of V.P.

Vologdin's high frequency machines*. When the motor speed wag 1400-1500 rpm

* Translator's note: ?

{(disk revolutions 14,000~ 15,000 per minute), we obtained with the 7-tooth
disk a frequency n of self-inductance variation equal to 1630-1750 sec-q.*

The experiments were conducted as follows. First, with the disk
stationary (or rotating with a speed not corresponding to the condition for
excitation) we selected the tube regime so that, at sufficient feedback
(adjusted with the aid of Ca) and tuning of the system to half the parameter-
variation frequency, we obtained at least "soft" self-excitation of auto-
oscillations. The feedback was then reduced so that no auto-oscilhtions occurred
in the whole tuning range. The disk was next set in motion. When the full disk
speed was reached, oscillations appeared with a frequency exactly half that &
the self-inductance. When the circuit's capacitance (i.e. the system's
resonance frequency) was changed smoothly, the freguency of the oscillations
stopped. As will be seen from what foilows, here we were in fact dealing

with heteroparametric excitation of oscillations and not with excitation of

* M.I.Rzyankin participated in the construction, preparation, assembly and
adjustment of the apparatus.
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Figure 9

Circuit for parametric

excitation in a system

with regeneration

halved-frequency oscillations in a regenerative system due to a-c current
pulses induced by some field (e.g. the terrestrial magnetic field) in the

teeth during rotation of the disk and giving rise to emf's with parameter
variation frequency (example of resonance of the second kind). Thus, while
for example the maximum current in the circuit during self-excitation was

only 9 ma with a constant anode current component ia = 1.4 ma, in heteropara-
metric excitation it reached 40 ma with ia = 1.8 ma. Hence power was supplied
to the circuit not by the battery supplying the tube, as in the case of
autoparametric excitation, but by the disk, owing tc variation of self-inductance.
Figure 10 shows the dependence of the amplitude of oscillations appearing
during parameter variation on detuning of the oscillatory system., Since here

Ca = 440*, and auto-oscillations ocecurred only in the Ca-interval of 7Y to 93

* Translator's note: 7
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no self-excitation occurred in the whole region of parametric excitation,.

When the motor was stopped or the disk velocity exceeded the limits of

parametric excitation, the oscillations stopped as well. Over the wnole

extent of the parametric resonance curve the osciliation frequency was

constant and exactly equal to half of the parameter-variation frequency {(n)

[7 times the disk revolutions per secondl. The measurements were conducted

by ear, using a Siemens and Halske frequency meter.

Figure 10
i, .
Experimental heteroparametric “onz ;; ' P_,‘{\
excitation curve in a system v '\\
: X R 3/5—/ h,
with regeneration 1 ¥
i |
A T Y Y AT
L7918 cw

Apart from the duralumin disk, we tried a disk made of iron, having

the same shape but only 2 mm thick. No parametric excitation occurred, even

though the stator coils were moved closer to one another (4 mm gap) to

concentrate the field. A conirol measurement of the depth of modulation showed

that, as could be expected, the iron disk, acting as iron in the direction of
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increasing L on the one hand, and as a metal in the direction of
decreasing L on the other hand,gave a very much smaller variation in the
self-induction, causing at the same time large losses in the system.

Having established the occurrence of heteroparametric excitation in
a regenerative system, we turned to systems without regeneration. For this
purpose we modified the stator ceils; the core (transformer iron) was made
longer (2.2 cm in diameter, 6.5 cm long) and the wire in the coil windings

was made thicker (0.9 mm in diameter)*.

* Tranglator's note: In the original it is unclear
whether the 0,9 mm refers to
the old or to the new wire

diameter
Figure 11
L
Circuit for parametric G E%C # .
excitation in a system 7 =" =
without regeneration :

L

As a result of these measures we increased the coil field concen-

tration, and thus enhanced the depth of modulation of self-inductance (to 14.5%),




and alsc decreased very appreciably the ohmic losses in the circuit (the

stator coil resistance was reduced from &4.5 to 21 ohms). Since £ was

then ~ O.14, the condition given by (*) was satisfied and we could expect
that parametric excitation will occur evern without regeneration. In point of
fact, when the oscillatory system (Figure 11), in which there were no

explicit current or voltage sources, was tuned with capacitor Ca to a fre-
quency equal to, or close to, half of the parameter-variation frequency, strong
oscillations arose in the system, having a frequency equal exactly te one-

half of the variation frequency of the self-inductance. The amplitude of

these oscillations inecreased rapidly until the insulation of the capacitors

or the leads broke down. In our experiments the veltage reached 12,000-15,000 v,
Te &tain a stationary regime it was necessary, in agreement with theory, to
introduce into the system a conductor having a nonlinear characteristic.

In the initial experiments, as such a conductor we used a group of 100 w
incandescent lamps, which could be brought into the oscillatory circuit in
parallel (Figure 11). The circuit's capacitance comprised 17-20 capacitors

(2 uf each) connected in series, in parallel with which was conmected a variable

0il capacitor C, (11,200 cm) in series with a constant capacity of 3000 cm,
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The maximum and minimum self=inductances pf the stator coils were 0.229 and 0.193 |}
The lamp resistor served as a load, and for a smoother adjustment of the
resistance brought into the circult we also incorporated a rheostat R. Coarse
tuning was carried out by changing the number of the in-series capacitors,
and fine tuning by means of the oil capacitor. In view of the considerable
variations of the mains voltage supplying the md or, the disk speed too varied
appreciably, necessitating frequent retuning, since the variable capacitor
only allowed a small adjustment of the circuit frequency. This complicated
the work guite cpnsiderably, and made it impossible to conduct all the measure-
ments with this setup.
Qut of the experiments carried out, we shall mention the following.
First of all, it must be said that the introduction of incandescent lamps
did in fact make it possible to produce and regulate the stationary oscill-
ation amplitude within wide limits (up to 5a, since the motor power and the
coil leads cross-section did not allow a greater load). However, thermal
inertias of the incandescent filaments results in a remarkable amplitude-
build-up phenomenon, in which the amplitude increases not gradually but

in waves: the lamps burn in turan more strongly and more weakly. This
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phenomenon, often associated with strong overvoltages, sometimes lasts for
several minutes, though it may be largely avoided by a suitable choice of the
system's regime. It may also be moted that in the subsequent experiments,
carried out in the following year, which are described in detail in the
following paper by V.A.lazarev, we used a more convenient and improved method
of regulating the stationary amplitude, based on utilization of the nonlinear
relationship existing between the magnetic flux and the current in a special

choke introduced into the oscillatory circuit.

Figure 12
. ¥
Resistance~-dependence of the 00
amplitude of the voltage on
the capacitor 60
S0
e

B R Iy S R
R (a chms

Below we give some results of measurements carried out with incan-
descent lamps as the load. The dependence of amplitude of the voltage on the

capacitor on resistance introduced into the system (Figure 12) shows that the
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voltage decreases smoothly as the load is increased. The oscillations
break off when e introduced resistance amounts to 28 ohms. Taking this as
the limiting value and allowing for all other losses in the system, i.e. the
resistance of the coil windings, losses in the duralumin disk, losses in the
iron, and dielectric losses in the capacitors, we obtain the logarithmic
decrement ¢ of the resonance oscillations of the system as around 0.20.
Since the depth of modulation of the self-inductance measured under these
conditions proved to be 0.4, the excitation condition m > (2/7W) & is
still just satisfied.
Further, more detailed, experiments were conducted with another
apparatus, in which the system of stator coils was modified to increase the
modulation to 40% and the power to 4 kv, The coils were wound from thicker
wire, on almost closed cores from split iron. These experiments, confirming
both gualitatively and quantitatively the theoretical conclusions, are
described in detail in the already mentioned paper by V.A. lazarev. We shall
only mention here that in addition to the duralumin disk we used a copper

disk, obtaining much the same results,
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We have already reported in this journal experiments on exciting

electric oscillations by periodic variation of the capacitance of an

oscillatory system, which were also in agreement with theoretical expectations.

In conclusion, we should like to thank I.M. Borushko and V.A.Lazarev,

for their considerable participation in the work described in this paper.
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