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         Introduction 
 
Since Dr. Balthazar Van der Pol, in his capacity as the President of the Physics Section of 
the International Congress of the ISRU, has invited us to provide a summary of recent 
research on nonlinear oscillations performed at the Physics Institute of Moscow 
University, at the Central Leningrad Radio Laboratory, at the Electrophysics Institute of 
Leningrad and at Gorki University, and since a large part of our work in this important 
field is closely related to the basic research and experiments of Dr. Van der Pol, it gives 
us great pleasure to submit this report. We will only be able to discuss a limited portion 
of this subject. So, we will be reporting on some general concepts that guided us during 
our research, and also on some of our more interesting experimental results as well. 
 
Until rather recently the predominant theory of oscillations dealt with so-called linear 
systems (small perturbations of mechanical systems having a finite number of degrees of 
freedom, electronic circuits, and classical problems with boundary conditions). At the 
present time more interest is being focused on nonlinear systems in the various fields of 
pure and applied science (mechanics, acoustics, biology2 and above all, since the 
invention of the electron tube, radio engineering).  
 
The systems presently being used in radio engineering for transmitting and receiving are 
essentially nonlinear, and this is by no means an accidental condition. It is sufficient to 
merely examine – let us take the simplest example – a triode oscillator, in order to see 
that an autonomous linear system, i.e. a device in which the current and voltage are 
governed by linear differential equations in which time does not explicitly enter,3 cannot 
have the properties that are possessed by, or need to be possessed by, a radio transmitter. 
(We shall confine ourselves to autonomous systems in order to exclude those whose 
oscillations are transmitted from outside the system. Naturally, when a system receives 
oscillations from an external source the question immediately arises as to how  

                                                 
1  This report was delivered to the Radiophysics Section of the General Assembly of the International 

Scientific Radio Union (ISRU), London 12-18 September 1934.  
2  B. van der Pol, J. van der Mark; Philosophical Magazine, 1928: “The heartbeat considered as a relaxation 

oscillation and an electrical model of the heart”. 
3  We define as autonomous any system whose differential equations do not contain any explicit reference 

to time.  
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oscillations from this source are produced. In order to discuss the problem of the 
emission of oscillations, systems functioning without external electromotive forces 
should be observed). Indeed the basic property of linear systems is that the amplitude is 
not intrinsic to the system, but depends entirely on the initial conditions. Now the 
distinguishing characteristic of modern oscillating devices is that, independent of the 
initial conditions, an oscillatory operating mode is established whose amplitude and 
frequency are completely defined. This is why modern radio engineering has had to call 
upon physical concepts and a mathematical approach that are able to cope with nonlinear 
systems. The great diversity of phenomena that are revealed in nonlinear systems makes 
them extremely interesting from a purely physical standpoint. It is their diversity as well 
as their flexibility which has enabled the broad applications that these systems have 
received over the course of the last few years. 
 
 
Since the study of nonlinear differential equations is much more difficult and complicated 
than that of linear equations, the tendency from the beginning has naturally been to 
“linearize” the problems, i.e. to treat the essentially nonlinear problems from a linear 
viewpoint. It cannot be denied that, in order to clear up some aspects of the known 
phenomena, such a method (linearization) can sometimes have its utility. However, since 
it is still incomplete, artificial, and requires complementary ad-hoc hypotheses, this 
method of linearization often leads to errors. One of these errors, which is still 
encountered quite often, is referred to below4. 
 
 
After nonlinear systems had completely dominated the field of practical applications, 
they began to reveal phenomena absolutely foreign to linear systems, and inspired the 
search for a mathematical approach that could cope with these new phenomena. Very 
soon, publications appeared which purposely began from a nonlinear viewpoint. These 
are, primarily, the remarkable works of Van der Pol to which we will have occasion to 
refer several times. As has been stated, the results that they contain are of fundamental 
importance to the entire field in which we are involved. However, and this was 
reasonable, the first works had the production of tangible results as their goal rather than 
to develop a general and rigorous theory. Thus, for example, the existence of periodic 
solutions was accepted as an assumption. Series were often used whose convergence was 
questionable. Nevertheless, and let us emphasize this, the results obtained were good.  
 
 
After using these methods (which originally owed their existence to the works of Van der 
Pol) for some time, a great quantity of valuable results were produced, and it was natural 
to pass on to more general points of view and look for a mathematical approach that 
could cope with nonlinear problems. It is in this direction that a portion of our work has 
been executed.  

                                                 
4 See page 87. 
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It turned out that the mathematical approach that could deal with nonlinear oscillation 
problems had been in existence for a long time. On the one hand, it was contained in the 
famous works of Henri Poincaré [1], [2], and on the other hand, in the remarkable 
investigations of Liapunov [3].  
 
 
The relationship existing between the works of Poincaré carried forward by Birkhoff [4], 
as well as those of Liapunov and our present physical problems was indicated out by one 
of us [5]. Three things should be pointed out. First of all, the qualitative theory of 
differential equations, developed earlier by Poincaré, has turned out to be very effective 
for the qualitative discussion of physical phenomena taking place in systems presently 
used in radio engineering. Nevertheless, neither the physicist nor, with greater reason, the 
engineer can be happy with a qualitative analysis. The later works of Poincaré supplied 
an approach that allowed the treatment of our problems on a quantitative basis. Finally, 
the works of Liapunov permit applying questions of stability to the mathematical 
discussion.  
 
 
The first part of this report summarizes these mathematical theories and shows how we 
can apply them to our present problems. We shall virtually disregard questions of 
stability. The second part of this report discusses the theoretical and experimental aspects 
of some concrete questions. These partially involve problems for which we have 
perfected and supplied results, previously obtained by other authors, with a strict 
mathematical foundation. In addition, we shall examine resonance phenomena of the n-th 
degree and shall concisely report certain experiments and theoretical considerations on 
the so-called parametric excitation phenomena. 
 
We will conclude by making several observations on the role of statistics in oscillatory 
phenomena. 
 
 
Section 1: Geometric Presentation of the Motion of an Oscillatory System; The 
Phase Plane   
 
There is no question but that the mathematical methods concerned here are noticeably 
more complicated and difficult than those used to study linear systems. This arises from 
the very nature of the physical problems, which are far from being simple. Also, there is 
no doubt that the characteristic features of this approach will prove capable of dealing 
with nonlinear systems on a theoretical as well as a practical basis. It is our position that a 
mathematical approach can only be charged with being cumbersome and 
overcomplicated when it leads to a result after a long succession of operations in which 
each operation, taken separately, has no physical interpretation. Now, this is not at all the 
case in the geometric approach connected with the name of Poincaré. Here, each 
geometrical component possesses a direct physical meaning. This is why this geometrical 
approach, though complicated, is far from being an obstacle. It actually simplifies the 
description and understanding of the physical phenomena involved.  



 84

This well-founded method, which consists of showing the operation of an oscillating 
system by using a geometric figure, has been used in science for quite some time. The 
idea is, essentially, as follows. In order to characterize the state of a system with N 
degrees of freedom it is necessary to provide 2N numbers (N coordinates and N 
velocities). These 2N numbers can be considered as specifying the position of a point in 
space with 2N dimensions. To each point of this space there corresponds a certain state (a 
certain “phase”) of the system. This is why this space is called “extension in phase”. In 
the case of a system with one degree of freedom, this space has two dimensions. In the 
simplest case it is a plane. 
 
Let us take the simplest example of a harmonic oscillator. Its equation has the form: 
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These equations, likewise, describe an electrical circuit that has capacitance and self-
induction (but no resistance) if, for example, x represents the charge on the condenser. 
We will describe the behavior of the oscillator on a plane related to the rectangular axes 

 (the voltage-current plane). This will be the phase plane. Each new state of the 
system corresponds to a new “representative” point on the phase plane. A succession of 
states of the system corresponds to a movement of the representative point on the phase 
plane, or phase trajectory.  

.
x,x

 
Planck has familiarized physicists with the phase trajectories of the harmonic oscillator. 
They form a family of ellipses, each enclosing the other and having a common center as 
the origin. The equation  indicates that the representative point is moving in a 
clockwise direction. The origin can be considered as an ellipse that has degenerated into a 
point. 

yx
.
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In the case of equations (2), the point x = 0, y = 0 is a “singular point”, since at this point 
dy/dx = 0/0 and the direction of the phase trajectories is indeterminate. According to the 
description acceptable in mathematics, a singular point surrounded by a family of ellipses 
may be termed the center. It is clear that in the instance of our subject, singular points are 
of special interest. In order for dy/dx = 0/0, i.e. a singular point, it is sufficient that dy/dt 
= 0 and dx/dt = 0. However, if the current and voltage in a simple circuit are 
simultaneously equal to zero, the system is in equilibrium. Therefore, all the states of 
equilibrium of the system under study are represented by the singular points of the 
differential equations (2). 
 
Each ellipse and each closed trajectory represents a periodic phenomenon corresponding 
to certain suitably selected initial conditions. The origin represents a stable state of 
equilibrium in the sense that any small disturbance remains small. 
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In the case under consideration, it is clear that, regardless of the initial conditions, the 
system describes a periodic motion, except in the situation where the initial conditions 
correspond to the coordinate origin. 
 
In the same manner, we present the phase plane for a damped oscillator that is governed 
by the equation: 
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We shall assume, first of all, that h2 < (ω0) 2

 . Since x is the voltage at the condenser 
terminals, these equations describe an oscillating circuit that has resistance. All the 
integral curves are spirals that are   

 
 
wound asymptotically with the origin of the coordinates (Figure 1). Each one of the 
spirals represents a damped oscillation corresponding to suitable initial conditions. Like 
the preceding example, the origin represents a state of equilibrium and is found to be a 
singular point, although of a new type. The singular points that are used as asymptotic 
points with a family of spirals are called the focus. In our case, the singular point is stable 
and is therefore called a stable focus. 
 
Giving consideration to the phase plane of a system governed by equations (3) or (4), but 
whose damping is substantial enough for h2 > (ω0) 2 to be true, we shall see parabolic 
curves passing through the origin substituted for the spirals (Figure 2). As in the 
proceeding example, the origin represents a state of equilibrium. It is a singular point of 
the type called a node. Integral curves reflect the aperiodic movement of the system 
towards the state of equilibrium. Therefore, we have a stable node. 
 
In addition to the center, the focus, and the node, there also exists an important type of 
singular point for us: this is the saddle (Figure 3). The saddle represents, for example, the 
upper equilibrium position of a pendulum.  
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The behavior of integral curves in the vicinity of the saddle shows that the system always 
ends by diverging. A saddle is, therefore, always unstable. 
 
In the case of a triode oscillator whose oscillating circuit is inserted between the filament 
and the grid, the voltage v at the condenser terminals satisfies the equation: 
 











=++

....
v,vf

C
Mv

C
1vRvL     (4) 

or 

( )i,vfv
td
id

C
i

td
vd

2
o +ω−=

=
 

    
The form of the function f (v, i) is provided by the plate characteristic of the tube (for 
simplicity’s sake, we disregard the grid current). The mathematical discussion of this  

 
equation on the phase plane gives us the following picture. In the case of a soft mode and 
a weak excitation (M small), the integral curves are spirals which uncoil in a closed 
curve. Some approach one another from the outside, coming from infinity. Others 
approach one another from the inside, unwinding beginning from the point of origin 
(Figure 4, 16). It is easy to establish the relationship between the essential lines of the 
geometrical figure and those of the physical system. The origin of the coordinates still 
represents an equilibrium state; it is an unstable focus. In the circuit we will observe the 
appearance of oscillations whose amplitude will gradually increase, even if the values of 
voltage and current differ very little from zero (as will be the case, for example, if the 
initial perturbation i0,v0 is produced by random fluctuations). After some time, the 
increase will slow down and then stop, and we shall see the setting up of a stationary 
oscillatory mode of operation, which may be depicted on the phase plane by a closed 
curve. If the initial conditions correspond to a point located outside of the closed curve, 
the circuit will oscillate with decreasing amplitude until a stationary mode of operation is 
established.  
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The closed curves, on which the integral curves are wound, or from where they are 
unwound, are the limiting cycles of Poincaré. This mathematical concept has a very 
simple physical interpretation: the limiting cycles depict periodic stationary modes of 
operation. In the same way as with singular points, the limiting cycles can be stable (if all 
of the neighboring integral curves come closer) or unstable (if all of the neighboring 
integral curves diverge). It is clear that only the stable limiting cycles represent the actual 
periodic motion of a physical system.  
 
If a strong excitation M is given in the same case as the previous “soft” mode of 
operation, there will still exist a limiting cycle with which the other integral curves will 
be wound from the inside and from the outside since the property was suitably selected. 
Nevertheless, in the vicinity of an equilibrium state the behavior of the system will be 
essentially different. The integral curves will diverge from the singular point in an 
aperiodic rather than an oscillatory manner, and the singular point will be an unstable 
node. The presence of the cycle shows that, no matter what the initial conditions may be, 
there will definitely be a well-defined periodic “amplitude” phenomenon. This periodic 
phenomenon will, again, be independent of the initial conditions. However, the transitory 
phenomenon assumes a different characteristic than in the case of a small excitation. It 
should be sufficient to study the beginning of the transitory phenomenon of a linear 
idealization in the case where the initial perturbation is assumed to be small. 
Nevertheless, in the case of an unstable node, the absence of oscillatory phenomena in a 
linear system does not permit one to conclude anything concerning the absence of 
periodic oscillatory phenomena out at a distance from the state of equilibrium, i.e. - out at 
some point where the system cannot be considered as linear. 
 
The case of the node enclosed in a limiting stable cycle is the most striking example of 
the lack of capability of linear methods to decide on the existence of periodic phenomena 
in a self-exciting system. Furthermore, if this circumstance is disregarded, it is possible to 
commit a serious error, as has been done by several authors…… 
 
The singular points and the limiting cycles constitute the geometric components 
characterizing, to a certain degree, stationary movements in the systems. According to 
Poincaré, the knowledge of these components is enough to judge the properties of all 
other movements. The coexistence of these components is, likewise, controlled by 
general topological laws. Also, if the properties of one of these components is known, it 
is often possible to deduce the existence of the others. If, for example, far from the point 
of origin, all the integral curves converge towards the origin, with the latter being an 
unstable focus or node, and, provided that there are no other singular points, there exists 
at least one stable limiting cycle. If there exist several limiting cycles enclosing one 
another and between which there are no singular points, then there is an alternation of 
stable and unstable cycles. From the point of view of “Analysis Situs” (topology), these 
statements are almost syllogisms. Nevertheless, the physical phenomena corresponding to 
these geometric properties are far from being trivial. The qualitative theory of Poincaré is 
so valuable because it permits the formation of an overview of the physical phenomenon 
by a relatively simple analysis. 
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The following is a very simple example. Although without practical significance, it 
clearly illustrates what has been said. Let us assume that the characteristic of the tube has  

the shape that can be seen in Figure 
5. Under what conditions will the 
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oscillator have stationary (periodic) 
oscillations? In order to know the 
behavior of the system at infinity, it 
is clearly possible to assume that the 
operational point is at the apex of the 
angle formed by the two rectilinear 
parts of the characteristic. Depending 
on the slope of the inclined part, two 
cases can be seen: either the cycle at 
infinity will be stable, i.e., all the 
integral curves will go towards 
infinity (if the slope exceeds a 
certain critical value), or else the 
cycle at infinity will be unstable (if 
the slope is less than this critical 
value). It can easily be seen that it is 

nly possible to have one finite limited cycle for finite values of the slope. If the 
perational point is located in the horizontal part of the characteristic, then the origin
table point of equilibrium and, consequently, owing to general topological laws, th
an be no limiting cycle. Therefore, it is not possible to have oscillations. If the 
perational point is located on the inclined portion of the characteristic, three cases can 
ccur. If the singular point is stable, there are no oscillations. If the slope increases, the 
ingular point becomes unstable. If the cycle at infinity is likewise unstable, the 
scillations certainly continue to exist. However, when the slope increases beyond a 
ertain critical value, the cycle at infinity becomes stable and oscill
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ations again become 
possible. 

ection 2: Analytical Methods for the Study of Nonlinear Systems 
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ractical purposes.  
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he general qualitative theory of differential equations, partially discussed above, is sti
n the developmental stage. It allows analysis, however incomplete, in the case of two 
nd possibly three autonomous equations (incomplete analysis in this last case), provi
hat the second terms are either polynomials of not too high a degree (third, fifth), or 
unctions that can be geometrically characterized with sufficient simplicity. However, th
adio engineer cannot be content with a qualitative study of the problem. He requires a
uantitative study that, alone, can be used as a basis for practical calculations. On the 
ther hand, the radio engineer can accept a quantitative theory with only an approxima
asis provided that it
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From this point, there is a clear necessity to prepare approximate methods for the study of 
nonlinear systems. These methods should, of course, take into account what these 
systems have in the way of specifics. One approximate quantitative method which can 
deal with the analysis of nonlinear systems is the one involving coefficients with slow 
variation, or, as we shall term it, the Van der Pol method. Although this method has 
actually been used for quite some time in celestial mechanics, it was Van der Pol who 
was the first to systematically apply it to problems of radio engineering. He produced a 
series of basic results concerning forced synchronization, “resistance”, etc. [6], [7]. 
 
But it was only recently that this method was supported on a mathematical basis. 
Additionally, there still remains a certain amount of uncertainty in the very method of its 
application. The chief difficulty, in this respect, was obviated [8] in a way which we shall 
explain using the equation: 
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in which the second term is a periodic function of t of period 2π, and µ is a “small 
parameter” on which the degree of approximation will depend, as we shall see. It is 
possible to reduce the equation of a regenerative receiver, etc to this form. According to 
Van der Pol, one should pose that: 
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u and v being functions of time t with “slow variation,” i.e. whose derivatives are small 
with respect to u and v, and whose second derivatives are small with respect to the 
primary derivatives. Introducing the hypotheses involved in expressions (6) and (5), and 
disregarding all the terms of higher degrees as well as the harmonics, we now obtain the 
approximate equations of Van der Pol: 
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in which τ = µt and ao(u,v), bo(u,v) are functions of u and v. 
 
Let us view the problem from another point of view. Let us substitute two new variables, 
u and v for the variable x, u and v being defined as follows: 

tsinvtcosux +=      
 
Substituting two variables u and v for a single variable x enables us to impose upon them 
the supplementary condition: 
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Replacing the second terms by their averages, we again arrive at the “truncated” or Van 
der Pol equations. By producing them in the same way, it is possible to clearly state an 
approximation problem: it is a matter of establishing when and how much (as a function 
of the value of µ) the solutions of the truncated equations are themselves close to those of 
the exact equations (7). This is purely a mathematical question that has been studied by P. 
Fatou [9] in a memorandum, which only came to our attention after our investigations 
concerning the Van der Pol method.  
 
Our works, as well as the mathematical results of Fatou that apply to our present 
problems, while reporting the conditions and ranges that the truncated equations of Van 
der Pol can take into account, can also, with sufficient approximation, deal with transitory 
phenomena. In addition, the results of Fatou confirm that when µ is sufficiently small, 
each equilibrium position of the truncated system corresponds to a periodic solution of 
the exact system, and that if this position of equilibrium is stable the periodic solution is 
likewise stable. Therefore, the question relating to the mathematical basis of the Van der 
Pol method has been clarified. It is possible to hope that this method will likewise be 
justified for more complicated cases. 
 
Let us explain again the advantages of the Van der Pol method. In the case of an 
autonomous system with one degree of freedom, the Van der Pol equations can be 
reduced to a single equation, which may be easily solved by quadrature. In the case of 
non-autonomous systems with one degree of freedom – the case which has just been 
reported above – the Van der Pol equations are autonomous, and consequently, soluble 
by the methods of Poincaré [29]. In the case of more complicated systems, for example 
those with two degrees of freedom (autonomous or subject to external effects), the Van 
der Pol equations are systems of autonomous equations of the first degree – two 
equations in the most simple cases – which can be processed by the methods of Poincaré 
[10]5. The Van der Pol method therefore allows replacing a system of nonlinear equations 
by another, more simple one. It is possible to use the Van der Pol equations successfully, 
which has been done in a study of the concepts of extension of phase, singular points, 
limiting cycles, and the theory of bifurcations (Section 3). We shall see below that by 
applying the Poincaré methods to the approximate equations of Van der Pol, it is possible 
to produce some new results that are of physical interest. 
 
We have seen that the Van der Pol method provides a solid basis for dealing with the 
simplest cases with which we are concerned. But it only provides a “zero order 
approximation”. For some questions arising in radio technology this would be sufficient. 
But there are other questions that require further approximations: these mainly concern 
questions about the correctness of frequency, the latter only appearing in many problems 
as a second approximation. 
 
 
 
 

                                                 
5 There are 3 van der Pol equations for a self-oscillating system with two weakly coupled circuits. This case 
was discussed by Mayer at Gorki.  
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A theory that allows improvement of precision and calculation is therefore necessary. 
Unfortunately, such a theory only exists in the case of purely periodic phenomena. This is 
the “small parameter method” to which we likewise are indebted to Poincaré. This 
method allowed the latter to scientifically demonstrate the existence of periodic solutions 
of a very general character for the three-body problem in celestial mechanics. In 
substance, this method consists of the following. Let us assume that when the parameter 
µ = 0, our system exhibits certain periodic motions. A search is then made for the motion 
existing when µ ≠ 0 in the form of an ordinate series according to the powers of µ, in 
which the zero approximation is one of the solutions corresponding to µ = 0. If, with µ 
being zero, the system produces a family of periodic solutions, it includes a discontinuous 
system of periodic solutions close to those existing when µ ≠ 0 and which should be 
determined. This method is especially convenient when used with the zero 
approximation; this system is linear and conservative6. 
 
We have applied this method to a whole series of self-exciting problems [12], [13], [14], 
[15]. 
 
 
Section 3: Variation in One Parameter; Stability on a Large Scale 
 
In order to study the important subject of the transformations undergone by the phase 
plane in the case of variation of one parameter, we should consult Poincaré once again. 
Poincaré was led, in his famous theory of the equilibrium of rotating fluid masses, to state 
and brilliantly solve questions relative to the development of equilibrium states of a 
conservative system in the case of the variation of one parameter. The concept created by 
Poincaré concerning the bifurcation value of the parameter can be generalized and 
applied to the problems in which we are involved. One value of the parameter λ = λ0 is 
called ordinary if there exists a finite quantity ε (ε > 0) such as for |λ – λ0| < ε. The 
integral curves on the phase plane have the same qualitative appearance and show 
bifurcation in the contrary case. 
 
In the general case, the theory of the development undergone by the qualitative 
appearance of the phase plane, in the case of variation of the parameter, is quite 
complicated and insufficiently perfected. However, in the case of approximately 
sinusoidal oscillations, the theory is simplified in the extreme and returns to the theory of 
Poincaré for to the equilibrium states of a conservative system. It is sufficient to replace 
the coordinates of the states of equilibrium by the squares of the amplitudes of stationary 
motion (limiting cycles and singular points) [16]. Without explaining the Poincaré theory, 
we will provide an example of its application.  
 
Let us take the two principal types of excitation, the “soft” excitation and the “abrupt” 
excitation. We shall concern ourselves with the oscillator of Figure 6 and shall select the 
coefficient of mutual induction as a parameter. 

                                                 
6Pontryagin has provided a general method for the case in which, with zero approximation, the system is 
Hamiltonian.  
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Soft Excitation: Let λ = λ1 be the value of this parameter corresponding to the excitation 
(Figure 7). In the case of λ < λ1, the only stable stationary state is the state of equilibrium 
depicted by one focus (Figure 8). Regardless of the initial position of the representative 
point, at the end of a certain length of time it will be found in the vicinity of this focus. 
 

 
 
When λ = λ1 is a bifurcation value of the parameter: the focus loses its stability at the 
same time that it generates a small stable limiting cycle (Figure 9) on which the 
representative point begins to rotate. In the parlance of physics, we say that the oscillator 
has been excited.  

 
 
With λ increasing the radius of the limiting cycle becomes larger (Figure 10), and with λ 
decreasing all the phenomena are reproduced in the reverse direction: the limiting cycle is 
reduced to one point, and the oscillations cease. On the physical diagram I2, (λ being the 
amplitude of the current), we obtain a “soft” transition from the state of equilibrium to the 
periodic motion and vice versa: the amplitude of the oscillations varies in a continuous 
manner (Figure 11). 
 
Abrupt Excitation: If, in the case of small values for λ, the system is found to be in the 
proximity of the state of equilibrium, it remains there until λ assumes the value λ = λ1 
(Figure 12, 13, 14, 15). The creation of two twin limiting cycles -- one stable and the 
other unstable -- at the instant in which λ = λ0 does not disturb our representative point 
since it leaves the stability of the equilibrium state intact. 
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In the range λ0 to λ1, the unstable cycle becomes smaller. Then when λ = λ1, it disappears 
and dissipates, so to say, the singular point by its instability. At this instant, the 
representative point, following the integral curves, rejoins the stable limiting cycle whose 
amplitude has gradually increased from the instant at which λ = λ0 (Figure 16). 

 
 
Causing the parameter to vary in reverse, we observe that, on “return”, the oscillator 
takes a different path than when “going”. Indeed, the representative point will stay with 
the limiting cycle until the instant at which λ = λ0. At this instant, the two cycles are 
merged, compelling the representative point towards the state of equilibrium. The fact 
that the latter becomes stable when λ = λ1,  
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produces no effect on the movement of the representative point since, at the instant in 
which λ = λ1, the characteristic of the cycle used as its path does not change.  
 
The diagram I2, λ (Figure 17) emphasizes a discontinuous (“abrupt”) variation of the 
amplitude, a variation which, owing to its irreversibility, recalls hysteresis phenomena. 
 
This phenomenon of abrupt excitation, which is quite interesting for the radio engineer, 
finds its natural and proper interpretation in the language of singular points, limiting 

cycles, and the bifurcation values of the parameter. 
For this reason, it can be seen immediately that 
when λ0 < λ < λ1, the representative point can be 
“thrown” from one stationary mode of operation 
into another by a sufficiently strong impulse. This is 
a claim that we suspect can be demonstrated 
intelligibly by quasi-linear theory. 
 
At this point, we should like to discuss a concept 
that would have no significance in the case of a 
conservative system, but which, in the case of a 
nonconservative system, has a great deal of interest. 

Let a path be stable. On the phase plane we can mark off a region containing the initial 
position of the representative point from which the latter, ultimately (when t  +∞) 
rejoins this path. This region is called the “large scale region of stability” or “region of 
attraction” of the stationary movement under consideration. Figure 18 and 19 represent 
two examples. 

 
The phase plane of Figure 18 has three singular points: two stable nodes and one saddle. 
The range of attraction of node A is in the right semiplane, whereas that of node B is in 
the left semiplane. Let us now consider (Figure 19) a stable singular point surrounded by 
an unstable cycle, which is, in turn, contained within a stable cycle. The range of stability 
on a large scale of the position of equilibrium is the portion of the plane contained within 
the unstable cycle. The remainder of the plane is the range of attraction of the stable 
cycle.  



95  

Without providing more complicated examples, let us point out that the sharing of the 
extension in phase by the fields of attraction comes up against some obstacles, even in the 
case of one degree of freedom. It appears that considerations of probability must be taken 
into consideration here. 
 
Let us note, in conclusion, that the concept of stability on a large scale imparts the true 
physical interpretation to the unstable limiting cycles and separating curves. These are the 
boundary motions similar to what is called, in geography, the tidal line: according to 
which, at the initial instant, the representative point is placed on one side or the other of 
these components and takes its direction towards differing destinations. 
 
 
 
 
Section 4: Autonomous Systems 
 
 
At the forefront of the many nonlinear problems is the one of autoexcitation, i.e. those 
oscillations created by the oscillating system itself without the participation of any 
external forces varying with time and at the expense of a constant source of energy (for 
example a storage battery). The qualitative questions and, partially, the quantitative 
questions that are concerned directly with the study of an autonomous nonlinear system, 
can be solved by methods that we have described above. We have already shown 
examples of the application of these methods to the problems relating to soft and abrupt 
excitation, and to transient phenomena. As we have said, quantitative methods of 
approximation allow us to find the amplitude of autoexcitations and the correct frequency 
in the case of almost sinusoidal oscillations. Permit us to comment that, at least insofar as 
only the zero-order approximation is concerned, in such problems the methods placed 
previously known results solidly upon a mathematical basis. In this way, it is possible to 
precisely demonstrate the existence of periodic solutions in certain cases, and establish 
their stability. We estimate that these demonstrations of existence have a high degree of 
usefulness, and the following is why. 
 
When we set up any problem of physics as a differential equation, we are always forced 
to simplify it. We do not write the equation of the problem that is given to us, but rather 
that of a simplified and idealized problem. Now, how can we be certain that we have not 
disregarded any of the essential features of the real problem? The situation changes if we 
have demonstrated the existence of a periodic solution that has been verified by 
experiment. This demonstration is an argument to maintain that we have not omitted 
essential features (assuming as the latter those that make available the production of 
stationary oscillations). But these are only indirect data. The same will not be true if it 
can be demonstrated that the differential equations do not have a periodic solution, 
whereas the system that they claim to describe does possess such solutions. Most 
certainly we have then disregarded some essential feature, and we must attempt to 
recapture it.  
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Practical experience recognizes cases where experimental investigations demonstrate the 
existence of a solution, which has suggested the means for correcting omissions of this 
type and placing further discussion on the right track.  
 
The following is one of the most elementary examples. Everyone knows how many 
technical manuals – chiefly among the older ones – describe the theory of the bell or 
electric buzzer. The armature, in the state of equilibrium, closes the circuit of the 
electromagnet.  When a battery is placed in the circuit the electromagnet attracts the 
armature, the current is interrupted, the magnet loses the force of attraction, the spring 
pulls the armature back into its original position, and as the old expression goes – the 
game continues. If this reasoning is translated into differential equations, it is possible to 
show very easily that they do not permit the game to continue and that they allow only a 
periodic solution. Some essential point has therefore been disregarded. In reality, the 
theory of buzzers is less simple than it appears at first glance. Self-induction is necessary 
for oscillations to be possible at all. Mr. Leontovitch [17] has successfully discussed the 
problem of the buzzer and has clearly shown that not only is self-induction necessary for 
the existence of the phenomenon, but that it becomes a factor in the period of the 
oscillations, this period differing from that of the tuning fork or armature return spring. 
Other examples could be quoted showing the actual utility of experimental investigations 
devoted to questions of the existence of solutions.  
 
Radio engineering often reveals conditions in which oscillators are practically 
sinusoidal7. However, during the last two years, and to a great extent owing again to the 
works of Van der Pol, interest has grown concerning systems executing oscillations 
which greatly differ from a sinusoidal shape and may be termed “relaxation oscillations”. 
The characteristic of these oscillations is, essentially, a function of the resistance or 
parameters equivalent to it. This implies that an equation of the type: 
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describes the autoexcitation system. The function    is not limited to small values, 
as in the case of “almost sinusoidal” oscillations, but, as Van der Pol has pointed out, it 
may take on substantial values. Since, it is assumed here that we are concerned with 
periodic solutions, this case is entirely within the purview of the qualitative theory of 
Poincaré. The singular unstable point is a node, and the periodic solution corresponds to a 
limiting cycle. 
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According to the simplest hypothesis, when the characteristic of the tube can be modeled 
as a cubic parabola, the equation can be described in the form: 

0vv)v1(v
.2 =+−ε−     (9) 

                                                 
7There is one very simple mechanical system that allows production of autoexcitations that are almost 
sinusoidal. This is the Froude pendulum, which has been studied by Strelkov [18]. 
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whereupon, assuming , it becomes: yv
.

=

0
y
v)v1(

vd
yd 2 =+−ε− .    (10) 

 
If ε << 1 we have oscillations which are almost sinusoidal (“Thomsonian” oscillations). 
However, the qualitative theory is applied to the general case no matter what the value of 
ε may be. When ε << 1, the singular point is a focus, but when  ε >> 1 it is a node; in both 
cases there is a limiting cycle. 
 
Nevertheless, in quantitative studies of relaxation oscillations it is possible to proceed in 
another way. It is possible to idealize the problem by setting L = 0 and replacing the 
equation of the second order (9) by the equation of the first order: 
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which is easily integrated. Clearly, this equation does not allow for a periodic solution. At 
the close of a finite time duration, the velocity (or the electric current, or its derivative), 
represented by v, becomes infinite. After having idealized the problem in this way, in 
order to take the physical phenomenon into account in an approximate manner, a new 
condition is required to be introduced, which in our case assumes that at a certain instant 
the current undergoes a discontinuity whereas the voltage at the condenser terminals 
remains constant. This assumption or “condition of discontinuity” is physically justified 
by the fact that the energy cannot vary discontinuously. It is possible to provide it with 
another form by explicitly requiring conservation of energy. This “discontinuous” theory, 
together with the condition of discontinuity, permits evidence of a “discontinuous“ 
periodic motion and finding its amplitude as well as its period. 
 
Without being identical, this mode of treating relaxation oscillations, which is applicable 
to electrical and mechanical systems, is analogous to methods employed in mechanics to 
analyze elastic collisions. It is assumed that at the moment of collision the velocity 
changes discontinuously. The conservation of energy and momentum allows a velocity 
decrease after the collision from that existing beforehand. In principle, this method 
excludes the possibility of studying what is happening during the extremely short 
duration of the collision. The results that it gives are often sufficient since the collision is 
quite brief. However, if we wish to follow the phenomenon of the collision itself, the 
problem becomes extremely complicated. It is enough to merely recall the investigations 
of Hertz. Likewise, in our theory of relaxation oscillations, we can simplify the 
mathematical description of the problem by idealizing it. As a consequence we do not see 
how the system can “leap” from one state to the other. 
 
We have applied this method to the study of electrical systems with one degree of 
freedom in which self-induction plays a secondary role [19], as well as to mechanical 
autoexcitation systems with a small mass and a high degree of damping [20]. 
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In this case it should be noted that by taking the “parasitic” self-induction into account, 
nothing is obtained which is of physical interest. There still remains the parasitic 
capacitance of conductors etc. to be considered. Now, it is impossible to take into 
consideration all of the parasitic parameters. Our idealization has the advantage that it 
allows us to study relaxation systems that are relatively complicated, such as the 
multivibrator of Abraham-Bloch, a system with two degrees of freedom. This system has 

already been studied by Van der Pol [21], 
but with one essential restriction: he 
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assumed the phenomenon to be 
completely symmetrical, and r
consideration that there were transitory 
phenomena following an initial 
asymmetrical state. This restriction 
allowed him to produce an equation of the 
second order. Nevertheless, in the general 
case, he would have obtained two 
equations of the second order, and this 

ould have greatly complicated the problem. For the general case, our idealization 
rovides two equations of the first order, which can easily be studied by the methods 
escribed above [22]. Thus, we have been able to study not only the stationary mode of 
peration (by calculating the amplitude and the period) but also the transitory 
symmetrical phenomena in the multivibrator of Abraham-Bloch. These results were 
xperimentally verified.  
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The circuit is formed by a battery E, a resistance R, a capacitance C, and an electric arc. 
By using the characteristic of the arc, we produce three stationary values for the current 
using the customary graphical method. Analyzing the stability of these values by well-
known methods, we find that two of them, A and B, are stable (Figure 22).  
 
However, if we introduce an arbitrarily small self-
induction L (Figure 23), the state of equilibrium 
becomes unstable. And so, in reality, it does not 
exist. 

 
It is easy to see how cases of this kind can occur. If 
the order of the differential equation from which we 
draw conclusions concerning stability or instability 
(in the case of equilibrium this will be an equation 
of the n-th linear order with constant coefficients) 
does not rise as a result of the introduction of the 
parasitic parameter, the latter, if it is sufficiently small, is not able to change anything. On 
the other hand, if this parameter appears in the equations and increases their order, it can 
render equilibrium states (that would be considered stable by disregarding it) unstable. 
The physical meaning of this result is clear. In composing a system of equations of the n-
th order, forming a system with n dimensions, we only assume initial conditions. And 
when we raise the order of the differential equations by taking into account the parasitic 
parameter, we allow by this a greater diversity of initial conditions. It is then possible that 
among the initial states newly allowed, the conditions are right for the system to diverge 
from the state of equilibrium. Therefore, a certain caution is necessary in idealized 

models. 
 
Some words are in order concerning self-exciting 
systems with distributed parameters that play an 
important role in radio engineering and in 
mechanics (oscillators containing antennas or 
Lecher wires, tubes whose grid makes up an 
oscillating system resulting in very high frequency 
waves (which were studied by Grechowa), 
telegraphic wires emitting a sound owing to the 
effect of wind, vibrating airplane wings, bowed 

musical instruments, organ pipes etc.). There still does not exist a precise mathematical 
theory for these phenomena. Nevertheless, without speaking rigorously, it is rather easy 
to create a possible theory for some of them by analogy with those produced under rather 
precise conditions - those systems existing with a finite number of degrees of freedom. 
This theory allows the calculation of amplitudes, the solution of questions of stability, 
etc. [23]. However, since this theory does not have a strict mathematical basis, it is 
necessary to use its results with care. It takes into account most characteristic phenomena  
occurring in distributed self-exciting systems. It anticipates that oscillatory modes of  
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operation at different frequencies can be established under the same operating conditions. 
(The same is true in the self-exciting systems having a finite number of degrees of 
freedom). The production of such-and-such an operating mode is a function of the initial 
conditions or the history of the system. These phenomena have been produced and 
studied experimentally by Bendrikov and Brailo at Moscow, as well as by Gaponov at 
Gorki. It is possible to cause the disappearance of a particular oscillating wavelength in a 
Lecher wire oscillator by touching them with a finger. The system then begins to oscillate 
at another wavelength. Under certain conditions, when the finger is taken away the 
system will not return to the original wavelength, but continues oscillating at the new 
wavelength. This phenomenon can likewise be produced by capturing the energy using a 
resonant circuit. Apparently, similar phenomena occur in bowed musical instruments. 
Strelkov has performed similar experiments with a string vibrating under the effect of a 
jet of water or air. These quite simple experiments allow the observation of phenomena 
that are characteristic for distributed self-exciting systems. 
 
 
Given that, under the same operating conditions different oscillating modes can occur, the 
question may be asked as to which of them is produced when the system is triggered. 
This question is often within the capacity of the theory of probabilities. It has not yet 
been solved theoretically for distributed systems. The statistical phenomena are easy to 
observe experimentally in the Lecher wire oscillator. They also take place in organ pipes. 
 
 
 
 
Section 5: Effects of an External Force on a Self-Exciting System 
 
 
One characteristic property of self-exciting systems, which is quite important for the 
entire realm of radio engineering, is the appearance of the phenomenon of forced or 
automatic synchronization, or frequency locking. This phenomenon, previously noted by 
Huygens for clocks hanging from the same wall, was first observed in radio engineering 
by G. Moeller [24] and Vincent [25]. It gave rise to many experimental and theoretical 
investigations, among which special mention should be made of those by Van der Pol [6]. 
As is well known, the simplest feature of this phenomenon consists in the following. 
When an external force of frequency ω acts on a self-exciting system of frequency ω0, no 
beats are observed, just as would be the case in an undamped linear system when the 
difference frequency, ω – ω0, is sufficiently small. The system is automatically 
synchronized to the frequency of the external force.  
 
 
A similar phenomenon occurs in a system subjected to the effect of a force which is not 
periodic, but only quasiperiodic (which can be depicted by a sum of terms of 
incommensurable frequencies).  
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The locking likewise occurs, as observed by Van der Pol and Van der Mark [26] in 
relaxation oscillator systems, and as seen by Koga [27] in ordinary oscillators when one 
of the frequencies of the external force is close to a multiple of the frequency of the 
system. When the out-of-tune condition exceeds a certain value, which can be termed a 
locking limit, the appearance of beats may be ascertained. Since the force is sinusoidal, 
when the misalignment or out-of-tune condition far exceeds the locking limit, it can be 
broadly stated that two oscillations exist in the system, one in response to the frequency 
of the external force, and the other characteristic of the system.  
 
Nevertheless, if the frequency misalignment only slightly exceeds the locking limit, this 
last frequency is shifted towards the frequency impressed from the outside, and, as we 
shall see, the whole phenomenon becomes complicated.  

 
 
 
The theoretical study of the locking phenomenon consists in searching for stationary 
solutions of the differential equation: 
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In the simplest case in which an electromotive force acts upon a system in a soft mode of 
operation with almost sinusoidal oscillations, the “curves of amplitude” have, as is 
known, the appearance shown in Figure 24. The portions of the curves labeled 4-7-12, 5-
8-11, etc. belong to the synchronization mode. The parts 1-4-12-15 belong to the beat 
mode. Theoretically, these curves have a symmetrical appearance, but, most often, 
experience shows asymmetrical curves (for example those of Figure 25). This 
deformation is probably owing to the presence of a grid current. This is what appears to 
be confirmed by the recent results of Bakoulov (Moscow). 
 
In his classical study, Van der Pol had studied a self-exciting system with a soft mode, 
modeling the characteristic of the tube as a cubic parabola, and he was able to detail the 
principal characteristics of the phenomena of synchronization and frequency shift. 
Nevertheless, there are still several questions remaining. In synchronization phenomena, 
as assumed by Ollendorff [28], it still remains to be explained whether there exists a 
threshold for the amplitude of the applied electromotive force (EMF).   
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Employing the “truncated” equations that Van der Pol set up for this problem: 
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[where a = 2(ω0 - ω)/α is the tuning 
misalignment, ω0 is the frequency of the 
self-excitations, A = (Bω0)/(αa0). B is 
the amplitude of the force used, α is a 
constant depending on the two 
parameters, a0 is the amplitude of the 
self-oscillations, τ = at/2 and finally t 
represents time], it was possible to show 

hat, in the topographical analysis of Poincaré, a threshold did not exist [29]. This has 
lso been established experimentally [30].  

 
Fig. 27.  The integral curves of the differential equations. 

)r1(yx3.0303.0
td
yd

)r1(xy
td
xd

2

2

−++=

−+−=
 

for the initial conditions 
27
8A,0y,1x,0 oo ====τ  

onsequently, in the weak signal case it was easy to quantitatively demonstrate that the 
ormalized width of the synchronization band is a function of the ratio of the amplitude 
f the signal to that of the self-oscillations (ω0 – ω)/ ω. 
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This is what has permitted the application to weak signals of the method of field intensity 
measurement by the width of the synchronization band, as suggested by Appleton [31], 
[32]. A similar method, based on the phenomenon of synchronization of acoustic self-
exciters, has been used to measure the 
intensity of sound [33], [34]. The 
phenomena of acoustic locking leads 
to an interesting problem that we are 
preparing to study, which is that of the 
automatic synchronization of 
woodwind and bowed orchestra 
instruments.  
 
Let us return to the analysis of 
equation (13). If the square of the amplitude A2 is plotted on the ordinate, and detuning, 
a, is plotted on the abscissa, Figure 26 is produced. The resonance curves are those of 
Van der Pol, but our figure shows the fields corresponding to the various types of 
transitory phenomena. One might be interested in what is happening when an 
electromotive force is applied to the oscillator and it becomes active.  

 
It is also possible to observe what occurs when the oscillator is triggered after the 
electromotive force has been applied. Let us examine the first case, which is physically 
the most interesting. The theoretical study of transient phenomena consists of discussing 
the nonstationary solutions of the equations for amplitudes (13), i.e. in following the  

 
 
amplitude fluctuations, which are components x and y as a function of time. These results 
are summarized in the diagram of Figure 26. In order to know how the stationary 
oscillations are set up, with the variance and amplitude of the applied EMF being given, 
it is necessary to get the resonance curve corresponding to this EMF, and, on the latter, 
the data corresponding to the given variance. If this point is located in the domain of a 
stable 
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node, the establishment of the mode is accomplished aperiodically: the coefficients with 
slow variation in the Van der Pol solution tend aperiodically toward constant values. If 
this point is in the domain of a stable focus, the phenomenon is oscillating. Finally, if the 
point falls within the range of instability, then there are no stable periodic solutions. 
These results have been experimentally verified in the works of Riazine [35] who 

 
made oscillographs of various types of transient phenomena. He calculated the solutions 
of equation (13) by methods of numerical integration and confirmed the theoretical 
results by low frequency oscillograms. The calculated curves of aperiodic transitions are 
shown in Figure 27, those of oscillating transitions  are shown in Figure 28, and the 
respective oscillograms are given in Figures 29 and 30. A pure sinusoid appears before 

ams do not show it.  
 

the application of the signal, but the oscillogr

he same method of numerical integration 

lane, 

ly 

eases.  

 order to establish the spectral 

e 

T
was used to study what occurs, to a minor 
degree, outside of the synchronization 
band. In this case, the nonstationary 
solution of equation (13) on the x, y p
does not tend toward a singular point, as in 
the domain of entrainment, but is coiled 
around a limiting cycle. The curves 
showing current as a function of time and 
limiting cycle are depicted in Figures 31 
and 32. The theoretical results agree close
with the experimental findings (Figure 33). 
With regard to beats, the theoretical curves 
and oscillograms harmoniously indicate 
that their amplitude increases at a 
perceptibly greater rate than it decr
 
In

composition of the beats, Riazine performed a harmonic analysis of the curves shown in 
Figure 31. The spectrum so obtained (Figure 34) shows that, in the vicinity of the 
synchronization region, the application of an electromotive force causes the appearanc
of a self-oscillation in the spectrum, that has equidistant combinations of frequencies 
clearly delineated. Oscillograms were produced for beats in the vicinity of the 
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synchronization bands for ratios of frequencies characteristic of the applied frequency, 

e 
which were approximately equal to 1:2, 1:3, 1:4 and 1:5 (Figures 35, 36, 37, 38). It 
became obvious from these oscillograms that we have a pulsation of amplitude in th
region of the limit of forced synchronization, just as in the case of the 1:1 ratio. The 
envelope of the beats always shows practically the same characteristic:  

 
a rapid increase and then a slow decrease of amplitude. Let us again emphasize that in the

 

he study, likewise, was concerned with the 
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 frequency of the oscillator and those of the 
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vicinity of the synchronization band, the oscillations cannot be expressed by the linear 
superposition of two sinusoidal terms, as has been done up until now. There are at least
three oscillations of amplitude that are almost equal. 
 
T
phenomena that occur in the case of abrupt 
modes (H. Sekerska [36]). In this case the 
so-called domain of potential self-
oscillations has a special interest. I
region the resonance curves end in a peak
recalling those that we produced in the 
resonance phenomena of the n-th class 
(Section 6). There still exist synchroniza
phenomena in the frequency combinations 
given by several electromotive forces. As an
example, we shall give a special case that 
we observed some time ago: 
synchronization “in the middl
oscillator is tuned approximately to the
frequency (ω1 + ω2)/2, with ω1 and ω2 b
the frequencies of the two electromotive 
forces. Synchronization phenomena are th
there exists a simple relationship between the
electromotive forces. It is understood that this phenomenon is important for reception of
signal without a carrier (DSB). In reality, when the carrier frequency is produced at the 
transmitter site, for practical purposes it is quite difficult to arrive exactly at the center 
the sideband frequencies, this being, moreover, absolutely necessary. The phenomenon 
that has just been described lends its assistance: the frequency of the oscillator is 
automatically located in the middle of the sideband frequencies.  

learly observed, and especially so when 
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For this purpose, it is sufficient for the oscillator to only be approximately tuned. Simil
phenomena occur when

ar 
 the oscillator is tuned to the frequency (ω  + ω )/4, and to other 1 2

 
 
combinations of frequencies and their submultiples. The phenomenon of “in the center” 
synchronization has been studied theoretically by Goldstein and Petrossian8.     
    

                                                
  

 
8 This publication is in preparation. 
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Section 6: Resonance Phenomena of the n-th Class 
 
 
We shall devote a special paragraph to the phenomena that can be termed “resonance of 

e n-th class”. The mathematical theory of these phenomena is based on the general 
esults provided in the well known works of Poincaré [2] without any relationship to the 

ic 

ed to the phenomenon of forced or automatic synchronization that 
ccurs in self-exciting systems subjected to the effect of a sinusoidal force that has a 
requency close to the eigen-frequency. Koga [27] as well as Van der Pol and Van der 

lly 
d 
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being an 
s is 

her phenomenon which should 
e mentioned here. The resonance of the n-th class requires a well-defined mode of 
peration of the tube. If, starting from this mode of operation, the regeneration is 

o the 
 

, if the EMF is E = E0 sin ωt and acts upon an oscillating 
ircuit interposed between the plate and the filament of a tube whose characteristic 

 

th
r
physical applications concerning us. Poincaré shows that in nonlinear systems there can 
be periodic oscillations whose period is a multiple of that of the applied force (“period
solutions of the second class”). It is useful for the discussion that follows to call any non-
self-exctiting system that becomes self-oscillating if the regenerative feedback is 
sufficiently increased, or if the value of any parameter is suitably modified, a potentially 
self-exciting system. 
 
 
In Section 5 we referr
o
f
Mark [26] have observed similar phenomena in self-exciting systems subjected to the 
effect of a force whose frequency is a multiple of the eigen-frequency. As for potentia
self-exciting systems, in this case it is observed that when the frequency ω of the applie
EMF is equal, or approximately equal, to a multiple of the eigen-frequency, the mode o
operation being suitably selected, there is a special phenomenon of synchronous 
excitation. As long as its eigen-period is not close to a multiple of that of the applied 
force, a potential self-exciting system is the source of very weak “forced” oscillations. 
Nevertheless, when the system’s eigen-frequency is sufficiently close to (ω/n), n 
integer, there can appear intense oscillations of frequency exactly equal to (ω/n).9 Thi
the phenomenon of resonance of the n-th class [15], [37]. 
 
 
There still exists, in potentially self-exciting systems, anot
b
o
increased, quite slightly in order that the system does not become self-exciting, under 
certain conditions there may be seen to appear, intense oscillations almost identical t
system’s own oscillations, no matter what the period of the EMF may be. To these
intense oscillations very weak “forced” oscillations are added in such a way that the 
system’s own phenomenon is almost periodic. It can then be termed asynchronous 
excitation [39], [40], [41]. 
 
 
In the simplest case of n = 2
c

                                                 
9  The capability for exciting a potential self-exciting system on a frequency equal to that of half of that of 

the EMF has been likewise reported by Groszkowski. 
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can be represented by a polynomial of the third degree, then the equation of the 
: phenomenon (the grid current being assumed nonexistent) can be described in the form

 
We assume that γ  < 0. Using suitable transformations and notations:  0

 
The equation can be rephrased in the form: 

 

 

and the regeneration factor 

 

Applying the Van der Pol method to equation (16), by the transformation: 

 

we produce the system of truncated equations: 
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where z = u2 + v2  is the square of the instantaneous amplitude. 
 
These equations may be easily solved if ψ = u/v and z [42] are selected as variables. 
Their initial values will be designated by ψ0 and z0. Taking: 
 

 
we obtain the solution in the following form: 

 
 
Equations (22) and (23) approximately describe what occurs beginning from any initial 
conditions whatsoever as well as the case when the system is not excited (k < 0) and also 
when it has self-exciting (k > 0). If q = 0, ε = 0, p = 0, i.e. if there is no applied force, we 
resort to the Van der Pol solution for autonomous systems [6]. 
 
t is evident from equation (23) that z only tends toward a constant value zst different I

from zero when p is real and M + 2p > 0, i.e. when  
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these are the existence conditions for constant solutio

 conditions are satisfied, periodic oscillations whose period is double that of the  these
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EMF will establish themselves in the system (c.f. Equation 18). These oscillations with 
double period only appear in a limited frequency inte
system and, by its appearance, the phenomenon calls to mind certain resonance 

henomena. The term “resonance of the second class” (and more generally of the n-th  
 of 

 

 
Given that γ1 < 0, condition (25) cannot be 
satisfied in the case of a potentially self-
oscillating system (k < 0) except when the 
value of q is included within a certain interval 
qmin < q < qmax. We state that there is a 
threshold and a ceiling for the value of EMF that is capable of exciting a potentially self-
oscillating system with double period oscillations.  In the case of self-oscillating systems, 
condition (25) is satisfied, no matter how small q may be. There is, therefore, no 
threshold for the automatic synchronization of a self-oscillating system with a period that 
is double that of the applied EMF.  
 
The square of the amplitude of the stationary oscillations, with a period double that of the 
EMF, which have been excited by resonance of the second class, is provided by the 
formula: 

rval that is characteristic of the 

p
class) recalls that this theory is closely connected to the existence of periodic solutions
the second class of Poincaré [2]. 

.q
2
q

k4z
2

2
2

2
1

1
st 














β

ξ
−+

γ
+

γ
=    (26) 

 
According to this formula, the stationary amplitude is a function of the detuning 
parameter, ξ, quite apart from the case of ordinary resonance. The curves which provide z 
as a function of ξ -- they can be termed resonance curves of the second class – are shown 
in Figure 39 (theoretical) and in Figure 40 (experimental). Formula (26) likewise 
provides the stationary amplitude as a function of the value of the applied EMF. This 
function (“the characteristic amplitude”) is depicted in Figure 41 (theoretical) and in 
Figure 42 (experimental). Note that the “excitation band” (i.e. the frequency interval in 
which the second class resonance occurs) is equal to zero in the case of q = qmin, and 
becomes wider at first as q increases, then decreases and again drops to zero in the case 
of q = qmax . 
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The increase of oscillations up to the stationary amplitude has quite another character
than in the case of ordinary resonance as shown in Figure 43. The latter depicts t

istic 
he  

 
 
variation of amplitude as a function of time,
external force becomes a factor in the res
resonance (curve 1). 
 
Let us note the similarity between curve
amplitude of self-oscillating phenomena. This similarity is not accidental. In ordinary 
resonance, the excitation of oscillations takes place no matter what the initial conditions 
may be and can start more particularly beginning from absolute 
equilibrium (i = 0, di/dt = 0). In resonance of the second class 
pulses, whether they are very small 

 beginning from the instant at which the 
onance of second class (curve 2) and in ordinary 

 1 and the curve expressing the increase in 

or not, are necessary to 
ause the system to deviate from the initial state z0 = 0. Under 

 of the second class becomes an unstable focus 
enclosed in a stable limiting cycle. 
 
The special characteristic of the curve of oscillation growth, in resonance of the second 
class, can be used advantageously for practical ends (c.f. below) 

 shows 

 

c
the effect of an external force, the position of equilibrium of a 
potentially self-oscillating system that satisfies resonance 
conditions

 
When the system is in an abrupt mode of operation, resonance of the second class
certain special features. Thus, at the boundaries of the regions of excitation, “resistance” 
phenomena can be observed owing to the partial superposition of different ranges of 
dynamic stability. If the characteristic of the tube is expressed by a fifth degree 
polynomial, which was done successfully by Appleton and Van der Pol [43] as well as
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other authors [44], then, by applying the methods of Poincaré (c.f. Section 2) to the case 

manner. These agree closely with experimental results (Figure 45).  
 
When an experimental study is made of 
the resonance of the second class in 
systems with abrupt excitations, certain 
precautions should be taken in order to 
avoid the phenomena of asynchronous 
excitation as defined above. In one of our 
laboratories (Central Radio Laboratory), it 
has been shown theoretically [39] and 
confirmed experimentally, by E. 
Roubtchinski [45]), that asynchronous 
excitation is only possible if the mode of 
operation is abrupt, and if the values of the
regenerative feedback and the amplitude 

 

of self-oscillations, it is possible to provide an approximate theory of the phenomena. 
Figure 44 gives resonance curves of the abrupt mode of operation calculated in this 

 

of the EMF are each included within a
specific range. 

 

 
Figure 46 shows the modes of operation corresponding to the different values of the 
feedback factor k. The region to the right of zero is that of spontaneous excitation. Th
region of resistance is found between zero and A (0 > k > γ2/(8|ξ1|)). Assuming t
is suitably tuned and that the EMF has a suitable value, it is possible to produce 

e 
he circuit 

resonance of the second class to the left of A. In addition, phenomena of asynchronous 
excitation can occur in the shaded portion between A and B (--γ2

1/(8|ξ1|) > k > --
γ2

1/(6|ξ1|)). In order to produce resonance of the second class, in the pure state, it is 
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necessary to work to the left of B. This is a very important matter for receiving stations 
making use of this phenomenon. 

 
In an abrupt mode of operation, the transitory p
class have been studied by A. Melikian [46]. H
up much more quickly than the amplitude. In t
gives the same result, provided that customary
used.  
 

ssuming this condition to be true, as a hypothesis in his calculations, Melikian obtained 
a relatively simple set of theoretical formulae for the abrupt mode of operation. Figure 47 
shows one of the theoretical curves of growth of oscillations. On these pages, we have 
reproduced some oscillograms produced by Melikian. The one shown in Figure 48, which  

henomena in resonance of the second 
is experiments show that the phase is set 

he case of a soft mode of operation, theory 
 numerical values of the parameters are 

A

 
has been produced using an electronic oscillograph with an incandescent cathode 
requiring the synchronous repetition of the phenomenon, shows the effect of a 
rectangularly shaped signal. In Figures 49 and 50, the oscillograms shown illustrate the 
increase and decrease of oscillations in a triode transmitter, and in a potentially self-
oscillating system, under the effect of a force of double the frequency compared t
o

o its 
 an 

internal photographic device which allowed the recording of a single event. 
wn frequency. They were taken using an oscillograph with a cold cathode and with
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The theory developed for resonance of the n-th class likewise allows for the analysis of 
automatic synchronization phenomena of self-oscillating systems at a frequency equal to 
a submultiple of the frequency used [37]. Just as in ordinary locking (c.f. Section 5) there 
is no threshold for the EMF and the decrease of the latter only causes the synchronization 
band to become narrower. Theoretical and experimental data show that, above a certain 
limit, the amplitude of the “self-oscillations” decreases when the amplitude of the force 

 
increases, and, beginning at a specific value of the latter, becomes equal to zero. The self-
xcitations are damped by the EMF, and only forced oscillations having the frequency of 

self-oscillating system with one degree of 
freedom and a soft mode of operation. 
Experimental data show (Tschikhatchov) that 
oscillations synchronized in a period three 
times that of the EMF or resulting from 
asynchronous excitation can be “driven” to the 
left of B (Figure 46). In potentially self-
oscillating systems with two or more degrees of 
freedom, it is possible to excite oscillations 
whose resonance is of a higher order. 
Tschikhatchov produced resonances 
phenomena of the fourth class in the 
installation described in Figure 51. 
 
Resonance phenomena of the n-th class have a 
certain relationship with the excitation of

s m’s 
citation” 

The 
s 

 
e can 

e
the EMF remain in the system. 
 
Theoretical researches conducted by the Central Radio Laboratory have shown that it is 
impossible to produce oscillations whose resonance is of the third class in a potentially 

 
teoscillations by periodic variation of a sy

parameters. This is the “parametric ex
to be discussed in the following section (Section 7). Consequently, in reality, we can 
interpret the excitation by resonance of the n-th class in a purely qualitative manner. 
external force acting on a potentially self-oscillating system causes “forced” oscillation
to appear, which have the same period as the force. By reproducing the reasoning used to
analyze the stability of motion by the methods of Poincaré and Liapounov, w
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consider our system to be nonlinear and, in the vicinity of the forced oscillations, to be a
linear system whose parameters are functions of the forced solution   q sin nt. The 
properties of this linear system, with parameters varying periodically, are well known 
(Section 7). If it is located in one of the regions of instability, the forced oscillation will 
be unstable and the system will perform increasing oscillations whose frequency will be 
submultiple of that of the force. This method of reasoning offers certain advantages, and 

 

a 

it is often useful to consider the resonance of the n-th class as a sort of parametric 
excitation. In order to distinguish the parametric phenomena in their true sense, which 
occur when the parameters of an electrical or mechanical system are caused to vary 
indirectly with those of resonance of the n-th class, we shall call the first ones 
heteroparametric and the second ones self-parametric. 
 
 

 
 

e frequency should remain very stable, as, f

se to new methods for selective recepti

asing phenomena which, as we have

The phenomena that have just been described possess encouraging properties for certain 
advantages in their practical application. Experience has shown that resonance of the 
second class can be used successfully for frequency reduction as well as the generation of 
very high amplifications in cases where th or 
example, in the case of transmitters with independent excitation, and above all in the case 
of reception.  
 
 
The resonance curves of the second class (with abrupt edges, the existence of a threshold, 
and a ceiling for the applied EMF) give ri on. 
Nevertheless, of course, it should not be forgotten that with receivers as well as with 
high-speed operating automatic transceivers, we are not only dealing with stationary 
phenomena, but with increasing and decre  seen 
(Figure 43), are basically different from those occurring in the case of ordinary 
resonance. 
 
 
Experiments performed in 1930 and 1931

 

 with  

 showed that, under practical conditions, a 
device with a resonance of the second class has applications in a radio receiver. The 
device was used as a selective filter (“self-parametric filter”) and gave excellent results. 
Figure 52 shows a photograph of two simultaneous recordings of signals emitted by radio
station WCI (wavelength 16,317 meters) made on 4 February 1931 at the radio receiving 
exchange of Boutovo near Moscow. Track A comes from a radio receiver furnished
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a self-parametric filter. Track B comes from a radio receiver that has a crystal filter. The 
difference is obvious. 
 
Prolonged tests on a radio receiver with a self-parametric filter were performed at 
Sagaredjo, near Tiflis, in a region that is subject to intense atmospheric disturbances, and 
these have shown that this filter is very effective in distinguishing an extended harmonic 
signal from a static crash. 

 
 
This property of systems with resonances of the second class is explained by the 
haracteristics of the law according to which oscillations increase. In a linear filter, a 

ose 

parametric filter, it only gives small oscillations. 
In this way, the auto-parametric (or self-
parametric) filter practically suppresses 

 

ng 
ved by I. 

and N. Weissbein in 1931). In recordings on tape there are certain signs (dots 
r dashes) that show discontinuities (1, 3 on Figure 53). 

o 

 

period oscillations are still weak, it accelerates their growth.  

c
brief impulse (with respect to time duration) that 
is sufficiently strong can cause oscillations wh
amplitude is comparable or even greater than the 
desired signal. However, owing to the peculiar 
features of the curve of growth for a self-

atmospheric disturbances that have the form of 
short impulses, even though they may attain a
considerable value. This insensitivity to 
atmospheric impulses remains when they are 
superimposed on a signal. However, very stro

atmospheric discharges have the effect of “segmenting” the signal (as was obser
Borouchko 
o
 
A. Melikian studied this last phenomenon in one of our laboratories (the Central Radi
Laboratory). Using the oscillographic method he very skillful examined in detail the 
simultaneous effect of a signal plus short pulses (a train of damped oscillations) in a self-
parametric system. He showed that “segmenting” (breaking up) occurs when the impulse 
arrives at an instant for which the double period oscillations, due to the signal, are already
almost established (Figure 54). However, if the pulse arrives at a time when the double 
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Figures 55 and 56 allow comparison of the oscillograms for growth and decay of a self-
parametric system (Figure 55) with those of a linear system (Figure 56). 

 
 
     

ection 7: Parametric Excitation 

an oscillating system. This effect, whic
has been known to physicists for quite 
importance that it has in radio engineer
possibility of parametric excitation of e
time (Rayleigh [49], Poincaré [50], Bri  
the last few years that the full value of 
study undertaken. We should like to me d 
Guenther-Winter [54] concerning the e
frequencies by alternately magnetizing
the experiments of Guenther-Winter [5 ] 
on the excitation of electrical oscillatio
induction or capacitance of an electrica

d Wantanabe. In addition, we 

S
 
The phenomena incited in nonlinear circuits by an external stimulus (Section 6) are 
closely related to the excitation of oscillations by periodic variation of the parameters of 

h can be called parametric excitation (for short), 
some time. (Melde [47], Rayleigh [48]) The great 
ing is likewise known. However, although the 
lectrical oscillations has been known for a long 
llouin [51] and later Van der Pol [52]), it is only in
this phenomenon was realized, and its systematic 
ntion the experiments of Heegner [53] an

xcitation of electrical oscillations at acoustic 
 the iron core of a self-induction coil, as well as 
5] and I. Wantanabe, T. Saito, and K. Kaito [56
ns by mechanical periodic variation of the self-
l oscillating system. 

 
We have also performed experiments on the parametric excitation of electric oscillations 
by mechanical periodic variation of the self-induction [57] of a circuit, but using very 

ifferent devices from those used by Guenther-Winter and
produced the parametric excitation of electric oscillations by periodic variation of the 
capacitance of a circuit10 [58].  
                                                 
10 W.L. Barrow (Proceedings of the Institute of Radio Engineers, Volume 22, p. 210, 1934) wrongly 

assumed that his experiments showed the capability for the parametric excitation of an oscillating circuit 
by periodic variation of its capacitance. He caused the variation of not only the capacitance of an 
oscillating circuit, but also the ohmic resistance of a shunt containing a condenser. Now, the variation o
a positive resistance can be carried out (and is carried out) without expe

f 
nditure of energy. Therefore, by 



 118

 
Theoretically, the authors mentioned are not limited to the use of a linear differential 

 operation. Now, 
this question is no less important than the preceding one. This is why, in order to be 
complete, we began with a general overview of the theory of parametric excitation, a 
theory that should be supported by a nonlinear differential equation. 
 
It is easy to show by energy considerations that it is possible to excite oscillations in the 
latter by causing the capacitance of a circuit to vary suitably. Let us assume that, at an 
initial instant in time, t = 0, when the current is equal to zero and the condenser possesses 
a charge q, we reduce its capacitance by a small quantity ∆C. Having done this, we 
supply the work (∆C/2C2) q2. Let us then allow the condenser to discharge, and at the 
instant t = T/4 (T being the period of the circuit) when all the energy is magnetic and the 
charge on the condenser is zero, let us restore its capacitance to its initial value. We do 
this with no expenditure of work. At the instant t = T/2 the current is reduced to zero and 
the condenser carries a charge that is greater or smaller than q, depending on whether the 
nergy supplied to the system at reduced capacitance is bigger or smaller than the energy 

ycle of variation of capacitance is complete. Let us 
s will gradually increase, no matter how small the 

itial charge (on the capacitor) provided that the following condition is fulfilled: 

equation with periodical coefficients, which provides the excitation conditions but can 
say nothing as to the capability and characteristic of a stationary mode of

e
dissipated. At the instant t = T/2, the c
state this differently. The oscillation
in
 

2
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C
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ε being the mean logarithmic decrement of the system and  
 
 

minmax CCCm
−

=
∆

=

 

minmax CCC2 +
 

 
being the modulation index of the varying parameter.  
 
The initial charge q is always present, even in the absence of outside disturbed inductio
(electric field lines, atm

ns 
 discharges), owing to statistical fluctuations.  

                                                                                                                                                
ospheric

 
rgy 

 of the 

this principle alone, the device does not allow supplying to the circuit (by mechanical work) the ene
that is necessary for the excitation and maintenance of oscillations. There is no doubt that Barrow 
observed in his experiments not only the parametric excitation of oscillations by periodic variation
capacitance, but also phenomena owing to the presence of an electronic tube and from regenerative 
feedback.    
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By causing a periodic variation of the circuit capacitance (by some mechanical process) 
ical 

r 

at a frequency double that of the circuit’s own frequency, we can thereby excite electr
oscillations without using any EMF. A similar reasoning is applicable in the case of 
mechanical variation of the circuit’s self-induction. 
 
This abridged discussion is enough to show that, in order to produce parametric 
excitation, two conditions should be satisfied: 
 

1. The frequency of variation of the parameter should be suitably selected (in ou
example it is double the frequency of the circuit). 

2. In the case of a given mean logarithmic decrement, the modulation index of 
the parameter should be sufficiently high.11 

 
A more complete study of the initiation of oscillations in phenomena of parametric 
excitation leads, as is known, to the discussion of “unstable” solutions of linear 
differential equations with periodic coefficients. If for example, the capacitance varies 
according to the law: 
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quation (29) was discussed from a mathematical viewpoint by Mathieu, Hill, Poincaré, 

oblem, by Rayleigh, then by 
ndronov and Leontovitch [59] and by Van der Pol and Strutt [60]. It is known that 

orm: 
 

 

  

E
etc. It was also discussed, with respect to our present pr
A
equations of the same type appear in a great number of problems of celestial mechanics, 
optics, elasticity, acoustics, etc. The general solution of equation (29) is in the f

)(eC)(eCx h
2o

h
1 τ−χ+τχ= τ−τ     

                                               
 In the case o11 f sinusoidal variation of capacitance the condition m > ε/2 is replaced by m > 2ε/π. 
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χ(τ) being a periodic function. In order for there to be parametric excitation, it is 
necessary for h to have a real part which has an absolute value that is greater than δ. This 
condition between the parameters λ and m defines the “unstable regions” of equation
(28). They are located in the vicinity of  2ω1/ν = n, n

 
 being an integer. Their boundaries 

an be calculated by the approximate method of Rayleigh [61]. Thus, in the case of the 
:  

c
first region of instability (n = 1), we have, approximately, with terms of order m2

2
2

2
12 m2m ω 4

4
14

4
1 ϑ−−≥

ν
≥ϑ−+   (30) 

 
In orde  
account. It 

r to find the second region (n = 2), terms on the order of m4 should be taken into 
follows that: 

242 64mm
3
24

22

ϑ−−+≥

ω

n

1242 64mm
3

4 ≥
ν

≥ϑ−++

   (31) 

The width of the regions of instability decreases as m . 

y relatio der for the initiation to be possible, it is necessary 
at, in the case of n = 1: 

 
As is shown b ns (4), (5) in or
th

ϑ> 4m    
and in the case of n = 2: 

  (32) 

ϑ> 22m      (33) 
 
The modulation index required for initiation is therefore greate

r n = 1.  Initiation becomes still more difficult in the 
he case of n = 1 is, for practical purposes, the most 

interesting. It is the only one that we shall discuss here. 
 
Once conditions (30) or (31) were satisfied, if the linear equation (2
values of q, the amplitude of the oscillations would increase without bound. Therefore, in 
order for a system with periodically varying parameters to reach a stationary mode of 
operation and become a generator of alternating current, it is necessary that it conform to 
 nonlinear differential equation12. In this case, the linear equation (2) is only valid 

n 
rder to obtain a permanent mode of operation, it is necessary to introduce into the circuit  

 

                                                

r, the decrement remaining 
the same, in the case of n = 2, than fo
case n = 3, 4, etc. This is why t

9) was exact for any 

a
(approximately) in the case of sufficiently small amplitudes. It allows only the setting up 
of conditions (30), (31) which should confirm the parameters for which there was 
initiation. 
 
As will be seen, our experiments confirm this manner of regarding the phenomenon. I
o

 
12 The problem of the frequency modulation of a triode oscillator, also a nonlinear one, has been studied by 

S. Rytov in an article carried in the journal Technical Physics USSR. 
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nonlinear components such as an iron cored coil, incandescent lamps, etc.; in the f
case, the equation of the problem is: 

0q
C

t2cosm1qR
td

)q(d

o

.
.

=
ω+

++
ϕ    (34

with the nonlinear dependence of the flux on the current, )q(
.

ϕ , being given in the f

irst 

) 

orm 
of a polynomial, for example. The mathematical theory of the phenomen
search for periodic solutions of equation (34) and the discussion of their stability, in 
ddition to investigating the condition in which the state of equilibrium becomes unstable 

If the nonlinear part of the self-induction is small with respect to its linear part and if, in 
addition, m is small, it is possible to apply the methods of Section 3 to this equation. In 
the simplest hypothesis, in which 

   (35) 
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a
(condition of initiation). 
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which can be treated by the methods of Section 2. The st

    

ationary solution is: 
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1 4
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4
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γ+ξ−=
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Whence the condition: 
δ>ξ− 4)1(m      (37)

 
which is practically identical to equation (32). 
 
The curves

 

 

 of Figures (37) and (38), which can be called heteroparametric resonance 
urves (c.f. Section 5), provide z (the square of the amplitude) as a function of the c

“detuning” ξ. They differ essentially from the ordinary resonance curves and resonance 
curves of the second class. As shown by Figure 57, whereas: 

22
2

4)1(
4

m
δ−ξ−−<ξ     (36) 

         (where γ1 < 0) 
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no oscillations are observed. When:  

22
2

1 4)1(
4

m
δ−ξ−−=ξ   

the oscillations begin, starting with small amplitudes and, z increasing, are gradually 
sume

    

amplified. z increases linearly until, when the detuning as s the value 

22
2

1 4)1(
4

m
δ−ξ−>ξ  ,    

the oscillations stop abruptly. 

 

 
 

d on one 
side by the detuning ξ. Stable, finite amplitudes exist outside of the range of values of ξ 
in which the conditions of initiation are fulfilled. In other words, the

d, can be “driven” into the regions where the equilibrium is 
stable. When ξ varies in a reverse direction, the osc

ecrease and vanish when ξ = −ξ1. Resistance, therefore, appears on only one side. In 
ance as well as to solve several other 

uestions, µ will have to be used and the harmonics taken into consideration. Figure 58 
and 

 [66]. V. Gouliaev and V. 
Nigouline [62] and have shown that the same results are produced by expressing the flux, 
as Dreyfus [63] and Zenneck [64] have proposed, by the fun

 

As shown by equation (10), the zero-order approximation theory is only limite

 parametric 
oscillations, once excite

illations appear when ξ = +ξ1, then 
d
order to calculate the extent of the circuit resist
q
shows that when γ1 > 0 the phenomenon is reversed: z increases whereas ξ decreases, 
the circuit resistance appears for positive values of ξ = +ξ1. 
 
These two cases were observed experimentally by W. Lazarew

ction: 

.qL)qk(tgarc)q( 2o +Φ=Φ     
...
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We set the production of the effect of parametric excitation and the verification of the 
r 

experiments. 
 
In the first experiments we cause the 

60, 61. The variable self-induction was 
composed of seven pairs of flat coils 
fastened face to face with two parallel 
discs on the periphery of two perimeters. 
A serrated metallic disc was able to 
rotate within the empty space fixed 
between the coils. The teeth, likewise, 
seven in number, were cut in such a 
fashion as to synchronously occupy and 
vacate the region simultaneous with the 
field of the coils. As the disc spins, the 
self induction of the circuit decreases 
when the teeth enter the field of the 
coils, and then increases when they leave 
it. By using a disc made from duraluminum
velocity of 220m/sec, and in this way attain

theory described above as a goal in ou

self-induction of a circuit to vary by 
using the device shown in Figures 59, 

considerable rate of variation of the parame
pplied with iron cores divided in such a w

frequency of variation of the self-induction,
is exactly equal to ω/2 may be ascertained. 

su
self-induction. The apparatus permitted pro
powerful oscillations in the circuit shown in
source. By tuning this circuit to a frequency
, we were able to achieve a peripheral 
 a  

 
ter (1700-2000 per/sec). The coils were 
ay as to concentrate the field and increase 

 ω/2, ω being the 
 the presence of oscillations whose frequency 
The amplitude sw

duction of the parametric excitation of rather 
 Figure 62, which has no current or voltage 
 approximately equal to

iftly increased until the 



 124

apparatus ruptured, either in the condenser or in the conductors of the circuit. In our 
experiments, the voltage went as high as
necessary to in

 12,000-15,000V. As required by theory, it was 
troduce a nonlinear component into the system in order to 

 
 
produce a stationary mode of operation. In the first experiments this was a bank of 100-
watt incandescent lamps connected into the oscillating circuit. 

 
More detailed experiments were 
carried out in our laboratory at the 
Institute of Electrophysics of 
Leningrad by W. Lazarew [66] with 
an apparatus providing a greater 
modulation index (40% instead of 
14% as in the first experiments) and 
a greater power (as high as 4kW). 
The device causing the self-induction 
to vary is depicted in Figures 63 and 
64. The duraluminum rotor had eight 

ded 
d 

 
 

f 

teeth. The self-induction varied at a rate of approximately 1900 per/sec, which provi
oscillations of approximately 950 per/sec. A stationary mode of operation was produce
using nonlinear self-induction, either in the iron cores of the coils of the stator or of a coil
with a special iron core possessing an auxiliary winding for direct current magnetization.
By causing the intensity of the latter to vary, it is possible to shift the operating point o
the iron on the curve of magnetic induction and modify the coefficients β and γ of 
formulae (35), (36).      
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By measuring the maximum damping occurring with the initiation of oscillations, we
that experiment agrees very satisfactorily with formula (4), as shown by the table below. 

 find 

 
 

he experimental curves of 

features indicated below (Figures 65 and 66). 
They rise and fall according to whether the 

T
“heteroparametric” resonance clearly have the 

 
permanent mode of operation occurs owing to 
the induction coils themselves or to a special 
coil magnetized by a continuous current. 
Figures 67 and 68 are oscillograms of the 
stationary current. Figure 69 is an oscillogram 
of the transient regime of operation.  
 
A circuit diagram is provided in Figure 70 for 
the excitation of electrical oscillations by the 
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periodic mechanical variation of the capacitance of a device. The oscillation circuit is 
formed by condenser C, whose capacitance varies periodically, shunted with an oil 
condenser C (serving to tune the circuit) and a self-induction coil L (several sections of 
the secondary of a nonferrous core inductor). Condenser C (in Figure 71) includes 
 

 
 
two systems of armatures, one stationary (
is made up of 26 square aluminum plates, e
symmetrically. The rotor is an assembly of 25 c
perforated in the same manner as thos

stator) and the other rotating (rotor). The stator 
ach one having 14 radial grooves arranged 

ircular aluminum plates that are 
e of the stator and actuated by a direct current 

otor with a maximum rotational speed of 4000 rpm. When the motor performs at n 
ith a frequency of 14n per/sec.    

m
revolutions per second, the capacitance varies w
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Six 220V neon tubes in series and a Hartmann-Braun static voltmeter of 1200V allowed
observation of the presence of oscillations and the evaluation of their intensity. Neon

 
 

ince the rotor revolves at a fixed rate, 
there is a range of values of c in which 
the voltmeter fluctuates and the neon 
tubes light up. This range corresponds 
to the frequencies characteristic of the 
circuit in the vicinity of n/2. Checking 
the frequency of oscillations by means 
of a tuning fork, we were able to 
ascertain that it is constant within the whole range of excitation and equal to 7n (n being 
measured with a tachometer).  
 
If the neon tubes are removed, the system becomes linear, and it is possible to predict that 
the oscillations will increase until the apparatus is ruptured. This is what actually occurs.  

tubes were used to limit the growth of the oscillations.  
 

S

 
The voltage, which the neon tubes kept between 600-700V, increased in their absence 
until a spark was produced between the armatures of the condenser (at between 2000-
3000V). The frequency at which the spark occurs decreased proportionally as the 
frequency characteristic of the circuit departs from the value of 7n. This observation is 
likewise supported by theoretical considerations. According to the latter, the increase in 
oscillations is reduced proportionally as one approaches the boundaries of the region of 

stability of linear equation (29).  

at 

in
 
In these experiments the modulation index of the capacitance was 0.175. 
 
The experimental curves of Figure 72 show the amplitude of the voltage excited as a 
function of detuning and circuit damping. When the latter is increased, the range of 
parametric excitations is reduced. Its measured width is certainly in agreement with th
provided by theoretical considerations.  
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In conclusion, permit us to add that H. Sekerska (Institute of Physics, Moscow) has 
provided the details of a new process allowin
production of th

g 
e Melde [47] phenomenon, i.e. 

the parametric excitation of a vibrating string13. 
A variable weight suspended by a metal wire 
permits tuning the normal modes of this latter to 
different frequencies. The wire completes the 
circuit of an alternating current at 50 per/sec. 
Consequently, the temperature and, therefore, 
the tension of the wire are caused to vary 
periodically at the rate of 100 per/sec. Provided 
the current strength is sufficient, when one of the 

tuned to a frequency of 50 per/sec, the 
parametric excitation of this mode is observed. 

 
Section 8: Forced Oscillations of a System with Periodic Parameters - Parametric 
Coupling 
 
As we have seen in Section 7, if a system with periodically varying parameters is found 
in an unstable region, the stationary state cannot be described by a linear equation. But, if 
it is located in a stable region, the stationary mode differs from equilibrium only owing to 
the effect of a periodic or quasi-periodic external force. Since the oscillations are small 
enough, the phenomenon can then be described by an inhomogeneous linear equation 
with periodic coefficients which, in the simplest case, is in the form: 
 

     (38) 
 
where δ is a damping coefficient, ρ(t) a periodic function, and f(t) a periodic or quasi-

 
 

d 

ource in harmonic resonators, endow a special 
hysical importance to sinusoidal functions and the harmonic analysis of an arbitrary 

o treat 
esonance phenomena in systems with constant parameters. 

 

normal modes of the wire is approximately 

 
 

)t(fq)t(q2q
...

=ρ+δ+

periodic function. Equation (38) represents a generalization of the well known 
phenomena of resonances produced by the action of a periodic, or quasi-periodic, force
f(t) on a linear system with constant parameters (harmonic resonator). G. Gorielik14

subjected these phenomena of generalized resonance to a detailed theoretical study base
on a few considerations of principles that were provided by one of our group [57].  
 
The phenomena, which have their s
p
function. It is the language of sinusoidal functions that is used by theory t
r

                                                 
13 The publication is in process. 
14 The article is in this issue of Technical Physics of the USSR. 
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However, this language ceases to be able to handle systems with periodically varying
sfy certain conditions in order for there to be 
s, which are expressed for a resonator with 

 principles using new periodic or quasi-periodic 

rties of the resonator. 

rs, resonance phenomena, in the absence of an

r the ideal system described by the equatio

0q)t( =ρ     

 
parameters. The function f(t) should sati
resonance. The form of forced oscillation
periodic parameters, involves selectivity
functions. These may be considered as generalizations of the sine and cosine functions, 
and are determined by the intrinsic prope
 
In linear systems with periodic paramete  
external force and damping, present a character that changes, depending upon the regime 
of operation of the resonator, i.e. whethe n 
 
 

  
 
 
 

 in a stable region, at the boundary with an unstable region, or in an unstable region. In 
e first case, the forced oscillations of resonance are proportional to 1/δ just as in the 

sonance in which the forced oscillations are proportional to 1/δ2 and a “weak” 
sonance where they are proportional to 1/δ. If f(t) = E cos(ωt + ϕ), it has been found 

e 

n 
e receivers. In the 

tter, the coupling between the grid circuit and the plate circuit “regenerates”. This 
allows partial restoration of the energy dissipated by the forc
of the plate battery. The theory of “regeneration” can be ma

ith constant coefficients by disregarding the nonlinear terms of the tube characteristic. 

in a 

haracteristic of the circuit, that of the EMF, and that of the variation of the parameter are 

nds 
ve to the EMF. 

q
..

+

is
th
case of a harmonic resonator. In the second case, there are two kinds of resonance: a 
“strong” re
re
that by varying the phase ϕ, it is possible to pass out of the weak resonance regime. In th
third case the resonance becomes more pronounced as the modulation index increases; if 
the force is sinusoidal the nature of the phenomena is likewise a function of its phase.       
 
The theory of resonators with periodically varying parameters takes into account certai
phenomena that have some similarity to those occurring in regenerativ
la

ed oscillations at the expense 
de using a linear equation 

w
The regeneration decreases the coefficient of the dissipating term. 
 
A “regeneration effect” is produced in a similar manner. In other words, by means of 
utilizing a local source, it is possible to partially compensate for the losses of energy 
circuit performing forced oscillations if one of its parameters is caused to vary at a 
suitable frequency. The phenomenon is especially advantageous if the frequency 
c
all in the ratio of 1:1:2. The modulation index plays a role analogous to that of the 
coupling coefficient in a regenerative receiver. An essential difference between 
conventional regeneration and this “parametric regeneration” is that this one depe
primarily on the phase that the parameter variation has relati
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The effect of “parametric regeneration” was observed and studied at the Central Radio
Laboratory by Divilkovski and Rytov, as well as by Roubtchinski15. 
 
The work of our laboratories has revealed new effects of parametric coupling between 
oscillating systems. They differ essentially from the well-known phenomena that take 
place in linear coupled systems. 

 

nderwent a periodic variation. If the frequency of the elastic oscillations is double that 
f the angular oscillations, there will be parametric excitation of the latter by the former. 

(Whence the term “parametric coupling”.) With respect to those phenomena discussed in 
Section 7, the phenomenon has this difference: the vari
unction of the oscillation that it excites. In effect, the angular oscillation causes the 
ppearance of a centrifugal force at the frequency of the elastic oscillations, and 
onsequently it reacts on the latter by ordinary resonance. The naturally autonomous 

he 

 

       

 

 vary 

 
Let us take, for example, a mass suspended by a string with one fixed point. This is the 
elastic pendulum studied by G. Gorelik and a member of our group [67] regarding a 
question in optics16. When the mass oscillated vertically, the length of the pendulum 
u
o

ation of the parameter itself is a 
f
a
c
coupling is expressed in the differential equations of the system by nonlinear terms. 
Parametric coupling can likewise be seen in self-exciting systems with two degrees of 
freedom: for example that of Figure 51, which was studied by Tourbovitsch17. Since t
operating point is selected in such a manner that the polynomial expressing the 
characteristic of the tube has a term of the second degree, which is clearly indicated, the
equations of the system will be in the form: 
 

..
2

..
+β=+ ...yx2xx ω

   ...yy4y 2.
2

..
+β=+ ω       

 
(We have written only the most significant terms.)  It can be seen that oscillation y, at  
frequency 2ω, causes a variation of circuit “resistance” at the critical frequency ω 
(parametric action) and that, in return, oscillation x generates energy at frequency 2ω, 

hich reacts by resonance on oscillation y.  w
 
A. Tscharakhtschian18 studied the action of a sinusoidal force on two circuits with 
parametric coupling forming a “parametric transformer”; in this system, the variation of 
the current in the primary circuit causes the induction coil of the secondary circuit to
by modifying the magnetization of the iron-core coils. This allowed the production of 
parametric excitation phenomena. 
 
                                                 
15 The publications are in preparation 
16 This model allows providing a standard qualitative table of certain anomalies of combinative diffusion 

(Raman effect) with CO2 molecules, which Fermi (Zeitschrift für Physik, Vol. 71, 1931, p. 250) treated 
suitably by quantum mechanical methods. 

17 The publication is in preparation. 
18 The publication is in preparation. 
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Section 9: The Role of Statistics in Dynamic Systems 
 
We shall conclude with a few words on some questions whose theoretical and 
experimental study has just begun at our laboratories19, and which relate the theory of 
oscillations to statistical theories. 

te 
lses 

 
e effect 

ment of such and such a final state. This is 
e case, for example, for rocker-relays (Kipp relays) which possess a saddle (at the 

origin of the coordinates) and two stable nodes (one on the right and the other on the left 
of the saddle). It is possible to produce a relay ha
phase plane, to the right and to the left of saddle O and symmetrical with respect to the 

. It is clear that, if the initial perturbations are distributed according to the laws of 

. This 
y 

ible to evaluate the magnitude of the latter. 
xperiments of this kind were performed in one of our laboratories. The amplified 

 
 
 
 

 
Even in the simplest case of oscillation initiation in a triode oscillator, the role of 
statistics can be clearly seen in the behavior of the system [69], [70]. Even without a 
deviation from the normal, if, at the initial instant, the system is found in a state of 
equilibrium, it will always diverge owing to random pulses [71] (produced, for example 
by random fluctuations). Now, the time for the system to arrive at a stationary state is a 
function of the magnitude of the initial perturbation (this, of course, concerns the time 
necessary for the state of the system to arrive at a value differing from the stationary sta
by a given value). However, in a triode oscillator, the oscillating circuit levels the pu
to a “mean”. This is why their influence is always shown by the formation of small 
oscillations characteristic of the circuit, whose magnitude is a function of the spectral 
intensity of the pulses. 
 
This leveling of the pulses will not have time to be carried out if the system is very “fast”
one. The instantaneous values of the current and voltage will then be random. Th
of various initial conditions will be directly observed in systems that have a small 
variation of initial conditions in the establish
th

ving two stable nodes located on the 

latter. Let us assume that when the relay is triggered, the representative point is located at 
O
chance, deviations to the right and to the left will likewise be probable and if, 
consequently, the system is triggered without applying an external pulse, it will travel 
either towards the right node or towards the left node, according to a statistical law
statistical law will be altered if steady pulses are used. By comparing the effect of stead

ulses with those of random pulses, it is possp
E
current fluctuations of a vacuum tube were used as a source of random pulses. The 
magnitude of the fluctuations determined in this way agrees satisfactorily with the well-
known theoretical and experimental findings of Schottky. 
 
 
 

                                                 
19  The experiments are still in progress. 
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It is possible to raise another question concerning the transition of a system from one 
s problem was treated 

eoretically using the Fokker equation. In particular, L. Pontryagin mathematically 
ing the 

ary 
ussion of the mean duration that the system remained 

 such-and-such a stationary state. Naturally, this is a function of the amplitude of the 

ur desire was to provide a short overview of some research carried out during the last 

 

 

928, 

 January 1927. 
. Van der Pol, B., “On Oscillation Hysteresis in a Triode Generator with Two Degrees of 

Freedom,” Ibid, Volume 6, Number 43, p. 700, 1922. 
. Mandelstam, L., Papalexi, N., “Concerning the Basis of a Method for the Approximate 

Solution of Differential Equations,” Zhurnal Eksperim. i Tekhnicheskoi Fiziki, Volume 4 p. 
2, 1934; Technical Physics in the USSR, Volume 1, Number 4, pg 415, 1934. 

                                              

state to another owing to the effect of random pulses. Thi
th
calculated the expected duration of the transition from one state to the other. Us
results obtained it is possible to compute the duration of the transition from one station
state to another, thus allowing disc
in
random pulses. We were able to experimentally ascertain the existence of these 
“spontaneous” transitions from one stationary state to the other. 
 
By observing how long the system remained in such-and-such a stationary state, it is 
possible to determine, the magnitude of the random pulses by using some plausible 
supplementary postulates. Note that, in principle, the existence of the random pulses 
limits the precision with which it is possible to attribute a definite period to an oscillatory 
phenomenon. 
 
Section 10: Closing Remarks on Oscillations 
 
O
few years in the laboratory of the Institute of Physics of the University of Moscow, the 
Central Radio Laboratory (Leningrad), the Laboratory of Nonlinear Oscillations of the 
Institute of Electrophysics (Leningrad) and the University of Gorki. In order to not
encumber our report, we have omitted a whole series of questions relating, for example, 
to systems with several degrees of freedom20. And, within the topics that we have 
discussed, we have had to confine ourselves to the most essential topics. In this way a 
great number of interesting details have often been sacrificed. References are provided
below. Soon a number of works, so far published only in Russian, will appear in other 
languages, too. 
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