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FOREWORD

The report on the introduction to non-linear mechanics as a whole
falls into four major divisions.

Part I, published as David Taylor Model Basin Report 534 under date

of December 1944, is concerned with the topological methods; its presentation

substantially follows the "Theory of Oscillations" by Andronow and Chaikin.

The material is slightly rearranged, the text is condensed, and a number of

figures in this report were taken from the book. Chapter V, concerning

Li6nard's analysis, was added since it constitutes an important generaliza-

tion and establishes a connection between the topological and the analytical

methods, which otherwise might appear as somewhat unrelated.

Part II, published here, gives an outline of the three principal

analytical methods, those of Poincare, Van der Pol, and Kryloff-Bogoliuboff.

Part III, to be published soon, deals with the complicated pheom-

ena of non-linear resonance with its numerous ramifications such as internal

and external sub-harmonic resonance, entrainment of frequency, parametric

excitation, and the like. This subject is still in a state of development,

and the classification of the numerous experimental phenomena is far from

being definitely established. Much credit for the experimental discoveries

and theoretical studies of these phenomena is due to Mandelstam and Papalexi,

and to the school of physicists under their leadership. The first four chap-

ters of Part III will represent the application of the quasi-linear theory of

Kryloff and Bogoliuboff to these problems and the last three will concern the

developments of Mandelstam, Papalexl, Andronow, Witt, and others, following

the classical theory of Poincare.

Finally, Part IV will review the interesting developments of

Mandelstam, Chaikin, and Lochakow in the theory of relaxation oscillations

for large values of the parameter p. This theory is based on the existence

of quasi-discontinuous solutions of differential equations at the point of

their "degeneration," that is, when one of the coefficients approaches zero

so that the differential equation "degenerates" into one of lower order. A

considerable number of experimental facts will be explained on the basis of

this theoretical idealization.
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INTRODUCTION TO NON-LINEAR MECHANICS

PART H

ANALYTICAL METHODS OF NON-LINEAR MECHANICS*

44. INTRODUCTORY REMARKS

It is apparent that for practical applications the general quali-

tative methods reviewed in Part I are not sufficient, and that quantitative

methods capable of yielding numerical solutions of differential equations are

necessary. Thus, for example, a physicist or an engineer may wish to deter-

mine the amplitude and phase of an oscillatory process with a certain pre-

scribed accuracy once the general qualitative aspects of the phenomenon have

been ascertained.

In general, there exist no methods capable of yielding exact solu-

tions of non-linear differential equations, and the only methods available

are those of approximations. A typical and very general class of non-linear

differential equations encountered in applications is represented by the

equation

S+ W 2X = pf(X, ,t) [44.1]

The solutions of this equation are periodic with frequency w if p = 0.

Poincar6 (1)** has shown that very near some of these solutions, when p = 0,

periodic solutions of Equation [44.1] may exist for very small values of the

parameter A. The search for these solutions is the object of the method of

small parameters of Poincar6. This method, with its various ramifications,

constitutes the principal subject of Part II.

The scope of the quantitative methods available at present is

rather limited. It is restricted, in fact, to the class of non-linear dif-

ferential equations of the type [44.1], and for this class it is further re-

stricted by the condition that the parameter # should be very small, that is,

p << 1. In spite of these limitations, the usefulness of the method is very

great and its applications in various branches of applied science are exten-

sive. Only in special cases when the parameter # is large does the theory

* The text of Part II follows the presentation contained in the two treatises on Non-Linear Mechanics:

"Theory of Oscillations," by A. Andronow and S. Chaikin, Moscow, (Russian), 1937, Chapters
VII and VIII.
"Introduction to Non-Linear Mechanics," by N. Kryloff and N. Bpgoliuboff, Kieff, (Russian),

1937, Chapters X, XI, and XIII.

* Numbers in parentheses indicate references on page 112 of this report.
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of Poincar6 cease to be applicable, and for such cases analytical methods are

practically unexplored.*

We shall frequently refer to Equation [44.1], with p << 1, as quasi-

linear, which means that the solutions of this equation do not differ appre-

ciably from solutions of the corresponding linear equation when p = 0. The

important point to be noted is that, although the solutions of [44.1] do not

differ much from the solutions of the corresponding linear equation if p is

very small, these periodic solutions do not exist in the neighborhood of any

periodic solution of the corresponding linear equation but only in the neigh-

borhood of certain special solutions of that equation. The establishment of

conditions for the existence of periodic solutions of [44.1] when p << 1 thus

constitutes the crux of the theory of Poincare.

Another important point is the effect of the so-called secular

terms in the approximate solutions obtained by these quantitative methods.

Poincar6's method consists in substituting certain power series in Equation

[44.1] and in determining the coefficients of these series by a recurrence

procedure. As a result of this, there may appear terms such as t" sin Wt and

tn cos wt, the secular terms, in which the time t appears explicitly in the ex-

pansions. It is apparent that the existence of these terms, which grow beyond

any bound as t -oo, destroys the periodicity one is seeking. This can be il-

lustrated by the following argument.

Let w = a + f. Then

sinwt = sinat cosflt + cosat sinflt

= at - (t)+ W cost [ (+t) 1+ - sin.St [44.2]

(at)3

The terms at cos t, 3! cos St, and so on, in this expression are secular

terms. It is obvious that if the series expansion of sin at and cos at is

limited to a finite number of terms one cannot speak of the "periodicity" of

the expression on the right side of Equation [44.2] since the polynominals in

the parentheses of this expression will increase indefinitely as t - .. If,

however, n - o , the expressions in parentheses approach sin at and cos at,

and the whole expression [44.2] then becomes a periodic function of time with

period T = 2r/w.

In practice it is necessary to stop the series expansions at a

certain finite number of terms; hence one is generally confronted with sec-

ular terms. In the original work of Poincar6 this difficulty was obviated by

limiting the expansions to a certain finite time interval sufficient for

* See, for example, the paper by J.A. Shohat (2).
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astronomical purposes. Gylden and Lindstedt (3) have avoided this difficulty

by eliminating the secular terms in each step of the recurrence procedure by

which the coefficients of the expansion are determined. These methods will

be mentioned briefly in Chapter XI.

For this reason the transfer of the methods of celestial mechanics

to the problems of non-linear oscillations presented certain difficulties.

In fact, if one attempts to apply Poincar6's method, for example, to a therm-

ionic generator oscillating with a frequency of several megacycles per sec-

ond, it is apparent that in a few seconds such a generator will pass through

stages corresponding to those through which an astronomical system passes in

many millions of years. The effect of secular terms in such a case should

be felt within a few seconds. Nothing of the kind, however, is observed.

In view of this it becomes necessary, in adapting these methods to

the theory of non-linear oscillations, to follow the method of Lindstedt,

which eliminates the secular terms in each step of the recurrence procedure.

This was accomplished by Kryloff and Bogoliuboff. We shall return to this

question in Section 58.

In spite of the difficulty of using the original theory of Poincar6

for studies of non-linear oscillation, this theory is still capable of yield-

ing a considerable amount of information. Chapter VIII outlines the salient

points of Poincar's method as outlined in "Theory of Oscillations," by A.

Andronow and S. Chaikin, (4).

Chapter IX is devoted to the Van der Pol method; its presentation

follows closely the text of Andronow and Chaikin. Chapter X concerns the

theory of the first approximation of Kryloff and Bogoliuboff (5).

These two methods of Van der Pol and of Kryloff and Bogoliuboff are

analogous in some respects and follow a method similar to the method of vari-

ation of constants of Lagrange.

Chapter XI deals with Lindstedt's method, as applied by Kryloff and

Bogoliuboff to approximations of orders higher than the first.

Chapter XII is devoted to the method of equivalent linearization of

Kryloff and Bogoliuboff, which is an attempt to simplify the problem by re-

ducing the given non-linear differential equation to an equivalent linear one.

HI~ I I iIwIII III *lIIdm III,. ,iIIIIIEIIIIIIEIIEIIIImIIMI 1,1,ii



CHAPTER VIII

METHOD OF POINCARE

45. CONDITION OF PERIODICITY
Consider a system of differential equations

x = ax + by + 1afl(x,y); j = ex + dy + pf 2 (x,y) [45.1]

where fl and f2 are the non-linear elements of the system and p is a param-

eter. It will be assumed that f, and f2 are analytic functions of their

variables in certain intervals under consideration.

For p = 0 the system becomes linear. In general, we shall be inter-

ested in periodic solutions of the non-linear system. Let us consider, first,

the periodic solutions of the system [45.1] when p = 0. Forming the charac-

teristic equation, we obtain

S 2 - (a + d)S + (ad - bc) = 0 [45.2]

The periodic solutions of [45.1] for p = 0 correspond clearly to purely imagi-

nary roots of Equation [45.2]. We thus obtain the following conditions of

periodicity

a + d = 0; ad - bc > 0 [45.3]

Under these conditions the linear system admits an infinity of periodic solu-

tions of the form

x = Kcos(wt + 0); y = gKsin(wt + 0 + X) [45.4]

where w = Yad - be and g is a determined constant. Obviously, the phase angle

q is arbitrary and can be made equal to zero by a suitable choice of the ori-

gin of time. K and the relative phase angle X appear as the integration con-

stants determined by the initial conditions.

The general form of periodic solutions of [45.1] for p = 0 is then

x = Xo(t,K) = Kcoswt; y = yo(t,K) = gKsin(wt + X) [45.51

so that xo(t,K) and yo(t,K) are periodic functions with period 27r/w. Let us

assume now that periodic solutions exist for small values of p * 0 and let

x = x(t,p,K) and y = y(t,p,K) be these solutions. For t = 0 the solutions are

x(O,p,K) and y(O,p,K) and we can write

x(0,p,K) = xz(O,K) + .1 and y(O,pi,K) = yo(0,K) + 82 [45.6]

which defines the functions 9 1(p) and #2(p). It is obvious that # 1 (0) =

12(o) = 0.

The method of Poincar6 consists in developing the solutions x(t,p,K)

and y(t,pK) as power series in p, 81, and # 2 . Poincar6 shows (6) that the
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expansions converge if the values of Ip , I#1 1, and , 26I are sufficiently

small. Moreover, this convergence is uniform for any finite time interval

0 < t < t1 . The coefficients of the expansions so obtained are functions of

time. By substituting these expansions in the differential equations [45.1]

it is possible to determine these coefficients by equating like powers of p,

ll, and 82. One obtains in this manner a system of differential equations

subject to certain initial conditions.

Let us write the solutions of [45.1] in the form

x = x(t,',0,#2,K); y = y(t,1p,fl,1 2,K)

Since we are looking for periodic solutions of [45.1] in the neighborhood of

a known periodic solution with period T, when p = 0, it is logical to assume

that in this neighborhood the period of the solution [45.1] will be T + r,

where r(p) is a small correction which approaches zero as p approaches zero.

Our chief objective is to show that under certain conditions periodic solu-

tions may exist provided p is small. The condition for the periodicity of

[45.1] is clearly

x(T + '7, ,# 1,f 2 ,K) - x(0,p 1,#81 82 ,K) = 0
[45.71

y(T + 7', p,# 1,6 2 ,K) - y(0,,#i,h82 ,K) = 0

For given values of p and K we must select functions #1(p), #2(u), and r(p)

so as to satisfy Equations [45.7]. Furthermore, the non-linear equation be-

comes linear when p = 0 so that

7(0) = i1 (0) = 2 (0) = 0 [45.8]

The phase is arbitrary, however, so that it is possible to assume that one of

the .'s, say #,, equals zero. Putting 82 = f, the conditions [45.71 can be

written as

x(T + 7,/,O,0 ,K) - x(O,p,0,fl,K)= (r,,B,K)
[45.91

y(T + ,r p,O ,,K) - y(O,p,0,O,l,K)= (7, ,fl, K)

It is apparent that, when # = 0 and hence r(O) = f(O) = 0, the

system [45.1], with the conditions expressed by [45.3], has an infinity of pe-

riodic solutions corresponding to the arbitrary values of the integration con-

stants K and X in Equations [45.4]. In such a case Equations [45.9] become

identically satisfied for any value of K. One can express this by writing

(7, ,pK)= 1(i,p,fl,K) = 0
[45.10]

0(r,p,j,K)= p 1( 7-r,p,f,K) = 0



The right-hand side of these equations represents a straight line p = 0 in

the (p,K)-plane and a point represented by the intersection of the curves

01 (p,K) = 0 and 0 1-(p,K) = 0, where 4- and i are the functions 1, and 0I in

which r(p) and (p) have been expressed in terms of p. We can, for instance,

represent r(p) and G(Ap) by power series

r(p) = du + ep + ... ; #(p) = dip + e1 A2 + [45.11]

Expanding the functions 01(r,p,,8K) and ,7(r,p,f,K) we get

O1 - 0, + ap + b- + c# + . =0
[45.12]

O1 = 'o + alp + bl + cli + ... = 0

Substituting in these expressions the values of r(p) and fl(p) from [45.11]

and considering p as a small quantity of the first order, one obtains

O1 = 0, + p(a + bd + ed 1) = 0
[45.13]1

1 = 1o + p(al + bid + c1id) = 0

These equations hold only when p is very small so that the terms containing

powers of p greater than the first are negligible.

Since these two equations must be satisfied for a sufficiently small

u, two conditions must be fulfilled:

0, = 0Ol ( K ) = 0; 0, = o01(K) = 0 [45.14]

a + bd + ed1 = 0; a 1 + bid + cld I = 0 [45.151

The condition [45.14] states that the terms independent of p must be equal to

zero and [45.15] that the system of the two equations must yield the values

of d and dl which determine the quantities r(p) and (p) to the first order.

It is apparent that this is possible whenever the determinant b e * 0.

With Expressions [45.12] taken into account, this is equivalent to the con-

dition

J a a() +o [45.16]

Hence, whenever the Jacobian [45.16] is different from zero, periodic solu-

tions of the non-linear problem exist since it is possible then to determine

the functions 7(p) and P(p) provided p is sufficiently small and provided the

conditions [45.14] are fulfilled. If Equations [45.14] can be solved, one ob-

tains one or several values of K; hence the problem is solved.

We can recapitulate the problem somewhat differently using the ter-

minology of the phase plane. For p = 0 there is a continuum of closed
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trajectories corresponding to different values of the integration constants,

as was shown in Section 1. For p * 0 but very small, closed trajectories

may exist in certain restricted regions of the phase plane in which the con-

dition [45.16] is fulfilled; the value of the integration constant K,, the

amplitude, is determined by solving Equations [45.14]. The solution of [45.1],

when # = 0 and K = K, as just explained, is called the generating solution.

We shall see numerous examples of this procedure in what follows.

46. EXPANSIONS OF POINCARE; GENERATING SOLUTIONS; SECULAR TERMS

Instead of Equations [45.1], we shall consider now a non-linear

differential equation of the form

Y, + x = f (x, i) [46.1]

Let x = x(t,p,f 1, ,2,K) be its periodic solution in the neighborhood of p = 0.

Expanding this solution into a power series of p, #l, and #2, we know by the

theorem of Poincar6 that this expansion converges in any arbitrary but finite

time interval provided these quantities are sufficiently small in absolute

value. We obtain

x = q 0(t) + A# 1 + B# 2 + Cp + D# p + E8 2 p + F 2 + ... [46.2]

where qo, A, B, ... are functions of t. Our purpose will be to identify the

expansion [46.2] with a periodic solution of [46.1] provided IL I, 1i1(#)1,

and 1#2(#)1 are small. Differentiating [46.2] with respect to t, we obtain

the following equations

x = 0( t ) + A# + B61 2 " " "; " = o ( t ) + ;  I + B#2, + + A " [46.3]

Expanding f(x,i) in a Taylor series around the values x 0 , io we get

f(xi) = f(x 0,o) + (x - xo) o) + (x -. xo)(a2 ) +
4(X • 2 fo 0 M2j0 2f

+ - )  + ( - - + [46.4

Substituting x - x o = x - o0 (t); i - o  - o(t) as given by [46.2] and

[46.3] into [46.4] and replacing x, i, and f(x,i) by their values [46.2],

[46.3], and [46.4] in the differential equation [46.1], one obtains a series

arranged in terms of p, #1, , 1 #28, #8, 9 2, ... which by the theorem of

Poincar6 (6) converges. By equating the coefficients of p, 81, ..., one ob-

tains a set of differential equations. If the expansion is limited to the

second order, one obtains nine differential equations, of which three are

identically satisfied and the remaining six are as follows:

A + A = 0; B +B = 0

IYYIIIYYII _ YIYI III 1 YIIIYIII i liiliiill ilU 1I1I11 Iii

[46.51



C + C = f (xo, );. D + D = ()OA + (-oA

+ E = L + ; F + F C +
'B. xo 0fi / .\o

Here the symbols ( and ( designate the partial derivatives

respect to the variables x and in which the generating solutions

and o = 0(t) have been substituted after differentiation.

Writing [46.2] and its derived equation for t ='0 in the

x - x o = f1 = Af 1 + Bf 2 + C+B + DfBIp +

x - 0 = 2 = A1, + B 2 + Cp + D)11' + *

[46.5]

of f with

Xo = 0o(t)

form

[46.6]

one obtains the following initial conditions

A(0) = 1; (0) = 1
[46-.7]

B(O) = C(O) = D(O) = E(O) = F(O) = A(O) = C(O) = D(O) = E(o) = F(0) = 0

With these initial conditions the first two equations [46.5] have the solu-

tions

A = cost; B = sin t

with period 27r.

The remaining four equations [46.5] are of the form i; + v = V(t),

having the initial conditions v(O) = v(0) = 0. The solution of this equa-

tion is

v = fV(u) sin(t - u) du
0

[46.8]

Replacing V(u) in Equation [46.8] by the right-hand terms of the last four

equations [46.5], one obtains the following expressions:

A = cost; A = - sint

B = sint; B = cost

C = ff[o0 (u), o(U)]sin(t - u)du;
o

D = -f--cosu - af sinu sin(t - u) du;
o xo xo 0

t Of.

E = Osin + cos] sin(t - ) du;

F = C + sin(t - u) du;
x o + a o

C =f[0o(U), o(u)] Cos(t - u)du

O [46.9]

f X osu sinu cos(t - u)du

t Of Of osl

F = C + C cos (t - u) du

I l tII ,1 l liil i i llM YY IIllMAIi lla IrYY i i 1mi n lil
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where x0 = K cos t and io = - K sin t are the generating solutions in which

the phase is taken equal to zero.

Inasmuch as only periodic solutions are of interest here, it is

important to know the values of A, B, *.. F after one period. Replacing t

by 27f in Expressions [46.9], one obtains

A(2 1) = 1; A(2 7) = 0

B(2n) = 0; b(2) = 1

2,

C(2) = - f f(xo, io)sinu du;
0

2r

C"(2) = ff(xo, o) osU du
0

D(2n) 1 f sin2u
0 2 Oxo

E(2) =I -

af _2
+ .f sin 2u du;

1 f sin 2 du;
2 io -

- Of 2
D1(2r) = -cos U

o Oo

k(27r) = sin2u

1 Of 1- -fsin2u du
2 Oio

[46.10]

+ cos u du
0i

F(22) V Of C(u) sinu
f(- axo

Of C(u) sinu du
aio

(2) = ) os + C(u) cosu] du

The expressions for D and E can be further simplified by expressing the val-

ues of (--f cos u) and du ( f sin u) differently.

We have

d df
(f cos U) = cosu - f sinu;

du du
df Of Oxo
du axo Ou

Since the generating solutions xz and io are

o0 = Kcosu; io= - Ksinu

= - K sin u; - - K cos u
Ou Ou

df Of . Of
d - K sinu - K cos u

du aOx0 io

1 d Of of 2
(fcosu) = - sinu cosu - cos u

K du Ox 0o io

1 d 1 f Of 2 f
1 d (fcos) = f sin2u - cos 2 sin u

K du 2 Oxo - o K

Of a o
0i o Ou

hence

and thus
f

sin u
K

[46.11 ]

~ ~ II IIIYII IN1,11611hhh, 111LIA1111HU, .' , 1, , ,iu ~ I I1- ^'l lilil i 113l iiIYIYY ~ I~ iis11 0 00 1 ui ii NYYAYIY HYYAII IIYiI, l , 111111b
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and similarly

1 d Of . 2  10 f1- (fsinu) - sin2u 1 -f - sin2u + -cosu [46.12]
K du Ox 0  2 o0 K

Expressions [46.10] for D, D, E, and E, taking into account the

expression for C, are simplified by means of Equations [46.11] and [46.12]

and assume the following symmetrical form:

2, Of C(27r) r 2of C(27r)
D(2r) = -du D(2r) - du-

[46.131

1 C(2r); E(2r) = 1
E(27) = - (2r); E(27r) C(27r)

K K

If C(27) = 0 and C(2r) * 0, Equations [46.13] become

2f 2 a f C(27r)
D(2) = f du; b(2r)= du -

0  [46.14]

E(2r) = (2); E(2n) = 0
K

If C(2r) = C(27) = 0, one has

2 w 2 r

D(27r) = - du; b(27r) = du

[46.151

E(2r) = 0; E(27r) = 0

From the latter form of the expressions for D(27r) and D(27r), it is

apparent that they represent the constant terms in the Fourier expansion of
a-o and -, multiplied by 2 7r. On the other hand, - C(27r) and C(27r), as given

by Equation [46.10], are the coefficients of sin t, cos t in ,the expansion

of f(x0, o), multiplied by 7r. Hence, if f(xo, xo ) is given, these coeffi-

cients can be calculated directly from Equations [46.10].

We are now in a position to write Equations [45.10] in a new form,
expressing the existence of periodic solutions. It is apparent that by the

choice of generating solutions in the form x0(t) = K cos t and io(t) =

-K sin t, the amplitude K is already contained in the expressions for fl,

and 9 2 so that Equations [45.10] can be written as

4 (, /, #1, =2) = 0 and 0 (r, p, 1 , 2 ) = 0

iumw In 1 WIMIA i

[46.16]



These equations express sufficient conditions for the existence of periodic

solutions. There are thus two equations with three unknowns, T, f#, and #2.

One of the 8's, however, is arbitrary and can be taken equal to zero, as

previously mentioned. If, therefore, Equations [46.16] can be solved giving

7 and f, as functions of p in such a manner that for # - 0, r(p) - 0, and

#i(p) + 0, the problem is solved. If this is impossible, there is still

another alternative. We may put f# = 0 and try to solve for r and 12 as un-

known functions of p.

The left-hand terms of Equations [46.16] represent the differences

x(2r + r) - x(0) and (27r + -) - i(0). Expanding x(2n + T) and 1i(2n + r) in

a Taylor series in which 7- is considered small, we have

x(27r + 7-) = x(27r) + 7i(2) + ..
[46.17]

i(27r + 7) = i(2r) + -rY(2) + •

Here we substitute the series expansions [46.2] and [46.3]. The coefficients

A(27), B(2r), ... have already been calculated in Equations [46.10]. Con-

sidering 7 and p as small quantities of the first order and carrying out the

expansions to the second order, one has

x(27r + 7-) = xo(2r) + A(2)# 1 + B(27r)/ 2 + C(2r)p + D(27r)18, + E(2r)-2p9 +
2

+ F(27)p2 + -rio(2r) + 7-A(27)#1 + -rB(27r) 2 + -TC(27)p + -~-o(27r) [46.18]

i(27r + 7-) = io(27) + A(2r) + h(27r), 2 + ((27r)p + b(2r)#1  + E(2r)#32 +
2

+ F(27r)p2 + T- o(27) + -Ar(27r)l 1 + -rB(2r)12 + -ri(2r)p + --Xo(27r) [46.19]

But x0 (27r) = x0(0) and io(27r) = io(0). Furthermore, A(2n) = 1, A(2r) = 0,

B(2r) = 0, and B(27r) = 1. With these values of the coefficients, Equations

[46.18] and [46.19] become

2

x(27r + -) - x(0) = - K-+ f- 2 + C(27r)p + C(2r)--p +

+ D(27r)#61p + E(27r),32p + F(27r)p2 = 0 [46.20]

and

x(27r + r) - (0) = - Kr - 81 + C(27r)p + C(27r)0p +

+ )(2)#,8u + (27r)16 2 + F (27r)p = 0 [46.21]

~ __ ____. iplillilII ii IN - o._ __ _ _Y II I IIIII I W1 I'IIYI IYYYU liu1ll A I IffilIII ft i,



One of the parameters # can be fixed as we please. Thus for a given Value

of one # these equations determine the other B and the correction 7 for the
period. Since p, 1, #82, and 7- are small quantities of the first order, one
can obtain different conditions according to the order of the approximation.

The simplest case is that in which one considers the first-order solution,

dropping terms of the second order. The only term of the first order in

[46.20] is C(27)p, and in [46.21] there are two terms of the first order,
- K- and C(27). By equating these terms to zero, we obtain the following

two equations

2r

C(27r) = - f(K cosu, - Ksinu) sinudu =- (K) = 0 [46.22]

S=Kf f (Kcosu, - Ksinu) cosu du = p,(K) [46.23]K K o  KsIcosuu
0

Equation [46.22] determines the amplitude K of the generating solution in

the neighborhood of which exist periodic solutions of [46.1], and Equation

[46.23] gives the correction 7- for the period, provided C(2n7) * 0. If
C(27r) = 0, from [46.15], E(2r) = E(2,r) = 0. Hence, Equation [46.20] re-
duces to

D(27r)fl + F(27r)g = 0 [46.24]

Since 7 in this case is zero to the first order, we may proceed to the sec-

ond order and put 7- = ap 2. From [46.21], in which we can put B 2 = 0, and
where C(2r) = 0, C(2r) = 0, and E(2r) = 0, we obtain

- Kua2 + D(27r)F11 + F(27r)g 2 = 0

Dividing by p and substituting the value of f, derived from [46.24] into this

expression, we obtain

F(27r)D(27r) - F(27r)/(27r) [46.25]
K* D(27r)

The correction 7- = a 2 must be introduced each time the motion is isochro-

nous to the first order. Thus, if K * 0 and D(2,r) * 0, Equations [46.24]

and [46.25] determine fl, and 7 = aC2, the amplitude K having been determined
from Equation [46.22]. Substituting the values of A, B, C, and fl in Equa-

tion [46.2], we obtain

x = Kcos t + ff (Kcosu, - Ksinu) sin(t - u)du - D(27r) cost [46.26]
[0

r~alJ~~FI~PI~ LLY~~-'~~li;
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where Khas been calculated from Equation [46.22].*
2 r+

It is to be noted that the term T+7 T+7f(xo,o) sin(t - u)du

represents the first term of the Fourier expansion of the function appearing

on the right side of Equation [46.1]. Moreover, the period has been changed

because of the presence of the term 7, the correction for the period. The

function x(t) given by Equation [46.26] remains periodic.

It should be mentioned here again that the presence of secular

terms does not destroy the periodicity but merely accounts for a modification

of the period, as was explained in connection with Equation [44.2]. The

effect of the appearance of secular terms can also be ascertained from the

following example. Assume that we have a periodic function

x(t) = Z[aK(p) cosKw(p)t + bK(p)sinKw(p)t ]  [46.27]
K=O

in which both the amplitudes and frequencies are functions of a parameter p.

Expansion of this function in a power series of p gives

x(t) = Z [aK(O)cosKw(O)t + bK(O) sin Kw(0) t] +
K=0

+ p aK(O) cosKw (0) t + b' (0) sinKw(0)t -
K=O

- aK(0)w'(0)Kt sinKw(0)t + bK(O)w'(0)Kt cosKw(0)t] + ±p • [46.28]
K=O

where aK, bK, and w' designate the derivatives of the functions aK(p), bK(P),

and w(p) with respect to p in which the value p = 0 has been substituted after

differentiation. It is observed that, since the function z(t) is periodic,

the appearance of secular terms does not destroy the periodicity in view of

the summation of these terms from 0 to w. This might not be the case if only

a few secular terms were considered in the expansion.

With reference to [46.26], it is to be noted that the secular terms

do not appear in the expansion for x(t) if the correction 7 can be calculated

first, which requires that D(27r) * 0. It is sufficient then to use as the

period over which the functions A, B, ... of Poincar6 are determined, the

corrected period T + 7, which amounts to the choice of generating solutions

zo and z0 in the form Kcos 1 - -2 t and - Ksin [1 - ]t, instead of

K cos t and - K sint. The question of secular terms will be discussed in more

detail in Section 58.

* In order to re-establish the arbitrariness of the phase, t should be replaced by t + 6, where 4 ib

an arbitrary phase.

il - 111 0 11ili



47. SYSTEMS WITH TWO DEGREES OF FREEDOM

In the preceding sections we have been concerned with the estab-

lishment of conditions for periodicity of solutions of a single non-linear

differential equation [46.1] of the second order, which generally represents

in applications a dynamical system with one degree of freedom. The only sta-

tionary solutions in this case are periodic ones, and the topological repre-

sentation of such motions in the phase plane does not present any particular

difficulty, as was shown in Part I.

Although theoretically the extension of Poincar6's method to sys-

tems with several degrees of freedom follows the same argument, the practical

difficulties rapidly increase and the benefit derived from topological con-

siderations disappears.* Moreover, the stationary motions in systems of more

than one degree of freedom are not necessarily periodic. It thus becomes

necessary to restrict the analysis somewhat by endeavoring to formulate only

the conditions of stability, which in applications is equivalent to the phys-

ical possibility of a particular motion. Systems with two degrees of freedom

play an important role in applications, and for that reason it may be of in-

terest to give a brief outline of the method of Poincar6 in connection with

such systems, omitting the details which have already been explained. The

calculations of Andronow and Witt (7) (8) are given in this and the following

sections.

Consider a quasi-linear system of two differential equations of the

second order
2

+ ( 2 x /f(xr,y, j;)

[47.1 ]
yj + y2 Y

where p is a small positive number and the functions f and g are analytic

functions of the indicated variables. Since there are two degrees of free-

dom, one has a greater variety of limit conditions for p = 0 than in the pre-

viously discussed case of a single equation [46.1]. Thus we can write the

the limit conditions either as

* In fact, a dynamical system with two degrees of freedom is generally reducible to a system of four
differential equations of the first order, and its representation in a phase plane becomes generally
impossible. Only in very special cases of the so-called "degeneration" defined in Part IV is a planar
representation possible, but such "degenerate" systems possess entirely new features which are not in-
vestigated here.

"~Cat~l~_r*u-r;uul+i_~u*-ru-~arir-i~,~
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21T
x = Rcoswt = 0o(t); y = 0 with period T = 2

W1

or [47.2]
27r

x = 0; y = Rcosw 2t = ipo(t) with period T =
W2

The question as to which of these two generating solutions the dynamical

system will "select" will form an important object of a later study.

The procedure initially follows the pattern outlined in connection

with a single equation [46.1]. Let us assume that we select the first alter-

native of [47.2] and apply the perturbation method by putting

x = Oo(t) + 4; y = 0 + r7 [47.3]

In terms of the perturbations f and q, Equations [47.1] become

+ 0 = [f( 0 , ,O,O;O) + f, + fj + fir + fi + f, p + 02, ,D, )]

[47.4]

+ W7 = [g(o,~o0 ,O,O;0) + g"4 + g + 9,7 + g, + 9, + 02(, ,9,7,,4)]

where the quantity 02 contains terms of a degree higher than the first in

f, ... p. According to Poincar6, the solutions of these equations can be

taken as power series

S= 1A + 2B 6 4 D + 84 + p[E + 1F + 2G + 2 G H + H 4 K + pL +

+ 02198213 94,P)] + 0 2 (8112,13, 4)

[47.51

7 = B1A + P2  + 8 3 +3 4D + E + F81 + G+2  + R3+ 194k+ pL +

+ 02( 1,12,)3,P4,P1)] 2+ 2(11, 2,193#4)

where A, .-*' L and A, ... L are functions of time and

f1 = f(0); 92 = 4(0); #3 = 4(O); #4 = i (0) [47.6]

One of the 's, as will be seen, can be assumed to be equal to zero; for ex-

ample, #2 = 0. If one substitutes the expressions [47.5] into Equations

[47.4] and equates the coefficients of like powers of #, ... p, a system of

differential equations results from which the functions A, ... L and A, ... L

can be determined. One obtains the following expressions:

oi - - M 11 uiii



C = 0; D = 0; 02(f 1,,.4) = 0

t

E 1 ff(,0o0 ,0,0;0) sin 1(t - u) du
10

t

F= f(cosW1 u.fx - Wsinw 1u.f),)sinwl(t - u)du10

t

H = (cos6)2u.f y W2sin 2 u.f) sin 1)l(t - u) du
W10

K = f sin()2't fY010 
)

+ cosw 2u"- f) sin 1i(t - u) du

t

1 [Ef+E+ + Ef, + f + f,] sinwl(t - u) du
1 0

[47.71

A = 0; C = cos( 2 t; 1 = sin 2 t;
()

2

A -1g(o, 0 o,0,0; 0) sinW2 (t - u) du
20

F= ft(cos 1u.g. -
W2 o

S t

f(2 0

w1 sin w1u " gj) sin W 2(t - u) du

o)2 sin( 2 u " g) sinw2 (t - u) du

K= - - sin w2 u g y + cosw 2u gi ) sin 2 (t - u) du

-1

L=-- fI[Eg.  + Eg, + Eg + g] sinw 2 (t - u) du
20

The conditions of periodicity for the solutions [47.3] are

[x] = x + r - x(o) = 0; [il = 2r + - (0) = 0

[47.8]
[y] = y(2 -y (0)= 0;) (0) 0- Y(O) = 0; M = ((J1)-(O=

These four conditions, with the use of the symbols [ ] defined by [47.8],
become

02 (1, f394)= 0

a ll il i M i i 1 mh IIgYI I hIld MII I IlIIIY llMIY I l I III l I l IIUhl 0
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R[coswlt] + 8 1[A] + p([E] + 0 1[F] + 83[H] + #4[K] + p[L] + [0 2( 1,# 3,l 4 ,)]) =

R[-wlsinwt] + #l[A] + #i[~ + ll[F] + # 3 [H] + #4[K] + [L] + [0 2(1,9 3,#4, M )]) =

[47.9]

3 [CI -±- j 4 [D] + + '0 1 F[] + l 3 [H] .8 4 [k] + lfl -4- [02(01,9 3,9 4, 1 )])= 0

013  + 64,[1 + JP[E1+ l[F1 + [3 [H] + 4 =K1 + pl1 + [0,( ,f 3,f,4u)])= o
3I l + 3[ 1 3 + 84[) + /[1 -+ [O,(91913 1 4 9 4 )

Developing the expressions indicated by the symbols [ ] in power series of 7,

the correction for the period, one obtains

[A = A2 +1 T) - A(0)= ao + alr + a,2 +...

[A] = A(2 + T) - A() =ao + a,7 + a27- + .. "

... and ao, ... can be calculated by Equations [47.7]. One obtains

from [47.10] the following equations

2
R (' + fl(ao + a-r) + p(eo + el + 6lo + 83ho + #4ko + /110) + 03 011 fl98fl / _= 32

- Rwr + f1(Co + a 1 r) + p(e ++ e-17 + hfo fl 3 h 0o fl4 ko0 + 0o1) + 0(fl 1 ,#3, f 4 ,1 , 7_) = 0

[47.11]

0 3 (CO + c 1 7) + fl4(do + d -r) + p(eo + e1, + fl1f + 1 3 h + 4ko + T10) + 0(fl1 ,# ,fl 4 ,p,7) = 0

$ 3(Co + C1 ) + fl4 (do + d1 7) + p(eo + e1 r + fllf + 03 ho + f 4 k + 10o) + 0 3(f 1,fl 3 ,l,7) = 0

In these equations certain coefficients do not depend on the choice

of the functions f and g. Thus, one always has

ao = 0; a 1 = 0; a, = 0; a1 = - C2

1Wo- 1 sin y;do =-~

[47.12]

Co - (j 2 s i n y; do = cosy -1

where 7 = 2n .

The second equation [47.11], taking into consideration [47.12] and

Os( 1 ,#8 ,fl 4 ,p), gives r, viz.,

7 = /0O+ #l0al + # 3ca3 + 8 4a 4 + p/Ia5 + 0 2 ( 1 , 3,4 ' 'l)]

where a0,

[47.10]

CO = cosy -1;

IN, III W I h i n IIN W 1 1 I 111 '111 1 iii ~ i lili it liliiillY~~iii 1II1I
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where

eo Rfo - __ o_ ho k, + e0 eCO R- R2wl 2  3 12 C 4  w12 2 ' 5 R2 14
1 1

Introducing the value of r given in Equation [47.13] into the remaining equa-

tions [47.11], one obtains the following three equations:

e+ Blfo + 83ho + Bko+ y-lI + ae -RW2
e0 + 14 h0 + 4ko+ + a0 0e-1  2 1) + 02(91 ,3'0 4,p)= 0

1) + siny + p0 + 02( 1, 3, 4 ,p) = 0 [47.14]
63(cos'- 1)+ 94(W20 019 83 t 84

183(- w2 sin) ( c  ) + + pJo + 02( 16 1, 3 , 4 ,p ) = 0

Since we are looking for a periodic solution of the system [47.1],
which reduces for p = 0 to the first generating solution [47.2], it is nec-
essary that the functions #i1(), i3(p), and 6 4(g) approach zero as p ap-
proaches 0. Hence, in view of [47.12], the necessary condition for the exist-
ence of a periodic solution is

2r

eo "f(Rcos wiu, - wR sinwlu, 0,0; 0) sinw l u du = 0 [47.151
0

From this equation one obtains the amplitude of the periodic solution in the
neighborhood of p = 0. The sufficient condition for the existence of a peri-
odic solution is

fo ho ko
1

0 cosy - 1 - sin y = 2fo(1 - cosy) * 0 [47.16]

0 -w 2 siny cosy - 1

In this condition the value of R, and hence of fo, is the one which satisfies
the amplitude equation [47.151.

If w2 * nw,, that is, if y * 2-n, where n is an integer, the condi-
tion for the existence of a periodic solution can be written as

2w

f, = f'(coswlu f - wlsinw lu *f)sinwu du * 0 [47.17]

If the determinant [47.16] is zero, it is sufficient for the existence of a
periodic solution that one of the determinants, obtained by equating to zero
a f other than ,62 as assumed here, be different from zero. If all determi-
nants are zero, a special study is required.

ii ,, I d I l i1 ii 1IIIIII Yul ,I I II I I llM ,tIAM ,
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The periodic solution thus obtained is of the form

x = 0(t) = Rcoswit + flA + ~[E + fl F + 3H + l4K + 1L + 02(f, ,,, 1 34)

[47.18]
y = _(t) = 63C + l 4D + pJ [E + 1 F + 1 3H + 94K + pL + 0,,13 84 9

where R is determined by [47.15]; A, E, F, --- by [47.7]; and f#, # 3, and #4
by [47.14]. Replacing #8, #, and B4 by their values in [47.18] and arrang-

ing the terms of the series according to the powers of p, one obtains

x = O(t) = 0 0+ 1 + 22 + / 33 + + + 3

[47.19]

y = 1(t) = p + 2 + 3 3 + "

It is apparent that similar results can be obtained if one starts

with the second generating solution [47.2].

48. STABILITY OF A PERIODIC SOLUTION

The stability of the periodic solutions [47.18] can be investigated

by the perturbation method. Consider the perturbed solution

x =¢0(t)+ u; y = (t) + v [48.1]

The variational equations obtained from [47.1] are

ii + W,1
2u = /(fu + fli + f v + fji)

[48.2]
v + w2

2u = p(gxu + g it + gyv + gjI)

In these equations the non-linear terms in u and v are left out and the func-

tions fx, ".'' gj are the derivatives of f and g with respect to the indicated

variables in which z, x, y, and y are replaced by 0(t), $(t), j(t) and 4(t)

respectively. These equations have periodic coefficients, and.we can expect

solutions of the form

u = AI + B02 + C# 3 + Df 4
[48.3]

v = A 1 + B# 2 +C83 + D 4

where A, ... b are unknown functions of time and the A's are initial values

u(O) = (o; (O) = A2; v (O) = 3; (o)= 46

111111- 1 1,, 11110" 1,1, 11 1 di I IIYIY _ _ _ ill
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Since the functions f,, ... gi appearing in [48.2] can be developed

in power series in terms of p, the functions A, ... D can be assumed to be

also of the form

2-A = A0 + #A 1 + 2/1 A 2 + . . .
[48.5]

= 0 + A+ ...

Substituting the expressions [48.3] into [48.2], taking into account their

form [48.5], and comparing the terms with the same powers-of p, one obtains

a number of differential equations from which the coefficients A 0, A1 , ...

A 0 , A, can be determined. One obtains in this manner the following expres-

sions:

A o = coswt; A, = F; etc.

Bo sin t; B=sintluf + os1  f sini(t - u) du; etc.
1 .1  1

Co = 0; C1 = H; etc. [48.6]

Do = 0; D, = K; etc.

Ao = 0; A = F; etc.

Introducing the notations of Poincar6, viz.,

u(T)- u(O) = [u] -- ; i(T)- i(0) = [it] 0= 2

[48.7]
v(T)- v (0) = [v] = 0; '(T)- '(0) = [] = 4

where T = + -, r being the correction for the period given by [47.13], one

obtains the equation for the determination of the characteristic exponents in

the form

6a 1 aT 8 1  ll 1  8 1

+1 8a#2 4893 4

2 a02 + 1 - eaT 8b 2  80b 2
8f1 a812 aBf3  a#4

= = o [48.8]
a0 3  490 3  03 +1 eaT 8b3
8#1 a82 a63 084

a04 a04 a04 04 + 1 eaT

81 8162 83 814



This reduces to the form

[C]
aT []

[C] + 1 - e

[C]

[D]

[D]

D aT
[D] + 1-e - e

with [A] =A(2 r)- A(), etc. Putting 1 - eaT= p, this

written in the form

equation can be

all + p al2

a21  a 22 +

A(p) =
a31  a3 2

a41 a42

a 13  a 14

P a 2 3  a 2 4
=0

a 3 3  p a 34

a 43 a 44 +p

[48.10]

which reduces to the quartic equation

[48.11]

11 11 11 22 22 33

11  2 2  3 3  4 4 ; b = A22 + A 4 4 + A 33  A 44  A 4 4

[48.12]
c = Al + A 2 2 + A 33 + A 44 ; d = A(0)

11 33
where All, ... A44 and A22, A44 are the diagonal minors of A.

Since one of the characteristic exponents is always zero (9) be-

cause the equations are autonomous, d = 0, and the quartic equation thus re-

duces to a cubic one

[48.13]

If the motion is stable in the sense of Liapounoff, the remaining three char-

acteristic exponents must have negative real parts, which means that the mod-

uli of the quantities ear must be less than one. This means that the complex

number p = 1 - eaT must be represented in the complex plane p by points situ-

ated inside a circle of radius 1 whose center is on the real axis at a unit

distance from the origin, see Figure 48.1.
2

By means of the function p - - Z, the interior of the circle in

the (Pl, p2)-plane is mapped into a half plane (z,z 2 ) so that the circles,

see broken line in Figure 48.1, transform into straight lines, see broken

line in Figure 48.2, parallel to the z2-axis on the axis of the negative zl.

[A] + 1 - e

[Ai]

[A]

[A]

9" [B]

[] + 1 - e

[B]

[B]

=0 [48.9]

with

p4 + ap3 + bp + p + d = 0

p3 +a 2 + bp + c = 0
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Figure 48.1 Figure 48.2

By this transformation the problem of finding the roots of [48.13] with moduli

situated inside the circle of the (p1,p2)-plane is reduced to that of deter-

mining the roots of the transformed equation having negative real parts. This

brings the problem within the scope of the Routh-Hurwitz criteria. If this

transformation is carried out, Equation [48.13] becomes

z3(- C) + Z2(2b + 3c) + z(- 4a - 4b - 3c) + (8 + 4a + 2b + c) = 0 [48.14]

The Routh-Hurwitz criteria of stability (10) (11) are

2b C 2 2 8 + 4a + 2b + c
> 0; b2 + C2 + 2bc + ab + ac - c < 0; > 0 [48.151

- c - c

These are the necessary and sufficient conditions for the roots of Equation

[48.14] to have negative real parts, or, which is the same, for the roots of

[48.13] to have moduli less than two, which assures the stability of the peri-

odic motion. The conditions [48.15] can be written also in the form

2b + 3c > 0; c < 0; (b + c) + a(b + c) - c < 0; 8 + 4a + 2b + c > 0 [48.16]

In order to apply these conditions of stability, it is necessary to

calculate the determinant [48.9]. The quantities [A], [B], .. can be devel-

oped in power series in terms of p, fof example

all = [A] = [A0] + p [A1 + 2 [A2] + ... = b11p + 02(p)

a12 =IB] = [B 0] + p[B11 + p2 [B2] + = b12 p + 02(4)

The value of the determinant A(0), in which are written only terms

containing linear terms in p and terms independent of p, is

_~ __Ill.
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b1p +

A(0) =

b31p +

b419 +

6229 +

b32/9 +

b42U + ..

bi3p + b4 b4

b2311+ ... b249 ..
sin y(cosy - 1)+ b331 + S w2 + b349 +

-w 2 sin y + b431 + (cosy - 1) + b + •

The values of b61, b12 , ... are determined from Equations [48.6].

[48.17]
Taking in-

to account [48.12], one obtains the following relations

c = p2(1 - cosy)(b + b22) + 02(1)

(b + C)2+ a(b c) - c = p2(1 - cosy)[cosy(b 33 + b44) + siny(aw2b34 - + 02(p )

[48.18]
8 + 4a + 2b + c = 4(1 + cos y) + (.)

2b + 3c = 4(1 - cosy) + 0(P)

If we consider p << 1, * 2~nn, and y * 2(n + 1) r, n being an integer, the

stability conditions reduce to the following

b- + b2 2 < 0

[48.19]

cosy(b 33 + 644) + sin y( 2b34 - b43) < 0

The values of bli, b22, " are given by the expressions

bi1 = (coswlufX - w, sinwuu.f) sin w( 2 7r  u) du

2,

o 1622= in1 ±n_, +cosw 1u f)cosw1 ( 2 - u)du
0

633 = f(cos w 2u. 91 - w2 sinw 2u . gj) sinw 2( 2jr u- du - aow 2 sin y

[48.20]

644 = sinw2u .g + cosw 2u.g) Cos 2 r  u) du - ao 2 siny

b34 = Sin 2  2  Sin 2 r- ) du+ cosy

22

64 = .(oswU g - W2 sinw g)cosw(j - u)du - aW 2 cosy
0

V11111 111



Introducing these values into the inequalities [48.1 9 ], one obtains the fol-

lowing conditions of stability

fx du < 0; g du < 0 [48.21]
0 0

In applying these criteria one has to take x = R cos w1u; i = - Rw 1 sin w1 u;

y = 0; y = 0; and g = 0. R is determined by [47.151.

We shall return to this matter in Part III in connection with the

question of stability of coupled electronic oscillators. This problem is ex-

pressible in terms of two non-linear differential equations of the second

order.

49. LIMIT CYCLE AND FREQUENCY OF A THERMIONIC GENERATOR

We propose to apply the preceding theory to Equation [30.9] of a

thermionic generator. The quadratic term y1v
2 in Expression [30.5) of the

characteristic will be dropped, inasmuch as this term accounts for only a

slight assymmetry of the characteristic and has no effect on the calculation

of the stationary motion.*

The simplified equation [30.9] can be written as

S+ v = u( - 36v 2)v [49.1]

This equation is dimensionless; 6 > 0 and 6 > 0. The small parameter p is

introduced so that we may consider the oscillation in the quasi-linear range

and therefore be able to apply the preceding theory.

For p = 0 the generating solutions are of the form

vo = (t) = Kcost; vo = ( t ) = - Ksint [49.2]

In this case f(v,i) = ,i - 36v 2 i and hence

f(vo, vo) = - ,Ksin t + 36K 3cost sin t [49.3]

Making use of the condition of Poincar6, Equation [46.22], upon integrating

Equation [49.3] we obtain fiK- i6K3= 0 and hence

K2  36 [49.4]

Thus the amplitude of the generating solution to the first approximation de-

pends on the ratio /. In other words, the amplitude of oscillation reached

* The reader will note that by retaining the quadratic term '1v
2 

in Equation [30.5] one would have Equa-

tion [30.9] instead of Equation [49.1]. The integral from 0 to 2n of the term 2yvy in Equation "46.22]

vanishes, which proves that the term y1v
2 

has no effect on the calculation of the stationary motion. This

remark applies also to all even terms in the polynomial [30.41]. See also Section 54.



by the self-excited process will be greater as the value of 6 is smaller.

This is physically obvious, for as 6 - 0 the self-excitation would build up

indefinitely since the factor that eventually limits it is precisely the non-

linearity of the characteristic expressed by the term - 61v
3 in Equation

[30.5]. Returning to the non-linear term f(v,'), we find that P = - 66vy

andy -= - 36v 2 , so that
Ov

Of 2 2
C - 66K cost sint = 36K sin2t
8v0

and

Of 2 2
= - - 36K cos2t

From [46.14] we have, upon taking account of [49.4],

D(2r) = f(B -36K cos 2 t)dt = 27r - 3 = - 27r [49.5]
0

One finds also that D(2r) = 0. From Equation [46.26] the correction for the

period 7 = ao2 is

F(21r) 2

Calculating F(27) from the last equation [46.10], one obtains

- = 7p2 #2 [49.7]

The coefficient C(t) given by Equation [46.9] after a calculation is

C(t) 36K3  156K3 sint- sin3t + sin t
32 32 4 36 4 36

so that the periodic solution without secular terms is then

2 V- cos[(1 i- t + + I(- sin 3[(1 - t + +

+ / sin(i- 1 )t + 1P 2 1+ [49.8]

where 0 is an arbitrary phase angle. It is clear that the periodic solution

occurs in the neighborhood of the amplitude 2 . The correction for the

period is of the second order and hence can be neglected for small values of

p. The secular terms do not appear here in view of the fact that the cor-

rection 7 for the period has been calculated first.

- __~. _ _-- _ _ M i l llilllllil'
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50. BIFURCATION THEORY FOR QUASI-LINEAR SYSTEMS

The results obtained in Section 29 can be somewhat extended by

means of the quantitative method of Poincar6, see Section 46. In order to

obtain this extension, we shall consider instead of Equation [46.1] the equa- .;

tion

S+ x = pf(x, ,X) [50.1]

in which there appears an additional parameter X which we have encountered in

the bifurcation theory. The procedure remains substantially the same as be-

fore; that is, there appear certain generating solutions in the neighborhood

of which periodic solutions exist when p is small.

We propose to investigate now what happens to these generating so-

lutions when the parameter A determining the state of the system varies and

reaches a critical value.

It wa's shown in Section 46 that the amplitude K of the generating

solutions is given by Equation [46.22], which can be written here in the form

C(27r) 1 2;
C27r) 2 f(K cosu, - K sinu, X) sinu du = 0 [50.2]

o

Putting K'2= p and multiplying Equation [50.2] by 2t, we have

C(27r) (1 ff(/( - cosu, - sinu, ) sinu du [50.3]
71" o'0

Differentiating this equation with respect to p, we have

2w

OS(pX) =- [/Fx sinu csu + f&o2u du +

2w 2r

+ f f du - 2  
f sinu du [50.4]

The first term on the right side of Equation [50.4] is equal to

2 7r1  i f COS] + 2 f1 ff sinu du

as is easily verified by integrating thb term 27 ff sin u du by parts.

Equation [50.4] reduces then to a simple form o

21

#,(p,X) = 2f f du [50.51
0
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In Section 13 it was shown that, in a conservative system containing a pa-

rameter X, the conditions for stable equilibrium are

f(x,X) = 0; fx(x,X) < 0 [50.6]

2W
Suppose we now impose the condition that f f, du < 0 so that 0,(p,X)<0.

Associating the function 0(p,X) with f(x,X), we may infer that the limit cy-

cles are stable if

€(p,X) = 0; , (p,X) < 0 [50.7]

This is by no means a proof, but merely a plausible deduction. A proof for

the conditions under which stationary motion is stable may be found in Chap-

ter III of Liapounoff's treatise (12).

The remainder of the bifurcation theory applies directly to limit

cycles, the coordinate x of equilibrium being replaced by p = K 2, the square

of the amplitude of the limit cycle.

In a number of problems of non-linear mechanics, the function

f(x,x,X) is of the form

f(x, ,X) = fl(x,A) [50.8]

where fl(x,x) is a polynomial of the form

f,(x,X) = a0(h) + a(AX)x + a2(X)x2 + * * " [50.9]

To this class belong equations of the generalized Van der Pol type. Substi-

tuting f = f z in Equation [50.3], with the generating solutions x = 'p cos u

and x = - /f sin u, and carrying out the integrations, one has

2 4 8

[50.10]
1 G2 3a'p2 ]

,p(p, ) = ~a +a 2 8

In these equations the coefficients ao, a2, a4, ... are functions of X.

51. "SOFT" AND "HARD" SELF-EXCITATION OF THERMIONIC GENERATORS;
OSCILLATION HYSTERESIS

It is well known that there are two kinds of self-excitation of

thermionic circuits designated as "soft" and "hard." It is observed that by

increasing the coefficient of mutual induction A between the anode and the

grid circuits, self-excitation starts smoothly as soon as a critical value

A = X0 of this parameter is reached; for X > A, the amplitude of oscillations
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steadily increases with increasing A, as shown in Figure 51.1 representing
this "soft" case of excitation; upon decreasing A the phenomenon takes place
in the opposite direction, as shown by the arrows. The theory of soft self-
excitation has been studied in Section 29.

In some cases, however, a different type of self-excitation occurs,
as shown in Figure 51.2. With increasing A it is observed that the self-
excitation starts abruptly with a finite amplitude for A = XA and increases

P p

0 -' 0  0 AX0  A,

Figure 51.1 Figure 51.2

smoothly for A A1 . For decreasing A it is observed, however, that the
phenomenon is different; namely, for A = A1 the self-excitation does not dis-
appear; it disappears at A = A0 < A1 . There exists a kind of "hysteresis cy-
cle" shown by the shading in Figure 51.2. This type of self-excitation is
called "hard." These phenomena are due to the non-linearity of the system,
and the hysteresis cycle referred to above is sometimes called "oscillation
hysteresis" (13). We have already analyzed this situation qualitatively in
Section 24. In this section we propose to investigate this effect utilizing
the theory of Poincar6.

Consider the circuit shown in Figure 51.3 with positive directions
indicated. The differential equation of the oscillating circuit is

L di + Ri + (i - Ia)dt = 0 [51.1]
0

where Ia = f(V) is the non-linear function expressing the anode current Ia as

a function of grid voltage V. Let us approximate this function by a power

series in V limited to terms through V6 for reasons which will appear later.

We have

Ia = f(V) = aoV + o0V 2 + y 0 V 3 + o60
V 4 + EOV 5

Nl llibl hill l = oil 11 UIYl Iiill 1IY IY I YIYII III iilii iill l 13 41, 1, , Will
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Figure 51 .3

It is convenient to introduce a dimensionless variable z = V/V, where V,is
the "saturation voltage," that is, a sufficiently high grid voltage beyond

which the current Ia does not change appreciably. Since V = M-- we can
dt

write

M di
x = d [51.31

V, dt

From this equation we obtain

di V, d2 i V88 V8  tx - x; i - xdt
dt M dt2 M

Substituting these values in [51.1] and differentiating we get, after a few

simplifications,

LCx + RCx + x = M + 2 V,x + 3y 0 V,2 2 + 46V,3 3 + 5coV 4 x4]d [51.4]

Introducing the new independent variable 7 = wot, where wo = 1/VLC, the pre-

ceding equation becomes

d2 +x = oM(ao RC - ) + 2oV,x + 3oV2 + 46oV,3 3 + 5eoVp dx
-2  

- M dr

The condition of quasi-linearity is fulfilled if we assume that the coeffi-

cients ao, ... Co of [51.2] are small. One can take one of these coefficients,

for example .o, as a factor and write
2 462 333 4V] dx

d2x foM -RC +2x + V x2 + X 3 3 _ 4  [51.51
d L Mo V, + o o o dr



By introducing the notations

RoVwo = P;

3 yVoM
o c (M);
Bo

oM- RC = a(M); 2M = b(M);
90V,

46°V 2M = d(M);
fo

5oV M = e(M)
o0

Equation [51.5] can be written as

d- + x = a(M) + b(M)x + c(M)x2 + d(M)x 3 + e(M) dx = f(x;M) d [51 .6]
dr2 d ±db(Mrx e(M1xjy

that is, the function f(x,x,M) = fl(x;M)-x has the form [50.8].

The function 0(pM) given by 150.10] can be written, after certain
transformations, as

0(p,M) = alp + a2 70 Mp 2 + a3oMP33 [51.71

where

aoM - RC
a1 o V,

I 3V,.a2 4-o 5 V,3
8,a3 3-8,3

Differentiating Equation 151-7] with respect to p, one has

,P(p,M) = a, + 2a ,0 Mp + 3a 3E0MP 2 151.81

The discussion of Equations [51.7] and [51.8] yields the qualitative features

of the phenomena.

A. CONDITION FOR A SOFT SELF-EXCITATION

If a, > 0, vo < 0, and co = 0, Equation [51.7] becomes

0(p,M) = (a1 - a2lyolMp)p = (aoM - RC - a21 ,lMp)p = 0 [51.91

where a2 absorbs the constant factor V, which is of no further interest. In

the (pM)-plane this equation represents a straight line p = 0 and a hyper-

bola

Ma o - RC - a2ly,lMp = 0 [51.10]

The point of intersection of p = 0 and the curve [51.10] is given by the

equation M 1 a0 - RC = 0. The valu3

SRC

M1 - [51 .11]

0

~~.m~rua
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is a critical value of the parameter M. Following the method of Poincar6,

Section 13, one obtains the diagram of Figure 29.1b. By increasing the pa-

C rameter Mfrom small values, one has a locus (p = 0) of stable focal points.

The point M = M o is a branch point of equilibrium; here the focal point under-

goes a transition from stability (M < M o) to instability (M > Mo), and a sta-

ble limit cycle appears; the square of the amplitude of the latter increases

with M, following the hyperbolic branch. The asymptotic value of p for M +o

is clearly ao/a7, which represents the square of the amplitude for infinite-

ly strong coupling M.

The curves representing this case are shown in Figure 29.1a and b.

The former represents the condition for M > M o, the latter, the condition for

M < M o. The phenomenon is reversible, as shown in Figure 51 .1.

B. CONDITION FOR A HARD SELF-EXCITATION

If ao > 0, yo > 0 and 0o < 0, and if we designate by TO the abso-

lute value of co, and put for abbreviation a'v0 = m and asco = n, Equation

[51.6] becomes

0(p,M) = (a1 + mMp - nMp2 )p = 0 [51.12]

In the (pM)-plane, this equation represents a straight line p = 0 and a

curve

(Mao - RC) + mMp - nMp 2 = 0 [51.13]

The intersection of this curve with the line p = 0 is clearly a, = 0, which

gives the value M 1 previously found, see Equation [51.11].

The tangent to the curve [51.13] is given by the equation

dp _ M o + mp - np2

dM __ M(m - 2np)
ap

The curve has a vertical tangent for po = m/2n; for this value

RC
S RC 2 [51.15]

a o + 4n

When M0 is compared with M, from Equation [51.11], it is seen that

M o < M i. Furthermore, it can be shown that the curve does not go to the

left of the value M = M o and has a horizontal asymptote for p = m/n. This

defines the curve shown in Figure 51.4. It is easily seen that 0(pM) > 0

in the shaded area; whence, applying the criteria of Poincare, Section 13,

1IIIY
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P one finds that the branch of the curve above point

Limit Cycle P is stable and below this point unstable. The

axis p = 0 is stable for M < MI and unstable for

M > Mi. If M is increased gradually below the
O(p,M)> O value M= M,, the focal points are stable. For

Stable U/////t/l M = M1 there is a finite stable limit cycle and a
Focal Points al Points discontinuous jump MIN, shown in Figure 51 .4. If

o Mo Mi M> MI and M increases, there is a continuous
Figure 51.4 variation of the amplitude of the limit cycle.

If, however, M > M I and Mdecreases, when M = MI
is reached, the limit cycle is still stable although thereis a transition of
the point singularity from instability to stability. This corresponds to

Figures 24.6b and c. It follows, therefore, that when Mdecreases from M i to
M., the stable limit cycle is still being followed. When the point M= M is

reached, the stable and the unstable limit cycles coalesce, and no limit cy-
cle exists for M< M, which accounts for the jump PMo, shown in Figure 51.4.

By comparing the results of this section with those of Section 29
it is seen that if the non-linear characteristic can be approximated by an

expression of the form Fl(z) = alx - a3 X
3, where a, and a3 are positive, one

has a soft type of self-excitation. If, however, it can be approximated by
an expression F2(x) = azx + a3zX - aszx, where a,, a3, and a5 are positive,

the self-excitation is of a hard type.

In the first case the characteristic has no inflection point (except
the point x = 0, which is of no interest); in the second case, there is an ad-
ditional inflection point for xz = a Since an electon tube exhibits

characteristics of both types of self-excitation, depending on the point at
which it is biased, each of these cases can be obtained in practice by a suit-
able adjustment of the circuit.

0
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CHAPTER IX

METHOD OF VAN DER POL

C
52. ROTATING SYSTEM OF AXES; EQUATIONS OF THE FIRST APPROXIMATION

Consider again the quasi-linear equation

y + x = pf(x, )

Its equivalent system is

" = y; y =- x + f(x,y) [52.1]

the notations being the same as in the preceding chapter. -For p = 0, one has

the linear equation i + x = 0, having a harmonic solution

x = acost + bsint, with i = - asint + bcost [52.2]

where a and b are constants of integration.

The phase trajectories in this case are circles of radii K =

Va2 + b2. If, instead of considering a coordinate system (x,i) in a fixed

phase plane, one introduces a system rotating with angular velocity W = 1

about the common origin of both systems, in this rotating phase plane Equa-

tion [52.2] will represent a fixed point A at a distance OA = K= Va2 + b2

from origin O. The inclination of OA to a reference line in the rotating

plane is given by the angle 0 = tan -. It is to be noted that this trans-

formation is nothing but the usual method of representing sinusoidal quanti-

ties by vectors, used in the theory of alternating currents. We shall call

the rotating plane of the variables (a,b) the Van der Pol plane.

Consider now Equations [52.2] as a transformation defining x and i

in terms of the new variables a and b. This implies that

da db
cost + dsint= 0

[52.3]
da db
d T sin t + t cost = Af(acost + bsint,-asint + bcost)

whence

da
d t - f (a cos t + b sin t, - a sin t + b cos t) sin t

[52.4]
db
d t = a f ( a cos t + b sin t, - a sin t + b cos t) cos t

Since p is small, by assumption, da/dt and db/dt are also small be-

cause f(x,y) is bounded. In other words, a and b are slowly varying quanti-

ties in comparison with the rapidly varying trigonometric terms of frequency

W= 1.
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For the first approximation it is sufficient therefore to consider

a and b as constants on the right side of Equations [52.4]. However, if x

and y are replaced by their expressions [52.2], the right sides of [52.4]

are periodic and can be expanded in a Fourier series so that [52.4] becomes

dta [ o( 2b + ,1(a,b)cost +  (a,b-sint + 2 (ab)cos2t +

[52.51
dt 0 (ab) ± (a,b) cost + T(a,b)sin t + 0 2 (a,b) cos 2t + .

It must be noted that the system [52.5] now contains t explicitly,

whereas the original system [52.1] does not. Van der Pol considers the fol-

lowing "abbreviated" equations as equations of the first approximation

da o0(a,b) db Ao 0 (a,b)
dt 2 dt 2[52.6]

They are obtained from [52.5] by dropping the terms containing the trigono-

metric functions. On the other hand,

0o(a,b) 2r

2 a,b) 2 f (a cos + bsin,- asin + bcos()sin 4 d
0

152.7]
0o(a,b) 12r

2 2 ff(acos4 + b sin ,-asin + b cos )cos d

Multiplying the first equation [52.6] by a, the second by b, adding and put-

ting K2 = a2 + b2 , one obtains

1 dK 2  dK p2
2 dt = Kdt f(acos +'bsin , - asin + bcos 4) (- a sin + bcos )d2 dt dt 2r0

Putting

a cos + bsin = Kcos(Q - 0)

and

- a sin ( + b cos=- K sin(Q - 0)

where = tan -1 ba and introducing the variable u = - 0, one has

dK - (K) and, by a similar transformation, = p (K) [52.8]
dt dt
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where

2r

7(K)- 21 f(Kcosu, - Ksinu)sinu du

[52.9]
2r

(K) = + 2 K f(Kcos u, - Ksinu) cosu du

One notes that the definite integrals in these equations coincide with the

functions C(27r) and C(27r) of Poincar6, Equations [46.10] .

53. TOPOLOGY OF THE PLANE OF THE VARIABLES OF VAN DER POL

In the (x,y) phase plane the limit cycle is reached when the phase

trajectory is a circle; in the Van der Pol plane (a,b) the condition for the

existence of a stable limit cycle is satisfied when the end of the vector K
dK

is a point of stable equilibrium, that is, at this point = p O(K) = 0.

Hence, limit cycles exist for radii K corresponding to the roots of

1 2r
¢(K)= 2r f (Kos u, - Ksinu) sinu du = 0

It is to be noted again that this equation coincides with Equation [46.22]

of Poincar6's theory.

A root Ki of O(K) = 0 will correspond to a stable limit cycle if

0'(K) < 0. By a method similar to that applied in connection with Equation

[50.5], one finds that the condition 0'(Ki) < 0, written explicitly, gives

2ff

f f f(Kicosu, - Ki sin u)du < 0 [53.1 1

The limit cycle is unstable if 0'(Ki) > 0.

Consider now the second equation [52.8]. Here two cases are of

interest.

Case 1.

(K)- ff(Kcosu, - Ksinu)cosudu = 0 [53.2]
27rK 0

In this case 0 = 00 = constant. The topological picture of trajectories in

the plane of variables (a,b) of Van der Pol, in this case, is shown in Figure

53.1. The equilibrium on a limit cycle at a point K i for 0 = O0 is stable if

SilhI UI i i EM, 1 - 1iid0 NI
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Limit Cycle

Figure 53.1 Figure 53.2

the representative point being displaced along the radius returns to Ki. If
this point does not return to Ki, as for example Point K, , such a limit cycle
is unstable. The loci of limit cycles in this case are concentric circles
corresponding to all possible values of the constant 8o.

If one returns to the original variables (x,y) of the phase plane,
one must apply the equations of transformation [152.2], where the variables a
and b are respectively Ki cos 00 and K i sin 00. This gives

x = a cos t + b sin t = Ki cos 0 cos t + K, sin 00 sin t = Ki cos( t - 00)

[53.3]
y = - a sin t + b cos t = - K, cos 0 sin t + Ki sin 80 cos t = - K sin( t - 0o )

where 80 is arbitrary. This arbitrariness of .8 for the (x,y) phase plane is
due to the fact that a point of equilibrium in the plane of variables (a,b)
of Van der Pol corresponds to a circle in the phase plane of the variables
(x,y). The general form of trajectories in the (x,y)-plane is shown in'Fig-
ure 53.2.

Case 2.

2;

(K)= rK jff(Kcosu, -Ksinu)cosudu t 0

Let K1, K2, ... be the roots of O(K) = 0, and assume that these roots are dif-
ferent from the roots K, K 2, *.. of O(K) = 0.



Consider now Equations [52.8]. The motion on a limit cycle is

represented in the plane of variables (a,b) by points of equilibrium given

C by equations

a = K, cos [pu(Ki) t + eo ; b = K sin[p b(Ki)t +80o [53.4]

The stability (or instability) of a

limit cycle is determined again by

the sign of 0'(Ki) and the direction b
of rotation by the sign of O(Ki). Stable

The topological picture of Limit Cycle

trajectories in the (a,b)-plane is

shown in Figure 53. The trajec-

tories "turn back" at points cor-

responding to the roots K 1, K 2, ...

of O(K), approaching the stable I a

limit cycles which are again the

points of equilibrium in the Van der

Pol plane. The topological picture

of trajectories in the fixed (x,y)- Loci of -- Unstable
Radial Limit Cycle

plane has the same appearance as Tangents

that shown in Figure 53.2. The

only difference between the two Figure 53.3

cases is that, in the second case,

Equations [53.3] become

x = a cost + bsint = Ki cos([1- p(Ki)] t - o)

[53.51

y = - a sin t + b cost = - K, sin([1 - ~ (Ki)]t - Oo )

It is clear that in this case a correction for frequency exists expressed by

p(K). In other words, the velocity along the spiral trajectories is not

uniform.

By a further analysis it can be shown that when O(K) = 0 the cor-

rection for frequency (and hence for the period) is of the order of p2 and

consequently can be neglected in the theory of the first approximation. If,

C however, O(K) * 0, this frequency correction appears to the first order of p.

To sum up the results of this section, it can be said that the use

of the variabl.es (a,b) of Van der Pol enables us, if the system is isochro-

nous, to represent a limit cycle by a point in the plane (a,b), that is, by

a constant vector. Such representation of a limit cycle is similar to the
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mode of representing alternating currents by vectors. For transient condi-

tions the representative point moves toward, or away from, the limit cycle

point along the length of the radius vector, since the phase angle 80 remains

constant. The phase angle in this case has no particular physical signifi-

cance if one single oscillatory phenomenon is considered. If, however,

O(K) t 0, that is, if the motion is not isochronous, in the plane of vari-

ables (a,b) of Van der Pol the vector Ki undergoes oscillations depending on

the roots of O(K) = 0. This peculiarity resembles the representation of

phase-modulated vectors in radio technique. Fixed points in the (a,b)-plane

correspond to circles in the (x,y)-plane, and a radial motion in the (a,b)-

plane corresponds to a spiral motion in the (x,y)-plane.

54. EXAMPLE: "SOFT" AND "HARD" SELF-EXCITATION OF THERMIONIC CIRCUITS

We now propose to apply the Van der Pol method to the problem pre-

viously treated by the method of Poincar6 in Section 49. Consider again

Equation [30.9]. Here we shall let f = pfI, y = pyv, and 6 = p61 , where p

is a small parameter.

i + v ±= #(fi + 2 1Yv - 361v 2 )) [54.1]

where f#, ,y, and 6 are positive.

In this case f(v,i) = (fl + 2yv - 36v 2)v. Using the first equation

[52.9], we have

21r

q(K)= + f(fl + 2ygKosu - 36K cos u) K ns u sinudu [54.2]
0

in which the generating solutions v = K cos u, K = - K sin u are substituted.

We obtain

2; 2=r 2;r
(K) = [ Kfsinu du + 2K cos u sinudu - 36K3 Cosusin2udu [54.3]

0 0 0

Since

2. 2w 2;r

sin idu = sin cos udu = [ =
00 0

and

2r 2r 2 r

f os u sin2udu = sin2udu - sin4 udu r 4

0 0 0

Fl~air~,,,,~,~.~,~_,~ _ ~~a~~n
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we have

1 36K 3  K ( 36K 2  [54.4
2 & K 4 2 4

By the first equation [52.8], the condition for the existence of a

limit cycle is O(K) = 0. From Equation [54.4] this takes place for K, = 0

and K 2 = I/

For Ki = 0, the limit cycle reduces to one point, the singular

point. The radius of a finite limit cycle is thus

K2 = I [54.51

In order to ascertain that there is actually a condition of self-

excitation, one has to prove that the singularity is unstable and the limit

cycle is stable, see Section 29. For the proof of the first point, equations

of the first approximation in the sense of Liapounoff must be formed.

The system equivalent to Equation [54.1], upon dropping the non-

linear terms, is v = y and y + v = 4py, that is

b = y; = - v + p y [54.6]

The characteristic equation is S2 - #u#S + 1 = 0 whose roots are

1,2 
2

Since p is small, it is seen that the roots are complex, with a positive real

part. Therefore the singularity is an unstable focal point from which the

spiral trajectories unwind themselves approaching the limit cycle K 2 = 36

provided it is stable.

In order to establish the stability of the limit cycle K 2 =

it is necessary to ascertain the sign of OK(K2 ). One finds

1
(K K,) = -(, - 3f) < 0

The limit cycle is thus stable.

In this discussion it has been assumed that the coefficients f, y,

and 6 entering into Equation [54.2] are positive. By waiving this assumption

one could analyze additional cases following the same procedure.

It is of interest also to investigate the second equation [52.8],
dO

which concerns the frequency of oscillation, dt'

1 .111 ,11,114114 - ---- Illill l~i



The function O(K) in this case is

(K)= f(f + 2yK cos u - 36K cos2u) Ksin u cos udu [54.7 ]--2K 0

Developing it, we find

O(K)= 2 K K sinucosudu + 2K2r sinu cosa du - 36K cosusinudu] [54.8]
0 0 0

Each of the integrals appearing in the above expression is zero so that by

the second equation [52.8] - = 0. This means that in the phase plane the

radius vector of the representative point rotates around the origin with a

constant angular velocity, and the frequency correction is zero to the first

order.

In order to investigate the variation of K as a function of time,

the first equation [52.8] must be integrated upon substituting for O(K) its

value given by [54.4]:

,(K) = mK - nK S

where m = and n= . This gives

dK 1 dK
mK - nK m K(1- pK2 )

where p = n 3

dK dK pKdK
K(1- pK ) K 1 - pK

That is, d log K- d[1 log(1 - pK2 = mdt, or

d log )= mpdt

which, upon integration, gives

K K0
log Vl-- pKy - log /1 - pKo -- mgt

or

K -mat K o1- 2 e =g= PK [54.9]

Finally,

KO
154.10]K = V(1 - pK-')e-2, t+ PKO2



For t = 0, K = K 0 = and for t -o, K+ 0, which means that, for in-

creasin _t, the radius vector K increases from zero and approaches the value

K0 = 4 on the limit cycle. Furthermore, for t -. + o, K = K o, which shows

that the limit cycle is stable.

In order to eliminate the operation with infinities inherent in

the asymptotic nature of the process, one can select instead of K and Ko in

Equation [54.10] certain initial and final values K' and Ko' slightly re-

moved from the unstable focal point and the stable limit cycle respectively.

In such a case Equation [54.10] can be used for numerical calculations with

a view to ascertaining how rapidly the self-excited oscillatory process

builds up as a function of time.

It is interesting to note that the terms with y, E, ..***, corre-

sponding to the even powers in the approximation of the characteristic by a

series expansion, disappear from Expression [54.10] for the radius of the

limit cycle in the first approximation, as was noted in connection with the

vanishing of the term 27K 2 2sin 2 cosu du in Equation [54.8].

The inverse passage from the phase plane (a,b) of Van der Pol

to the ordinary phase plane (x,y) yields the expressions x = Kcos t and

y = x = - K sin t, where K is given by Equation [54.10].

The conditions of self-excitation considered above represent the

so-called "soft" type of self-excitation. Topologically, it corresponds to

the existence either of an unstable singularity surrounded by a stable limit

cycle or of a stable singularity within an unstable limit cycle, see Section

29. The first case represents the building up of oscillations asymptotically

approaching a stable limit cycle; the second, an asymptotic disappearance of

the oscillatory process. If, however, between an unstable singularity and a

stable limit cycle an unstable limit cycle exists, one is then concerned with

the so-called "hard" self-excitation of oscillations. This subject has al-

ready been studied in Section 51 in connection with the theory of Poincare.

It was shown that the characteristic in this case has an inflec-

tion point; in its approximation by expansion in a power series, one has to

retain a term Ev5 with a negative sign. Since even terms do not have any

effect on the determination of limit cycles, one can drop them from the equa-

tion. Under these conditions, Van der Pol's equation becomes

ii + v = j(fl + 36v 2 - 517v 4 ) t [54.11 ]

- In this case f(v,v) = (0 + 36v 2 - 57v 4 )v and

f(Kcosu, - K sinu) = -(j + 36K cos u- 5K 4 cos4 u) K sin u

" 111 1I
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From this, by the first equation [52.9], we get

2 2, 2 2w,
O(K) = 2r ffKsin2udu + f36K 3cOs2usin2udu -o 5K cos usin udu

2w 2r 2r

= sindu + 3K cos usin udu - 5 7K 4 cos4u sin2udu

The values of these definite integrals are

2 2r 2r 2" 2r 3
sin2 du = 7r; cos u sin udu = sinsinudu=

0 0 0 0

2r 2f u 2-

cos usin os u= coscudu = cosd - 7
o o o4 46 8

This gives

O(K)= K '6+ K - = 0 .-()2 4-iT) [54.12]

as the condition for limit cycles. It is assumed that fl, y, and n are posi-
tive. One root is clearly K= 0. Following the same procedure as before
and making use of Liapounoff's equations of the first approximation, one finds
that the singularity is an unstable focal point.

The limit cycles proper are given by the quadratic equation

5 2 38 S 4 dS - = 0 [54.13]

where S = K2. Only positive roots are to be considered because S = K2 is
essentially positive. Equation [54.13] can be written as

5 2 _3 2S2 2S2 + q2 q 2 (p 2 q2
fl =-- 6S pS - qS = p2S - qS + 2 4p= S - )-2 4p28 4 4p2  4p2 2p/4p

where p 2 = 5 and q = 6.

If this equation is rearranged,

4p = 2p- 2 [54.14

-Equation [54.14] represents the parabola ( - fo) = p 2 (S - S )2

as shown in Figure 54.1. If we change the (S,)-axes to a new system of axes
(S1, I 1) with a new origin at (8,o = S, S ), Equation [54.14] becomes

#1 = p2S[2

ii III g W I Y Y iiil li 11
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The second root corresponds to

the limit cycle K, = and the firstS

one to an unstable focal point which can s2 A

be ascertained as explained in the be-

ginning of this section. 36

For 8 < 0, that is, to the '0

left of the origin 0, the roots of the

quadratic equation p2S2 - qS - 8 = 0 S,

are o o

S q= - 41812  Figure 54.1
1,2 2p2

They are real and positive only as long as q2 4181p2 _ 0. They correspond

to the points S, and S2 of intersection of the parabola with the straight
q2

line 8 = constant. The condition for a double root is I01o = p2 ; at this

value of the negative 8, the value of the root is So = 2. The tangent to

the parabola at this point is vertical.

In the region 0'0, where two roots exist, there are two limit

cycles, K, = VS and K 2 = Y12. The first is unstable and the second stable.

To illustrate this point, differentiate Equation 154.12] with re-

spect to K.

'(K) 8 + K2 5p 2 K 4 = + 5p S2  [5415]
2 2 2 2 2 2

It is sufficient to substitute into this equation the values of the roots S1

and S 2 for 8 in the interval (0, - q2/4p2), since the curve does not extend

to the left of 8 = - 4 2 and has only one root to the right of 8 = 0. Con-

sider, for example, the middle value in this interval, 81 = - 8p2. The cor-

responding roots are

S1,2 2p2(1

that is, S, = 0.293q/2p 2 and S2 = 1.707q/2p 2.

Substituting these values in Equation [54.15], in which = - 8p2,

one finds, after a reduction, that 0'(K 1 ) > 0 and 0'(K 2) < 0. Hence the limit

cycles on the lower branch S1 of the parabola are unstable and on the upper

branch S2 they are stable. If 8 varies now from negative values and reaches

the point 0', there is no self-excitation throughout the range 0'0 since the

unstable limit cycles S1, interposed between the stable focal points situated

on the 8-axis and the stable limit cycles S2 , act as a barrier preventing the
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self-excitation from developing, see Chapter IV. As soon as Point O at

which the unstable limit cycle disappears is reached, the stable limit cycle

K, = is reached abruptly; if / is still further increased, the ampli-

tude of the limit cycle increases continuously, the representative point S

following the upper branch of the parabola to the right of Point A. If,

however, 8 is decreased, the amplitude of the stable limit cycle follows the

upper branch S 2 until the point So (K 0 = ) is reached. Here the self-

excited oscillation disappears abruptly. As previously mentioned, see Sec-

tion 51, this type of self-excitation is called hard.

It is apparent that the theory of Van der Pol gives exactly the

same results as the theory of Poincar6.

55. EXAMPLE: EQUATION OF LORD RAYLEIGH; FROUDE'S PENDULUM

In his researches on the maintenance of vibrations, Lord Rayleigh

(14) came across the following equation

mY - (a- i.2). + Kx = 0 [55.1]

in which there is a predominance of negative damping for small values of the

velocity x; for larger velocities the damping becomes positive. By introduc-

ing "dimensionless time," as was explained in Section 30, Rayleigh's equation

can be put in the form

Y + x + pf(x,.) = 0 [55.2]

Assume that the damping terms are small enough to justify the intro-

duction of the small parameter p. In Rayleigh's equation f(x, ) = f(') =

mx 3 - nc, where m and n are constants appearing instead of a and 8 as the re-

sult of the transformation of the independent variable. One has finally

X + x+ p(mi3 - nf) = 0 [55.3]

where m > 0 and n > 0.

By Equations [52.9], the functions O(K) and O(K) are

2r 2,r 1
O(K) = fmKsinudu - fnK3si udu = Km - nK) [554]

o o

and

27r 2;r

(K) = 2K nK sin ucos udu - 2  mK sin u cos udu [55.51
o o
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From Equation [55.4] we see that the conditions for limit cycles are

K = 0; K - 4m [55.6]
3n

The first value K= 0 is clearly a point singularity. If the non-

linear term mi 3 is omitted, Liapounoff's equations are x = y and y- ny + x = 0.

From this we obtain the characteristic equation S2 - nS + 1 = 0, whose roots

are

n + Vn -4
1,2 2

For n < 2, one has an unstable focal point, and for n > 2, an unstable nodal

point. In both cases the point singularity K= 0 is unstable.

In order to ascertain the stability of the limit cycle K= /, one

must differentiate Equation [55.4] with respect to K

'(K) 9 nK2 [55.7]
2 8

Substituting K 2 = in this expression, one finds3n

m( 4 m 9 4m m 3
8n =---m < 0

3n 2 8 3n 2 2

The limit cycle is therefore stable. The oscillating system gov-

erned by Rayleigh's equations, [55.1] or 155.3], thus exhibits the property

of being self-excited in a steady state. If the dissipative terms were of

the same sign, that is, of the form ±(mx + nix), there would be no limit

cycle in this case, as is easily ascertained, although the oscillation would

still be governed by a non-linear differential equation of a dissipative

type. The example of Section 31 belongs to the case considered in this sec-

tion.

It can be shown that the oscillation of Froude's pendulum, see

Section 8, is also governed by Rayleigh's equation. In the elementary theory

of this phenomenon it was established that the damping is initially negative

under certain specified conditions.. A linear equation does not represent the

actual penomenon because when the coefficient of € is negative it indicates

that the amplitudes of oscillation increase indefinitely, which is clearly

impossible from physical considerations. The reason for this inconsistency

is the fact that the equation was overlinearized by dropping the non-linear

terms.

By conserving at least the first two non-linear terms, we shall be

able to establish the existence of a finite limit cycle, characterizing the



46

steady state of oscillation of Froude's pendulum which is actually observed.

Expanding the function M(w - $) of Section 8 in a Taylor series, we have

2! 3!

Here we assume that the function Mis analytic, that is, that it admits de-

rivatives at least as an idealized feature of the observed phenomenon.

Dividing Equation [8.1] by I, introducing dimensionless time, and

keeping only the first two non-linear terms in the expansion, one obtains an

equation of the form

S+ = -- c + k2 - n 3  155.91

where c = b + M'(w), and k and n are suitable constant coefficients obtained

by substituting the expansion [55.8] into Equation [8.1]. It must be noted

that c is negative according to what has been stated in Section 8. Putting

c = - m, where m > 0, one has

q + = m + k 2 - n'3 = p(m + kl  - n1
3)

whence

f( )= Y, + k, 2 - n1~

and

f(Ksinu) = miKsinu + kK sin u - nK 3sin 3u

Hence

2r 2r 27r

(K) = -! Ksin2 udu + kK 2f sin udu - n1K sindu
0 0 0

that is,

0(K)= - [mK - n K

The equation for limit cycles is

K(m- n K = 0 [55.10]

The solution K= 0 corresponds clearly to a point singularity, and

the amplitude of the limit cycle is K= . One can calculate m1 and n1

explicitly from the equations of transformation of the original equation to
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its form involving dimensionless time. It is to be noted that the quad-

ratic term disappears from Expression 155.10] for the limit cycle because

Ssinu du = 0, a fact which has already been noted in Section 54.

56. MORE GENERAL FORMS OF NON-LINEAR EQUATIONS

The Van der Pol method is applicable also to non-linear equations

involving, in addition to variable damping, a variable "spring constant." It

must be noted, however, that the existence of self-excited oscillations, that

is, of limit cycles, depends only on the conditions of the variable damping,

as was shown by Van der Pol (15) and generalized later by E. and H. Cartan

(16) and Lienard (17). In fact, the initial damping, for small x in the

Van der Pol equation or for small i in the Rayleigh equation, is first nega-

tive then positive for larger values of the corresponding variable (x or i).

Physically this means that there exists, initially, an energy input into the

system which, in later stages of motion, becomes an energy drain from the

system, which then becomes dissipative. The existence of a steady oscilla-

tion, that is, of a limit cycle, depends thus on the average equality between

the input and the drain per cycle. We shall come back to this important point

later in connection with the Principle of Equivalent Balance of Energy formu-

lated by Kryloff and Bogoliuboff. Consider, for example, a more general type

of equation

mi + (nx 2 - a ) + + yx 2 = 0 [56.1]

which has variable damping, the term nz2i, as well as a variable spring con-

stant, the term (f + yx)x. As long as the terms (nx2 - a)i and yx 2 are small,

we can write this equation in the form

mi +fix (a - nx ) -i 1x2- i (x,i) [56.2]

We can easily reduce this equation to a form previously considered. It is

sufficient to divide it by m, putting f/m = w 0
2 , and pass to a dimensionless

independent variable* in order to obtain the equation in the usual form

" + x = (a 0  n0x) - o ) 0x2 f(x,) 563

* The last operation, although convenient for practical calculations, is not altogether necessary. In

case one does not use it, the generating solutions should be taken in the form K cos wt, -Kw sin wt

instead of Kcos t, - Ksin t.
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and to substitute the generating solutions K cosu and - K sinu into the first

equation [52.9] giving the limit cycles. The same procedure applies to the

generalized Rayleigh equation with the variable spring constant.

In all cases the existence of limit cycles requires that the coef-

ficient of i satisfy the conditions of Cartan-Lienard. If this condition is

not fulfilled, no self-excited oscillations can exist in a steady state, and

the system behaves as purely dissipative, while still non-linear.

0
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CHAPTER X

THEORY OF THE FIRST APPROXIMATION OF KRYLOFF AND BOGOLIUBOFF*

57. INTRODUCTORY REMARKS

The method of Kryloff and Bogoliuboff is very similar to that of

Van der Pol and is related to it in the following way. While Van der Pol

applies the method of variation of constants to the basic solution x =

a cos wt + b sin wt of x + W 2x = 0, Kryloff and Bogoliuboff apply the same

method to the basic solution x = a cos (wt + 0) of the same equation. Thus

in Kryloff and Bogoliuboff's method, the "varied" constants are a and 0 (polar

coordinates), while in Van der Pol's method they are a and b (rectangular

coordinates). The method of Kryloff and Bogoliuboff seems more interesting

from the point of view of applications, since it deals directly with the

amplitude and phase of the quasi-harmonic oscillation.

Before proceeding with a review of the method of Kryloff and

Bogoliuboff, a few additional remarks concerning the effect of secular terms

may be helpful.

58. EFFECT OF SECULAR TERMS IN SOLUTIONS BY EXPANSIONS IN SERIES

The difficulty arising from the appearance of secular terms has

already been mentioned in Sections 44 and 46. In the example given in Section

46 that difficulty was avoided by a rather delicate change from the "old"

periods to the "new," or corrected, ones. This change requires a knowledge of

the correction for the period, which is not always obtainable as has been dem-

onstrated. Unfortunately, in a great majority of cases in which the approxi-

mation consists in abbreviating an infinite series by a few terms, the situa-

tion is still more difficult.

In order to see this point, consider again a quasi-linear differen-

tial equation of the form

y + W2 + f(x,)= [58.1]

where p is a small parameter, i.e., p << 1. Since the non-linear term appears

with a small coefficient p, Poisson suggested as a solution an expression of

the form

x = + lx +  + ... [58.2]

* The subject matter of this and of the following two chapters is taken from the treatise of Kryloff and

Bogoliuboff, Reference (5). This subject is also treated in the free translation by S. Lefschetz of the

Kryloff-Bogoliuboff text, Princeton University Press, 1943.
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For p = 0, x = x0 = a cos wt is the known generating solution. For 0 < p <<1,
it seems logical to consider the effect of the non-linear term pf(x,x) as a

small perturbation and to assume that this perturbation will also be felt in

the modification of the initial generating solution represented as a power

series of p, given by Equation [58.2]. The method of Poincar6, Chapter VIII,

is, in fact, a further generalization of Poisson's method.

If one substitutes the solution [58.2] into the differential equa-

tion [58.1], limiting the expansion up to the power pK of the small parameter,

one obtains the following series of differential equations by equating terms

containing the same powers of p:

x + o Xo = 0

+ W 1  - f(x(, io) [58.31

2+ =-2x(xoo) [ x, + f,(xo', o)]

This procedure has already been outlined in connection with Equations [46.5]
of the theory of Poincar6. It is easy to show, however, that a direct appli-

cation of this method is handicapped by the following difficulty.

Consider, for example, the simplest case, that in which f(x,) -
+ xw. In this case Equation [58.1] is

S+ wx + ~ui = 0

The exact solution of this equation is

x = Ae 2 cos -- t [58.4]

where A and 9 are the constants of integration determined by the initial con-

ditions. If, however, one proceeds by substituting the expansion [58.21 into

Equations [58.3], the first equation gives

xo = A cos (t + )

Substituting this solution into the second equation [58.3], one has

2 + W2 1 -o = A 2sin (wt +  ) [58.5]

This equation is satisfied by

Awt
X, 2 cos(Wt + #) [58.6]



Substituting these values for x0 and xi into Equation [58.2], one has

x= A(1 - t )cos(wt + ) [5871

It is clear that the amplitude of the approximate solution [58.7] increases

with time t indefinitely, whereas, according to the exact solution [58.4], it
IPwt

approaches zero, owing to the presence of the exponential term e 2

As a second example, consider the differential equation

j + w2x(1 + Px2 ) =-- 0 [58.8]

which may be considered as the equation of motion of a mechanical mass at-

tracted to the position of equilibrium by a force proportional to the dis-

tance, with a perturbation term proportional to the cube of the distance.

Proceeding as before and seeking a solution of the form x = x0 + px,

one has

x0 + ()Xo = 0

[58.9]
y + W2Z = -W2 X3

From the first equation [58.9], x 0 = A sin(wt + 4). Substituting

this value for x0 into the second equation, one has

S+ W2x = wA'sin(w t + 4) 3= w2A 3 sin(wt + 4) +1 w2A3sin3(wt + 4)
1 4 4

This equation is satisfied by

x = - tA3cos (ot + 4) sin 3(wt + 0)

1 8 32

whence

x = Asin (wt + 4) + 3p tA3cos(ot + 4) A- A sin 3(wt + q) [58.10]
8 32

The second term of this expression is a secular term. Thus, this

expression for the displacement has no physical meaning. Unfortunately, in

this case the exact solution is not known, as Equation [58.8] is not linear.

One can, however, affirm the correctness of the above statement by invoking

the law of conservation of energy, which holds in this case since the system

is conservative. In fact, multiplying Equation [58.8] by x, one can write

dt = 0
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From this we can obtain the law of conservation of energy

1 .2 1 2 2 # W
2  4

- + 2)x + 4 x = constant = E [58.11]

From this equation it follows that, for p > 0, the square of the amplitude x2

has an upper bound 2E/ 2. This result is to be expected, as the system has

no sources of energy and is conservative. Hence there is a definite contra-

diction of Equation [58.10].

From these two examples, we see that the direct application of

Poisson's method to problems of dynamics encounters a serious difficulty be-

cause of the presence of secular terms.

59. EQUATIONS OF THE FIRST APPROXIMATION

In this section we propose to establish the fundamental points of

the theory of the first approximation of Kryloff and Bogoliuboff, which will

play an important role in subsequent chapters.

For p = 0, Equation [58.1] reduces to a simple linear equation

whose solution is

x = a sin(at + €); = awcos(at + ) [59.11

where a and € are constants, the amplitude and the phase respectively. For

a quasi-linear equation when p * 0 but is small, it appears logical to retain

the form of solutions [59.1], provided that we consider the quantities a and

€ not as constants but as certain functions of time to be determined.

Differentiating the first equation [59.1], one obtains

x = 6sin(wt + 0) + awcos(wt + 0) + a cos(wt + 0) [59.2]

Making use of the second equation [59.1], one has

d sin (wt + ) + a cos(at + 0) = 0 [59.31

Differentiating the second equation [59.1], one gets

x = dwcos(at + 0) - aW2 sin (wt + 0)-aw sin(at +€) [59.41

Substituting these values for x, x, and i into the original quasi-linear equa-

tion [58.1], one has

d cos(wt + ) -aw sin(wt+ 0) + pf [asin(wt + 0), a cos(wt + 0)] [59.51

Solving Equations [59.3] and [59.5] for a and $, one gets

S= f[a sin (wt + 0), a w cos (wt + ¢)]cos (wt + ) [59.6]I~rul\u r~u~uu~Iyllv~r l
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= If [a sin(wt + 0), awcos(wt + )]sin(wt ) [59.7]

It can be seen that the original equation [58.1] of the second

order has been reduced to a system of two equations, [59.6] and [59.7], of

the first order. The interesting feature of this transformation lies in the

fact that these first-order equations are now written in terms of the ampli-

tude and phase as dependent variables. One notes a formal analogy with Equa-

tions [52.8] of Van der Pol and also with Equations [46.22] and [46.23] of

Poincare.

From the form of the right side of Equations [59.6] and [59.7], it

is seen that both a and are periodic functions of time. From the fact that

the right-hand terms of these equations contain a small parameter p, one can

conclude that both a and 0, while being periodic, are functions which vary

slowly during one period T = 27r/w of the trigonometric functions involved.

It is reasonable, therefore, to consider a and 0 as constant during

one period T. It is possible to transform Equations [59.6] and [59.7] into a

more convenient form. For this purpose, consider the Fourier expansions of

the functions

f(asin , awcos )eos = Ko(a) +Z[K,(a) cos n + Ln(a) sin n
n=1

[59.81

f(asin,awcos ) sin¢ = P(a) + [P(a)cos n0 + Qn(a)sinn]
n=1

where

K0 (a) = (sin¢,a Oeosd)eos g¢
27r

PKo(a) = 2- f (asin,awcos) cosin qd02r

KP(a) = ff (asin , awcos )coscosind40

2r

K,(a) = 7 f (a sin 0, a cos €) cos € cos n d

[59.91

27r

P(a) = 1 ff(asin0, awcos )sin cos nqd¢

27r

Q,(a) = 1 f (a sin¢,awcos¢) sine sin nqdk
"0
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Equations [59.6] and [59.7] can then be written in the form

da - K(a) - (a) cos n (wt + ) + Ln(a)sinn(w t + )

[59.10]

do P (a) + [P,(a)cos n (wt + ) + Q(a)sinn(wt +€)

Integrating these equations between the limits t and t + T, and considering

a(t) and O(t) as remaining approximately constant in this interval, one has

as the first approximation

a(t + T) - a(t) u K(t) ] (t + T) - V(t) po[a(t)] [59.11]
T 0  T aw

since

t+T t+T

fcosn(wt + q)dt = sinn(wt + ¢)dt =0
t t

Furthermore, since, by assumption, the variations Aa and AO of

amplitude and phase are small during the interval (t, t+ T), one can write

Equations [59.11] to the first approximation

da _ Ko(a); d _ Po(a) [59.12]
dt w dt aw

If these equations are compared with the exact equations 159.10], it is seen
that the equations of the first approximation are obtained from the exact

equations by averaging the latter equations over the period, thus eliminat-
ing the rest of the Fourier series under the summation sign. The analogy be-

tween Equations [59.12] and the "abbreviated" equations [52.6] of Van der Pol

should be noted.

Letting 0 = wt + q, the total phase of the motion, we have d,/dt =

w + dq/dt. Making use of these relations and the relation for Ko(a) and Po(a)

in [59.9], we obtain for the equations of the first approximation

da U 1 rda 2f (asin, awcos¢) cos d 0 (a) [59.13]1dt w 27ro

d = + 1w f(asin¢, awcos) sin0 d - 9(a) [59.14]
dt aw 27r o

The first approximation will then be x = a sin i, where the ampli-
tude a and the phase 0 are obtained from Equations [59.13] and [59.14].
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60. NON-LINEAR CONSERVATIVE SYSTEMS

Consider again a quasi-linear differential equation

x + w2 x + 'Uf(x) = 0

in which f(x) does not contain the velocity x. Equation [59.13] gives

2,r

d - - ff(a sin¢) cos¢ do [60.1 ]dt 2nrw o

and Equation [59.14] gives

2,

dt + 2a (a sinO) sinq do [60.2]
dt 27awo

Noting that

12,
' f(asin)cos d -= a 0(asine) = 0

0 0

where (x) = .f( )d, Equation [60.1] gives a = constant. Hence, from the
0

first approximation, it follows that the amplitude does not change in the

course of time; the system is thus conservative. This can be seen from a pri-

ori considerations, because the function f does not depend on the velocity x,

whereas dissipative forces generally do depend on x.

From Equation [59.14] it follows that

= 2(a)t + 00 [60.3]

since 2(a) does not depend on t in this case; 00 is a constant of integration.

Thus, the oscillations will be of the form

x = a sin[ (a) t + V,] [60.4]

Therefore, to the first approximation, the effect of a non-linearity of this

type will be felt only in that the frequency of oscillation will depend on

the amplitude a, that is, the oscillations are not isochronous, but the dec-

rement of oscillation is zero since the system is conservative.

Squaring Equation [59.14] and neglecting the term of the second

order in p, one has

27r 2,r 27r

7r0a 0 0

2r 27r

- wa 2a sin¢ + pf(a sin)] sin do f F (a sino) sino do [60.51
7r 0 0
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where

F(a sin) = w2a sin¢ + #f (a sin¢) [60.6]

On the other hand, the general form of a non-linear equation, in which the

non-linearity is only in the spring constant, is of the form x + F(x) = 0.

If the term F(x) is not far from linearity, it can be written as F(x) =

w2x + flf(x), where f(x) is the non-linear component of F(x). Comparing this

expression with Equation [60.6], one finds exactly the same result provided

one substitutes the generating solution a sin 0 for x. From this we obtain

the following theorem:

When a system is conservative but not linear, the amplitude a remains constant and

the frequency 9(a) is given by Equation [60.51, in which F(x) is the term entering into the equation
x + F(x) = 0, without the necessity of splitting it into a linear component w2x and a non-linear

one, lpf(x).

In the following section examples are given illustrating the appli-

cation of the theory of the first approximation.

61. EXAMPLES OF NON-LINEAR CONSERVATIVE SYSTEMS

A. PENDULUM

The differential equation for a pendulum is " + f sin 0 = 0. In

elementary theory, which we may designate as an approximation of zero order,
it is assumed that for small angles sin 0 0. The well-known solution for

the period, T = 2n7r V1g, is obtained. It is to be noted that oscillations

are isochronous under this assumption.

For the first approximation we can take sin 0 0 - --; the differ-
03

ential equation then becomes 6 + W
2 ( - ) = 0, where w 2 = g/L. Using Equa-

tion [60.5], one obtains

2 27 3 . 3
2 (a) = a sin - )sine do

7ra 6

2 [ 221 2
= a sin2 dQ - f s in4d ¢ ] = 2( -

0 0

that is,

Q(a) =ow -- wl 1 - - [61.1]

or, in terms of the period

T(a)= T1 + 6- [61.2]
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It is thus seen that the oscillation is not isochronous; the period

increases slightly with increasing amplitudes of oscillation.

Thus, for example,

for amplitudes of the order of 10 degrees, T(a) = T x 1.001;

for amplitudes of the order of 20 degrees, T(a) = T x 1.006;

for amplitudes of the order of 30 degrees, T(a) = T x 1.014.

It should be observed that, although the expression for the period

can be established in this case by means of elliptic functions, the theory of

the first approximation leads to this result by a more general procedure.

Furthermore, the latter method easily leads to correct results in more compli-

cated cases for which exact methods are not available.

B. TORSIONAL OSCILLATIONS OF A SHAFT

Let J and J2 be the moments of inertia of rotating masses placed at

the ends of a shaft S, see Figure 61.1. If 01 and 02 are the two angles de-

termining the angular position of the masses J

and J2 with respect to a fixed reference angle, J, J2

the torsional moment Mis a certain function of

the difference (01 - 02), say C(0 1 - 02) =M(). S

The differential equations of the coupled

system are

J101 + C(o1 - 02) = 0 and J2, 2 - C(01 - 02) = 0 Figure 61.1

Subtracting the second equation from the first and

letting 0 = 01 - 02, we obtain

J J2 + (J 1 
+ J 2)C(O) = 0 [61.3]

which is the non-linear differential equation of the torsional oscillation of

the system.

Equation [61.3] can be written as 0 + K 2C(&) = 0, where K 2

(J1 + J2 )/J1J2. Assume that C(O) is of the form C(0) = Co0 ± C1 0
3 , where

C 108 is a small non-linear term. From this,

F(0) = K 2Co0  ± K
2 C 1 0

3 = mO ± nO 3

and the frequency is given by

27r

Q (a) ra i (nasino ± na sin3) sin do = w o + - K Ca

- C(01 - 02) in these notations should be read: C is a function of (01 - 02), and not C times (01 - 02).
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Q(a) ; wo(1 + 3 K2C1 a
8 o

The non-linear frequency (and therefore the period) will thus depend on the

amplitude. The amplitude of the vibration is constant, but the vibration is

not isochronous.

C. ELECTRICAL OSCILLATIONS OF A CIRCUIT CONTAINING AN IRON CORE

Let a circuit be composed of an inductance L and a capacity C with

negligible resistance. The inductance coil is wound on an iron circuit A, see

Figure 61.2, subject to magnetic saturation.

The condition of equilibrium of electromotive

forces in the circuit gives

Sd 1 t
Ldt +C i dt = 0

dt CO

where 0 is the totalized flux through the coil.

The condition of saturation can be approximated

Figure 61.2 by the equation i = AO + B S , whence from the

preceding equation one has

AO + BO 3

+ C = 0  [61.4]

Equation [61.4] is the non-linear equation of oscillation. Reducing it to

the standard form of a quasi-linear equation, where A/C = 2 = constant, and
assuming that the ratio 2 << 1, one can apply Formula [60.5] and obtain

2r 3 s3) A 3Ba2
92 (a) f (Aa sin + Ba sin- sin d =- 1 + 4A

raCo

that is,

Q(a)= / Ba1 +3a ( 31 + Ba2  [61.51
C+4A 8 A

The actual frequency Q(a) is thus increased in comparison with the frequency

w for small amplitudes, owing to a decrease of L with the amplitude a of the

oscillation. Thus the oscillation is non-ioschronous.

62. SYSTEMS WITH NON-LINEAR DAMPING OF A DISSIPATIVE TYPE

Consider the differential equation

mx + Kx + f(x) = 0
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Dividing it by m and putting K/m = w 2, we get

2 + 22 + 1f() = 0
m

We shall keep within the limits of the quasi-harmonic theory. In this case

m f() plays the role taken by pf(x, ~) in the general theory. The expressions

2yr 2;r

ff(a sin, awcos¢ ) cose do and f f(a sin&, aw cos0) sine dQ
0 0

entering into Equations [59.13] and [59.14] of the first approximation, in

this case are

2x- 2r

ff(awcos) cose d¢ and f f (aw cos ) sinq dQ
o o

respectively, since f(x,i) reduces to f(i).

We note that

2,r 2r 2r

ff(aw cos ) sin d = l ff(aw cos)d(aw cos) 1 (aw cos ) = 0
o o o

so that, by Equation [59.14],

di - [62.1]
dt

Furthermore, Equation [59.13] can be written as

da - rmw (aw cos) coso do [62.2]

It is clear that the instantaneous frequency d/dt is equal to the constant

"linear" frequency w, and the amplitude a varies according to Equation [62.2].

Thus, the oscillation is generally of the form x = a sin(wt + 0o), where 00is

a constant. The frequency is not changed since the frequency correction is

of the second order and therefore does not appear in equations of the first

approximation. A few examples given below illustrate the application of

Equation [62.2] to various types of non-linear damping f(i).

A. LINEAR DAMPING: f(i) = ki

In this case

22 2r

ff(awcoso) cos do = awf cos2 do = awXr
0 0
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and Equation [62.2] gives

1 Xa
27rmw 2m

whence

a = a0e 2fL [62.31

Comparing this with the exact solution

At

x = aoe 2m sin(w1 t + 0)

where

W (j 1 4 VKmm

one notes that the first approximation gives the same expression for the am-

plitude as the exact solution; the difference between the expressions for

frequency w and w1 is of the order of 8(X/YKm) 2 , that is, of the second or-

der, if X is of the first order, as previously set forth.

B. QUADRATIC DAMPING: f() = b2

Since f(i) is an even function of x, and from physical considera-

tions it should be an odd function of i, we should write the above expression

as f(i) = blili. In this case

ff(awcos)cosod = ba20 2 fIcos0 Cos24 do = ba2w2[ Cos3 d + cos a do -
0 0 0 37r

2

37r

- cos3 dj = ba2w2[ + 2 + = 8 2 
L3 3 3 3

2

From Equation [62.2] we get

da 1 4bwa2

dt - f (awcos¢) cos€ d 37rm

that is,

1 da da 4bw
a2 dt - dt - 3rm

~"YIML~alen~ru~n*a--r-s~-cr~~L~~ ~U
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From this, on integrating, we obtain

1 1 4bwt a o _1 1 wt or a a [62.4]
a ao  3 rm + 4bwaot

37rm

It is seen that the law of variation of the amplitude with time in

this case is entirely different from that given for Case A.

C. COULOMB DAMPING: f( ) = A sgn(x)*

From this equation

Ir 31r

f (a cos) cos 0 d = Af cos d + fcoso do - fcos o d5 = 4A
0 .0 3T 7

2 2

2x

for a * 0. Furthermore, f f(awcos 0) cos bdq= 0 for a = 0. By Equation

[62.2]

da 2A
- if a*0

dt 7rmw
[62.51

da
- 0 if a=0

dt

Integrating the first equation [62.5], for a * 0, we get

2A
a = a- t [62.6]

7rmW

2A
The motion will continue as long as ao - t >0, and will cease for tj de-

2A rm
fined by the equation ao = nmW tj. The motion thus lasts a finite time.

D. MIXED CASES: f(i) = ax + Bj2

In applications one frequently encounters differential equations

in which both linear and quadratic damping are present. Thus, for example,

Froude's differential equation for the rolling of a ship in still water is

I' + K, + K,8 2 
+ WhO = 0, where I, K1, K2 , W, and h are well-known constants.

Likewise, the so-called "surge chamber" equation** in hydraulic engineering

is of the form j + pj 2 + qi + yx = 0. Writing equations of this kind in the

form i + w 2x + pf() = 0, one has

* The symbol sgn(i) designates a discontinuous function defined as follows: sgn(i) = 1 for i > 0;

sgn(i) = - 1 for i < 0; and sgn( ) = 0 for i = 0.

** The writer is indebted to Dr. W.F. Durand for bringing this equation to his attention.
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27r 27r 2;r

ff(aw cos¢) cos€ do = aawf cos2 do + ,fa2w2 f cos3 0 d + cos do -
0 0 0 37r

37r

- 2 cos3 d] = aaw r + 8- a2w2

2

From this

18 2 2 a 2
2 aw7ra +- 8 = - a + Sa2

27r 3 2

where S = 4,/3r. Separating the variables

d(aS +
da 2 da 2 d(aS 2

a 2 a a a a
a + Sa aS + -2 2

we get Sa]
d log aaS dt

aS + 2- 2

Upon integrating and putting the constant of integration in the form C =
ao/(aoS + q), we obtain

a a e 2

aS + a- S +2 2

or

a ao  -t0_ e

2 aoS + a
2

aa = a [62.7]
1-S o e 2t

aoS +

For t = 0, one finds a = ao; for S = 0, one finds a = aoe- , as in the case

of linear damping, Case A. It is seen that the presence of quadratic damping

causes a somewhat more rapid decay of amplitudes owing to the presence of the
a0  at

term S aooS + e 2 in the denominator than is found with a pure linear damp-

ing. This fact is to be expected on physical grounds.

uamrr3s~ ~
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63. SYSTEMS WITH NON-LINEAR VARIABLE DAMPING

By the expression "variable" damping occurring in this section, we

shall understand a damping which, for small values of the determining variable

(either x or i as the case may be), is negative and becomes positive above a

certain critical value of the variable. Since negative damping means supply

to the system, and positive damping means withdrawal of energy from it, the

system considered here is non-conservative. Furthermore, stationary states,

or limit cycles, are possible when the average supply of energy per cycle be-

comes equal to its average dissipation.

According to the mode of production of the non-linear variable

damping, there exist two principal types of non-linear self-excited oscilla-

tions governed by the following equations, which are solved here by the meth-

od of the first apprcximation.

A. VAN DER POLIS EQUATION

The Van der Pol equation is

x + x - (1 - X
2

) X = O0 [63.1]

We have f(x,x) = M(x 2  - i); furthermore, w = 1, hence f(a sino, aw cos€) is

f(a sin, a cos€). Since x = a sine and i = a coso, it follows that

f(x, ) = U(a3 sin 2 cos - a cos )

and

f(a sine, a cos¢) cos€ = p(a"sin2 0 Cos20 - a COS2€)

Whence, by Equation [59.13], we have

2; 2 O 2a

d - f (a sin , a cos¢) cos d --- 3 asin cos do - a ofs do
dt 2r0 0

which reduces to

da a (1 _ a2 [63.2]
dt 2 4

p2r

Forming the expression J f(a sing, a cosO) sin o do, one finds that

it is zero. From this, by Equation [59.14], d b/dt = w= 1, that is,O =

t + 0 ,where 00 is arbitrary.

The solution of Van der Pol's equation to the first order is then

of the form

x = a sin(t + Oo) [63.31

where a is given by Equation [63.2].

II m i ii -
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As we shall mention shortly, the interesting feature of this solu-

tion is the variation of the amplitude a as a function of time. From the

preceding study of Van der Pol's equation we know that a limit cycle exists

in this case. We propose now to establish its existence by use of Equation

[63.2].

Multiplying both sides of Equation [63.2] by 2a, we have

da2  2a2(1 a
dt 4)

that is,

da2  _( a2( a2  - d (log a 2 2 dt
a2(1 a 4-a

Upon integration, we obtain

2 2a a
log 2 log ao2 + pt [63.4]

2 a 4 - ao
a2 ,

Expressing this relation in the equivalent form 4 a = - e pt and solv-

ing for a2, we get

2 pt 2

a 2 ao e a ae [63.5

1 +-a(et --1) 1 + -a02 t- 1)

The fundamental equation x = a sin V of the theory of the first approximation

is then

2

x a0 e sin(t + o0) = a sin(t + ) [63.6]
1 + -ao eWe -- 1)

It is apparent that Equation [63.6] describes the general nature of

motion previously investigated in connection with limit cycles. In fact, if

for t = 0, ao = 0, x O0. This trivial solution of the Van der Pol equation

is, however, unstable. For any finite a0, however small, the amplitudes in-

crease, approaching the value a(t) = 2 as a limit. In the phase plane as

t - + oo, the trajectory spirals toward the circle of radius a = 2 from the

inside.
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B. RAYLEIGH'S EQUATION

Rayleigh's equation* is

x + + + (- a + #X2)i = 0 [63.71

In this case w = 1 and f(x,i) = - a + 83. Since f(x,)- f(i) and w = 1,

the generating solution a cos € must be substituted into f(i) resulting in

21r 2r 2r

ff(acosf)cos€d4 = - aa cos2 d + ajcos4 d4 = - oaar+ ± Tra3
0 0 0

Hence, by Equation [59.13], with w = 1, one has

a = 2( - 43 a2) [63.8]

The system will reach the limit cycle when a = 3a2, from which the amplitude

of the limit cycle is a = 4~i/3f. The radius of the limit cycle increases as

the ratio 8/a decreases, which is physically obvious since for f = 0 the sys-

tem becomes linear and the amplitude, at least theoretically, increases in-

definitely, the damping then being negative.

To find the mode of approach to the limit cycle, one must integrate

Equation [63.8]. Following the procedure explained in Section 63A, one ob-

tains**

2

a(t) = ae [63.91
3 fi 2 patV1 + - ao 2(ef - 1)
4 a

This gives a(t)t,, = 4c/l3fl, which is independent of the initial amplitude a0,

as required by the condition for a limit cycle.

* It is supposed that the original Rayleigh equation, m + Kx + (-A +Bi
2
)i = 0, has first been divided

by m and written as

+* W2X+ A B -2

M 
+ x + ( + B 2 = 0

where w
2 
= K/m, after which a change of the independent variable brings it to the above form, with w = 1.

* In case Equation [63.7] is not reduced to a unit frequency and has the form

x + C2x + (- o + X2)X = 0

the generating solution should be taken in the form aw cos 0 (instead of a cos 0), which finally results

in the following equation for a(t)

#at
2

a(t) = aoe [63.9a]

1 + ao 2 (ePt
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64. EXISTENCE OF LIMIT CYCLES; SYSTEMS WITH SEVERAL LIMIT CYCLES

Although the scoje of the method of the first approximation has

been sufficiently ascertained from the previous sections of this chapter, we

now propose to introduce certain additional transformations of the form of the

fundamental equations [59.13] and [59.14] of this theory. The object of these

transformations is to introduce functions similar to those appearing in Equa-

tions [52.8] of the Van der Pol theory. By this procedure we will prepare the

groundwork for the investigation of an important subject, namely, the exist-

ence and stability of limit cycles.

It is useful for this purpose to recapitulate briefly the principal

results of the theory of the first approximation.

The solution of a quasi-linear equation is considered in the form

x = a sin 0, where a and V are given by the equations

27r

f (a sin , aw cos ) cos db = 0 (a) [64.1]

21r

= + f(a sin0, aw cos¢) sin d -- 9(a) [64.2]
27rwao

The condition for a stationary oscillation on a limit cycle is

0(a) = 0 [64.3]

This is exactly the condition obtained from Equation [46.22] of Poincar6's

theory and the first equation [52.9] of Van der Pol's theory.

Equation [64.2] can be transformed by taking account of Equation

[60.51

2r

Q(a) = w 2 + f(a sin, aw cos) sin do
7ra0

and the identity

2 1 2 2w wa sin 2 do

Thus

S(a) = rF(a sin , awcos ) sin do [64.4]
0

where F(x, ) = W 2x + pf(x,>) is the non-linear force appearing in the equation

x + F(x,x) = 0. Likewise, Equation [64.1] can be transformed by means of the
2r

identity f aw2 sing cosdo = 0, which gives
0



2r

S= (a) = fF (a sin, aw cos ) cos de [64.51

Equations [59.13] and [59.14] appear now in the form

a = 0(a) [64.6]

S= Q(a) [64.7]

where *(a) and Q(a) are given by Equations [64.5] and [64.4] in terms of the

total non-linear force F(x,i).

Considering the question of limit cycles generated by a harmonic

x = Kcos t when y = 0, we examine Equation [64.6].

If O(a) > 0, the amplitude a increases indefinitely, and hence no

such limit cycle exists.

If O(a) < 0, the amplitude decreases, and again no such limit cycle

exists. This condition characterizes dissipative systems.

If 0(al) = 0, we obtain the condition for a limit cycle with ampli-

tude a,.

The question of the existence of limit cycles which are not generat-

ed by a harmonic x = K cost when p = 0, is not considered.

We now propose to investigate a practical case in which a limit cy-

cle exists, as shown by experiment, and to show how'this existence can be

ascertained analytically on the basis of this theory. For this purpose con-

sider the differential equation of an oscillating circuit containing a non-

linear conductor characterized by a non-linear equation of the form v = G(i).

Putting i = x, the differential equation is

L + G(x) +.- x dt = 0 [64.81

where the constant parameters L and C designate the inductance and capacity

of the circuit respectively.

Differentiating this equation with respect to t, dividing it by L,

and putting for abbreviation 1/LC = 
2, we obtain

x + wx + 1 G'(x) = 0 [64.9]
L

Identifying the term G'(x) with pf(x, ) of the general theory, which inci-

dentally imposes a requirement that it be small in comparison with the first

two terms, we obtain on the basis of this theory

r __ ~__ ~___ ~ _~_1111111 .____ II 1



21r
a 2 G'(asin¢)awcos¢. cosd - 0(a) [64.10]

2;r

2 = L f G'(a sin¢) cos - sing do = Q(a) [64.11]
0

Integrating by parts, we see that the second term on the right side of Equa-

tion [64.11] is zero, hence,

= Q(a) = w [64.12]

and 0 = wt + o0 where o0 is arbitrary. The oscillation is thus isochronous

at least to the first order.

If we let JG'(a sin o) os 2  do = R(a), Equation [64.10] can be

written as

S (a = (a) [64.131
2L

From the definition'of R(a) it follows that R(a) > 0, if G'(x) > 0, that is,

if the voltage across the non-linear conductor increases with the current.

Thus, d < 0, and the final state of the system is x = 0, as is obvious from

physical considerations since a "positive resistance" characterizes a dissipa-

tion of energy. Therefore, the final state of equilibrium is stable, and the

point x = 0 is either a stable focal, or a stable nodal, point.

If G'(x) < 0 (negative resistance), that is, the voltage across the

non-linear conductor decreases when the current through it increases, O(a) is

positive, and from Equation [64.13] it follows that the amplitude increases.

From physical considerations it is apparent that the amplitude cannot increase

indefinitely. Analytically this is expressed by the condition 0(al) = 0 for

a certain amplitude a, which is the amplitude of the limit cycle.

Figures 64.1a, b, c, and d illustrate the various possible cases.

Figure 64.1a represents the case of an ohmic conductor (Curve a represents an

ideal, and Curve b a real, ohmic conductor). Since G'(x) > 0 in this case,

R(a) = 0; hence a < 0. The amplitudes always decrease since the system is

dissipative.

Figure 64.1b corresponds to the case when G'(x), and hence R(a), are

negative for small amplitudes and become positive for larger ones. The root

a, of the equation R(al) = 0 corresponds to a stable amplitude a = al. If the

oscillations are started from values a < a,, they will increase until the am-

plitude a = a, is reached; if, however, they are started from a value a > a1 ,

they will decrease down to the value a = a,. This condition is indicated by
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R(a) R (a) R (a) R (a)
b

0 0 a 3 C C \ 0C a 02 a

(a) (b) (C) (d)

Figure 64.1

arrows in Figure 64.lb. The amplitude a = a, thus corresponds to'a stable

limit cycle.

Figure 64.1c shows a more complicated form of non-linear character-

istic. By a similar argument, one finds that the amplitudes a = a, and a = a3
correspond to stable limit cycles and a = a 2 to an unstable one.

Finally, Figure 64.1d shows a condition sometimes encountered in

applications. For small amplitudes the "resistance" of a non-linear conduc-

tor is positive, that is, the energy is dissipated. Beginning with a certain

critical value a = al, the resistance becomes "negative," that is, energy is

conveyed into the system, and this state exists until an amplitude a = a 2 is

reached. In such a case if the initial amplitude ao < a1, the only stable

amplitude is a = 0; the system cannot acquire self-excitation. If, however,

ao > al, the amplitudes begin to grow and eventually become stabilized at a

stable limit cycle a,. A condition of this kind is designated as a "hard"

type of self-excitation, which we have previously investigated.

It is thus seen that the unstable limit cycle a = a1 acts as a kind

of "barrier" preventing the amplitudes from building up if the initial ampli-

tude is below the value corresponding to this barrier.

We thus find by the theory of the first approximation a situation

exactly the same as that found previously by the topological methods of

Poincare.

65. STABILITY OF LIMIT CYCLES; CRITICAL VALUES OF A PARAMETER;
SYSTEMS WITH SEVERAL LIMIT CYCLES

Let us first consider the question of the stability of limit cycles.

Let a1 be a root of the equation 0(a1) = 0. For a slightly varied amplitude,

a1 + 6a,

0(a, + da)= Oa(a1) 6a

to the first order.
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From Equation [59.13] it follows that

d(6a)
dt - a(a) 6a  [65.1]

We shall take 6a as the absolute value of the departure. If the initial de-

parture has a tendency to disappear, that is, if d(da)/dt < 0, Oa(a1) < 0,

which is the condition for a stable limit cycle. If 0a(al) > 0, by a similar

argument one concludes that the limit cycle is unstable.

If self-excitation starts from rest (a = 0), the condition for its

occurrence is

0(0) > 0 [65.2]

which is equivalent to the existence of an unstable singularity in the pres-

ence of a stable limit cycle, see Part I, Chapter IV. Similarly, the condi-

tion for a critical value of some parameter can easily be established by this

method. In fact, assume that O(a), in addition to a, also depends on a param-

eter A, that is, it is a function @(a,X). Consider the value of 0(a,A) for

a = 0 and varying A. When a value A = A0 is reached for which Oa(0,A) > 0,
the amplitudes begin to grow from zero and the subsequent increase of ampli-

tudes from that moment will be determined by Equation [64.13], which now has

the form

a = (a,X) [65.3]

The limit cycle is reached for a value a, of the amplitude for which

0(a,,A) = 0 [65.4]

For a given value A = A , the limit cycle will be determined from the equation

0(a,,A,) = 0, and for some other value A = X 2, from the equation 0(a 2, 2) = 0.

Hence, the amplitude of the limit cycle in general is a certain function of

the parameter A.

In some cases the function 0(a,A) can be put in the form

0(a,X) = [(a) - X 0l(a,) [65.5]

where 01(a,X) > 0 for all values of a and A, and 0(0) = 0. Differentiating

Equation [65.5] with respect to a, one has

Oa(a,X)= Oa(a) - -l01 (aX) + FO(a) - [01(a,X)] [65.6]X] X]L dci



Putting a = 0, one has

,(0, ) = Oa(O) - 1 1(0,1 ) [65.71

Self-excitation will start from rest if

Oa(O) >1 [65.8]

since 01 (0,X) > 0.

Consider a curve y, = 0(a) and a straight line y2 = la shown in
-x

Figure 65.1. 0,(0) is the slope of the tangent to the curve 0(a) at the ori-

gin, and - the slope of the straight line y 2. Condition [65.8] states that

self-excitation occurs starting from rest (a = 0) only if the initial slope

of the tangent to the curve 0(a) is greater than

the slope of the line a/X. ( )

As an example, one may mention the self- ,

excitation of a shunt generator. In this case the

frequency is zero but the amplitude, Equation

[59.13], is still applicable. The function 0(a) Y2

is the voltage induced in the armature, a is the

exciting current, and a/X is the ohmic drop across

the field winding; whence i/k is the resistance of o0

the field winding plus the field resistor. In Figure 65.1

Figure 65.1, 1/X = tan a is the slope of the
straight line -a. If 1(0) - 1/ < 0, there is no self-excitation. For

x< Oa(O), self-excitation is possible since Oa(0,X) > 0. The equilibrium

condition is 0(a) = a/Xk, which corresponds to the intersection of curves

y = 0(a) and y2 = Xa. It is interesting to note that the amplitude, Equa-

tion [64.10], holds in this case in spite of the fact that the frequency,

Equation [64.11], is absent.

From the general considerations explained in connection with Figure

64.1, the following theorems result:*

THEOREM 1. If a system possesses several stable limit cycles forming a sequence al,

a3, a5, . . , between each pair of consecutive stable limit cycles there is always one unstable

limit cycle; these unstable cycles form another sequence a2 , a4 , a 6, * * *

THEOREM 2. The limit cycle reached spontaneously by a system starting from rest is

always the one which corresponds to the smallest root a, of the sequence.

* It should be borne in mind that we are considering only limit cycles that are generated by circles.
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THEOREM 3. The stable limit cycles corresponding to larger roots a 3 , a5, .. . of the

stable sequence can be reached only if the system is given a shock excitation carrying it beyond

the corresponding unstable limit cycles a2, a4, .*

66. LIMIT CYCLES IN THE CASE OF POLYNOMIAL CHARACTERISTICS

Let the characteristic of a non-linear conductor be approximated by
a polynomial

f(i) = A + Bi + Ci 2 + Di3  + Ei 4 + Fi 5  [66.1]

Differentiating and setting i = a sino, we have

f'(a sin¢) cos 2 = B cos2 + 2Casino cos2 + 3Da sin20 cos2q +

+ 4Ea 3 sin3 cos20 + 5Fa4sin40 cos20

Forming the expression for R(a) f'(a sin 4) cos 2 do, we have
0

2 x 2r2 2 r
R(a) = B cOS02 do + 1 2Ca sin Cos 2 d4 + 1f3Dasin2 cos2 d +

27rr 2 r7

+ 1  4Ea 3 sin3 cos do + 1 5Fa4 sin 44 cos24 db [66.2]

The second and the fourth terms on the right side of this equation are zero.

The remaining terms are

B 2
r fcos2 de = B
0 

[66.3]

1 3Da 2 sin 2 Cos 2 d 3Da sin2 d - sin d 3Da2 rr(1 - -3 Da2
Sr" o o 7r 4 4

21 5raFs4d4 2w2 1 5Fa4 3 3.5 5 4
1 J5Fa sin4 cos 2 do = i sin d - sind 5Fa i 3 -5 -Fa4

% o o0 4 4.6 8

From this

R(a) = B + Da 2 + Fa [66.4]

It must be noted that the coefficient F in this equation must be

positive; otherwise, beginning with a certain value a = a,, R(a) would become

negative and remain negative for increasing a. In such a case, by Equation

[62.2], da/dt would be positive. This is impossible in a physical problem.
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Setting F=m>0 and JD= n, the condition for the existence of a

limit cycle is

R(a) = ma 4 + na 2 + B = 0 [66.51

The roots of this biquadratic equation are

a - n ± Vn2 - 4mB [66.6]
1,2  2m

For the existence of limit cycles at least one of the roots a2 or a2
2 must be

positive. Since m > 0, the necessary and sufficient condition is that B < 0,

which expresses the fact that the slope of the characteristic f(i) is nega-

tive, that is, "negative" resistance.

When B is positive, two cases are possible:

1. B > 0, n > 0, that is, D > 0. In this case both roots a2 and a2

are negative; hence, the amplitudes a, and a2 of the limit cycles are imagi-

nary. In other words, no limit cycles exist, the system being dissipative.

The amplitudes decrease indefinitely, and the only stable solution is a = 0.

2. B > 0, n < 0, that is, D < 0. In this case limit cycles are possi-

ble as long as n2 - 4Bm> O, which expresses the condition of the reality of

the roots. If we substitute for n and m their values, this gives

n2 9 2

B < - [66.7]
4m 40 F

Summing up this discussion, one can state that with a non-linear

voltage, approximated by the polynomial [66.1], of the fifth degree, the

following conditions exist:

1. On physical grounds the coefficient F must always be positive.

2. If B < 0, there is always one stable limit cycle.

3. If B > 0 and D > 0, no limit cycles exist and the system is dissi-

pative.,

4. If B > 0, D < 0, and B < 9 , limit cycles are possible with the

amplitude a, (positive root).

5. If B > 0 and D< 0, but B > -2-9 D the system behaves again as a
40 F

.ssipative one, and no limit cycles exist.



Since any experimental characteristic can be approximated by a

polynomial, the coefficients A, ... F in Equation [66.1] are known quanti-

ties, and the above procedure permits ascertaining from the form of the char-

acteristic the behavior of the system into which the non-linear element with

this particular characteristic is introduced.

0
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CHAPTER XI

APPROXIMATIONS OF HIGHER ORDERS

67. INTRODUCTORY REMARKS

In this chapter we review the extension of the method of Kryloff

and Bogoliuboff as applied to approximations of orders higher than the first.

Although for practical applications the theory of the first approximation

gives a satisfactory degree of accuracy, it is also interesting to consider

the possibility of a further refinement of approximate solutions in case

greater accuracy is required. The procedure of Kryloff and Bogoliuboff is

derived from the classical methods of Gylden and Lindstedt used in celestial

mechanics. As explained in Section 44, the object of these methods is to

eliminate the secular terms resulting from the resonance effect of subsequent

harmonics in the recurrence procedure by which the higher-order terms are de-

termined. The method can be summarized as follows.

Assume that we wish to find a periodic solution of the differential

equation
x + W x + pf(x) = 0 [67.1]

with a certain unknown period T. Introducing a new independent variable

7 = 2f7t/T = Qt, where Q = 27/T, we shall look for a solution x(t) = z(7),

where z(7) is a periodic function with period 27f. We shall try to represent

the periodic solution in the form

(7) = I nzn(T) [67.2]
n=O

where z,(r) with n = 1, 2, ... , are periodic functions with period 27r. We

further assume that

Q2 = ,,Un [67.3]

n=O

where an is constant. The transformed equation [67.1] then becomes

2 2z + f(z) = 0 [67.4]
d7

,w If one substitutes into this equation the series expansions [67.2] and [67.3],

S-i e one obtains a series of recurrent differential equations resulting from equat-

ing to zero the coefficients of equal powers of p. For the subsequent approx-

imations one thus obtains a series of differential equations

"I'li - *-InI nmIIn i , lw-I ii
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d2 2ao do + w 2zo = 0
d0 d2-

d -z d2 d 2

d2 z 2  2 d2 zo d 2 Z1  [67.51
ao d2 2 = - (Zo) - 2 d

2  
d2

d + 2 d 2zo  d Zl d z n
o dr + , - - a2 n d - - adr2

where F(z o, z 1 , ... , zn) is a certain polynomial in z o , z1, ... , zn. It is

apparent that if z o , z1 , , zyN and a 0 , a, , a N satisfy the first

(N+ 1) equations of the system [67.5], then the expressions

N N

x = f'z n(-r) and Q2 = /'1 a [67.6]
n=O n=O

also satisfy [67.1] up to the order pN+l and, hence, may be considered as the

(N+ 1)th approximation.

The method of Lindstedt, which Kryloff and Bogoliuboff follow, con-

sists in determining the coefficients ai in the subsequent stages of the re-

currence procedure so as to eliminate terms with the fundamental period 27r.

In fact, if these terms were left on the right side of Equations [67.5], they

would account for the "resonance terms," which are of secular form, as pre-

viously defined. The determination of ac by this procedure at the same time

leads to the expression for frequency given by Equation [67.3]. By this meth-

od the difficulties encountered in the theory of Poincar6 (see Chapter VIII)

in connection with the appearance of secular terms in the expansions are elim-

inated, and solutions without secular terms can be obtained.

Poincar6 has shown by an example that the approximations generally

do not converge. However, nothing better is available, and, in practice, the

second or third approximation (and usually, in fact, the first) gives entirely

satisfactory results.

The subject matter of this chapter is considerably abbreviated, com-

pared with Kryloff and Bogoliuboff's text (5), and for that reason the reader

should refer to the original text for additional details.

68. IMPROVED FIRST APPROXIMATION

Equations [59.13] and [59.14] of the first approximation were ob-

tained by dropping the higher harmonics in the Fourier series on the right

"~~~~-~-- -- ----V---~Pe~u- ~----- -.
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side of Equations [59.10]. In reality, owing to the presence of these terms,

the slowly varying quantities a and 0 undergo oscillations of a relatively

high frequency.

In order to take this into account, it is convenienent to consider

the quantities a and 0 in Equations [59.10] as practically constant in com-

parison with the rapidly varying trigonometric terms cos n(wt + 0) and

sin n(it + q).

Designating the left sides of Equations [59.10] by da/dt and d$/dt,

and noting that - Ko(a) = a and 'u P0(a) = upon integration of Equa-
w aw dt'

tions [59.10], one has

p K (a)sinn(wt + 0) - Ln(a) cosn(wt + )
W nw
n=l

[68.1]

= __ p Pn(a) sinn(wt + €) - Qn(a)cosn(wt + €)
aw 1 nw

n=l

where a designates the first approximation for the amplitude given by Equa-

tion 159.13].
Substituting these values into the equation x = a sin(wt + €), one

has

x [a - Kn sinn(wt + ) - Lcosn(t )] sint + +

p 2  Pnsinn(wt + ) + c)( [68.2]
aw n

If we let

S 1 Pn sinn(wt + €) - Qcosn(wt + ¢)
S-=

n-=1

the sine term of this expression can be written as

sin(wt + ¢ + p S) = sin(wt + €) cos pS + cos(wt + 0) singpS

sin(wt + 0) + PS cos(wt + €)

since p is small. Substituting this into Equation [68.2], one has

x = [a Knsinn(wt + ) - Lncosn(wt + ) [sin(wt + 0) + pScos(wt + )
n= 1

[68.31
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whence, neglecting the terms with p2, p3, ,one has

x = a sin (w t )- K, sinn(wt + ) - L, cosn(wt + ) sin(wt + €) +
0 n

n=l

ap 2  P sinn(wt + ) - Q, cosn(wt + )cos(t ) [68.4]
+ a + ) [68.4]

n=l

If we put wt + 0 = r,

K, sin nr - L, cos n-r

n=1n

P, sin n7- - Q, cos nT = V (7)
n

n=l

u(7) sinTr - v(7)cos7 = w(7)

= u(7)

[68.51

[68.6]

We now rewrite [68.4] as

x = a sinT7 - w(7) [68.7]

From Equations [68.5], in view of [59.8], one has further

u'(7) = f(asinr7, aw cosr) cos7 - Ko(a)

v'(7) = f(asinr, awcos-r) sin r
[68.8]

Po(a)

On the other hand, differentiating Equation [68.6], one has

u'(7)sinr - v'(7) cosTr + u(7r)cosr + v(7r)sin-r = w '(r) [68.91

If the values [68.8] are substituted into Equation [68.9], one

finds

w'(r) = Po(a)cos7- - K o (a) sin - + u cos + v sin-r

w"(T) = - Po(a) sinr - Ko(a)cosT- - usinT- + vcosT + u'cosT + v'sinTr

Thus

[68.10]

[68.11]

w"(7-) + w(7) = - Po(a)sin-r - Ko(a)cos-r - usin7- + vcosT + u'cosT + v'sinT

+ usinT - vcost- = - Po(a)sin-r - K o(a)cosr + u'cos-r + v'sin6r

0

and

A

[68.12]
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Noting that

u'(r) cosT + v '(7) sin-r = f(a sinr, aw cos-r) - Ko(a) cos 7 - Po(a) sin-r

one obtains from Equations [68.8]

w"(7) + w(r) = f(asinr, a cosT) - 2Ko(a)cos-r - 2Po(a) sin-r [68.13]

In order to determine the corrective term w(7) of the improved

first approximation, it is necessary to transform the right-hand term of

[68.13] into the known Fourier series.

For this purpose consider the Fourier expansion

f(asinr, awcosr) = fo(a) + Z [f(a)cosn-r + g,(a) sinnr]

in which the coefficients f and g are given by the equations

2r
fo(a) = 2 rff(asin-r, awcos-r) dr

2xr

f,(a) = f (asinr, awcos7) cos n dr7r o-

27r

g,(a) _1 f (a sin, aC cosT) sin nr d-r
0

1" 1
On the other hand, by [59.9], Ko(a) = f and Po(a) = 2g"1

[68.14]

[68.15]

From

this

f(a sinT, awcosr) - 2Ko(a) cosr - 2Po(a) sin-r

- fo + f (fncosnr + g.sinnT)
n=2

[68.16]

Substituting the right-hand term of Equation [68.16] into Equation [68.13],

one gets

w "(7) + w(7) [68.17]f o + f o(f.cosnr + gnsin n)
n=2

Looking for a solution of Equation [68.17] of the form

w() = ao + f(ancos nr + 6bsin nr)
n=2

one obtains by identification of the coefficients after the substitution of

this expression into the differential equation [68.17]
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W (7) = fo 2  4 ' cos n7- 2+ g sinn7- [68.18
Sn

2 -16.]
n=2

Substituting this expression into Equation [68.7], one finally ob-
tains the following expression for the improved first approximation

Ssin(w f, cos n(wt + ) + g, sinn(wt + ) [68.19]x = asin(wt + ¢) - -- fo(a) + -- 'f nc -n1 [68.19]
2 2 n -i

n=2

where a and 0 satisfy the equations of the first approximation, Equations

[59.12], that is, a = - 21f(a) and $ = 2 -g(a).2w ' 2ca '
In order to see whether the solution [68.19] satisfies the original

quasi-linear equation j + w2x + pf(x,x) = 0, substitute the solution [68.19]

in that equation. This gives, on the other hand,

2 + =2x - [, f cosn(wt + ) + gnsinn(wt + ) + fo + 0(p2) [68.20]

where 01 is of the order of p2

On the other hand, in view of Equation [68.19], one has

pf(x,i) = f [asin(wt + 0), awcos(wt + )] + 02( 2)

whence, by [68.14],

x+ &)2x + 1f(x,X) 01(( 2) - q2(12 )

Thus the expression [68.19] satisfies the original differential equation with

accuracy of the order of P2.

Furthermore, it can be shown, upon developing the expressions for

01(p2) and 02(92), that the error in the approximate solution [68.19] is

uniform in the interval 0 5 t <oo.

69. APPLICATIONS OF THE THEORY OF THE IMPROVED FIRST APPROXIMATION

We shall consider first oscillations of a conservative system acted

on by a non-linear force represented by an odd function of the dependent vari-

able. In this case, f(x) + f(- x) O. Since the function is odd, no cosine

terms are present in the Fourier expansion. Hence

f(a sin-r) = g,(a) sin nr
n=l
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and

g,(a) = 2 (a sin-r) sin n- d

By Equation [68.19], the improved first approximation .is

x = asin(wt + 0) + c
W 2n

- 1
n=2

The frequency is given by the equation

Q(a) = w+ g , ( a )
2wa

that is,

Q 2(a)= 2 + 1 g(a)a

to the first order.

We shall now discuss three applications of the theory of the im-

proved first approximation.

A. VARIABLE "SPRING CONSTANT"

Consider the differential equation

+ 2x = 0

where 0 = 0 + px2 , which gives

x + wox + 1x3 = 0 [69.2]

so that

f(x) = x3;
3.3 3 3 13

f(asin-) = a3 sin 3 - 3 a sint 7- -a
3 sin3r

4 4

whence

g (a) = 2 3 a sin - 1 a3sin3r) sinr dr = a3
0

)(3 2
Q(a)= ± 2 0 a g,(a) = o + w02a

For the next harmonic

[69.1]

and



7T

g3(a) = ( sin-r -

93) a sin 7
7T0

3 37r

67 fsi xdx
From this, by Equation [69.1

From this, by Equation [69.1]

3 7r

4a sin3r) sin3-rT r - f sin23r d
27r0o

37ra 3

12r

3

x = a sin(wot + 4) - #a 2 _ 1 )sin3(wo t + )

3
asin( + )- +aasin(wot + ) 32Wo2 sin3(wot + ¢)32 [69.3]

Thus the improved first approximation introduces a small corrective term

32 sin 3(wot + ) in the form of a third harmonic.

B. VARIABLE DAMPING

Consider a differential equation of the form

i + W2x + pf(x)l = 0

The non-linear term in this case is

f(x)c = f(asin-r)awcos-r

Consider the function F(X) = j f( ) di.
velopment of F(a cos 0) in a Fourier series gives

F(a cos€) = Z F,(a) cos n
n=O

For X = a cos €, the de-

[69.4]

Differentiating this equation, we have

af(acos) sine = TnF(a)sinno
nPutting =l one obtains

Putting € = -r + one obtains2'

f(asin-r)awcosT = - w' nF(a)sinn(wt +
n=O

37
2 + Oo)

where 0o is an arbitrary phase angle. Hence, by Equation [69.1], the solu-
tion is

n=2
+3 r + o)

2- -
[69.51
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assuming that w = 9, since in this case the correction for frequency is of a

higher order.

If one introduces. 00 = q0 - r/2, Equation [69.5] has the form

x = acos(Qt + ) - 2 -- 1 F,(a) sinn(2t + 90 )  [69.6]
n=2 n -

For example, consider the Van der Pol equation

i + x - 41(1 - x2) = 0

In this case f(x) = z' - 1, F(x) =--- - x, and w = 1, whence

a cos€ (4 a
F (a cos 3 cos acoso = a - 1 cos € + 12 cos 3

F3 12co
It follows that F,(a) = a T- 1) and F3(a) = 12' the other Fn (a ) being zero.

By Equation [69.6], the oscillation is

3
x = acos(t + 90) -pa sin3(t + 0) [69.7132

The differential equation for the amplitude is obtained from the

equations of the first approximation

da pa a2

dt -2 4

For a steady-state condition, a = 2; Equation [69.7] in this case becomes

x = 2 cos(t + 00) - sin3(t + 0) [69.8]

C. CORRECTION FOR FREQUENCY

In the preceding notations w is the linear frequency when p = 0,

and 9 is the frequency of the quasi-linear oscillation when u * 0. For quasi-

isochronous motions to the first order, w ; 9.

It is to be noted first that the exact solution for stationary

oscillations can always be developed in a Fourier series

x = acos(2t + 00) + [A.cosn(St + 00) + Bsinn(Qt + o0)] [69.91

sw One has identically

T
f [ix + w2 x 2 + pf(x)xi]dt = 0 [69.10]

0
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since

+ w 2x + pf(x)c = 0

On the other hand,

jx + j2 d (xx)
dt

and

T T T

fxdt + f 2dt = x = 0
0 0 0

in view of the periodicity. Hence

T T

f ix dt = - fi2dt
o o

Likewise

T

f f(x)xdt = 0
0

for the same reason. Hence,

T T

ff2dt = wW2 dt [69.111

o o

If one replaces x by its expression [69.9] and i by its expression obtained

by differentiating Equation [69.9], one obtains finally

2 2  n(A ± B2) = 2 + (A + B)[a [69.12]
n=2 n=2

since the terms of the form ApBq cos p(9t + 0o) sin q (Qt + 0o) disappear when

integrated over the period It follows that

92 a2 + (A2 + B2)
S= .2 [6 9.13]

1 2 + 0n2(A2 + B 2)

n=2

On the other hand, under the assumption that f(x,i) = f(x)i, by

Equation [69.6], A, = 0 and B = - n- F,(a).

Substituting these values for An and B, into Equation [69.13], one

has
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1 + 2 F, ( a)

2 [ 69.1]

2 a+ 2 Zn n 2  -1 Fn (a
n =2

If we let -2 = K 2 and [Fn(a) = b, the preceding equation can be written

00

2 1 + K 
2 n b )2

= n - 1

n=2

= +K 1 - K n2( b)] [69.151
n=2 n=2

Hence, to the second order of the small quantity K, one has

9 == 1 - 1 0 (a) [69.16]
n =2

Applying this formula to the Van der Pol equation with a = 2,

F,(a) = = , and F(a) = 0 for n * 3, one has

22
9 = 1-

16

70. APPROXIMATIONS OF HIGHER ORDERS

Consider, first, the quasi-linear equation

S+ w2 x + pf(x) = 0

and assume that it has one or several periodic solutions. Let x = x(t) be

such a solution, with an unknown period T and frequency 9 = 27r/T. Let

x = z(9t + €) _ z(7), with 7 = 9t + 0. Then z(r) has the period 27r.

Changing the independent variable in the original equation

+ W2x + p f(x) = 0, one obtains

92z + w 2 z + pf(z)= 0 [70.1]

From now on the differential notation " will designate differentiation with

respect to 7. By hypothesis, Equation [70.1] has a periodic solution with

period 2r. We shall look for solutions z(r-) and 92 in the form of a power

series in p:

z(r) = pZn(7) and 92 = n" , [70.2]
n=O n=O0

IlllHi lgl10W11
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with ao = w 2, since the existence of a periodic solution of period 2r for

[70.1] with p = 0 requires that S2 = 02

Furthermore,

f(z) = f(z 0 + z1 + /u
2z2 + )

= f(zo) + pzlf'(zo) + P 2 '(Z)+ Z"2 l(zo) +

The substitution of these values into Equation [70.1] gives rise to the

following recurrent differential equations obtained by equating to zero the

coefficients of po u1, 2 .

)02 0 + )
2
Z0 = 0

2) + W 2 Z1 = - f(Z) - C 1 0

w z2 + W2Z2 = - f(Zo)Zl - 2o- a 1 1  [70.3]

Gj2in+ 1  2Zn+1 - F(zoz, Z , .,zn) - Cn+lZ0 - nZ 1 . .ni- i- ln

where F(zo0 z, z, , zn) is a polynomial in zj, Z2 , .. , zn.

The solution z(r) under consideration is determined up to a trans-

lation on 7. We can choose the origin, that is, €, in the substitution T =

9t + 0 so that

z(0) = 0 [70.4]

The condition [70.4] then yields the following conditions for z,(--), which are

periodic functions of period 27 and which we take as being represented by

their Fourier series,

,(0) = 0 for n = 1,2;3- - [70.51

Let z0 , zI, -.. , zn and a1 , ... , a n be the solutions of the first

(N+ 1) equations of the system [70.3]; it is then clear that

N N

x = J~p'z(7) and 92 = Z ." ,
n=0 n=0

will satisfy the equation x + w2x + pf(x) = 0 to the order of pN+ , and hence

can be considered as the (N+ 1)th approximation of x.



The first equation [70.3] gives, in view of [70.5], z0o = a cos 7r,

where a is an arbitrary constant. There exists, however, a certain arbitrari-

ness in the following steps, that is, in the successive determination of z,,

z2, ... -We can remove this arbitrariness by requiring that no fundamental

harmonic shall appear on the right side of Equations [70.3], for otherwise

some zn would contain secular terms. We wish, however, to obtain a function

z(7) = x(t) representing the periodic solution of our quasi-linear equation

in the whole interval 0 _ t < o.

Consider now the second equation of System [70.3]

w2(l +  Z1 ) = - f(acos r) + aLa cos-r

The function f(a cos r) can be developed in a Fourier series which contains

only cosine terms, that is,

f(acos-r) = f,(a)cosnr = fo(a) + fl(a)cos-r + - f,(a)cosnr
n=0 n=2

[70.6]

W2(, + z ) = - f,(a)cosn7- + [at,a - f,(a)] cos -r - fo(a)

It is noted that the secular term is bound to appear in this case

unless the coefficient of cos 7 on the right side of Equation [70.6] is zero.

Hence, the condition for the elimination of the secular term is

fl(a) [70.7]a

which determines the approximation (z1 ,a). One has

iz + Z = 2 fo(a) + t ,'fn(a) cosnrj [70.8]
W n=2

In view of [70.5], the solution of [70.8] is

1 1 f cosnT [70.9]
z, = A cosT 2 f °(a) + n 2 -- 70

with f, = f,(a) where A is a constant. Substituting z0 and zl into the right

side of Equation [70.3] for z2 and annulling the fundamental harmonic, we ob-

tain an equation involving a2 and A, so that A remains arbitrary. In order

to simplify our solution, we take A = 0 so that

1 1 f cosnf T [70.10]
fo2 n- 1

Z 22
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and the equation linking ao and A, where we set A = 0, now yields the value
of a 2. By proceeding in this manner the following terms z2, z3, ... and a2,
as, --- can be determined. We require that none of z,(n => 3) should contain
the fundamental harmonic, by analogy with z2 . The condition [70.5] is then
automatically satisfied. We proceed to show by induction that any z, can
be determined in this manner from Equation [70.31.

Assume that z1 , z, , , z, and al, a2 , ... , an, satisfying the
first n equations of the system [70.3], have been determined.

The (n + 1)th equation is

w2 (Zn+ 1 + 1 Z+ 1) = F(z',z1, * ,z) - a - a l n +1acosr [70.11]

where z 0 = a cos r, as before.

Since zI, ... , z, and iz, " " , i, contain only cosine terms,
F(zo0, z1 , , Z,) also contains terms of this kind only,

Putting F(z 0 , z, , '. , z, ) - an i - an-_ 2 - a =
Z b, cos mr, one can write Equation [70.11] as
m=0

in2+ + Z,+ - 2 b0 +  0 b  
1

os m  + (a,+a + (b)cosT [70.12]
m=2

The condition for the absence of secular terms is again

a,+ - [70.131a

Equation [70.12] now becomes

S+1 + z,+1 - 2 [bo + ±'meosm [70.14 ]
m=2

The solution of this differential equation is

1 C S - 7 cos m r
Zn+= b m 2 - 1 [70.15]

m=2

the secular term having been removed again from the solution.

71. MOTION OF A CONSERVATIVE NON-LINEAR SYSTEM WITH A CUBIC TERM
As an example of an application of this method, consider the dif-

ferential equation

+ + x3 =0 [71.1]

The integration of this equation by the method of the first approximation was

given in Chapter X.
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We propose now to determine the approximations of higher orders,

following the method explained in the preceding section.

C Taking as generating solutions z0 (7) = a cosT, w 2 = 1, and ao = 1,
we have

I3 a3
z + z = - Z o - o 3cos 3 7 + aa cos = Caa - a3) COST - a os 3T

The elimination of the secular term gives

3
= a2  [71.2]

and the solution of this equation gives

32
z1= 32 3cos37 [71 .3]

If we substitute for ac and z, their values, the third equation [70.3] becomes

3 5 2 27
z -32 2 - Cos os 3 T + a 2 acosT + 27 os 3

32 128

(of2 3 a) cos T+ 21 5 os 3 3== a - 2- cs acos3" -1 a5 cos5T [71.4]
128128 128

The condition for the absence of the secular term gives a 2 = 1 2 8 a Thus the

solution of Equation [71.4] is

5
21 a 5

z 2 - acos 3 + 1 cos 5 7
1024

Consequently the approximate solution satisfying Equation [71.1] to the order

of M2 is

x = acos(wt +0) + p 3 ( ' - ) cos(3wt +)+ 2 a os(5wt + ) [71.5]

where a and 6 are constants of integration.

The frequency 2 is given by the second expression of [70.2], in

which a,, a2, ... have already been determined

92 2  pa [71 .6]
4 128

72. HIGHER APPROXIMATIONS FOR NON-LINEAR, NON-CONSERVATIVE SYSTEMS

We now consider the general form of a quasi-linear equation

i + w2x + pf (x, X) = 0 [72.1 ]



We shall attempt to write the general solution for higher approximations
in the form of an improved first approximation by replacing wt + 0 by
wt + S - ! = . One then obtains from Equation [68.19]

p p a F,(a)cosn 0 + G,(a)sinnx = acos- , F (a) + n2 -1 [72.2]
n=2

with equations of the first approximation

da 2 G,(a); d _ Q(a) [72.3]dt 2w dt

(a) = t + F,(a) [72.4]

The F, and G, in Equation [72.2] are the Fourier coefficients in
the development of

f(acosT, - awsinr) = [Fn(a)cos n7- + Gn(a)sinn] [72.4a]
n= 0

The condition for a steady state is

GI(a) = 0; 0 = S (a)t + o0  [72.5]

where o is an arbitrary constant.

Equation [72.2] for a steady state becomes

x = acos [ (a)t+±,] - F +(a)

P +F,(a)eosn[S(a)t + o] + G.(a)sinn[2(a)t + o] [726]
n=2 n 2 -1

It was seen that for conservative systems GI(a) O. In such a
case, Equation [72.6] has two integration constants a and 00, as is to be
expected for an equation of the second order. If, however, G,(a) = 0 has
only simple roots without being equal to zero identically, the solution

[72.6] has only one integration constant b0 since a is determined from the
equation Gl(a) = 0. This case corresponds, therefore, to the existence of
limit cycles corresponding to the roots of Gl(a) = 0. In fact, as was shown
previously, the stationary oscillation in.this case does not depend on the
initial amplitude.

We now propose to establish the existence of periodic solutions,

that is, of limit cycles in non-conservative systems.
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If x = z(9t + 0) is such a solution, it must clearly satisfy the

differential equation

92i'+ w2z + pf (z,9i) = 0 [72.7]

We can follow the same procedure as before, assuming solutions of the form

z = z 0 + z + 1 + z + " +

[72.8]

9 = o + #19 + U 22 + ...

where z, are periodic with period 27. Here we take z, as represented by their

Fourier series.

Forming i and i and substituting the values of z, i, i, and 9 into

Equation [72.7], one obtains again a series of recurrent differential equa-

tions by equating to zero the coefficients of various powers of p. One has

Qo zo + W02 = 0

90Z 1 " W2l _- -(o9oX o)  - 2Q0 o 1 zo

90 "2 + W022 = - f (zO, 0 0 )Z 1 - f (Z0o9oZo) 0 i1 - 2 o90 2io -

- 299 Q 1  1- 2 - fi(o,,oio)9 1 o [72.9]

0 n+l .2 n+ 1 = - f 0(,9oi) 0)Zn - f(ZO2909 +1" 0 -

- 29DOD 'n - F(zo . " Zn,_ ; i0 " " " n-1; O " " "-1 ;o " 2 9n-1)

where F, is a known function of the indicated arguments. As before, S2o = w 2

we require that i(O) = 0. Hence i,(O) = 0, where n = 0, 1, 2, "" , so that

zo = a cosr, where a is a constant to be determined, and z1, z2, "" do not

contain sine terms.

Substituting these values for zo and 2o0 into the second equation

[72.9], one gets

w2( ' + z) = - f(acos 7, - aw sin7) + 2w9 1acos -

= - [F(a)cosn + G(a) sinn"] + 2w9,acosr [72.10]
n=0

Fl. II-



The condition for absence of a secular term gives

G,(a) =0; 1 = w(a) [72.11]
2wa

From Equations [72.11], a and Q1 can be determined. Equation

[72.10] then becomes

W 2( i+ z) = - F(a) - [F,(a)cosn t + G(a)sin n7] [72.12]
n=2

The solution of Equations [72.12] is

F (a) 1 ' [F(a)cos n r + G(a) sin n r]
zi = alcsr - 2 +-2n 2  [72.13]

n=2

in which the amplitude a, is to be determined by the condition for the elim-

ination of secular terms on the right side of Equation [72.9] for z2 .

Writing Equation [72.13] as z, = a, cos7+ u where

Fa) 1 F(a)cosn + G(a) sinn [2.1n
Wuz == n 2 [72.14]
W2  n2 -

and substituting it into the third equation [72.9], one has

2(2 Z2 ) = - (acos 7, - a wsinr ) a, cosr +

+ 4 (a cos 7, - aw sin r) al w sin 7 + 2 w 21 alcos-r + 2 SwQ2 a cos r+ v (r)

where v(r) is a-periodic function containing the remaining terms of the third

equation [72.9]. Since v(r) is periodic, one can represent it by a Fourier

series

v (-) = [p cos nr + qnsinnr]
n=o

Furthermore, one has the identity

- fa cos7- +f4aw sin = f[(a +pa)cosr,- (a +La ) wsin ]- f a cos + fi aw sin 0

whence, by Equation [72.4a],

-facosr +f; awsinr = - a F'(a)cosnr + G:(a)sinnr] [72.15]
n=0

where F,(a) and G'(a) designate the derivatives of F,(a) and G,(a). Substi-

tuting f, and f; into the third equation [72.9], one gets
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w 2 (i± z2) = a 1 [ F'(a)cosn'r + G(a)sinnr] +
n=o

+ 2w(2 1 a + 92 a)cosr + [p cos n + qusinn] [72.16]
n=O

In view of the periodicity of z2, the secular terms must be eliminated again.

Their elimination gives the conditions

alG;(a)= q and 21la, + S12 a Ia1+ F2 [72.17]

It follows that

a -q [72.18]
1 G'(a)

Since we are in search of the condition for the existence of limit

cycles, Gl(a) = 0 by the first equation [72.3], we have to add now a second

condition G'(a) * 0, since only in this case does Equation [72.18] give the

determination of a,. The equation G'(a) * 0 shows that the root of the equa-

tion G(a) = 0, which gives the limit cycle, is a simple root.

From the second equation [72.17]

2= 1 1a P aF) [72.19]
a 2w ,a 2

Hence, Equation [72.16] can now be written as

w2( 2 + z2 ) = (o0 - aFo') +

+= [ p - a 1F,(a) cos nT + [qn- a G(a)] sin n} [72.20]

The solution of this equation is

z2 = a 2 COS + w- - a 1 ' +

+ ~[(p- a 1 n)cosnTr (qn- alG)sinn] 1-n2 [72.21]
n=2

L- where a2 is again an undetermined coefficient, which, together with Q, is

determined by the condition for the absence of secular terms on the right

sides of Equations [72.9] for z3 , and so on.
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Following this recurrence procedure, it is apparent that subsequent

equations [72.9] permit the determination of a, and 9,,+ from the equations

for the elimination of secular terms.

a,G,'(a) = , and 2w(g+,,a + 91a,) = r7 [72.22]

in which , and i, are known from the preceding recurrent operations.

As long as the equation G,(a) = 0 has only simple roots, that is,
Gl(a) * 0, the process can be continued indefinitely up to any value of the

index n.

The expressions for the non-linear oscillation x and its frequency

9, up to the order of ~N inclusive, are of the following form

x = zo(St + 0) + p z1(gt + 5) + P + N N(S2t + €)

[72.23]

9=2 = + p 21 + • • " pNN

Following this procedure, one finds, as an example, for the-second approxima-

tion

x = (a + pa) cos (Qt + 4) - Fo(a)+

+ F (a)cosn(St + )+ G,(a)sin n( t ) [72.24]+ n2 - 1[72.24]2 n 2n=2

where

F (a)
2wa

If we compare this expression with the earlier formula [72.6], it is observed

that the only difference between these expressions is in the amplitude of the

first harmonic, which is now a + pa instead of a, where a is the root of

Gl(a) = 0.

This difference is due to the fact that for higher approximations,

as can be shown, the amplitude equation is

da = A G,(a) + /2S1(a) + p8 S 2 (a) + • • • [72.25]

dt 2w

If the limit cycle is reached,

P Gi(a) +U2S 1(a) + .... 0
20

Hence, in view of the factor p before Gl(a), it is seen that by stopping

the approximation for a certain value n = N of the index, the error in the

AM 10 16 ' lI, i ", l li j , 1 ld llJl, l .1 ll i 
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determination of the first harmonic of the limit cycle is only of the order

(N - 1), and not of the N t h order.

C Hence, the N th approximation determines the amplitude to the order

(N+ 1) and the frequency to the order (N+ 2).

For N = 0, one has

x = acos (t + ); 9 = w + -F(a) [72.26]
2wa

which represents the first approximation obtained by a different method in

Chapter VIII.

For N= 1, x is given by Equation [72.23] and

S = w + # I)+ 22 [72.27]
2w

In order to establish the explicit expression for this approximation, one has

to determine a, and £22 entering into these formulas.

73. GENERAL FORM OF EQUATIONS OF HIGHER APPROXIMATIONS

We shall now review a generalization of the preceding theory appli-

cable to steady oscillations as well as to the transient conditions of a

quasi-linear system

x + w2x + pf (x,) = 0 [73.1]

One may attempt to find a periodic solution of the form

x = z(k, a) [73.2]

Furthermore, by analogy with equations of the first approximation,

one can postulate that

da A (a)
dt

[73.31
db d0 S(a)
dt

For the time being, the functions A(a) and Q(a) remain unknown. In

fact, their determination constitutes the object of this procedure.

f. Proceeding formally, we obtain

x= Q + A [7 3 .4]
60 il

Differentiating the second time, we find

I I ill , '' Ili I,
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X z 2 a'z a2z 2 6z 6S 6z 6A
S2 + 2 9A + 2 A2 + A + - A [73.512 606a a 8O ga ca aa

Replacing x, x, and i in the quasi-linear equation [73.1] by their

expressions [73.2], [73.4], and [73.5], one gets

22 z z 6 z c)S2z 922 z+ 2 A + z A 2 + O A +Gl'2 + 2a 2  G+t' aa

z CA ( z 6 z )
+ a A + W2Z + A) = 0 [73.6]6a Oa Z 1 -a

It is apparent that if one finds expressions for z, A, and 9 satis-
fying this equation to a certain degree PN of accuracy, these solutions will

satisfy the original quasi-linear equation [73.1] to the same degree of ap-

proximation, conditions [73.3] being satisfied.

In order to apply the method of successive approximations, let us

represent the solutions in the form

z(',a) = z +o(,a) + pz(4,a) + p 2 Z2 (', )

A(a) = Al(a) + 2A2(a) + . [73.7]

9 (a) = w + pQ ,(a) + p2Q ,(a) + •

The method then consists in substituting the series expressions

[73.7] for z(ob,a), A(a), and Q(a) into Equations [73.3] and [73.2] and equat-

ing to zero the coefficients of p, #2 ...

One obtains in this manner the following series of recurrent dif-

ferential equations (compare with the analogous method of Poincar6, Chapter

VIII).
2z 0

al/2 + zo = 0

( + = -f zoW - - 2Q, - 2 A a2 z

(2 
-+ z2 2  f(Z f O', 1 2a+ Q, ) (1 + G A, G)

Co2Z2 + 2 0 ( !, 0 i-

- 2wQS 2 1 - 2 A 2
0 - - 2A AOG2 a (aa '1 GC' A Ga A 0a

2

_ zo Gz 0  A -tz AGA, - 2 2z o
OG Ga A1 a 1 Oa 2 G - 2A, Ga

02Zo C 2zo

=- - 2 ,22 - 2u A2 [73.8]2CA 600a

11 , lil Y1W 1 YY1V1Ii I= N YM U IIY Y0 1111HIIi WWMlli



rnlYllliu iIIYIIIIIYIIYIIIIIIIIYYIIIYYIIIIIIYYII LIIIIIYIIIIIUIIIYYII~lil~~ liliilY IIIIIIIIIIIIIIIYYIYIIYIIIYYIIYIIYIIIYYII uYl i

97

+ - 2 E - 2w S2 [73.8]
_ _ _ 2z0 a 2z0

~ + -) n+ 2wAn+1 a

where E, is a function of z1, *.* , z,; A1, *.. , A,; Q 1, "'" , 2,; and their

partial derivatives, which can be considered as known from the solution of

the first n equations [73.8] by a recurrence procedure.

As before, the first equation of System [73.8] is solved by putting

zo = a cos 0. Substituting this solution into the second equation [73.8], one

obtains

C + 2 = -f(acos, - awsin ) + 2w 1acoso + 2wAlsin@

-= [F,(a)cosn # + G,(a) sinn ] + 2wS2aa cos 0 + 2 wA sing [73.91
n=O

Since we wish to have z, periodic, the secular terms on the right

side of Equation [73.9] must be eliminated. The conditions for this are

2wQ1a - F,(a) = 0; 2wA1 - G,(a) = 0 [73.10]

From these conditions A 1 and Q1 are determined. Substituting their values

into Equation [73.9], one has

+ 2 = - Fo(a) - [ F,(a) cos n + G,(a)sinn @ [73.11]

The solution of this equation is

1 1 F, (a) cos n + G, (a) sinn 0
z - 2 F(a)+ -2  Z 2- 1 [73.12]

Substituting the values of A1 and S,1 from Equations [73.10] and

that of zI from Equation [73.12] into the third equation [73.8], one has

(~- + zW - [F')(a) cos n + G(')(a)sinnp] +

+ 29, 2 acosO + 2wA 2 sinV [73.131

where F (') and G (') are certain functions of a.

The elimination of secular terms again permits determining A 2 and

S 2 from the equations.

2wQ 2a - F,(')(a) = 0; 2wA 2 - Gl')(a) = 0

II" 0 6,1111 1 EIIMUUIIMiH ,1U* HIIIIIIIINNIUMMIIIMI ,,II,
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and the substitution of these values into Equation [73.13] reduces it to

S2z2 ) W 2 Fo(,'(a) F(') (a)cos n 0 + G (')(a) sin n
2+ Z 2  - [73.15]

n=2 n2

The recurrence procedure is now apparent. It is thus seen that the

solution so obtained is of the form

x acos 0 + pz(b,a) + /1 z 2 (,a ) + 73.16]

where a and 0 are given by the equations

da= uA(a) + A 2A 2 (a) + ± • + gAg(a) [73.17]

dt w + #S21 (a)+ u2 2 (a) + + PgN2N(a) [73.18]

On the other hand, by Equations [73.10], A = G2a) nd = a whence

da Gl(a) + 3A(a)+ + NA(a)
dt 20

[73.19]
_ - )+ 2 +3 . Ndo _ + + 4

2Q2(a) + 23.Q(a) + ' NPQN(a)
dt 2wa

For N= 1, Equations [73.19] give the improved first approximation,

Equation [68.19].

Furthermore, since by the method of elimination of secular terms

the quantities A,, A 2, *** , A, are expressed in terms of the subsequent first

harmonics which are eliminated from expressions z(0,a), ..**. , z,(b,a), it is

apparent that the first equation [73.19] relates to the amplitude of the fun-

damental harmonic.

The second equation [73.19], viz.,

Q(a) dt + F,2(a ) + p2 2(a) + . . . [73.20]
dt 2wa

may be designated as the equation of the instantaneous frequency Q(a) of the

non-linear oscillation.
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CHAPTER XII

METHOD OF EQUIVALENT LINEARIZATION OF KRYLOFF AND BOGOLIUBOFF

74. INTRODUCTORY REMARKS

The method of Kryloff and Bogoliuboff outlined in Chapter X was

established by assuming a sinusoidal solution x = a sin b for a quasi-linear

equation [58.1] and by determining the functions a(t), the amplitude, and

0(t), the total phase, so as to satisfy the differential equation 158.1] with

accuracy of the order of P2. As was mentioned, from the standpoint of formal

procedure the method resembles that of the variation of constants of Lagrange.

The method of the first approximation stated in Chapter X gives

approximate expressions for the frequency and the amplitude of a non-linear

oscillation for small values of p. It is plausible to think that these same

approximate relations may be obtained from a linear equation in which the

coefficients have been suitably chosen. This is essentially what Kryloff and

Bogoliuboff have done and which is designated by them as the method of equiv-

alent linearization. The essence of the method is the determination of the

equivalent parameters, as is indicated in Section 75.

On the basis of formal procedure it is not clear why this particu-

lar determination of parameters leads to the possibility of approximating the

solutions of a quasi-linear equation by those of a corresponding linear one

in which equivalent parameters appear. In order to justify the procedure,

Kryloff and Bogoliuboff observe that a non-linear oscillatory process is gen-

erally characterized by a certain Fourier spectrum of the component frequen-

cies resulting from the non-linearity of the system. If, however, one limits

oneself to the theory of the first approximation, it is logical to assume

that the fundamental harmonic of the spectrum should be considered. Hence it

is sufficient to determine the equivalent parameters so as to obtain in the

linearized problem the same oscillation which appears as the fundamental har-

monic of the quasi-linear system. In fact, if one assumes this to be an

a priori proposition, the Principle of Harmonic Balance, it can be shown that

the formulas giving the equivalent parameters follow directly from this prin-

ciple, see Section 77. One can also justify the introduction of equivalent

parameters by postulating that the work per cycle done by a non-linear force

F, and by a corresponding linear one is the same. In fact, if one assumes a

Principle of Equivalent Balance of Energy of this kind, one likewise obtains

the same formulas for the equivalent parameters, see Section 76.

Viewed from this standpoint, the Principle of Harmonic Balance en-

ables us to determine the equivalent parameters without actually writing the

In i il 1111111 I .1 10 lul I _
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non-linear differential equation. Kryloff and Bogoliuboff show that the solu-

tions so obtained do not differ much from those of the corresponding linear

equation. It is to be noted, however, that this argument should not be consid-

ered as a proof. In spite of this, the method of equivalent linearization, as

we shall see particularly in Part III, plays an important role in the quasi-

linear theory and leads to results consistent with experimental data. Thus,

for instance, the generalization of the concept of equivalent parameters for

several variables makes it possible to absorb the effect of an external peri-

odic excitation by the equivalent parameter and thus to explain a number of

phenomena such as asynchronous quenching and excitation, and similar phenom-

ena. Moreover, when an equivalent parameter is a function of the' amplitude,

the approach of the phenomenon to a limit cycle in this representation amounts

to the approach of the equivalent parameter to a critical value at which the

linearized decrement vanishes and the oscillation becomes stationary.

We shall encounter numerous applications of the method of equiva-

lent linearization in Part III. In this chapter we shall establish the prin-

cipal definitions of equivalent parameters and give a few applications of

this method.

75. METHOD OF EQUIVALENT LINEARIZATION

It was shown in Chapter X that the solution of a quasi-linear equa-

tion

mx + Kx + pf (x,X) = 0 [75.11

can be written x = a cos 0,* where the amplitude a and the total phase 0 are

given by two differential equations of the first order.

Applying Equations [59.13] and [59.14] to Equation [75.1] with this

form of solution, one obtains

da 2w
-da f(acos, - awsing)sinodo 0(a) [75.2]

dt 27rwm

dO = Q(a) [75.31
dt

where

Q2 (a) = 2+ ff(acoso, - aasino) cos do [175.4]
7ma

* As a matter of fact, this solution in Chapter X was taken as x = a sin 4, which merely reverses the

sin 0 and cos 0 under the integral sign in the amplitude and phase equations. The notation in the

present chapter complies with that used in the text of Kryloff and Bogoliuboff.

N1 ,
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The second term on the right side of Equation 175.4] is the frequency cor-

rection between the linear, 2 = K, and the non-linear, Q2(a), frequencies.

If one defines two constants X and K, the equivalent parameters,

by the equations

2r

X - aw f f (acos4, - awsin) sindo [75.51

2x

K= K + --- f f(acos,- awsin) cosdo [175.6]
0

it can be shown that an "equivalent" linear equation, with coefficients X and

K, approximates the solution of the quasi-linear equation [75.1] to an accu-

racy of the order of p#.

In fact, with values [75.5] and [75.6], the amplitude equation

[75.2] becomes

- a [75-71
2m

and the phase equation

= (a) = K [75.8]

One recognizes these expressions as the usual ones for the decrement and fre-

quency of an ordinary linear equation of the second order.

In order to make sure that the solution x = a cos 0, with a and 0

given by Equations [75.7] and [75.8], actually satisfies the equivalent line-

ar equation, with accuracy of the order of #2, substitute the values x and x

into the equivalent linear equation

m + X + Kx = 0 [75.91

We have

x = acos0 - asin' -- acos2m - a9Ssin
2m

K X A X (9. 1 h X
= - a- cos + asini + a2 sin + a2 coso [75.10]

m m 2m a 2m da 2m

K A X 2 6Q 1 a A X2
-x - x + a sin 0 + ax - - cos 

m m 2m da 2m 4a 2m 2

Substituting x, i, and i from these equations into the equivalent linear

equation [75.9], one sees that the quasi-linear differential equation [75.1]

- M MIN114 ii ____ ~..__~___~_ __ ~_ _.._ ____ - -
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reduces to a residue of the form R(p2 ), which proves that the equivalent

linear equation is satisfied with accuracy of the order of M2.

The transformation of the original quasi-linear equation

mi + Kx + gf(x,) = 0

into an equivalent linear one is accomplished by replacing the term pf(x,i)

of the quasi-linear equation by Klx + XA, where K, = K - K.

It is apparent that the quantity 6 = A/2m = - a/a, as determined by

Equation [75.7], is the decrement, and 9= V K/m is the frequency of the equiv-

alent linear equation. If one substitutes for X and K their expressions

[75.5] and [75.6], one finds equations of the first approximation.

In this manner one obtains a purely formal connection between the

equations of the first approximation and the equivalent linear equation with

parameters A and K, as defined by Equations [75.5] and [75.6].

76. PRINCIPLE OF EQUIVALENT BALANCE OF ENERGY

From the preceding section it appears that the method of equivalent

linearization consists in replacing a quasi-linear force, Fg = pf(x, ), by a

linear one, FL = Klx + i. Furthermore, it has been shown that if the equiva-

lent parameters K1 and X are defined by Equations [75.5] and [75.6], with

K, = K - K, the solution of the equivalent linear equation [75.9] differs by

a small quantity of the second order from the solution of the original quasi-

linear equation [75.1]. We propose now to show why this particular definition

of equivalent parameters K, and A has been adopted. The physical justifica-

tion for this definition lies in the Principle of Equivalent Balance of

Energy, which requires that the work per cycle of Fg and FL be the same, that

is

T T

pff(x,&) dt = f 2 dt [76.1]
0 0

The term with K, does not enter into this expression because the

work of a conservative force per cycle is always zero.

It is to be noted, in view of the fact that the integral in Equation

[75.5] is finite, that T is of the same order as p, that is, it is small. On

the other hand, to the first approximation, x = a cos 0 and x = - aw sin 0,

where 0 = wt + 0, and a and 0 can be considered as approximately constant

during the time interval 27/w. The left side of Equation [76.1], upon chang-

ing the limit of integration and substituting the generating solutions x =

a cos 0 and i = - aw sin 0, becomes

111111
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2r

- ff(alcos V, - awsin ) asin db [76.2]
0

and the right side is clearly

2_'
(d 2r

X f a2w2sin 0 dt = a2w sin2bdb = Xa2 7r [76.3]
0 0

Hence, by Equation [76.1],

2r

= 7 / ff(acos, - a sin )sin d¢ [76.4]
o

This is precisely the first equation [75.5], by which the parameter X was

originally defined.

It is thus seen that the introduction of the equivalent parameter

X is dictated by the equivalence of work per cycle in both the quasi-linear

and the equivalent linear systems.

We next give a suitable physical interpretation to the other equiv-

alent factor, K1 , which does not appear in the energy equation [76.1]. For

this purpose it is helpful to utilize the definition of "wattless" or re-

active power commonly used in the theory of alternating currents. In this

theory the energy (or active) component of power W. and its wattless (or re-

active) counterpart Wr are defined as

T T

= f eicoso dt and W, =- eisinkdt
0 0

where e, i, and 0 are voltage, current, and phase angle respectively.

Defining the active W. and the reactive W, components of power for

a mechanical system in a similar manner, we have

T T

W, F(t)(t)dt ; W, = f (t) t - -) dt
o 0

Hence, by equating the expressions for the "reactive powers" for a

quasi-linear and for an equivalent linear system, we obtain

T T

S f [x(t),(t)](t - dt [K 1 x(t) + (t) i( - ) dt 7651

0 0

Since in this equation both p and X are of the first order, K, is

of the same order.
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Substituting the generating solutions x = a cos (wt + 0), i =

-awsin (wt + 0), and T= 2r/w, the left side of Equation [76.5] becomes

2r jf(acoso,- awsin¢)cosodo
0

and its right side is a2K 1/2. It follows that

2r

K 1, =- f(acos, - awsin¢)coscd¢ [76.6]
0

which is Equation [75.6].

77. PRINCIPLE OF HARMONIC BALANCE

An alternative auxiliary principle serving the same purpose can be

described as follows. Consider again the non-linear force F= pf(x,i) and

the equivalent linear one, FL = Kjx + Ti. The harmonic oscillation x =

a cos (tt + 6), where w is the frequency of the "zero" approximation, is

taken again as a generating solution. With this solution, FL can be written

as FL = FLO cos (wt + OL), where FLO and OL are the amplitudes and the phase

respectively of FL. The non-linear force F is represented by a Fourier series

of which the fundamental harmonic is F = F cos (tt + 0). If one makes F = FL,,

which constitutes the Principle of Harmonic Balance, it entails two equations,

Fo = FLO and 0 = L,, from which again the two parameters X and K, can be ob-

tained. In fact,

FL = K acos(ot + L ) - wohasin(wt + 0L) [77.1]

and the fundamental harmonic of the non-linear force is

F f (a cos r, - asin r) cos-rd-r cos (wt + 0) +

+- f (acosr, - asinr)sinrdr] sin(wt +0) [77.2]

Equating the coefficients of cos (wt + 0) and sin (wt + 0) in Equa-

tions [77.1] and [77.2], since 0 = OL, one obtains the same expressions for

Ki and T as before.

It is seen that both principles, that of the Equivalent Balance of

Energy and that of Harmonic Balance, are equivalent, because the work of

higher harmonics per cycle of the fundamental frequency is zero.
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Summing up the results of this and of the preceding sections, one

can state:

1. The Principle of Equivalent Linearization consists in defining an

equivalent linear system as a system with parameters X and KI expressing the

equality of work per cycle for the non-linear and the equivalent linear

systems.

2. The parameter X is obtained by equating the active components of

power in both cases; K1 , by equating the reactive components.

3. When the equivalent parameters X and K, are so determined, the

equivalent linear differential equation admits a solution differing from that

of the quasi-linear equation by a small quantity of the order of p
2 .

4. For practical purposes the formation of the equivalent parameters X

and KI is the only requirement for the solution of the quasi-linear equation,

in view of Statement 3.

78. EXAMPLES OF APPLICATION OF THE METHOD OF EQUIVALENT LINEARIZATION

A few examples given below illustrate the application of this

method.

A. NON-LINEAR RESTORING FORCE

Consider the differential equation

mx + F(x) = 0 [78.1 ]

where F(x) is of a quasi-linear type. For example, F(x) = cx + px3 , where c

and p are constant. The condition for quasi-linearity is that << 1.

Since the system is conservative, the amplitude a remains constant, but the

oscillations are not isochronous. Substituting the value of F(x) into Equa-

tion [78.1], one has

mx + cx + px3 = 0 [78.2]

Hence f(x,i) = f(x) = px 3 and, by Equation [76.6],

K /(a) 2r ga2

The equivalent spring constant in this case will be c + p-, whence

c + K (a) p2 a2  a 2  2
2a = V = + 2 + +ra 2 + m w 2

m 2m 2m 4

w [78.31
where a = 4mw2 .
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The frequency of non-linear oscillation is here a function of the

amplitude a. The oscillation is thus non-isochronous, although the ampli-

tude a is constant. One can easily discover this fact formally by calcu-

lating the expression for X from Equation [75.5], which in this case gives
= 0.

B. NON-LINEAR DISSIPATIVE DAMPING

Consider a differential equation of the form

mx + Kx + uf(i) = 0

In order to be more specific, assume quadratic damping, that is,

pf(x) = bItIl

Equation [75.5] for X in this case is

b 2 b "
- f f(- a sin ) sin d - If f(aw cos) cos d

0 0

where

f (awcos0)cos d a2f Icos cos2do = a22  2 cos3 do -
0 0 0

- 2COS 3d + fcos' d= 8 a2 2
2 2

8 baw X 4 baHence, The equivalent decrement 6 = 2 ; it is seen that3 2m- 3 m ;
the decrement in this case varies with the amplitude.

Applying Equation [76.6], one finds

K1 - ba2f Isin sinocosdo = 0

Hence the non-linear correction for the frequency in this case is zero to the

first order.

From the fact that for quadratic damping the decrement varies with
the amplitude, one concludes that for large amplitudes quadratic damping is

more efficient, and for small amplitudes less efficient, than is linear damp-

ing, the decrement of which does not depend on the amplitude.

Since the decrement 6 ba Sa, where S = bw, the motion3 mr 3 mr'
under the effect of quadratic damping can be determined. We have

a 1 da
6 = Sa=

a a dt

10111. I lNIiilll HMIIIY I i
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whence

1 da d
S

a2 dt dt

Hence, on integrating, - = St, so that finally
a a0

a 0a = 4 bw 78.4]
1 -- aot

3 mzr 0

which coincides with Equation [62.4], obtained by the theory of the first

approximation.

C. NON-LINEAR RESTORING FORCE AND NON-LINEAR DISSIPATIVE DAMPING

The differential equation is of the form

m i + f () + c(x) = 0

It will again be assumed that both f(i) and c(x) are quasi-linear, that is,

they are of the form f( ) = h,0 + po(&) and c(x) = cox + vo(x), where X0 and

co are constant, p and v are small parameters, and 0(i) and O(x) are non-

linear terms.

The application of the method of equivalent linearization gives

Q= = w + and T
1m 2m

where K, and X are again the equivalent parameters determined by Equations

[75.5] and [76.6], applied to the function f(x,i) = p,() + vo(x), as ex-

plained in connection with the two previous examples.

Equations of this type are of frequent occurrence in practice.

For example, Froude's well-known differential equation for the rolling of a

ship in still water is of the form

10 + K 10 + K 26
2 + Wh sin = 0

where I, W, and h are respectively the moment of inertia, the displacement,

and the metacentric height of the ship, and K, and K 2 are Froude's cQeffi-
08

cients of resistance to rolling. If one approximates sin 0 by 0 - 6 , one

has, upon dividing the equation by I, the following equation

0 + b, + b22 + 20 6 = 0

which is of the type considered here.
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D. ELECTRICAL OSCILLATIONS IN A CIRCUIT CONTAINING
A SATURATED CORE REACTOR

Consider an oscillating circuit containing a constant air-core

inductance L0 , a variable saturation iron-core inductance L1, and a fixed

capacity C. The non-linearity in this case is due to L 1. In fact, the flux

0 through the coil L, is 0 = f(i), where i is the current. For a sinusoidal

current i = i o cos (wt + 0), the fundamental harmonic of magnetic flux is

21

j f (i cos ) cos d . cos (w + )

According to the method of equivalent linearization, the non-linear

equation 0 = f(i) can be replaced by the linear one 0 = Lei, where L, is the

equivalent linear coefficient of self-inductance,

1 2r

Le = if (i o cos ) cos d  [78.51

If the constant air-core inductance L o is relatively large compared with the

non-linear inductance containing iron, the current will be quasi-harmonic and

the expression for frequency will be

1 1 L [78.6

/(L o + L0e)C - ( 2L o

E. NON-LINEAR CONDUCTORS

Consider a conductor and let the voltage drop e across its terminal

be e = - f(i).

If the current is of the form i = io cos (wt + 0), the fundamental

harmonic of the voltage drop is

- f (io os¢)coso d. - cos(wt + 0) = e

By putting

Re f (icos )cos do
00

the non-linear conductor can be replaced by an equivalent linear one having

a voltage drop el = Rei . If Re > 0, the non-linear conductor dissipates

energy; if Re < 0, energy is brought into the system owing to the non-

linearity of the process. Likewise, if the non-linearity appears in the form

i = f(e) and the voltage executes a harmonic oscillation e = e0 cos (wt + 0),

the fundamental harmonic of current will be I f(e 0 cos€) cosod. Here

-- ~011116
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again one can replace the non-linear parameter i = f(e) by a linear one,

i = ae, provided that we define the equivalent conductance as

a = e f(eo cos )cosd [78.7]re
0 0

Depending upon whether a is greater than or less than zero, one

has either absorption or generation of energy.

These considerations are useful in analyzing circuits containing

electron tubes. The anode current in this case is of the form ia = f(E0 + e),

where E0 is the constant voltage of the "B source," and e is the alternating

grid voltage.

If e is sinusoidal, the fundamental harmonic of i, will be

7f f (Eo + eo cos ) cos o d -cs (w t + 0)

If one defines

Se = -ff(Eo+ eo cos) cosode [78.8]

as the average transconductance of the tube, instead of a non-linear rela-

tion ia = f(E0 + e), one will have an equivalent linear relation, ia = See.

F. THERMIONIC GENERATORS

Consider a thermionic circuit arranged according to the diagram

shown in Figure 78.1, which is self-explanatory. The resistance R, shown to

be in parallel, is supposed to be large so as to obtain only rather small

damping in the oscillating circuit LC.

The control voltage is e = (M - DL) where the term DLd- takes
dt' dt

care of the anode reaction (D << 1). The alternating component of the anode

current is

a = SM - DL) dj

where S. is the equivalent transcon- t'R 'c

ductance of the linearized problem. -L R C_

By Kirchoff's law, ia =

iL + i R + ic, where RiR = Li; in the

LR-mesh; hence iR = _Li In the

CL-mesh, II

- c dt - LdLdt Figure 78.1
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whence ic = LCiL'. Substituting these values into Kirchoff's equation and
dropping the subscript L, one obtains

LC d L d + i i- S M -DL di
d t2 R dt a \ dt

Hence finally

LC di [ - S(M - DLj dt+i=0 [78.9]

This equation is an equivalent linearized equation of the process, since it
contains the linearized parameter S,. From this we get the decrement

6 =2LC S (M - DL [78.10]

Equation [59.13] of the first approximation is here

Se (M - DL)

dt 2LC o [78.11

The stable amplitude is reached when

S.(M - DL) = R [78.12]

Since, by Equation [78.8], S, contains eo, the substitution for S, of its
value from [78.12] determines the equilibrium amplitude eo of the grid volt-
age at which the oscillation reaches a steady state.

As a second example, consider a somewhat modified scheme shown in
Figure 78.2, in which the resistance R is supposed to be small so as to be
within the range of the quasi-linear theory. If the current in the oscillat-

ing circuit is designated by i and the anode current by i ,, the differential

equation is

L d- +Ri + -- idt=M dia =MS de [78.131
dt Cf dt dt

where e is the grid voltage given by the equation

e= -f idt + D(M La da)
C 0dt s dt

If the anode reaction is neglected, D ; O, so that

S- fidt [78.14]
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Introducing the variable e instead of i in Equation [78.13], we obtain

LC d + (RC-MS) + e = 0 [78.15]

The stationary condition is reached 11

when

Se RC [78.16]
M R

In the transient state the decrement

is
C L LO

6 RC- MS [78.17]
2LC

Since by [78.8] the equivalent trans- Figure 78.2

conductance Se is a function of the

amplitude e0, the decrement 6 varies during the transient state. If the

static curve i, = f(e) is approximated by a polynomial, Equation [78.8] per-

mits calculating the amplitude e' at which the decrement 6 vanishes and the

stationary condition is reached. Assume, for example, that the constant

biasing voltage Eo is such that the characteristic i, = f(e) of the electron

tube can be approximated by the polynomial

f(e) = ia = iao + ale + f 1e 2 - ye 3  [78.18]

where ai, fl, and r1 are positive constants. Carrying out the calculation

[78.8], one finds

S, = a - Y1 eo

and, by Equation [78.16],

e= (Y)j [78.19
V' 3 - M
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