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FOREWORD

The report on the introduction to non-linear mechanics as a whole
falls into four major divisions.

Part I, published as David Taylor Model Basin Report 534 under date
of December 1944, is concerned with the topological methods; its presentation
substantially follows the "Theory of Oscillations" by Andronow and Chaikin.
The material 1s slightly rearranged, the text is condensed, and a number of
figures in this report were taken from the book. Chapter V, concerning
Liénard's analysis, was added since it constitutes an important generaliza-
tion and establishes a connectlion between the topological and the analytical
methods, which otherwise might appear as somewhat unrelated.

Part II, published here, gives an outline of the three principal
analytical methods, those of Poincaré, Van der Pol, and Kryloff-Bogoliuboff.

Part III, to be published soon, deals with the complicated pheriom-
ena of non-linear resonance with its numerous ramifications such as internal
and external sub-harmonic resonance, entrainment of frequency, parametric
excitation, and the like. This subject 1s still in a state of development,
and the classification of the numerous experimental phenomena is far from
being definitely established. Much credit for the experimental discoveries
and theoretical studies of these phenomena is due to Mandelstam and Papalexi,
and to the school of physicists under their leadership. The first four chap-
ters of Part III will represent the application of the quasi-linear theory of
Kryloff and Bogoliuboff to these problems and the last three will concern the
developments of Mandelstam, Papalexl, Andronow, Witt, and others, following
the classical theory of Poincaré.

Finally, Part IV will review the interesting developments of
Mandelstam, Chaikin, and Lochakow in the theory of relaxation oscillations
for large values of the parameter u. This theory is based on the existence
of quasi-discontinuous solutions of differential equations at the point of
their "degeneration," that is, when one of the coefficients approaches zero
so that the differential equation "degenerates" into one of lower order. A
considerable number of experimental facts will be explained on the basis of
this theoretical idealization.
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RESTRICTED

INTRODUCTION TO NON-LINEAR MECHANICS

PART II

ANALYTICAL METHODS OF NON-LINEAR MECHANICS*

44 . INTRODUCTORY REMARKS

It is apparent that for practical applications the general quali-
tative methods reviewed in Part I are not sufficlent, and that quantitative
methods capable of ylelding numerical solutions of differential equations are
necessary. Thus, for example, a physicist or an engineer may wish to deter-
mine the amplitude and phase of an oscillatory process with a certain pre-
scribed accuracy once the general qualitative aspects of the phenomenon have
been ascertained.

In general, there exist no methods capable of yielding exact solu-
tions of non-linear differential equations, and the only methods available
are those of approximations. A typical and very general class of non-linear
differential equations encountered in applications is represented by the
equation

i+ wz=uf(z,z,t) [44.1]

The solutions of this equation are periodic with frequency w if u = 0.
Poincaré (1)** has shown that very near some of these solutions, when u = 0,
periodic solutions of Equation [44.1] may exist for very small values of the
parameter x. The search for these solutlons is the object of the method of
small parameters of Poincaré. This method, with its various ramifications,
constitutes the principal subject of Part II.

The scope of the quantitative methods available at present 1s
rather limited. It is restricted, in fact, to the class of non-linear 4if-
ferential equations of the type [44.1], and for this class it 1s further re-
stricted by the condition that the parameter u should be very small, that is,
# << 1. In spite of these limitations, the usefulness of the method is very
great and its applications in various branches of applied science are exten-
slve. Only in speclal cases when the parameter u is large does the theory

% The text of Part II follows the presentation contained in the two treatises on Non-Linear Mechanics:
"Theory of Oscillations,™ by A. Andronow and S. Chaikin, Moscow, (Russian), 1937, Chapters
VII and VIII.
"Introduction to Non-Linear Mechanics," by N. Kryloff and N. Bogoliuboff, Kieff, (Russian),
1937, Chapters X, XI, and XIII.

36t Numbers in parentheses indicate references on page 112 of this report.



of Poincaré cease to be applicable, and for such cases analytical methods are
practically unexplored.*

We shall frequently refer to Equation [44.1], with u << 1, as quasi-
linear, which means that the solutions of this equation do not differ appre-
clably from solutions of the corresponding linear equation when u = 0. The
important point to be noted is that, although the solutions of [44.1] do not
differ much from the solutions of the corresponding linear equation if u 1is
very small, these periodic solutions do not exist in the neighborhood of any
periodic solution of the corresponding linear equation but only in the neigh-
borhood of certain special solutions of that equation. The establishment of
conditions for the existence of periodic solutions of [44.1] when g << 1 thus
constitutes the crux of the theory of Poincaré.

Another important point is the effect of the so-called secular
terms in the approximate solutions obtained by these quantitative methods.
Poincaré'!'s method consists in substituting certain power series in Equation
[44.1] and in determining the coefficients of these series by a recurrence
procedure. As a result of this, there may appear terms such as t" sin wt and
t™ cos wt, the secular terms, in which the time ¢ appears explicitly in the ex-
pansions. It is apparent that the existence of these terms, which grow beyond
any bound as t > «, destroys the periodicity one is seeking. This can be 1il-
lustrated by the following argument.

Let w =a + 8. Then

sinwt = sinat cosBt + cosat sinBt

= [at - (et)” + .. ] cos Bt + [1 - (azt!)z + - ] sinBt [44.2]

3!
The terms at cos B¢, G;ﬂﬁ cos Bt, and so on, in this expression are secular
terms. It is obvious that if the series expansion of sin af and cos af is
limited to a finite number of terms one cannot speak of the "periodicity" of
the expression on the right side of Equation [44.2] since the polynominals in
the parentheses of this expression will increase indefinitely as ¢ > ~. If,
however, m > «, the expressions in parentheses approach sin af and cos at,
and the whole expression [44.2] then becomes a periodic function of time with
period T = 2n/w.

In practice i1t is necessary to stop the series expansions at a
certain finite number of terms; hence one is generally confronted with sec-
ular terms. In the original work of Poincaré this difficulty was obviated by
limiting the expansions to a certain finite time interval sufficient for

¥ See, for example, the paper by J.A. Shohat (2).



astronomical purposes. Gylden and Lindstedt (3) have avoided this difficulty
by eliminating the secular terms in each step of the recurrence procedure by
which the coefficients of the expansion are determined. These methods will
be mentioned briefly in Chapter XI.

For this reason the transfer of the methods of celestial mechanics
to the problems of non-linear oscillations presented certain difficultiles.

In fact, 1if one attempts to apply Poincaré's method, for example, to a therm-
ionic generator oscillating with a frequency of several megacycles per sec-
ond, it is apparent that in a few seconds such a generator will pass through
stages corresponding to those through which an astronomical system passes in
many millions of years. The effect of secular terms in such a case should
be felt within a few seconds. Nothing of the kind, however, is observed.

In view of this it becomes necessary, in adapting these methods to
the theory of non-linear oscillations, to follow the method of Lindstedt,
which eliminates the secular terms in each step of the recurrence procedure.
This was accomplished by Kryloff and Bogoliuboff. We shall return to this
question in Section 58.

In spite of the difficulty of using the original theory of Poincaré
for studies of non-linear oscillation, this theor§ is still capable of yield-
ing a considerable amount of information. Chapter VIII outlines the salient
points of Poincaré's method as outlined in "Theory of Oscillations," by A.
Andronow and S. Chaikin, (4).

Chapter IX 1s devoted to the Van der Pol method; its presentation
follows closely the text of Andronow and Chaikin. Chapter X concerns the
theory of the first approximation of Kryloff and Bogoliuboff (5).

These two methods of Van der Pol and of Kryloff and Bogolluboff are
analogous in some respects and follow a method similar to the method of vari-
ation of constants of Lagrange. )

Chapter XI deals with Lindstedt's method, as applied by Kryloff and
Bogoliuboff to approximations of orders higher than the first.

Chapter XII 1is devoted to the method of equivalent limearization of
Kryloff and Bogoliuboff, which is an attempt to simplify the problem by re-
ducing the given non-linear differential equation to an equivalent linear one.



CHAPTER VIII

METHOD OF POINCARE

45. CONDITION OF PERIODICITY
Consider a system of differential equations

& =ax +by + uf(z,9); ¥ =cz+dy + uf,(z,y (45.1]

where f, and f, are the non-linear elements of the system and ux is a param-
eter. It will be assumed that f, and f, are analytic functions of their
variables in certain intervals under consideration.

For u = 0 the system becomes linear. In general, we shall be inter-
ested in periodic solutions of the non-linear system. Let us consider, first,
the periodic solutions of the system [45.1] when u = 0. Forming the charac-
teristic equation, we obtain

S* —(a+d)S + (ad — be) =0 (45.2]
The periodic solutions of [45.1] for u = O correspond clearly to purely imagi-

nary roots of Equation [45.2]. We thus obtain the following conditions of
periodicity ,

e +d=0; ad — bc >0 [45.3]

Under these conditions the linear system admits an infinity of periodic solu-
tions of the form

z = Kcos(wt + ¢); y = gKsin(lwt + ¢ + X) [45.4]

where w = Vad - be and g 1s a determined constant. Obviously, the phase angle
¢ 1s arbitrary and can be made equal to zero by a suitable cholice of the ori-
gin of time. K and the relative phase angle X appear as the integration con-
stants determined by the initlal conditions.

The general form of periodic solutions of [45.1] for u = O is then

= z,(t,K) = Kcoswt; y = y,(t,K) = gKsin(wt + X) [45.5]

so that z,(¢,K) and y,(t,K) are periodic functions with period 2n/w. Let us
assume now that periodic solutions exist for small values of u # 0 and let

z =x(t,uK) and y = y(¢t,u,K) be these solutions. For ¢ = 0 the solutions are
z(0,u,K) and y(0,u,K) and we can write

2(0,u,K) = £,(0,K) + B, and y(0,u,K) = y,(0,K) + B, [45.6]

which defines the functions B,(u) and B8,(u). It 1s obvious that B8,(0) =
B,(0) = 0.

The method of Poincaré consists in developing the solutions z(¢, u,K)
and y(t,u,K) as power series in u, B8,, and B,. Poincaré shows (6) that the



expansions converge if the values of |ul, |8;], and [B8,| are sufficiently
small. Moreover, thils convergence is uniform for any finite time interval
0< t < },. The coefficients of the expansions so obtained are functions of
time. By substituting these expansions in the differential equations [45.1]
it is possible to determine these coefficients by equating like powers of u,
B,, and B,. One obtains in this manner a system of differential equations
subject to certain initial conditions.
Let us write the solutions of [45.1] in the form

r = x(t)uyﬁlyﬂz’K); y = y(t’ll;ﬂpﬂzyK)

Since we are looking for periodic solutions of [#5.1] in the neighborhood of
a known periodic solution with period T, when p = 0, it is logical to assume
that in this neighborhood the period of the solution [45.1] will be T + T,
where T(u) i1s a small correction which approaches zero as u approaches zero.
Our chief objective 18 to show that under certain conditions pericdic solu-
tions may exist provided u is small. The condition for the periodicity of
[45.1] is clearly

(T + 7,u,B,,B8:,K) — 2(0,u,8,,8,,K) = 0

(45.7]

y(T + 7,u,B,8,,K) — y(0,u,B,,8,,K) =0
For given values of p and K we must select functions B,(u), B.(u), and r(u)
so as to satisfy Equations [45.7]. Furthermore, the non-linear equation be-
comes linear when u = 0 so that

T(0) = B,(0) = B,(0) =0 [45.8]
The phase is arbitrary, however, so that it i1s possible to assume that one of
the B's, say B,, equals zero. Putting 8, = 8, the conditions [45.7] can be
written as ‘
(T + 7,u,0,8,K) — z(0,u,0,8,K) = ¢(7,u,8,K)
[45.9]
(T + 7,u,0,8,K) — y(0,u,0,8,K) = ¢(1,u,8,K)

It is apparent that, when u = 0 and hence 7(0) = 8(0) = 0, the
system [45.1], with the conditions expressed by [45.3], has an infinity of pe-
riodic solutions corresponding to the arbitrary values of the integration con-
stants K and X in Equations [45.4]. 1In such a case Equations [45.9] become
identically satisfied for any value of K. One can express this by writing

¢(T’#9BvK) = #¢1(T,I-l,ﬁ,K) =0
1//(7',/1,3,1{) = !1(//1(’7',!1,/3,1() =90

[45.10]



The right-hand side of these equations represents a straight line u = 0 in
the (u,K)-plane and a point represented by the intersection of the curves
é1(u,K) = 0 and ¥, (u,K) = 0, where &, and ¥, are the functions ¢, and ¥, in
which 7(u) and 8(u) have been expressed in terms of u. We can, for instance,
represent 7(u) and B(u) by power series

r(u) = du + eu® + - - -5 Blp) = dyp + eyp® + - - - (45.11]
Expanding the functions ¢,(r,u, 8,K) and ¥, (T,u,B8,K) we get
¢, =60y tap+br +cp+--- =0
[45.12]
v, =Yy +tau+brt+e B+ =0

Substituting in these expressions the values of 7(x) and S(u) from [45.11]
and considering u as a small quantity of the first order, one obtains
@, = ¢, +ule + bd +c¢d)) =0
[45.13]
Y, = Yo, tula;, +0,d +c,d) =0
These equations hold only when u is very small so that the terms containing
powers of u greater than the first are negligible.
Since these two equations must be satisfied for a sufficiently small
4, two conditions must be fulfilled:

by = D (K) =05 ¥y = ¥y, (K) =0 [45.14]
a +bd+ed, =0; a, +bd+ecd =0 [45.15]

The condition [45.14] states that the terms independent of u must be equal to
zero and [45.15) that the system of the two equations must yleld the values
of d and d, which determine the quantities r(u) and B(u) to the first order.
It 1s apparent that this is possible whenever the determinant l bbl ccll * 0.

With Expressions [45.12] taken into account, this is equivalent to the con-
dition

o4, 04,
_|or o8| _ 98(é,y)
J = oy, ov, 2. 8) # 0 [(45.16]
or 0B

Hence, whenever the Jacobian [45.16] is different from zero, periodic solu-
tions of the non-linear problem exist since it is possible then to determine
the functions 7(u) and B(u) provided u is sufficiently small and provided the
conditions [45.14]) are fulfilled. If Equations [45.14] can be solved, one ob-
tains one or several values of K; hence the problem is solved.

We can recapitulate the problem somewhat differently using the ter-
minology of the phase plane. For u = 0 there is a continuum of closed



trajectories corresponding to different values of the integration constants,
as was shown in Section 1. For u # 0 but very small, closed trajectories

may exist in certain restricted regions of the phase plane in which the con-
dition [45.16] is fulfilled; the value of the integration constant K,, the
amplitude, is determined by solving Equations [45.14). The solution of [U45.1],
when y = 0 and K = K, as Just explalned, is called the generating solution.

We shall see numerous examples of this procedure in what follows.

46. EXPANSIONS OF POINCARE; GENERATING SOLUTIONS; SECULAR TERMS
Instead of Equations [45.1], we shall consider now a non-linear
differential equation of the form

¥+ 2= uf(x,x) [46.1]

Let z = z(t,u, By, B,,K) be 1ts periodic solution in the neighborhood of u = 0.
Expanding this solution into a power series of u, B,, and 8,, we know by the
theorem of Poincaré that this expansion converges in any arbitrary but finite
time interval provided these quantities are sufficlently small in absolute
value. We obtain

x = @,(t) + AB, + BB, + Cu + DB,u + EB,u + Fu®+ - .. [46.2]

where ¢,, A, B, ... are functions of ¢. Our purpose will be to identify the

expansion [46.2] with a perlodic solution of [46.1] provided |ul, |8;(u)l,
and |B8,(u)| are small. Differentiating [U6.2] with respect to t, we obtain
the following equations

& = @(t) + AB, + BB, + + - +; i = ¢,(t) + AB, + BB, + - - - [46.3]

Expanding f(z,z) in a Taylor series around the values z,, z, we get

2
Plond) = i) + o = 2(5) + G = 2(G5), + 3 — =" (GF) +
i . . 62 . . 62
+ ?(x - xo)z(_a?f;)o + (z — z)(x — xo)(axgd:)o 4+ .. [46.4]

Substituting z - z, = = - @,(t); - £, = & - J,(t) as given by [46.2] and
[46.3] into [46.4] and replacing =z, %, and f(z,%) by their values [U46.2],
[46.3], and [46.4] in the differential equation [46.1], one obtains a series
arranged in terms of u, B, B2, B, Bty u’, .++ Which by the theorem of
Poincaré (6) converges. By equating the coefficients of u, 8,, -.-, one ob-
tains a set of differential equations. If the expansion is limited to the
second order, one obtains nine differential equations, of which three are
identically satisfled and the remalning six are as follows:

A+A=0, B+B=0 [(46.5]



C+¢C-= fzy,2,); D+ D= (6f)A + (ai)o

Fon= (s s G Fer= (o G0
of

Here the symbols (55)0 and (aﬁ) designate the partial derivatives of f with
respect to the variables x and # in which the generating solutions z, = ¢,(¢)
and #, = @,(¢) have been substituted aftéer differentiation.

Writing [46.2] and its derived equation for t ="0 in the form

x —xy=p,=AB, + BB, + Cu+ DB u + - - -

[46.5]

o . . L [46.6]
*x —xy=pB,= AB, + BB, + Cu + DB,n + -
one obtains the following initial conditions
A(0) =1; B() =1
[46.7]

B(0) = C(0) = D(0) = E(0) = F(0) = A(0) = C(0) = D(0) = E(0) = F(0) = 0
With these initial conditions the first two equations [46.5) have the solu-
tions

A = cost; B = sint

with period 2.

The remaining four equations [46.5] are of the form ¥ + v = V(t),
having the initial conditions v(0) = #(0) = 0. The solution of this equa-
tion is

t
= 0fV(u) sin(t — u) du [46.8]

Replacing V(u) in Equation [46.8] by the right-hand terms of the last four
equations [46.5], one obtains the following expressions:

A = cost; A = — sint

B = sint; B = cost

t

C = ff[cbo(u),éo(u)]sin(t —wdu; C

0

¢
ff[%(u), J)O(u)] cos(t — u)du
b

[46.9]
_fref o af N b ([ e — O
D = J[axocosu 25 0smu} sin(t —u)du; D = of[a% cosu ot smu] cos(t — u)du
t ¢
E = f[gf.sinu + icosu} sin(t —w)du; E = f[ﬂsinu + a—fcosu] cos(t — w) du

F = Ofl:gf C + ;{0 ]sm(t — u)du; J[axo ]cos(t — u)du



where z, = Kcost and 2, = - K sin t are the generating solutions in which
the phase is taken equal to zero.

Inasmuch as only periodic solutions are of interest here, it is
important to know the values of A, B, -.- F after one period. Replacing ¢
by 2w in Expressions [46.9], one obtains

A@2m) =1; AQ@n) =
B(@2n) = 0; B(@2n) =

2 2
C2r) = — ff(aco,a'co)sinu du; C@2n) = ff(xo,:i:o)cosu du
b d

2 2%
of . of : of f
D(2n) = 6[[— 5 6_ in2u + a—osm u] du; D(2n) = bf[a—xocoszu -3 é—sm2u] du
[46.10]
2% 2x
EQ@m) = 6”:_ g—a{osinzu — % g—abf;)sin21[j| du; E@2n) = 6”:% 5‘%& n2u + %:;cos u]du
F@2n) = j[— g—;‘;C(u) sinu — g{;é(u) sinu] du

2
. af of
F(2n) = J[axo C(u)cosu + o4, C(w) cosu:] du
The expressions for D and E can be further simplified by expressing the val-
ues of (f cos u ) and f——( f sin u) differently.

We have

d _df . df _ of Ox,, of 9%
a—;;(fcosu%— du COSU Ssinu; du ~ oz, ou + 5%, ou

Since the generating solutions x, and %, are

x, = Kcosu; z,= — Ksinu
—a—x"- = — Ksinu; % = — Kcosu
ou ou
hence
df of of
du Kaosmu Ka Ocosu
and thus
1 d of of f
X du (feosu) = y 0smu cosu — — 0cos 2 Ksmu
or
1 d __10f of _f
X Iu (f cosu) = 2 s, ——gin2u axocos *u Ksmu [46.}1]
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and similarly

1
K du

of 1 of S
= — = - = = a 1
(f sinu) Ba, sin®u > i, sin2u + Z cosu [46.12]
Expressions [46.10] for D, D, E, and E, taking into account the
expression for C, are simplified by means of Equations [46.11] and [46.12]

and assume the following symmetrical form:

_Fof c@em) . _ Fof C(2m)
D(27r)—ofah - g D(ZW)—Oa—xodu—-——K—
[46.13]
EQ@2n) = — -il{—C'(ZW); E@27n) = %C(?ﬁr)
If C(2n) = 0 and C(27) # 0, Equations [46.13] become
2x 2n ~
_{eof . _ (of ., C@m
D(2m) -—Ofa% D(2n) = | bz, du 7
[46.14]
E@m) = — %C(Zn); E(@2m) = 0
If C(2n) = C(27) = 0, one has
2’ 2!’
_fe , . _[of
D(2m) = Ofa% du; D(2m) = ofaxo d
[46.15]

E@2n) =0; E@2n =

From the latter form of the expressions for D(2r) and D(2x), it is
E‘piarent Qt:,ﬁhat they represent the constant terms in the Fourier expansion of
%, and oy’ multiplied by 2m. On the other hand, - C(27) and C(2n), as given
by Equation [46.10], are the coefficlents of sin ¢, cos t in the expansion
of f(x,,%,), multiplied by =. Hence, if flz,, #,) 1s given, these coeffi-
cients can be calculated directly from Equations [46.10].

We are now in a position to write Equations [45.10] in a new form,
expressing the existence of periodic solutions. It is apparent that by the
choice of generating solutions in the form z,(t) = Kcost and %,(t) =
- K sin ¢, the amplitude K is already contained in the expressions for B,
and B, so that Equations [145 10] can be written as

@(T,1,8,B,) =0 and Y(r,u,B,8,) =0 (46.16]
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These equations express sufficient conditions for the existence of periodic
solutions. There are thus two equations with three unknowns, T, B,, and §,.
One of the B's, however, is arbitrary and can be taken equal to zero, as
previously mentioned. If, therefore, Equations [46.16] can be solved giving
T and B, as functions of u in such a manner that for # >0, (¢) » 0, and
B,(u) » 0, the problem is solved. If this is impossible, there is still
another alternative. We may put 8, = 0 and try to solve for T and 8, as un-

known functions of u.
The left-hand terms of Equations [46.16] represent the differences

(27 + 1) - z(0) and #(27 + 7) - z(0). Expanding z(27 + 7) and (27 + 7) 1in
a Taylor series in which T is considered small, we have

t@2r + 1) = 2z@2m) + Tx(2MW) + - - -
(46.17]

z@2mr +7) =2@2m) + TZ@2A) + - - -

Here we substitute the series expansions [46.2] and [46.3]. The coefficients
A(2n), B(2m), --- have already been calculated in Equations [46.10]. Con-
sidering T and u as small quantities of the first order and carrying out the
expansions to the second order, one has

2(2m + 7) = 2,27 + A@2mB, + B2mB, + C2mu + D(2m)Bu + EQ2mB,u +

2
+ Femu® + Ti,2m) + TA@EMB, + TBCmMB, + TC2mu + %5&0(270 [46.18]

c22m + 1) = £,2m) + A@2mB, + B2mB, + C@emu + D@mBu + E@mB,u +
2
+ F@emu® + 15,2m) + TA@mB, + TBmB, + TCECmu + %’9&5(2#) (46.19]

But z,(27) = 2%,(0) and %,(27) = 2,(0). Furthermore, A(27) = 1, A(2m) =0,
B(2m) = 0, and B(27) = 1. With these values of the coefficients, Equations
(46.18] and [46.19] become

2 ) .
t2m + 1) — 2(0) = — K% + 78, + CCmu + C2m)Tu +

+ D2mBu + E@2mByu + F2mpu® =0 [46.20]
and
z(2r + T) — #(0) = — Kt — T8, + Cemu + Ce2mTu +
+ DE2mB,u + E@mMBu + F(2mu® =0 [46.21]
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One of the parameters B can be fixed as we please. Thus for a given value
of one B these equations determine the other B and the correction T for the
period. Since u, B, B,, and T are small quantities of the first order, one
can obtain different conditions according to the order of the approximation.
The simplest case 1s that in which one considers the first-order solution,
dropping terms of the second order. The only term of the first order in
[46.20] is C(2m)u, and in [46.21] there are two terms of the first order,

- Kt and C(2m)u. By equating these terms to zero, we obtain the following
two equations

2
C(2n) = — ff(Kcosu, — Ksinu) sinudu = ¢(K) = 0 [46.22]
b
A 27?
T = C(i{—n)# = ;‘é—off(Kcosu,— Ksinu) cosu du = uyp(K) [46.23]

Equation [46.22] determines the amplitude K of the generating solution in
the neighborhood of which exist periodic solutions of [46.1], and Equation
[46.23] glves the correction T for the period, provided C(2x) # 0. If
C(2m) = 0, from [46.15], E(2n) = E(27) = 0. Hence, Equation [46.20] re-
duces to

D2m)B, + F2mu = 0 [46.24]
Since T in this case is zero to the first order, we may proceed to the sec-
ond order and put T = ou% From [46.21], in which we can put B8, = 0, and
where C(27) = 0, C(2n) = 0, and E(27) = 0, we obtain

— Kou® + D(Zn)ﬂl.u + F@mu® =0

Dividing by u and substituting the value of B, derived from [U46.24] into this

expression, we obtain

F(2n)D(2n) — F(27) D(27) [46.25]
K- D(2m)

The correction T = ou? must be introduced each time the motion is isochro-
nous to the first order. Thus, if K # 0 and D(27) # 0, Equations [46.24]
and [46.25] determine B, and T = ou®, the amplitude K having been determined
from Equation [46.22]. Substituting the values of 4, B, C, and 8, in Equa-
tion [46.2], we obtain

t
z = Kcost + u[off(Kcosu, — Ksinu) sin(t — w)du — gg:; cos t} [46.26]
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where K has been calculated from Equation [46.22].%

It is to be noted that the term Y,E‘T.LT+Tf(xO,iO) sin(t - u) du
represents the first term of the Fourier expansion of the function appearing
on the right side of Equation [46.1]. Moreover, the period has been changed
because of the presence of the term 7, the correction for the period. The
function z(t) given by Equation [46.26] remains periodic.

It should be mentioned here again that the presence of secular
terms does not destroy the periodicity but merely accounts for a modification
of the period, as was explained in connection with Equation [44.2]. The
effect of the appearance of secular terms can also be ascertained from the

following example. Assume that we have a perlodic function

o0

z(t) = Z[ax(,u) cosKw(u)t + b () sian(u)t] [46.27]
K=0
in which both the amplitudes and frequencies are functions of a parameter u.
Expansion of this function in a power series of u gives

oo

z(t) = Z[aK(O)cosKw(O)t + 6,(0) sian(O)t] +
K=0

+ 13 [0 cosKu (@)t + b (0) sinKu(0)t —

K=0
— 4, (0w (0Kt sinKw(0)t + b, (0w (0Kt cosKw(0)t] + ,,‘2)‘. .. [46.28]

where ay, by, and w' designate the derivatives of the functions ax(u), bx(u),
and w(u) with respect to # in which the value u = 0 has been substituted after
differentiation. It is observed that, since the function z(t) is periodic,
the appearance of secular terms does not destroy the periodicity in view of
the summation of these terms from O to «. This might not be the case if only
a few secular terms were considered in the expansion.

With reference to [46.26], it is to be noted that the secular terms
do not appear in the expansion for z(t) if the correction T can be calculated
first, which requires that D{(27) # 0. It is sufficient then to use as the
period over which the functions A, B, :-- of Poincaré are determined, the
corrected period T + T, which amounts to the choice of generating solutions

2 2
z, and z, in the form K cos [1 -%%—]t and - K sin [’I -%ﬂL] t, instead of
Kcostand - K sint. The question of secular terms will be discussed in more
detail in Section 58.

#* In order to re—establish the arbitrariness of the phase, ¢ should be replaced by ¢t + 4, where ¢ is
an arbitrary phase.
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47. SYSTEMS WITH TWO DEGREES OF FREEDOM

In the preceding sections we have been concerned with the estab-
lishment of conditions for periodicity of solutions of a single non-linear
differential equation [46.1] of the second order, which generally represents
in applications a dynamical system with one degree of freedom. The only sta-
tionary solutions in this case are periodic ones, and the topological repre-
sentation of such motions in the phase plane does not present any particular
difficulty, as was shown in Part I.

Although theoretically the extension of Poincaré'!s method to sys-
tems with several degrees of freedom follows the same argument, the practical
difficulties rapidly increase and the benefit derived from topological con-
siderations disappears.* Moreover, the stationary motions in systems of more
than one degree of freedom are not necessarily periodic. It thus becomes
necessary to restrict the analysis somewhat by endeavoring to formulate only
the conditions of stability, which in applications is equivalent to the phys-
ical possibility of a particular motion. Systems with two degrees of freedom
play an important role in applications, and for that reason it may be of in-
terest to glve a brief outline of the method of Poincaré in connection with
such systems, omitting the details which have already been explained. The
calculations of Andronow and Witt (7) (8) are given in this and the following
sections.

Consider a quasi-linear system of two differential equations of the
second order

':E. + w12x = llf(x, dj) yv:i/;)u)
y + Wy Y = ﬂg(x’x’y’y;ﬂ)

where p 1s a small positive number and the functions f and ¢ are analytic
functions of the indicated variables. Since there are two degrees of free-
dom, one has a greater variety of limit conditions for u = 0 than in the pre-
viously discussed case of a single equation [46.1]. Thus we can write the
the 1imit conditions either as

* In fact, a dynamical system with two degrees of freedom is generally reducible to a system of four
differential equations of the first order, and its representation in a phase plane becomes generally
impossible. Only in very special cases of the so-called "degeneration® defined in Part IV is a planar
representation possible, but such "degenerate" systems possess entirely new features which are not in-
vestigated here.



15

£ = Reosw,t = ¢,(t); y =0 with period T = gwl
1
or (47.2]
. . 27
£ = 0; y = Reosw,t = P,(t) with period T = o
2

The question as to which of these two generating solutions the dynamical
system will "select" will form an important object of a later study.

’ ) The procedure initially follows the pattern outlined in connection
with a single equation [U46.1]. Let us assume that we select the first alter-
native of [47.2] and apply the perturbation method by putting

x=¢)t)+ & y=0+n [47.3]
In terms of the perturbations ¢ and n, Equations [47.1] become .
E+ w't = u[f(8,60,0,0;0) + f ¢ + fié + fn+ fm+ fu + 0y(¢,é,m,7m,0)]
[47.4]
7+ wrn = u[g(ey,$0,0,0;0) + g,& + g + gn + gy + g,u + 0,6, 6, m,m,u))|

where the quantity O, contains terms of a degree higher than the first in
&, --- u. According to Poincaré, the solutions of these equations can be

taken as power series

¢ =BA + ByB + B;C +B,D + ulE + BiF + B,G + B,H + B,K + uL +

+ 04(By1, By, B3, Boy)| + 0481, 8,85,8,)
(47.5]
n =84+ BB +pC+BD+ulE+BF+8,G+B,H+BEK+uL +

+ 02(31’32153’34#‘)] + 62(31;ﬂzyﬂgyﬂ4)

where A, --- L and 4, .-- L are functions of time and

B, = &(0); B, = £(0); By= n(0); B, = n(0) [47.6]

One of the B8's, as will be seen, can be assumed to be equal to zero; for ex-
ample, B, = 0. If one substitutes the expressions [47.5] into Equations
[47.4] and equates the coefficients of like powers of B,, --- u, a system of
differential equations results from which the functions 4, --- L and ZE .- L
can be determined. One obtains the following expressions:
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A =coswt; C=0; D=0; 0,8,8:8) =0 _

¢
E= wilff(¢o:¢o,0,0;0) sinw,(t — u) du
0
1 t
F = aTlf(coswlu-fx - w, Sinwlu‘fi)_Sinwl(t _ u) du
0

t
H= ﬁ—f(coswzu Jy — wysinwyu - f;) sinw, (t — ) du
19

1 (1 _
K = wIJ(wz sinw,u - f, + cosw,u 'fz}) sinw, (¢ — u) du

L = wif[Efz + Ef; + Efy + E;fy- + fy] sinw, (¢ — u) du
10

(47.7]
A=0; C=coswyt; D= wi sinw,t; 0,(8,,8;,8,) = 0
2
— 1 ¢
E = ;z-fg(qso,éSO,O,O;O) sinw,(t — u) du
0
- 1 ¢
F = —f(coswlu'g, — w,sinw,u - g;) sinw,(t — u) du
w, J
— 1 ¢
H= w—26f(cosw2u g, — wysinwyu - g;)sinw, (¢ — u) du
t
K=" [(Lsinwu-g, + ) sinw, (t — u) d
= w; ) (w2 sinw,u - g, + cosw,yu-g;) sinw,(t — u) du
1 f -
L = -w—zf[E’gx + Eg; + Eg, + Eyg, +gﬂ]sinw2(t —u)du
0
The conditions of periodicity for the solutions [47.3] are
o] = (22 + 7) — 20 = 05 141 = 42X + 1) - 30 = 0
W, ’ - Ny B
[47.8]

lyl = y(gz + T) =y =0; [g]= y(%,%r

o +7) — 50 =0

These four conditlons, with the use of the symbols [ ] defined hy [U47.8],
become
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Rlcosw;t] + B,14) + u((E] + By(F] + BylH] + B,[K] + ulL] + [04(81,83,8,,)]) = 0

Rl-w;sinw,t] + By[A] + u((#] + B,(F] + BslH] + B,[K] + ulL] + [0,(8;, 80,85, m)]) = 0
- (47.9]
B,(C1 + B,[D] + u([E‘] + B,[F] + B,[H] + B,[K] + ulL] + [Oz(ﬂl,ﬂg,ﬂ4,u)])= 0

B(C1 + BID1 + u((E) + B,[F) + By[H] + 8,[K) + ulL] + [0,(8,,85, 8, 1)])= 0

Developing the expressions indicated by the symbols [ ] in power series of T,
the correction for the perlod, one obtains

s

27
[A] = A" + 7) — A(0) = ¢y + a;7 + gy’ + - - -
(“’1 ) ' 1 i [47.10]

[A]=A(%—?+T)—A(O)=d0+dlr+dzr2+-'-

where a,, --- and @,, --- can be calculated by Equations [U47.7]. One obtains
from [47.10] the following equations '

_ Rwlz'r
2

+ B,(ay + a;7) + pley + e,7 + B,fy + Bsho + Biko + uly) + 05(8,,83, 8,4, 7) =0

— Rt + B/(C, + a,7) + uley + 7 + Bfy + Biho + Biko + ply) + 04(B,, By, B,y 11, 7) = 0

[47.11]
33(60 + 617.) + 34(d_0 + J‘l‘r) + u(e—o + ;11. + 317‘0 + B3Z0 + 64%0 + #l—o) + 03(B1,B3!ﬂ4'ﬂ’7) =0

Ba(éo + 61"') + 34(20 + ‘—i.-l") + ”(e;o + ?1"' + 31?0 + ﬂa—i;o + 134;"0 + /170) + 03(81, B3, B4, 1,7V =0

In these equations certain coefficients do not depend on the choice
of the functions f and g. Thus, one always has
6, =0; a,=0; a4,=0; & = — w’
[47.12]

Co = cosy — 1; ;l_o=—w—sin7; Co= — wysiny; d,=cosy —1
2

where v = Zn%f. N
The second equation [47.11], taking into consideration [47.12] and
04(B,, B4, B, 1), glves T, viz.,

T = o, + Biay + By + By, + nag + 0,8, 8, 8,m)]  [47.13]
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where
. A . > . 2 . .
o =0 . o Bl o ke ke _ Rojli+ée
0 Rw?®’> ! R*w?® ’ 73 Rw?’ ‘" Rw? 75 Riw/!

Introducing the value of ~ given in Equation [47.13] into the remaining equa-
tions [47.11], one obtains the following three equations:

R
¢o + Bifo + Bsho + By + ”(lo T age; — ?“’12%2) + 0,(8,,8,8,,u) = 0

~

L7.
Bs(cosy — 1) + B4(3,1—2 siny) + uey+ 0,(8,,8,5,8,,u) =0 [47.74]

By(— w,siny) + B,(cosy — 1) + ue, + 0,(8,,8,,8,, 1) = 0

Since we are looking for a periodic solution of the system [47.1],
which reduces for u = 0 to the first generating solution [47.2], it is nec-
essary that the functions B,(x), Bs(u), and B,(n) approach zero as u ap-
proaches 0. Hence, in view of [47.12], the necessary condition for the exist-
ence of a periodic solution is

2
€ = fwlf(Rcoswlu, — w,Rsinw,u,0,0;0) sinw,u du =0 (47.15]
0
From this equation one obtains the amplitude of the periodic solution in the
neighborhood of # = 0. The sufficlent condition for the existence of a peri-
odic solution is

fo ho ko

0 cosy —1 wisiny = 2fy(1 — cosy) # 0 [47.16]
2

0 —wysiny cosy — 1

In this condition the value of R, and hence of fo» 1s the one which satisfies
the amplitude equation [47.15].

If w, # nw,, that 1s, if y # 27n, where n is an integer, the condi-
tion for the existence of a periodic solution can be written as

2

fo= fw’(cosw,u f, — wysinwu - f;) sinw,u du # 0 (47.17]
0
If the determinant [47.16] is zero, it is suffiecient for the existence of a
periodic solution that one of the determinants, obtained by equating to zero
a B other than B, as assumed here, be different from zero. If all determi-
nants are zero, a speclal study is required.
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The periodic solution thus obtained 1s of the form

x = ¢(t) = Reosw,t + BA+ u[E + B8, F+B8,H+B,K + uL + 02(31,133,,84,;1)]
(47.18]
y=(t) = B,C+B,D+ulE+ BF + B,H+BK + uL + 0,(8,, 85,8, )]

where R is determined by [47.15]; A, E, F, --- by [47.7]; and B,, B,, and B,
by [47.714]. Replacing B,, B,, and B, by their values in {47.18] and arrang-
ing the terms of the series according to the powers of u, one obtains

z=¢(t) =@, + up, + u’p, + u'ps+ - - -
[47.19]
y=¢_5(t)=/1$1+ﬂ2$2+ﬂ3$3+"'

It 1s apparent that similar results can be obtained if one starts
with the second generating solution [47.2].

48. STABILITY OF A PERIODIC SOLUTION
The stability of the periodic solutions [47.18] can be investigated
by the perturbation method. Consider the perturbed solution

v =9(t)+u; y=¢()+v [48.1]
The variational equations obtained from [47.1] are
i+ wlu = u(fyu + f0 + fo + f;9)
[48.2]
¥+ wSu = plg,u + g;u + g0 + g;0)
In these equations the non-linear terms in w and v are left out and the func-
tions f,, --- g; are the derivatives of f and g with respect to the indicated

variables in which z, %z, y, and y are replaced by ¢(t), #(t), #(t) and $(t)
respectively. These equations have periodic coefficients, and .we can expect

solutions of the form

v = AB, + BB, + CB,+ DB,
L [48.3]

v = AR, + BB, + CB, + DB,
where 4, -.. D are unknown functions of time and the B's are initial values
w(0) = By; u(0) = By v(0) = By (0) = B, (48.4]
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Since the functions f,, --- g, appearing in [48.2] can be developed
in power series in terms of u, the functions 4, --. D can be assumed to be
also of the form

A

A+ pA, + p*A, + - - -
(48.5]
A=A + pA + p’A, + - -

Substituting the expressions [48.3] into [48.2], taking into account their
form [48.5], and comparing the terms with the same powers-of u, one obtains
a number of differential equations from which the coefficients 4,, A4,,

A,, A, can be determined. One obtains in this manner the following expres-
sions:

A, = cosw,t; A= F; etc.

o~

-1

1 . .
) w; ) ( sinw,u- f, + cosw,u 'f&) sinw,(t — u) du; etc.

w;
CO—O; CI—H; ete. [,48 6]
D,=0; D, =K, etc.

/T0=0;

I
]
[
ot
o

Introducing the notations of Poincaré, viz.,

w(T) — u(0) = [u] = y;; w(T) —a0) = [u]l =y,

[(48.7]
v(T) — v(0) = [v] = ¢y o(T) — v(0) = [v] = ¥,

where T = %,L: + 7, T being the correction for the period given by [47.13], one
obtains the equation for the determination of the characteristic exponents in
the form

oY, | _ el o oY, 2%
a8, T17¢ 38, 385 o8,
Wy, By, e O ou,
38, 0B, 38, a8, s
il I VAR "R T 7UPE T VA I
38, 36,  9Bs 38,
oYy oY, oY, oY, _ aT
38, 38; a8, o, T17°¢
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This reduces to the form

Al+1-¢7  (B] (C] (D]
Al Bl+1-¢"T  [C] (D]
A= - - P =0 [48.9]
(4] (B] [Cl+1—ce (D]
(4] (B [C] [Dl+1—e*

~

with [A] =.A(%fl+ r) - A(0), etc. Putting 1 - e°T = p, this equation can be

written in the form

aptpe  ap a3 @14
Ay G+ P Gy ®oq
Alp) = ag Gy Gy tp Oy =0 [48.10]
@y Ay Qg3 Gyt p

>

which reduces to the quartic equation

pt +ap®+ bpiH+cp+d =0 [48.11]
with
@ = Gy + Qg+ Ggg + Ay b= Ay + Ay + Ay, + A+ A 4 4T
[48.12]
c=A; + A, + Ay + Ay d = A0)
where A,,, -+ A,, and A;;, cee Aff are the diagonal minors of 4.

Since one of the characteristic exponents 1s always zero (9) be-
cause the equations are autonomous, d = 0, and the quartic equation thus re-
duces to a cubic one

o +ap’+bp+c =0 [48.13]

If the motion is stable in the sense of Liapounoff, the remaining three char-
acteristic exponents must have negative real parts, which means that the mod-
uli of the quantities ¢°T must be less than one. This means that the complex
number p = 1 - T must be represented in the complex plane p by points situ-
ated inside a circle of radius 1 whose center is on the real axis at a unit
distance from the origin, see Figure 48.1.

By means of the function p = T—%—;y the interior of the circle in
the (p,, p,)-plane is mapped into a half plane (z,,z,) so that the circles,
see broken line in Figure 48.1, transform into straight lines, see broken
line in Figure 48.2, parallel to the z,-axis on the axis of the negative z,.
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P2 Z2

Figure U48.1 Figure 48.2

By this transformation the problem of finding the roots of [48.13] with moduli
situated inside the circle of the (p,, p,)-plane is reduced to that of deter-
mining the roots of the transformed equation having negative real parts. This
brings the problem within the scope of the Routh-Hurwitz criteria. If this
transformation is carried out, Equation [48.13] becomes

22(—¢)+ 2220+ 3¢) + 2(—4a — 4b — 8¢) + (8 +4a +2b+¢)=0 [48.14]

The Routh-Hurwitz criteria of stability (10) (11) are

2b + 3¢
— ¢

> 0; bz+c2+260+ab+ac—c<0; 8+4a_+c2b+c > 0 [48.15]

These are the necessary and sufficient conditions for the roots of Equation
[48.14] to have negative real parts, or, which is the same, for the roots of
[48.13] to have moduli less than two, which assures the stabllity of the peri-
odic motion. The conditlons [48.15] can be written also in the form

2b+83¢ >0, ¢<0; (b+ec) +ald+c)—c<0; 8+4a+2b+c>0/[48.16]

In order to apply these conditions of stability, it 1s necessary to
calculate the determinant [48.9]. The quantities [A], [B], :-- can be devel-
oped in power series in terms of u, for example

ay = [A] = [4,) + ulA])+ p*[4,] + -+« = byu + 0,(w)

Qo = [B] = [BO] + ﬂ[Bll + /12[82] +. = 612” + Og(ﬂ)

The value of the determinant A(O), in which are written only terms
containing linear terms in u and terms independent of u, is
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by + o bput - byt + + + - bt + - - -
A0) = b21/1+'°° 522/1_4.... b23/1+"‘ o b24,u+-'°

b+ bgut - (cosy—1)+ bggu+ - - w:+b34u+---

b+ bpu+ o —wysiny + bggu+- - (cosy —1)+ byu+ -

[(48.17]
The values of b,, b,, --- are determined from Equations [48.6]. Taking in-

to account [48.12], one obtains the following relations

¢ = pu2(1 = cosy)(by + by) + 0,(n)

b+ +alb+e) —c=u2(l — cosy)|cosy by + byy) + siny (wyby, — ”w—f)] + 0,(0)

[48.18]
8 +4a + 2b+c¢ = 4(1 + cosy) + 0,(p)

2b + 3¢ = 4(1 — cosy) + 0,(n)

If we consider u << 1, ¥y # 2nn, and ¥ + 2(n + 1)w, n being an integer, the
stability conditions reduce to the following

by + by < 0
(48.19]
cos ¥ (bgy + b,,) + siny(w2634 - %) <0
2
The values of by, by, +-- are given by the expressions
Lo 2
T ! . _ . CEY 2m
by, = wlof l(coswlu f, — wysinwu - f;) smwl(wl u) du
&1 2m
—_ | o . a 2r
by = Of ("’1 sinw,u - f, + cosw,u fz) cos.wl(w1 u) du
oA 27
I . _ . . ) 2r _ .
byy = J (costu g, — w,sinw,u gz;) smwz(w1 u) du — a,w,siny
. [48.20]
- 1 27
— wif 1 . . 2r B .
by = Of (wz sinw,u - g, + cosw,u gy) cos(m1 u) du — ayw, siny

1 (i1 2m

— wl — 1 . . 1 — —

= w, ) (wz sinw,u g, + cosw,u gé) 51nw2(w1 u) du + a,cosy
2

b = wy . 2 d 2
3 = COSWyT* g, — Wy SINW,y U~ g ) COSW, (T — u U — GyWw, COS Y
0
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Introducing these values into the inequalities [48.19], one obtains the fol-
lowing conditions of stability

2n 2x

fw—‘fx du < 0; "T‘gg du < 0 (48.21]
b 0

In applying these criteria one has to take ¢ = R cos w,u; £ = - Rw,; sin w,u;
y=0; y=0; and u = 0. R 1s determined by [47.15].

We shall return to this matter in Part III in connection with the
question of stability of coupled electronic oscillators. This problem is ex-
pressible in terms of two non-linear differential equations of the second

order.

49. LIMIT CYCLE AND FREQUENCY OF A THERMIONIC GENERATOR

We propose to apply the preceding theory to Equation [30.9] of a
thermionic generator. The quadratic term y,v? in Expression [30.5] of the
characteristic will be dropped, inasmuch as this term accounts for only a
slight assymmetry of the characteristic and has no effect on the calculation

of the stationary motion.*
The simplified equation [30.9] can be written as

V4w = — 36070 [49.1]

This equation is dimensionless; 8 >0 and 6 > 0. The small parameter u is
introduced so that we may consider the oscillation in the quasi-linear range

and therefore be able to apply the preceding theory.
For u = 0 the generating solutions are of the form

v, = @,(t) = Kcost; v, = ¢,(¢) = — Ksint [(49.2]
In this case f(v,%) = 8¢ - 36v%v and hence '
f(v,,0,) = — BKsint + 36K *cos’t sint [49.3]
Making use of the condition of Poincaré, Equation [46.22], upon integrating
Equation [49.3] we obtain BK - %61{3: 0 and hence

Y
K~ 3 [49.4]

Thus the amplitude of the generating solution to the first approximation de-
pends on the ratio y@?. In other words, the amplitude of oscillation reached

¥ The reader will note that by retaining the quadratic term »;»? in Equation [30.5] one would have Equa-
tion [30.9] instead of Equation [49.1]. The integral from O to 27 of the term 2ywvs in Equatic: [46.22]
vanishes, which proves that the term y,v? has no effect on the calculation of the stationary motion. This
remark applies also to all even terms in the polynomial [30.4]. See also Section 54.
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by the self-excited process will be greater as the value of 4 is smaller.
This is physically obvious, for as é > 0 the self-excitation would build up
indefinitely since the factor that eventually limits it is precisely the non-
linearity of the characteristic expressed by the term - é,v® in Equation
[30.5]. Returning to the non-linear term f(v,v), we find that-gg = - 66v0

and & = g - 3802, so that
of = 66K cost sint = 36K° sin2t
oy,
and
of 2 2
a}; = ,3 — 30K " cos”“t

From [46.14] we have, upon taking account of [49.U4],

27" 2 °
Dm = [(8 — 35K cos't)dt = 2n(g — 2°5) = — 2p 49.5]
0

One finds also that D(2n) = 0. From Equation [46.26] the correction for the
period T = ou® is

- = Flr) | [49.6]

Calculating F(2rn) from the last equation [46.10], one obtains

T = mu’B’ [49.7]
The coefficient C(t) given by Equation [46.9] after a calculation is

_ 3K° 156K° . . BI/_ﬂ : 5,8|f—/3 :
C(t) = 35 sin3t + 35 sint = 1 ggsm?,t-!— 1 %smt

so that the periodic solution without secular terms is then

v = ZVgcos[(l - %i)t + w] + uf- g)‘/gsm[(l - ﬁ%}t + w] +

+ ”%‘/g sin[(l—ﬂjzéi)t"’w:l‘i"uz{ ]+ [49.8]

where ¥ is an arbitrary phase angle. It is clear that the periodic solution
occurs in the neighborhood of the amplitude 2 V%%; The correction for the
period is of the second order and hence can be neglected for small values of
. The secular terms do not appear here in view of the fact that the cor-
rection T for the period has been calculated first.
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50. BIFURCATION THEORY FOR QUASI-LINEAR SYSTEMS

The results obtained in Section 29 can be somewhat extended by
means of the quantitative method of Poincaré, see Section 46. 1In order to
obtain this extension, we shall consider instead of Equation [46.1] the equa-

tion

2+ x = uf(z,z,)\) [50.1]

in which there appears an additional parameter A which we have encountered in
the bifurcation theory. The procedure remains substantially the same as be-

fore; that 1s, there appear certain generating solutions in the neighborhood

of which periodic solutions exist when g 1s small.

We propose to investigate now what happens to these generating so-
lutions when the parameter A determining the state of the system varies and
reaches a critical value.

It wa's shown in Sectlon 46 that the amplitude K of the generating
solutions is given by Equation [46.22], which can be written here in the form

C(2m) _
2r

2z
1 ) .
~ 5 Jf(Kcosu, — K sinu, A) sinudu = 0 ) [50.2]

Putting K% = p and multiplying Equation [50.2] by 2Vp, we have

2
C(iﬂ)l/; = ¢(p,\) = — %Jf(l/; cosu, — Vp sinw, A\) Vp sinu du  [50.3]
b

Differentiating this equation with respect to p, we have

%
_ 1 . 2
#,(p,\) = — E;Of[le/p sinu cosu + f,Vp cos u] du +
2x 2x
1 1 .
+ %sz du — bef sinu du [504]

The first term on the right side of Equation [50.4] is equal to

. 2r _
W[fcosu] + mffsmu du

0

as 1s easily verified by integrating th® term pym Vr-J.j‘sinztdu by parts.
Equation [50.4] reduces then to a simple form

1 2x
8,(p,A) = goffi du [50.5]
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In Section 13 it was shown that, in a conservative system containing a pa-
rameter A, the conditions for stable equilibrium are

flx,A) =0; f,(z,A) <0 (50.6]

2
Suppose we now impose the condition that_g f; du < 0 so that ¢,(p,A)<0.
Associlating the function #(p,A) with f(z,A), we may infer that the limit cy-
cles are stable if

$(o,N) = 05 8,(p,A) < 0 [50.7]

This is by no means a proof, but merely a plausible deduction. A proof for
the conditions under which stationary motion 1s stable may be found in Chap-
ter III of Liapounoff'!s treatise (12).

The remainder of the bifurcation theory applies directly to limit
cycles, the coordinate z of equilibrium being replaced by p = K?, the square

of the amplitude of the 1limit cycle.
In a number of problems of non-linear mechanics, the function

flz,z,A) 1s of the form
flz,2,0) = filz, Nz [50.8]
where fl(x,k)lis a polynomial of the form
fle,n) = a,(N) + a,(Ne + a,(W2® + - - - [50.9]

To this class belong equations of the generalized Van dqr Pol type. Substi-
tuting f = f,% in Equation [50.3], with the generating solutions z = Vp cosu
and z = - ¥p sin u, and carrying out the integrations, one has

2 3
$(0,N) =%[a0p+ 2pP" +M’_+...]

4 8
[50.10]
_1 asp 3a,p° . :l
#,(p,N) = 5 ‘:ao t+ 5 +t—5  F
In these equations the coefficients a,, a,, a,, --- are functions of A.

51. "SOFT" AND "HARD" SELF-EXCITATION OF THERMIONIC GENERATORS;
OSCILLATION HYSTERESIS

It is well known that there are two kinds of self-excitation of
thermionic circuits designated as "soft" and "hard." It is observed that by
increasing the coefficient of mutual induction A between the anode and the
grid circuits, self-excitation starts smoothly as soon as a critical value
A = A, of this parameter is reached; for A > A, the amplitude of oscillations
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steadily increases with increasing A, as shown in Figure 51.1 representing
this "soft" case of excitation; upon decreasing A the phenomenon takes place
in the opposite direction, as shown by the arrows. The theory of soft self-
excltation has been studied in Section 29.

In some cases, however, a different type of self-excitation occurs,
as shown in Figure 51.2. With increasing A it is observed that the self-
excitation starts aebruptly with a finite amplitude for A = A; and increases

/ )

— A - A
0 — A, 0 A, A,
Figure 51.1 Figure 51.2

smoothly for A 2 A;. For decreasing A it is observed, however, that the
phenomenon 1s different; namely, for A = A, the self-excitation does not dis-
appear; it disappears at A = A; < A;. There exists a kind of "hysteresis cy-
cle" shown by the shading in Figure 51.2. This type of self-excitation is
called "hard." These phenomena are due to the non-linearity of the system,
and the hysteresis cycle referred to above is sometimes called "oscillation
hysteresis" (13). We have already analyzed this situation qualitatively in
Section 24. In this section we propose to investigate this effect utilizing
the theory of Poincaré€.

Consider the circuit shown in Figure 51.3 with positive directions
indicated. The differential equation of the oscillating circuit is

di L1
L%+Rz+5(!(z—la)dt=0 [51.1]

where I, = f(V) is the non-linear function expressing the anode current I, as
a function of grid voltage V. Let us approximate this function by a power
series in V limited to terms through V°® for reasons which will appear later.
We have

I = f(V) = aV + B,V:+ 3, VP + 5,V* + ¢,V° (51.2]

a
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-

Figure 51.3

It is convenient to introduce a dimensionless variable z = V/V, where V, is
the "saturation voltage," that is, a sufficiently high grid voltage beyond
which the current I, does not change appreciably. Since V==Al§l-we can

dt
write

M di
TEV oAt (51.3]
From this equation we obtain

GV, @ _V, ._V.
dt MY 4 T wmM T fodt
Substituting these values in [51.1] and differentiating we get, after a few
simplifications,

LCi + RCi + o = M[ao + 28,V,x + 3y, V. a® + 48,V22 + 5eovfx‘]3—f [51.4]
Introducing the new independent variable 7 = w,t, where w, = 1/VLC, the pre-
ceding equation becomes

2
Z—_fz +z= wOM[(aO - —};TC) + 28,V,x + 3)’0‘/32002 + 4150V$3a:3 + 560V84x4]

dz
dr

The condition of quasi-linearity is fulfilled if we assume that the coeffi-
cients ay, --- €, of [51.2] are small. One can take one of these coefficients,

for example B,, as a factor and write

2 _ 2 3
% +o= Bo‘éwoM[—i—a M= RC | oy 4 30,2 40V, s | S&V, x‘]d—x [51.5]

MB,V, By Bo B, dr
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By introducing the notations

BV w, = u; oM — RC _ a(M); 2M = b(M);
LA
3y, V. M 46,V.'M 5¢,V.'"M
LAURE Suinip M ; Vs - d(M ; Yr0"s T M
lgo e(M) Bo (M) B, e(M)

Equation [51.5] can be written as
— t+ = u[a(M) + b6z + c(M)2® + dM)e® + e(M)xﬂ% = ufl(x;M)g—f- [51.6]
that is, the function f(=z,%,M) = f}(x;&ngf;has the form [50.8].

The function ¢&(p,M) given by [50.10] can be written, after certain
transformations, as

#(p,M) = a,p + a;yOMpz + “3‘0Mp3 (51.7]
where
—— 7 3
g, = a M RC; ol = 3Vs; gy = 5V,
B,Y, 45, 88,

Differentiating Equation [51.7] with respect to p, one has
8,(0, M) = a) + 2a,7,Mp + 3a,e,Mp® [51.8]
The discussion of Equations [51.7] and [51.8] yields the qualitative features
of the phenomena.
A. CONDITION FOR A SOFT SELF-EXCITATION

If a;, >0, y, <0, and ¢, = 0, Equation [51.7] becomes

#(p, M) = (a, — ay|7|Mp)p = ()M — RC — a,ly,|Mp)p = 0 [51.9]

where a, absorbs the constant factor V, which is of no further interest. 1In
the (p,M)-plane this equation represents a straight line p = 0 and a hyper-
bola

Ma, — RC — a,ly|Mp = 0 [51.10]

The point of intersection of p = 0 and the curve [51.10] is given by the
equation M e, - RC = 0. The valuz
RC

M1=°‘—o [51.11]
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is a critical value of the parameter M. Following the method of Poincaré,
Section 13, one obtains the diagram of Figure 29.1b. By increasing the pa-
rameter M from small values, one has a locus (p = 0) of stable focal points.
The point M = M, is a branch point of equilibrium; here the focal point under-
goes a transition from stability (M < M,) to instability (M > M,), and a sta-
ble limit cycle appears; the square of the amplitude of the latter increases
with M, following the hyperbolic branch. The asymptotic value of p for M + «
is clearly 00/023%, which represents the square of the amplitude for infinite-
1y strong coupling M.

The curves representing this case are shown in Figure 29.7a and b.
The former represents the condition for M > M,, the latter, the condition for
M < M,. The phenomenon is reversible, as shown in Figure 51.1.

B. CONDITION FOR A HARD SELF-EXCITATION
If @y >0, 7o > 0 and ¢, < 0, and if we designate by €, the abso-
lute value of €,, and put for abbreviation a;yo = m and az€, = n, Equation
[51.6] becomes

¢(p,M) = (a, + mMp — nMp?)p = 0 [51.12]
In the (p,M)-plane, this equation represents a straight line p = 0 and a
curve
(May — RC) + mMp — nMp? =0 [51.13]

The intersection of this curve with the line p = 0 is clearly a, = 0, which
gives the value M, previously found, see Equation [51.11].
The tangent to the curve [51.13] is given by the equation

o¢

d_p__ﬁl{___a0+mp—np2

aM ¢ M(m — 2np) [51.74]
dp

The curve has a vertical tangent for p, =m/2n; for this value

RC

M,= ——5 [51.15]
o, + -
0 4n
When M, is compared with M, from Equation [51.11], i1t is seen that

M,< M,. Furthermore, it can be shown that the curve does not go to the
left of the value M = M, and has a horizontal asymptote for p = m/n. This
defines the curve shown in Figure 51.4. It is easily seen that é(p,M) > O

in the shaded area; whence, applying the criteria of Poincaré, Section 13,
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one finds that the branch of the curve above point

4 Limit Cycle P is stable and below this point unstable. The

axis p = 0 1s stable for M < M, and unstable for
M >M,. If Mis increased gradually below the
¢lo,M)> 0 value M= M,, the focal points are stable. For
/////4 M = M, there is a finite stable limit cycle and a

Stable Unstable /
Focal Points discontinuous jump M,N, shown in Figure 51.4. If
Y My M, M > M, and M increases, there 1s a continuous
Figure 51.4 variation of the amplitude of the 1limit cycle.

If, however, M > M, and M decreases, when M = M,
1s reached, the limit cycle 1s still stable although there is a transition of
the point singularity from instability to stability. This corresponds to _
Figures 24.6b and ¢. It follows, therefore, that when M decreases from M, to
M,, the stable 1limit cycle is still being followed. When the point M = M, is
reached, the stable and the unstable 1limit cycles coalesce, and no limit cy-
cle exists for M < M,, which accounts for the jump PM,, shown in Figure 51.4,

By comparing the results of this section with those of Section 29
it 1s seen that if the non-linear characteristic can be approximated by an
expression of the form F;(z) = a,z - a;x°, where a, and a, are positive, one
has a soft type of self-excitation. If, however, it can be approximated by
an expression F,(z) = a,z + ay2® - a;z°, where a,, a,, and a, are positive,
the self-excitation 1s of a hard type.

In the first case the characteristic has no inflection point (except
the point z = 0, which is of no interest); in the second case, there is an ad-
ditional inflection point for z, = L/%%?. Since an electon tube exhibits
characteristics of both types of self-excitation, depending on the point at
which 1t 1is blased, each of these cases can be obtained in practice by a suit-

able adjustment of the circuit.



CHAPTER IX

METHOD OF VAN DER POL

52. ROTATING SYSTEM OF AXES; EQUATIONS OF THE FIRST APPROXIMATION
Consider again the quasi-linear equation

¥+ x=puf(x,z)

Its equivalent system is

t=y; y=—x+ uf(x,y) [52.1]

the notations being the same as in the preceding chapter. ‘For u = 0, one has
the linear equation % + 2 = 0, having a harmonic solution

x = acost + bsint, with % = — asint + bcost [52.2]

where a and b are constants of integration.

The phase trajectories in this case are circles of radil K =
Va? + b% 1If, instead of considering a coordinate system (z,%) in a fixed
phase plane\, one introduces a system rotating with angular velocity w = 1
about the common origin of both systems, in this rotating phase plane Equa-
tion [52.2] will represent a fixed point A at a distance OA = K = VaZ+ b2
from origin O. The inclination of OA to a reference line in the rotating
plane 1is given by the angle 6 = tan”l% It is to be noted that this trans-
formation is nothing but the usual method of representing sinusoidal quanti-
ties by vectors, used in the theory of alternating currents. We shall call
the rotating plane of the variables (a,b) the Van der Pol plane.

Consider now Equations [52.2] as a .transformation defining x and z
in terms of the new variables a and 6. This implies that

g—?cost+ g—fsint= 0
[52.3]
- Z—‘:Sint + 3—?cost = uf(acost + bsint,— asint + bcost)
whence
da . . .
rrinl uf(acost + bsint,— asint + bcost)sint
[52.4]
db . .
i uf(acost +bsint,—asint + beost)cost

Since u is small, by assumption, da/dt and db/dt are also small be-
cause f(z,y) is bounded. In other words, a and b are slowly varying quanti-
ties in comparison with the rapidly varying trigonometric terms of frequency

w=1.
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For the first approximation it is sufficient therefore to consider
a and b as constants on the right side of Equations [52.4]. However, if z
and y are replaced by their expressions [52.2], the right sides of [52.4]
are periodic and can be expanded in a Fourler series so that [52.4] becomes

da _ y[M + ¢, (a,b)cost + @, (a,brsint + ¢,(a,b) cos2t + - - ]

dt 2
(52.5]
% = ﬂ[w + p,(a,b)cost + P,(a,db)sint + yY,(a,b) cos 2¢ + - - ]

It must be noted that the system [52.5] now contains ¢ explicitly,
whereas the original system [52.1] does not. Van der Pol considers the fol-
lowing "abbreviated" equations as equations of the first approximation

da _ ¢0(a)b) . db _ l/’o(a'vb)

T g S A5 [52.6]

They are obtained from [52.5] by dropping the terms containing the trigono-
metric functions. On the other hand,

2x
¢0(;,b) _ _z_irif(acose + bsiné, — asiné + bceosé)siné dé
L2 [52.7]
lllo(aé,b) = + Zinaff(acosf + bsiné, — asiné + bcosé&)cos & dé

Multiplying the first equation [52.6] by a, the second by b, adding and put-
ting K? = a® + b?, one obtains

2x

1 dK* _ _dK _ Cy . .
2 at Kdt = o Jf(acosf;‘ + bsing, —asiné + beosé) (—asiné + bcos¢) dé
Putting
acosé + bsiné = Kcos(& — 6)
and

—asiné+ bcosé = — Ksin(é—90)

where 6 = tan™! %, and introducing the variable w = ¢ - 6, one has

g—f = u ¢(K) and, by a similar transformation, -g—g = u Y(K) [52.8]
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where

2 :
¢ (K)= — %r({f(Kcosu, — Ksinu) sinu du
[52.9]

2
1 .
v(K)=+ e Jf(Kcosu,— Ksinu) cosu du

One notes that the definite integrals in these equations coincide with the
functions C(27) and C(2m) of Poincaré, Equations [46.10]. .

53. TOPOLOGY OF THE PLANE OF THE VARIABLES OF VAN DER POL

In the (z,y) phase plane the limit cycle is reached when the phase
trajectory is a circle; in the Van der Pol plane (a,b) the condition for the
existence of a stable limit cycle is satisfied when the end of the vector K
is a point of stable equilibrium, that is, at this point %: uo(K) = 0.
Hence, limit cycles exist for radii K corresponding to the roots of

2
1 . .
#(K) = E;ff(Kcosu, — Ksinu)sinudu = 0

0
It is to be noted again that this equation coincides with Equation [46.22]
of Poincaré's theory.
A root K, of ¢(K) = 0 will correspond to a stable limit cycle if
¢'(K;) < 0. By a method similar to that applied in connection with Equation
[50.5], one finds that the condition ¢'(K,) < 0, written explicitly, gives

2r
1 -
2n_offy(Kl.cosu,——Kismu)du<0 [53.1]

The 1imit cycle is unstable if ¢'(K;) > O.
Consider now the second equation [52.8]. Here two cases are of

interest.

Case 1.

27r
Y(K) = ff(Kcosu,—Ksinu)cosudu =0 [53.2]
0

1
2K
In this case 6 = §, = constant. The topological picture of trajectories in

the plane of variables (a,b) of Van der Pol, in this case, is shown in Figure
53.1. The equilibrium on a limit cycle at a point K, for 6 = 6, is stable if
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Stable
Limit Cycle
Ki /_
ﬁﬁ
a \ —‘y 1
Unstable Stable Stable
Circle Circle Focal Point Unstabie
Limit Cycle
L]
Figure 53.1 Figure 53.2

the representative point being displaced along the radius returns to K,. If
this point does not return to K,, as for example Point K‘.', such a limit cycle
is unstable. The loci of limit cycles in thils case are concentric circles
corresponding to all possible values of the constant 6,.

If one returns to the original variables (z,y) of the phase plane,
one must apply the equations of transformation [52.2], where the variables a
and b are respectively K, cos 6, and K, sin 6,. This gives

x = acost + bsint = K cos §,cos t + K,sinf,sint = K, cos(t — 6,)

[53.3]

y = —asint + beost= — K, cosfsint + K;sing,cost = — K,sin(t — 6,)

where 6, is arbitrary. This arbitrariness of 6, for the (z,y) phase plane is
due to the fact that a point of equilibrium in the plane of variables (a,b)
of Van der Pol corresponds to a circle in the phase plane of the variables
(x,y). The general form of trajectories in the (x,y)-plane is shown in'Fig-

ure 53.2.
Case 2.

P
1 .
Y(K) = m!f(Kcosu,—Ksmu)cosudu + 0

Let K, K,, --+ be the roots of ¥(K) = 0, and assume that these roots are dif-
ferent from the roots K,, K,, -+- of ¢(K) = 0.

%
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Consider now Equations [52.8]. The motion on a limit cycle is
represented in the plane of variables (a,b) by points of eqﬁilibrium given
by equations

a = K;cos[up(K,)t +6,]; b = K sin[up(K)t +6,] [53.4]

The stability (or instability) of a
limit cycle is determined again by

the sign of ¢'(K;) and the direction "
of rotation by the sign of y¥(K,). Stable
The topological picture of - Limit Cycle

trajectories in the (a,b)-plane is
shown in Figure 53.3. The trajec-
tories "turn back" at points cor-
responding to the roots K,, K,,

of ¥(K;), approaching the stable
limit cycles which are again the
points of equilibrium in the Van der

Pol plane. The topological plcture C 4éi;;/
of trajectories in the fixed (z,y)- Lﬁcxof;éi/jx “ Unstable
plane has the same appearance as Tﬁﬁggﬂm Limit Cycle
that shown in Pigure 53.2. The
only difference between the two Figure 53.3
cases 1is that, in the second case,
Equations [53.3] become
x = aqcost + bsint =Kicos([1—,uz//(Ki)] t —00)
[53.5]

y = —asint +bcost = — K, sin([l —/u/l(Ki)]t-— 00)

It is clear that in this case a correction for frequency'exists expressed by
uP(K,). In other words, the velocity along the spiral trajectories is not

uniform.
By a further analysis 1t can be shown that when y(K;) = 0 the cor-

rection for frequency (and hence for the period) is of the order of u? and

consequently can be neglected in the theory of the first approximation. If,

however, Y(K,) # 0, this frequency correction appears to the first order of u.
To sum up the results of this section, it can be sald that the use

of the variables (a,b) of Van der Pol enables us, if the system is isochro-

nous, to represent a limit cycle by a point in the plane (a,b), that is, by

a constant vector. Such representation of a 1limit cycle 1s similar to the
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mode of representing alternating currents by vectors. For transient condi-
tions the representative point moves toward, or away from, the limit cycle
point along the length of the radius vector, since the phase angle 6, remains
constant. The phase angle in this case has no particular physical signifi-
cance 1f one single oscillatory phenomenon is considered. If, however,

w(K) + 0, that is, if the motion 1is not isochronous, in the plane of vari-
ables (a,b) of Van der Pol the vector K, undergoes oscillations depending on
the roots of ¥(K) = 0. This peculiarity resembles the representation of
phase-modulated vectors in radio technique. Fixed points in the (a,b)-plane
correspond to circles in the (z,y)-plane, and a radial motion in the (a,b)-
plane corresponds to a spiral motion in the (x,y)-plane.

54. EXAMPLE: "SOFT" AND "HARD" SELF-EXCITATION OF THERMIONIC CIRCUITS

We now propose to apply the Van der Pol method to the problem pre-
viously treated by the method of Poincaré in Section 49. Consider again
Equation [30.9]. Here we shall let 8 = upB,, v = uy,, and 6 = ud,, where u
i1s a small parameter.

v+ v o=pB + 2y — 360°)0 [54.1]
where S8,,7,, and 4, are positive.

In this case f(v,%) = (8 + 2yv - 36v%)v. Using the first equation
[52.9], we have

¢ (K)= + ——f(ﬁ + 2yKcosu — 36K%cos®u) K sin w sinu du [54.2]

in which the generating solutions v = K cos 4, v = - K sin u are substituted.
We obtailn

x 2x 2x
¢(K) = ziﬂ[ﬁl{fsinzudu + 2yK26fcosusin2udu — 36K3fcos2u sin’u du] [54.3]
0 0

Since
o Ty sin®u 1>
fsinzudu = 7, Jsin ucosudu = [ 3 ] =
0 0 0
and

2x 2x 2%

2 .2 4 3 T

cos  usin‘udu = sinfudu — sm udu = T — ik 1
0 0
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we have

3 2
o) = L(px -2 _ K(p 30K RS
By the first equation [52.8], the condition for the existence of a
limit cycle is ¢(K) = 0. From Equation [54.4] this takes place for K, = 0
and K, = 35"
For K, = 0, the limit cycle reduces to one point, the singular
point. The radius of a finite limit cycle is thus

—1/48
K, =}/32 (5%.5]

In order to ascertain that there is actually a condition of self-
excitation, one has to prove that the singularity is unstable and the limit
cycle is stable, see Section 29. For the proof of the first point, equations
of the first approximation in the sense of Liapounoff must be formed.

The system equivalent to Equation [5%4.1], upon dropping the non-
linear terms, is v = y and y + v = uBy, that is

b =y; g=—v+upy [54.6]

The characteristic equation is S% - uB8S + 1 = 0 whose roots are

1
_ﬂﬁiuﬂvf—mgf

L2 2

S

Since u is small, it is seen that the roots are complex, with a positive real
part. Therefore the singularity is an unstable focal point from which the
spiral trajectories unwind themselves approaching the limit cycle K, = %%,
provided it is stable.

In order to establish the stability of the limit cycle K, = V@%?,
it is necessary to ascertain the sign of ¢éx(K,). One finds

o (K,) = %(ﬂ —38) < 0

The 1imit cycle is thus stable.

In this discussion it has been assumed that the coefficients 8, v,
and ¢ entering into Equation [54.2] are pusitive. By walving this assumption
one could analyze additional cases following the same procedure.

It is of interest also to investigate the second equation [52.8],

which concerns the frequency of oscillation,-%%.
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The function ¥(K) in this case is

Y(K)= —Zﬁ f(ﬂ + 2yK cosu — 386K cos’u) Ksinu cos udu [54.71]
0
Developing it, we find

2x

Y(K) = ﬁ[ﬂK(! sinucosudu + 27sz'sinucoszudu - 361(30 cos3usinudu] [54.8]
Each of the integrals appearing in the above expression is zero so that by
the second equation [52.8] % = 0. This means that in the phase plane the
radius vector of the representative poilnt rotates around the origin with a
constant angular velocity, and the frequency correction is zero to the first
order.

In order to investigate the varlation of K as a function of time,

the first equation [52.8] must be integrated upon substituting for ¢(K) its
value given by [54.4]:

$(K) = mK — nK®
where m = g and n = %i This gives

4K _1 __dK __ _ ..
mK —nK® m K(1— pK?) #
where p = ;’;—= i%
dK dK pKdK

Kd-pK) K T 1—pk? _ ™Kl

That 1s, d log K- d[3 log(1 - pK*)| = mudt, or

d(log—u,_i—,—“‘ﬁ—) = mudt

which, upon integration, gives

K _ K, _
g = prT T leyT—pxr — Mkt

or
g [54.9)
1— pK? 1- pK; :
Finally,
K,

K [54.10]

T M1 - pKDe ™ 4 pK?



I

For t =0,K =K, = V%‘L‘? and for ¢t » - «, K> 0, which means that, for in-
creasing ¢, the radius vector K increases from zero and approaches the value
K, = l/ﬁglon the 1imit cycle. Furthermore, for ¢ » + <, K = K, which shows
that the 1limit cycle is stable.

In order to eliminate the operation with infinities inherent in
the asymptotic nature of the process, one can select instead of K and K, in
Equation [54.10] certain initial and final values K’ and K, slightly re-
moved from the unstable focal point and the stable limit cycle respectively.
In such a case Equation [54.10] can be used for numerical calculations with
a view to ascertaining how rapidly the self-excited oscillatory process
builds up as a function of time.

It is interesting to note that the terms with y, €, --., corre-
sponding to the even powers in the approximation of the characteristic by a
series expansion, disappear from Expression [54.10] for the radius of the
limit cycle in the first approximation, as was noted in connection with the
vanishing of the term 2y1({£bsin2u cosu du in Equation [54.8].

The inverse passage from the phase plane (a,b) of Van der Pol
to the ordinary phase plane (z,y) yields the expressions z = Kcos ¢ and
y=1a=-Ksin t, where K is given by Equation [54.10].

The conditions of self-excitation considered above represent the
so-called "soft" type of self-excitation. Topologically, it corresponds to
the existence either of an unstable singularity surrounded by a stable limit
cycle or of a stable singularity within an unstable 1limit cycle, see Section
29. The first case represents the building up of oscillations asymptotically
approaching a stable limit cycle; the second, an asymptotic disappearance of
the oscillatory process. If, however, between an unstable singularity and a
stable 1limit cyecle an unstable 1limit cycle exists, one is then concerned with
the so-called "hard" self-excitation of oscillations. This subject has al-
ready been studied in Section 51 in connection with the theory of Poincaré.

It was shown that the characteristic in this case has an inflec-
tion point; in its approximation by expansion in a power series, one has to
retain a term ev® with a negative sign. Since even terms do not have any
effect on the determination of 1limit cycles, one can drop them from the equa-
tion. Under these conditions, Van der Pol's equation becomes

¥+ v = uB + 360 — 5mv*) 9 [54.11]

. In this case f(v,?) = (B + 36v% - 5nv*)9 and

f(Kcosu,— Ksinu) = —(8 + 36K % cos’u — 5nK*cos'u) K sinu
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From this, by the first equation [52.9], we get

2x 2r 2x
$(K) = ;—n[fﬁKsinzudu + f36K3cos2u sin‘udu —f5r)K5cos4u sinzudu]
0 0 0
Kr ¥, , R
- [stin udu + 30K fcosQusinzudu — 5nK fcos“u sinzudu]
0 0 0

Il

The values of these definite integrals are

2x 2x 2x 2x

fsinzudu = 7; fcoszu sinzudu =fsin2udu — fsin4udu =7 - 8 ,p=T
0 0 0 ) 4 4
2x 2x 2x
fcos4usin2udu =fcos4udu —fcossudu = in - 3—£7r =X
b 0 0 4 "6 8
This gives
K
¢(K)—-2—(B+—6K —gnK) 0 (54 .12]

as the condition for limit cycles. It is assumed that B8, y, and n are posi-
tive. One root is clearly K= 0. Following the same procedure as before
and making use of Liapounoff's equations of the first approximation, one finds
that the singularity is an unstable focal point.
The 1imit cycles proper are given by the quadratic equation
5,82-34s-g=0 [54.13]
8 4
where S = K% Only positive roots are to be considered because S = K? is
essentlally positive. Equation [54.13] can be written as

- LI P - _ @ _ ¢ _ ey _ &
B =gns’ =588 =ps" —¢5 = p’s’ S + 15 4p—(pS 2p) e
where p? = %17 and ¢ = %6.
If this equation is rearranged,
' g \[
(5+ %) = |pls - 5%)] [54.14]

- Equation [54.14] represents the parabola (8 - 8,) = p*(S - S,)2,
as shown in Figure 54.1. If we change the (S,ﬂ)-axes to a new system of axes
(Sy,8,) with a new origin at (8, = - Eq—y S, =% ), Equation [54.14] becomes

— 2
B, = p*S
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The second root corresponds to J
the 1limit cycle K, = Vg‘é and the first L/S,K:
one to an unstable focalnpoint which can s, = |A -
be ascertained as explained in the be-
ginning of this section. 53
For B < 0, that is, to the S0 Vg;
left of the origin O, the roots of the .
gquadratic equation p3S% - ¢S - 8 = '
are o' 0 =4
]/ 2 2
%ﬁ=qi qzémw Figure 54.1
They are real and positive only as long as ¢? - 4|B|p? 2 0. They correspond

to the points S, and S, of intersection of the parabola with the straight
line 8 = constant. The condition for a double root is IBOI —'Eig, at this
value of the negative B, the value of the root is S, §——. The tangent to
the parabola at this point is vertical.

In the region 0’0, where two roots exist, there are two limit
cycles, K, = VS, and K, = ¥S,. The first is unstable and the second stable.

To illustrate this point, differentiate Equation [54.12] with re-
spect to K.

Mm=§+%xﬂéﬁﬁ=%+ s—%%z [54.15]

It is sufficient to substitute into this equation the values of the roots S,
and S, for B in the 1nterva1 (0, - ¢2/4p?), since the curve does not extend
to the left of B = - 4 7 and has only one root to the right of ﬁ = 0., Con-
sider, for example, the middle value in this interval, ﬁl = = é%g. The cor-
responding roots are

Siz = goa(1 £ )1~ =)

that is, S, = 0.293¢/2p® and S, = 1.707¢/2p>.

Substituting these values in Equation [54.15], in which B8 = - g%a,
one finds, after a reduction, that ¢'(K;) > 0 and ¢ '(K,) < 0. Hence the limit
cycles on the lower branch S; of the parabola are unstable and on the upper
branch S, they are stable. If B varies now from negative values and reaches
the point O', there is no self-excitation throughout the range 0’0 since the
unstable limit cycles S,, interposed between the stable focal points situated
on the B-axls and the stable limit cycles S,, act as a barrier preventing the
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self-excitation from developing, see Chapter IV. As soon as Point O at
which the unstable limit cycle disappears 1is reached, the stable limit cycle
K, = l/g% is reached abruptly; if B is still further increased, the ampli-
tude of the limit cycle increases continuously, the representative point S
following the upper branch of the parabola to the right of Point A. If,
however, B is decreased, the amplitude of the stable limit cycle follows the
upper branch S, until the point SO(BQ = %l/gg) is reached. Here the self-
excited oscillation disappears abruptly. As previously mentioned, see Sec-
tion 51, this type of self-excitation is called hard.

It i1s apparent that the theory of Van der Pol gives exactly the
same results as the theory of Poincaré.

55. EXAMPLE: EQUATION OF LORD RAYLEIGH; FROUDE'S PENDULUM
In his researches on the maintehance of vibrations, Lord Rayleigh
(14) came across the following equation

mi — (a— Bi) & + Kz = 0 [55.1]

in which there is a predominance of negative damping for small values of the
velocity ; for larger velocities the damping becomes positive. By introduc-
ing "dimensionless time," as was explained in Section 30, Rayleigh's equation

can be put in the form

P4 2+ uf(x,s) =0 [55.2]

Assume that the damping terms are small enough to Justify the intro-
duction of the small parameter u. In Rayleigh's equation f(x,xz) = f(2) =
mi® - n&, where m and » are constants appearing instead of « and B as the re-
sult of the transformation of the independent variable. One has finally

¥4+ x4+ ulmz® —ni) =0 [55.3]

where m > 0 and n > 0.
By Equations [52.9], the functions #(K) and y(K) are

2r 2r
L itude - L Fotitgy Ll 3 o
MK)—szmenudu 2anKsmudu—-2K%m 4nK) [55.4]
and
1 2r 3 3 1 2x
W(K) = e Oan sin” wcos udu — meKsmucos udu [55.5]
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From Equation [55.4] we see that the conditions for limit cycles are

im
K=0, K=}~ [55.6]
The first value K= 0 1s clearly a point singularity. If the non-
linear term mz® is omitted, Liapounoff's equations are t=y and y-ny + 2 = 0.
From this we obtain the characteristic equation S? -nS + 1 = 0, whose roots
are '

For n < 2, one has an unstable focal point, and for » > 2, an unstable nodal
point. In both cases the point singularity K= 0 is unstable.

In order to ascertain the stability of the 1limit cyecle K = vgg% one
must differentiate Equation [55.4] with respect to K

, 9
$'(K) =3 — gk’ [55.7]
Substituting l(2=-%%%1n this expression, one finds

The 1limit cycle is therefore stable. The oscillating system gov-
erned by Rayleigh's equations, [55.1] or [55.3], thus exhibits the property
of being self-excited in a steady state. If the dissipative terms were of
the same sign, that is, of the form *(mz + nz®), there would be no limit
cycle in this case, as 1s easily ascertained, although the oscillation would
still be governed by a non-linear differential equation of a dissipative
type. The example of Section 31 belongs to the case considered in this sec-
tion.

. It can be shown that the oscillatlion of Froude!s pendulum, see
Section 8, is also governed by Rayleigh's equation. In the elementary theory
of this phenomenon it was established that the damping 1is initially negative
under certain specified conditions. A linear equation does not represent the
actual phenomenon because when the coefficient of é 1is negative it indicates
that the amplitudes of oscillation increase indefinitely, which is clearly
impossible from physical considerations. The reason for this inconsistency
is the fact that the equation was overlinearized by dropping the non-linear
terms.

By conserving at least the first two non-linear terms, we shall be
able to establish the existence of a finite limit cycle, characterizing the



46

steady state of oscillation of Froude's pendulum which is actually observed.
Expanding the function M(w - ¢) of Section 8 in a Taylor series, we have

12 :3

¢Mm»~%M%m+~- [55.8]

M(w—$)=M(w)—¢§M'(w)+§ '

Here we assume that the function M is analytic, that is, that it admits de-
rivatives at least as an idealized feature of the observed phenomenon.

Dividing Equation [8.1] by I, introducing dimensionless time, and
keeping only the first two non-linear terms in the expansion, one obtains an
equation of the form

¢+ ¢ =—céd+kd’ —nd’ (55.9]

where ¢ = b + M'(w), and k and » are suitable constant coefficients obtained
by substituting the expansion [55.8] into Equation [8.1]. It must be noted

that ¢ 1s negative according to what has been stated in Section 8. Putting

¢ = -m, Where m > 0, one has

¢+ ¢ =mé+k*~nd’ = um¢ + k ¢* —ng"

whence

F@) =96 +kd - ng’
and
sin¥) = m Ksinu + sin 4 —n sin u
Hence
1 b 2 22' 3 Gr
o(K) = ~om [lefsin udu + lefsin udu — angjsin4udu:'
0 0 0
that is,
1 3 3

The equation for limit cycles is

K(ml—%an2)= 0 [55.10]

The solution K = 0 corresponds clearly to a point singularity, and

the amplitude of the limit cycle is K= 3%%. One can calculate m; and n,

explicitly from the equations of transformation of the original equation to
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its form involving dimensionless time. It is to be noted that the quad-
rg}ic term disappears from Expression [55.10] for the limit cycle because
f sin®u du = 0, a fact which has already been noted in Section 54,

(]

56. MORE GENERAL FORMS OF NON-LINEAR EQUATIONS

The Van der Pol method 1s applicable also to non-linear equations
involving, in addition to variable damping, a variable "spring comstant." It
must be noted, however, that the existence of self-excited oscillations, that
is, of 1limit cycles, depends only on the conditions of the variable damping,
as was shown by Van der Pol (15) and generalized later by E. and H. Cartan
(16) and Liénard (17). In fact, the initial damping, for small z in the
Van der Pol equation or for small z in the Rayleigh equation, is first nega-
tive then positive for larger values of the corresponding variable (z or z).
Physically this means that there exists, initially, an energy input into the
system which, in later stages of motion, becomes an energy drain from the
system, which then becomes dissipative. The existence of a steady oscilla-
tion, that is, of a limit cycle, depends thus on the average equality between
the input and the drain per cycle. We shall come back to this important point
later in connection with the Principle of Equivalent Balance of Energy formu-
lated by Kryloff and Bogoliuboff. Conslder, for example, a more general type
of equation

mi +(na® — a)i + Bz + pzt = 0 [56.1]

which has variable damping, the term nz%t, as well as a variable spring con-
stant, the term (8 + yz)z. As long as the terms (nz®? - a)z and yz? are small,
we can write this equation in the form

mi + Bx = u[(al - nx)E - ylxz] = ug(x,&) [56.21

We can easily reduce this equation to a form previously considered. It is
sufficient to divide it by m, putting 8/m = w,?, and pass to a dimensionless
independent variable* in order to obtain the equation in the usual form

¥4+ or= u[(ao— nox%):b — yoxz] = uf(x,2) [56.3]

#* The last operation, although convenient for practical calculations, is not altogether necessary. In
case one does not use it, the generating solutions should be taken in the form K cos wt, - Kw sin wt

instead of Kcos t, — Ksin ¢.
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and to substitute the generating solutions K cosu and - K sinwu into the first
equation [52.9] giving the 1limit cycles. The same procedure applies to the
generalized Raylelgh equation with the variable spring constant.

In all cases the existence of limit cycles requires that the coef-
ficient of & satisfy the conditions of Cartan-Liénard. If this condition is
not fulfilled, no self-excited oscillations can exist in a steady state, and
the system behaves as purely dissipative, while still non-linear.



CHAPTER X

THEORY OF THE FIRST APPROXIMATION OF KRYLOFF AND BOGOLIUBOFF*

57. INTRODUCTORY REMARKS

The method of Kryloff and Bogoliuboff is very similar to that of
Van der Pol and is related to it in the following way. While Van der Pol
applies the method of variation of constants to the basic solution z =
a cos wt + b sin wt of ¥ + w?x = 0, Kryloff and Bogoliuboff apply the same
method to the baslc solution z = a cos (wt + ¢) of the same equation. Thus
in Kryloff and Bogoliuboff's method, the "varied" constants are ¢ and ¢ (polar
coordinates), while in Van der Pol's method they are a and & (rectangular
coordinates). The method of Kryloff and Bogoliuboff seems more interesting
from the point of view of applications, since it deals directly with the
amplitude and phase of the quasi-harmonic oscillation.

Before proceeding with a review of the method of Kryloff and
Bogoliuboff, a few additional remarks concerning the effect of secular terms
may be helpful.

58. EFFECT Of SECULAR TERMS IN SOLUTIONS BY EXPANSIONS IN SERIES

The difficulty arising from the appearance of secular terms has
already been mentioned in Sections 44 and 46. In the example given in Section
46 that difficulty was avoided by a rather delicate change from the "old"
periods to the "new," or corrected, ones. This change requires a knowledge of
the correction for the period, which is not always obtainable as has been dem-
onstrated. Unfortunately, in a great majority of cases in which the approxi-
mation consists in abbreviating an infinite series by a few terms, the situa-
tion is still more difficult.

In order to see this point, consider again a quasi-linear differen-
tial equation of the form

¥+ oz + uf(z,z) =0 [58.1]

where u is a small parameter, i.e., ¢ << 1. Since the non-linear term appears
with a small coefficient u, Poisson suggested as a solution an expression of
the form

x=xo+u%+u%ﬁ-”- [58.2]

* The subject matter of this and of the following two chapters is taken from the treatise of Kryloff and
Bogoliuboff, Reference (5). This subject is also treated in the free translation by S. Lefschetz of the
Kryloff-Bogoliuboff text, Princeton University Press, 1943.
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For u = 0, z = »5, = a cos wt 1s the known generating solution. For 0< u << 1,
it seems logical to consider the effect of the non-linear term uf(x,z) as a
small perturbation and to assume that this perturbation will also be felt in
the modification of the initial generating solution represented as a power
series of u, given by Equation [58.2]. The method of Poincaré, Chapter VIII,
1s, in faet, a further generalization of Poisson's method.

If one substitutes the solution [58.2] into the differential equa-
tion [58.1], limiting the expansion up to the power uX of the small parameter,
. one obtalns the following series of differential equations by equating terms
containing the same powers of u:

. 2

x, + w x, = 0

.. 2 .y

xl + w xl = —fl(xo,xo) [58‘3]

.. e _[_ . N
¥, + wxz—-[ LQ@mel+_g(qpxny

This procedure has already been outlined in connection with Equations [U6.5]
of the theory of Poincaré. It is easy to show, however, that a direct appli-
cation of this method is handicapped by the following difficulty.

' Consider, for example, the simplest case, that in which f(x,z) =
+ zw. In this case Equation [58.1] is

5c'+w2x+,uwa'c=0

The exact solution of this equation is

z = Ae_“%cos[(w\/l — %)t + ¢] [58.4]

where A and ¢ are the constants of integration determined by the initial con-
ditions. If, however, one proceeds by substituting the expansion [58.2] into
Equations [58.3], the first equation gives

z, = Acos(wt + ¢)
Substituting this solution into the second equation [58.3], one has

E o+ wle = —fw= Aw’sin(wt + ¢) [58.5]

This equation is satisfied by

wi cos(wt + @) [58.6]

n=-
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Substituting these values for xz, and z, into Equation [58.2], one has

z = A1 —“—‘;t)cos (wt + ) (58.7]

It is clear that the amplitude of the approximate solution [58.7] increases
with time ¢ indefinitely, whereas, according to the exact solution [58.4], it
approaches zero, owing to the presence of the exponential term e"ﬁgi

As a second example, consider the differential equation

¥+ w2+ pz®) =0 [58.8]

which may be considered as the equation of motion of a mechanical mass at-
tracted to the position of equilibrium by a force proportional to the dis-
tance, with a perturbation term proportional to the cube of the distance.

Proceeding as before and seeking a solution of the form z = z;, + ux,
one has *

s 2 _
x0-+ A 0

(58.9]

. 2 _
x1+ A A

From the first equation [58.9], z, = A sin(wt + #). Substituting
this value for z, into the second equation, one has

¥ + w2xl = —wA%in*(wt + ¢) = —%w2A3sin(wt + ¢) + %wZAgsin3(wt + @)

This equation is satisfied by

3

wtA’cos(wt + ®) —ﬁl—sin 3wt + @)

ne 32

1

oo |

whence

3
v = Asin(wt + ¢) + Fowtheos(wt + @) AR G st + ) [58.10]

8 32

The second term of this expression is a secular term. Thus, this
expression for the displacement has no physical meaning. Unfortunately, in
this case the exact solution is not known, as Equation [58.8] is not linear.
One can, however, affirm the correctness of the above statement by invoking
the law of conservation of energy, which holds 1n this case since the system
is conservative. In fact, multiplying Equation [58.8] by x, one can write

1 .2 1 22 W' 4
> £ x)=0

2, 2 | d(1 1
x[x+(1+ um)wx}— dt(zx +2wx +———4
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From this we can obtain the law of conservation of energy

%'2 +%w2x2+'uTw2x4=constant= E [58.11]
From this equation it follows that, for u > 0, the square of the amplitude z?
has an upper bound 2E/w?. This result is to be expected, as the system has
no sources of energy and 1s conservative. Hence there is a definite contra-
dietion of Equation [58.10].

From these two examples, we see that the direct application of
Polsson's method to problems of dynamics encounters a serious difficulty be-
cause of the presence of secular terms.

59. EQUATIONS OF THE FIRST APPROXIMATION
In this section we propose to establish the fundamental points of
the theory of the first approximation of Kryloff and Bogoliuboff, which will
play an important role in subsequent chapters.
For u = 0, Equation [58.1] reduces to a simple linear equation
whose solution is
z = asin(wt + ¢); z = awcos(wt + @) [59.1]

where a and ¢ are constants, the amplitude and the phase respectively. For
a quasi-linear equation when u # O but is small, it appears logical to retain
the form of solutions [59.1], provided that we consider the quantities a and
¢ not as constants but as certain functions of time to be determined.
Differentiating the first equation [59.1], one obtains
& = asin(wt + ¢) + awcos(wt + ¢) + adcos(wt + @) [59.2]

Making use of the second equation [59.1], one has

i sin(wt + @) + adeos(wt + ¢) = 0 [59.3]
Differentiating the second equation [59.1], one gets
¥ = qwcos(wt + ¢) — aw’sin(wt + @) — awd sin(wt + ¢) [59.4]

Substituting these values for z, z, and % into the original quasi-linear equa-
tion [58.1], one has

dw cos(wt + ¢) —awdsin(wt + ¢) + ,uf[a sin(wt + @), aw cos (wt + ¢)] [59.5]

Solving Equations [59.3] and [59.5] for a and ¢, one gets

a = —%f[asin(wt + ¢),awcos(wt + q‘))]cos (wt + @) (59.6]
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é = ﬁf[asin(wt + ¢), awcos(wt + ¢)j’sin(wt + ) (59.7]

It can be seen that the original equation [58.1] of the second
order has been reduced to a system of two equations, [59.6] and [59.7], of
the first order. The interesting feature of this transformation lies in the
fact that these first-order equations are now written in terms of the ampli-
tude and phase as dependent variables. One notes a formal analogy with Equa-
tions [52.8] of Van der Pol and also with Equations [46.22] and [46.23] of
Poincaré.

From the form of the right side of Equations [59.6] and [59.7], it
is seen that both d and ¢ are periodic functions of time. From the fact that
the right-hand terms of these equations contain a small parameter u, one can
conclude that both a and ¢, while being periodic, are functions which vary
slowly during one period T = 2m/w of the trigonometric functions involved.

It is reasonable, therefore, to consider a¢ and ¢ as constant during
one period T. It is possible to transform Equations [59.6] and [59.7] into a
more convenient form. For this purpose, consider the Fourler expansions of
the functions

flasing, aw cos ¢)cos ¢ = K,(a) +2w' [Kn(a) cosng + L, (a)sin nq&]
n=1

(59.81]
flasing, awcos @) sing = P, (a) +2[I; (@) cos ng + Q,(a)sin nqs]
n=1
where
27(
K,(a) = ziff(asin@awcosqb)cos odo
To
1 2r
Pya) = 2—”Jf(a sing, aw cos ¢) sin pd ¢
b
L&
K (a) = ;ff(a sin ¢, aw cos ) cos pcos nPpd ¢
" [59.9]

2
L, (a) = %ff(a sing, aw cos @) cos ¢ sin npde
0
1 27
P la) = ;ff(asinq&, aw cos ¢)sin ¢ cos npde
h)

27!‘
Q,la) = %ff(a sing,aw cos @) sing sin npd @
0
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Equations [59.6] and [59.7] can then be written in the form

da

0= —%Ko(a)~£§[1{"(a)cosn(wt +¢) + L, (a)sinn(wt + ¢)]

(59.10]

_g.:_s = ;I%R)(a) +£§[Pn(a)cosn(wt + ¢) + Q,(a)sinn(wt + ¢)]

Integrating these equations between the limits ¢ and ¢ + T, and considering
a(t) and ¢(¢) as remaining approximately constant in this interval, one has
as the first approximation )

alt + T)— alt) _
T

gt + T) —d(t) _ u
a

—fKo[a(t)]; - — Po[a(t)] (59.11]

since

t+ T t+ 7T
fcosn(wt + @)dt = fsinn(wt + ¢)dt = 0
t t
Furthermore, since, by assumption, the variations Aa and A¢ of
amplitude and phase are small during the interval (¢, ¢+ T), one can write
Equations [59.11] to the first approximation

da
dt

- - £k, Z_ji - £ P [59.12]

If these equations are compared with the exact equations [59.10], it is seen
that the equations of the first approximation are obtained from the exact
equations by averaging the latter equations over the period, thus eliminat-
ing the rest of the Fourier series under the summation sign. The analogy be-
tween Equations [59.12] and the "abbreviated" equations [52.6] of Van der Pol
should be noted.

Letting ¥ = wt + ¢, the total phase of the motion, we have dy/dt =
w + dg/dt. Making use of these relations and the relation for Ky(a) and P,(a)
in [59.9], we obtain for the equations of the first approximation

2

g—?— = — % %Off(asin;b,awcosm cosp dgp = d(a) [59.13]
2

%% = w-+é%—g;JjTaﬁn¢,awam¢)ﬁn¢d¢ = Q(a) [59.14]

The first approximaﬁion will then be x = a sin ¥, where the ampli-
tude a and the phase ¥ are obtained from Equations [59.13] and [59.14].
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60. NON-LINEAR CONSERVATIVE SYSTEMS
Consider again a quasi-linear differential equation

7 +w2x+uf(x)=0
in which f(xz) does not contain the velocity #. Equation [59.13] gives

2ﬂ'
Z—? = —Zfr—woff(asinrﬁ)comﬁ d¢ [6Q.1]

and Equation [59.14] gives

2r

g—tw— = w + 27rﬂaw Off(asingé) sing d¢ (60.2]

Noting that

2 2n
‘ ff(asin¢)cos¢ d¢ = %x/x(asinqﬁ) =0
. 0 0
where yY(z) = L f(&)d¢, Equation [60.1] gives a¢ = constant. Hence, from the
first approximation, it follows that the amplitude does not change in the
course of time; the system is thus conservative. This can be seen from a pri-
ori considerations, because the function f does not depend on the velocity =,
whereas dissipative forces generally do depend on z.
From Equation [59.14] it follows that

Y = 2@t + ¥, [60.3]

since 2(a) does not depend on ¢ in this case; Y, is a constant of integration.
Thus, the oscillations will be of the form

x = asin[Q(a)t + wo] [60.4]

Therefore, to the first approximation, the effect of a non-linearity of this
type will be felt only in that the frequency of oscillation will depend on
the amplitude a, that is, the oscillations are not isochronous, but the dec-
rement of oscillation is zero since the system is conservative.

Squaring Equation [59.14] and neglecting the term of the second
order in u, one has

2r 2

2 .
Q%a) = o + ;‘%Jf(a sing) sing d¢ = ;lg[wzafsinzqs d¢ + uoff(a sing) sing d¢]

0

27( 2

=<£ZJWFFaﬂn¢-Fuflaﬁn¢ﬂﬁn¢d¢ -1 fF%a$n¢)ﬁn¢d¢ [60.5]

0 Ty
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where
F(asing) = w’asing + uf(asing) (60.6]

On the other hand, the general form of a non-linear equation, in which the
non-linearity is only in the spring constant, is of the form z + F(z) = 0.
If the term F(xz) is not far from linearity, it can be written as F(z) =

w?z + pf(z), where f(z) 1s the non-linear component of F(z). Comparing this
expression with Equation [60.6], one finds exactly the same result provided
one substitutes the generating solution a sin ¢ for x. From this we obtain
the following theorem:

When a system is conservative but not linear, the amplitude ¢ remains constant and
the frequency 2(a) is given by Equation [60.5], in which F(z) is the term entering into the equation
Z + F(x) = 0, without the necessity of splitting it into a linear component w?xs and a non-linear
one, uf(x).

In the following section examples are given illustrating the appli-
cation of the theory of the first approximation.

61. EXAMPLES OF NON-LINEAR CONSERVATIVE SYSTEMS
A. PENDULUM

The differential equation for a pendulum is 6 + %—sin ¢ =0. In
elementary theory, which we may designate as an approximation of zero order,
it is assumed that for small angles sin 6 =~ 6. The well-known solution for
the period, T = 2n'V£7Z; is obtained. It 1s to be noted that oscillations
are isochronous under this assumption.

For the first approximation we %an take sin 6 =~ 6 - %?; the differ-
ential equation then becomes 6 + w2(6 - %;) = 0, where w? = g/L. Using Equa-
tion [60.5], one obtains

2 2r

Q%a) = ;’—aoj(a sing —

3 .o
a smg¢

)gn¢d¢

2 2x 3 2r 2

= %[aofsinzqﬁ d¢ — %Ofsin“gzs d¢} = w2(1 - %—)
that is,

.Q(a)=w|/1—g§2—zw(1——1(%) [61.1]

or, in terms of the period

T(a) = T@_+-QJ [61.2]

|
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It is thus seen that the oscillation is not isochronous; the period
increases slightly with increasing amplitudes of oscillation.
Thus, for example,

for amplitudes of the order of 10 degrees, T(a) = T x 1.001;
for amplitudes of the order of 20 degrees, T(a) = T x 1.006;
for amplitudes of the order of 30 degrees, T(a) = T x 1.014.

It should be observed that, although the expression for the period
can be established in this case by means of elliptic functions, the theory of
the first approximation leads to this result by a more general procedure.
Furthermore, the latter method easily leads to correct results in more compli-
cated cases for which exact methods are not available.

B. TORSIONAL OSCILLATIONS OF A SHAFT
Let J, and J, be the moments of inertia of rotating masses placed at
the ends of a shaft S, see Figure 61.1. If 6, and 4, are the two angles de-
termining the angular position of the masses J,

and J, with respect to a fixed reference angle, J, Jp
the torsional moment M is a certain function of
the difference (6, - 6,), say C(6, - 6;) =M(6).* S
The differential equations of the coupled
system are
Jl.él + C'((?1 — 92) =0 and Jzéz - C(Gl -6, =0 Figure 61.1

Subtracting the second equation from the first and
letting 6 = 6, - 6,, we obtain

JJ,6 + (J, + J,)C(8) =0 [61.3]

which is the non-linear differential equation of the torsional oscillation of
the system.

Equation [61.3] can be written as 6 + K*C(6) = 0, where K% =
(J, + J,)/J,J,. Assume that C(6) is of the form C(6) = Cy6 + C,6°, where
C,6% 1s a small non-linear term. From this,

F(6) = K’C,6 + K’C,6° = m6 *+ n6®

and the frequency is given by

2
Q%a) = ;Tlgof(ma sing + na’sin’g) sing dg = w02 + %K C.a

% (6, - 6,) in these notations should be read: C is a function of (6; —- 6,), and not C times (6, - 62).
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3 KzCla2

2(a) = wo(l + 3 T)
The non-linear frequency (and therefore the period) will thus depend on the
amplitude. The amplitude of the vibration is constant, but the vibration is

not isochronous.

C. ELECTRICAL OSCILLATIONS OF A CIRCUIT CONTAINING AN IRON CORE
Let a circuit be composed of an inductance L and a capacity C with
negligible resistance. The inductance coil is wound on an iron circuit A, see
Figure 61.2, subject to magnetic saturation.

( ) The conditlon of equilibrium of electromotive
— forces in the circuit gives
b
q ¢ 1
L b —_—cC a®e 20 -
g dt+06fzdt 0
b
A where ¢ 1s the totalized flux through the coil.
(. J

The condition of saturation can be approximated
Figure 61.2 by the equation ¢ = A + Bé®, whence from the
preceding equation one has

3
A2 LB _ [61.4]

Equation [61.4] is the non-linear equation of oscillation. Reducing it to
the standard form of a quasi-linear equation, where A/C = w? = constant, and

assuming that the ratio f§¢2<x 1, one can apply Formula [60.5] and obtain

o +

3Ba2)

2r
Q%a) = #J(Aasingﬁ + Ba’sin’@)sing d¢ = %(1 + 4

2 ——
(a) = w‘/l + 35: ~ w(l + %BT‘I-) [61.5]

The actual frequency 2(a) is thus increased in comparison with the frequency
w for small amplitudes, owing to a decrease of L with the amplitude a of the
oscillation. Thus the oscillation is non-ioschronous.

that 1is,

62. SYSTEMS WITH NON-LINEAR DAMPING OF A DISSIPATIVE TYPE
Consider the differential equation

mx + Ke + f(z) =0



59

Dividing it by m and putting K/m = w®, we get
. 2 1 .
T+ wzr+ —f(z)=0
m

We shall keep within the limits of the quasi-harmonic theory. 1In this case
)—ﬁ f(z) plays the role taken by uf(x,z) in the general theory. The expressions

2x 2x
Jf(a sing, aw cos @) cos¢ d¢ and ff(asinq&,aw cos @) sing d¢
0 0

entering into Equations [59.13] and [59.14] of the first approximation, in
this case are

2x

o ,
ff(aw cos@) cosgp dp and ff(aw cos¢@) sing d¢
0

0

respectively, since f(x,x) reduces to f(z).
We note that

2r 2 2%

Jf(awcos¢)sin¢ d¢ = — ff(awcosd))d(awcos:ﬁ) = — i P(awcosg) = 0
0 ]

1
0w
0

so that, by Equation [59.14],
W _ . [62.1]

Furthermore, Equation [59.13] can be written as

2
da _ a = — 1 ff(awcos¢) cos¢ d¢ [62.2]

dt 2rmw b

It 1s clear that the instantaneous frequency dy/dt 1s equal to the constant
"linear" frequency w, and the amplitude a varies according to Equation [62.2].
Thus, the oscillation is generally of the form z = a sin(wt + ¥,), where ¥, is
a constant. The frequency is not changed since the frequency correction is
of the second order and therefore does not appear in equations of the first
approximation. A few examples given below 1llustrate the application of
Equation [62.2] to various types of non-linear damping f(z).

A. LINEAR DAMPING: f(z) = Az
In this case

2x 2x
Jf(aw cos@) cos¢p dgp = awAfcosZng d¢ = awhm
) 0
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and Equation [62.2] gives

whence

a = aqpe ™ [62.3]

Comparing this with the exact solution

At
r = age 2™ sin(w;t + ¥,)

where

one notes that the first approximation gives the same expression for the am-
plitude as the exact solution; the difference between the expressions for
frequency w and w,; is of the order of %(A/Vﬁﬁﬁ)z, that is, of the second or-
der, if A is of the first order, as previously set forth.

B. QUADRATIC DAMPING: f(z) = ba? )
Since f(z) is an even function of z, and from physical considera-
tions it should be an odd function of #, we should write the above expression
as f(z) = blz|lz. In this case

3

N

2x 2
ff(awcosqs)cosqb d¢ = bazwzf
0 0

2 2x
cos¢| cos2¢ d¢ = ba’w? [J cos’p dop + fcos3¢ d¢ —
0 3m

3
2
- fcos3¢ d¢} = bazwz[% + 2 + -4—} = %baztf
3
From Equation [62.2] we get

dbwa’®
3mm

d 1 F
Lo ff(awcos¢)cos¢ d¢ = —
0

dt 2rmw

that is,
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From this, on integrating, we obtain

1 1 4bwt a
- - — = or ¢ = — 2% [62.4]
a a, 3mm 4bwa,
1 + —¢
3mrm

It is seen that the law of variation of the amplitude with time in
this case is entirely different from that given for Case A.

C. COULOMB DAMPING: f(z) = A sgn(zx)*
From this equation

2r % 2z §2'11
Jf(awcos¢)cos¢ dp = A fcos¢ do + fcosq& d¢ — fcos¢ de| = 44
0 0 3m ud

2 2

b 2x
for a # 0. Furthermore, fo flawcos ¢) cosgpdp= 0 for a = 0. By Equation
[62.2]

da 2A

dt = — P if a #0
(62.5]
da .
TR 0 if a=20
Integrating the first equation [62.5], for a # 0, we get
2A
= q, — 62.
@ =a,- — ¢ [62.6]
The motion will continue as long as a, - ”—an—wt >0, and will cease for ¢; de-
fined by the equation a, = 24 t;. The motion thus lasts a finite time.

™MW

D. MIXED CASES: f(z) = az + Bz

In applications one frequently encounters differential equations
in which both linear and quadratic damping are present. Thus, for example,
Froude's differential equation for the rolling of a ship in still water is
I6 + K6 + K,6% + Who = O, where I, K,, K,, W, and h are well-known constants.
Likewise, the so-called "surge chamber" equation** in hydraulic engineering
is of the form ¥ + pz% + gz + yx = 0. Writing equations of this kind in the
form ¥ + w?x + uf(z) = 0, one has

¥ The symbol sgn(z) designates a discontinuous function defined as follows: sgn(z) = 1 for # > 0;
sgn(s) = - 1 for 4 < 0; and sgn(z) = 0 for ¢ = 0.

3% The writer is indebted to Dr. W.F. Durand for bringing this equation to his attention.
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3

2r 2 2 2x
Jf(aw cos¢) cos¢p dgp = aawfcos2¢ d¢ + Ba%{f cos3¢ d¢ + fcos3¢ d¢ —
) 0 0 3%
3
2 3 8 2 2
— f cos ¢d¢} = aqwnm + gﬂa w

2
From this

.1 8,22  [a 2]
a = 2mu{aaw7r+ 3Baw}— [2a+Sa

where S = Y4B8w/3m. Separating the variables

o
da —gd—a_gd(aS*}‘E)

o 2 o a o]

2a+Sa aS+2

we get
a —
d log S+g——5dt
2

Upon integrating and putting the constant of integration in the form C =
ao/(aOS + %), we obtain

a ao —%t
a - o ¢
aS + B a,S + )
or
a ay e_%t
2 a,S + o
_ 2
a = a Y [62.7]
1 —S———O—ae 2
aOS+ E

For t = 0, one finds a = a,; for S = 0, one finds a = aoe_%t, as 1n the case
of linear damping, Case A. It 1s seen that the presence of quadratic damping

causes a somewhat more rapld decay of amplitudes owing to the presence of the
2

70 ¢y
term SaOS+% e 2

in the denominator than is found with a pure linear damp-

ing. This fact is to be expected on physical grounds.
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63. SYSTEMS WITH NON-LINEAR VARIABLE DAMPING

By the expression "variable" damping occurring in this section, we
shall understand a damping which, for small values of the determining varlable
(either x or & as the case may be), 1s negative and becomes positive above a
certain critical value of the variable. Since negative damping means supply
to the system, and positive damping means withdrawal of energy from it, the
system considered here is non-conservative. Furthermore, stationary states,
or limit cycles, are possible when the average supply of energy per cycle be-
comes equal to its average dissipation.

According to the mode of production of the non-linear variable
damping, there exist two principal types of non-linear self-excited oscilla-
tions governed by the following equations, which are solved here by the meth-
od of the first approximation.

A. VAN DER POL'S EQUATION
The Van der Pol equation 1s

¥+ 2 —u(l -2z =0 [63.1]

We have f(z,%) = pu(z%z - #); furthermore, w = 1, hence f(a sing, aw cos¢) is
fla sing, a cos¢). Since x = a sing and # = a cosg, it follows that

fx,z) = p(a®sin®é cosg — acosd)
and
flasing, acosp) cosg = u(a®sin’¢@ cos’ep — a cos’e)

Whence, by Equation [59.13], we have

ﬂ__LZR . ——_#_.[ 323.2 ) B Pl ) ]
dt 2n(!f(“m¢’“°°s¢)°°5¢ dé¢ = — 57 |° Jsm ¢ cos’d do aofcosqsdqs
which reduces to
d 2
d_?=”—;(1—9;) [63.2]

Forming the expression foz’rf(a sing, a cos¢) sin ¢ dp, one finds that
it is zero. From this, by Equation [59.14], dy/dt = w = 1, that is,¥ =
t + ¥, where ¥, is arbitrary.

The solution of Van der Pol!s equation to the first order is then

of the form
x = asin(t + ¥,) [63.3]

where a is given by Equation [63.2].
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As we shall mention shortly, the interesting feature of this solu-
tion is the variation of the amplitude @ as a function of time. From the
preceding study of Van der Pol's equation we know that a limit cycle exists
in this case. We propose now to establish its existence by use of Equation
[63.2].

Multiplying both sides of Equation [63.2] by 2a, we have

da2 a2

dt ”a2(1 - T)

that is,
da’ _ a’ _
a2(1 _ _(ﬁ) d(log4 _ ag) = lldt

4
Upon integration, we obtain

2 a2

— 0
]og4 = log4 >y + ut [63.4]
a® ag .
Expressing this relation in the equivalent form T -a2 “§F < a? e’ and solv-
0

ing for a2, we get

ut
a, "’ age’
ot = 1 02 ¢ : ¢ = 102 ¢ [63.5]
1 +-4—a0(e” -1 ‘/1 + Zao(e” -1

The fundamental equation z = ¢ sin ¢ of the theory of the first approximation
is then

ut
2
aye

l/l + %af(e”l -1

It 1s apparent that Equation [63.6] describes the general nature of
motion previously investigated in connection with limit cycles. 1In fact, if
for t =0, a, = 0, x = 0. This trivial solution of the Van der Pol equation
is, however, unstable. For any finite @,, however small, the amplitudes in-
crease, approaching the value a(t) = 2 as a 1limit. In the phase plane as
t >+ «, the trajectory spirals toward the circle of radius a = 2 from the
inside.

x

sin(t + ,) = asin(t + y,) [63.6]
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B. RAYLEIGH'S EQUATION
Rayleigh's equation¥* is \
P4+ x4+ pu(—a+Bi)iE =0 (63.7]

In this case w = 1 and f(z,%) = - az + Bx3. Since f(z,z) = f(z) and w = 1,
the generating solution a cos ¢ must be substituted into f(Z) resulting in

2x 2 2x
ff(acosgb) cos¢ dgp = — aafcosng do + ﬂasfcos4¢ d¢ = — eam + %nb’a3
0 0 0
Hence, by Equation [59.13], with w = 1, one has
\ .
- Gl - 47) (63.8]

The system will reach the limit cycle when a = %Baz, from which the amplitude
of the limit cycle is a = Y4a/38. The radius of the limit cycle increases as
the ratio B/a decreases, which is physically obvious since for 8 = O the sys-
tem becomes linear and the amplitude, at least theoretically, increases in-
definitely, the damping then being negative.

To find the mode of approach to the limit cycle, one must integrate
Equation [63.8]. Following the procedure explained in Section 63A, one ob-
taing¥*¥

alt) = %o (63.9]
‘/1 + 3 gaoz(e‘m -1)

This gives a(t)t+“,=‘vua/35, which is independent of the initial amplitude «a,,
as required by the condition for a limit eycle.

# It is supposed that the original Rayleigh equation, mZ + Kz + (-4+Bz?)z = 0, has first been divided
by m and written as

'x'+w2x+(—é+£i‘2)5c=0
m m
where w? = K/m, after which a change of the independent variable brings it to the above form, with w =1.
#% In case Equation [63.7] is not reduced to a unit frequency and has the form
2+ Wz + (—a+ B2z =0

the generating solution should be taken in the form aw cos ¢ (instead of @ cos ¢), which finally results
in the following equation for a(t)

[63.9a]
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64. EXISTENCE OF LIMIT CYCLES; SYSTEMS WITH SEVERAL LIMIT CYCLES

Although the scope of the method of the first approximation has
been sufficiently ascertained from the previous sections of this chapter, we
now propose to introduce certain additional transformations of the form of the
fundamental equations [59.13] and [59.14] of this theory. The object of these
transformations is to introduce functions similar to those appearing in Equa-
tions [52.8] of the Van der Pol theory. By this procedure we will prepare the
groundwork for the investigation of an important subject, namely, the exist-
ence and stability of 1limit cycles.

It 1s useful for this purpose to recapitulate briefly the principal
results of the theory of the first approximation.

The solution of a quasi-linear equation is considered in the form
= a sin Y, where a and ¥ are given by the equations

2
a4 = — ﬁoff(a sing, aw cos@) cosgp dp = P (a) [64.1]
. 27]’

Y= w + 2;;a431aﬁn¢,awmm¢)ﬁn¢d¢ = Q(a) [64.2]

The condition for a stationary oscillation on a limit cycle 1is
o(a) =0 [64.3]

This is exactly the condition obtained from Equation [46.22] of Poincaré's
theory and the first equation [52.9] of Van der Pol's theory.
Equation [64.2] can be transformed by taking account of Equation

[60.5]
%
2%(a) = w* + %Off(asimﬁ, awcosg)sing de

and the identity
L ¥
2 _ 2 .2
w' = —ﬂaofw a sin“g d¢

Thus

2

1 JFTaMn¢,awum¢)$n¢d¢ [64.4]

Q°(a) = —
Ta
0
where F(x,x) = w?x + pf(x,%) is the non-linear force appearing in the equation
¥ + F(x,z) = 0. Likewise, Equation [64.1] can be transformed by means of the
2x
identity [ aw? sing cosgdg = 0, which gives
0
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@ = #(a) = — ﬁ;jﬁ‘(asinq&,awcosq&) cos ¢ d [64.5]
Equations [59.13] and [59.14] appear now in the form

a = &¢(a) [64.6]

v = Q(a) (64.7]

where ¢#(a) and Q(a) are given by Equations [64.5] and [64.4] in terms of the
total non-linear force F(zx,z).

Considering the question of limit cycles generated by a harmonic
x = Kcost when u = 0, we examine Equation [64.6].

If ¢#(a) > 0, the amplitude a increases indefinitely, and hence no
such limit cycle exists.

If ¢(a) < 0, the amplitude decreases, and again no such 1limit cycle
exists. This condition characterizes dissipative systems.

If #(a,) = 0, we obtain the condition for a limit cycle with ampli-
tude a,.

The question of the existence of 1imit cycles which are not generat-
ed by a harmonic z = K cost when u = 0, is not considered.

We now propose to investigate a practical case 1n which a 1limit cy-
cle exists, as shown by experiment, and to show how' this existence can be
ascertained analytically on the basis of this theory. For this purpose con-
sider the differential equation of an oscillating circuilt containing a non-
linear conductor characterized by a non-linear equation of the form v = G(¢).
Putting 7 = z, the differential equation is

Lz + G(x) +%fx dt =0 [64.8]

where the constant parameters L and C designate the inductance and capacity
of the circult respectively.

Differentiating this equation with respect to ¢, dividing it by L,
and putting for abbreviation 1/LC = w?, we obtain

i+ wle + %G’(m —0 [64.9]

Identifying the term %1?%x)i with uf(xz,z) of the general theory, which inci-
dentally imposes a requirement that it be small in comparison with the first
two terms, we obtain on the basis of this theory
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2”
a= — 27rt)L ofG'(a,sinng)awcosgS -cospde = d(a) [64.10]
1 2”
b= w+ mfG'(asinqS)cow - singd¢ = Q(a) [64.11]

0

Integrating by parts, we see that the second term on the right side of Equa-
tion [6Y4.11] is zero, hence,

v =20 =w [64.12]

and ¥ = wt + Y, where P, is arbitrary. The oscillation is thus isochronous
at least to the first o;der.

If we let %vﬁxG'(a sin ¢) cos?¢ d¢ = R{a), Equation [64.10] can be
written as

R(a)a

57 = o(a) [64.13]

From the definition’of R(a) it follows that R(a) > 0, if G'(x) > 0, that is,
1f the voltage across the non-linear conductor increases with the current.
Thus, @ < 0, and the final state of the system is z = 0, as is obvious from
physical considerations since a "positive resistance" characterizes a dissipa-
tion of energy. Therefore, the final state of equilibrium is stable, and the
point x = O is either a stable focal, or a stable nodal, point.

If G'(x) < 0 (negative resistance), that is, the voltage across the
non-linear conductor decreases when the current through it increases, #(a) is
positive, and from Equation [64.13] it follows that the amplitude increases.
From physical considerations it 1s apparent that the amplitude cannot increase
indefinitely. Analytically this is expressed by the condition &#(a,) = 0 for
a certain amplitude a, which is the amplitude of the 1limit cycle.

Figures 64.1a, b, ¢, and d illustrate the various possible cases.
Figure 6l4.1a represents the case of an ohmic conductor (Curve a represents an
ideal, and Curve b a real, ohmic conductor). Since G'(x) = 0 in this case,
R(a) =2 0; hence a < 0. The amplitudes always decrease since the system is
dissipative.

Figure 64.1b corresponds to the case when G'(x), and hence R(a), are
negative for small amplitudes and become positive for larger ones. The root
a, of the equation R(a,) = 0 corresponds to a stable amplitude a = a,. If the '
oscillations are started from values a < a,, they will increase until the am-
plitude a = a;, is reached; if, however, they are started from a value ¢ > a,,
they will decrease down to the value a = a,. This condition is 1ndicated by
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Figure 64.1

arrows in Figure 64.1b. The amplitude a = a, thus corresponds to a stable
limit cycle.

Figure 64.1c shows a more complicated form of non-linear character-
istic. By a similar argument, one finds that the amplitudes a¢ = a;, and a = a,
correspond to stable limit cycles and ¢ = a, to an unstable one.

Finally, Figure 64.1d shows a condition sometimes encountered in
applications. For small amplitudes the "resistance" of a non-linear conduc-
tor 1s positive, that is, the energy is dissipated. Beginning with a certain
critical value @ = a,, the resistance becomes "negative," that is, energy is
conveyed into the system, and this state exists until an amplitude a = ¢, 1is
reached. In such a case if the initial amplitude a, < a,, the only stable
amplitude is @ = 0; the system cannot acquire self-excitation. If, however,
a, > a;, the amplitudes begin to grow and eventually become stabilized at a
stable limit cycle a,. A condition of this kind is designated as a "hard"
type of self-excitation, which we have previously lnvestigated.

It is thus seen that the unstable limit cycle ¢ = a, acts as a kind
of "barrier" preventing the amplitudes from building up if the initial ampli-
tude is below the value corresponding to this barrier.

We thus find by the theory of the first approximation a situation
exactly the same as that found previously by the topological methods of

Poincaré.

65. STABILITY OF LIMIT CYCLES; CRITICAL VALUES OF A PARAMETER;
SYSTEMS WITH SEVERAL LIMIT CYCLES

Let us first consider the question of the stability of 1limit cycles.
Let a, be a root of the equation #(a,) = 0. For a slightly varied amplitude,

a, + da,
o(a, + da) = ?,(a)) da

to the first order.
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From Equation [59.13] it follows that

d(éa)
dt

= ¢,(a,) 0 [65.1]

We shall take da as the absolute value of the departure. If the initial de-
parture has a tendency to disappear, that is, if d(da)/dt < 0, &,(a,) < O,
which is the condition for a stable limit cycle. If ¢,(a,) > 0, by a similar
argument one concludes that the limit cycle is unstable.

If self-excitation starts from rest (a = 0), the condition for its
occurrence is

@(0) > 0 [65.2]

which is equivalent to the existence of an unstable singularity in the pres-
ence of a stable limit cycle, see Part I, Chapter IV. Similarly, the condi-
tion for a critical value of some parameter can easily be established by this
method. In fact, assume that #(a), in addition to @, also depends on a param-
eter A, that is, it is a function #(a,A). Consider the value of #(a,\) for

a = 0 and varying A. When a value A = A, is reached for which #,(0,A) > 0,
the amplitudes begin to grow from zero and the subsequent increase of ampli-
tudes from that moment will be determined by Equation [6Y4.13], which now has
the form

0 = o(a,)) (65.3]
The 1imit cycle is reached for a value a, of the amplitude for which
#(a;,A) = 0 [65.4]

For a given value A = A, the 1limit cycle will be determined from the equation
#(a,,A,) = 0, and for some other value A = A,, from the equation #(a,,r,) = 0.
Hence, the amplitude of the limit cycle in general 1s a certain function of
the parameter A.

In some cases the function #(a,A) can be put in the form

o(a,7) = [q»(a) _ %]qbl(a,x) [65.5]

where &#,(a,A) > 0 for all values of a and A, and #(0) = 0. Differentiating
Equation [65.5] with respect to @, one has

o (a,\) = {d’a(a) - ﬂ ?,(a,A) + [¢(a) - —‘;—]d—@gﬁ’“—] [65.6]
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Putting a = 0, one has

1
®,(0,)\) = [qba(o) - ﬂqbl(o,x) [65.7]
Self-excitation will start from rest if
@,(0) > % [65.8]

since #,(0,A) > 0.

Consider a curve y, = #(e) and a straight line y, = %1zshown in
Figure 65.1. &,(0) is the slope of the tangent to the curve #(a) at the ori-
gin, and-% the slope of the straight line y,. Condition [65.8] states that
self-excitation occurs starting from rest (e = 0) only if the initial slope
of the tangent to the curve #(a) is greater than
the slope of the line a/A.

As an example, one may mention the self-
excitation of a shunt generator. In this case the
frequency is zero but the amplitude, Equation
[59.13], is still applicable. The function #(a) Vo
is the voltage induced in the armature, a 1s the
exciting current, and a/A is the ohmic drop across

Y e,0
y, = ¢(a)

>|-

the field winding; whence 1/A 1s the resistance of Y a
the field winding plus the field resistor. 1In Figure 65.1
Figure 65.1, 1/A = tana 1is the slope of the
straight line<%u. If ¢,(0) - 1/A < 0, there is no self-excitation. For
% < ¢,(0), self-excitation is possible since #,(0,A) > 0. The equilibrium
condition is #(e,) = a,/A, which corresponds to the intersection of curves
Y, = #(a) and vy, =-%a. It is interesting to note that the amplitude, Equa-
tion [64.10], holds in this case in spite of the fact that the frequency,
Equation [64.11], is absent.

From the general considerations explained in connection with Figure

6%.1, the following theorems result:*

THEOREM 1. If a system possesses several stable limit cycles forming a sequence a,,
ag, @5, * °* , between each pair of consecutive stable limit cycles there is always one unstable
limit cycle; these unstable cycles form another sequence a,, a4, dg, * **

THEOREM 2. The limit cycle reached spontaneously by a system starting from rest is

always the one which corresponds to the smallest root a; of the sequence.

¥ Tt should be borne in mind that we are considering only limit cycles that are gemerated by circles.
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THEOREM 3. The stable limit cycles corresponding to larger roots @g, g, * * - of the

stable sequence can be reached only if the system is given a shock excitation carrying it beyond
the corresponding unstable limit cycles ay, a4, - *

66. LIMIT CYCLES IN THE CASE OF POLYNOMIAL CHARACTERISTICS
Let the characteristic of a non-linear conductor be approximated by
a polynomial

f(i) = A+ Bi + Ci* + Di® + Ei* + Fi® [66.1]
Differentiating and setting + = a sing, we have

f'(asing) cos’¢ = Bcos2¢ + 2Casing cos2¢ + 8Da? sin®@ cos’¢ +
+ 4Ea3sin3¢ cos2¢ + 5Fa4sin4¢ cos2¢

2 .
Forming the expression for R(a) = %f f'la sin ¢) cos®s dg, we have
0

2x 2x 2x
_ 1 2 1 ; 2 1 22 o 2
R(a) = nochos ¢ de¢ + NOJZCasqucos pdo + ﬂOf3Da sin“g cos“¢ do +

2r 2%
+ %J‘4Ea3 sin®@ cos’s dp + %J5Fa4 sin*e cos’p dg [66.2]
0 0

The second and the fourth terms on the right side of this equation are zero.
The remaining terms are

B 2
;Ofcos2¢ dé¢ = B

[66.3]
1f”3D2.2 2, g _3Da2“2".2 4 _f”.4 d}_spaz (1—§)——3-1)2
;0 a“sin“@ cos"@ d¢p = - 0sm¢>¢ Osm¢¢— - T 1) =1 a

2r 4 - 2x 2r 4
1 4 . 4 2 _5Fa . 4 . 6 __5Fa3 3'5_5 4
;6(5Fa sin"¢ cos ¢ dgp = - [Ojsm ¢ do —Ofsm ¢d¢} = — (Z — 4-6) §Fa
From this
R(a) = B + iZ’-Daz + %Fa4 [66.4]

It must be noted that the coefficlent F in this equation must be
positive; otherwise, beginning with a certain value a¢ = a,, R(a) would become
negative and remain negative for increasing a. In such a case, by Equation
[62.2], da/dt would be positive. This is impossible in a physical problem.
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Setting §F=m>0 and %D= n, the condition for the existence of a
limit cycle 1s

R(a) = ma* + na® + B = 0 [66.5]

The roots of this biquadratic equation are

2 - n i l.nz — 4mB [66 6]
@y = om .

For the existence of limit cycles at least one of the roots a} or a, must be
positive. Since m > 0, the necessary and sufficient condition is that B< 0,
which expresses the fact that the slope of the characteristic f(¢) is nega-
tive, that is, "negative" resistance.

When B 1s positive, two cases are possible:

1. B>0, n >0, that 1s, D >0. In this case both roots a{ and a;
are negative; hence, the amplitudes a, and a, of the 1limit cycles are imagi-
nary. In other words, no limit cycles exist, the system being dissipative.
The amplitudes decrease indefinitely, and the only stable solution is a = 0.

2. B>0, n <0, that is, D < 0. In this case limit cycles are possi-
ble as long as n® - 4Bm > 0, which expresses the condition of the reality of
the roots. If we substitute for n and m their values, this gives

2 2
B<4%n'=io% [66.7]

Summing up this discussion, one can state that with a non-linear
voltage, approximated by the polynomial [66.1], of the fifth degree, the
following conditions exist:

1. On physical grounds the coefficient F must always be positive.
2. If B < 0, there is always one stable limit cycle.

3, If B>0and D >0, no limit cycles exist and the system is dissi-
pative. .

4. It B>0, D<O, andB<-,?6%,
amplitude a, (positive root).

2
limit cycles are possible with the

2
5. If B>0and D<O0, but B> é%:%;, the system behaves again as a
.ssipative one, and no limit cycles exist.
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Since any experimental characteristic can be approximated by a
polynomial, the coefficients A4, :--- F in Equation [66.1] are known quanti-
tles, and the above procedure permits ascertaining from the form of the char-
acteristic the behavior of the system into which the non-linear element with
this particular characteristic 1s introduced.



CHAPTER XI

APPROXIMATIONS OF HIGHER ORDERS

67. INTRODUCTORY REMARKS

In this chapter we review the extension of the method of Kryloff
and Bogoliuboff as applied to approximations of orders higher than the first.
Although for practical applications the theory of the first approximation
glves a satisfactory degree of accuracy, it is also interesting to consider
the possibility of a further refinement of approximate solutions in case
greater accuracy is required. The procedure of Kryloff and Bogolluboff is
derived from the classical methods of Gylden and Lindstedt used in celestial
mechanics. As explained in Section 44, the object of these methods 1s to
eliminate the secular terms resulting from the resonance effect of subsequent
harmonics in the recurrence procedure by which the higher-order terms are de-
termined. The method can be summarized as follows.

Assume that we wish to find a periodic solution of the differential

equation

i+ w'r + uf(x) =0 [67.1]
with a certain unknown period 7. Introducing a new independent variable
v = 2nt/T = Qt, where @ = 2n/T, we shall look for a solution z(t) = z(T),
where z(7) is a periodic function with period 2w. We shall try to represent
the periodic solution in the form

2(r) = 3 u"z,(7) [67.2]
n=0
where z,(7) with n = 1, 2, --- , are periodic functions with period 2m. We
further assume that
Q= S au" [67.3]
n=0

where o, is constant. The transformed equation [67.1] then becomes
2
923—:5 + W'z +ufz) =0 [67.4]

If one substitutes into this equation the series expansions [67.2] and [67.3],
one obtains a series of recurrent differential equations resulting from equat-
ing to zero the coefficients of equal powers of u. For the subsequent approx-
imations one thus obtains a series of differential equations
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d*z
a, d7'20 + szO =90
d’z ; d*z
C!Od—_rzl‘ + wzzl = — f(zo) - oy d’l'zo
d*z. 2 , d?z d*z (67.5]
a, d7.2Z + wz, = = [z — a d.,.zo - o del
d*z, 2 d’z d’z d*z
%o dTgl + Wz, = Flz,z,: - 0,2,) — 0'n+1d-,-g T oy d-er T al#
where F(z,, z,, *++ , z,) is a certain polynomial in oy %15 " 5, 2,. 1t 1is
apparent that if z,, z,, -+, 2y and o4, a,, -+ , ay satisfy the first

(N + 1) equations of the system [67.5], then the expressions

N N
x=2u"zn(7) and 92=2u"an [67.6]
n=0 n=0
also satisfy [67.1] up to the order u™*!and, hence, may be considered as the

(IJ+-1)th approximation.

The method of Lindstedt, which Kryloff and Bogoliuboff follow, con-
sists in determining the coefficients «; in the subsequent stages of the re-
currence procedure so as to eliminate terms with the fundamental period 2.
In fact, if these terms were left on the right side of Equations [67.5], they

would account for the "resonance terms,"

which are of secular form, as pre-
viously defined. The determination of &, by this procedure at the same time
leads to the expression for frequency given by Equation [67.3]. By this meth-
od the difficulties encountered in the theory of Poincaré (see Chapter VIII)
in connection with the appearance of secular terms in the expansions are elim-
inated, and solutions without secular terms can be obtained.

Poincaré has shown by an example that the approximations generally
do not converge. However, nothing better is available, and, in practice, the
second or third approximation (and usually, in fact, the first) gives entirely
satisfactory results.

The subject matter of this chapter is considerably abbreviated, com-
pared with Xryloff and Bogoliuboff's text (5), and for that reason the reader
should refer to the original text for additional details.

68. IMPROVED FIRST APPROXIMATION
Equations [59.13] and [59.14] of the first approximation were ob-
tained by dropping the higher harmonics in the Fourier series on the right
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side of Equations [59.10]. In reality, owing to the presence of these terms,
the slowly varying quantities a and ¢ undergo oscillations of a relatively
high frequency.

In order to take this into account, it is convenienent to consider
the quantities e and ¢ in Equations [59.10] as practically constant in com-
parison with the rapidly varying trigonometric terms cos n(wt + ¢) and
sin n(wt + ¢).

Designating the left sides of Equations [59.10] by da/dt and d@/dt,
and noting that -‘ﬁ»Kb(a) =-%% and éﬁ Py(a) = g%, upon integration of Equa-
tions [59.10], one has

— r v K, (a) sinn(Qt + ¢) — L,(a)cosn(wt + ¢)
iaon

pope nw

[68.1]
s = P,(a) sinn(wt + ¢) — Q,(a)cosn(wt + &)

aw nw
n=1

¢ =¢+
where a designates the first approximation for the amplitude given by Equa-

tion [59.13].
Substituting these values into the equation z = @ sin(wt + ¢), one

has
= [a _ %2 K, sinn(wt + @) ; Lycosnlwt -+ ¢)] sin[wt + ¢ +
n=1
a,:)2 P, sinn(wt + @) n— @y cosn (wt + ¢)} [68.2]
n=1 .
If we let

o0

1 2 P, sinn(wt + ¢) — @, cosn(wt + @)

aw? n
n=1

the sine term of this expression can be written as
sin(wt + ¢ + uS) = sin(wt + @) cosuS + cos(wt + @) sinuS

~ sin(wt + ¢) + uS cos(wt + @)

since y is small. Substituting this into Equation [68.2], one has

o0

. = [ B Lansinn(wt + ¢) — L,cosn(wt +¢)][Sin(wt + @) + uScoslwt + ¢)]

n
[68.3]
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whence, neglecting the terms with x®, u®, --- , one has

o0

asin(wt + @) — %ZKnsinn(wt + @) — L,cosn({wt + @)

n

sin(wt + ¢) +

xr =

n=1

au 1 P, sinn(wt + @) — Q,cosn(wt + @)

aw? n
n=1

+ cos (wt + @) (68.4]

If we put wt + ¢ =71,

')

K,sinnt — L,cosnr
2 = u(7)

n=1 n
[68.5]
ijn sinnt — @, cosnT  _ o ()
n =1 n
and
u(r)sint — v(r)eosT = w(r) (68.6]
We now rewrite [68.4] as
x = asinT — —w‘ggw(r) (68.7]
From Equations [68.5], in view of [59.8], one has further
u'(t) = flasinT, awcost)cosT — K (a)
[68.8]
v'(r) = flasinT, awcost) sint — Py (a)
On the other hand, differentiating Equation [68.6], one has
w'(r)sint — v'(T)eosT + ulr)cosT + v(r)sint = w'(7) [68.9]

If the values [68.8] are substituted into Equation [68.9], one

finds
w'(t) = Pya)cosT — K,(a)sinT + ucosT + vsinT [68.10]
w"(r) = — P(a)sinT — K,(a)ecosT — usinT + vcosT + u'cosT + v'sinT [68.11]
Thus
w”(r) + w(r) = — Py(a)sinT — K (a)cosT — usint + veosT + u'cosT + v'sinT

+ usint — veosT = — Py(a)sinT — K, (a)cosT + wu'cosT + v'sinT [68.12]
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Noting that
u'(T)cosT + v'(7)sinT = f(asinT, awcosT) — K,(a)cosT — Py (a)sinT
one obtains from Equations [68.8]
w'(t) + w(r) = f(asinT, awcosT) — 2K,(a) cosT — 2P, (a)sinT [68.13]

In order to determine the corrective term w(r) of the improved
first approximation, it 1s necessary to transform the right-hand term of
[68.13] into the known Fourier series.

For this purpose consider the Fourler expansion

SflasinT, aweosT) = f (a) + f[fn(a)cosnr + g,(a) sinn'r} [68.14]
n=1

in which the coefficients f and ¢ are given by the equations

2r

fola) = g!f(a sinT, awcosT) dr
1 2x
fla) = ;ff(a sinT, awcosT) cosnT dT [68.15]
0

2r

;Jf(a sinT, awcosT) sinnT dr
b

9,(a)

On the other hand, by [59.9], K,(a) = -;-fl and Py(a) = %gl. From
this

f(asinT, awcosT) — 2K (a) cosT — 2P, (a)sinT

= fy + j(fncosnr + g,sinnT) [68.16]

n=2

Substituting the right-hand term of Equation [68.16] into Equation [68.13],
one gets

w'(r) + w(r) = fy + Zo'(fncosn'r + g,sinnt) [68.17]

n=2

Looking for a solution of Equation [68.17] of the form

w(r) = a, + 3 (a,cosnt + b sinnt)
’ n=2
one obtains by identification of the coefficients after the substitution of
this expression into the differential equation [68.17]
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wir) = f, - an cosn;2-+-_glnsinnr (68.18]
n=2

Substituting this expression into Equation [68.7], one finally ob-
tains the following expression for the improved first approximation

r = asin(wt + @) — %fo(a) n w%zfncosn(wt +¢;2+_glnsinn(wt+¢) (68.19]

n =2

where a and ¢ satisfy the equations of the first approximation, Equations
[59.12], that is, & = - £-f(a) and ¢ = > ala).

In order to see whether the solution [68.19] satisfies the original
quasi-linear equation ¥ + w?x + uf(z,z) = 0, substitute the solution [68.19]
in that equation. This gives, on the other hand,

P+ wir = — [jfncosn(wt + @) + g,sinn(wt + ¢) + fo} + 0,(u%) [68.20]
n=1

where O, is of the order of uZ.
On the other hand, in view of Equation [68.19], one has

uf(z,z) = uf{a sin(wt + @), awcos (wt + ¢)] + 0,(u?)
whence, by [68.14],

P+ wlr 4 pf(x,i) = 0,(u?) — 0,(u?

Thus the expression [68.19] satisfies the original differential equation with
accuracy of the order of u?.

Furthermore, 1t can be shown, upon developing the expressions for
0,(u?) and O,(u?), that the error in the approximate solution [68.19] is
uniform in the interval 0 = ¢ < oo,

69. APPLICATIONS OF THE THEORY OF THE IMPROVED FIRST APPROXIMATION

We shall consider first oscillations of a conservative system acted
on by a non-linear force represented by an odd function of the dependent vari-
able. In this case, f(z) + f(-z) = 0. Since the function is odd, no cosine
terms are present in the Fourier expansion. Hence

SflasinT) = fgn(a) sinnT

n=1
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and
2 [ . .
g,(@) = = ff(a sint) sinnT dT
7T 0

By Equation [68.19], the improved first approximation is

z = asin(wt + ¢) + A Z gn(a)zlnn(wt + ) [69.1]

The frequency is given by the equation

Q(a) = w + ﬁ g,(a)

that is,

Q2%a) = w® + %gl(a)

-

to the first order.
We shall now discuss three applications of the theory of the im-

proved first approximation.

A. VARIABLE "SPRING CONSTANT"
Consider the differential equation

P4+ wax =0

2

where w® = w! + uz?, which gives

B+ wlr + opz’ =0 - (69.2]
so that
fx) = 2%  flasinT) = a’sin’r = %a?’ sinT — i—a3sin3r
whence
2 1 3 3
g,(a) = ;J( a’sint — 1 sm3-r) sint dr = ra
and

3
g,(a) = w, + -

2(a) = w, + 3

i
— w, ua
2w a oH

For the next harmonic
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23 . 1 s : __d [
g,(a) = ;Of(z—a sint — —a sm37-)s1n37- dr = — E(}fsm 3rdr
a® & 2 37a’ a
=‘aofsm”‘”=‘ er = 4

From this, by Equation [69.1]

3
r = asin(w,t + ¢) — Zl%g(gzl_—l)sinﬁwot + @)
0
"I
= asin(w,t + @) — 32 3207 sin3(wyt + @) [69.3]

Thus the improved first approximation introduces a small corrective term
32 sin 3(wyt + ¢) in the form of a third harmonic.

B. VARIABLE DAMPING
Consider a differential equation of the form
P+ w'r + ufx)z =0
The non-linear term in this case is

f@)z = flasinT)awecosT

Consider the function F(A) ff For A = a cos ¢, the de-
velopment of F(a cos ¢) in a Fourier serles gives
F(acosg) = ZFn(a)coans [69.4]
n=0

Differentiating this equation, we have

af(acosd)sing = jnFn(a) sinng

n=1

Putting ¢ = = + 3—2”, one obtains

: S . 3
flasinT)aweosT = — wnzz;nFn(a) smn(wt + 5+ ¢)

where ¢, is an arbitrary phase angle. Hence, by Equation [69.1], the solu-
tion is
3

x = asin(2t + ¢,) — uﬂz_; Fn(a)smn(.Qt + 5+ ¢0> [69.5]
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assuming that w = Q, since in this case the correction for frequency 1is of a
higher order.
If one introduces. 8, = ¢, - m/2, Equation [69.5] has the form

F (a) sinn(Q2t + 6,) [69.6]

Loy _n
= Qt+6)— £ 5
x = acos (¢ 0) o=, W —1

For example, consider the Van der Pol equation
¥+ —pu(l —2H =0

3
In this case f(z) = z? - 1, F(z) =Z%° - 2, and w = 1, whence
3

2 3

— acos¢p = a(% — 1)cos¢ + (11—2005395

a3cos3¢

F(acosg) = 3

) 2 3
It follows that F,(a) = a(%— - 1) and Fy(a) = %?, the other F, (a) being zero.

By Equation [69.6], the oscillation is

3
x = acos(t + 6) — %sinS(t + 6,) (69.7]

The differential equation for the amplitude is obtained from the

equations of the first approximation
do _ pay, o’
dt 2 (1 4)

For a steady-state condition, a = 2; Equation [69.7] in this case becomes

r = 2cos(t + 6, — ﬁ—sin3(t + 6,) [69.8]

C. CORRECTION FOR FREQUENCY
In the preceding notations w is the linear frequency when u = O,
and Q is the frequency of the quasi-linear oscillation when u # 0. For quasi-
isochronous motions to the first order, w = Q.
It 1s to be noted first that the exact solution for stationary
oscillations can always be developed in a Fourier series

x = acos(Qt+ 6, + f {Ancosn(.Qt + 6,) + B, sinn(Qt + 00)] [69.9]
n=2

One has ldentically

T
f[éc'x + W’2® + puf(@azldt =0 [69.10]
0
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since
4 'z + uf(x)i = 0,
On the other hand,
ix + £ = dit(xr'c)
and
T T T

[Ezdt + [#*ar = xxl =0
0 0 0

in view of the periodicity. Hence

T T
f‘x‘xdt = —-fo'czdt
0 0

Likewise
T
ff(x)x:i: dt =0
0

for the same reason. Hence,

T

T
[#*dt = o*[z*at [69.11]
0 0

If one replaces z by its expression [69.9] and z by its expression obtained
by differentiating Equation [69.9], one obtains finally

@t + Intal + BY| = w?lat+ S+ BH]  (69.12]
n=2 n =2
since the terms of the form A, B, cos p(Qt + 6,) sin ¢(Q¢ + 6,) disappear when
integrated over the period It follows that

0 a® + j'(A,f + B
== n=2 [69.13]
a® + an(Af + BJ)

n=2

On the other hand, under the assumption that f(z,z) = f(z)z, by
Equation [69.6], A, = 0 and B, = - f‘)— nTyf——1F”(a).

Substituting these values for A4, and B, into Equation [69.13], one
has
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2 = 2
U n
Q2 1+ o2 — [n2 -1 F"(a)]

(‘)2 uZ 2 n 2
1+ w2a2 nzﬂ'n |:’I'L2 1 Fn(a)]

u? 2 F.(a)
If we let oL = K* and -—”a— = b,, the preceding equation can be written

g 1+K f (nz—”_—lb,,)2

n=2

1+ KgnQ(nz " : bn)Z

w?

_ [1 + sz(nz’i 1@)1[1 - sz'nz(n2’i : b,.)z] [69.15)

n=2 n=2
Hence, to the second order of the small quantity K, one has

Q= w[1 - 2":25(7?2"_2 1) F’i(;‘) } [69.16]

n =2

3Applying this formula to the Van der Pol equation with a = 2,
Fy(a) = {1—2 = %, and F, (a) = 0 for » # 3, one has

70. APPROXIMATIONS OF HIGHER ORDERS
Consider, first, the quasi-linear equation

¥+ W+ pflx) =0

and assume that it has one or several periodic solutions. Let x = z(t) be

such a solution, with an unknown period T and frequency Q= 2n/T. Let

z = 2(2t + ¢) = 2(7), with T = Qt + ¢. Then z(7T) has the period 2.
Changing the independent variable in the original equation

¥+ wiz + uf(z) = 0, one obtains

Q% + Wz + uf(z) =0 [70.1]

From now on the differential notation 7 will designate differentiation with
respect to 7. By hypothesis, Equation [70.1] has a periodic solution with
period 2. We shall look for solutions z(7) and @2 in the form of a power
series in u:

z(r) = jﬂ”zn(r) and Q= fu”an [70.2]

n=0 n =0
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with ¢, = w?, since the existence of a periodic solution of period 2 for
[70.1] with u = 0 requires that 2% = w?.
Furthermore,

flz) = f(zo+uzl+ u2z2+ e )

2 an
Pl + waf ) + i2faf (e + L 4

The substitution of these values into Equation [70.1] gives rise to the
following recurrent differential equations obtained by equating to zero the
coefficients of u°, u!, u?,

2. 2 -
Wz, + wz, =0

2. 2 ..
Wz + wiz = — flg) — oZ,
2. + zz _ fl( ) _ e _ .
Wz, T W2y = Zpl2) — Oyzp — 02, ‘ [70.3]
2. + 2 _F( s )_ s ... ..
Wz, T W2, = 82,2, 12 A, r1% — A% az,
where F(zy, z;, **+ , 2,) is a polynomial in z,, 2z,, *** , 2,.

The solution z(7) under consideration is determined up to a trans-
lation on 7. We can choose the origin, that is, ¢, in the substitution 7 =
Qt + ¢ so that

(0) = 0 [70.4]

The condition [70.4] then yields the following conditions for z,(T), which are
periodic functions of period 27 and which we take as being represented by
their Fourier series,

2,00 =0 for n=1,2,3--" [70.5]

Let 24, 2,, **+ , 2, and o, *-+ , a, be the solutions of the first
(N + 1) equations of the system [70.3); it is then clear that

N N
= E,u"zn('r) and @° = Zy"an
n=0 n =0

2 N+1

will satisfy the equation ¥ + w“x + uf(xz) = 0 to the order of u
can be considered as the (N + 1)th approximation of =x.

, and hence
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The first equation [70.3] gives, in view of [70.5], 2z, = a cos T,
where a is an arbitrary constant. There exists, however, a certain arbitrari-
ness in the following steps, that is, in the successive determination of z,,
z,, *** . We can remove this arbitrariness by requiring -that no fundamental
harmonic shall appear on the right side of Equations [70.3], for otherwise
some z, would contain secular terms. We wish, however, to obtain a function
z(7) = z(t) representing the periodic solution of our quasi-linear equation
in the whole interval 0 = ¢ < oo,

Consider now the second equation of System [70.3]

w?(Z, + 2,) = — flacosT) + ajacosT

The function f(a cos T) can be developed in a Fourier series which contains
only cosine terms, that is,

flacosT) = Zw'fn(a) cosnt = fyla) + fila)cosT + jfn(a) cosnT
n =0

n=2

[70.6]
W% + 2) = — 3 f,(@)cosnT + [ala - fl(a)] cosT — fyla)

n=2
It is noted that the secular term is bound to appear in this case
unless the coefficient of cos T on the right side of Equation [70.6] is zero.
Hence, the condition for the elimination of the secular term 1s

o = 29 [70.7]
which determines the approximation (zl,al) . One has
A T {fo(a) + Zf (a) cosn'r} [70.8]
n=2
In view of [70.5], the solution of [70.8] is
1 L cosnr
2, = Acost — —5 fyla) + 22 (70.9]

n=2

with f, = f,(a) where A is a constant. Substituting z, and z; into the right
side of Equation [70.3] for z, and annulling the fundamental harmonic, we ob-
tain an equation involving «, and A4, so that A remains arbitrary. In order
to simplify our solution, we take A = 0 so that

o = — %fo sz cosnT (70.10]
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and the equation linking a, and A, where we set A = 0, now yields the value
of a,. By proceeding in this manner the following terms gy %3, - and a,,
ag, **- can be determined. We require that none of 2,(n = 3) should contain
the fundamental harmonic, by analogy with Z29. The condition [70.5] is then
automatically satisfied. We proceed to show by induction that any z, can
be determined in this manner from Equation [70.3].

Assume that 2,, z,, ---, 2z, and o, o, -+ , a,, satisfying the
first n equations of the system [70.3], have been determined.

The (n + 1)th equation 1is

Wz, + 2,,.) = Flzgz, - -+, 2,) — @2, — " — a2, + a, acsT [70.11]

where 2z, = a cos 7, as before.

Since 2,, --- , 2z, and Z;, --- , Z, contain only cosine terms,
F(zyg, 2z,, -+ , z,) also contains terms of this kind only.
Putting F(zo, 2, , -+, 2,) - @,Z, - a,_ %, - -+ - a,Z, =
‘Ejb cosmT, one can write Equation [70.11] as
m=0
1 = 1
Zot 2, = F[bo +m2_;bmcosm7-] + —J(anﬂa + b)cosT [70.12]

The condition for the absence of secular terms is again

b
Upyy = = - [70.13]
Equation [70.12] now becomes
Zog1 t 2., = %[bo +2;bmcosm'r} [70.14]
m=

The solution of this differential equation is

fer = 2 [bo 26 tsnr [70.15]

the secular term having been removed again from the solution.

71. MOTION OF A CONSERVATIVE NON-LINEAR SYSTEM WITH A CUBIC TERM
As an example of an application of this method, consider the dif-

ferential equation

P+ x4+ uzx =0 [71.1]

The integration of this equation by the method of the first approximation was
glven in Chapter X.
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We propose now to determline the approximations of higher orders,
following the method explained in the preceding section.

Taking as generating solutions z,(7) = a cosT, w?

=1, and oy, = 1,
we have

3

3 3 a
T +oaecsT =00 - a cosr—z—cos31-

.. _ 3_ S o 3 3
Z,+ 2 = — z;— aZ,= — a“cos

The elimination of the secular term gives

a=%a2 [71.2]

1

and the solution of this equation gives

3 3
4 =33 a°cos 3T [71.3]
If we substitute for «; and z; their values, the third equation [70.3] becomes

.. _ 3 5 2 21
2yt 2y = — 33 acos"Teos 3T + a,acos T + 123 cos 3T

_ _ 3 5 21 s _ 3 g
—<a2a 128a)c057-+128acos37- 1—2—8—ac0s5-r [(71.4]

The condition for the absence of the secular term gives a, = T%g«ﬁ. Thus the
solution of Equation [71.4] 1is

5
cosbT

_ 21 5 a
z, = -1—1024ac0s37' + 1024

Consequently the approximate solution satisfying Equation [71.1] to the order
of u? is
a3 5

r = acos(wt +¢) + u 35 (1 —u 3321—)005(3wt+¢)+u2 T‘;‘lcos(mut +¢) [71.5]

where a and ¢ are constants of integration.
The frequency 2 is given by the second expression of [70.2], in

which «;, a,, --+ have already been determined
2 = 3 424 3 2o
Q 1+.4 na'+ oo uta [71.6]

72. HIGHER APPROXIMATIONS FOR NON-LINEAR, NON-CONSERVATIVE SYSTEMS
We now consider the general form of a quasi-linear equation

¥+ ' +uf(x,z)=0 [72.1]
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We shall attempt to write the general solution for higher approximations
in the form of an improved first approximation by replacing wt + ¢ by
wt + ¢ -~§-= Y. One then obtains from Equation [68.19]

2 =acosy — Ly Fa)+ 5 3 F;‘(“)ws"jfzf Zldinng g5 5]
n=2

with equations of the first approximation

d d
(_iTa = i Gl(a); d—f = -Q(a) [72°3]
2@ = w + 2 F () [72.4]

The F, and G, in Equation [72.2] are the Fourier coefficients in
the development of

facosT, — awsinT) = 2 [Fn(a)cosn-r + Gn(a)sinn-r] [T2.4a]
n=90
The condition for a steady state is
Gil@) =0, y=220t+y, [72.5]

where ¥, is an arbitrary constant.
Equation [72.2] for a steady state becomes

r = acos[.Q(a)t + V’o} - Z/jg Fy(a) +

o0 F .
+ % 2 (@) cos n [Q(a)t + '/I(;@]Zt fn(a)smn[Q(a)t + ¥, (72.6]

n=2

It was seen that for conservative systems G;(a) = 0. In such a
case, Equation [72.6] has two integration constants a and Y,, as is to be
expected for an equation of the second order. If, however, Gl(a) = 0 has
only simple roots without being equal to zero identically, the solution
[72.6] has only one integration constant Y, since a 1s determined from the
equation G,(e¢) = 0. ‘This case corresponds, therefore, to the existence of
limit cycles corresponding to the roots of G,;(a) = 0. In fact, as was shown
previously, the stationary oscillation in this case does not depend on the
initial amplitude.

. We now propose to establish the existence of periodic solutions,
that is, of limit cycles in non-conservative systems.
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If z = 2(Qt + ¢) 1s such a solution, it must clearly satisfy the
differential equation

Q%+ w2 + uf(2,92) =0 [72.7]

We can follow the same procedure as before, assuming solutions of the form

2 = zo+,uz1+,uzz2+- .
[72.8]
Q =Q¢+ uQ + pQ+ -

where z, are periodic with period 2w. Here we take z, as represented by their
Fourier series.

Forming # and % and substituting the values of 2z, %z, z, and 2 into
Equation [72.7], one obtains again a series of recurrent differential equa-
tions by equating to zero the coefficients of various powers of u. One has

Qi+ wikzy =0

Qi+ whz, = — [(2,R2) — 22,27,

Q2+ Wiy = — F(20,R0%0) 2 — f3 (20, R020) Q0% — 282,2,%, —

- 20Q,9,7, — @77, — [;(2,,92,2)) 2,2, [72.9]

Q%% Hwk,,, = = [(20,2,20)2, — [:(20:R02,) R,2, — 22,2, % —

0 "n+l

- 2Q,R,2, — E,(z,- - - 2 0

n

n_1;z0"'zn—1; ‘zn-—l;go"'gnvl)

where F, 1s a known function of the indicated arguments. As befnre, Qf = wz;

we require that z(0) = 0. Hence %,(0) = 0, where n = 0, 1, 2, *** , so that
z, = a cosT, where a is a constant to be determined, and z,, z,, **: do not
contain sine terms.

Substituting these values for z, and @, into the second equation
[72.9], one gets

Wiz, + 2,) = — flacos T, — awsinT) + 2wR,acO8 T

L

= —Z[I«;‘(a)cosn-r +Gn(a)sinn'r] + 2wQ,acosT [72.10]

n=0
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The condition for absence of a secular term gives
F )
= . == 2-
Gl@=0; 2 =3"" [72.17]

Prom Equations [72.11], a and 2, can be determined. Equation
[7T2.10] then becomes

wz(};l+ z)= — Fy(a) —Z[EL(a)cosnr + Gn(a)sinn-r] [72.12]
n=2

The solution of Equations [72.12] is

E(a) 1 v [E(a)cosnT + G,a)sinn 7]
z1=alcos7'——%2— +?n‘j_; R [72.13]

in which the amplitude a, is to be determined by the condition for the elim-
ination of secular terms on the right side of Equation [72.9] for z,.
Writing Equation [72.13] as 2z, = a, cosT + u where

F@) 1 _S.:-'w E(a)cosnT + G (a)sinnT
=———%’—2—+Z)?n=2 nz—ln [72.1“‘]

and substituting it into the third equation [72.9], one has

wi(Zy, + 2,) = — f,(acos T, — awsinT)a, cos T +

+ fi(acosT,— awsinT)a,wsinT + 2w,a,cos T +2wQ,acosT + v(T)

where v(7) 1s a-periodic function containing the remaining terms of the third
equation [72.9]. Since v(7) is periodic, one can represent it by a Fourier
series

o0

v (T) =2[pncos nT + qnsinnr]

n=

Furthermore, one has the identity

— f,a,cosT + fa,wsinT = — %f[(a-i—ual)cosr,— (@ + ua,) wsin 'r]

u=0
whence, by Equation [72.4a],
—f,a,cosT + f;a,wsinT = — aIZ[F,‘l'(a) cosnt + G, (a) sinnr] [72.15]
n=0

where F,(a) and G.(a) designate the derivatives of F,(a) and G,(a). Substi-
tuting f, and f; into the third equation [72.9], one gets
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w¥(Z,+ 2,) = — aIZ[F;'(a)cosn-r + G, (a) sinn-r] +
n=90

+ 2w (8,0, + ,a)cos T +2 [pncos nT + qnsinn'r] [72.16]
n=0
In view of the periodicity of z,, the secular terms must be eliminated again.
Their elimination gives the conditions

’
T2

=T [72.17]

+

, b
a,G (@) =¢q, and La, + 2,04 = o

T2

It follows that

a, =G—i"(;T [72.18]
Since we are in search of the condition for the existence of limit
cycles, G,(a) = 0 by the first equation [72.3], we have to add now a second
condition G,(a) # 0, since only in this case does Equation [72.18] give the
determination of a,. The equation G,(a) # O shows that the root of the equa-
tion G(a) = 0, which gives the limit cycle, is a simple root.
From the second equation [72.17]

1(p R
2= -1 (5 + @0, - F2) [72.19]

Hence, Equation [72.16] can now be written as
Wi, + 2,) = (p, — o, F)) +
< { - aIF;L'(a)] cosnT + [qn— alGn(a)] sin nr} [72.20]
The solution of this equation is
1 '
Z,= Q,CST + —5 ('po——alFO)-i-

22[(p—aF)cosnT+(qn aG)smnr]l [72.21]

where a, is again an undetermined coefficient, which, together with 2, is

determined by the condition for the absence of secular terms on the right
sides of Equations [72.9] for z;, and so on.
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Following this recurrence procedure, it is apparent that subsequent
equations [72.9] permit the determination of a, and Q,,; from the equations
for the elimination of secular terms.

anGn'(a) =4¢, and 2w(Q,,,a+Qa,)=n1 [72.22]

in which ¢, and 7, are known from the preceding recurrent operations.

As long as the equation G,(a) = 0 has only simple roots, that is,
G{(a) # 0, the process can be continued indefinitely up to any value of the
index =.

The expressions for the non-linear oscillation z and its frequency
Q, up to the order of u” inclusive, are of the following form

= 2(Qt+¢) +uz (2t+ @)+ - - +uVz (2t + @)
[72.23]
Q=w+upQ + -+ phoy

Following this procedure, one finds, as an example, for the.second approxima-
tion

x = (a +pa;)cos (2t + ¢) — % F(a) +

v F(a)cosn (2t + @)+ G (a)sinn(Qt + ¢)
where
2 =w+ Fla)
2wa

If we compare this expression with the earlier formula [72.6], it is observed
that the only difference between these expressions is in the amplitude of the
first harmonic, which is now a + pa, instead of a, where a is the root of
G,(a) = 0.

This difference is due to the fact that for higher approximations,
as can be shown, the amplitude equation is

da u
7 = 3o G+ #’S,@) + S, + - - - [72.25]
If the limit cycle 1s reached,
H Gla)+u2S @+ - =0
2(4) 1 1

Hence, in view of the factor u before G (a), it 1s seen that by stopping
the approximation for a certain value n = N of the index, the error in the
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determination of the first harmonic of the limit cycle is only of the order
(N - 1), and not of the Nth order.

Hence, theNth approximation determines the amplitude to the order
(N + 1) and the frequency to the order (N+ 2).

For N = 0, one has

r =acs(Qt+¢): Q=w +—f%€%§l [72.26]

which represents the first approximation obtained by a different method in
Chapter VIII.
For N= 1, z is given by Equation [72.23] and

=w+,ufz(%)+u292 [72.27]

In order to establish the explicit expression for this approximation, one has
to determine a, and Q, entering into these formulas.

73. GENERAL FORM OF EQUATIONS OF HIGHER APPROXIMATIONS
We shall now review a generalization of the preceding theory appli-
cable to steady oscillations as well as to the transient conditions of a
quasi-linear system
¥+ o’z +uf(x,z) =0 [(73.1]

One may attempt to find a periodic solution of the form

z =z2(y,a) [73.2]

Furthermore, by analogy with equations of the first approximation,
one can postulate that

da

1i = Af(a)
v (73.3]
ai = Q(a)

For the time being, the functions A(a) and Q(a) remain unknown. In
fact, their determination constitutes the object of this procedure.
Proceeding formally, we obtaln

0z 0z
aw9+_‘4 [73.4]

Differentiating the second time, we find
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. 0%z 8z 08 8z 0A
_ 9z 2 0"z 0"z 4. 0Oz O& oz 0A
E= g @2 QA Sn Ao TS A+ 5E 28 A [13.5]
Replacing z, z, and z In the quasi-linear equation [73.1] by their

expressions [73.2], [73.4], and [73.5], one gets

%z 0% 8% ., 08z 8Q
apt Ut 2 s QA+ Gy AT So S At
oz 04 , ., 0z, 0z 4\ _
+ 3e B2 A+wz+,uf(z,a¢$2+aaA) 0 [73.6]

It is apparent that if one finds expressions for 2z, A, and Q satis-
fying this equation to a certain degree u” of accuracy, these solutions will
satisfy the original quasi-linear equation [73.1] to the same degree of ap-
proximation, conditions [73.3] being satisfied.

In order to apply the method of successive approximations, let us
represent the solutions in the form

z2(p,a) = 2o, a) + uz,(Y,0) + u’2,(p,a) + -
A(@)=pA @) + n*45(a) + - - - [(73.7]

Q@ =w+u2 (a0 + p?QQ@)+ - - -

The method then consists in substituting the series expressions
(73.7] for z(y,a), Ala), and Q(e) into Equations [73.3] and [73.2] and equat-
ing to zero the coefficients of u, u?,

One obtains in this manner the following series of recurrent dif-
ferential equations (compare with the analogous method of Poincaré, Chapter
VIII).

0%

5yt T 5= 0
6221 2 _ 620 6220 6220
(_awz + zl)w = f(Zo,ww)— 2&)91W 20)A1 61/18

(55 + 22)" = = £l Zt) o1 = Se{aure 220) (0 20+ 0, Lo 44, 82) -

oyt Y oy oY 19y 13a
d°z, d%z, » 0%, 8%z, 2 0%z
—_ 20)91 61//2 2(4)A1 6:/;6(1, 'Ql awz 291A1 W —_— 1 60/2 —_
_ 8% 09 92y 4 04, _ 0% _ 92
o9 da 41 5g A15g T 202 Py 204, dvda

0% 0%
=-FE, - 2&’926—1&5)“2“142?6; (73.8]
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. - L, 18
#ny1 2 _ _ _ O% _ _07%

( 5y° + znﬂ)w = -k, - 2wQ, ., oy 2wA,,, avoa

where E, is a function of 2z, -+ , 2z,; A, "=, A4, 2, -+ , 2,; and their

partial derivatives, which can be considered as known from the solution of
the first n equations [73.8] by a recurrence procedure.

As before, the first equation of System [73.8] is solved by putting
z, = a cos ¥. Substituting this solution into the second equation [73.8], one
obtains

62
(6;; +z ) = — f(acosy, — awsiny) + 2w acosy + 2wA siny

= —2 [@(a) cosn Y +G,la) sinn;b] + 2w ,acosy + 2wA,siny [73.9]
n=0

Since we wish to have z, periodic, the secular terms on the right
side of Equation [73.9] must be eliminated. The conditions for this are
2w,a — Fi(a) =0; 2wA, — G(@)=0 [73.10]

From these conditions A, and 2, are determined. Substituting their values
into Equation [73.9], one has

bk - )
(é-d% + zl) w? = — F(a) —ng;[Fn(a)cosnw + Gn(a)smnz/;] [(73.111
The solution of thls equation is
1 E (a) cosnzp+G(a)smn¢
o=— — —Z e [73.12]

Substituting the values of A; and @, from Equations [73.10) and
that of 2z, from Equation [73.12] into the third equation [73.8], one has

(6%02 ) = —-2[ Yayeos ny + GV (a) s1nn¢]

+ 2wQ,acosy + 2wA,siny [73.13]

where F' and G!” are certain functions of «a.
The elimination of secular terms again permits determining A, and
R, from the equations.

2wQ,0 — Fa) = 0; 204, — Ga) =0 [73.14]
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and the substitution of these values into Equation [73.13] reduces it to

2 o () (o s
(a—@ + z2>w2 = — F"a) —ZE’ (a)cosn;/;ilG” (a)sinny [73.15]
n=2

The recurrence procedure is now apparent. It is thus seen that the
solution so obtained is of the form

x = acosy + uz,(Y,a)+ piz,(p,0) + - - - [73.16]

where a and ¥ are given by the equations

da

ar =A@+ P4 + -+ A y(a) [73.17]
g—‘f = w + 40 + #2,0) + - - - + u2y) [73.18]
_ G (a) - Fl(a)
On the other hand, by Equations [73.10], 4, = —1—2w and Q, = Swa’ whence
d G,(a)
g% = n = = 1Al + A+ -+ pAy0)
(73.19]
% =w+u 2%%) + 4%2,@@) + 1°2,(@) + - - - + uNQu(a)

For N= 1, Equations [73.19] give the improved first approximation,
Equation [68.19].

Furthermore, since by the method of elimination of secular terms
the quantities A, 4,, -+ , A, are expressed in terms of the subsequent first
harmonics which are eliminated from expressions z,(¥,a), --- , z,(¢¥,a), it 1is
apparent that the first equation [73.19] relates to the amplitude of the fun-
damental harmonic.

The second equation [73.19], viz.,

2(a) = w =W+ u L@

dt 2wa 4.”294“)+ to (73.20]

may be designated as the equation of the instantaneous frequency 2(a) of the
non-linear oscillation.



CHAPTER XII

METHOD OF EQUIVALENT LINEARIZATION OF KRYLOFF AND BOGOLIUBOFF

74. INTRODUCTORY REMARKS

The method of Kryloff and Bogoliuboff outlined in Chapter X was
established by assuming a sinusoidal solution z = a sin ¥ for a quasi-linear
equation [58.1] and by determining the functions a(t), the amplitude, and
w(t), the total phase, so as to satisfy the differential equatiocn [58.1] with
accuracy of the order of p%. As was mentioned, from the standpoint of formal
procedure the method resembles that of the variation of constants of Lagrange.

The method of the first approximation stated in Chapter X gives
approximate expressions for the frequency and the amplitude of a non-linear
oscillation for small values of u. It is plausible to think that these same
approximate relations may be obtained from a linear equation in which the
coefficients have been suitably chosen. This is essentially what Kryloff and
Bogoliuboff have done and which is designated by them as the method of equiv-
alent limearization. The essence of the method is the determination of the
equivalent parameters, as is indicated in Sectlon 75.

On the basis of formal procedure it is not clear why this particu-
lar determination of parameters leads to the possibility of approximating the
solutions of a quasi-linear equation by those of a corresponding linear one
in which equivalent parameters appear. In order to justify the procedure,
Kryloff and Bogoliuboff observe that a non-linear oscillatory process 1is gen-
erally characterized by a certain Fourier spectrum of the component frequen-
cies resulting from the non-linearity of the system. If, however, one limits
oneself to the theory of the first approximation, it is logical to assume
that the fundamental harmonic of the spectrum should be considered. Hence it
is sufficient to determine the equivalent parameters so as to obtain in the
linearized problem the same oscillation which appears as the fundamental har-
monic of the quasi-linear system. In fact, if one assumes this to be an
a priori proposition, the Principle of Harmonic Balance, it can be shown that
the formulas giving the equivalent parameters follow directly from this prin-
ciple, see Section 77. One can also justify the introduction of equivalent
parameters by postulating that the work per cycle done by a non-linear force
F, and by a corresponding linear one is the same. In fact, if one assumes a
Principle of Equivalent Balance of Energy of this kind, one likewlse obtains
the same formulas for the equivalent parameters, see Section 76.

Viewed from this standpoint, the Principle of Harmonic Balance en-
ables us to determine the equivalent parameters without actually writing the
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non-linear differential equation. Kryloff and Bogoliuboff show that the solu-
tions so obtained do not differ much from those of the corresponding linear
equation. It is to be noted, however, that this argument should not be consid-
ered as a proof. In spite of this, the method of equivalent linearization, as
we shall see particularly in Part III, plays an important role in the quasi-
linear theory and leads to results consistent with experimental data. Thus,
for instance, the generalization of the concept of equivalent parameters for
several variables makes it possible to absorb the effect of an external peri-
odic excitation by the equivalent parameter and thus to explain a number of
phenomena such as asynchronous quenching and excitation, and similar phenom-
ena. Moreover, when an equivalent parameter is a function of the' amplitude,
the approach of the phenomenon to a 1imit cyele in this representation amounts
to the approach of the equivalent parameter to a critical wvalue at which the
linearized decrement vanishes and the oscillation becomes stationary.

We shall encounter numerous applications of the method of equiva-
lent linearization in Part III. In this chapter we shall establish the prin-
cipal definitions of equivalent parameters and give a few applications of
this method.

75. METHOD OF EQUIVALENT LINEARIZATION
It was shown in Chapter X that the solution of a quasi-linear equa-
tion

mi + Kx + uf(z,z) =0 [75.1]

can be written z = a cos ¢,* where the amplitude a and the total phase ¥ are
given by two differential equations of the first order.

Applying Equations [59.13] and (59.14] to Equation [75.1] with this
form of solution, one obtains

2
j—‘: = 27rl:)m !f(acosq&,— awsing)singdg = d(a) [75.2]
ap _
it = Q(a) [75.3]
where
2
2%@) = w2+7r—n/zi¢; Jf(acosd’, — qwsing) cos ¢ d¢ [75.4]

%* As a matter of fact, this solution in Chapter X was teken as z = a sin ¢, which merely reverses the
sin ¢ and cos ¢ under the integral sign in the amplitude and phase equations. The notation in the
present chapter complies with that used in the text of Kryloff and Bogoliuboff.
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The second term on the right side of Equation [75.4] is the frequency cor-
rection between the linear, w? =%, and the non-linear, 2%(a), frequencies.

If one defines two constants A and I?, the equivalent parameters,
by the equations

2’?
A= Wﬂwé“f(acosqb,— awsing) singd ¢ (75.5]
_ 2
K=K+ niaff(acosqi,— awsing) cosgpdg [75.6]
0

it can be shown that an "equivalent" linear equation, with coefficients X and
K, approximates the solution of the quasi-linear equation [75.1] to an accu-
racy of the order of u?.

In fact, with values [75.5] and [75.6], the amplitude equation
[75.2] becomes

a (75.71

and the phase equation

Y = Q@ == [75.8]

One recognizes these expressions as the usual ones for the decrement and fre-
quency of an ordinary linear equation of the second order.

In order to make sure that the solution 2 = a cos ¥, with a and ¢
given by Equations [75.7] and [75.8], actually satisfies the equivalent line-
ar equation, with accuracy of the order of uz, substitute the values z and z
into the equivalent linear equation

mit + A& + Kz = 0 [75.9]
We have
. . . . X .
x = acosyy — asiny -y = ——2—m—acos¢/ — aflsiny
. _ _ K X oo A, 02 1 X,
E=-a cos Y + - a9s1nz/1+%a a—asm(b + 5m 52 o ° cosy [75.10]
K XL N 209 . 1 oh X Ve
T it e Wt g~ g e

Substituting z, #, and % from these equations into the equivalent linear
equation [75.9]), one sees that the quasi-linear differential equation [75.1]
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reduces to a residue of the form R(u?), which proves that the equivalent
linear equation is satisfied with accuracy of the order of uz.
The transformation of the original quasi-linear equation

m& + Kx + uf(x,x) =0

into an equivalent linear one is accomplished by replacing the term uf(=z,z)
of the quasi-linear equation by K,z + A%, where K, = K - K.

It is apparent that the quantity § = A/2m= - a/a, as determined by
Equation [75.7], is the decrement, and Q = Vﬁ??iis the frequency of the equiv-
alent linear equation. If one substitutes for A and K their expressions
[75.5] and [75.6], one finds equations of the first approximation.

In this manner one obtains a purely formal connection between the
equations of the first approximation and the equivalent linear equation with
parameters A and K, as defined by Equations [75.5] and [75.6].

76. PRINCIPLE OF EQUIVALENT BALANCE OF ENERGY

From the preceding section it appears that the method of equivalent
linearization consists in replacing a quasi-linear force, F, = uf(z,z), by a
linear one, F, = K,z + Ai. Furthermore, it has been shown that if the equiva-
lent parameters K; and A are defined by Equations [75.5] and [75.6], with
K, = K - K, the solution of the equivalent linear equation [75.9] differs by
a small quantity of the second order from the solution of the original quasi-
linear equation [75.1]. We propose now to show why this particular definition
of equivalent parameters K, and A has been adopted. The physical justifica-
tion for this definition lies in the Principle of Equivalent Balance of
Energy, which requires that the work per cycle of F, and F; be the same, that
is

T T
ﬂff(x,o'c)o&dt =Xj552dt (76.1]
0 0

The term with K, does not enter into this expression because the
work of a conservative force per cycle is always zero.

It is to be noted, in view of the fact that the integral in Equation
[75.5] 1s finite, that A is of the same order as u, that is, it is small. On
the other hand, to the first approximation, z = a cos ¢ and z = - aw sin y,
where ¥ = wt + ¥,, and a and ¥, can be considered as approximately constant
during the time interval 2m/w. The left side of Equation [76.1], upon chang-
ing the 1limit of integration and substituting the generating solutions x =
a cos ¥ and z = - aw sin ¥, becomes
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27’
- uff(alcos Y, — awsiny) asiny dy [76.2]
0
and the right side is clearly
_ e _ o _
)\f a’wisin?y dt = }\azszinzwdz// = Aalwm [76.3]
0 0

Hence, by Equation [76.1],

N = ff(acos ¢, — awsing) singdd @ [76.4]

TaWw

This is precisely the first equation [75.5], by which the parameter A was
originally defined.

It is thus seen that the introduction of the equivalent parameter
A is dictated by the equivalence of work per cycle in both the quasi-linear
and the equivalent linear systems.

We next give a suitable physical interpretation to the other equiv-
alent factor, K,, which does not appear in the energy equation [76.1]. For
this purpose it is helpful to utilize the definition of "wattless" or re-
active power commonly used in the theory of alternating currents. In this
theory the energy (or active) component of power W, and its wattless (or re-
active) counterpart W, are deflned as

T
Jez‘singbdt

0

T
lfe cosg dt  and W,=Tl
0

where e, ¢, and ¢ are voltage, current, and phase angle respectively.
Defining the active W, and the reactive W, components of power for
a mechanical system in a similar manner, we have

e = T

L
Sty

Ft)a(t)ydt; W = %jF(t)x( )dt
0

Hence, by equating the expressions for the "reactive powers" for a
quasi-linear and for an equivalent linear system, we obtain

T

u%ff [x(t),a‘o(t)]a‘o(t -

0

T T
; Jat  [76.5]

) =170fT[K1x(t)+u(t)]( -

Since in this equation both u and A are of the first order, K, is
of the same order.
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Substituting the generating solutions z = a cos (wt + 8), & =
-awsin (wt + 6), and T = 2m/w, the left side of Equation [76.5] becomes

2”
a;:rﬂ Jf(acos ¢, — awsing)cospde

and its right side is a’wK,/2. It follows that
21
K, = ;T%ff(acosq&, — qwsing)cosp d o [76.6]
0
which is Equation [75.6].

77. PRINCIPLE OF HARMONIC BALANCE

An alternative auxiliary principle serving the same purpose can be
described as follows. Consider again the non-linear force F = uf(x,z) and
the equivalent linear one, F; = K,z + A%2. The harmonic oscillation z =
a cos (wt+ 0), where w 1s the frequency of the "zero" approximation, is
taken again as a generating solution. With this solution, F; can be written
as Fp = Fp, cos (wt + 6,), where F;, and 6, are the amplitudes and the phase
respectively of F,. The non-linear force F 1s represented by a Fourier series
of which the fundamental harmonic is F = F, cos (wt + 6). If one makes F = F,,
which constitutes the Principle of Harmonic Balance, it entalls two equations,
F, = F;, and 6 = 6;, from which again the two parameters X and K, can be ob-

talned. 1In fact,
F, = K acos(wt + 6,) — wAasin(wt +6,) (77.1]

and the fundamental harmonic of the non-linear force is
1 2?{
F = - [Jf(acos*r,— asin'r)cos-rdf} cos (wt + 6) +
0

2r
+—1— Uf (acosT, — asin'r)sin'rd'r] sin (wt +6) [77.2]
™ 0

Equating the coefficients of cos (wt + 6) and sin (wt + 6) in Equa-
tions [77.1] and [77.2], since 6 = 6;, one obtains the same expressions for
K, and X as before.

It is seen that both principles, that of the Equivalent Balance of
Energy and that of Harmonic Balance, are equivalent, because the work of
higher harmonics per cycle of the fundamental frequency is zero.
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Summing up the results of this and of the preceding sections, one
can state:

1. The Principle of Equivalent Linearization consists in defining an
equivalent linear system as a system wilth parameters A and K, expressing the
equality of work per cycle for the non-linear and the equivalent linear
systems.

2. The parameter A 1s obtained by equating the active components of
power in both cases; K,, by equating the reactive components.

3. When the equivalent parameters A and K, are so determined, the
equivalent linear differential equation admits a solution differing from that
of the quasi-linear equation by a small quantity of the order of u.

4. For practical purposes the formation of the equivalent parameters x
and K, 1s the only requirement for the solution of the quasi-linear equation,
in view of Statement 3.

78. EXAMPLES OF APPLICATION OF THE METHOD OF EQUIVALENT LINEARIZATION
A few examples given below illustrate the application of this
method.

A. NON-LINEAR RESTORING FORCE
Consider the differential equation

mi + F(z) = 0 [78.1]

where F(z) is of a quasi-linear type. For example, F(z) = cx + uz®, where ¢
and u are constant. The condition for quasi-linearity 1s that %2—3 <1,
Since the system 1s conservative, the amplitude a remains constant, but the
oscillations are not isochronous. Substituting the value of F(z) into Equa-
tion [78.1], one has

mi + cx +ux® =0 [78.21]

Hence f(z,%) = f(z) = nz® and, by Equation [76.6],
p 2n uaz
K (a) = Hgff(acos;é)cos:pdq& =5
2
The equivalent spring constant in this case will be ¢ + %, whence

l/c~i-K1(a) l/ o , M@ l/ ua? ua® 9

!_) = —_——— = +— = +————— ~ +————— = W +

¢ m “ T om w 1 2 mw? w(l 4mw2) (1+aa)
U

where o= . [78.3]
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The frequency of non-linear oscillation is here a function of the
amplitude a¢. The oscillation is thus non-isochronous, although the ampli-
tude a is constant. One can easily discover this fact formally by calcu-
lating the expression for A from Equation [75.5], which in this case gives
A=0.

B. NON-LINEAR DISSIPATIVE DAMPING
Consider a differential equation of the form
mx+ Ke +uf@)=0
In order to be more specific, assume quadratic damping, that is,
uf (@) = blx|e

Equation [75.5] for A in this case is

_ b 2r . ) _ b 2n
A= — p—— Off(— awsing)singdg = p— Jf(awcos¢)cos¢d¢
where
2 2x 7
jf(awcos¢)cos¢d¢ = a2w2f,cos¢,cos2¢d¢ = a’w? _[ cos®p dp —
0 0 0
in 2
—f cos’p d @ +Jcos3¢d¢} -8 a’w?
ki3 3 8
2 2
Hence, A = 38-“%’ The equivalent decrement 3§ = —2%= %— %’; it is seen that

the decrement in this case varies with the amplitude.
Applying Equation [76.6], one finds

o 2
K, = ubew flsin¢lsin¢cos¢d¢= 0
b

m

Hence the non-linear correction for the frequency in this case 1is zero to the
first order. .

From the fact that for quadratic damping the decrement varies with
the amplitude, one concludes that for large amplitudes quadratic damping is
more efficlent, and for small amplitudes less efficient, than is linear damp-
ing, the decrement of which does not depend on the amplitude.

Since the decrement ¢ = %%‘f;a = Sa, where S = %&—‘;’r, the motion
under the effect of quadratic damping can be determined. We have
— a 1 da
b=Se=-r=-9@
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whence
1 da d (1
S=-zar ~ (o)
Hence, on integrating,<%— - %— = St, so that finally
0
0 =— [78.4]
4 bw .
1+ 45— aqyt
3 mm

which colncides with Equation [62.4], obtained by the theory of the first
approximation.

C. NON-LINEAR RESTORING FORCE AND NON-LINEAR DISSIPATIVE DAMPING
The differential equation is of the form

mi + (@) +ex) =

It will again be assumed that both f(z) and c¢(z) are quasi-linear, that is,
they are of the form f(x) = A,z + ué(z) and c¢(z) = coz + vy(z), where A, and
¢, are constant, y¢ and v are small parameters, and ¢(xz) and ¢(x) are non-
linear terms.

The application of the method of equivalent linearizatlon gives

9=‘/¢,)2+—IglL and 7 = -
m 2m

where Ra and A are again the equivalent parameters determined by Equations
[75.5) and [76.6], applied to the function f(z,2) = ug(%) + vy(x), as ex-
plained in connection with the two previous examples.

Equations of this type are of frequent occurrence in practice.
For example, Froude's well-known differential equation for the rolling of a
ship in still water is of the form

I6 + K6 + K,6% + Whsing = 0

where I, W, and h are respectively the moment of inertia, the displacement,
and the metacentric height of the ship, and K, and K, are Froude's coeffi-
cients of resistance to rolling. If one approximates sin 6 by @ --3—, one
has, upon dividing the equation by I, the following equation

&)293

6+ blé+62é2+w29—T =0

which is of the type considered here.
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D. ELECTRICAL OSCILLATIONS IN A CIRCUIT CONTAINING
A SATURATED CORE REACTOR

Consider an oscillating circuit containing a constant air-core
inductance L,, a variable saturation iron-core inductance L,, and a fixed
capacity C. The non-linearity in this case is due to L;. In fact, the flux
¢ through the coil L, is & = f(¢), where ¢ is the current. For a sinusoidal
current ¢ = 7, cos (wt + ), the fundamental harmonic of magnetic flux is

L ¥
7Jf(2ocos¢) cosgde - cos(wt + @)

According to the method of equivalent linearization, the non-linear
equation @ = f(7) can be replaced by the linear one & = L,%7, where L, is the
equivalent linear coefficient of self-inductance,

1 &
Lo=— [f(G,cos8)cospd [78.5]
0

77'20

If the constant air-core inductance L, is relatively large compared with the
non-linear inductance containing iron, the current will be quasi-harmonic and
the expression for frequency will be
1 1 L,
w (1-57) (78.6]

"V, +L,)C~ YLC L,

E. NON-LINEAR CONDUCTORS
Consider a conductor and let the voltage drop e acrosg its terminal
be e = - f(1).
If the current 1s of the form ¢ = 7, cos (wt + 6), the fundamental
harmonic of the voltage drop is

1 F.
- !f(zocos¢)cos¢ d¢ - cos(wt +6) = e

By putting

T

2
R, = I—beff(z'ocos¢)cos¢d¢

the non-linear conductor can be replaced by an equivalent linear one having

a voltage drop e, = R,7. If R, > 0, the non-linear conductor dissipates
energy; if R, < 0, energy is brought into the system owing to the non-
linearity of the process. Likewise, if the non-linearity appears in the form
i = f(e) and the voltage executes a harmonic oisillation e = e, cos (wt + 9),
the fundamental harmonic of current will be<%~£”f(e0 cos®) cos¢ d¢. Here
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again one can replace the non-linear parameter ¢ = f(e) by a linear one,
i = ae, provided that we define the equivalent conductance as

2
g = i;!f(eocos¢)cos¢d¢ [78.7]

Depending upon whether o 1s greater than or less than zero, one
has either absorption or generation of energy.

These considerations are useful in analyzing circuits containing
electron tubes. The anode current in this case is of the form i, = f(E, + e),
where E, is the constant voltage of the "B source," and e 1is the alternating
grid voltage.

If ¢ is sinusoidal, the fundamental harmonic of 7, will be

1 2r .
;Ojf(Eo +e, cos @) cosgpdg - cos(wt + 9)
If one defines
2
S, = —;;;Jf(E‘0+e0cos¢)cos¢d¢ [78.8]

as the average transconductance of the tube, instead of a non-linear rela-
tion ¢, = f(E, + ¢), one will have an equivalent linear relation, 7, = S,e.

F. THERMIONIC GENERATORS
Consider a thermionic circuit arranged according to the diagram
shown in Figure 78.1, which 1s self-explanatory. The resistance E, shown to
be in parallel, is supposed to be large so as to obtain only rather small

damping in the oscillating circuit LC. ) .
The control voltage is e = (M - DL) g;—, where the term DL%—;— takes
care of the anode reaction (D << 1). The alternating component of the anode

current 1is

i, = S(M-pL)% Fo
M

—

L
where S, 18 the equivalent transcon- T’R _j ic

ductance of the linearized problem. L R c—
By Kirchoff's law, %, =

i, + ip + t¢, Where Rip = Li; in the
LR-mesh; hence tp = % i;. In the
CL-mesh, . i —
1 1. dig
Z‘_fzcdt =Lgr Figure 78.1
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whence ic = LCi, . Substituting these values into Kirchoff's equation and
dropping the subseript L, one obtains

d% | L di . di
LCoh+ 5 gr +i=1i = SP(M—DL)d—t
Hence finally
d% | [L di | .
LCW+[§—Se(M—DL)}Et—+z—O [78.9]

This equation is an equivalent linearized equation of the process, since it

contains the linearized parameter S,. From this we get the decrement
1 [L
= 5ie [E - Se(M—DL)] [78.10]

Equation [59.13] of the first approximation is here

. sm-pL-L
LU E [78.11]
dt 2LC 0 )
The stable amplitude is reached when
L
S,(M~-DL) = & [78.12]

Since, by Equation [78.8], S, contains e¢,, the substitution for S, of 1its
value from [78.12] determines the equilibrium amplitude e, of the grid volt-
age at which the oscillation reaches a steady state.
As a second example, consider a somewhat modified scheme shown in

Pigure 78.2, in which the resistance R is supposed to be small so as to be
within the range of the quasi-linear theory. If the current in the oscillat-
ing circuit 1s designated by ¢ and the anode current by i,, the differential
equation is

di 1

LS +Rz+?szt =M

i, de
dt dt

= MS, [78.13]

where e 1s the grid voltage given by the equation

e =%fz’dt +D(M% - La;i;.“)

If the anode reaction is neglected, D =~ 0, so that

e z—é—,—fz’dt [78.14]
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Introducing the variable e instead of ¢ in Equation [78.13], we obtain

d% de
LCoS +(RC - MS,) 55 + e =0 [78.15]

The stationary condition is reached i+
when

RC la

S, = 7 [78.16] o
In the transient state the decrement M
is -
-—cC L Lo
RC — MS,
b=—%70 [(78.17]

Since by [78.8] the equivalent trans- Figure 78.2

conductance S. is a function of the

amplitude e,, the decrement § varies during the transient state. If the
static curve 7, = f(e) 1s approximated by a polynomial, Equation [78.8] per-
mits calculating the amplitude eé at which the decrement 6 vanishes and the
stationary condition is reached. Assume, for example, that the constant
biasing voltage E, is such that the characteristic i, = f(e) of the electron
tube can be approximated by the polynomial

fly=1i,=7i,+ae + Be’— ye’ [78.18]

where a,, 8,, and 7, are positive constants. Carrying out the calculation
[78.8], one finds

and, by Equation [78.16],

e = —4—(01]—-@) [78.19]
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