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Preface

Ce qui nous rend ces solutions periodiques si prScieuses,

c'est qu'elles sent, pour ainsi dire, la seu/e breche par ou

nous puissions essayer de penetrer dans une place jusqu'ici

reputee inabordable.

â€”Henri Poincare

This book may be considered as a second edition of the D. Taylor

Model Basin Reports issued toward the end of World Wa? II. The inter-

vening years have seen a widespread growth of interest in the theory of

oscillations which, during the thirties, attracted little attention except in

the USSR.

On major topics the theory of oscillations has gradually become gen-

eralized and assumed definitive form. However, new problems have raised

new questions and on these the subject is still in a state of evolution.

Considerable interest of mathematicians in the problems of nonlinear

oscillations has resulted in important advances in the theory of nonlinear

differential equations but, as is to be expected, some of these advances

have exceeded the immediate needs of the theory of oscillations and belong

rather to the theory of differential equations per se. On the other hand,

physicists and engineers continue to supply experimental material, the

analysis of which requires special mathematical tools, some of which are

not yet available. In view of this it is sometimes difficult to draw a line

between what is known definitely and what is known only provisionally

and subject to later revisions.

The theory of oscillations has apparently reached the state of its final

codification in the domain of small parameters based on the fundamental

researches of H. Poincare, both topological1 and analytical2; here the theory

1 H. Poincari, J. des Math. (3) 7, 1881; also Oeuvres, T. 1, Gauthier-Villars, Paris, 1928.

*H. Poincari, Lts mcthodcs nouvclles de la mecanique cileste, Gauthier-Villars, Paris, 1882;

also E. Goursat, Cours d'Analyse, T. 2, Gauthier-Villars, Paris, 1892.
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vi PREFACE

and the experimental facts are well coordinated; if there are occasionally

some difficulties, they are not essential. The first two parts deal with this

important field: Part I is devoted to the qualitative (topological) methods,

and Part II concerns the quantitative approaches. Both parts follow the

aforementioned treatises of Poincare, although in some of the later methods

in Part II appear modifications in details but not in essence, since in all of

them solutions are sought in the form of power series of certain small

parameters.

In Part III devoted to applications, the aforementioned nonuniformity

of our present understanding of problems posed by the experimental evi-

dence is noticeable. Thus, in Chapter 21 one finds oneself on the relatively

little explored field of nonlinear difference-differential equations where,

besides some existence theorems, the mathematical developments have

not progressed enough to offer a practical tool. Something similar appears

in Chapter 25 where one feels the presence of certain "hereditary actions"

(probably amenable to integro-differential equations) but, again, the

problems being nonlinear, practically nothing is available on the mathe-

matical end to enable one to account for the observed facts.

In Part IV dealing with relaxation oscillations, the situation is still

further removed from a state of crystallization. Here, moreover, appears

a real "parting of the ways" between the efforts of mathematicians on

one hand and those of physicists and engineers on the other, the former

giving rise to an asymptotic, the latter to a discontinuous, theory. To

these two theories has been added recently a third based on the so-called

"piecewise linear" idealization.

The difficulty here is that all these problems are characterized by such

poor analyticity that it often seems easier to drop entirely the concept of

analyticity and sometimes even that of continuity.

Part I of this edition underwent relatively small changes except for the

addition of chapters 5 and 6 on stability. The theory of stability has devel-

oped considerably in recent years (mostly in the USSR) on the basis of

Liapounov's ideas. The so-called second (or direct) method of Liapounov,

in particular, appears now as a cornerstone for investigations of stability

in various problems like those arising in connection with nonlinear control

problems. Some changes appear in Chapter 7; they reappear later in

Chapter 22; these problems of "bifurcations" turned out to be more impor-

tant than one could think at the time of the first edition.

In Part II, which is devoted to a survey of the various methods of

approximations and constitutes the quantitative part of the theory of

oscillations, all chapters relate to recent developments except Chapter 9,

which deals with the classical perturbation theory. Chapters 10, 11, 12,

and 13 are based on the work of Malkin who has adapted the theory of
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PREFACE vii

Poincare to problems of the theory of oscillations. Chapters 14 and 15

summarize the so-called asymptotic methods of Bogoliubov and Mitrq-

polsky representing a further generalization of the earlier work of Krylov

and Bogoliubov; this asymptotic theory is perhaps the most general of

all quantitative methods. Chapter 16 concerns recent work carried out by

the author in collaboration with M. Schiffer on the so-called stroboscopic

method based on the transformation theory; a number of problems are

treated by this method in Part III.

In Part III, concerning various nonlinear oscillatory phenomena, the

first three chapters follow closely the general theory; we indicate the

standard procedure (of Poincare) as well as that resulting from the use of

the stroboscopic method. The subjects of Chapters 21 and 25 transcend

the theory of ordinary differential equations and belong to certain func-

tional equations; as this field has not yet been completely explored, some

preliminary conclusions are obtained in the first approximation.

Part IV deals with relaxation oscillations; in this field, as we have

already mentioned, there are two distinct theories: the discontinuous

theory and the asymptotic one; the first is outlined in the first four chap-

ters and the last in Chapter 30. The reason for this imbalance lies not in

any preference of the author but in the fact that the present text is intended

primarily for physicists and engineers whose interest in a theory lies

primarily in the ease with which it explains phenomena; unfortunately

developments in the asymptotic theory have not yet reached the stage

when the theory can be applied easily to various problems, as can be

observed from the last two sections of Chapter 30. Chapter 31 on piecewise

linear idealization has been added recently; these developments (in the

USSR) became known when this text had been completed. In fact, this

method does not belong to either analytical or discontinuous methods and

stands by itself because it involves certain idealizations in the differential

equations themselves.

In a work of this nature it has been necessary to limit the exposition

to certain topics, omitting others not because they are less interesting

or less important, but because they are not needed for the program we

have selected.

Moreover, we have given preference to the Russian literature as far as

recent results are concerned. To some extent this is due to the fact that

the Russian literature is likely to be less known to the western readers

and because, having established the initial advance in this field (up to

1940), the Russian scientists maintain their leadership and initiative char-

acterized by a remarkable coordination of efforts between the mathe-

matical and the experimental parts of these fundamental researches.

The author wishes to express his gratitude to Professor M. Schiffer of
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viii PREFACE

Stanford University for his many valuable contributions during the initial

stages of this work, particularly in connection with the development of

the stroboscopic method which turned out to be a useful tool for applied

problems treated in Part III. He also wishes to express his gratitude to

Professors G. Sansone and R. Conti of the University of Florence for

many valuable discussions and to Dr. O. Plaat for his editorial work in

Parts I and II. The author is also indebted to the late Dr. B. van der Pol

whose brilliant grasp of nonlinear phenomena, particularly those treated

in Part IV, led to many interesting discussions.

This work was carried out under the auspices of the Office of Naval

Research; the author is grateful for the opportunity to undertake this

work as well as for the many facilities offered to him during its progress.
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QUALITATIVE METHODS
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Chapter 1

PHASE PLANE; SINGULAR POINTS

1. Introductory remarks

This chapter may be considered as an investigation of various types of

equilibria of a physical system with one degree of freedom on the basis of

the theory of Poincare.1

The essential aim of this study is the identification of singular points of

a differential system with positions of equilibrium. Once this aim is

reached, the remaining analysis follows closely the Poincare theory with

slight additions imposed by its physical interpretation. Thus Poincare

stresses more the geometry of curves defined by a differential equation

(d.e.) in the neighborhood of singular points, whereas in the theory of

1 H. Poincare, J. des Math. (3), 7, 1881; also (Euvres T.l, Gauthier-Villars,

Paris, 1928.

This subject can also be found in any textbook on the theory of d.e. in the real

domain, for instance:

(Â») L. Bieberbach, Differentialgleichungen, Springer, Berlin, 1923.

(b) L. Cesari, Asymptotic Behavior and Stability Problems, Springer, Berlin, 1959.

(c) E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equa-

tions, New York, 1955.

(d) E. Kamke, Differentialgleichungen reeler Functionen, Leipzig, 1930.

(e) S. Lefschetz, Differential Equations (Geometric Theory), Interscience Pub-

lishers, New York, 1957.

(f) V. V. Nemitzky and V. V. Stepanov, Qualitative Theory of Differential

Equations, original text in Russian, Moscow, 1949; English translation,

Princeton Mathematics Series, Princeton University Press, Princeton,

N.J., 1960.

(g) E. Picard, Traiti d'Analyse T.3, Gauthier-Villars, Paris, 1928.

(h) G. Sansone and R. Conti, Equazioni differenziali non lineari, Ed. Cremonese,

Roma, 1956.

(i) F. Tricomi, Equazioni differenziali, 2nd ed., Einaudi, Torino, 1953.
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4

QUALITATIVE METHODS

oscillations it is useful to take also into account the directional and time-

dependent element of motion of the "representative point" on these

curves, in which case they are considered as trajectories rather than as

purely geometrical curves. In this manner appear some refinements in

the original theory; thus, in addition to the definition of nodal and focal

points there appears the property of stability according to the direction of

motion of the representative point.

These extensions, however, do not change the intrinsic character of the

theory but concern rather its interpretation in applied problems.

In Section 2 the Cauchy-Lipschitz theorem is stated in its general form,

in which it asserts the existence of solutions of a system of differential

equations with prescribed initial conditions and brings it into relation

with the phase-plane representation which follows from the representation

of a d.e. of the second order by an equivalent system of two first-order

equations.

2. .Theorem of Cauchy-Lipschitz; generalities

The theorem of Cauchy regarding the existence and uniqueness of a

solution of a d.e. can be found in any textbook of differential equations

and, for that reason, we shall not be concerned with its proof here. Our

primary object will be to establish certain geometric consequences of this

theorem which will be useful in that which follows.

We first explain what is meant by a "Lipschitz condition." Let /be a

function of the m variables: xx, x2,. . ., xm. We say that f(xv x2,. . ., xm)

satisfies a Lipschitz condition if, given values XjÂ°, x2Â° xmÂ° of these

variables, there are positive numbers k and 8 such that the relation

|/(*1Â°.*.D O -/(*!.*â€¢ *J| * * 2 ~ *.l

i= 1

holds, provided â€” x{\ < 8; i = 1, 2,. . ., m. The number k depends

on Xj0, x20,. . ., xmÂ° but not on *â€ž x2 xm. If the partial derivatives

df/dXi exist and are continuous, it can be shown that /satisfies a Lipschitz

condition. Let the n functions /,-(*, xv x2 *â€ž);!= 1, 2,..., n of the

n+l variables: t, xv x2,..., xâ€ž satisfy Lipschitz conditions, and let

t0, *i0, *20,. . ., xâ€žÂ° be prescribed.

The theorem of Cauchy-Lipschitz then states that the system of the n

first-order d.e.

(2.1)

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 1

2
:5

2
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



PHASE PLANE; SINGULAR POINTS

5

has a unique solution *, = *,-(r); i = 1, 2,..., n defined in the neighbor-

hood of t = t0 such that *,(r0) = i = 1, 2 n. The theorem thus

guarantees not merely the existence of solutions with prescribed initial

conditions, but it asserts that the initial conditions determine the solution

uniquely. The d.e. we shall consider will be Lipschitzian, unless the

contrary is explicitly indicated. To apply this theorem to a single d.e. of

order n we solve the d.e. for the highest derivative and write it in the form

*<,) = J =f(t,*,* (2-2)

This d.e. is equivalent to the system of n first-order d.e.

*i = *2; *2 = *3;- . *(n) = f(t, *â€ž *2,- . .. (2-3)

where we have written xx in place of x for the sake of uniformity. This

system is a special case of that covered by the Cauchy-Lipschitz theorem,

which now states that the solutions of (2.2) are uniquely determined by

the values prescribed for x and its first n â€” 1 derivatives at t = r0 provided

that the function / satisfies a Lipschitz condition.

For later reference we collect at this point a number of theorems con-

cerning the dependence of the solutions of a system of differential equa-

tions on the initial conditions and on parameters occurring in the functions

f{. To avoid confusing notation we denote the initial values of the x{ by

Â£, instead of by *fÂ° and we write t instead of r0. Let us denote the (unique)

solution of (2.1) which at time t = t has the value #, = Â£, by: x, = <p, (r, t,

fi. f Â». . .. Q- follows that 9>,(t, t, fj, f 2,..., Â£â€ž) = (i = 1,2 n).

We state first:

If the functions /,-(/, *x,. . ., xâ€ž) satisfy Lipschitz conditions, then the

functions <Pi(t,r, Â£x Â£J are continuous in t, fj, f2,. . ., |n. We have

furthermore: fAe partial derivatives dfjdxj; i,j= 1,. . ., n are

continuous, then likewise the functions <p, have continuous partial derivatives

with respect to r and fj,. . ., Â£â€ž.

More generally it is true that the solutions <p, are as differentiable with

respect to t, f x,..., Â£â€ž as the/, are with respect to r, xx,..., xn. Turning now

to analytic systems, let the /, be analytic at t = t0, x{ = x{Â°. The result

in this case is:

The functions <P^t, r,Â£v..., fâ€ž) are analytic in all of their arguments in a

neighborhood of t = t0,r = t0, Â£, = *,Â°.

It is possible to make estimates concerning the domain of analyticity of the

9>, given that of the /â€ž but we shall not need these.
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6

QUALITATIVE METHODS

Finally we consider systems of the form (2.1) in which the right-hand

sides depend on a parameter /x, thus a system of the form

**=/,{'. *â€ž- ..>*â€ž> m)

We have:

If the fa are continuous in their arguments and satisfy Lipschitz conditions

in t, xx,. . ., xâ€ž uniformly in /x in a neighborhood of /x0, then the solutions

xi = 9i(*> T> Â£v â–  .> Â£n> P-) are unique and continuous in all their arguments

for ti in the same neighborhood of fi0.

The 9, are as differentiable in their arguments as the f{ are in theirs.

If the /, are analytic at t = t0, x, = p. = /x0, then the <p, are analytic

in all their arguments in a neighborhood of t = r0, t = r0, = ti = /x0.

The analyticity in the initial conditions and the parameter will be important

to us in Part II.

The results concerning a single parameter can be extended in the obvious

way to the case in which the/, depend on several parameters p.v n2 M*-

If the functions/, occurring in (2.1) do not depend on the time, the system

is said to be autonomous, a term whose significance will be more readily

understood when we begin considering connections with physical problems.

In this chapter we shall be interested in systems of the form

x = P(x,y); y = Q(x,y) (2.4)

that is, autonomous systems of two first-order equations. By the equiva-

lence mentioned above, these include the special case of one second-order

d.e. which is typical of physical systems with one degree of freedom. In

the case of (2.4) it is possible to eliminate dt between the equations and

write

i-ffi- â„¢*Â» (")

which is a d.e. of integral curves. If P = 0, Q 0, we may interchange

the roles of x and y and consider the d.e.: dxjdy = P/Q, in which case the

integral curves are given in the form x = a(y).

For the special case of a d.e. of the second order, x + f(x,x) = 0, one

can reduce it to the system (2.4) of the two d.e. of the first order by setting

x = y, which gives the equivalent system:

x=y = P(x,y); y = -f(x,y) = Q(x,y) (2.4a)

and the d.e. (2.5) becomes
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7

It is to be noted that (2.4) and (2.5) are equivalent, that is, have the same

integral curves with that difference, however, that (2.5) gives a geometrical

curve without any reference to what happens in time, whereas (2.4), in

addition, tells how this curve is described in time and direction by the

representative point R = R[x(t),y(t)] specifying the instantaneous state

of the physical system.

This representation of the integral curve in the parametric form

x = x(t) = <p(t - t0, x0,y0); y = y(t) = if>(t - t0, x0,y0) (2.5b)

is called a trajectory, a term which will be used later. It is to be noted that

this applies only to autonomous systems like (2.5); that is, such systems in

which the independent variable t does not enter explicitly. In fact, only

in this case it is possible in general to eliminate t between equations (2.4).

Another remark is noteworthy. If one considers the quantities

t0,x0,y0 fixed (that is, given initial conditions), clearly x(t) and y(t)

represent the solution of the d.e. having for t = r0 definite initial condi-

tions x0, y0 which determines the solution. But from the translation

property of autonomous d.e. it is known that if one replaces t by t + t0,

where r0 is an arbitrary constant (the phase), one has still the solution of the

same d.e. In physical language the solution x(t), y(t) specifies a certain

motion; the fact that t is replaced by t + t0 means clearly another motion

(with a different phase r0) and the just mentioned property of translation

of autonomous systems can be stated differently, namely:

To a given trajectory corresponds an infinity of motions (solutions) differing

from each other by the phase.

This property of autonomous systems is very convenient for the geo-

metric study of integral curves and this and the following three chapters are

devoted to the geometry (or topology) of integral curves defined by

autonomous d.e. which constitutes the fundamental contribution of

Poincare.

In the case when a d.e. contains t explicitly, this topological procedure

ceases to hold. Assume, for instance, that instead of (2.4) we have d.e. of

the form

It is clear that we cannot determine the integral curve as we did in the

autonomous case by a simple passage from (2.4) to (2.5). In the non-

autonomous case the direction field

x = P(t,x,y); y = Q(t,x,y)

(2.6)

dy = Q(t,x,y)

dx P(t,x,y)

(2.7)
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QUALITATIVE METHODS

varies in time and it is meaningless even to speak about integral curves in

the sense of "trajectories," etc. In fact, if one assumes as previously the

phase-plane representation (see next section), one encounters absurd

situations; for instance, trajectories may even intersect each other which

is contrary to the theorem of Cauchy-Lipschitz and so on. One can

obviate this difficulty if one introduces f as a third dimension, but the ad-

vantage of a planar representation is lost and the procedure becomes

impracticable.

Only under very special conditions (which will be encountered later)

is it possible to use the phase-plane representation for nonautonomous

systems, but this is rather an exception than the rule. In view of this, one

has to bear in mind that Part I deals only with autonomous systems.

Summing up, we shall primarily be concerned with the d.e. in the form

(2.4) which gives a space-time representation of an oscillatory pheno-

menon; occasionally, when only the geometry of integral curves is of

interest, we shall use the d.e. (2.5). Hence, unless otherwise specified, we

shall always deal with the d.e. in the form (2.4), and in this regard the

following definitions are important.

Any point (x0,y^) for which the two functions P(x0,y0) and Q(x0,y0) do

not vanish simultaneously is called an ordinary point with respect to the d.e.

A point (x0*,y0*) for which P(x0*,y0*) = Q(x0*,y0*) = 0 is called a

singular point.

3. Phase plane

The introduction of the variable y = x in (2.4a) suggests the investiga-

tion of integral curves in the plane of the variables (x,y), called the phase

plane. As an example of this representation, consider the d.e. of a har-

monic oscillator in its reduced form x + x = 0. Written as a system

(2.4a) it is:

x = y, y = -x (3.1)

Multiplying the first equations by x and the second by y and adding the

two d.e. and then integrating, one has:

x2 + y2 = r02 = const

which represents a circle in the phase plane. The direction of motion of

the point R on the integral curve is obtained from the system (3.1). Since

x and x are merely the cartesian coordinates in this representation, in the

first quadrant, for instance, one has x > 0, y > 0, and it is seen that

x > 0 and y < 0, which shows that the positive direction of the integral

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 1

2
:5

7
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



PHASE PLANE; SINGULAR POINTS 9

curve is clockwise as shown by the arrow in Fig. 1.1. Introducing the

polar angle <p of the radius vector r, one has cos <p = */r0, and differentiating

with respect to t, one obtains <p = â€” 1. Thus the usual representation (in

the x,t plane) of the integral curve of the harmonic oscillator by a sinusoidal

curve with t on the abcissa axis is replaced in the phase plane by a polar

representation by a circle described by the representative point with a

constant angular velocity <p = â€” 1, the minus sign merely showing that

the rotation takes place in the direction opposite to that in which the angles

are counted as positiveâ€”a fact which has been already noted directly from

the d.e. (3.1).

The dependence of the solution on

two arbitrary constants of integration

also appears in the phase-plane repre-

sentation. One of these constants is

obviously r02 (or r0) since, if one

changes the initial conditions x0, y0,

then r0 changes and one thus obtains a

continuous family of circles depending

on the parameter r0. For a given r0

there is still another family of motions

depending on the initial phase <p0.

One thus has a very simple and com-

pact representation of the totality of Figure 1.1

solutions of the harmonic oscillator

expressed in terms of two constants of integration.

If one takes the d.e. of the harmonic oscillator in a nonreduced form:

x + w0*x = 0 (3.2)

the result is similar, as one easily verifies by means of a similar argument.

One can also obtain the same result by multiplying (3.2) by x and integrat-

ing, which gives the first integral:

*2 + a)02x2 = 2C

C being an arbitrary constant. If one divides by 2C and sets x = y\

2C = /J2; 2C/<j02 = a2, one obtains the equation of an ellipse with the

semi-axes a and fi:

..9.

(3.3)

1 0

J X

â€” + Z. = 1

a2 /32

which represents the integral curves in the phase plane (Fig. 1.2). The

positive direction on this curve is obtained again from the representation of

(3.2) as a system:
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QUALITATIVE METHODS

One has again a continuous family of ellipses corresponding to a con-

tinuous variation of the arbitrary constant C. There is still another

continuous family of possible motions corresponding to the same ellipse

but counted with different initial phase

angles. At any instant t the projec-

tion of the radius vector r on the x

axis gives the coordinate x, and the

projection on the y = x axis gives the

velocity x corresponding to this instant.

In this case, the angular velocity <j> of

*â–  the radius vector does not remain con-

stant, as in the case of the reduced

equation x + x = 0, but fluctuates

between a maximum and a minimum

as the radius vector rotates between the

Figure 1.2 semi-axes of the ellipse.

It is to be noted that the d.e. (3.2)

can always be reduced to the form x + x = 0 by a change of the in-

dependent variable t = a>0r, which transforms the elliptic integral curves

into circles.

4. Singular points; elementary singular points

The Cauchy-Lipschitz theorem applied to the autonomous system

* = P(x,y); y = Q(x,y) (4.1)

has, as a consequence, that through every point of the plane there passes one

and only one integral curve. We may think of (4.1) as a "flow" in the phase

plane defined by the velocity-vector field. The direction of motion at

each point being specified by this vector, it follows that the integral curves

are tangent at every point to this vector and are, in fact, completely

determined by this requirement. If two distinct integral curves were to

have a point in common, they would then have to be tangent at this point,

a possibility ruled out by the fact that P and Q are Lipschitzian. Thus we

arrive at the conclusion that two distinct integral curves have no point in

common.

A singular point (x0,y0) is a stationary point of the flow, P(x0,y0)

= Q(x0,y^) = 0 and the integral curve passing through it consists just of

the point itself. This fact can also be deduced directly from (4.1) by

noting that x(t) = x0; y(t) = y0 is a solution of (4.1). Now, if x(t), y(t)

is an arbitrary solution passing through (x0,y0), that is, such that x(r0)
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= x0; y(t0) = y0 for some t0, then the uniqueness part of the Cauchy-

Lipschitz theorem tells us that

*(0 = *o'> MO = Jo

If (4.1) is obtained from a second-order d.e. describing a dynamical

system via the substitution x = y, then a singular point (x0,y0) has a

simple interpretation in terms of that dynamical system. In this case

P(x,y) = y, so that y0 = 0 and, since x is position and y velocity, the fact

that x(t) = x0; y(t) = 0 is a solution tells us that x = x0 is a position of

equilibrium of the dynamical system. We are thus led to identify singular

points with positions of equilibrium, and this is of fundamental importance

in what follows. In particular, the asymptotic behavior of the trajec-

tories in the neighborhood of a singular point determines the type of

equilibrium represented by the singular point.

A further consequence of the Cauchy-Lipschitz theorem follows. If a

trajectory passes through an ordinary point, it cannot approach a singular

point in finite time; more precisely, if x = x(t); y = y(t) is a nonconstant

solution and *(/) -> x0 and y(t) â€”> y0 as t â€”> r0, where (x0,y0) is a singular

point, then r0 = Â± oo. A singular point is said to be asymptotically

stable if all trajectories starting sufficiently near it tend to it asymptotically

as / â€”> oo. If there is a trajectory which tends asymptotically to the singu-

lar point as tâ€”> â€” oo, the singular point is said to be asymptotically

unstable. In the case of an harmonic oscillator the origin is a singular

point which is neither stable nor unstable as we have defined these terms,

since every trajectory forms a closed curve surrounding the origin (Fig. 1.1

or 1.2). Having in mind the asymptotic character of motion in the

neighborhood of a position of equilibrium, one can give a general classifica-

tion of singular points. We follow closely the basic work of Poincare.

We start with a special case and consider the systems

x = x; y = ay (4.2)

and

x = â€”x; y = â€”ay (4.3)

whose solutions are x = Cxe'; y = Cf and x = C^e-'; y = C2e-<",

respectively. The origin x = y = 0 is a singular point for both systems,

and the coordinate axes are integral curves. The integral curves on which

x # 0 satisfy the d.e.

Â¥ - 2 (4.4)

ax x

which has the solution y = C|#|a; this relation can also be deduced
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QUALITATIVE METHODS

directly from the solutions of either system. Thus both systems have the

same integral curves. The significance of the signs will appear presently.

The integral curves are parabolic if a > 0 and hyperbolic if a < 0.

These two cases give rise to different types of singular points. For

reasons of symmetry we may restrict the discussion of the integral curves

to positive values of x.

Node. We consider first the case a > 0. If a > 1, as dy/dx = Cax"-x,

then (dy/dx) â€”> 0 for x â€”â–º 0. Hence every integral curve with the ex-

ception of- the y axis approaches the singular point along the x axis, as is

shown in Fig. 1.3a. If a < 1, dy/dx â€” Ca(1/x1-a) and in this case every

(a) (b)

Figure 1.3

integral curve with the exception of the x axis approaches the singular

point along the y axis (Fig. 1.3b). If a = 1, the integral curves are half-

lines converging to or radiating from the singular point (Fig. 1.4). Again,

every integral curve has a limiting direction at the singular point, and this

property is taken as the definition of a node, or nodal point. If, given any

direction, there is an integral curve having this limiting direction at the

node, as is the case in the example when a = 1, the node is called a proper

node, or star. If every integral curve, or every integral curve but one (as

in the case a # 1), has the same limiting direction, the node is called an

improper node.

The significance of the signs in (4.2) and (4.3) appears in the solutions.

The trajectories of (4.3) actually approach the node (as t -> oo) while the

trajectories of (4.2) have the reverse direction. In the first case the node is

stable and in the second it is unstable.

We remind the reader that a given parabolic curve such as ANB in
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Fig. 1.3a consists, properly speaking, of three different trajectories: AN

and BN without N and a singular trajectory consisting of the single point

N. All trajectories converge to (or diverge from) the node, but never cross

it.

Saddle point. If a < 0, the integral curves other than those lying on the

coordinate axes are the hyperbolic curves: ^|*||a| = C. For |a| = 1,

they are the ordinary hyperbolas shown in Fig. 1.5. The coordinate axes

are the asymptotes of the family. This singular point is called a saddle

point (in French, col). The directions indicated in Fig. 1.5 are those

corresponding to (4.2). Only four trajectories tend to the singular point:

AS and BS for t oo and DS and CS for t -> - oo. For (4.3) the direc-

tions are opposite to those shown in Fig. 1.5. It is clear that a saddle

point is always an unstable singularity.

B

Figure 1.4 Figure 1.5

Focus. To introduce the idea of a focal point we consider the system

ia r\

di=-ax + y; Tt = -X~ay (4-5)

where a is a positive constant. It is convenient to conduct the discussion

in polar coordinates by setting x = r cos <p; y = r sin 9; r = V x2 + y2;

<p = arctan (y/x). In the new variables the d.e. is r = â€” ar, <p = â€” 1,

which has the solution

r = C^-"'; <p = -t + C2 (4.6)

The trajectories are thus logarithmic spirals approaching the singular

point F at the origin (Fig. 1.6). The rotation of the radius vector is
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clockwise with a constant angular velocity <j> = â€” 1. Every trajectory, in

this case, approaches the singular point, which is called a focal point (or

focus; also, spiral point; in French, foyer) without any definite direction as

the spiral rotates around the singular point an infinite number of turns as

it tends to it. If a < 0 in (4.5), the preceding conclusions remain except

that the motion of R takes place in the

opposite direction, so that instead of

approaching the singular point F, it

departs from it. In this way, as in the

case of a nodal point, we have to dis-

tinguish between the stable focal points

(a > 0) and the unstable ones (a < 0).

The whole family of spirals either con-

'* verges toward, or diverges from, F

according to the sign of a.

The nodes, foci, centers, and saddle

points constitute the elementary singu-

larities of a d.e. in the real domain.

We shall be concerned almost ex-

Figure 1.6 clusively with these in what follows.

Besides these, one encounters, occa-

sionally, singularities of higher order, some of which arise from a

confluence of two or more simple singular points. In the applications,

such cases generally lead to somewhat special conditions of equilibrium as

will be mentioned later. Mathematical difficulties here are considerably

greater and connections with physical problems are less explored. We do

not propose to enter further into the question of these higher-order

singularities, and refer the reader to the existing publications.1

5. Examples of singular points of a linear d.e.

In the preceding section, we specified the properties of elementary

singular points in the cases of particularly simple forms (4.2) and (4.5) of

the d.e. Similar conclusions can be obtained for much more general d.e.

We shall see later that the nonlinearity of a d.e. generally does not affect

the elementary singular points, so that it is useful to consider first the

general case of a linear d.e. of the second order with constant coefficients:

x + 2bx + w02x = 0 (5.1)

which represents a damped harmonic motion. It is well known that,

1 See footnote 1 page 3.
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according to whether b2 â€” w02 > 0 or b2 â€” a>02 < 0, one has either an

aperiodic or an oscillatory damped motion. In the first case, the singular

point of (5.1) is a node; and in the second, a focus. Hence, nothing es-

pecially new is gained here as compared to what has already been outlined

in the preceding section. The only interest here lies in the manner in

which these more complicated cases are reduced to the simpler forms

investigated in the preceding section.

Consider first the aperiodically damped case (b2 â€” <o02 > 0), when the

solution of (5.1) is of the form:

x(t) = Ae-'i' + Be-'i' (5.2)

A and B being the constants of integration and rx and r2 the negatives of

the roots of the characteristic equation, which are real. Since our purpose

is to investigate the behavior of integral curves in the phase plane, one has

to determine x(r) = y(t) from (5.2) and then to eliminate the time t between

x(t) andjy(rr). If one carries out this calculation, one obtains the trajectory

in the phase plane (or, simply the phase trajectory):

\rxX + y\'i = C\r& + y\'i (5.3)

Introducing new variables v = rxx + y and u = r^c + y, (5.3) becomes

v = C\u\"; a = rjrx (5.4)

and this is already in the form that was used for the investigation of proper-

ties of the nodal point. The only point to be noted is the return from the

v,u variables to the original ones, x,y. This is a problem of analytic

geometry which we do not treat here, giving only the result. The parabolic

curves shown in Fig. 1.7a become oblique in the (x,y) plane (Fig. 1.7b).

However, the fundamental property of the nodal point A'', viz.: tending of

trajectories toward Af with a limiting direction, is invariant as is shown in

Fig. 1.7b. Likewise, the approach of parabolic curves to parallelism with

one of the axes of coordinates (Fig. 1.3), when the variable along the other

axis increases, is also preserved; but, in the "distorted image" of the v,u

plane, this parallelism takes place with respect to the "former axis" (Fig.

1.7b), so that nothing is changed in the invariant properties of trajectories in

the neighborhood of a nodal point.

If b2 â€” a>02 < 0, the d.e. (5.1) has a solution of the form x = xtf~bt

cos (ojjt + a) where x0 and a are two integration constants and wx =

Vo>02 â€” b2 is the damped frequency. In order to represent this solution

in the phase plane, we consider, as usual, the equivalent system:

x = y; y = â€”Thy â€” a>0Â«*

(5.5)
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In electrical engineering the concept of "negative resistance" is fre-

quently used in connection with oscillatory phenomena which absorb

energy instead of dissipating it. Hence, in such phenomena b < 0 and,

therefore, the focal point is unstable. The usual representation in such .a

case is shown in Fig. 1.8, whereas in the phase plane the integral curve (in

the u,v variables) is an ordinary logarithmic spiral traversed by R from the

focal point outward, as shown in Fig. 1.6, but with a changed direction on

integral curves. If, however, one considers the x,y variables related to the

variables u,v by a linear (affine) transformation, the spiral is distorted as

shown in Fig. 1.9 for dissipative damping (b > 0). Thus, the situation is

similar to that mentioned in connection with the aperiodic case (b2 > a>02).

Figure 1.8 Figurb 1.9

In this case, the spiral trajectory approache3 the singular point F again

without any definite direction. The only difference between the form of

spirals in Figs. 1.6 and 1.9 is due to the fact that, in the former, one has the

logarithmic spiral directly (in u,v variables), whereas in the latter, this

spiral is distorted when one passes from the u,v variables back to the x,y

variables. In a similar way, the properties of trajectories in the neighbor-

hood of a saddle point can be obtained from the d.e. of the form

mx - cx = 0 (5.9)

where m and c are some positive constants. This equation has a real

exponential solution of the form

x = AeTt + Be~rt

where A and B are constants of integration and r = + Vc/m. This shows

that a physical phenomenon represented by (5.9) is unstable. The (x,t)
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representation does not yield any further information but, if one translates

these relations into the phase-plane representation, some additional con-

clusions can be obtained as follows.

The equivalent system is:

x = y; y = (cjm)x (5.10)

and the d.e. of the integral curves is

dy

dx

cx

my

(5.11)

which shows that the origin x = y = 0 is a singular point. The integral

curves are obtained by integrating (5.11) and are

y* - (c/m)*2 = C

(5.12)

C being an integration constant.

i â€” *i

itable)

These curves are thus hyperbolic curves

forming a family depending on the

parameter C. The asymptotes are

obtained by setting C = 0, as y =

Â± V(c/m)x. The positive directions

on the curves of the family are obtained

by investigating the signs of x and y in

various quadrants, as we did previously.

This gives the family of phase trajec-

tories shown in Fig. 1.10. Some con-

clusions can be derived from this mode

of representation.

We consider the simplest possible

example of an unstable equilibrium

a pendulum in the neighborhood of

its upper (unstable) position of equili-

brium. If one designates by xx and

the angle and the velocity of the pendulum counted from its lower

position of equilibrium, the law of conservation of energy yields

Oscillatory

motion

Figure 1.10

tot + F(*0 = h

where V(xi) is the potential energy, ^yx2 the kinetic energy (for m = 1),

and h the total energy, constant since the system is conservative.

In theoretical mechanics one investigates three cases according to

h â€” V{n) ^0. If h â€” V(*) > 0, the pendulum rotates all the time in the

same direction; its velocity yt keeps the same sign but fluctuates in value;

its maximum occurs for xx = 0, 2n,..., and minimum for xx = w, 37r,....
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We are interested here only in what happens near xx = it and have plotted in

Fig. 1.10 the trajectories near that point. This case corresponds to the quad-

rants 2 and 4 of Fig. 1.10; the velocity does not change its sign but oscillates

in magnitude, being minimum for x = n. The difference between the

quadrants 2 and 4 is only in the direction of the velocity. On the other

hand, if h â€” V(tt) < 0, the pendulum cannot reach the upper position

(#x = tt) but turns back from some angle xx < n which is the greater, the

greater the total energy. This corresponds to the quadrants 1 and 3 of

Fig. 1.10. If, however h â€” V(tt) = 0, one has the asymptotic case. If

the pendulum is projected (by an impulse, for instance) from its lower

(stable) position of equilibrium with a kinetic energy just equal to the

potential energy in the upper (unstable) position of equilibrium, it tends

asymptotically to that position.

6. Canonical transformation; abridged equations

We have given examples of singular points in connection with a few

special d.e. (Section 4) and supplemented this, in the preceding section,

by more general forms of the linear d.e. of the second order with constant

coefficients.

Consider now the general system

x = P(x,y); y = Q(x,y)

where P and Q are real analytic functions of x and y which vanish at the

origin. If we develop P and Q into a power series at this point we have

x = ax + by + P2(x,y); y = cx + dy + Q2[x,y) (6.1)

where P2 and Q2 are power series in x and y beginning with terms of

degree at least two. (Notice that we can always make a change of variable

that brings a singular point (x0,y0) to the origin, and thus gives the d.e. the

form (6.1) in the neighborhood of the singular point.) Since we are

interested in investigating what happens in the neighborhood of the

singular point, x and y may be regarded as small quantities of the first

order. In view of this, the terms contained in P2 and Q2 are at least of

the second order and, thus, in general can be neglected in the neighborhood

of the singular point.

This leads to an important simplification of the problem. In fact, if one

is interested only in establishing the nature of equilibrium in the neighbor-

hood of the singular point it is frequently sufficient to investigate the linear

system

jt = ax + by; ^ = cx + dy (6.2)
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In a great majority of applied problems, the use of the "abridged system"

(6.2) instead of the complete system (6.1) is justified. It must be noted,

however, that in some special cases, this may not be so (for example, if

a = b = c = d = 0). In Section 8 we shall investigate a case in which

the use of the abridged system does not permit determining the nature of

the singular point. Whenever one comes across a situation of this kind

the problem becomes more complicated and is to be studied directly.

We shall first investigate the simple abridged equations (6.2) and shall

mention later some special cases when the linear terms fail to yield the

answer. In the first place we assume that a \ # 0, as otherwise the

c a

origin is not an isolated singularity. The problem can then be formulated

as follows: We introduce a linear transformation of the variables

with the determinant

Â£ = ax + fy;

y 8

t = SJ;

7] = yx + 8y (6.3)

^ 0 so as to reduce (6:2) to the canonical form:

= S-

(6.4)

where Sx and St are certain constants real or complex assumed distinct.

The d.e. of the integral curves in the new variables is

dÂ£ ~ \Sj I S1

m

(6.5)

This can be accomplished by differentiating (6.3) and substituting for *

and y their expressions (6.2), which gives the identities

S^ax + ]8y). = a(ax + by) + fi(cx + dy)

S^yx + By) = y(ax + by) + 8(cx + dy)

Identifying the coefficients of * and y, one gets two sets of relations

o(a - + ?c = 0; y(a - 5,) + 8c = 0

ab + ftd - Sx) = 0; yb + S(d - = 0

There are thus two linear systems; one contains the unknowns a and /? and

the other y and 8. Nontrivial solutions are possible only when Sx and 5,

are the roots of the quadratic equation

a ~ S Â° = SÂ» - (a + d)S + (ad - be) = 0 (6.8)

b d â€” S

which is called the characteristic equation of (6.2) and which will be of a

(6.6)

(6.7)

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 1

3
:0

9
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



PHASE PLANE; SINGULAR POINTS

21

fundamental importance in what follows. We choose Sl and S2 as the

two (distinct) roots of (6.8) and proceed with the determination of a, fi, y,

and 8. (The case of a double root is discussed in paragraph 5 below.)

Thus

^ 0 and

^ 0 ensures the existence of two unequal

roots and S2 and eliminates the possibility of one of them being zero.

Under these restrictions 5x and S2 are either real or complex and we

shall investigate these various possibilities.

1. If the roots 5x and S2 are real and of the same sign, m > 0 (from 6.5),

the singular point is a node, stable if Sx and St are negative and un-

stable if they are positive. The condition for real unequal roots of the

same sign is clearly: 0 < ad â€” be < [(a + d)/2]2. For a stable node

a + d < 0 and for an unstable one, a + d > 0. As to the coefficients

a, /}, y, and 8, they are determined by (6.7).

2. If Sx and S2 are real but of opposite signs, a similar reduction to the

canonical form results in the d.e. (6.5) in which m < 0; this, as we saw in

Section 4, results in a saddle point. In this case ad â€” be < 0.

3. If Sx and S2 are conjugate complex, we put Â£ = re'V; ij = re~>* which

gives a system

r = r(Sx + S2)/2; <j> = (Sx - 52)/2Â« (6.9)

The integral curves are given by equations

r = Cx exp [(5x + S2)*/2]; <p = [(5, - 52)(r + C,)]/2i

so that

r = Cexp [(5x + S^/^ - 52)] (6.10)

where C'j, C2, and C are the integration constants, which shows that the

singular point is a focus provided Re (S), the real part of Sx and S2, is not

zero. The stability of the singular point is determined by Re(5). If

Re(S) < 0, the focus is stable; if it is positive, the focus is unstable. The

condition for a focus is 0 < (a + d)2 < 4(ad â€” be).

4. If Si and St are purely imaginary, 5x + S2 = a + d = 0. This

requires that ad - be = â€”a2 â€” be > 0; thus â€”be > a2; that is, b and c

are of opposite signs and, moreover, \bc\ > \ad\. We are still in the

general situation discussed under 3 (two conjugate roots). Hence (6.10)

holds in this case also. Since Sx + S2 = 0, (6.10) reduces to r = C,

which shows that the integral curves are circles around the singular point.

In the case of the harmonic oscillator (3.1) we have precisely this situa-

tion since a = d = 0, 6=1, c â€” â€” 1. This special case of Sx + S2

= a + d = 0 and â€” be > a2 characterizes a center. Geometrically it is
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distinguished by a continuous family of closed trajectories around the

singularity.

5. If the characteristic equation has a double root S = Sx = S2, we

distinguish two cases. We note first that the condition for a double root

is a = d = S and be = 0. If b = c = 0, then (6.2) has the form

,' * = ax: y = ay

which we recognize as a proper node, stable or unstable according as

a < 0 or a > 0. In the other case,

that is, not both b and c equal to zero,

let us suppose c = 0, b # 0, so that

(6.2) has the form

x = ax + by; y = ay

We shall see that the singular point of

this system is a type of improper node

not previously encountered. The

general solution is

x(t) = (C2 + CJay-, y(t) = cv,

which is found by first integrating the

second equation and substituting the

solution into the first, which may then

be integrated.

To describe the behavior of the tra-

jectories near the origin, suppose first

that a < 0. Then *(/)->0 and

y(t) -+ 0 as r-s-ao. If Cx = 0, we

If Cx 0, the slope of the trajectory is

Figure 1.11

obtain a trajectory on the * axis.

given by

dy =yV) = Cxa

dx x\t) a(C2 + CJ)t) + bCx

0

as t

00

Hence all of the trajectories tend to the origin tangent to the x axis. Thus

this node is characterized by the property that all trajectories have the

same limiting direction at the singular point (see Fig. 1.11). If a > 0 the

above conclusions apply as t â€”> â€” oo, that is, the node is stable or unstable

according as a < 0 or a > 0.

Summing up, we see that the nature of the roots Sx and 52 determines

the character of the singular point.

(1) If Sx and S2 are real and of the same sign, the singular point is a
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node. The conditions for a node are: (ad â€” be) > 0; (a + d) / 0. If

(a + d) < 0, the node is stable; if (a + d) > 0, it is unstable.

(2) If Sx and S2 are real but of opposite signs, the singular point is a

saddle point. In this case the conditions are: (ad â€” be) < 0.

(3) If Sx and S2 are conjugate complex (not purely imaginary), the

singular point is a focus. The conditions here are: b and c are of opposite

signs and (a + d) # 0. If (a + d) < 0, the focus is stable; if (a + d) > 0,

it is unstable.

(4) If Si and S2 are purely imaginary, one has a center with the condi-

tions: a + d = 0 and \bc\ > \ad\.

Only the linear d.e. of the form (6.2) has been considered so far. It is

now necessary to show how the theory is to be applied to the general case

of the d.e. (6.1). We shall suppose Sx # S2.

One can apply the same linear transformation between (x,y) and (Â£,ij)

given by (6.3). However, here it is necessary to express x and y in terms

of f and rj by the inverse transformation, which is possible near the origin

a p

y 8

j= 0. Hence (6.3) can be solved

since we have assumed that A

in the form

x = (U- jfc,)/J; y = -(yf - Â«,)/J (6.11)

We substitute these values of x and y into the d.e. (6.1). Observe that

P2(x,y) and Q2(x,y) are transformed into n2(Â£,?j) and K2(^,7f) which are at

least of degree 2 in the new variables Â£ and This gives (6.1) in the form

i = + ntf,rj)', rj = S2r, + Kt(Â£,V) (6.12)

Here 5! and St may be real numbers, in which case (6.12) is already in the

canonical form. If 5x and 5a are conjugate complex, we can also set

Â£ = u + iv; -q = u â€” iv. Comparing the real and the imaginary forms,

one has

u - ajti â€” bjV + p2(u,v); Si = ax + ibx

v = bju + ajV + g2(Â«,Â»); S2 = ax - j6j

(6.13)

where p2 and q2 are at least of the second degree in u and v.

We have to show now that the presence of the nonlinear terms n2 and k2

does not change the general character of the singularity and that the pre-

ceding classification obtained on the basis of the linear terms remains valid.

1. We take first the case when Si and S2 are real, unequal, and of the

same sign, which in the linear case corresponds to a node. It can be shown

that the general properties of the singular point remain substantially the
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same in the nonlinear case. We multiply the first equation (6.12) by $,

the second by -q and add, which gives

\ jt (t2 + l") = (S^ + Srf) + r3(t,r,) (6.14)

where the last term contains r = VÂ£2 + t72 at least in the third power.

Hence, if Sx and S2 are, for instance, negative and r is small enough, the

quantity Â£2 + 772 = r2 = p decreases continuously, so that the point

R[Â£(t),V(t)] approaches the singular point at the origin O.

If it is possible to show that this approach to O occurs along a definite

direction, the singular point at O is clearly a node. To show this point,

we form the second combination

4 - ft = (Sx - S2)to + rs*(Â£,r,) (6.15)

where r3* is, at least, of order three. With the variables r2 = f2 + if,

ip = arctan 77/^ is defined modulo 2n by Â£ = r cos 0, 77 = r sin 0, and

ft - - (^-i^2)sin ** + Â°(r><6-16)

Introducing the function

A(r ) = cos 20(rr ) (6.17)

and in view of (6.16), we get

3n

2

Sx) sin2 20 + 0(r, 0) (6.18)

As cos 20 = 1 for 0 = 0 and

<f> = n and cos 20 = â€” 1 for 0 = w/2

and 0 = 3tr/2, we consider the angular

regions Â£ defined by e < 0 < (w/2) â€” e;

(7J-/2) + Â£ < 0 < 7r â€” EJ 7r + E < 0

< (37r/2) - e; (37r/2)+ e< 0<27t- e;

these regions are shown in white in

Fig. 1.12, while the remaining angular

regions are shown in shading.

Observe that, if i/peE, there exists a

quantity S > 0 such that

-(S2 - SO sin2 20 > S (6.19)

Figure 1.12 assuming that 5j > S2. Inasmuch as

r â€”> 0 with r->oo, we can assume

that our trajectory is so near to O that \0(r)\ < (8/2). Hence (dhjdt)

> -J8 if 062".
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Thus, if the point (r,ip) traveling along a trajectory lies, say, in Ev it

will move into the angle \ip\ < e. Once it has arrived there, it cannot leave

this angle since at its boundary the trend of <p is to move inward into the

shaded area. Since e can be supposed to be as small as we please and the

radial motion is inwardly directed, it is clear that the trajectory approaches

asymptotically the singular point along a definite direction, that is, O is a

node. If Sx > S2, this approach takes place along the horizontal tangent;

if Sj < S2, it takes place along the vertical tangent (Fig. 1.3a and b).

We have thus demonstrated this property for the general case of the d.e.

In a similar case one can show that the properties of the star (equation

4.4, for a = 1) are preserved in the general case of equation (6.12) if

St = Sx = S Â± 0. The d.e. (6.14) and (6.16) become, in this case,

djt = Sr + 0(r2); g = O(r) (6.20)

Thus

# m (62D

dr Sr + 0(r2)

or

% = *W) (6-22)

where *(r,ip) is a continuous differentiable function of r and <f> even for

r = 0. One can, therefore, integrate (6.22) with an arbitrary initial

condition ^>(0) = 00 which yields an infinity of curves ip(r) passing

through the origin with definite tangents. For each <p0 there is a corre-

sponding trajectory so that we have ascertained the existence of a star as the

singular point at the origin.

Consider now the case when Sx and S2 are real and of opposite signs,

say, Sx < 0 and S2 > 0. We have then the equations

rjt= -{S^+Srf+r^r,) (6.23)

^ = -Id^l + ^^sin^ + OW (6.24)

Observe that ip tends again to limit values 0,tr/2, tt, and 3tr/2 if r is small

enough. However, it is impossible to deduce from (6.23) that, if t â€”> oo,

r will decrease indefinitely. In fact, in the angular space ?72/Â£2 < |Â»51|/52,

r decreases, where for 772/Â£2 > l^l/S2, r increases. In other words, depend-

ing on the sign of inequalities

(tan./-)2^/!^!

(6.25)
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the point R will either approach, or recede from, the origin. Since the

time variation of ip (equation 6.24) tends to remove R from the tj axis and

bring it nearer to the Â£ axis, R will end up in the angular space of increasing

r. Thus R will not converge into the origin (Fig. 1.13) but, on the con-

trary, will further depart from it after an initial approach. This shows

that the main characteristic of a saddle point is still preserved in the

neighborhood of the singularity. For a finer analysis of this case and of

the case of conjugate complex roots Sx and S2, we refer to the mathematical

texts.1

It can be shown that the nonlinear terms do not modify in general the

form of trajectories defined by the abridged system (6.2). It is to be

mentioned that the previous statement does not hold in one special case

when the singular point is a center, as will be investigated in Section 8.

7. Distribution of singular points; parameter space

A convenient way of investigating the changes in the nature of singular

points when the parameters a, b, c, and d vary is to represent graphically

the various regions in which the roots Sj and St have the same form.3

1 See footnote page 3.

* (a) A. Andronov and S. Chaikin, Theory of Oscillations (original text in Russian),

Moscow, 1937.

(b) English translation by S. Lefschetz of A. Andronov and S. Chaikin, Theory

of Oscillations, Princeton University Press, Princeton, N.J., 1949.

(c) A. Andronov, A. Witt, S. Chaikin, Theory of Oscillations (in Russian); this

book is the second edition (1959) of A. Andronov and S. Chaikin,

Theory of Oscillations (original text in Russian), Moscow, 1937.

Figure 1.13

Figure 1.14
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One can, for instance, set p =s â€” (Â« + d); q = * * and write the

characteristic equation (6.8) as

S2 + />S 4- q = 0 (7.1)

A parabola P of equation/>2 â€” 4j = 0 traced in the plane of the variables

(P.?) (F1g- an(*tne coordinate axes determine five regions: SN, SF,

UF, UN, and 5 (stable nodal, stable focal, unstable focal, unstable nodal,

and saddle points, respectively).

The region of saddle points S is separated from those of other singu-

larities by the p axis for which Â° K = 0 and which, as we saw, indicates

c a

the presence of at least one zero root.

On the right side of the p axis, there are nodes and foci both stable and

unstable. For the former p > 0 (that is, a + d < 0); for the latter p < 0.

It is noted that this applies only to the common frontier between the

regions SF and UF since the regions SN and UN have no common fron-

tier except at one point. The common frontier between the regions SN

and SF, on one hand, and between UF and UN, on the other hand, is the

parabola P; at this border line one has the relation (a â€” d)2 = â€” Abe

which is possible only if b and c are of opposite signs.

The q axis (p = 0) corresponds to the relation a + d = 0, that is, to the

vanishing of the real parts of the roots. This, as we saw, characterizes a

degenerate focus when the spiral trajectory from converging becomes

diverging or vice versa. The positive q axis is, therefore, a locus of

imaginary roots. We shall see later that the q axis plays an important role

in the theory of bifurcation (Chapter 7) when the topological configuration

(defined in Chapter 3) changes, passing from the SF region into the UF

region or vice versa. It is impossible, however, to pass from the SN

region to the UN region or vice versa, since these two regions have no

common border except at one point 0 at which a + d = 0 and ad = be

simultaneously, the latter condition meaning that there appears one root

equal to zero which excludes the existence of a simple singularity at this

point. This representation is less convenient if the parameters a, b, c, and

d vary independently. The reason for this is the fact that this represen-

tation uses two combinations of the four parameters which permit reducing

artificially the four-space of parameters to a planar representation.

If, however, one wishes to investigate the stability of a system in terms

of its singular points when parameters vary independently, it is necessary

to study the problem in the "parameter space." As in this case there are

four parameters, a four-space is required; but, in view of the impossibility
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to give a geometrical interpretation, one has to carry out this study for

different "sections" of the four-dimensional space (a,b,c,d). If one takes

as "sections" the coordinate planes a = 0, b = 0,. . ., to each of them

corresponds a three-dimensional space (b,c,d), (a,c,d),.. .. One can also

take as sections of lower order those which correspond to a = 0, b = 0,

a = 0, c = 0, in which case one obtains corresponding two-dimensional

sections (c,d) (b,d). In this manner it is possible to investigate what

happens when some of the parameters are held fixed and the others vary.

Often some physical considerations permit reducing the number of "sec-

tions" in which the variation of parameters presents a special interest.

As an application of this procedure we consider3 the conditions of

Figure 1.15 Figure 1.16

stability of an electric arc connected to the circuit of a constant voltage E,

as shown in Fig. 1.15. As is well known, the arc is a nonlinear conductor

of electricity. Its nonlinear characteristic (i,Va) is shown in Fig. 1.16.

The voltage across the arc Va is thus a certain nonlinear function of the

current i:Va = Kirchhoff's laws yield:

V = Ljt + W); E = RI+V; J = i + (7.2)

If one eliminates / between these equations, one gets the d.e.

dV _ E-V-Ri di _ V - 0(Q

dt" RC ' dt~ L

* See footnote *, page 26.
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For the state of equilibrium (dVjdt = 0; dijdt = 0), one has, obviously,

V0 = E - Ri0; V0 = W0) (7.4)

which may be regarded as points of intersection of a straight line V = E â€”

Ri with the characteristic of the arc Va = ip(i).

The problem consists in studying the conditions of stability of equili-

brium under the various circumstances or, which is the same, the nature of

the singular points of the system (7.3). The usual procedure is to examine

what happens if the position of equilibrium (V0,i0) is disturbed by small

perturbations Sv, Si so that the disturbed values are now V = V0 + Sv;

i = i0 + Si. As the only nonlinear element here is the characteristic

4if), we develop it in Taylor's series around the point of equilibrium,

limiting the expansion only to the first-order term in Si, which yields

fli, + 80 = ,Â«g + 8^'(i0) (7.5)

If one replaces V and i by V0 + Sv and t0 + 8j and if>(i) by ^(Â«0 + Si) in

(7.3) and cancels out the equilibrium terms according to (7.4), one obtains

the so-called variational d.e.f of the form

where p = <fp'(i0). The characteristic equation is

and its roots are

5xi2 = 2^cZ t~(L + RCti Â± ^(RCP)' + L*- UCR(p + 2R)] (7.8)

The problem of equilibrium depends thus on four parameters R, L, C,

and p, of which the first three are positive while p may either be positive or

negative, depending on the point of the curve 0(t) at which one wishes to

investigate the equilibrium of the circuit. It is seen that the parameter

space in this case is four-dimensional, but its "section" corresponding to

p = 0 is of no interest. In view of this, the only two-dimensional sections

of the four-space (R,C,L,p) which are of interest are (R,p), (L,p), and

(C,p). In these sections we consider the indicated symbols as the variables

and the nonindicated ones as fixed parameters.

Consider, for instance, the "section" (R,p), that is, the plane of the

variables R and p in which the parameters L and C will be considered as

t This subject is discussed more fully in Chapter 5.
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are real and of the same signs because they become of opposite signs only

below the line 4. The remaining regions are to the left of the point M and

limited by the curves 2, 3; and the p axis and the other above the curve 1

are the regions of stable nodes; they are both stable because they lie above

the curve 3 on the one hand, and they characterize real roots because they

are outside the zone (between curves 1 and 2) in which these roots are

complex.

The point M is thus a point of bifurcation (or a branch point), since five

different regions meet there. It is noted that if one surrounds the point

M by a small closed curve described clockwise, one encounters the different

regions in the same order as in Fig. 1.14, in which the choice of parameters

is different. The sequence of regions is not affected by the choice of para-

meters. The region of saddle points (absolute instability) is always sepa-

rated from the region of focal points (oscillatory process) by intermediate

regions of nodal points (aperiodic process). Thus, an oscillatory process

cannot degenerate into an unstable one without passing first through an

aperiodic form. These conclusions can be given the following physical

interpretation. In the regions of stability (stable focal and stable nodal

points) the arc exists without any oscillations. If it is disturbed, it returns

to its stable equilibrium with damped oscillation in the case of a stable focal

point and aperiodically in the case of a stable nodal point. In the case of

unstable focal or unstable nodal points, it leaves the position of equilibrium

either with gradually increasing oscillations (focal point) or aperiodically

(nodal point), but the study of singular points alone is not sufficient here.

For this purpose we shall need additional information regarding the exis-

tence of certain stationary oscillatory states which will be studied in Chap-

ter 3. In general, such stationary states exist when the singular point is

either an unstable nodal or focal point. No such stationary states exist if

the singular point is a saddle point, when the physical process either builds

up indefinitely until the destruction of the physical system (for example,

blowing the fuses), or is prevented from doing so by some other agent not

taken into account in the d.e. (for example, insufficient power supply).

Similar graphical investigations can be used in connection with the other

two "sections" (L,p) and (C,p) of the four-dimensional space of para-

meters. The procedure remains essentially the same, viz.: (1) one estab-

lishes the zone of distribution of the complex roots, in which there exist

focal points, (2) one determines the limits of stability of foci by equating

to zero the real parts of the complex roots which separates the stable focal

points from the unstable ones; (3) one determines the limit of existence of

saddle points by putting to zero the last term in the characteristic equation

(7.7); the saddle points exist in the region in which this term is negative.

The remaining regions of the phase plane are attributed to the nodes, and
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their location with respect to the stability limit indicates the sub-regions in

which the nodes are either stable or unstable.

It may be worth mentioning in passing that much confusion existed

with regard to investigations of stability of electric arcs as means for pro-

ducing undamped oscillations prior to the advent of the theory of Poincare'

which reduced this question to the analysis of singular points as outlined

here. The reason for these difficulties was due to the complexity of

stability conditions in the neighborhood of the bifurcation points when a

slight change in one of the parameters is already sufficient to swing the

process from one form of equilibrium to an entirely different one.

8. Center

In Section 6 it was mentioned that when the roots of the characteristic

equation are purely imaginary, the singular point is either a center or a

focus, but it is impossible to distinguish between these two singularities on

the basis of the linear approximation. This difficulty was noticed from

the very beginning by Poincare to whom is due the first analysis of this

problem.1 We shall see later that the center is a special singularity in the

sense that the trajectories around the center can be deformed by a slight

perturbation of the equation into convergent or divergent spirals. For the

time being we shall limit ourselves to what has been already explained in

this chapter, namely, that the center is a singular point possessing the

property that all trajectories turn around it without either approaching it

or receding indefinitely.

A convenient way of analyzing the situation is to make use of the partial

There exists a relation between the solution of (8.1) and the system of the

d.e.

Â£ = X(x,y); & = Y(x,y) (8.2)

In fact, each curve F(x,y) â€” C, where F(x,y) is a nonconstant solution of

(8.1), is an integral curve of (8.2). This is apparent if one differentiates

F(x,y) = C with respect to t and makes use of (8.2), Viz.:

Wfc 8Fdy_

1 See footnote \ page 3.
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Now, by definition, F satisfies (8.1). Hence, either

dx dy

did!

X Y

BF BF

â€” = TÂ£ = 0. We suppose that, except at isolated points, j^J +

= 0 or

ir

By

^ 0. Hence, along the curve: F(x,y) = const holds the relations:

dy.

dx

di = aX'>

it

= aY\ a = a(t);

dy_Y

dx X

which is precisely (8.1). Thus, if one knows one solution of (8.1), one has

an infinity of integral curves of (8.2). The function F(x,y) enables one,

therefore, to make conclusions concerning the general character of the

trajectories.

The problem reduces to constructing a solution of (8.1) assuming that

X and Y are series of the form

xx + x2 + x3 +

Y = Yx + Yt + y, +

(8.4)

where X{ and Y,- are homogeneous polynomials of the rth degree in *

and y. We shall try to develop likewise F = Fx + jPÂ« + Fs + ... into a

power series around the origin. Setting

Xi = ax + py; yx = yx + Sy

and assuming, as before, the normal case:

Â« P

y 8

* o

(8.5)

(8.6)

one can show that in this case Fx = 0. In fact, setting Fx = mx + ny,

inserting this value into (8.1) and comparing terms with equal degree, one

obtains

m(ax + fly) + n{yx + 8y) = 0

which results in relations

can + yn

0; Â£m + 8n = 0

and, in view of (8.6), one has m = n = 0, that is, Fx = 0. The develop-

ment of F begins thus with the term

Ft = ax* + 2ixy + cy* (8.7)

If one substitutes (8.7) into (8.1) and equates again to zero the coefficients
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of*2, xy, and y2, one obtains a homogeneous system of linear equations for

a, b, and c which has nontrivial solutions only if

A = (a8 - py)(a + 8) = 0 (8.7a)

Hence, in view of (8.6), F2 can be different from zero only if

a + 8 = 0 (8.8)

Under this condition one finds, assuming that a / 0, 8 ^ 0

and thus

F2 = -(-yx2 + 2axy+py2) (8.9)

a

If the quadratic equation F2 = const is to represent closed curves sur-

rounding the origin, F2 has to be definite, that is, must not have any real

roots and, for this, one must have a2 + fiy < 0, which, in view of (8.8) is

the condition (8.6) which we shall assume. If the solution F of (8.1) has

a convergent series development F = F2 + F3 + . . ., the curves F = e

are closed curves around the origin if e is small enough. In fact, if we use

the above form for F2 and introduce the polar coordinates: x = r cos <p,

y = r sin <p, one has F = (b/a) r2( â€” y cos2 <p + 2a sin <p cos <p + fi sin2 <p) +

0(r3). If r is small enough, the first term on the right side decides the sign

of the whole expression. The curves F = E and F2 = e become very

close if Â£ is small enough and, since the latter are ellipses around the origin,

it can be shown that the trajectories F = e have the same general character,

that is, are closed curves. The singular point is, thus, obviously a center.

It can hardly be expected, however, that a convergent series development

of the above type for an arbitrary form of X and Y should exist.

The following analysis of Poincare will show that in the general case the

singular point turns out to be a focus, whenever it is impossible to continue

building up F3, Fi,. . . indefinitely. In order to see this point we continue

building up further approximations involving F3, Fi,. ... For the sake

of simplicity we assume that the functions X and Y have their linear terms

Xx = y; Fj = â€” x of the form typical for a center. Thus

X = y+ X2+ X3+ Y = -x + Y2+ Y3+ ... (8.10)

We start again with F2 which, by (8.10), has now the form F2 = x2 + y2.

The equation yields (8.1),

8F 8F / v 8F 8F\

y8x--X8y-+{X2Tx+Y*Ty) + --- = 0
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For the terms of the degree n one has the relation

8Fn 8Fn /â€ž 8Fâ€ž_1 ., 8F^,\ /_. â€ž 8Fn t\

+ ... = 0

This yields the recursive formula for Fn

8F 8F

where Hj(x,y) is a homogeneous form of degree n built in a simple way on

the known functions Fâ€ž_v Fn_2

In polar coordinates this expression is

8F

= Hâ€ž(r cos <p, r sin <p) = r"//n(cos <p, sin <p) (8.12)

This is a simple d.e. for /â€ž(<p) = Fâ€ž(cos <p, sin 9). A necessary condition

for its solution is obviously

â– 2n

//â€ž(cos <p, sin <p) dip = 0 (8.13)

0

and it is clear that this condition is also sufficient because, if it holds, we

have:

^ = Hâ€ž(<p) = 2 (Â«-cos "V + *r sÂ»n "Â¥>)

and, therefore,

/*(9>) = 2 [~ sm v<p â€” â€” cos vqsj + const

If n is odd, clearly Hâ€ž(<p) = sin <pP(cosa <p) + cos 9><2(cos2 <p) where P

and Â£ are polynomials; in such a case j*" Hâ€ž(<p)d<p = 0.

If, however, n is even, it may happen that the //-integral does not vanish

and we are thus stopped in our procedure. Assume, therefore, that we

have calculated Ft = x2 + y2, F3,.. ., Fv_x, but it is impossible to calcu-

late F2j since J*" H2jd<p # 0. In this case we replace the d.e. (8.12) by

= //2Â» - C0 (8.14)

where C0 = Jq" H2j(<p)d<p and thus achieve the integrability in the 2j
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step. Returning to the cartesian coordinates, we obtain after multiplica-

tion by r2*:

y is? -* = H^x-y) - cÂ»(x2+yt)J

We stop our procedure at this point and consider the cut-off polynomial

0 = *2 + y* + F3 + ... + Ftj (8.15)

Consider now 0(x,y) as a trajectory: *(r),;y(rr ) of (8.2). Settirg

*[Â«(0.M0] = 5(0. we have

(8.16)

However, all forms of degrees m < 2; cancel out since

8Fm 8Fm v 8Fm , T7 0F_ , 8Fm 8Fn

8y 2 8x 2 8y 8x 8y

-Hm(x,y) = 0

There remains thus (dg(t))/dt = â€”C0rl + terms of order (/ + 1) or

higher.

If r is small enough, the lowest-order term decides the sign; hence,

dg/dt < 0 if C0 > 0 so that 0(x,y) decreases along the orbit. The function

0(x,y) has thus the following structure:

The level lines 0 = e surround the origin and, if e is small enough, the

line of the steepest decrease of 0 approaches the origin. The trajectory

in this case may spiral very slowly but finally it ends at a stable focus. In

order that a singular point should be a center, it is necessary that the

approximations (8.13) should continue indefinitely without ever reaching

a step for which j*" H2jd<p # 0. This can be obtained only for very

special functions X and Y. This question has been studied recently

(particularly in the USSR). In one of these papers by Saharnikov1 con-

ditions for the existence of a center were studied in connection with the

d.e.

x = y + X(x,y); y = - x + Y(x,y) (8.17)

where X and Y are homogeneous polynomials of the third degree:

X(x,y) = bx3 + (c - P)x*y + (3d - y)xy* + fy3

(8.18)

Y(x,y) = ax3 + (36 + a)x*y + (c + P)xy + dy3

1 See footnote (f) , page 3.
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Here a, 6, c, and d are independent parameters and a, /}, and y are con-

stants. Omitting the somewhat long calculations, we mention only the con-

clusions. The origin: x = y = 0 is a center only in the following four

cases:

(1) Â« = P = y - 0

(2) a = y = 6 = d = 0

(3) 2(6 - d)k2 + (a + / - 2c)k - 2(6 - d) = 0; a + y = 0;

a a + 26 + 2d

(4) a + y = 0; a(a - /) + 2j3fa + 26 + 2d) = 0;

3(a +/) + 2c = 0; c(a2 - 4j8Â«) = 6<xj3(6 - d);

a[2a + 5(6 + d)] = /3[2/3 - 5(a - /)]; (a* + 4;32)3

= 25[(6 - d)(a2 - 4j9') - 4aj3(a + /)]â€¢

If none of these four conditions is fulfilled, the singular point is a focus.

The above conditions can be presented in a more general manner, viz.:

(a) 8X/Bx = 8YI8y; (b) X(y,x) = y(*,;y); (c) X(y,x) = - y(je^)

where X(x,y) = m(x3 + 5je^y â€” 3xy2 â€” >>3).

We indicate these conclusions merely in order to emphasize the exclusive

character of the center. Moreover, the discussion concerns only a par-

ticular case when the functions X and Y are homogeneous polynomials of

the third degree; for a more general case these conditions are presumably

still more complicated.

Obviously, the existence of a center in the case of d.e. of the type (8.17)

must be regarded as a rare exception occurring under very special con-

ditions; whereas the existence of a focus is the rule since it depends on the

negation of these special conditions.

If we now consider physical problems, the chances that a system has a

center are extremely remote. In fact, as we have just seen, in order to

have a center, a d.e. must have a very special form and, its coefficient must

have special values. Very often observation shows that the behavior of

trajectories is such that everything indicates the presence of a center; this

means that the trajectories are closed and the motion is periodic as far as

this can be ascertained. The difficulty is in ascertaining by observations

whether an orbit corresponds exactly to a center or to a very weak focus;

the latter appears whenever the criterion: J0* H2jd<p = 0 breaks down for

a sufficiently large/

If one attempts to learn from an observation, one has to wait a sufficient

length of time to be sure about the form of the orbit, which is- dependent

on the scale of time units. In the case of an artificial satellite, for instance,

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 1

3
:3

7
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



38

QUALITATIVE METHODS

the matter is relatively simple, since the period is of the order of one hour;

and, after a reasonably long time (days, weeks, months), one can notice the

existence of a convergent spiral trajectory evidencing the presence of a

fairly weak focus. On the other hand, on a larger scale (for example, the

trajectory of a planet around the sun), the matter is less certain since here

it takes a very long time (millenniums or, perhaps, millions of years)

before one is able to answer this question with certainty. However, in

our terrestrial situations such problems never arise and the singularity of

the type center has never any real existence and appears merely as a con-

venient mathematical idealization separating convergent and divergent

spiral trajectories around weak foci.

9. Certain conclusions

The situation outlined in this chapter reflects to some extent the pro-

found changes in the fundamentals of the theory of oscillations once the

theory of Poincare has been adopted as a mathematical framework for

studies of oscillations. In this chapter we have been concerned with the

first step in these newvdevelopments, namely, the identification of a physical

concept, equilibrium; and with a mathematical concept, singular point.

It may seem that for the theory of oscillations proper this is not an impor-

tant point. In fact, such a viewpoint existed in the old theory of oscilla-

tions where the problems of equilibrium and of stationary motion were

studied more or less independently without trying to relate them to one

another.

In Chapter 3 we shall see that in the new theory of oscillations, on the

contrary, there exists a close relation between the nature of equilibrium

and that of the stationary motion. This appears in a form of certain

topological configurations and, in this way, the states of equilibrium and of

stationary motion become, so to speak, welded together. However, in the

new theory the stationary motion is entirely different from that of the old

theory where it occurs around a center, since it is only then that the trajec-

tories are closed. On the other hand, we have seen in the preceding sec-

tion that the center is a very special singularity and that the least change of

the form of the d.e. destroys it and converts it into a neighboring weak focus

for which the trajectories cease to be closed. In this way a simple har-

monic motion which, since the time of Galileo, has been assumed as a

pattern of a stationary motion, turned out to be the most difficult to justify

mathematically and impossible to produce experimentally. It appears

thus that the singular point of the type center does not correspond to any

physical reality and is merely a mathematical concept separating the regions
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of convergent and divergent trajectories. The latter, on the other hand,

have a definite physical meaning.

It becomes thus necessary to associate stationary motions with foci (and,

as we shall see later, also with nodes). This brings us directly to the most

important concept of the new theory, namely, the concept of the limit cycle

which is outlined in Chapter 3. Its importance lies in the fact that it

permits establishing conditions for stationary motions in essentially non-

conservative systems; this opens the enormous field of self-sustained oscil-

lations which escaped the old theory. The extremely critical singularity,

the center, disappears entirely in this new approach. Before proceeding

with this question, we should investigate first the effect of non-

linearities in conservative systems in the following chapter. Although this

question is somewhat academic, since conservative systems do not appear

in applied problems, the matter is still of great importance because it will

enable us to introduce certain important definitions that will be useful

later in our study of applied problems.
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Chapter 2

NONLINEAR CONSERVATIVE SYSTEMS

1. Introductory remarks

Nonlinear conservative systems occupy an important position in the

theory of oscillations. The fundamental property of these systems is the

existence of a function of the dependent variables which is a constant of

the motion and plays the role of the energy.

In a number of applied problems, the conservative character of a given

system can be ascertained on physical grounds. When no such a priori

conclusion can be made, the matter reduces to a search for the existence

of a single-valued first integral which, generally, is not a simple problem

particularly when the d.e. are not integrable in closed form. In relatively

simple problems involving only d.e. with constant coefficients (linear or

nonlinear), the presence of a term containing the first derivative (or some

power of this derivative) generally indicates either a dissipative (or an

energy absorbing) feature of the system and gives, thus, a simple criterion

that the system be not conservative.

The converse, however, is not true because a lack of such terms does not

mean that the system is conservative. Well known examples are the

phenomena characterized by the d.e. of Mathieu which, in its standard form,

has no term containing the first derivative, and yet the physical systems

exhibiting such phenomena are generally not conservative. Likewise,

mechanical systems, in which the constants depend explicitly on the time

or in which the dynamical parameters (masses, lengths, etc.) are not con-

stant, are not conservative. The pendulum of variable length is a typical

example of such a situation.

In this chapter we follow closely the exposition of Andronov1 who

worked out a series of examples, two of which are given in sections 5 and 6.

1 A. Andronov and S. Chaikin, Theory of Oscillations (original text in Russian),

Moscow, 1937, and subsequent editions.
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All these examples relate to a d.e. of the form x + f(x) = 0. The only

singular points possible here are either centers, saddle points, or their

confluence, and there is no special difficulty in deriving the first integral.

Following Poincare,2 the discussion of the topology of integral curves, or

of the "phase portrait," is easily conducted by introducing a parameter in

the d.e. (Section 4). In some cases (Section 3) this can be accomplished

by means of a similar parameter in the first integral. In the case of the

Volterra problem (Section 9), the conservative character of the system is

by no means obvious but, as the exact integration of the d.e. is possible

and as the first integral exists, the system is conservative on formal grounds.

Another important feature of conservative systems is their critical charac-

ter; a slight change in the form of the d.e. generally results in the loss of the

conservation of the system. Thus, the d.e. of the harmonic oscillator

x + x = 0 characterizes a conservative system, but the addition of a term

bx, with b as small as we please, results in the loss of the conservative

character.

Before proceeding with the analysis of some special cases of conservative

systems, it is useful to define the terms : first integral (or, simply, integral)

and conservative system; from these definitions we shall derive some conse-

quences which will be needed in the sequel.

By an integral (or first integral) of a system

*. = . .> *n); Â« = *>. . .> Â» (1-1)

we understand a differentiable function F(xx,. . ., xâ€ž) defined on a domain

D of the phase space, and not constant on any open set, such that

/"(!/,(/),. . ., uâ€ž(t)) = C; (C) a constant when x, = Â«â– (r) is a solution of

(1.1). It can be shown that if *Â° = (x^,. . ., xâ€žÂ°) is a regular (that is,

nonsingular) point of (1.1), then #0 has a neighborhood on which the first

integral is defined. The existence of an integral, therefore, becomes of

interest only in connection with its domain of definition. Our primary

interest is in integrals defined on domains containing singular points.

We shall say that a system is conservative in a domain D if it has an integ-

ral in D and D has the property that every trajectory having one point in D

lies entirely in D for tâ€”> +oo or for *â€”> â€” oo. In the general case an

integral defines a family of (nâ€” 1) dimensional surfaces on which the tra-

jectories lie. In the case n = 2, the surfaces reduce to trajectories, a fact

from which we can immediately deduce an important property of conserva-

tive systems.

If F(x,y) is an integral of

x = X(x,y); y = Y(x,y) (1.2)

1 H. Poincare, Acta Math. 7, 1885; Figures d'iquilibre d'une masse fluide, Naud,

Paris, 1903.
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on the domain D, then the family of curves F(x,y) = C defines the trajec-

tories of (1.2) in D. The trajectories of a conservative system in the plane

are, therefore, the level curves of a differentiable surface z = F(x,y).

From this it can be seen that a conservative system cannot have any singu-

lar points which are stable in the sense in which we defined the term in the

previous chapter; for, if all trajectories near the singularity tended to it,

the existence of a continuous integral in a neighborhood of the singu-

larity would imply that the value of the integral along any one of integral

curves must be equal to its value at the singularity. This, however,

implies that F(x,y) must be constant in the whole open neighborhood of

the singular point, which contradicts the definition. The same argument

holds for trajectories tending toward the singularity as t -> â€” oo. It follows

in particular that a system (1.2) cannot have a node or focus in a region

in which it has an integral.

2. Fundamental properties of nonlinear conservative systems

The simplest nonlinear conservative systems encountered in the theory

of oscillations with one degree of freedom are those which lead to a d.e. of

the form:

x + f(x) = 0 (2.1)

The d.e. (2.1) may be regarded as an oscillator with a "restoring force,"

since one can always write /(*) = F(x)x and consider F(x) as a variable

spring "constant."

Written as an equivalent system, the d.e. (2.1) is:

X = y- y= -/(*) (2.2)

and the d.e. of integral curves is:

d-Z=-M (2.3)

dx y

which shows that the integral curves have a horizontal tangent at the

points x, which are the roots of f(x) = 0, provided y ^ 0 at these points.

As to the singular points, they require simultaneously y = 0,f(x) = 0. In

other words, singular points (if they exist) lie necessarily on the x axis.

The energy integral in this case is:

y* + V(x) = h (2.4)

where V(x) = â€” J* f(x)dx. One can consider $y2 = $x2 as kinetic and

V(x) as potential energy; the constant h, the total energy, expresses the fact

that the system is conservative.
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For a given value of h (2.4) represents a trajectory in the phase plane

which exists as long as h â€” V(x) > 0. A position of equilibrium corre-

dV(x)

sponds to the case when y = 0 and V'(x) = ^ = 0. The latter con-

dition implies that the potential energy has an extremum at the equilibrium

point.

If one writes (2.4) in the form:

fcy" = h - V(x) (2.5)

a series of obvious conclusions can be obtained by plotting the difference

h â€” V(x) in Fig. 2.1a, and, for the same abscissa * calculating y/V2 from

the relation ylV2 = Â±Vh â€” V(x) in Fig. 2.1b. Given x, the quantity

h â€” V(x) is measured by the segment AB in (a); by extracting the square

root and plotting its values with plus and minus signs, one obtains the

points a, a' on the diagram (b); and proceeding thus point by point one

obtains the phase trajectory.

If the energy constant changes and becomes h', a similar argument

shows that the new trajectory extends further to the right if A' > h (in (a));

it is shown by the broken line in (b). Graphical constructions of this kind

permit tracing out changes in more complicated phase trajectories when

the constant of energy is varied.

It is useful to discuss briefly the criteria of stability for conservative

systems. If one expands the function f(x) in (2.1) in a Taylor's series

around the equilibrium point x = xv one has:

/(*) = ~ *i) + Y\ (* ~ *tf + .

(2.6)
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where ax â€” /'(*)|x-xi; a2 = f"(x)\x=xi. The potential energy is then:

V(x) = h0-^-2(x-xiy-T^-3(x-xiy- ... (2.7)

taking into account that

/'(*)U, = - V'(x)\x-xi; /*(*)!â€”, = ~ . . .

Substituting (2.7) into (2.4) and setting x â€” xx = ^, y = -q, yields

T + *'*.?x(TTTT!-* (2-8)

As is well known, the stability of equilibrium is associated with the

extremum values of the potential energy. If the potential energy is

minimum at the equilibrium point, the equilibrium is stable; if it is maxi-

mum, the equilibrium is unstable. It is also possible that the potential

energy be an extremum without being either maximum or minimum.

This intermediate case of "indifferent stability," from a practical point of

view, must be considered as unstable.

Equation (2.8) can easil} be interpreted in terms of the phase-plane

relations. We first consider the case when ax = f'(x)\x-xi = â€” V"(x)\x-xi

# 0 and limit the expansion to the term in f2, in which case z = V(x) and

the straight line z = h0 have contact of the first order.

If V(xx) is a minimum, V\xx) = 0 and V(xx) > 0, so that ax < 0 and

(2.8) becomes:

^ + M! = A_Ao = a (2.9)

which is an ellipse with semi-axes m = V2a and n = V'2a/|a1|. Thus

the singular point rj = Â£ = 0 is a center (and therefore stable), being

surrounded by curves which, in the first approximation, are ellipses. (The

possibility that the singular point is a focus is ruled out by the fact that the

system is conservative.) Retaining now the term in in (2.8), we obtain

2 + (FTT)T ~ a (2-10)

which is again a closed curve, but not an ellipse.

A similar discussion in the case of a maximum of potential energy V(x)

shows that, if ax # 0, the curves in the neighborhood of the point x = xx

at which the maximum occurs are
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These are hyperbolas having the lines rj = + y/ax $ as asymptotes. The

point i7 = f = 0 is a saddle point. In a similar manner, it â€” â€” ...

= ak_x = Obuta* > 0, one finds that for ak > 0 the trajectories are hyper-

bolic curves (of order k) of the form:

\ - (FTTfl " â–  (212)

The motion has features similar to those in the preceding case but the

asymptotes are curvilinear, etc., thus even for small values of Â£ and 77 the

motion differs quantitatively from the case when ax ^ 0.

The last case when V(x) is stationary (without being either maximum or

minimum) at x = xx is a critical case and results from the coalescence of a

Figure 2.2

center and a saddle point. This case is characterized by ax = â€” V"(xx)

= 0, at = a3 = ... = = 0, ak # 0, k even, which means that for

x = *j the curve z = V(x) has an inflexion point as shown in Fig. 2.2a.

Figure 2.2b shows the phase trajectories corresponding to the variation of

the constant of energy according to the curve of V(x) shown in Fig. 2.2a.

There are exactly two trajectories having the singularity as a limit point.

One of these approaches it while the other recedes from it. Together

with the singularity these two trajectories form a cusp at the singularity.

The singular point is obviously nonelementary and unstable.

3. Motions in the large; separatrix

Although the preceding considerations do not present anything essen-

tially new, their interpretation in the phase plane is of great interest from

the standpoint of the topology of phase trajectories and leads to important
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conclusions regarding the motions in the large. One obtains in this

manner a mapping of the phase plane into certain domains possessing

different oscillatory properties. The boundaries of these domains are

certain asymptotic trajectories called separatrices. Let us consider, for

instance, the potential energy V(x) shown in Fig. 2.3, having two maxima,

3 and 5, and three minima, 2, 4, and 6. To the left of point 1 and to the

right of point 7, the function V(x) rises and we propose to investigate what

happens only in the region between these two points following the graphical

method outlined for Fig. 2.1.

One can consider the curve V(x) in Fig. 2.3a as a profile of the bottom

of a sea (or lake) with a level of water h0, the energy constant, counted from

some x axis. This will merely permit using a more condensed language.

Assume, to begin with, that the peaks 3 and 5 are at the same level h0.

Starting with this value of h = h0, it gives rise to two saddle points 3 and 5

in the phase-plane diagram shown in Fig. 2.3b. Since no trajectory exists

to the left of 1 and to the right of 7, one has a configuration of closed trajec-

tories issuing from the asymptotes of the two saddle points and closed as

shown at the points 1 and 7. Since these trajectories tend to, or away

from, the saddle points, they are necessarily asymptotic and one has te

count them separately, viz.: 3 1 3, 3 5 upper, 5 3 lower, 5 7 5. They are

shown in heavy lines and constitute the separatrices.

If the level h descends to some lower value, say hv "islands" appear in

(a), the level being now at points ab, cd, and ef. If one projects points

a, b, c, d, e, and / on the lower part of the figure, one obtains the limits

between which closed trajectories are possible around the centers 2, 4, and

6 corresponding to points 2, 4, and 6 of the upper part (a) representing the

minima of the potential energy. There will appear, thus, corresponding

"islands" of periodic motions in (b), but these islands correspond to the

submerged parts in (a). If the level h descends further so that the islands

in (a) increase, the corresponding islands in (b) shrink. If, for instance,

2 is the point of greatest depth in (a) and if the level reaches this point, in

the corresponding island of periodicity (in (b)), the closed trajectory

shrinks to one pointâ€”the center 2â€”and disappears thereafter, if the level

continues to decrease. In the remaining two islands, the trajectories still

exist around the centers 4 and 5.

If, instead of decreasing from h = h0, the level in (a) begins to increase

from that point, the peaks 3 and 5 become submerged and this means that

in (b) the periodic motion becomes possible on a trajectory enclosing the

separatrix in its interior as shown by the broken line in Fig. 2.3b.

It is seen, thus, that the passage of the level through the critical value for

which the peaks 3 and 5 become submerged is characterized by a radical

change in the configuration of the phase trajectories. Instead of forming
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three separate islands, the domain of periodicity is now confined to the

region around the separatrix but excluding the regions inside it.

It will be shown later that these results follow also from a theorem of

Poincare2 outlined in the next section.

4. Effect of a parameter in a differential equation; bifurcation

values

The considerations developed in the preceding sections are derived from

the analysis of the influence of the parameter h in the first integral of the

d.e. (the energy integral) on the "phase portrait" of integral curves. A still

broader approach to this problem can be obtained if a parameter is intro-

duced into the d.e. themselves, as was shown by Poincare\2

Figure 2.4

If a dynamical system (electrical or mechanical) is represented by a d.e.

containing a parameter A, the solution becomes a function of A. If for

some changes of A the solution varies without undergoing any qualitative

changes in its topological structure, such values of A are called ordinary

values. If, however, for some special value A = A0 of the parameter, the

topological aspect of the phase trajectories undergoes a qualitative change,

such a special value is called a critical or a bifurcation value.

In conservative problems the parameter A enters generally in the expres-

sion of the potential energy, which can then be written V(x,\); it appears,

therefore, also in the expression of the "restoring force"

mÂ» - - Â»ga

The equation f(x,X) = 0 represents a curve in the (A,*) plane (see, for

example, Fig. 2.4). This curve may have a more or less complicated form

1 See footnote *, page 41.
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depending on each particular problem; we shall need only some simple

conclusions for the sake of the examples to follow.

Since the curve f(x,X) = 0 represents the positions of equilibrium, it

shows how these change when the parameter varies. For example,

Fig. 2.4 exhibits, for A = Xx, three positions of equilibrium A, B, and C,

whereas for A = A2 there is only one, namely G. For A = A0, two positions

of equilibrium coalesce at E and disappear thereafter for A > A0. This

happens whenever fx(x,X) = 0. This means that the tangent

_ fJ*J) (A n

dx fx(x,X) V- )

is vertical at this point.

Since a point on/(#,A) = 0 is stable if fx(x,X) < 0 (that is, the potential

energy has a minimum), it follows that, if f(x,X) is positive in the region

below the curve f(x,X) = 0 and negative in the region above it, the points

on f(x,X) are stable. If f(x,X) changes sign in the opposite direction, the

points are unstable. Assuming that the shaded area in Fig. 2.4 corre-

sponds to positive values of f(x,X), and the unshaded area to negative

values, we conclude that the arc FAE is stable and the arc FBE unstable.

Similar considerations apply to other arcs.

5. Problem of the rotating pendulum

Consider a pendulum of mass m and length a constrained to oscillate

in a plane P rotating with angular velocity Q about the vertical line. The

moment of the centrifugal force acting on the pendulum (Fig. 2.5) is

mQ2a2 sin 6 cos 6 and that of gravity mga sin 6 so that the d.e. of the rotat-

ing pendulum is:

IB - mÂ£22a2(cos 6 - A) sin 6 = 0 (5.1)

where / = ma2 is the moment of inertia, A = gjQ2a is a parameter, and 6

the angular deviation of the pendulum. The equivalent system is:

mQ2a2

6 = w; <b = â€”(cos 6 - A) sin 6 (5.2)

The d.e. of the integral curves is:

dw mfi2a2

id = (cos 6 ~A) sin 6 (5-3)

The singular points of (5.2) are: cox = 0, 6x = 0; <o2 = 0, 02 = tt\ oj3 =
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03 = cos-1 A. The last singular point exists only if A < 1, that is, if Q

is sufficiently large. As the force/(*,A) of the preceding section is here:

/(0,A) = mPV(cos 6 - A) sin 6 (5.4)

the points of equilibria are clearly 6 = 0, 0 = Â± it, and cos 0 = A.

The corresponding (0,A) diagram is shown in Fig. 2.6 with regions in

which/(0,A) > 0 shown in shading. According to the rule of Poincar^, the

stable and the unstable branches of the diagram of Fig. 2.6 are shown by

black and white points, respectively. The former correspond to the

equilibria of the type center and the latter to those of a saddle point.

W,\)<0{

Figure 2.6

The energy integral in this case yields the relation:

a>Â« = [sin* 6 + 2A(cos 6 + 1)]

(5.5)

In this equation, the energy constant has been determined by the

condition that the separatrix passes through the saddle point 6 = Â±7r;

6 = 0. As there also exists a second separatrix corresponding to 6 = 0;

6 = 0 for which h = â€” m\Q2a2, one also has the relation:

mQ2a2

[sin2 6 + 2A(cos 6-1)]

(5.6)

Figure 2.7 shows the phase portrait of the d.e. (5.1) with the separatrices

A and B corresponding to (5.5) and (5.6), respectively. It is noted that the

center at the origin, if Q = 0, becomes a saddle point for Q # 0, in which

case there appear two centers Vx and Vt symmetrically located with respect
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to the origin. The periodic motions about these centers (within the inter-

nal separatrix B) are asymmetrical. When the energy constant h reaches

the value corresponding to the separatrix B, the motion changes its charac-

ter and takes place around two centers Vv V2 and the saddle point S at the

origin, being still inside the external separatrix A. In thij region the

motion is still oscillatory with velocity decreasing in the neighborhood of

6 = 0. If the energy constant is still further increased and the separatrix

A is crossed, the motion becomes rotary (broken line in Fig. 2.7). In the

Figure 2.7

phase plane this trajectory is not closed; it is, however, closed on the sur-

face of a circular cylinder of radius 1 whose axis is 6, since on this surface

the point 6 = + it is obviously the same as 0 = â€” n. If A â€”> 0 (that is,

Q -> oo), the two separatrices A and B approach each other and the centers

Vx and V2 approach the points 8 = Â±7r/2, respectively. If A > 1, the

phase portrait changes again; there appears a center V at the origin (8 = 0)

but the intermediate structure of trajectories disappears. The situation is

similar to one which has been already encountered (Fig. 2.3).

It is seen that A = 1,0, â€” 1, are the critical or "bifurcation values" of

the parameter.
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6. Attraction of current-carrying conductors1

Another interesting problem investigated also by Andronov concerns

the attraction between an elastically constrained current-carrying conduc-

tor (of length /, current t) and a fixed conductor (current /, indefinite

length, distance a from the wall, Fig. 2.8).

The force acting on the elastically constrained conductor is:

Ax,\) = -*(x - j^j (6.1)

where the parameter A = Uil/k. The term â€” kx is due to the mechanical

Corrent

carrying

condoctor

Constraining

springs

Corrent

carrying

condoctor-

constraint and k\j(a â€” x) results from the electrodynamic attraction

(Biot and Savart Law).

The value Xe = a2/4 is critical because both f(x,Xe) and /Â»(*,Ae) vanish.

The d.e. of the system is:

mx + k(x â€”\ =

\ a- x)

and the corresponding equivalent system is:

x = y\

dy k x2 â€” ax + A

k x2 â€” ax + A

y =

m a â€” x

whence:

(6.2)

(6.3)
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The singular points are on the x axis (y = 0) of abscissas

a i a i l la* \

*i = 2 _ Â°> x2 = 2 + b'< b = J J ~ A

If A < a2/4, both and #2 are real and positive. If one substitutes the

values of xx and x2 into the expression for fx(x,X), one ascertains that

fJ[xvX) < 0 and /x(*2,A) > 0. Also, since fx(x,X) = - V^x.X), one con-

cludes that for the equilibrium is stable (the singular point being a cen-

ter) and for x2 it is unstable (the saddle point). Moreover, as x â€”> a,

Figure 2.9 Figure 2.10

dy/dx^*- oo, which shows that for x = a there exists a vertical asymptote

(Fig. 2.9).

Since the system is conservative, there exists a first integral:

$my* + ifce2 + *A log (a - x) = h (6.5)

One obtains the equation of the separatrix by disposing of the energy con-

stant h so that this particular integral line passes through the saddle point

(*2,0). The energy constant satisfying this condition is:
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thus the equation of the separatrix is:

+ kX log

(a/2) - b

a â€” x

= 0

(6.7)

We obtain again a familiar picture, viz.: inside the separatrix there exists

an "island" of periodic trajectories (closed curves around the center

(xx,0)). If the value of energy constant (that is, the initial perturbation)

is small enough and A < a2/4, the elastically constrained conductor exe-

cutes a small undamped oscillation. In the phase plane this oscillation is

represented by a closed trajectory around a center V. If A > a2/4, equa-

tion x2 â€” ax + A = 0 has no real roots, which shows that there is no

singular point (that is, position of equilibrium). This means that the

electrodynamic attractive force exceeds everywhere the elastic constraining

force and the conductor is ultimately attracted to the fixed conductor

which thus ends the motion.

The critical case when A = a2/4 corresponds to the coalescence of the

center with the saddle point. This gives rise to a situation analogous to

that analyzed previously in connection with the extremum value of the

potential energy. The phase-plane diagram of this case is shown in Fig.

7. Further properties of conservative systems; Hamiltonian

variables; integral invariants

As was mentioned in Section 1, the general criterion of a conservative

system is the existence of a single valued first integral, which in the pre-

viously outlined problems appears as the energy integral. Single-valued-

ness is essential inasmuch as there are systems which have a first integral

and still are not conservative because this integral is not single valued.

As an example, consider an electric current / flowing in a rectilinear

conductor of infinite length. In a plane xy perpendicular to this conduc-

tor, the components of the electromagnetic force acting on a magnetic

pole m, according to the Biot-Savart Law, are

These forces clearly derive from the potential <p = arctan (y/x) (which is

not analytic around the origin) and one has:

2.10.

X = â€” ^5 Im; Y = â€”z

r2 r2

Im

(7.1)

8<p y/x2 y

dx 1 + (y/x)2 r2

and a similar expression for dipj8y = xjr2.
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The equations of motion are thus: x = X; y = Y. If one multiplies

them respectively by x and y and adds, one has

1 d (*2 j. ,w - a<p * j. 8<p v, - ^

2dt(x +y)-8x-X+tyy-di

This shows that there exists a first integral

Â±(*2 + y2) - <p(x>y) = con8t (7-2)

However, as in this case the function <p(x,y) is not single valued on the

whole, the first integral is likewise not a single valued integral and the

system is not conservative. In fact, for a rotation of m around / through

an angle 2n, work is done.

Let us now return to the general theory. If F(xv. ..,#â€ž) is an integral

of the system

*. = xi(xi *â€ž)> *=1 Â» (7-3)

Then differentiating the equation F(xx,. . ., xn) = C with respect to time

and using (7.3) yields

i-x vxi

This partial differential equation for an integral of (7.3) was encountered

previously (for the case n = 2) in connection with the center problem

(Chapter 1, Section 8) where the notion of integral was tacitly introduced.

The d.e. of a dynamical system with n degrees of freedom can be ex-

pressed in the Lagrangian form

d (BT\ 8T â€ž . . .

where T is the kinetic energy of the system, q{ are generalized coordinates

(the degrees of freedom), and Q{ are external forces.

As in conservative systems the forces derive from a potential V, they are

of the form Q{ = â€” dV/8qi, and (7.5) becomes

d ldL\ dL â€ž , â€ž

where L = T â€” V is the Lagrangian function.

The differential system (7.6) is of order 2n involving the second deriva-

tives of the n unknown functions 9,-(/). These higher derivatives appear

in an implicit manner and a certain amount of manipulation is necessary

to solve for these derivatives; moreover, in this resolution the original

symmetry of the Lagrangian equations is lost.
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There exists, however, a classical procedure due to Hamilton for trans-

forming the Lagrangian system into a system of 2n first order differential

equations with a symmetrical character. We shall deal continuously with

such systems in what follows.

If we set

t-* <")

from (7.6) one has also

A-1 M)

The system (7.7) may be regarded as a system of n equations for n unknowns

j, which can be expressed generally in terms of the new variables />,.

One has to transform the system (7.6) in terms of the new variables.

We have thus

8L"iÂ§(Sa,i + ^a*')"2tfA'+><8*')

= s( 2 pa) + 2 - itod

\ 1-1 / I-1

This gives

Â«( 2 M - ^) = 2 - A*?,) (7-9)

One defines the function

i-l

assuming that q{ is expressed in terms of q{ and/>, by means of (7.7).

One can write

"-J; (71I)

Comparing with (7.9) one gets

(712)

Equations (7.12) are the classical d.e. of dynamics in the Hamiltonian
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form; hence, if L does not contain t explicitly, then obviously H does not

contain it either. In such a case one has

dt + eqi9')

n

which shows that //(/>,,?,) = 2 â€” ^(?;>?>) 1s a first integral.

One has thus an important property of conservative systems, viz.:

If the Lagrangian function does not depend on time explicitly, the Hamil-

tonian function is a first integral of the dynamical system.

It can be shown that H = T + V

U-<f0 Â»| and, since H is an integral, one has

"^M I H=T+V = h (7.14)

(Center of

oscillation) which is the law of conservation of

energy.

(center of jt js noted that lack of an explicit

gravity Jepen(Jence on tjme for i or H

means that the dynamical para-

Figure 2.11 meters and constraints are fixed.

If a system has a varying con-

straint, the preceding conclusion does not hold and in such a case the

system is not conservative. Thus, although a frictionless pendulum is

conservative, the same pendulum (always in the absence of friction) but

with a variable length is not a conservative system, in spite of the fact that

there is no dissipation of energy. The lack of conservatism in such a case

is due to the fact that energy is drained away from (or brought into) the

system owing to the work done in the varying constraint.

As an example of a situation in which a dynamical parameter is variable,

consider a frictionless pendulum M oscillating with a certain amplitude a.

On this pendulum is mounted a moving weight m capable of changing its

position across the pendulum M in such a manner that it is always on the

rising side of M. If the motion of M takes place in accordance with

the law a = a0 cos t, that of the weight m is d = d0 sin t, so as to fulfill the

above condition. Thus, when the angular velocity of M is maximum (the

upright position) in the direction shown by the arrow (Fig. 2.11), the weight

m is in its extreme position to the left.
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Such a system is nondissipative and yet it is not conservative. The

position of the constraint (the track on which m is moving) is varying in

space in such a manner that the weight m is always risittg, and therefore the

force of gravity is continuously doing negative work, thus draining energy

away from the pendulum. This principle is used in connection with the

anti-rolling stabilization of ships by the so-called "moving weight method."

It is clear that in this case the Lagrangian as well as the Hamiltonian

functions depend on t explicitly, and the latter does not yield the first

integral since the term 8H/8t does not vanish.

Conservative systems possess an important feature associated with the

concept of integral invariants introduced by Poincare 3 which, in the case

of the Hamiltonian variables, takes a particularly simple form. Poincare

defines as an integral invariant a certain integral over a domain depending

on t, whereas the value of the integral is independent of t. Intuitively,

one can imagine a certain amount of incompressible fluid moving along in

space in some manner and undergoing changes in form. The volume of

the fluid is then an integral invariant.

The theory of integral invariants is connected formally with that of

multipliers (or integrating factors) in the theory of differential equations

and, as the latter is, in turn, connected with the existence of first integrals,

it is possible to use the existence of integral invariants for a differential

system as a criterion of its conservatism. This criterion is particularly

simple if the differential system is expressed in terms of the Hamiltonian

variables.

We consider a differential system

x, = X,{Xi *â€ž); * = 1, 2,. . ., n (7.15)

and think of it as defining a flow in the phase space. A point which for

t = r0 is at some point (xi0) of the n-space, finds itself at the time t at some

other point (*,-) of that space. Thus the totality of all initial conditions

(for t = r0) forming a certain domain D,o gives rise to another domain

D, at time t > t0.

If the "fluid" is incompressible, the volume of D, is preserved by the

flow, that is, F(Dlo) = V(D<), or

\\d '' \dXx' dx*dx" = jjD - ' -jdxÂ» dx*>- . .' dxn' 1 > fÂ°

* H. Poincare, Les me'thodes nouveU.es de la micanique celeste T.3, Gauthier-

Villars, Paris, 1892; also E. Goursat, Cours d'Analyse T.2, Gauthier-Villars, Paris,

1918.
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We can express the invariance of this integral by

V'(t) = jt J J .. .j dxx, dxt,. ..,dxn = 0 (7.16)

We proceed with an elaboration of this idea. Consider more generally

scalar functions M(xv. ..,*â€ž) such that the integral

1(0 = jjD . . . Jm(*i xjdxi, d*Â»- . .. dxn (7.17)

over a domain Z>, of n-space, does not depend on t. This integral will be

invariant if

Â£/(0-o

(7.18)

A function M(xx *â€ž) will be called an integral invariant of (7.15) and

satisfies (7.18). We wish to find the conditions that must be satisfied by

the function M(xv. . ., xn) in order that (7.18) holds.

Denote the solution of (7.15) whose value at t = t0 is x,Â° by

*, = g,{*, *iÂ° *nÂ°)-

Let D,o be an arbitrary domain, and D, the domain into which D<g is

carried by the transformation *,Â°â€”>*,-. Let I(t) be defined by (7.17).

Since r0 is arbitrary there is no loss of generality in computing (dldi)I(t)

at t = t0. Denote the Jacobian of the transformation *fÂ° x{ by J(t), so

7(0 =

8XxÂ°

8XxÂ°

8x2Â°

dx.Â°

(7.19)

To compute I'(t0) we transform I(t) into an integral over D,:

1(0 = fj .jM(xv. . ., xn)J(t)dXxÂ°, dx2Â°,. . ., dxâ€žÂ° (7.20)

Thus,

1(0 - l('o)

= II, . . -S[M(Xx'- â–  - X")J(t) - M(XxÂ°^VCo)]^!0. dx2o,. . ., dxnÂ°
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Setting t = t0 + At, dividing by At, and passing to the limit At-+0

under the integral sign, we find that

/,('o) == If . . . ^mj^Â°' . .> dxÂ»Â° (?-21)

where the integrand is evaluated at t = t0, that is, at = Now

(dldt)(MJ) = MJ + MJ and we proceed to compute J. Clearly for

* = 'o. fcltej0 = 8,y and J(t0) = 1. Also, for t = t0 + At,

Interchanging the order of differentiation,

it [2$=4* (i)=4"Â°[w- . .. *,0)]=4 ^ . "Xj)]

Thus, fe,/te/ = 8,7 + At (8XJ8xj),^ + 0(|At |Â«) for r = r0 + JÂ«,

and expanding (7.19) yields

J(t0 + At) = l+At(y?Â£i) + 0flJ*|Â«)

\ ,-i vxi/ t-tâ€ž

Therefore,

+ jo - /(*.) = jÂ»( 2 + l2)

and so j(*r0) = 2 "Finally, since J(t^ = 1,

the partial derivatives being evaluated at x{ = x{Â°. We can now drop the

zero suffixes and write (7.21) in the form

AO - Â£ .. . Ji 3^ . dxn (7.23)

If M is to be an integral invariant we must have /(r) = 0 for every choice

of the domain Dt. The necessary and sufficient condition that this be

the case is that the integrand vanish, that is,

Â£ffi)-0 (7.24,

i -1 vxi
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As a special case we have the result that the motion in the phase space

preserves volume if, and only if,

1^-0 (7.25,

It is easy to show that this condition is always satisfied by a conservative

physical system provided it is expressed in Hamiltonian form

8H m .

For this system the condition (7.25) becomes

which is clearly satisfied, since

Hi \W ~ fa W)'

Consider now the system

x = X(x,y); y = Y(x,y) (7.26)

The equation

dy = Y(x,y)

dx X(x,y)

of the integral curves of (7.26) can be written

Y(x,y)dx - X(x,y)dy = 0 (7.26a)

The condition that (7.26a) be exact

â€” ?X = o

dx dy

is now recognized to be identical with the condition that (7.26) be area-

preserving. More generally,

WX) + WY) = 0

8x By

is equally the condition that M(x,y) be an integrating factor of (7.26a) or

an integral invariant of (7.26). Thus we see that the existence of an inte-

grating factor is equivalent to the existence of an integral invariant. This

result is valid only for the case of the two equations.
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To obtain a further connection between conservative and volume-

preserving systems, let g(xx,..., xâ€ž) be an arbitrary differentiable, non-

negative, scalar function which ^ inishes at most at the singular points of

(7.15). Then the system

*i = . .. *â€žW*x>- . .. *â€ž); * = h- . ., Â»

has the same integral curves as (7. 15), since the only effect of the common

factor g is to change the lengths of the velocity vectors, and thus the speed

with which the representative point traverses the trajectories. Now let

M(xx,. . ., *â€ž) be an integral invariant of (7.15), and consider the system

x{ = M(xx,. . ., xJX,{xx,. ..,xâ€ž); i = 1 n (7.27)

By the foregoing argument, the trajec-

tories of (7.27) are the same as those

of (7.15). Since (7.27) satisfies (7.24)

it is volume-preserving. Hence there

is no difference between the phase-

space geometry of systems which are

merely conservative and those which,

in addition, preserve volume.

As an example of the conservation

of area, consider the motion of a par-

ticle in the field of gravity. In this

case we have the relations

p

1' 2"

0 f0 %*" i

Figure 2.12

do dp 1 .

dt = P'' dt = ~g'' 9 = qÂ°+ pt~ 2g' p=Po~gt

(7.28)

For r = r0 we consider four points in the phase plane, namely: (1) qo,p0'<

(2) (jo + a),p0; (3) q0,p0 + a; and (4) g0 + a,p0 + a, which determine a

square shown in shading in Fig. 2.12.

For a later time r = r0 + At (Fig. 2.12), these four points become

1', 2', 3', and 4' calculated by (7.28) which determines the parallelogram

1'2'4'3' whose area remains the same as that of the original square 1243,

as one ascertains easily.

This remarkable property of the Hamiltonian variables to give directly

the integral invariant in the form of the conservation of an area of the phase

plane does not generally carry over to the Lagrangian variables. In fact,

if one wishes to express the integral invariance in these variables, one has
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to introduce the Jacobian of the transformation (p,g) â€”*â–  (q,q); we have

thus

/J? *\

ety 8q

\T, Tq/

/(,) - Â£ ** - Â£ J 4 â€¢ 41, - Â£ Â« 44 (7.*>)

We have now the "density" p = 82L/8q2 and what is "conserved" (or is

invariant) is not the area jjdqdq but the area weighted by the density p. It is

clear that the integral invariance subsists if 82L/8q2 does not vanish in the

domain under consideration.

8. Oscillating circuit with no resistance but with a nonlinear

inductance

As an example of application of the general theory just outlined, we con-

sider an oscillating circuit with no resistance but containing a saturated

iron core inductance A; it will be assumed also that the hysteresis loss in

iron is negligible. Under these assumptions, the system is obviously

conservative and we may expect that the first integral exists.

The d.e. of the circuit is

IJ> + 4-0 (8.1)

where C is the capacitance, i the current, <p the magnetic flux through one

turn of the inductance coil, and n the number of turns. This d.e. merely

means that the electromotive forces across the condenser and that gene-

rated in the inductance A balance each other.

The nonlinearity is <p = /(t) since we assume that the iron in A is satu-

rated.

If one takes as Lagrangian variables: q as the charge in the condenser,

q = i as the current, the Lagrangian function is

L = n J>0(4)4 - ?2/2C (8.2)

where the first term on the right-hand side is the kinetic energy and the

second, the potential energy according to Maxwell's theory. Moreover,

L is the Lagrangian function of (8.1) if this d.e. is of the form (7.6) but,

since <p = BLjdq and jidt = q, this is, indeed, the fact.
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In this case there exists the first integral

- L =

h being a constant; its explicit form is

H = T*f{q)q - n U(q)dq

H = q â€”

8q

(8.3)

(8.4)

This, as we saw previously, is the total energy H = T + V; the potential

energy is obviously q2/2C. As to the kinetic energy, it is the work of the

electromotive force nd<p(i)/dt in producing the current i; thus,

(8.5)

Integrating this expression by parts,

one has

T = MM - n j<p(q)dq (8.6)

which proves the statement.

It is more convenient to introduce

the Hamiltonian variable

P = Yq = Â»rffl (87)

One has the Hamiltonian function

H(P4) = \mdp + A (8-8)

J zc Figure 2.13

which gives directly the first integral

H = h. In this expression <p(p) is the result of the solution of the equa-

tion p = n<P(q) by which q is replaced by p. One has to know for this

purpose an adequate approximation for the nonlinear function 0 = /(*').

It is to be noted that the Hamiltonian variable p introduced by (8.7) is

always related to q in a continuous and single-valued manner in view of

the character of the function 0 in this case (Fig. 2.13).

The Hamiltonian equations are here

P 8q C

and the integral invariant is

(8.9)

(8.10)
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The quantity d<p(q)l8q plays obviously the role of "density" p. The

topological configuration describing an oscillatory process of this nature

is given directly by the first integral H = h but, in order to have an explicit

expression for this integral, one has to determine the function ip(p)-

In electrical engineering there exists a convenient analytical approxima-

tion of the function 4>(i) suggested by Dreyfuss,4 viz.:

0(i) = A arctan ^ + B g (8.11)

where A, B, and 5 are certain positive constants by means of which one

can "fit" this formula into any particular case of the saturation effect.

If one uses this approximation one obtains the expression for 8<pfdq

^ = â€” 1 , ^ ,Q !2\

8q 5 1 + (nq/Sf + 5 1 }

and, therefore,

C8<p ... An2 r qdq _ n* C...

which, upon integration, yields

AS. /q* s* \ Bn2 q*

This determines a family of closed curves resembling ellipses with the

singular point (center) at the center of the family. Andronov carried out a

similar calculation for another type of conservative system in which the

nonlinearity is in the capacitance term. It is known that certain minerals

used as dielectrics in condensers result in a nonproportionality between the

charge and the corresponding voltage across the condenser.

The d.e. of an oscillating circuit in this latter case has the form

where A0 is a linear (that is, constant) coefficient of inductance and C(q) is

a nonlinear capacitance. The argument is the same as before, viz.: one has

to assume a certain analytical expression for the function C(q) (for example,

in a form of a polynomial); one forms the Lagrangian d.e. and passes to the

Hamiltonian variables; one obtains finally the first integral by setting H = h

where H = H(q,p) is a Hamiltonian function and A is a constant of the

family. The remaining thing to be done is to construct the family of

the curves H = h. One obtains again a family of closed curves around the

4 L. Dreyfuss, Electrotechnik und Maschinenbau, 1911.
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NONLINEAR CONSERVATIVE SYSTEMS 65

center at the origin; these curves look like distorted ellipses (approaching

rather a rectangular form with rounded corners).

Summing up, if one knows that a system is conservative, it is advantageous

to pass to the Hamiltonian variables. It is then sufficient to set i/ = A and

consider this equation as a family of curves, in order to have the corre-

sponding family of closed trajectories around the center.

The essential point in all such procedures is to be certain that the system

is conservative. This presents no difficulty if the system is either an

electrical or mechanical system without dissipation (or, at least, with a

negligible dissipation); besides this, the system must be such that its

Lagrangian (and, therefore, the Hamiltonian) f anction does not depend on

time explicitly.

If, however, the system is such that the energy consideration does not

play any role in its formulation, this ceases to hold and the only criterion

of its being conservative is the existence of a single-valued first integral.

In the following section we shall encounter a conservative system in a

purely formal sense because no energy considerations are involved.

9. Volterra's problem

The problem of Volterra 5 is interesting as an example of a conservative

system in which the question of the energy integral is not involved and the

criterion of conservatism is based only on the existence of the single-valued

first integral. Volterra formulates his problem in the following manner:

in a lake or a closed sea, there exist two species (of fishes;. The small

species A feeds on vegetation (assumed to be available in an unlimited

quantity), whereas the larger species B subsists exclusively by eating the

members of the species A. The growth of the two species is governed by

two factors:

(1) The natural multiplication of A assumed to occur at a rate propor-

tional to their number Nx which results in the d.e.:

d-Â§ = hNi (9.1)

and

(2) The dying out of the species B also proportional to their number,

that is:

d-Â§ - - hFt (9-2)

* V. Volterra, Thiorie Mathematique de la lutte pour la vie, Gauthier-Villars,

Paris, 1931.
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where Nx and N2 are the numbers of A and B species, respectively, and

Ej > 0 and e2 > 0 are certain coefficients of proportionality.

These somewhat oversimplified hypotheses assimilate the unknown

biological probabilities to the simple ones assumed in the kinetic theory of

gases or in the theory of ionization. One can presumably argue regarding

these assumptions, but the interesting part of the problem is not so much

in the answer it yields as in the method followed.

The appearance of the species A or the disappearance of B occurs

obviously in unit steps but, as is frequently done in mathematical statistics,

one can adopt continuous variables and write the preceding equations as:

dx

It

Hx (9.3)

Â£--Â«* (9-4)

The significance of these d.e. is sufficiently clear, viz.: if the species A

existed alone, its number would increase indefinitely, following the

exponential law and, similarly, if B existed alone, it would die out according

to the same law.

The coexistence of the two species is to be taken now into account and

Volterra assumes that, instead of Ex and e2, one should have ex' and e2'

(both positive) defined as ex' = ex â€” y^y; Â£2' = e2 â€” y^x. In other

words, the coefficient ex of the multiplication process is decreased owing to

the existence of the extermination process (proportional again to y, the

number of the B species) and, likewise, the coefficient e2 of the dying-out

process for B is decreased owing to the available food offered by the A

species.

Under these hypotheses the d.e. are:

Â§ = (*i - Yiy)*; j-t = -(Â£* - Y*x)y (9.5)

Multiplying the first equation by e2/x, the second by ejy, and adding

together, one gets:

eÂ« dx e, dy .n

Substituting for ej and e2, and taking into account (9.3) and (9.4) one has

dx dy dloex d log y ,n
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NONLINEAR CONSERVATIVE SYSTEMS 67

This d.e. is integrated directly and one has the single-valued first integral:

ygX + yxy â€” Â£, log x â€” Â£xlogv = h = const; * > 0,y > 0 (9.8)

which can be written as:

F(x,y) = exp(-ya*) exp(-^,y)Â«Â«2yÂ«i - H = const (9.9)

One can ascertain also that the expression Jjdxdyjxy is an integral invari-

ant with the "phase density" Q = l/xy.

These results are already sufficient to guarantee that the system is

conservative for x > 0, y > 0. On

a purely intuitive basis, such an

assertion may seem to be somewhat

paradoxical since one species is con-

tinuously destroying the other. This

emphasizes once more a lack of any

intuitive criteria as soon as one departs

from physical systems in which the

conservation of energy yields the

familiar first integral. One can obtain

a somewhat approximate idea in this

connection by analyzing the singular

points of the system (9*5). Simplify-

ing the notations somewhat and using

a, b, c, and d instead of ej, yx, e2, y2,

respectively, (9.5) is written as:

dx = ax - bxy; ^ = -cy + dxy (9.10)

Figurb 2.14

dt

The origin is obviously a singular point. Consider, first, the neighborhood

of the origin. In such a case (9.10) becomes approximately:

dx

dt

dt

~ â€”cy

(9.11)

and it is seen that the origin is a saddle point, the axes of coordinates being

the asymptotes (Fig. 2.14). If one sets y = 0 (the x axis), the first d.e.

gives the direction away from the origin (the arrow on the x axis), whereas

if * = 0, the second equation indicates the direction along the y axis,

toward the origin. This merely illustrates (9.1) and (9.2) when one species

is absent. Clearly only the first quadrant (for * > 0, y > 0) is of interest

here.

There is a second singular point C of coordinates xx = cjd and yx = a\b.
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We transfer the origin to the point C and consider a small neighborhood

around this point. Replacing x and y in (9.10) by xx + Â£ and yx + rj,

respectively ($ and rj small), the system (9.11) in the neighborhood of C is:

bc . drj ad .

dl=-lV' Tt=T* <912>

which shows that the singular point C is a center.

Thus, on the basis of Volterra's hypotheses, if one puts into an empty

lake a number of the A species equal to xx = cjd, that of the B species

yx = alb, there will be no biological fluctuations, the rate of birth of A

being exactly compensated for by the rate of devouring A by B. If the

initial numbers of each species are not far from xx and yx, respectively,

there will be a small fluctuation represented by a small closed curve

(practically a circle) around C as center. The point C in this case will be a

center. This analysis is not sufficient to give the complete picture of the

trajectories in the intermediate region between O and C and one has to

investigate a more complicated d.e. (9.10); in fact, the neighborhood of the

saddle point at the origin produces a considerable deformation of integral

curves which cannot be treated as circles in this region.

The problem is still possible because of the existence of the first integral

(9.9) and the problem now reduces to the construction of the family of

curves satisfying the equation (9.10). One ascertains that the closed

integral curve approaches the origin at its nearest portion A, and spreads

away from it on its farthest portion B, as shown in Fig. 2.14.

In the case considered by Volterra the system is conservative only be-

cause he assumes the laws (9.1) and (9.2) for the behavior of each species

considered by itself. It seems, however, that these more or less a priori

laws do not correspond to what may reasonably be expected. In fact, since

the system is conservative, the initial conditions (say a point x0,y0 in the

xy plane) determine a unique curve passing through (x0,y0).

Moreover, as the system is conservative, this curve, being closed, deter-

mines a periodic phenomenon. Thus, for instance, if (x0,y0) is near the

origin, the closed curve will accordingly pass through this point. How-

ever, the preceding analysis shows that the nearer the closed curve comes

to the origin, the further it spreads away from it on its opposite portion B.

In other words, in order to produce very large fluctuations in the numbers

of both species, it is sufficient to begin the experiment with a few members:

x0 and j0 of each species.

This does not seem to be in accordance with observations which show

that, roughly, the density of distribution of each species remains more or

less constant (on the average and in the long run) and merely fluctuates

somewhat around these average values. It is clear that the results depend
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NONLINEAR CONSERVATIVE SYSTEMS 69

on the choice of the statistical law (equations (9.1) and (9.2)); in the present

case it is assumed that this law is the same as that used in the kinetic theory

of gases. It is also clear that this is a somewhat doubtful point as there is

no certainty whatever that what holds for the behavior of molecules of a

gas is applicable also to the reproduction of a species of fishes.

If one assumes another law, results will be different; more specifically,

a biological system of this kind may cease to be "conservative" as it now is

under the assumption of laws (9.1) and (9.2). In fact, Kolmogorov4

developed this point of view starting from a more general system of d.e.

AN dN

- K^JfjNil ^ = K^N^JNt (9.13)

where Kr and Kt are continuous functions of Tv^ and Nt with continuous

first derivatives. The quantities Nx and N2 are the same as previously

and we designate them, as before, * and y.

If P is a point (x,y) in the (x,y) plane, we designate by S the direction

OP (from origin to P). It is shown that, by imposing certain conditions

one can obtain results different from those of Volterra.

More specifically, if the following conditions are fulfilled:

(1) 8KJ8y < 0; (2) dKJdS < 0; (3) ^(0,0) > 0; (4) there exists A > 0,

such that Ki(Q,A) = 0; (5) there exists B > 0 such that ^(5,0) = 0.

Likewise, for K2:

(1') dKJ8y < 0; (2') dKJdS > 0; and (3') there exists C > 0 such that

K2(C,0) = 0; then for * > C and C < B it is possible to have different

situations, namely,

(a) Instead of a center, as in Volterra's theory, the* point of equilibrium

may be either a stable focus or a stable node.

(b) This point may bean unstable focus surrounded by a stable limit

cycle.\

Apparently the solutions of the type (a) are not encountered, because

biological fluctuations have been actually observed. In fact, this obser-

vation urged Volterra to undertake his work.

Solution (b) seems to be more appropriate on the basis of observations.

In fact, it is utterly improbable that a few members of each species origi-

nally placed in a lake would give rise to enormous statistical fluctuations

required by Volterra's theory. On the contrary, it seems more probable

that by putting a certain number of fishes of each species into an originally

empty lake, after a certain time a state of equilibrium will be reached;

â€¢ A. N. Kolmogorov, Giorn. dell Istituto Italiano degli Attuari 14, 1936.

f This subject is discussed more fully in Chapter 3.
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observation adds to this "common sense" picture also the existence of

relatively small fluctuations.

Topologically this "common sense" picture (supplemented by fluctua-

tions) is precisely a stable limit cycle in the (x,y) plane onto which wind

the spiral trajectories from the outside as well as from the inside (since

there is an unstable focus inside the limit cycle). The outside spiral

trajectories are those which characterize the establishment of the biological

phenomenon and the limit cycle is its representation in a stationary state.

As regards the inner unstable focus, its nature is not very clear but it is

likely that it means the impossibility of a steady-state without fluctuations.

In other words, even if one puts into a lake a correct proportion of both

species corresponding to this focal point, fluctuations will occur until a

stable limit cycle is reached.

As far as is known, no experimental verification of these theoretical

results has been made so far. If this is done eventually and the Kolmo-

gorov theory is confirmed, this will give valuable information regarding

the actual biological probabilities involved in the coexistence of the two

species.

All that can be said at present is that the original hypothesis of Volterra

(equations (9.1) and (9.2)) does not seem to be in accordance with the

observed facts.
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Chapter 3

LIMIT CYCLES OF POINCARti

1. Definitions

Poincare showed1 that the d.e. of the form

x = X(x,y); y = Y(x,y) (1.1)

admit occasionally special solutions represented by closed curves in the

phase plane which he calls limit cycles. A limit cycle is a closed trajectory

(o) (b) . (c)

Figure 3.1

(hence the trajectory of a periodic solution) such that no trajectory suffi-

ciently near it is also closed. In other words, a limit cycle is an isolated

closed trajectory. Every trajectory beginning sufficiently near a limit

cycle approaches it either for t â€”> oo or for t â€”> â€” oo, that is, it either winds

itself upon the limit cycle, or unwinds from it. If all nearby trajectories

approach a limit cycle C as tâ€”> oo, we say that C is stable (Fig. 3.1a); if

they approach C as t â€”> â€” oo we say that C is unstable (Fig. 3.1b). If the

1 H. Poincar^, J. des Math. (3), 7, 1881; also CEuvres T.l, Gauthier-Villars,

Paris, 1928.
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trajectories on one side of C approach it while those on the other side

depart from it, we sometimes say that C is semi-stable (Fig. 3.1c) although

from a practical point of view C must be considered unstable.

Limit cycles, and in particular stable limit cycles, are fundamental in

the theory of oscillations of nonlinear, nonconservative systemsâ€”the only

kinds of systems in which they can arise. A stable limit cycle represents

a stable stationary oscillation of a physical system in the same way that a

stable singular point represents a stable equilibrium.

2. Examples of limit cycles

Consider the following system

x

~ y

* = y + ,/tt-i t1 - (*2 + y*n

(2.1)

y = -* + -7==i V ~ (** + y*n

Vx2 + y2

In polar coordinates (x = r cos 6; y = r sin 6), it becomes:

*-y + ;Q-r*y, y= -* + 2(l-rÂ«)

Recalling that xx + yy = Â±(dr2ldt) and yx â€” xy = â€” r\d6}dt) one

obtains:

r = 1 - r2 (2.2)

6=-\ (2.3)

The second d.e. merely shows that the radius vector rotates with a con-

stant angular velocity. As to (2.2) it is integrated by the standard pro-

cedure which gives:

r = A^TX W

where the constant of integration A = (1 + r0)ftl â€” r0), r0 being the

initial value of r. It is noted that r0 = 1. The limit cycle in this case is

a circle with radius 1. If r0 > 1, the spiral winds itself onto the circle

rx = 1 from the outside; if r0 < 1, it winds itself onto rx = 1 from the

inside.

In a similar manner, one shows that the differential system:

x = â€”v + x(x* + y* â€” 1)

(2.5)

y = x + y(x* + yl â€” 1)
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admits an unstable limit cycle r, = 1 as solution. In polar coordinates

(2.5) becomes:

r = r(r2 - 1); 6 = 1 (2.6)

which is discussed in the same manner.

The differential system:

^ = y + x(x* + y*)x'2^ + y* - l)2

~x + y(x2 + y2yi2(x* + y* - l)2

(2.7)

gives an example of a semi-stable limit cycle. In polar coordinates this

system reduces to the d.e.:

r = r2(r2 - l)2; 6 = - 1 (2.8)

and the integration of the first d.e. permits easily ascertaining this

point. Finally, as an example of an exceptional case of accumulation of

limit cycles, one can indicate the d.e. of the form:

x = y + /x(*2 + j2 - l)x sin ^, + y2_1)

y = -x + /*(*2 + y* - \)y sin + yi - l)

(2.9)

In polar coordinates these d.e. become:

r = /xr(r2- 1)sin-^-^ ifr#l; ^ = 0 ifr=land0=-l (2.10)

There exists, obviously, an infinity of circles in the neighborhood of r = 1

corresponding to zeros of sin [l/(r2 â€” l)].f

The simplicity of these examples in polar coordinates is due to the fact

that they were originally formulated in polar coordinates and then trans-

formed to cartesian coordinates. In reality, the matter of ascertaining

the presence of a limit cycle in a given d.e. is a very difficult problem and

one that can be solved by direct methods only in a few isolated cases. In

Part II it will be shown that, in contrast with the just-mentioned difficulty

of direct methods, the theory of approximation, on the contrary, gives

generally simple means of ascertaining the presence of a limit cycle in the

theory of the first approximation. Anticipating somewhat the later outline

of this subject, it is sufficient to mention that in the theory of the first

t It is to be noted that the d.e. ceases to be analytic for r = 1.
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approximation the limit cycles appear as circles, the radius of which is

determined precisely by this approximation. In this manner, it is possible

to determine the essential part of the problem (that is, its topological

configuration) at a sacrifice of some secondary facts (for example, the

presence of harmonics in the stationary solution).

3. Physical significance of limit cycles

As mentioned previously, limit cycles represent the stationary states of

oscillations. The most important application of the theory of limit cycles

is in relation to the so-called self-sustained oscillations which characterize,

for instance, the oscillatory state of an electron-tube oscillator. A clock

or a watch may also be regarded as another example of such an oscillator

(Section 11 below). A common feature of oscillators of this kind is that

their stationary oscillatory state does not depend on the initial conditions

(as for conservative systems) but depends uniquely on the parameters of

the system, which means that it is determined by the differential equation

itself. One understands this property easily on the basis of the previous

definition of limit cycles by recalling that any initial condition is repre-

sented by some point in the phase plane through which passes one and only

one trajectory C. Since, however, the fundamental property of a stable

limit cycle is characterized by an approach of any trajectory C (at least

within a certain range) to the closed trajectory C, it is obvious that whatever

are the initial conditions (within this range), the ultimate stationary motion

will establish itself on C and, in this sense, one can say that this stationary

motion is independent of the initial conditions. Thus, it is immaterial

whether the oscillation of an electron-tube oscillator is started by the clos-

ing of a switch or whether at the instant of closing the switch some arbitrary

impulse is applied to the system; the ultimate self-sustained oscillation will

be exactly the same. The same applies to the mechanism of a clock; if the

clock is wound but is initially at a standstill, it is immaterial whether its

start is due to a small or to a large impulse as long as it is sufficient for

starting.

In addition to the property of being self-sustained, oscillations of the

limit cycle type have also another important propertyâ€”that of self-starting

or self-excitation. In the above example of an electron-tube oscillator

this property manifests itself in that the oscillatory phenomenon develops

from the state of rest and reaches its ultimate stationary motion as soon as

the switch is closed, that is, as soon as the physical oscillatory system is

completed. The same applies, generally, to an ordinary watch; as soon as

it is wound, it starts going. In both cases the oscillatory phenomenon

starts spontaneously from rest and reaches its stationary state on the limit
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cycle. In applications, conditions of this kind are commonly known under

the name of soft self-excitation.

In the case of a wound clock that is initially at a standstill, the situation

is different, however, in that it is necessary to start the clock by some im-

pulse. As was just mentioned, the magnitude of this impulse is immaterial

as long as it is sufficient to produce the start. Similar phenomena are

observed occasionally in the electron-tube circuits under the appropriate

conditions. It is observed in such cases that the circuit is normally in the

state of rest, but under the effect of an impulse it starts oscillating. Here

again the magnitude of the impulse needed for starting the oscillation is

immaterial as long as it is greater than a certain critical or threshold value.

(o) (b)

Figure 3.2

Phenomena of this nature are usually designated by the term hard self-

excitation.

As regards the soft self-excitation, it is nothing but the simplest possible

topological configuration shown in Fig. 3.2a, according to which the

phenomenon is represented by a trajectory unwinding itself from an

unstable singular point and winding onto the stable limit cycle from the

inside.

For a hard self-excitation, the matter is more complicated and it is

necessary, for this purpose to investigate additional topological configura-

tions.

4. Polycyclic configurations

In Section 1, a limit cycle C in the phase plane was defined by the pro-

perty that it is essentially an isolated closed trajectory in the sense that all
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neighboring trajectories C are spirals winding themselves on C.f This

does not exclude, however, the possibility that at some distance there exist

other closed trajectories and, in particular, other limit cycles. We shall

return to this subject later, but at this time it is useful to mention one

configuration which we shall encounter continuously in what follows and

which consists of a number of limit cycles enclosed inside each other, with

a singular point in the innermost limit cycle. It is intuitively clear that

the cycles must be alternately stable or unstable, except that semistable

cycles may intervene. For the moment we shall exclude the latter case.

If the singular point is unstable (an unstable focus or node), the innermost

cycle is stable, the next unstable, etc. (Fig. 3.3a). If the singularity is

stable, the first cycle is unstable, the next stable, etc. (Fig. 3.3b).

Figure 3.3

Soft self-excitation corresponds to the case in which a system departs

from an unstable singularity (that is, an unstable equilibrium state) as in

Fig. 3.3a and thus arrives at the stationary state Cv Hard self-excitation

corresponds to the situation in Fig. 3.3b in which the equilibrium is stable,

and an impulse is required to enable the system to cross the barrier repre-

sented by the unstable cycle Cx and have its initial state correspond to a

point in the region between Cx and C3. The oscillatory state attained

will then be C2.

There is still another possibility worth mentioning which appears

frequently when the d.e. contain a parameter A. If this parameter varies,

the topological configuration like the one shown in Fig. 3.3a varies too, and

it may happen that for some critical value A = A0 the stable and the unstable

cycles C1 and C2 approach each other indefinitely and coalesce at the limit,

giving rise to a semi-stable cycle which is, as we mentioned, an essentially

t We exclude from our consideration certain, so to speak, "pathological cases"

like the d.e. (2.9) that have no known physical significance.
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unstable configuration. Generally, both cycles Cx and C2 disappear upon

their coalescence. In such a case R finds itself in a region free of limit

cycles and is thus within the zone of attraction of the remaining cycle C8.

This circumstance manifests itself in a quasi-discontinuous jump of the

amplitude from the cycle Cx to C8.

5. The index of Poincare

The concept of the index was introduced by Poincare for the purpose of

establishing a necessary criterion for existence of a closed trajectory (limit

cycle); this criterion is, however, not sufficient. From the fact that the

theorem of the index indicates the possibility of a closed trajectory, one

cannot yet conclude that such a trajectory exists. The usefulness of the

theorem is that it permits ruling out situations where closed trajectories are

impossible. In addition, certain properties of invariance render the

theorem useful when the phase portrait undergoes qualitative changes as

the result of a parameter variation.

We indicate first a simple (geometrical) definition of the index and out-

line its analytical definition later.

We consider in the phase plane of the system (1.1) a closed Jordan curve

C not traversing any positions of equilibria (singular points). This curve

may be regarded as being in the vector field V of trajectories of (1.1).

Suppose that a point S moves on C in the positive direction (say, counter-

clockwise) and that we mark the direction of the tangent to the vector field

at S relatively to a fixed system x,y of reference. It is clear that when S

turns over an angle 2n on C, the tangent vector will resume its initial

position having turned over an angle 2nl, where / is integer.

We consider the rotation of the vector V (and therefore /) as positive if

V (with respect to x,y) rotates in the same direction as S does on C and as

negative in the opposite case.

From this definition it follows that / may be either positive or negative or

zero, but it is always an integer; it is also clear that / in a certain sense does

not depend on the form of the curve C as long as by deforming it we do not

change the number of singular points inside.

The integer I so defined is called the index of the curve with respect to the

vector field V.

The characteristic cases are obtained if C either does not contain any

singular points or contains just one simple singular point.

By tracing the field V of trajectories issuing from the singular point in

question and surrounding the latter by closed curve C one ca"n easily

verify by the above construction of tangents that
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1. For C not containing any singular point, 1=0.

2. For C containing either a focus or a node or a center, I = +1.

3. For C containing a saddle point, / = â€” 1.

We give now a more precise definition of the index. Let V = V(X, Y)

be a vector field whose components X = X(x,y) and Y = Y(x,y) are

continuously differentiate; other conventions regarding the curve C, the

vector field V, and the positive direction on C being the same as first

stated. The contour integral:

r/^r^ 1 f A Y(x,y)\ 1 [XdY-YdX ,_

is equal to the number of positive revolutions (counterclockwise â€” clock-

wise) of the vector V as the curve C is described once in the positive direc-

tion. This number is called the index of C with respect to V. Since

I(C, V) varies continuously with C so long as no singularity is crossed, while

on the other hand I(C, V) is an integer, it follows that I(C, V) is the same

for all curves C which can be deformed into each other without any cross-

ing of singular points.

In particular, if p is a regular point, or an isolated singular point of V,

then I(C,V) is constant for all C surrounding/> and no other singular point.

We define I(p,V) the index ofp with respect to V, to be the common value

I(C,V) for all such curves C.

If p is a regular point, it is clear that I(p,V) = 0, since by the continuity

of V we can find a circle C so small that V lies arbitrarily near a fixed

direction for all points on C.

By an argument familiar from the theory of residues of an analytic

function, we conclude also that if C surrounds the singular points px,..., pn

of V and no others, then

I(C,V) = fl(Pi,V) (5.2)

Before applying these ideas to differential equations, we state an intui-

tively obvious but important theorem:

If C has a continuously turning tangent vector T, then I(C,T) = 1.

A proof will be found in Coddington and Levinson.2

Now we consider the d.e. with the vector field V:

x = X(x,y); y = Y(x,y) (5.3)

* E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations,

New York, 1955, p. 399.
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By the indices of trajectories of singular points of (5.3) we shall mean

the indices with respect to the field V. If C is a closed trajectory of (5.3),

then V on C is a continuously turning tangent of C and the preceding

theorem can be stated thus:

The index of a closed trajectory is 1.

Since the index of a regular point of (5.3) is zero, we have the following

important result:

A closed trajectory surrounds at least one singular point.

Let us now compute the index of an elementary singular point of (5.3).

We suppose the origin moved to the singular point, so that (5.3) has the

form:

x = X(x,y) = ax + by + Ffay); y = Y(x,y) = cx + dy + F2(x,y)

(5.4)

where Fx and F2 are of degree two or higher in x,y. The hypothesis that

the singular point is elementary means that D = ad â€” be =/= 0. Since D

is the Jacobian

d(X,Y)

b\x,y)

evaluated at x = y = 0, the equations, u = X(x,y) and v = Y(x,y), define

a bi-continuous one-to-one transformation T of a neighborhood Q of

x = y = 0 onto a neighborhood S/ of u = v = 0. Choose a > 0 so

small that the circle u2 + v2 = a2 lies in Q'. Its image under

X\x,y) + Y\x,y) = a2, is thus a simple closed curve in Q surrounding

(0,0).

Denote this curve, with the usual orientation, by C. The index of the

singular point is thus:

Parametrizing C by u = a cos 0; i; = a sin 0, the last integral becomes

J0*2' d6 t Â± 2tt, where the plus sign is to be chosen if T is orientation

preserving, and the minus sign if T is orientation reversing. Thus

/ = Â±1. Finally, we observe that T is orientation preserving or reversing

according as its Jacobian is positive or negative. Since the sign of the

Jacobian in Q is that of D, we have 7=+lifD>0 and I = â€” 1 if

ex ex

8x 8y

8Y BY

8x dy
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D < O.f Referring to Section 6 of Chapter 1, we find that D > 0 for

nodes, foci, and centers, and D < 0 for saddle points. Hence the index

of a node, focus or center is +1; the index of a saddle point is â€” 1.

To combine the preceding results, let r be a trajectory of (5.3) surround-

ing only elementary singular points. Then

I(D = N + F + C - S = 1 (5.6)

where N, F, C, and S are, respectively, the number of nodes, foci, centers,

and saddles in the interior of P.

In the special case of a conservative system this formula becomes

C - S = 1 (5.7)

which is illustrated by Fig. 2.7 for C = 2 and 5=1.

6. Brouwer's fixed point theorem

Let R represent a closed segment a < x < b and let T be a mapping of

R into itself, that is, a continuous transformation x' = f(x) defined for all

* in R and such that x' also lies in R so that a < f(x) < p where a < a <

j8 < b. The existence of fixed points (that is, of points y such that

y = /(y)) is known from the elements of calculus.

In fact, x â€” f(x) is a continuous function defined in a < x < b and for

x = a; x = b we have, respectively, a â€” f(a) < a â€” f(a) < 0; b â€” f(b) >

P â€” /(6) ^ 0, and there is at least one value y such that a ^ y < b\

y â€”/(y) = 0; that is: y = /(y). This property of continuous transfor-

mations admits of extensions for planar or n-dimensional mappings.

t We can obtain this result without assuming the theorem about the sign of the

Jacobian. Let us investigate whether the parametrization

X(x,y) = a cos 6; Y(x,y) = a sin 8

of C has the property that the direction of increasing 8 corresponds to a positive or

negative traversal of C. Let I be a line parallel to the y axis and lying to the right

of C. Move / parallel to itself until it just touches C. Let p be a point of con-

tact; then the positive direction on C at/> is upward, and it follows that (dy/d6) > 0

at p if 8 induces the positive orientation on C, and (dyjdff) < 0 in the contrary case.

A simple calculation shows that dy/dd = (i/2J)(8/Bx)(X1 + y2) where J is the

Jacobian.

However, atp, (d/dx^X1 + Y*) > 0; hence, the sign of dy/88 is that of J and

1 fÂ±2n

we have 7 = 2^1 d8 = Â± 1, the sign being that of J. In this manner we can

perform the integration without an explicit change of variables, although the formal

computation is the same as before.
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We shall limit ourselves to the planar case, although in what follows we

shall need only the above-mentioned unidimensional argumentâ€”not the

generalization below. Let R be a closed circular disk, that is, the union of

a circle and its interior.

By a mapping of R into itself we mean a continuous transformation

T: x' = f(x,y); y' = g(x,y) defined for all (x,y) in R and such that (x',y')

also lies in R. If p is a point of R, we denote its image under T by T(p).

By a fixed point of T we mean a point/> such that T(p) = p. The theorem

of Brouwer states:

Every mapping of R into itself has a fixed point

This theorem has a number of applications in the theory of differential

equations. We shall outline a proof based on the idea of the index. First,

however, we remark that if, in the theorem, R is replaced by any region S

obtainable from it by a bi-continuous one-to-one mapping X (that is, any

region formed of a simple closed curve and its interior), a corollary theorem

is obtained; for if T maps S into itself, X^TX is a mapping of R into itself,

taking a point p of R first into the point X(p) of S, then into the point

T[X(p)] of S, and finally via the inverse of X into the point X~^TlXip)]}

of R. If, as the theorem asserts X-xTX has a fixed point, then

X-^TX^p) = p for some p of R so that TX(p) = X(p). Hence X(p) is a

fixed point of T.

We define the index I(C,V) of a simple closed curve C relative to a

continuous vector field V having no singularities on C to be the number of

positive revolutions of V as C is traversed once positively. As was the

case for differentiable fields, I(C, V) varies continuously with C so long as

no singularities are crossed, and it follows, as before, that I(C,V) = 0 if C

surrounds no singularity of V.

Now let C be the circumference of R and T a mapping of R into itself.

Define the vector field V on R by V(p) = pp' where p' = T(p). V is

continuous because T is. If T has no fixed point on C, then V has no

singularity on C.

Since V on C always points into the interior of R, it makes exactly one

positive revolution as C is traversed once positively. Hence I(C,V) â€” 1,

and V has a singularity in R. But a singularity of V is a fixed point of T.

This completes the proof.

For a more detailed discussion of the theory of the index and a more

rigorous proof of the Brouwer Fixed Point Theorem, the reader is referred

to Lefschetz.3

â€¢ S. Lefschetz, Differential Equations (Geometric Theory), Interscience Pub-

lishers, New York, 1957.
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7. Negative criterion of Bendixson

The theory of indices as we saw gives necessary conditions for the

existence of limit cycles; they are not sufficient however.

Poincare has indicated, and Bendixson has completed, a theorem that

gives both necessary and sufficient conditions for the existence of limit

cycles. This theorem is known under the name of Poincare-Bendixson

theorem (or positive criterion); it is outlined in the following section.

Bendixson,4 on the other hand, has established a theorem for the nonexis-

tence of limit cycles; this theorem is also known under the name of the

negative criterion and gives a sufficient condition.

This theorem and an example of its application due to Andronov5 are

indicated in this section.

/*Â£V n ,â–  Field Given a system of d.e.

r/^V TOmO" ln<"n9 * = X(x,y); y = Y(x,y) (7.1)

^(i j /l^ the negative criterion of Bendixson

2' . .

states:

If the expression (BX/8x) + (8Y/8y)

does not change its sign (or vanish

identically) within a region D of the

phase plane, no closed trajectory can

exist in D. In fact, by Green's

Figure 3.4 theorem

jcW - Y*) - ffB(% + (7.2)

If the contour C over which the integration is performed is a closed tra-

jectory of (7.1), the line integral is jc (xy â€” yx)dt and is zero. This

contradicts the hypothesis, according to which the double integral cannot

vanish. An interesting application of this criterion was indicated by

Andronov.5 It is well known that two series generators cannot work in

parallel and fall out of step with each other. (See Fig. 3.4. The <f>(i) are

the electromotive forces induced in each generator.)

The application of KirchhofF's laws yields two equations

di (7-3)

4 I. Bendixson, Acta Math. 24, 1901; also H. Poincar6, J. des Math. (3), 7,1881;

also CEuvres T.l, Gauthier-Villars, Paris, 1928.

Â» A. Andronov and S. Chaikin, Theory of Oscillatons (original text in Russian),

Moscow, 1937, and subsequent editions.
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If one considers ix and i2 as x andy of the general theory, the expressions

dXjdx, BY/8y in this case are

8X _ ffc) - (r + R); 8Y _ - (r + R)

where ^'(0 = [^K*)]l^* = p. From this expression it is seen that

8X18ix and 8Y/dit are never zero as long as the generators remain excited

because, in such a case, the electromotive force always outweighs both the

ohmic and inductive drops of the voltage in the circuit. One concludes

therefore that no closed trajectory (that is, periodic solution) is possible in

this case. This can be ascertained by investigating the singular points of

the system (7.3) written as

(p - r - R - LSJij - Ri2 = 0

- Rix + (p - r - R'~ L8)it = 0

where we set 8 = djdt. The nontrivial solutions are possible here only

if the determinant is zero, which gives the condition

(P - r - R - L8) = Â±R (7.5)

The roots of the characteristic equation are

8i-j[>-(r + 2R)]; S2 = \(P - r) (7.6)

As in the state of self-excitation, p â€” r â€” R > 0, 82 > 0. As to 8x,

all depends on the value of R; this root may therefore be either positive

or negative. If it is negative, the singular point (i\ = it = 0) is a saddle

point; if it is positive, the singular point is an unstable node. In both

cases there is instability, which means that any small deviation from the

initial condition ix = t, is further emphasized so that, instead of working

in parallel, the generators will set themselves into a series operation. If,

however, the field connections are reversed (the point A of the first field

is connected to the point C of the second generator and vice versa); a

similar argument shows that the roots are now

Si- Â±(p-r-2R); 82=-i(p + r) (7.7)

It is seen that the root 82 is always negative; if 8x is also negative, the

singularity is a stable node, which shows that the generators work in a

stable manner in parallel. If, however, R is not sufficiently large, 8x may

become positive, in which case the singular point becomes a saddle

point, resulting in instability.
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This analysis of the nature of singular points does not yet make certain

the existence of a stationary oscillation (assuming, of course, that the

singularity is not a saddle point). What actually rules out the existence of

an oscillation is the condition yielded by the negative criterion. It must

be noted, however, that the fact that (dX/dx) + (BY/By) changes sign does

not mean that a closed trajectory exists.

8. Poincare-Bendixson theorem

The Poincare-Bendixson (P.B.) theorem states:

If a half trajectory C remains in a finite domain D without approaching

any singularities, then C is either a closed trajectory or approaches such a

trajectory.

We refer to the proof of this theorem

in Bendixson's treatise.* The P.B.

theorem gives sufficient conditions for

the existence of a closed trajectory. Its

principal limitation is the difficulty of

determining the domain D satisfying

the requirement of the theorem. We

shall indicate in the following section a

method due to Poincare which has for

its object precisely the determination

of the P.B. domain.

If this region D can be determined

in one way or another, the theorem

gives an immediate answer. A great

Figure 3.5 deal of ingenuity is sometimes required

for this determination; we refer to a

paper by LaSalle 6 who was able to prove the existence of a periodic solution

of the van der Pol equation with a large parameter value by constructing a

domain D so as to render the application of the P.B. theorem possible.

In the case of a ring-shaped domain D bounded by two concentric circles

Cx and C2 (Fig. 3.5), it is sufficient for the existence of at least one closed

trajectory that:

(A) Trajectories enter (leave) D through every point of Cx and C2.

(B) There are no singular points either in D or on C\ and C2.

In this form the significance of the theorem is obvious on the basis of the

* See footnote *, page 82.

â€¢ J. P. LaSalle, Quart. Appl. Math. 7, 1949.
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hydrodynamical analogy. In fact, if the condition (A) holds, there must

be a "sink" either in D or its boundaries; the condition (B) rules out the

point-sinks; hence, there must be a curvilinear sinkâ€”the limit cycleâ€”in D.

Condition (A) is essential in that in case there are some regions on the

bounding curves through which the trajectories change the direction of

their entrance into D, the P.B. theorem does not hold. In the following

section we shall analyze the fulfillment of condition (A) in greater detail.

9. Cycles without contact; curve of contacts

The difficulty of determining the bounding curves C of the domain D

was obviated to some extent by Poincare in his method of the curves of

contact.1 Let V be the vector with the components X and Y appearing

in the system

x = X(x,y); y=Y(x,y) (9.1)

An arc 5 is called arc without contact if V is neither zero nor tangent to S

at any of its points. If 5 is a closed curve, we call it a cycle without contact.

Given an arbitrary closed curve r, the vector V sometimes points into the

domain D bounded by r, sometimes it is directed outward depending on

the sign of the cosine of the angle between V and the inner normal N to P

at a given point. As cosine of the angle (VN) is a continuous function of

the point on P, it may vanish sometimes if there is a contact between P and

V at some point. Clearly, for a given motion on T, the vector V, which

was pointing into the area D limited by r, is outwardly directed after a

point of contact is traversed. Such a curve r cannot, therefore, satisfy

the condition (A) of the P.B. theorem.

If contacts exist between a family of closed curves r depending on a

parameter c and the vector field, their locus is a continuous curve called a

curve of contacts.

Suppose we have a family of curves 71 which Poincare calls a topographic

system. This may be, for instance, a family of concentric circles x2 +

y* = c centered at a singular point. Our purpose will be to determine

such curves of this family which satisfy condition (A) of the preceding

section, assuming that condition (B) is fulfilled. It may happen that

for some values of the parameter c there are contacts between the curves

r and vectors V. In such a case, condition (A) is not fulfilled. It may

also happen that for some other values of c in the interval, cx < c < c2,

there are some curves 71 that are cycles without contact and thus fulfill con-

dition (A). Thus if C is a curve of contacts in polar coordinates with r2

and rx being the maximum and minimum radii, one can take two circles
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of the topographic system with the same radii. In such a case circles

with radii R2 > r2 and /?x < rx fulfill condition (A) since they appear as

cycles without contact relatively to the vector field V.

If r(x,y) = c is the equation of the topographic family of curves, rx

and Fy are components of the vector N normal to any such curve passing

through a point x,y. A point of contact occurs whenever this normal

vector to r is perpendicular to the phase velocity vector V. This condi-

tion of orthogonality of F and N is thus

rxX + TyY = 0 (9.2)

which gives the equation of the curve of contacts

x n

y r,

(9.3)

x

The d.e. (9.1) in polar coordinates are

r . R(r,<p); <j> = Q(r,<p) (9.4)

and the curves of the topographic system satisfy the d.e.

The points of the curve of contact must satisfy the relation

- F(r,9) (9.6)

If the topographic system is a family of circles F(r,<p) = 0, the equation of

the curve of contacts is given by two equations

R(r,9) = 0; ^ = 0 (9.7)

As an example, consider the d.e. of a pendulum acted on by a constant

moment M:

<p + hp + csin<p = M

This d.e. is encountered in the theory of a synchronous motor when M

is the driving torque exerted by the rotating magnetic field. As the coor-

dinate <p is cyclic, it is defined only modulo 2n; this, clearly, imposes the

use of a cylindrical phase surface. As a topographic system one can take

here the lines <p = c to which correspond circles on the cylinder so that
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the domain D will be a portion of the cylindrical surface limited by two

sections of the cylinder by planes perpendicular to its axis. We have

9 = y = X(<p,y); y = j(P - hy - mglsin<p) = Y(<p,y)

and the equation of the contact curve is Y = 0; whence

P â€” mgl sin <p ...

y = h

Hence, a limit cycle, if it exists, is located in the region defined by the

inequality

(P - mgl)lh < <p < (P + mgl)jh

As another example, consider the van der Pol equation, x â€” /x(1 â€”

+ * = 0, which, written as a system, is

x = y = X(x,y); y = - x*)y - x = Y(x,y)

With a circular topographic system the curve of contacts is (1 â€” x2)y2 = 0.

As the root y2 = 0 is double, the abscissa axis is a locus of even contacts,

but these do not violate condition (A). The two branches of the curve of

contacts are thus: x = 1 and * = â€” 1. Hence the smallest circle tangent

to the curve of contacts is a circle of radius 1 and there is no largest circle.

The limit cycles are thus outside a circle of radius 1, which is obvious

from the d.e. which has a "positive friction" if * > 1. The problem here

is rather indefinite inasmuch as it is impossible to determine the largest

circle so as to have the annular region D between the two circles.

There are cases when this can be accomplished as was shown by Andro-

nov and Witt7 in connection with the d.e. of synchronization. We follow

here this calculation in the notations of Stoker.8 Consider the differential

system

* = - ay + x(l - r2)

y V (9.8)

y = ax + y(l - r2) + F

where r2 = x2 + y2 and a and F are positive constants. The d.e. of

integral curves is

dy _ ax + y(1 - r2) + F

dx -ay + *(1 - r2) K ''

1 A. Andronov, A. Witt, S. Chaikin, Theory of Oscillations (in Russian), 2nd

Ed., 1959.

â€¢ J. J. Stoker, Nonlinear Vibrations, Interscience Publishers, New York, 1950.
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If x0, y0 are coordinates of a singular point of (9.8), it is convenient to

introduce the variables xx = x â€” x0, = y â€” y0 so that (9.9) becomes

dyi _ F + a(Xx + *0) + (yx + y0)(l - r2) X(xvyi)

dxx -a(yi + y0) + (Xx + *0)(1 - r2) Y(xvyi) { ' ">

where r2 = fa + x0)2 + (vx + y0)2.

The contact curves are obtained by transforming to polar coordinates

(r^ip) with the center at (xvyi) = (0,0) which gives

l_dr x^Y + y^X

rydip x^X â€” y^Y

where ri2 = x^ + y^. It is clear that the contact curves correspond to

drjdip = 0, that is, xxY + yxX = 0; hence

*i[-a(yi + yo) + (*i + *o)(1 ~ r2)]

+ yx[F + a(Xx + x0) + (yx + y0)(l - r2)] = 0

together with rx = 0.

As the origin (xvyx) is a singular point, this imposes conditions X(0,0) =

Y(0,0) = 0 on the determination of F, a, x0, y0 which are

-ay0 + x0(l - p) = 0

F + ax0 + y0(l - p) = 0; p = V + V (9.12)

If one determines x0,y0 in terms of F, a, and p, which gives

x0=-PalF; y0=-P(l-p)/F

and inserts these values into x02 + y^ = p, one has the relation obtained

originally by van der Pol by a different argument, viz.:

P[*2 + (1 - p2)] = F2 (9.13)

This equation determines the coordinates of the singular point and, hence,

the center of the ring domain in which we are interested.

The curve of contacts becomes then

ri2(1 _ rÂ«) _ (jCiJCo + yaMS + 2xxXo + 2yiy0) = 0 (9.14)

upon the elimination of F and a.

Introducing the quantity k from the relation

*i*o + jytVo = ri(*o cos 0 + yo sin </0 = rxk

k = x0 cos i/j + y0 sin ip
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where r* = rx* + p + 2rjt, the curve of contacts becomes

VtV + 3*rl - (1 - p - 2k1)] = 0 (9.15)

Rejecting rx = 0, the radii of the curve are

It is noted that the curve has no infinite branches. The radii r1 mu and

ri Bin Pve tne circular boundaries of the P.B. ring-shaped domain D.

With a few additional relations which we omit, the expression (9.16) can

be brought to the form

''i.i = - i Vp Â± Vl - }p

which gives the maximum and the minimum radii r, and r, respectively,

of the curve of contact.

It is seen that the circles of the topographic system with r s r, and

r ^ rx are curves without contacts and thus satisfy condition (A). Since

no singular points exist in D limited by these circles, the P.B. theorem is

applicable.

This calculation shows that the determination of boundaries of a P.B.

domain D constitutes, in general, a rather complicated problem. In

some cases it is possible to obtain simpler results, as was indicated by

Nemitzky,* owing to the use of the Eulerian derivative for the topographic

family of curves. We recall the significance of this derivative. Given a

function I\x,y) and a system (9.1), we have

dr er. er. er ar â€ž

* =Txx + ^y=eix + ^Y <9'17)

If the topographic system is a family of circles: T\x,y) = ** + y* = c*,

by (9.17) one has

Â£=2(xX + yY) (9.18)

On the other hand, if one multiplies the first d.e. (9.1) by x, the second by

y, adds the two equations, noting that xx + yy = tfdr*ldt) = ^dp/di);

p = x* + x* = x2 + y*, one finds that

f-l <'Â»,

â€¢ V. V. Nemitzky and V. V. Stepanov, Qualitative Theory of Differential Equa-

tions, original text in Russian, Moscow, 1949; English translation, Princeton

i Series, Princeton University Press, Princeton, N.J., 1960.
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which means that r = p + c, c being some constant. On the other hand,

in dynamical problems, p by the above definition is the total energy stored

in the oscillation.

Thus, if one adopts as the topographic system, the energy levels p, one

has the following theorem due to Nemitzky.10

If it is possible to determine two positive constants p2 and Pi (p2 > pj

such that for Pi the expression xX + yY > 0 and for p2, xX + yY < 0

and if, moreover, the circular ring D between the circles of radii p2 and Pi

has no singular points, then there exists a stable limit cycle in D.

If the signs of xX + yY are reversed in this theorem, other conditions

being the same, the limit cycle is unstable.

As an example, one can apply this theorem to the system (2.1), in which

case xX + yY = Vx2 + y2(\ - x2 - y2). Hence if x2 + y2 = 1 + Â£,

one has xX + yY < 0, and for x2 + y2 = 1 â€” e, xX + yY > 0, where

e is as small as we please. By the preceding theorem, it follows that in the

ring between the circles of radii p2 = 1 + E and px = 1 â€” e, there exists

a stable limit cycle; since e is arbitrarily small, clearly, the radius of this

cycle is one, as we found previously. Thus, we obtain the same result as

before but without integrating the system (2.1).

This theorem may be applied to d.e. of a somewhat broader type. Thus,

it holds for the system

* - y+ ttt=2 r1 - (x2+y*x+ 5 w**)i < *

Vx2 + y2 r1

y= -*+ / L 211 - ^ + y*n +o <Â«< i.

V xi + y* r

In this case for a small circle, one has [d(r2)jdt\ > 0; and for large r,

[d(r2)ldt] < 0, so that the limit cycle exists if there are no singular points in

the ring. The condition for a singular point is clearly

Â»(i^ + i) + I.,-o

As the determinant is different from zero, the only solution is x = y = 0,

which proves that the only singular point is at the origin. The procedure

10 G. D. Birkhoff, Dynamical Systems, Am. Math. Soc, 1927; A. Andronov,

A. Witt, S. Chaikin, Theory of Oscillations (in Russian); this book is the second

edition (1959) of the original Russian text.
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just mentioned is not always applicable. This can be seen, for instance,

in connection with the van der Pol equation, which, written as a system, is

x = y; j> = -fix*y + (iy â€” x

With the use of the circular topographic system and in polar coordinates,

* = r cos tp; y = r siri ip; r* = p, the Eulerian derivative is

^ = ^^sin1 $ - p sin10 cos1 (9.20)

In this case, if p < 1, one has (dp/dt) > U, but, if p > 1, it is impossible

to assert that (dp/dt) < 0, which makes the application of the theorem

impossible.

10. Complete topological configurations; singular points at infinity

In the preceding study of singular points and limit cycles there is yet a

lack of completeness regarding the behavior of trajectories outside the

domain containing singular points and

limit cycles. In the definition of a

stable limit cycle, it was mentioned

that such a cycle is approached (for

/ - -*. oo) by nonclosed trajectories C

both from inside and from outside.

As regards the latter we still do not

know their "sources," if we think in

terms of the hydrodynamical analogy.

The answer to this question was

given by Poincari in terms of a singular

point (or points) at infinity for the case

when X(x,y) and Y(x,y) are poly-

nomials. These singularities at in-

finity do not appear directly from the

form of a given d.e. as do the singular points at a finite distance with which

we have been concerned so far. It is convenient, therefore, to transform

the d.e. to new variables in which infinity in the original variables is repre-

sented by a point with finite coordinates in the new variables.

Consider a sphere S of unit radius touching the phase plane P at the

origin O as shown in Fig. 3.6. We take as the center of projection, the

center Ot of the sphere S. To any point N in P correspond two points

Nx and Nt on the sphere S, as projected by the ray NOv We shall con-

sider only the projection on the lower hemisphere. It is clear that any

Figure 3.6
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straight line in P is projected as an arc of a great circle on 5; more specific-

ally, a straight line through O (in P) is projected as a great circle (the meri-

dian) perpendicular to the equator E in S. The points of the equator

correspond to infinitely distant points in P.

This transformation clearly preserves the topology of integral curves in

the neighborhood of finite singular points. Thus, focal, nodal, saddle

points, and centers in P maintain their characteristic properties on S; the

same applies to other elements; thus a closed curve in P remains closed on

S, etc.

The transformation from P to S can be effected by selecting cartesian

coordinates u, v, z having the origin in 0x, the axes u, v being parallel to

the axes * and y in P. To a point (x,y) in P corresponds a point Nx on S

with the coordinates

x y 1

u = ;v =

y2 + 1' Vx* + ;y2 + 1' Vx* + y* + 1

(10.1)

which thus determines the transformation P -> S.

Once this transformation is obtained, it is preferable to return to the

planar representation. For this purpose we carry out the second trans-

formation S â€”*-P* by projecting the points Nx on 5 into another plane.

We shall choose either the v = 1 plane or the u = 1 plane, according to

circumstances. Suppose we select the v = 1 plane, that is, the plane

perpendicular to P touching S at the point u = 0, v â€” 1, z = 0. If one

connects the origin Ox (the center of S) with some point (u,v,z) on S, this

defines a ray (tu,tv,tz) by giving r any value between 0 and oo. This ray

intersects the plane v = 1 for t = 1/c and thus gives the coordinates

u\v, 1, z\v in this plane. Disregarding the constant coordinate v and using

(10.1) we have thus

u = -; z = - (10.2)

y y

which gives the image of the original point N in P after the double projec-

tion P -> S -> (v = 1).

This double projection can be applied to any point of P except those

points lying on the x axis: y = 0. For these points, one can use, as a sec-

ond projection, the projection on the (Â« = 1) plane defined by v = y/x\

z = 1/x.

Suppose we have a system of d.e.

* = X(x,y); y = Y(x,y) (10.3)

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 1

4
:3

6
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



LIMIT CYCLES OF POINCARfi 93

where X and Y are polynomials of degrees p and q, respectively, and use

the transformation

â€” I; y = \ (10.4)

If z = 0, one has x = oo, y = oo but^/x = Â» is finite. Thus, one moves

to infinity along a fixed direction; for a finite v, one has to exclude the

direction xjy â€” 0. With the new variables we have dx = â€” dzjz2 and

dy = (ar<fo â€” vdz)lz2, which results in the d.e.

As and Y are of degrees/> and q, respectively, one has

Xf^j = z-PX*(z,v); Y^j = z-Â»Y*(z,v) (10.6)

Suppose q 2: p, then, introducing a new independent variable t defined by

the system (10.5) becomes

^ tf-P^Xnzv)

dr

(10.7)

^ = -vz*~*X\z,v) + Y*(z,v)

The singular points at infinity by definition are those for z = 0 in (10.7JT.

One has analogously another system adequate for determination of

singular points at infinity except those which lie in the direction of the *

axis:

Tr = -*y**(*>m)

(10.8)

^ = zÂ«-PX**(z,u) - uY**(z,u)

\{q = p, the singular points occur for z = 0, except for z = 0; q = 0.

The d.e. of the harmonic oscillator are x = y; y = â€”x. With new

variables x = \jz; y = vjz, that is, z = l/x; v = y/x, one has the system
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At infinity (z = 0) there are no singular points, since v =fc 0. For the

d.e. having a singular point of the type star at the origin, viz.;

x = x; y = y

the differential system in the new variables is

* - 1 - -y y* = n

x â€” â€” = â€” z; v = j = u

* x x*

which shows that the axis z = 0 is a locus of singular points at infinity.

If one applies these conclusions to the d.e.,

* + 2hx + * = 0

of a linear oscillator with damping, X(x,y) = y; Y(x,y) = â€”2hy â€” x;

and the transformation from P to S results in the system

dz\dt = -zv; dvjdr = -(Â»* + 2hv + 1) (10.10)

dzjdr = 2hz + uz; du/dr = Â«2 + 2hu + 1 (10.11)

These two systems of d.e. in reality constitute only one system using

merely two different projections for different azimuths, as was explained

with regard to (10.2) and (10.4).

The infinity z = 0 is formed by trajectories. It may be either a limit

cycle if there are no singular points at infinity, or it may be formed by

separatrices joining two singular points or one to itself.

Let us investigate the system (10.10); its singular point exists if z = 0

and v2 + 2hv + 1 = 0; that is, when z = 0, vx = -h + Vh2 - 1 or

when z = 0, Â»2 = â€”h â€” Vh2 â€” I. Likewise, (10.11) has two singular

points: z = 0, mx = -h + Vh2 - 1, and z = 0, u2 = -h - Vh2 - 1.

There is still a fifth singular point at the origin which corresponds to the

state of rest.

One determines the stability of these singular points, as usual, by form-

ing the variational equations. Thus, for the singular point z = 0, v = vx,

these equations are

^ = -VjSz + 0-8v; ^ = 0-8* + + h)]8v

dr ar

Hence, the characteristic equation is

S2 + (3^ + 2A)5 + 2(vx + h)Vx = 0

If one replaces vx by its value, one has

S2 + (3VA2 - 1 - h)S + 2(h2 - hVh2 - 1 - 1) = 0 (10.12)
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In a similar manner for t>2, one gets

S* + (Wh^l + h)S + 2(AÂ» + hVh^H. - 1) = 0 (10.13)

If h < 1, there are no singular points on the equator which may be

regarded as a kind of unstable limit cycle from which spiral trajectories

depart, winding themselves onto a stable focus at the origin as shown in

Fig. 3.7. One can say in this case that the infinity is unstable but the state of

rest is stable.

If h > 1, the corresponding topological configuration is different

(Fig. 3.8). One ascertains easily that in this case (characteristic equations

(10.12) and (10.13)) that the point z = 0, v = is an unstable node Nu

Figure 3.7 Figure 3.8

whereas the point z = 0, v = vx is a saddle point Sv For the other pro-

jection one obtains a similar conclusion: one has an unstable node N2 and

a saddle point S2. There is a fifth singular point (at the origin) which is a

stable node. The topological configuration is shown in Fig. 3.8; this con-

figuration shows that the equator E consists of separatrices going from the

unstable nodes and entering saddle points through their stable asymptotes.

Trajectories entering the stable node at the origin come from two kinds

of sources, namely: some of them come directly from the unstable nodes

Nx and N2; there are also separatrices issuing from the unstable asymp-

totes of saddle points Sx and S2 and entering the stable node N.

Andronov5- 7 applied this procedure to the van der Pol oscillator; in this

case there is a stable limit cycle with radius 2. The conclusion is as

* See footnote *, page 82.

7 See footnote 7, page 87.
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follows: the infinity has no singular points; trajectories unwind themselves

from the equator (considered as an unstable limit cycle) and wind them-

selves onto the finite limit cycle (r0 = 2). If, however, the equator has

singular points, a similar argument shows that there are two unstable

nodes and two saddle points, as in the case of Fig. 3.9. The only diffe-

rence here is that the trajectories winding onto the finite cycle come from

the unstable nodes on the equator,(Fig. 3.9); there are also two separatrices

issuing from the unstable asymptotes of saddle points and winding them-

selves also on the van der Pol's stable cycle.

We shall not go beyond these few examples but merely mention that the

two aspects of the problem, the theoretical and the applied, do not have

the same validity. In fact any d.e. representing a physical phenomenon

is valid only in a certain domain. Thus, the representation of operation

of an electron-tube oscillator by the van der Pol equation is based on a

number of simplifying assumptions, such as, for example, that the grid

current and anode reaction are negligible. If one wishes to represent

this operation for a larger domain (larger x and x), these effects cease to be

negligible. In other words, if one goes further away from the origin, the

d.e. changes and, for a sufficiently great distance from the origin, the form

of the d.e. changes to such an extent that it becomes physically meaning-

less to discuss the behavior of trajectories at infinity on the basis of the

original d.e.

11. Nonanalytic cycles

So far we have encountered only limit cycles which were analytic curves.

Inasmuch as the concept of limit cycles found a widespread application in

connection with the description of stationary oscillations, it was soon per-

ceived that on this basis it was possible to account for a number of oscil-

latory phenomena whose stationary state is not describabLe in the phase

plane by an analytic trajectory. A fuller study of these phenomena is

postponed to Part IV, but it is useful to mention here in passing that the

definition of limit cycles given in Section 1 does not require the analyticity

of trajectories in the phase-plane representation. One of the simplest

examples of a nonanalytic limit cycle occurs in the performance of a clock.f

A clock is a mechanism consisting essentially of two parts, A and B.

Part A is an ordinary torsional pendulum with small damping, and part B,

the so-called escapement mechanism, applies impulses to A so as to replen-

ish the energy dissipated by damping.

Consider first the system A; its trajectories are logarithmic spirals con-

verging toward a stable focal point at the origin as shown in Fig. 3.10.

t For a more detailed theory of clocks see Section 5, Chapter 28.
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A trajectory starting from a point M after one period of the system A

reaches the point TV on the y axis; at this moment B delivers an impulse

increasing the momentum of A in a quasi-discontinuous manner (we

assume it to be discontinuous). This amounts to a discontinuous change of

velocity measured by the segment NM' (or NM"). It is clear that, if this

segment were exactly NM, the trajectory would be closed and the oscilla-

tion would be periodic. It is noted that such trajectory is not analytic at

the points of junction of the spiral with the rectilinear stretch NM.

It is easy to establish the periodic condition if one sets: OM = yx, then

ON = y2= yie~", where a is decrement of the oscillation during one

period of A. Immediately after the impulse one has OM' = y3 = yx + a,

Figure 3.9 Figure 3.10

where a, the impulsive change of velocity, is constant. If the oscillation

is stationary, y3 = yx = jy0,jyo being the stationary value of y, and one finds

yo = a/(1 - *-)

One has to investigate also the stability of the stationary y0. This can

be done intuitively as follows: if yx is small, the following amplitude ys is

obviously larger and the amplitudes increase initially; they cannot increase

above the value y0 for which the oscillation becomes stationary. In a

similar manner one shows that, if yx is large, the amplitudes decrease

initially but they cannot decrease below y0 for the same reason. It is also

clear that y0 depends only on the parameters of the systems A and B and

not on the initial conditions.

Thus, the oscillation exhibits in all respects the features of a limit cycle
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with the only peculiarity that in this case the cycle is made of the two pieces

â€”the spiral and the stretch NM. Very often such cycles are called

"piecewise analytic cycles."

Although such cycles are outside the scope of the analytic theory out-

lined previously, they are of considerable interest in applications if one

recalls that the radius vector of a spiral is a measure (in some scale) of the

total energy stored in the system A. Hence the decrease of this radius

along the spiral characterizes the gradual dissipation of energy and the

discontinuous stretch NM which "closes" the curve is the impulsive input

of energy into the system A.

The fact that the curve becomes closed in this manner, when the station-

ary state is reached, means a discontinuous replenishing of energy lost in

the process of its continuous dissipation. A system of this kind is again

nonconservative in its instantaneous behavior, although it is conservative

on the average; this means that at the instants separated in time by one

period of A the energy content of A is the same. This feature also exists

in the case of the analytic cycles, although in these cycles a continuous

dissipation of energy is compensated for by a continuous replenishment of

it.

On this basis of energy, the stability of oscillation is also obvious. In

fact, if one starts with small amplitudes, B delivers impulsively to A more

energy than A can dissipate, as the result of which the amplitudes grow

initially. Conversely, if one starts with large amplitudes, the dissipation

outweighs the impulsive input and the amplitudes decrease. In both cases

the stationary state is reached when the continuous dissipation per cycle

is just equal to the impulsive input of energy.

It is useful to remark once more that, in spite of the fulfillment of all

conditions satisfying the definition of limit cycles, the analytical criteria

outlined in the preceding sections do not hold in the case of nonanalytic

cycles. Thus a closed stable trajectory does not necessarily need to have

in its interior a singular point with index 4-1, and so on. Although the

physical nature of these stationary phenomena remains the same as for

analytic cycles, the underlying mathematical theory ceases to be applicable

here.

12. Topological configurations

In Chapter 1 we investigated the various types of equilibria in terms of

the mathematical concept of singular points, and in this chapter we have

identified stationary periodic motions of nonconservative systems with the

concept of limit cycles. It has been seen that these two concepts are corre-

lated so as to represent certain topological configurations connecting singular
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points with limit cycles. This is illustrated in Figs. 3.2 and 3.3. in which

these connections appear in the form of spiral trajectories unwinding them-

selves from singular points (limit cycles) and winding onto limit cycles

(singular points). As the approach (departure) of trajectories to singular

points (limit cycles) is asymptotic (either for t = â€” oo or for t = + oo),

it is clear that the motions on these trajectories occur in the whole interval

of t between t = â€” oo and t = + oo.

Following this argument it is convenient to consider any such trajectory

as a line of flow emerging from an unstable element (either an unstable

singular point or an unstable limit cycle) for t = â€” oo and ending at a

stable element (either a stable singular point or a stable cycle) for t = + oo.

Such hydrodynamic analogy is useful in analyzing more complicated situa-

tions in which the unstable elements appear as sources and the stable ones

as sinks.

It is possible to attack the problem directly in terms of the fundamental

properties of trajectories.10 As such a study is beyond the scope of this

text, we indicate merely some principal definitions and conclusions.

Let us consider the system of d.e.

x = P(x,y); y = Q(x,y) (12.1)

where P(x,y) and Q(x,y) are defined and continuous in the whole plane

and such that uniqueness of solutions and their continuous dependence

on initial data exist for every finite interval of time. The integral curves

of (12.1) are:

x = <p(t- h, x0, y0) = *(r); y - <ftt - t0, x0, y0) = y(t) (12.2)

where x0, y0 are the initial conditions for t = t 0. These equations repre-

sent a curve in the (x,y) plane in a parametric form; such a curve is called

trajectory (or characteristic) and we shall indicate it by L.

The part of the trajectory corresponding to t > t0 (r < t0) is called a

positive (negative) half-trajectory and will be indicated by L+(L~). A point

R = [x(t),y(t)] in the (x,y) plane is called according to Birkhoff an <o-

limit point (an a-limit point) for a given trajectory L if there exists one

sequence at least: tx < tt < t3 < . . . < tâ€ž (rx > r2 > . . . > tâ€ž) converg-

ing to the w point (or the a point) such that

lim x(tâ€ž) = Â£*; lim y(tn) = r,*

nâ€”>ao nâ€”>oo

The set of the w-limit points (the a-limit points) for a given trajectory L

will be indicated by Â£2(L+) and A(L~). When L and Q(L) have points in

10 See footnote 10, page 90.
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common, the trajectory L is called stable in the nomenclature of Poisson.

It can be proved that every Poisson stable trajectory L is contained in Q(L).

Analogous definitions and properties hold also for ^4(L)-limit points.

The following properties hold:

(a) Every Poisson stable trajectory is closed (a cycle or a singular point).

(b) If Q(L) is a bounded set without singular points, then it is a cycle.

(c) A bounded Q(L) set with singular points consists either of a unique

singular point or of some singular points plus open trajectories connecting

them. In this last case (at least under the assumptions of regularities

made at the beginning), such singular points cannot be either foci or nodes

and therefore they are saddle points with their separatrices. Summing

up, all possible half-trajectories are of the following five types: (1) posi-

tions of equilibria; (2) a closed trajectory; (3) a half-trajectory tending to a

position of equilibrium; (4) a half-trajectory tending to a closed trajectory;

(5) a half-trajectory tending to the limiting structure mentioned in (c).

Case (1) constitutes the object of Chapter 1; (2) was treated in Chapter 2;

(3) and (4) were discussed in this chapter; and (5) was encountered in

Chapter 2 in regard to the asymptotic trajectories issuing from a saddle

point along one asymptote and returning to it along another asymptote.

A more general case of a trajectory of this kind was indicated in Fig. 2.3.

We note that the center does not enter into this classification and does not

result in any definite topological configuration since trajectories around a

center appear in continuous families depending only on the initial con-

ditions.

On the other hand, inasmuch as the simple harmonic motion was laid

down as a basis of the earlier theory of oscillation, it is obvious that the

latter considered only oscillations by themselves without involving any

concept of topological configurations. In the new theory the positions of

equilibria and of stationary motions are treated together on the basis of

the entire trajectory (from t = â€” oo to f = + oo).

The foregoing topological concepts can be extended to many other cases;

we shall return to these questions later.
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Chapter 4

GEOMETRICAL ANALYSIS OF PERIODIC

SOLUTIONS

1. Introductory remarks

This chapter deals with the important development of Lienard1 con-

cerning the geometrical criteria of existence of periodic solutions. His

paper appeared in 1928, just one year before the first contact with the theory

of Poincare had been established by Andronov. As the result of this,

later developments (mostly in the USSR) followed the analytical methods

of Poincare in connection with the establishment of conditions of perio-

dicity.

The work of Lienard seemed thus to have lost some of its importance,

but in some respects this turned out not to be the case. In the first place

Lienard's method permits approaching this question in an extremely

simple and intuitive manner as was shown by Lefschetz.2 Also a physical

interpretation of Lienard's criterion resulted in the relationship between

the periodicity of a solution and a special condition of energy exchanges.

In fact, the fundamental point of Lienard's theory reduces the question of

periodicity to the vanishing of a certain curvilinear integral. This integral

turns out to be the one which specifies the energy exchanges between the

oscillating system and the outside sources and, on this basis, Lienard's

criterion acquired the very simple interpretation that a stationary state

is reached when the energies absorbed and dissipated during one

period cancel out. The question of stability acquired also a very

elegant interpretation on this basis; thus, if more energy is absorbed than

a system can dissipate, the amplitudes grow; if the inverse takes place, they

decrease.

1 A. Lienard, Rev. Gen. de I'Electricite" 2S, 1928.

1 S. Lefschetz, Proc. Fifth Symposium of Appl. Math. 5, 1954.
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Still another remarkable property of Lienard's method is to be men-

tioned. His work was inspired by the van der Pol equation

x + - l)x + x = 0 (1.1)

whose form Lienard tried to generalize. In this d.e. appears the para-

meter fi whose full importance was ascertained later when the analytical

methods came into use. A serious- limitation of the latter is that they

require the smallness of /x since they use solutions in the form of a power

series in /x, which converges only if n is sufficiently small. As Lienard

was concerned with a purely geometrical argument, the parameter was not

considered and the d.e. appears, therefore, in the form

x + f(x)x + * = 0 (1.2)

which is generally known as Lienard's equation. Only at the end of his

paper, when the asymptotic cases are considered [(1) ti -> 0 and (2)

n -> oo], did Lienard introduce the parameter by writing pf(x) instead of

/(*). In the first case, Lienard found merely what could be found by the

classical theoryâ€”namely, that the stationary amplitude is x0 = 2â€”but in

the second asymptotic case (ji â€”> oo) Lienard made a fundamental dis-

covery which could be appreciated only much later. In fact, a long and

persistent search by mathematicians to find an analytic solution (that is, in

the form of a power series) of the van der Pol equation when (i is large has

not been successful for reasons that will be explained in Part IV.

Since Lienard's argument is purely geometrical, he was able to go to the

limit fi â€”> oo with this conclusion^: The oscillation degenerates in this

case into four branches; two of these branches are certain analytic curves

traversed with a finite velocity and two others are rectilinear stretches

traversed by the representative point with a very high (practically infinite)

velocity. This fundamental discovery is the basis on which the modern

discontinuous theory of relaxation oscillations is built, and we shall return

to this subject in Part IV in connection with the so-called piecewise analytic

oscillations.

The argument of Lienard has been further generalized and improved in

connection with the d.e. of the form

*+/(*)* + Â£(*) = 0 (1.3)

x + f(x,x)x + g(x) = 0 (1.4)

A great many mathematicians contributed further to this question.

t It is to be noted that Lienard reached this conclusion in a heuristic manner.

The formal proof appeared much later, as will be explained in Part IV.
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GEOMETRICAL ANALYSIS OF PERIODIC SOLUTIONS 103

Among them one should mention: N. Levinson and O. K. Smith,*

Dragilev,4 Sansone,5 Conti,4 de Castro,7 Lefschetz2 (book p. 245) and a

number of others.

We note in passing that, as far as electrical applications are concerned

(and these are more important than the others), equation (1.2) is more use-

ful than (1.3) or (1.4). This is because the last term is always due to the

capacity element of the circuit but, as capacity is always a linear element

(at least with the usual circuit elements), the last term always appears as x

(with a proper normalization) and not as g(x) in general.

For systems other than electrical, the situation may be different.

2. Lienard's theory; curves T and A; criterion of periodicity

We reproduce here some theorems by which Lienard's results were

brought into a more general form. The essential part of the Lie^iard

argument leading to the establishment of his criterion of re-entrancy of the

path remains however the same in all cases.

We mention two theorems, one by Levinson and Smith8 and the other

by Dragilev,* which were established independently; as their proofs can

easily be found, we omit them here.

Theorem of Levinson and Smith: If g(x) is such that xg(x) > 0 for x > 0

and J" g(x)dx = oo; if /(0,0) < 0 and there exists a number *0 > 0 such

that /(*,*) > 0 for |*| Â£ x0; moreover /*'/(*,*>)<& Â£ 10M*0, where

v(x) is an arbitrary positive decreasing function of x, then the d.e. (1.4) has

at least one periodic solution.

Theorem of Dragilev: The d.e. (1.2) has at least one limit cycle if:

(1) g(x) satisfies a Lipschitz condition and xg(x) > 0 for x # 0 and

g(co) = oo.

(2) F(x) = f*f(x)dx is single valued in (- oo, + oo), satisfies a Lipschitz

condition for any finite interval and, moreover, for small |x|, F(x) < 0 for

* > 0 and F(x) > 0 for * < 0.

(3) There exist numbers M, k, and k', (k' < k) such that F(x) > k for

* > M, zndF\x) Â£ k' for* < -M.

We shall follow here Bogoliubov and Mitropolsky's exposition8 which

* See footnote *, page 101.

1 N. Levinson and O. K. Smith, Duke Math. J. 9, 1942.

4 A. D. Dragilev, Prikl. Math- i Mehanika (Russian) 16, 1949.

* G. Sansone, Aim. Math, pura e appl. (4) 28, 1949.

â€¢ R. Conti, Bull. Un. Mat. Italiana (3) 7, 1952.

7 A. de Castro, Bull. Un. Mat. Italiana (3) 8, 1953.

â€¢ N. Bogoliubov and J. Mitropolsky, Asymptotic Methods in the Theory of

Nonlinear Oscillations (in Russian), Moscow, 1958.
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104 QUALITATIVE METHODS

uses Lefschetz's argument regarding the significance of the variable A

(see below); the assumed conditions are:

(1) /(*) is even, g(x) is odd, xg(x) > 0 for all x # 0, and/(0) < 0.

(2) f(x) and g(x) are continuous and g(x) is Lipschitzian.

(3) F(x) -> Â± co as * Â±oo, where F(x) - j* f(x)dx.

(4) F(x) has one single positive zero x = a; for x > a, the function F(x)

increases monotonically with x.

The conclusion is that (1.3) possesses a unique periodic solution, and

this solution is stable.

We introduce new variables

y = x + F(x); X(x,y) = ^ + G(x) (2.1)

where G(x) = J* g(x)dx. The term j2/2 may be regarded (with a proper

normalization) as kinetic energy, and G(x) as potential energy, so that

X(x,y) is the total energy stored in the oscillation, as was pointed out by

Lefschetz.'

We calculate the rate of change of the energy dXjdt with a view to integrat-

ing over one cycle. We have

- US + /(Â«)* + g(x)) + jt (i + F(x)) (2.2)

As the coefficient of x vanishes by (1.3), one has

dX = F(x)dy (2.3)

The energy exchange of the system is jF(x)dy and, if the system is in a

stationary state of oscillation we have the following criterion of Lienard

F(x)dy = 0 (2.4)

This curvilinear integral is to be taken along a trajectory. The argument

of Lienard, as well as of other authors, is that (2.4) is a criterion for the

existence of a limit cycle.

We consider the equivalent system in the form:

x = y - F(x); y= -g(x) (2.5)

'S. Lefschetz, Differential Equations (Geometric Theory), Interscience Pub-

lishers, New York, 1957.
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GEOMETRICAL ANALYSIS OF PERIODIC SOLUTIONS 105

Since F(x) is the integral of a continuous function its derivative is con-

tinuous, and hence F(x) satisfies a Lipschitz condition. g(x) satisfies a

Lipschitz condition by hypothesis, and thus the fundamental existence

and uniqueness theorem applies to the solutions of (2.5).

It is noted that this equivalent system here is different from the usually

employed system when one sets x = y (the ordinary phase plane). In the

phase plane of Lienard the velocity x is counted not along the ordinate of

the usual phase plane (x,x) down to the abscissa axis but along the ordinate

to the "curvilinear abscissa axis" F(x) (Fig. 4.1). This results in a different

form of trajectories in the Lienard plane as compared to the same trajec-

tories considered in the ordinary phase plane. Since jF(*) and g(x) are

odd, it follows that if x(t), y(t) is a solution of (2.5), so is â€” x(t), -y(t).

Thus to every portion of a trajectory corresponds a portion of the same or

""â– ^â€”w

A >

A"

â€¢ a -

A8

0

Yb'

>SvÂ»-â€”-So

la *

'n

Figure 4.1

Figure 4.2

another trajectory symmetric to it with respect to the origin. Since the

origin is the only singular point of (2.5), any closed trajectory must con-

tain the origin in its interior.

The d.e. of integral curves is

dy

dx

ft*)

F(x)

(2.6)

It is seen that for x = 0, y # 0 all integral curves have a horizontal tangent

since ^(0) = 0.

Referring to Fig. 4.2, the curve A: y - F(x) = 0 intersects the integral

curve r at the points B and B' at which the tangent to r is vertical since

dyjdx =oo. As xg(x) > 0, y decreases along r to the right of the y axis

and increases to the left of Oy. As to x, it increases if r is above A and

decreases in the opposite case. One can assume therefore that the curve

has the appearance shown in Fig. 4.2; its actual construction is indicated
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in the following section. Let us denote the abscissa of the point B by a

and the curve r by ra; we use this notation in order to attach a definite

amplitude a to P.

If ra is closed, it is symmetrical with respect to the origin. If it were

not symmetrical its image in the origin would be another closed trajectory.

This second trajectory would then intersect jTe, which is impossible.

Hence, if ra is closed, we have \OA\ = \OC\. Conversely, if \OA\ =

\OC | the image of the arc AC in the origin forms with AC a closed trajec-

tory and therefore ra is closed. Thus \OA\ â€” \OC\ is the necessary and

sufficient condition that jT0 be closed. This condition is also expressed by

X(0,A) = A(0,C), which we abbreviate to X(A) = A(C).

In order to prove that this is possible we consider curvilinear integrals

along ra setting

<p(a) = A(C) - X(A) = f d\ = [ F(x)dy (2.7)

Jabl Jabc

It is sufficient to study the curvilinear integral along the arc of ra to the

right of Oy since everything is symmetrical to the left of it.

If the amplitude a < a (a is the abscissa of the point D at which the curve

A cuts the x axis), dy < 0 (since A < 0) but, as F(x) < 0, the curvilinear

integral \ABC F(x)dy > 0, and therefore A(C) > X(A). Hence energy is

absorbed and there is no closed trajectory.

We consider now the case when a > a (as indicated in Fig. 4.2). Let

MN be a perpendicular to the abscissa axis through D (of abscissa x = a)

and consider two portions of ra: the first one consisting of the two pieces

between the y axis and the line MN and the other one the arc MBN. To

simplify, we call the first arcs (I) (consisting of AM and NC) \ the second

(arc MBN) will be called II. We have thus

9l(a) = f dX + f dX; <pu(a) = f dX (2.8)

Jam JNc JmbN

Since dX = F(x)dy and dyjdx = â€” g(x)/[y â€” F(x)], we have

dX = F(x)fdx=-â„¢^dx (2.9)

'dx y - F(x) v'

Since F(x) < 0 for x < a, dX is positive for the piece of trajectory (I)

described in the direction A â€”> M; the same holds for the other piece in

(I) when it is described in the direction iV â€”> C. This shows that

9>i(Â«) > 0.

As to 9n(a), one has, on the other hand, dX < 0; therefore <pu(a) < 0.

If a increases, the arc AM goes up and NC goes down; for x fixed, this

means that. |y\ increases, and therefore <pi(a) decreases.

We analyze now the behavior of <pn(a) corresponding to the line integral
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GEOMETRICAL ANALYSIS OF PERIODIC SOLUTIONS 107

along the piece of trajectory MBN (Fig. 4.2). If the amplitude increases

from a! to a2, this piece becomes M'B'N', Fig. 4.3 . We are going to show

that <pâ€ž(a2) < 9II(oi).

If one draws parallels to the x axis through the points M and N, one

obtains two points P and P' which section the arc M'B'N' into three arcs

M'P, PP" and P'N'; we consider therefore, Jm-b-n- â€” J\rp + Jpp- + Jp-N>

where JM.P = jMP F(x)dy, etc. As F(x) > 0 and dy < 0, in this region

the integrals are negative and one can write

Figure 4.3 Figure 4.4

The limits MP and NP" being the same (for y), it is clear that the integral

along MBN is greater than that along PP', inasmuch as for the latter the

abscissas are greater than for the former and the integrals are negative;

therefore

JPp. < JMBN (2.11)

It follows that

/m'B'N' < ^mbn (2-12)

and finally that <Pu(a2) < <Pn(ai) for aÂ» > ail therefore

<KÂ«) = <Pi(Â«) + 9Â»n(Â«) (2-13)

is a monotonically decreasing function of a. It is noted that, if a < a,

?(<*) - 9>i(a) > 0-

We now show that â€” <Pu(<x)â€”> oo if aâ€”> oo. We fix some value of *

say a < xx < a and draw a parallel to the y axis through * = #x (the line

QQ'), Fig. 4.4.
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We have JMBN < Jqbq-- For the arc Q&Q' one nas x > xx so that

F(x) > F(Xx), hence <pn(a) = JMBN < F(Xx) jQBQ. dy = -F(Xx)\QQ'\ and,

therefore (calling AT the point (*j,0)), we have

-<pn(a) = - f dX > KL QQ1

JMBN

It is clear that the segments KL and QQ' can be as great as we please if a

is large enough, which shows that â€” 9n(a) â€”> oo for a â€”> oo. Since for a

sufficiently small a, <p(a) > 0 and <p(a) â€”> â€” o0 as a â€”> o0, there exists one

and only one value a = a0 for which <p(a0) = 0, which shows that there is

one and only one closed curve for which X(A) = A(C). The question of

stability is studied also geometrically. Thus, if A0 and C0 are points of

intersection of rao with the y axis, the point C is nearer to than A, if

a < a0; hence A' is nearer to r than A. A similar argument is used for

a > a0 which gives thus a purely geometrical criterion of stability of the

limit cycle.

3. Lienard's phase plane; graphical construction of curves V

As was mentioned in the preceding section, the phase plane of Lienard

differs from the usual phase plane in that the ordinates in this plane are

Figure 4.5
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given by y â€” x + F(x) instead of y = x. In view of this the same integ-

ral curve has different forms in these two planes. Figures 4.5 and 4.6

give a comparison between the integral curves of the van der Pol equation

plotted in the phase plane x,x (Fig. 4.5) and the same curves traced in

Lienard's phase plane (Fig. 4.6). The curves are shown for values of

fx = 0.1, 1, and 10. It is observed that for larger n Lienard's curves

approach the form of a rectangle; we shall see in the following section that

the horizontal and the vertical sides of this rectangle are traversed with

velocities of different order. The curves of Fig. 4.5 were obtained by

van der Pol by means of the graphical method of isoclines; those of Fig.

4.6 are taken from a paper by Le Corbeiller.10

Figure 4.6

Lienard indicated a very elegant method for constructing integral

curves in his phase plane. For the sake of simplicity we follow here the

notations of Lienard. The d.e. (1.2) can be written as an equivalent

system in the following form:

We introduce here the variable of Lienard as was already mentioned in the

preceding section, namely:

y = v + F(x), where F(x) = j f(x)dx

10 Ph. Le Corbeiller, Systimes auto-entrenus, Herman, 1931, Paris.
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The d.e. becomes then

This is, of course, (2.6) with^(#) = x; (3.2) can be written also as

xdx + (y - F(x))dy = 0 (3.3)

This d.e. is that of a normal

(x - X)dx + (y - Y)dy = 0 (3.4)

which passes through the point X = 0; Y = F(x).

Assume, for instance, that we wish to draw Li^nard's curves for the van

der Pol equation for which f(x) = x2 â€” 1 and F(x) = (x3/3) - x. This

curve ^(#) is plotted (Fig. 4.7) and the

construction consists in tracing the

direction field of lineal elements. We

take, for instance, x = xx and for this

point we have the point Mx on the

curve F(x). Let A7! be the projection

of Mx on the y axis. With Nx as

center one draws small arcs intersect-

ing the line MxPx. Then one takes

another point x = x2 resulting in Na

and with N2 as center one draws again

small arcs intersecting the line MjPj.

Having constructed a sufficient number

of ordinates with the corresponding arcs, one draws the J" curves (Section 2).

One of the curves of this family is necessarily closed if the Lienard con-

ditions are fulfilled. It is to be noted that the form of F(x) before its

intersection with the x axis is immaterial, as Lienard points out; in other

words it may have maxima and minima as long as x is in the interval OM

(Fig. 4.7); what is essential is that after crossing the x axis (at the point

M) the curve F(x) should increase monotonically with x. As we saw in

the preceding section, this condition amounts to the change of sign of

jF(x)dy along a curve r with the corresponding value j F(x)dy = 0

separating the region where jF(x)dy > 0 from that where j F(x)dy < 0

and this, in turn, amounts to the existence of a closed integral curve, that

is, a periodic solution when j F(x)dy = 0.

Figure 4.7
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4. Asymptotic cases of Lienard's equation

Equation (1.2) does not specify the order of magnitude of the termf(x)x.

We write it now with the parameter p.:

x + fxf(x)x + x = 0 (4.1)

in order to pass to the asymptotic cases n â€”> 0 and /x â€”>â–  oo.

If one replaces/(*) by /*/(*) and F(x) by pF(x) in the preceding, Lienard's

equation becomes

T- + ^ = 0 (4-2)

ax y â€” fiF[x)'

In order to have the function F(x) as before, one can replace y by fiz.

The transformed equation takes the form

dx ix*[z - F(x)] K }

In this form the effect of the parameter can be better ascertained. Thus,

if n > 1, for the same x, the integral curves have smaller slopes than

previously (jx = 1). If p â€”> oo, dz/dxâ€”*-0. Thus, for increasing fi, the

integral curves exhibit flat portions parallel to the x axis.

In the asymptotic case (iâ€”>-ao, (4.3) reduces to

[* - F(x)]dz = 0 (4.4)

This suggests that the integral curve consists of two branches: on one

of them there exists the relation z = F(x) and on the other dz = 0, which

shows that this branch is merely a straight line parallel to the x axis.

(Compare to Fig. 4.6c in Lienard's plane.)

In order to investigate the velocity of the representative point R, it is

sufficient to apply the same transformation y% = fiz, which gives:

dx\dt = i4z- F(x))\ dz\dt = -*//* (4.5)

If R follows the branch z â€” F(x), in the asymptotic case when fi is large,

the velocity dxjdt is finite. For the second branch z / F(x), so that

dxjdt is large.

Thus the horizontal branches (jar = const) are traversed with a very

high (practically infinite) velocity, whereas the characteristic F(x) is

traversed with a finite velocity. This gives rise to a situation depicted in

Fig. 4.8 where F(x) = â€”x + (*8/3) corresponding to /(*) = ** â€” 1, as

in the van der Pol equation. The point R follows F(x) up to the point B

where the second branch dz = 0 begins. On this branch BC the point R

acquires a very high velocity and is traversed practically in no time. At C
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begins again the first branch traversed with a finite velocity up to the point

D, where another jump Df3[ begins, thus closing the curve BCD A consist-

ing of two pieces of two distinct branches.

This result of Lienard's equation is fundamental for the modern theory

of relaxation oscillations, as was mentioned in section 1; we shall return to

this question in more detail in Part IV.

The second asymptotic case, when fi is small is less interesting and falls

within the scope of the general theory of Poincare. The argument is as

follows: Lienard's equation can be written as xdx + ydy â€” fiF(x)dy = 0

and, if /x is small, it reduces simply to xdx + ydy = 0 which gives the

family of concentric (with origin) circles, as may be expected, of course,

because in this case Lienard's equation reduces (for p. = 0) to that of the

harmonic oscillator.

B

F(Â»)

/

/

/A

D

Figure 4.8

In polar coordinates the criterion jAC F(x)dy = 0 is

F(r cos <p)d(r sin <p) = 0

Jo

and, since in the differentiation f = drjdt ~ 0, r = const, one can write

F(r cos <p) cos <pd<p = 0

Jo

The integration by parts brings this expression to the form

J f(r cos 9) sin2 <pd<p = 0 (4.6)

since (dldx)F(x) = /(*).
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If one replaces/(*) by the van der Pol expression 1 â€” x2 = 1 â€” r2 cos2 <p,

one easily obtains the condition r0 = 2. We shall find this value later by a

different method.

5. Principle of symmetry

In Section 2 it was shown that, in view of the symmetry with respect to

the origin, the proof of existence of a periodic solution reduces to the

equality of the intercepts of the integral curve on the y axis and this, in

turn, reduces to the Lienard criterion (2.4).

These considerations of symmetry were generalized further by Ne-

mitzky11 and we shall give a brief account of this work. Consider the

differential system

and suppose that the origin x = y = 0 is a singular point. If X(x,y) is

odd with respect to x, that is, AT( â€” x,y) = â€” X(x,y), and if Y(x,y) is even,

that is Y( â€” x,y) = Y(x,y), the image of an integral curve in the y axis is

also an integral curve. (Similar conclusions exist when X(x,y) is even and

Y(x,y) is odd in y.) Hence, in order to prove that an integral curve is

closed, it is sufficient to show that, starting from a point on the y axis, the

curve returns again to this axis.

Consider the d.e.

where X2 and Y2 are analytic functions whose series developments begin

with terms of, at least, second degree in * and y. From the general theory

it is known that the singular point is either a focus or a center.

From the principle of symmetry one can assert that if X2(x,y) contains

only terms of odd degree and Y2(x,y) only terms of even degree in x, the

singular point is a center. Alternatively, if X2(x,y) contains only terms of

even degree and Y2(x,y) only terms of odd degree in y, then the singular

point is a center. Thus, the principle of symmetry in this case gives a very

simple criterion for the existence of a center as compared to the classical

criterion (Section 8, Chapter 1).

The application of the principle of symmetry is more complicated if the

singular point is of a higher order. As an example we give the following

case investigated by Philippov.11

11 V. V. Nemitzky and V. V. Stepanov, Qualitative Theory of Differential

Equations; original text in Russian, Moscow, 1949; English translation, Princeton

Mathematics Series, Princeton University Press, Princeton, N.J., 1960.

x = X(x,y); y = Y(x,y)

(5.1)

dy = -x + X2(x,y)

dx y + Y2 (x,y)

(5.2)
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Consider the d.e.

* + /(*)* + g(x) = 0

(5.3)

We suppose that f(x) and g(x) are odd functions of x with f(x) > 0,

g(x) > 0 for x > 0. Then F(x) = j* f(x)dx and G(x) = J0* g(x)dx are

even and monotonically increasing for x > 0 and xG(x) â€”> oo as x â€”> oo.

We now prove: if there exist constants Xj^ > 0 and e > 0 such that

g(x) - (i + s)f(xW(x), then for 0 < x < xx there exists a periodic solu-

tion of (5.3) for sufficiently small values of x and x.

The equivalent system is

x= y; y = -f(x)y - g(x)

(5.4)

Multiplying the second d.e. by y, one

has

g(x)y +yy= -f(x)y* (5.5)

If one sets X(x,y) = y2)2 + G(x), this

d.e. becomes

^ = -A*)y> (5.6)

It is noted that h(x,y) may be regarded

as total energy if (5.3) is considered as

an oscillator.

By an argument similar to that used

in connection with Volterra's problem

(Chapter 2), it follows that the curves

Hx>y) = C are simple closed curves

Figure 4.9 surrounding the origin. The family

X(x,y) = C may play the role of the

topographic system (of Poincare) with respect to which one can investigate

the behavior of integral curves L. We start from some point A(0,yo),

y02 < xx, on the y axis (Fig. 4.9) to which is attached the value A0(0,>'0)

of the topographic (or "energy level") curve w. In the first quadrant

dXjdt = â€”f(x)y2 < 0, so that on a trajectory A decreases, for x > 0,

and the representative point R passes from one curve A = C of the family

to others nearer to the origin.

The problem is to show that R, following the trajectory L issuing from A

on the y axis, returns to the same point on the axis later. Then, in view

of the principle of symmetry one can assert that L is closed.

As R remains inside the region limited by Ao(0,3/o) = $y02, it must inter-
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sect the x axis at some point B(g,0); at this point A(Â£,0) = G(Â£) < Â±y02 <

In the fourth quadrant (x > 0; y < 0) dXjdt continues to be negative,

so that R will remain inside the region limited by the topographic curve

To complete the proof it is necessary to show that in the region limited

by Xx, the trajectory L cannot enter the singular point (the origin).

For y < 0 and 0 < * < xx, one has

Moreover

% = -/(*) - g(x)ly > -lA*)ly](y + \m + ^(*))

dx [F(x)\ F*

-yF~* {yp + \Fi+ ^ + y2)

since y < 0.

For x â€”'â–  0, y/F decreases; hence there exists

55(f)--'*-

We choose x0 such that for 0 < x < x0 one has

On the other hand, in view of the condition: g(x) > + s)f(x)F(x) one

has the following inequalities.

dv

Tx

a \ g(x) Â« s (i + Â£)f(x)F(x) ,. .

= -Ax) -SM> ~f(x) + "\ * v ) = -f(x)

y(x)

If one assumes that L goes through the origin, then

1 -

Lti

P-\

y(xo) = j*

dy

dx

dx > -

1 _ (* + Â£)

j*'f(x)dx = -

1 -

iÂ±J

'-i

F(x0)

which results in an impossible condition

-H+r

+ E < 0
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This shows that L does not go to the origin in the fourth quadrant; it must

therefore have a negative intercept on the y axis and, by the principle of

symmetry, the trajectory L is then a closed curve.

6. Energy criterion in a nearly linear case

The principal conclusion of Lienard's theory is the criterion (2.4) which,

as we saw, is equivalent to the statement: out of the whole family of tra-

jectories râ€ž there is one and only one closed trajectory J7 for which the

integral of energy exchange over one period vanishes.

It is possible to obtain the same conclusion in a simpler manner when

p. is small. Although this anticipates to some extent a later approach

through the method of averaging (Part II), the procedure is so simple (and

logically associated with the physical significance of Lienard's conclusion)

that we indicate it here.

Given an autonomous system

x = X(x,y); y = Y(x,y) (6.1)

We introduce new variables p = r2 = x2 + y2; ip = arctan (y/x) in the

ordinary (x,y) plane. This can be done by multiplying the first equation

(6.1) by x, the second by y, and adding equations so obtained; this gives

xx+yy = ^ = xX + yY (6.2)

The quantity p is obviously the total energy stored in the oscillation; it

is, therefore, the same as A of the preceding theory (Section 2).

As an example we consider a particular case of Lienard's equation when

f(x) = x2 â€” 1, that is, the van der Pol equation. Written in the form of an

equivalent system, it is:

x = y = X(x,y); y = py - px2y - x = Y(x,y) (6.3)

Replacing x = r cos ip, y,â€” r sin i/p (where r2 = p) into (6.2), we have

= 2p.p (sin2 <f> â€” p sin2 ip cos2 <fi) (6.4)

One can also form a second combination of equations (6.1):

xy â€” yx = p^ = xY â€” yX (6.5)

which, in this case, yields after a similar change of variables:

-jr = â€” 1 + p. sin </f cos ip â€” p.p cos3 ip sin i/p (6-6)
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Since we assume here that p. is very small, we can write approximately:

ij> ~ â€”1; <p ~ â€” t + c; one can obviously take c = 0 so that ip = â€”t

and (6.4) becomes

^ ~ - 2p.p(p sin21 cos* r - sin* i) (6.7)

This equation gives the rate of change of energy or the "energy exchanges"

of the system and, following the argument of Lienard, we look for the

condition under which these energy exchanges, integrated over the period

2n are zero. It is noted that dpjdt is small in view of the small factor p. in

(6.7); hence p(t) is a slowly varying quantity and in the integration over

one period we can replace p(t) by its average value p0. We have thus

j2 j^.dt ^ - 2pPo^p0 j*2" sin2 t cos* tdt - J*" sin2 tdt = 0 (6.8)

Equating to zero the quantity in brackets, one gets p0 ~ 4; that is, r0 ^ 2,

which is the result obtained by Lienard (end of Section 4). This result

may be also regarded (geometrically) as the condition for a re-entrant path

f2" dp f2"

since J 2t J = 1s Prec1se^ tn1s conchtion.

The proof of this section is much simpler than that of Lienard (Section 4),

but it holds only when p. is small, which enabled us to consider p as approxi-

mately constant p ~ p0 in the integration. This method would not hold

in the second asymptotic case (p. â€”> oo), whereas Lienard's method based

on a purely geometrical argument does not depend on the order of magni-

tude of p. and this, as we saw, constitutes its principal advantage.

For p. small, this method of "averaging" gives the same result as

Lienard's method, viz.: an oscillatory phenomenon becomes periodic when

the integral of energy exchange over one period vanishes. If the system

absorbs more energy than it can dissipate, the amplitude grows; if the

contrary takes place it decreases. In Lienard's case this corresponds to

J < 0 or J > 0; in this case, it corresponds to (6.8) being either negative or

positive.

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 1

5
:0

3
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



Chapter 5

STABILITY (VARIATIONAL EQUATIONS,

CHARACTERISTIC EXPONENTS)

1. Introductory remarks

In this and in the following chapter we present a brief discussion of those

parts of the theory of stability which will be needed later. We have

encountered previously the questions of stability in regard to properties

of singular points as well as those of limit cycles. This chapter is devoted

to the variational equations of Poincare, and Chapter 6 to the so-called

"second" (or "direct") method of Liapounov.

The subject of stability has grown considerably in recent years, and this

discussion attempts little more than an outline, omitting many lengthy

proofs that can be found in existing texts on stability.1- 2. 3 We have

defined (Chapter 1) concepts of singular points, trajectories, as well as

those of periodic motions, limit cycles (Chapter 3) in relation to one-degree-

of-freedom systems. Extensions of these concepts for several degrees of

freedom do not present any difficulty except that one cannot use any topo-

logical argument and has to use an analytical approach.

2. Definition of stability (Liapounov)

Consider a system of d.e.:

*. = /A*, . .. *n)'> * = 1 n (2-1)

1 H. Poincare, Les mithodes nouvelles de la me'canique celeste T.l, Gauthier-

Villars, Paris, 1892; also E. Goursat, Cours a"Analyse T.2, Gauthier-Villars,

Paris, 1918.

â€¢A.M. Liapounov, General Problem of Stability of Motion (in Russian), Charkov,

1892; also L. Cesari, Asymptotic Behavior and Stability Problems, Springer,

Berlin, 1959.

* I. G. Malkin, Theory of Stability of Motion (in Russian), Moscow, 1952,

English translation.
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By its solution we mean a set of functions Â«,-(r); * = 1 n tnat satisfies

it. The same definition holds for autonomous systems

*,=/,(*!.....*â€ž) (2.2)

We shall be concerned first with autonomous systems and will assume

that the solution (or motion) is denned for the interval ( â€”oo, + oo) of t.

The reader is referred to the discussion in Chapter 1 regarding the

difference between the solution (motions) and the trajectory which results

from the translation property of autonomous systems.

We now define the most important types of stability.

(a) Let Â«,-(r) be a solution of (2.1) or (2.2). We shall say that u{(t) is

stable if, given e > 0 and t0, there is 77 = 77(e,/0) such that any solution

v((t) for which |m,(r0) â€” f,(r0)| < 77 satisfies |Â«,(rr) â€” < e for r > r0

(if -q may be chosen independently of r0, u,(r) is said to be uniformly stable).

If no such 77 exists, Â«,-(/) is unstable.

(b) Asymptotic stability: If Â«,(r) is stable, and in addition

as r â€”> oo, we say that it is asymptotically stable.

Both of these definitions concern solutions (or "motions"). We may

paraphrase them by saying that a solution (or motion) is stable if all solu-

tions coming near it remain in its neighborhood; it is asymptotically stable

if the solutions approach it asymptotically.

The remaining definitions concern closed trajectories (or orbits).

(c) Orbital stability: Let C be an orbit of (2.2). We say that C is orbitally

stable if, given E > 0, there is 77 > 0 such that, if R is a representative point

of another trajectory which is within a distance 77 of C at time t, then R

remains within a distance e of C for t > r. If no such 77 exists, C is

orbitally unstable.

(d) Asymptotic orbital stability: If C is orbitally stable and, in addition,

the distance between R and C tends to 0 as t -> 00, it is said to be asymp-

totically orbitally stable.

To illustrate the difference between stability of motion and orbital

stability let us consider the system:

6 = r; f = 0 (2.3)

where r, 0 are polar coordinates in the plane. In rectangular coordinates

(2.3) becomes

x = -yVx2 + y*; y = xVx* + y* (2.3a)

The solutions are r = p and 0 = pt + a, or x = p cos (pt + a) and
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y = p sin (pt + a), where p and a are the initial values of r and 6 and are

periodic with period 2tt/p.

The trajectories are concentric circles centered on the origin. They are

obviously all orbitally stable, since to satisfy the condition of orbital

stability we may take rj = e. On the other hand, all of the solutions

(motions), except only the identically zero solution, are unstable. Denote

the solution by x = g(t,p,a); y = h(t,p,a). We investigate the stability

of a particular solution, say: x = g(t,p0 + ?7> ao) > y = h(t>Po + ^"o)-

At t = 0, one has |^(0,p0,a0) - g(0,p0 + r7,oc0)| = |ij cos a0|^ A(0,p0,a0) -

h(0,po â€” -q,Â«0)\ = |7jsino0|. By choosing tj small enough we can make

the initial values of the second solution differ by as little as we please from

the initial values x0 = p0 cos a0, and y0 = p0 sin a0 of the solution being

investigated.

Nevertheless we cannot keep the solutions near each other, owing to the

circumstance that they have different periods, 27r/p0 and 2n/(p0 + rj). In

fact, there are arbitrarily small values of tj for which the difference

A(t) = g(t,p0,a0) â€” g(t,p0 + rj,a0) assumes the value 2p0 + -q for infinitely

many values of t. Without loss of generality we suppose that a0 = 0.

We choose i) = p0l2N, where N is an integer, so that -q â€”> 0 as N â€”> oo.

We evaluate A(e) for t = (2Â» + l)N(2nlp0), n an integer. Now

A(t) = p0 cos p0t â€” (p0 + t)) cos (p0 + -q)t; and, for certain values of t

and t), we obtain A(t) = 2p0 + -q. Thus for fixed N, however large,

A(t) = 2p0 + -q for every value of n. In terms of the phase-space repre-

sentation this result means that the representative points on the circles

r = p0 and r = p0 + ij which have initially the same phase 6 = a0 will be

infinitely often 180Â° out of phase and therefore at a distance 2p + 77

apart.

Summing up, orbital stability requires only that the orbits C and C

(closed trajectories) remain near each other; whereas the stability of motion

(or of the solution) requires that, in addition, the representative points

R and R' (on C and C, respectively) should remain close to each other if

they were close to each other initially.

An analogous distinction holds for asymptotic stability and asymptotic

orbital stability. Here there is, however, a further distinction. It is

clear that a periodic solution cannot be asymptotically stable if other

periodic solutions exist arbitrarily near to it, since one periodic function

cannot be asymptotic to another one. But if u,(r) is a periodic solution of

an autonomous system, u{(t + r) is another such solution for every value of

t, and therefore there are periodic solutions arbitrarily near to u,(0-

Hence it is impossible for a periodic solution of an autonomous system to

be asymptotically stable. An orbit which is asymptotically (orbitally)

stable is already familiar to us as a stable limit cycle.
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One can illustrate the preceding definitions by the following example.

Assume that we have two identical physical pendulums (with a negligible

friction) provided with an optical attachment capable of registering their

motion on a moving photographic film; we shall also assume that the two

pendulums have the same period (for a given amplitude of oscillation) and

that their records can be made to coincide.

If the pendulums are started at / = r0 from equal initial angles, their

records will coincide into one single record.

Assume now that we start the pendulums from slightly different angles

which will result in two trajectories (orbits in the phase plane), C and C;

for the sake of argument we may consider C as unperturbed orbit and C

as the perturbed one. As in a physical pendulum the period changes with

the amplitude, the periods now will be slightly different, and, although

C and C" will remain close to each other, the motion of luminous spots

(the representative points R and R') will change; at times they will be in

phase, at times out of phase, as was analyzed in connection with (2.3).

In our terminology this will mean that, although there will be the orbital

stability (since orbits C and C remain near to each other), there will be no

stability of motion (or of the "solution") since the luminous spots do not

remain continuously near to each other. It is noted that the orbital

stability is not asymptotic in this case as C does not have a tendency to

approach C.

There will be an entirely different situation if physical pendulums in the

foregoing example are replaced by clocks. It is recalled (Chapter 3,

Section 11) that, owing to the escapement mechanism, a clock operates on

a limit cycle (although the latter is not analytical). If again one considers

the same experiment with adjustment of both periods to the same value,

a perturbation resulting in the orbit C (for the second clock) will have a

tendency to disappear so that C â€”> C. In view of this there will be

asymptotic orbital stability, as well as stability (of motion) since, during

the motion, the two luminous spots will remain always in the neighborhood

of each other, if they were near to each other initially.

3. Variational equations

We have encountered the questions of stability with regard to singular

points and limit cycles (Chapters 1 and 3). For the former, the stability

concerns the equilibrium; for the latter, it relates to a stationary motion on

a limit cycle. In both cases we used a geometrical argument regarding the

asymptotic behavior of the representative point E either for t -> oo or for

t â€”>. -co.

The analytic approach to the theory of stability develops from the so-
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called variational equations ("equations aux variations" of Poincare1)

which play an important role in the sequel.

Consider a dynamical system whose motion is governed by a system of

d.e.:

*, = A",(*i *n); * = 1, 2>- . .. n (3-J)

where the X{ are continuous, twice differentiable functions of the variables

Xj which may be regarded as generalized coordinates. Suppose that we

know a solution of the system (3.1): xi0 = *,0(0 which we may consider

as a nonperturbed solution.

Let *f(rr ) be the solution corresponding to an initial value *,(rr0) Â»* 0".

it will be called a perturbed solution. Between the new and the old

solutions there exists a relation

*,<0 = *,o(0 + MO (3-2)

where the functions Â£,(0 are ca^ed the perturbations: we shall assume that

are sufficiently small to be able to neglect their higher powers.

If one inserts (3.2) into (3.1) and develops the functions X{ around the

nonperturbed values xi0(t) to the first order in one obtains a system of

the variational equations

in which the coefficients of are partial derivatives of the functions X{

with respect to the variables Xj into which the nonperturbed values xi0

have been replaced after the differentiation.

Since #,0 is the known solution and *,- is the perturbed solution, an impor-

tant case arises when all perturbation functions Â£,-(*) â€”â–º 0 for t â€”> oo, in

which case *,-(*) â€”> x,0(r), as follows from (3.2). In this case the stability

is called asymptotic stability. In what follows we shall be concerned with

this form of stability unless specified otherwise.

A remark is noteworthy: in the preceding the perturbed solution (or

motion) *,-(*) is compared to the neighboring nonperturbed solution

*,o(0-

When xi0(t) = 0, we have obviously the position of equilibrium. This is

particularly important in what follows and is called the constant (or

identically zero) solution. In such an instance the variational equations

relate to the behavior of trajectories in the neighborhood of singular points

with which we were concerned in Chapter 1. In this manner the stability

of equilibrium appears as a particular case of stability of a periodic motion

when the trajectory of the latter reduces to a point (which may be the origin).

1 See footnote 1, page 118.
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Here x,(t) = Â£,(rr)> we can replace Â£, in (3.3) by xi, inasmuch as the per-

turbed motion and the perturbations become identical in this case.

4. Variational equations of singular points

Before proceeding with the general theory it is useful to consider first a

simple system of d.e. (equations (6.2) Chapter 1):

x = ax + by; y = cx + dy (4.1)

This system can be regarded as the variational system corresponding to

the constant solution: x0 = y0 = 0 (the singular point) if one writes it in

the form

d(x0 + Sx)

dt

d(yo + fo)

dt

= a(x0 + 8x) + b(y0 + Sy);

= c(x0 + 8x) + d(y0 + Sy)

(4.2)

then sets x0 = y0 = 0 and replaces Sx and Sy by x and y.

In what follows we shall encounter d.e. of the form

x = P(x,y); y = Q(x,y) (4.3)

where P and Q are generally entire series not containing constant terms,

and P(0,0) = Q(0,0) = 0. Since in such a case there is again an identic-

ally zero solution, the first-order variational system is:

^ = Pxâ€¢ Sx + PyÂ°Sy; ^ = &Â°8* + Qyo8y (4:4)

where PxÂ°, PyÂ°, QxÂ°, and QyÂ° are partial derivatives of P and Q with respect

to x and y at the point: x = y = 0.

The characteristic equation (see equation (6.8), Chapter 1) can be written

then directly in the form

~ (P*Â° + QyÂ°)S + (P*Â°Q,Â° ~ PyÂ°Q*Â°) = 0 (4.5)

It is seen that the existence of an identically zero solution simplifies the

problem since, instead of stability of the periodic motion, one can treat

the problem in terms of stability of the state of rest.

Another remark: the limitation of the variational system to the first

order limits also the validity of conclusions only to a small neighborhood

around the point x = y = 0; in view of this, very often stability deter-

mined on this basis is called the infinitesimal stability in contrast to
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stability in the large yielded by the Second Method of Liapounov to be

discussed in Chapter 6.

In the following section we will investigate the general problem of varia-

tional equations based on a constant solution corresponding to a particular

case studied in this section; in Section 6 the same problem is studied in

connection with variational equations based on a periodic solution.

It will be observed that the second problem is more difficult than the

first; the difficulty is due to the fact that in order to determine the charac-

teristic exponents, one must know the system of solutions, but the

knowledge of the latter requires the determination of the characteristic

exponents. One finds oneself thus in a vicious circle from which the only

issue is a method of approximations outlined later (Chapter 13).

In view of this, various methods were developed to reduce variational

systems based on d.e. with periodic coefficients to those based on the d.e.

with constant coefficients or, which is the same, on the constant solution.

One such method is outlined in Chapter 16 and most of the problems in

Part III are treated on the basis of this reduction. The only case in this

text in which the variational problem is based directly on the d.e.'s with

periodic coefficients is the method of Mandelstam and Papalexi outlined

in Section 3, Chapter 19.

5. Variational systems with constant coefficients

As was pointed out in Section 3, the variational equation of an auto-

nomous system based on a constant solution is of the form

i,

y-i

where a,-y are real constants.

We shall use the shorthand of vector notation and write:

x = (*!.. ., *â€ž); u(t) = (Hx(rr),. . ., Â«â€ž(*)); Â«(r) = (Â«!(*)- . .. "â€ž('))

and so on. Subscripts will be reserved for components of a vector, diffe-

rent vectors being distinguished by superscripts. Thus we write, for

example, Â«'(/) = (ffi'(0 mn'(0- From the general theory of linear

systems of d.e.'s we know that every solution u(t) of (5.1) can be written

as a linear combination

Â«(0 = 2 *,Â«"'(0

of n linearly independent solutions: iol(t),. . ., vf(t), where the constants

i-i
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kj are determined by the initial conditions. Furthermore, n solutions

tp>(r) are linearly independent if and only if the initial vectors ipJ(0) are

linearly independent. A set of n linearly independent solutions of (5.1)

is called a basis for the solutions.

To construct a basis for the solutions of (5.1) we first try to find a solu-

tion tv(t) not identically zero having the property that tb(t) = kto(t) for

some number A. The solution w(t) must therefore be of the form

Â«,-(Â») = CftP. Substituting into (5.1) yields

j-i

n

Hence h,ct cn must satisfy Ac,- = 7?

y-t

Writing these n equations out in full, we have

(Â«n ~ + Â«iffi + . . . + Â«wcÂ«

+ On -*)*,+ ... +

+ +... + (Â«Â«,- *K

which can be considered a system of n equations for the Â» unknowns:

Cj,. .., câ€ž.

The right-hand sides being zero, a non-zero solution: ex,..., eâ€ž exists if,

and only if, the determinant of the coefficients vanishes. Since the c,

may not all vanish, if w(t) is to be part of a basis, we require

Â«n - A axt

ati att ~ h

This is an algebraic equation of degree n in the unknown A and is called

the characteristic equation of (5.1). Its solutions Aj,. .., A, are called the

characteristic exponents of-(5.1). Setting A in (5.2) eqilal to one of the

solutions of (5.3), say A = Ay, yields a nonvanlshing solution cy =

(CxViV.., cj) of (5.2). Thus we finally obtain the solution ro>(r) =

(c^'expAyf c.'exp A,-r) of (5.1). We now make the simplifying

assumption that the characteristic exponents are distinct, that is, A, / Ay

for i / j. It is easily shown that the vectors c\cV.., e" are linearly inde-

pendent. Since c> is the vector of initial values (r = 0) of v>>(t), it follows

that the n solutions to>(t),j = 1,...,Â« form a basis.
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If the characteristic exponents are not distinct, a basis will include func-

tions which, instead of being simply exponentials, are products of exponen-

tials and polynomials.

The exponents are again the characteristic exponents and, since the

asymptotic behavior of such products is determined by the exponential

factor, no new phenomena are introduced. Thus the conclusions we shall

draw concerning the asymptotic behavior of the solutions of (4.1) are

completely general.

The hj are, in general, complex numbers. The corresponding cJ are

therefore also complex, and we obtain a complex basis w>(t). We merely

note this fact, which has no particular significance. A real basis can

always be obtained from a complex basis by suitable linear combinations.

For our purposes a reai basis has no advantages.

Now suppose that all of the characteristic exponents have negative real

parts. Then exp (hjt) -> 0 as t â€”> oo for ally so that all solutions of (5.1)

are asymptotic to zero. Thus:

If all characteristic exponents of (5.1) have negative real parts, the

identically zero solution of (5.1) is asymptotically stable.

If, on the other hand, at least one characteristic exponent has a positive

real part, the corresponding basic solution is unbounded as t â€”> oo and

we have:

If at least one characteristic exponent o/(5.1) has a positive real part, the

identically zero solution is unstable.

Considering (5.1) as the variational equation of (2.2) based on a constant

solution, the above results combined with the theorem stated in section 3

yield:

If the characteristic exponents of the variational equation based on a

constant solution u,(r) = Â£,Â° of an autonomous system all have negative

real parts, the solution m,(r) is asymptotically stable. If at least one

characteristic exponent has a positive real part, u,(r) is unstable.

Since the signs of the real parts of the characteristic exponent are

crucial for the stability problem, we mention the well known criterion of

Hurwitz, which gives necessary and sufficient conditions that the roots of

a real polynomial have negative real parts.

In order that all solutions of the equation:

AJI" + Ajh"-x + ... +Aâ€ž = 0; A{ real, A0 > 0
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have negative real parts, it is necessary and sufficient that

Ax > 0;

Ax As

A0 A3

> 0;

Ax A3 As

Aq A2 At

0 Ax A3

0 A0 A2

Ax A3 As

A0 A2 AA

0 Ax A3

01

0

0.

. > o

0

> 0;

In order to apply this criterion it is of course necessary to expand the

determinant.

For a proof of the Hurwitz criterion and for an extensive discussion of

other criteria applicable to the characteristic equation, we refer to the

English translation of Gantmacher's treatise.

6. Linear systems with periodic coefficients4

The variational equation based on a periodic solution of period <o is a

linear system with periodic coefficients:

i = 1,. . ., n

(6.1)

au(t + w) = Ofjit)

whereas the problem of constructing a basis for (5.1) was reducible to the

problem of solving an algebraic equation; in this case the problem is more

difficult, as will be shown.

There is a theorem due to Floquet which asserts that (6.1) has a basis

which is like the basis of a system with constant coefficients, except for

the presence of periodic factors of period <o. Let <p'(t) = [<px(t),. . .,

<pn'(t)]; i = 1,. . ., n be a basis for the solutions of (6.1), and let ^'(rr)

= <p'(t + <o). It is readily verified that the functions <l>'(t) are solutions

of (6.1), and in fact form a basis, since the vectors ^'(0) = <p'(w) are

n

linearly independent. Thus ip'(t) = <p'(t + w) = 2 VV(0 w^ere tne

y-i

4 G. Floquet, Ami. Ec. Norm. Supdr. (2), 12, 1883.

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 1

5
:1

3
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



128

QUALITATIVE METHODS

vectors b' are linearly independent. We shall use these vectors b' in the

sequel.

To construct the desired basis from the given basis 9Â»'(r), we try to find

a solution 6(t) = [fl^r),. . ., 6â€ž(t)] with the property that 6(t + a>) = fi6(t)

for some non-zero number fi. Writing

0(0 = 2 cfpt(ty,

e(t + o) = J; e,<pi(t + a,) = 2 c> 2 **vw

j-l ;=1 *=1

we therefore require

or

y-i a-i y-i

2 2 W - kMO = o-

y=i a-i

(6.2)

(6.3)

Since the <pi(t) are linearly independent, the coefficients in (6.2) must

vanish, giving rise to the system

(V - M^i +â–  + . . . + K*Cn = 0

Vci + (V - p)** + â–  â–  . + b2"cn = 0

K^i + K2C2 + ... + (*â€ž"- h)câ€ž = 0

The condition for a nonvanishing solution c is

V V ... V

bj

= 0

(6.4)

The solutions fiv. .., /*â€ž of chis characteristic equation are called the

characteristic multipliers of (6.1). It can be shown that they are indepen-

dent of the basis <p'(r ). Since the column vectors b' are linearly independent,

n = 0 cannot be a solution of (6.4). Substituting a solution of (6.4) into

(6.3) and solving for c therefore yield a desired solution 6(t) of (6.1).

We assume again that the roots /*, of (6.4) are distinct, and thus obtain a

basis 0'(r) with the property that 0'(r + a>) = /x,0'(r). (The remarks of

the preceding section apply again in the case of repeated characteristic

multipliers.) The characteristic multipliers are in general complex and
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thus yield a complex basis 0'(t). Again the remarks of the preceding

section apply. To show that 6>(t) is of the form of an exponential times

a function of period w, let log be any determination of the logarithm of

/x, (the principal value, say) and let

/<(O = exp(-i-logM,.)0'(O

then

/â€¢(r + a>) = exp log fi{ - log^0'(r + w)

so that /*(r) is periodic of period <o. But 0,'(rr ) = exp [(log /x,)r/w]/'(r)

and therefore Floquet's theorem is proved. The numbers A, = â€” log fi{

are called the characteristic exponents of (6.1).

Owing to the ambiguity of the logarithm, only the real parts of the h{ are

uniquely determined.

Since (6.1) has a basis of the form

*(r) = exp (*,/)./,(r); Â»=1 n

where the /''(*) are periodic, we have the result:

If all characteristic exponents of (6.1) have negative real parts, the identi-

cally zero solution is asymptotically stable. If one characteristic exponent

has a positive real part, the identically zero solution is unstable.

Considering the case where (6.1) is a variational equation based on a

periodic solution yields the corollary:

If the characteristic exponents of the variational equation based on a

periodic solution have negative real parts, the solution is asymptotically

stable. If one characteristic exponent has a positive real part, the solution

is unstable.

Instead of the signs of the real parts of the characteristic exponents, we

can consider the absolute value of the characteristic multipliers, asymp-

totic stability resulting when the absolute values are less than unity. It

is possible to apply Hurwitz's criterion to the solution of (6.4) by making

the change of variable /x = (1 + ij)/(1 â€” rj) which maps the interior of

the unit circle onto the left half of the complex plane, so the condition

< 1 is equivalent to Re -q < 0.

The principal difficulty in this analysis is the fact that the basis with

which we began, and from which we derived the characteristic equation,

is in general unknown. A method for determining the characteristic
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exponents must therefore be sought elsewhere. We shall return to this

problem in Chapter 13 of Part II, which deals with methods of approxima-

tion.

7. Orbital stability

Let u,(r) = u,(r + w) be a periodic solution of the autonomous system

(2.2). Differentiating the identity u,(r) = /,[Â«i(0>- . .. mÂ»(0] i = . ., n

with respect to t shows that Â«,-(/) satisfies the variational equation of (2.2)

based on Â«,(*). Since Â«,-(r) also has period w, the variational equation has

a periodic solution. Hence one of the characteristic exponents is equal to

zero, and the theorem on asymptotic stability stated in the preceding

section does not apply because the hypothesis is not satisfied.

In fact, as was shown in Section 2, it is impossible for Â«,(/) to be

asymptotically stable. There is, however, the following result:

If n â€” 1; (n > I) of the characteristic exponents associated with a periodic

solution m,(r) of an autonomous system have negative real parts, the

trajectory of the solution is asymptotically orbitally stable.

This is another way of saying that for asymptotic orbital stability it is

sufficient that (n â€” 1) solutions of a basis for the variational equation tend

to zero. For a proof of this theorem see Cesari5 or Coddington and

Levinson.6 We now derive a relationship among the characteristic

exponents which makes it possible to determine one of them by a quad-

rature when the remaining ones are known.1 The following derivation is

restricted to the case n = 2, but the method generalizes in an obvious way

to arbitrary n. Let

be an arbitrary linear system with differentiable but not necessarily

periodic coefficients. Let Â«'(rr ) = (u1'(r), u2'(t)); i = 1, 2 be a basis for

(7.1). We form the determinant

* L. Cesari, Asymptotic Behavior and Stability Problems, Springer, Berlin, 1959.

'E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations,

New York, 1955.

1 See footnote x, page 118.

x = au(t)x + ax2(t)y

y = an(t)x + aM(t)y

(7.1)

4(0-

Â«.H0 Â«22(0
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which cannot vanish, since its columns are linearly independent. It is

readily verified that

Im!1

Â«i2

ml1 Â«1Â»

k

+

Â«22

mÂ«1

fljjMg1 + a22u22

Subtracting a12 times the second row of the first determinant from the

first row, and a21 times the first row of the second determinant from the

we obtain

anm!1 Â«UÂ«1*

utx

lajaMj,1 a22u22

= [Â«u(0 + Â«u('M0

Integrating this differential equation for J(r) gives the formula

J(i) = J(r0) exp f [an(f) + a22(*)]<k

(7.2)

Now let the coefficients a{j have period w and choose a basis <p'(r ) = Â«'(r)

so that 9/(0) = 8,y; then the elements b/ of the determinant (6.4) are

given by of = 9>/(<Â«). From the theory of linear equations we know that

J(<d) = p.jiv Setting r0 = 0, t = a> in (7.2) yields, since J(0) = 1:

and thus

A(u>) = exp JT [Â«â€ž(*) + Â«it(0]*

= exp I [Â«n(0 + a22(r )]<fc

or

log Mi + log/*Â« = r [Â«n(0 + Â«.Â«(0]*

Since A, = (1/a>) log/*,- we obtain the desired formula

K + ht = i I"" [an(0 + a22(01*

ft> Jo

(7.3)

(7.4)

This formula remains true if Af is replaced by its real parts, since the sum

of the imaginary parts is zero in view of (7.4). Now if (7.1) is a variational

equation based on a periodic solution of an autonomous system, one of the

A,'s has zero real part, and the real part of the remaining A, 's is given by the

right side of (7.4).

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 1

5
:1

8
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



132 QUALITATIVE METHODS

In the case of arbitrary n, formula (7.2) becomes

J(rr) = J(rr0)exp P ?aH(s)ds

Jt0 i-i

and (7.4) becomes

Let us now consider an example, the system (2.1 of Section 2, Chapter 3):

x = y + â€”. * (I - x2 - v2) = f(x,y)

Vx2 + y*

y=-*+ , *' â€ž (i - *2 - j2) = Â£(*,:v)

V xt + y2

which has the periodic solution: x0 = cost; y0 = â€” sin r. Here

fln(r) = fx(cost, â€” sinr) = â€” 2 cos2* and a2i(t) = gy(cost, â€” sinr) =

â€” 2 sin21. Thus the unknown characteristic exponent (strictly speaking,

its real part) is given by

1 C2"

h = \ (-2cos2* - 2sin2t)dt = -2 < 0

*f Jo

and therefore the orbit x2 + y* = 1 is asymptotically orbitally stable.

Applying the same procedure to the system (2.7) of Chapter 3 shows that

both characteristic exponents have zero real parts, and hence the varia-

tional equations yield no information concerning the stability of the orbit

*2 + y2 = 1 which we know to be semi-stable.

In conclusion let us consider the applicability of the foregoing theory to

orbits of conservative systems. We pointed out in Chapter 2 that con-

servative systems cannot have singular points which, in our present

terminology, are asymptotically stable. It is easily seen that orbits of

systems with integrals or integral invariants cannot be asymptotically

(orbitally) stable either. An orbit of a system with an integral has at

least two characteristic exponents with zero real parts; if the remaining

n â€” 2 exponents have negative real parts, the orbit is stable. If n = 2,

the existence of an integral already implies stability. We now show that

for a system with an integral invariant the sum of the characteristic ex-

ponents vanishes, so that the variational equations can be used at best to

establish instability. Let M(xx,. . ., xn) be an integral invariant of (2.2).

The stability properties of all singularities and orbits of (2.2) are then

identical with those of the system

*. = M(xx,. .., xâ€ž)f,{xx,. .., xâ€ž); i = 1,. .., n (7.7)

(7.5)'

(7.6)
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Since M is an integral invariant,

2 Wf.)l8*i = 0 (7.8)

i-i

n

therefore, 2 K = 0 for any orbit of (7.7).

i-l

Hence, if any /i has negative real part, there is at least one A, with positive

real part, and we arrive at the peculiar conclusion that the existence' of a

negative A, implies orbital instability. Only if all A,'s have zero real parts

is there a possibility of orbital stability, but it is not asymptotic.

An example of this situation is given by the d.e. of the harmonic oscillator:

S + x = 0, which written as an equivalent system is:

x = y = 0 x + 1 . v; y = â€”x= â€”l-x + 0-y

from which one sees that an(r) = ai2(t) = 0; then by 7.4 one has

Ax + h2 = 0 (7.8a)

On the other hand, Poincare has shown1 that for a periodic solution of

an autonomous system one characteristic exponent, say hx, is always zero,

so that from (7.8) it follows that the second exponent h2 also vanishes.

Here we have an autonomous system of the second order in which both

characteristic exponents are zero: we also know that the trajectories in this

case are orbitally stable but not asymptotically.

One verifies easily this circumstance from the variational equations.

In fact, consider a solution *0(0> jyo(^) ^ tne nonperturbed motion.

With the perturbation Sx and 8y the variational system reduces to

Multiplying the first equation by 8*, the second by 8y, and adding two

equations, one obtains (upon integration)

(8*)2 + (8v)2 = const (7.10)

which shows that the perturbation V(8x)2 + (Sv)2 does not die out in the

course of time. There is orbital stability in this case but it is not asymp-

totic. For further generalizations, see Poincar^.1

1 See footnote 1, page 118.
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Chapter 6

STABILITY (SECOND METHOD OF LIAPOUNOV)

1. Introductory remarks

In the preceding chapter we have reviewed the fundamentals of the

classical theory of stability based on the use of the variational equations.

In his classical work on stability, Liapounov1 developed a different

method which he calls the second method; occasionally in modern literature

it is also called the direct method. The essential feature of the second

method is that it gives conditions of stability without any necessity for

integrating the system of variational equations which, generally, is a

difficult (and often impossible) task.

The method is based on properties of definiteness of certain functions

associated with the differential system in such a manner that it is possible to

ascertain whether the solution remains in a certain region or not. The

criteria of stability (or instability) are derived from this property. The

fact that in this theory are involved certain regions (and not merely posi-

tions of equilibria represented by the singular points) makes it particularly

well adapted for the investigation of stability in the large. As the litera-

ture of the second method is far beyond what can be condensed in one

single chapter of this text, we shall be obliged to touch only the most

important points, referring to the existing references.2 In this outline we

shall follow mainly Malkin's presentation,3 abridging it somewhat,

particularly as far as certain special cases are concerned.

We begin with some definitions and consider a function: V(xv. . ., xâ€ž)

of n variablesâ€”the function of Liapounov.

1 A. M. Liapounov, General Problem of Stability of Motion, Charkov, 1892; also

L. Cesari, Asymptotic Behavior and Stability Problems, Springer, Berlin, 1959.

1 W. Hahn, Theorie und Anwendungen der Directen Methode von Liapounov,

Springer, Berlin, 1959.

* I. G. Malkin, Theory of Stability of Motion (in Russian), Moscow, 1952.
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STABILITY (SECOND METHOD OF LIAPOUNOV) 135

1. The function V is called definite (positive or negative): V = Vd in a

certain domain D: |*, | < h(h > 0 is a constant), if it has in values of one

sign and vanishes only for xx = x2 = ... = *â€ž = 0. Thus V = x^

+ *,Â« + *3* = vd.

2. The function V is called semi-definite: V = Ve (or, of the same sign)

if it has the same sign or is zero in D. Thus: V = (xx + xa)2 + x3* = Ve\

in fact, this function vanishes for #3 = 0; xx = â€” x2.

3. The function V is called indefinite (or of a variable sign): V = Vv if

it changes its sign in any D however small; xx = Fâ€ž; + #22 â€” x84

= Fâ€ž. We indicate certain properties of the function V:

(a) If V(xx, â– â– .*â€ž) is a homogeneous function of the wrth degree (a form),

that is:

ViXx, A*â€ž) = \Â»V(xx,... ,*J

and, moreover, m is even, the property Vd is preserved for an unlimited D.

(b) Any odd function: V(â€”xx,. .., â€”xn) = â€” F(xx,. .., *â€ž) is always

indefinite.

(c) Let V be a homogeneous function of degree m and V > A(xxi + . . .

+ *m2)"/Â«- If W satisfies the relation \W\ < A(xx2 + . . . + xm2)m'2,

then

V+W=Ud (1.1)

If V is negative semi-definite, then, by adding a small negative function

W, one has

7 + W = C/ < 0 (1.2)

(d) The property V = Fd is preserved for

V - + AF, (1.3)

where Fd is a homogeneous function of the same degree, and A is a small

coefficient.

(e) One can study the character of definiteness of series developments in

powers of Let V = Vm + V*, where Vm is of the lowest degree and

V* is the rest of higher-order terms. If Vm > 0, then, for a sufficiently

small Euclidean distance râ€ž one has also V > 0. In fact, one has:

V = VM+ V* = (a&f + a&f-^Xt + ...) + (b(pr+x + . . .)

= r-Q.fe Xf- . - 7") + r^Q*fe fj

The function Qm is bounded since

= 1, as is also Q*. Moreover
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Qm has a minimum A > 0; take M as the maximum of Q\ V =

rm(Qm + rQ*)\ V > rm(A - rM); if r < A/M, then V > 0, which

proves the statement. Thus take:

F = ,Â» + yÂ» + xy* + y = ,2^ + ^ + ^

= r\\ + Q*); \Q*\ < 2

then, if r < 1/4, one has V > r2/2.

The preceding definitions and results can be given a geometrical inter-

pretation. Consider, for instance, a positive Vd for m = 3; conclusions

remain valid for m > 3. The equations

Vd(Xx, x2, x3) = c (1.4)

represent a one parameter family of surfaces, c being the parameter; for

c = 0 one has xx = x2 = #3 = 0, which is the property: V =

Thus for c = 0, the surface Fd = c shrinks to one point, the origin.

It is easy to see that for a sufficiently small c the surface Vd is closed,

containing O in its interior. In fact, there is a neighborhood of O in

which V = Vd. Take a sphere e so small that e is in this neighborhood.

V has a positive minimum on e, say a. Each level surface V = c, c < a,

cannot intersect Â£. Therefore V = c is in e; it must surround O because

otherwise one could connect points on e with O by a continuous curve C.

The function V varies continuously on C, but on e one has V ^ a and in

0, V â€” 0. Hence one must cross the value 0 < c < a, which is a contra-

diction.

2. Theorems of Liapounov (stability)

Given a system of d.e.

*i = > *â€ž) (2-l)

We shall assume that the X{ guarantee the existence and unicity of the

solution (for example, satisfy the Lipschitz condition) and have a singular

point at the origin. Consider a function VJ^x^. . ., xâ€ž). We call Eulerian

derivative of this function, the expression:

dV ^dVdXi A 8V .

so that the Eulerian derivative of V at a point (xv. .., xâ€ž) is just the time

derivative of V along the trajectory through (xv. . ., xâ€ž). It is noted that,

in view of (2.1), the derivative dVjdt is a function of *, vanishing for

xt = ... = *â€ž = 0. Note dvjdt = grad V X.
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The first theorem of Liapounov states:

(I) Given a differential system (2.1), with a singular point x^ = x2

= . .. = xn = 0, the equilibrum is stable if it is possible to determine such

function V = Vd in a certain D whose Eulerian derivative W is either

We of the sign opposite to Vd or which vanishes identically in D.

proof: Without any loss of generality, we assume that Vd is positive in

D: |*,-1 Â£ h except at the origin where it is zero. According to the

assumption, dV\dt = W <. 0.

Let e < h be a positive number as small as we please and let x be the

maximum of [x^,..., |*n| so that * = e determines a cube in the n-space

with side 2 e. Let L be the minimum of Vd on the boundary of the cube so

that

V ;> L for x = e (2.3)

The quantity L > 0 in view of V = Vd as we assumed.

Consider now a solution *,(r) of the system (2.1) whose initial conditions

satisfy <. t\ where 0 < ij < e and

V(XxÂ°,...,xno)<L (2.4)

This choice of rj is always possible since V is continuous and V(0 0)

= 0. Substituting *,-(*) into V, one obtains (in view of W <, 0) a non-

increasing function as long as *,(r) remains in D. Thus

*wo *â€ž(t)) * iw. . . o <L (2-5)

Hence, for t > t0 one will have

WOI < â–  (2-6)

In fact, these inequalities would cease to be valid only in the case when at

least one of the quantities #, would reach for t = T the boundary * = e

where one would have

*jlt))*l

This is impossible, however, since, in view of e < A, the set of points x{

is still in D where the conditions specified by the theorem hold.

A slight modification of the preceding theorem permits establishing the

condition of asymptotic stability.

(II) Given a differential system (2.1) with the singular point at the origin,

the equilibrium is stable asymptotically if it is possible to determine a function

V = Vd whose Eulerian derivative W = Wd is of the sign opposite to that

ofV*

Let the hypothesis be satisfied in the region \x{\ Â£ h. Let 0 < e < h.
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Since by the preceding theorem x = 0 is at least stable, there exists a

positive number rj(t) such that for every solution x(t) the relation |*,-(r0)|

< 7] implies |*,-(r)| < e(*) for t > t0. We now show that for a solution

satisfying this relation, x^t) â€”> 0 as t â€”> oo. Clearly, for such a solution

W(xy{t) xâ€ž(t)) = W(t) < 0 for t > t0, unless *,-(r) = 0, since

W{t) = 0 implies x(t) = 0, which, in turn, implies x(t) = 0. Hence

V(t) is monotonically decreasing for t > t0, so that V(t) -> a as t â€”> oo,

for some a, with V(t) > a for all t > t0. We show that a = 0. The

contrary assumption, a > 0, entails that max, |*,(*)| is bounded away

from zero. Hence W(t) must also be bounded away from zero, say,

W(t) < b < 0 for t > r0. Thus V(t) = V(t0) + J/o W(t)</t < F(râ€ž)

+ i(r â€” r0). But this is impossible, since the right side of the inequality

is negative for sufficiently large t, while V(t) > 0. Hence, a = 0, and

thus x(t) -> 0 as t â€”> 0, which proves the theorem.

Liapounov indicated also criteria of instability analogous to the theorems

(I) and (II) concerning stability. We merely state these theorems,

omitting their proofs, as they follow a similar argument.

(III) Given a differential system (2.1), the equilibrium is unstable if it is

possible to determine a function V whose Eulerian derivative is W = Wd

while V assumes in every neighborhood of O values for which V W > 0.

(IV) Given (2.1) the equilibrium is unstable if there exists a V such that

dVjdt = W = XV + W*

where A is a positive constant and either (1) W* is identically zero, or (2)

W* is W* and every neighborhood of the origin contains points at which

V-W* > 0.

3. Geometrical interpretation of Liapounov's theorems

Theorems I and II admit a simple geometrical interpretation. Con-

sider, for instance, Â» = 3 and V(xv x2, x3) = Vd > 0, while dVjdt

= W < 0. The equations V(xx, x2, x3) = c determine, as we saw, a

family of closed surfaces, at least for sufficiently small values of c; the

surface shrinks to one point for c = 0. If cx < c2, the surface V = cr is

enclosed inside V = c2.

Consider a trajectory S of the differential system issuing at t = t0 from

a point close to the origin. This trajectory 5 for t > t0 will never intersect

a surface V = c from inside to outside. In fact, in order to have such an

intersection at some point, it is necessary that dV/dt be positive. This,

however, is impossible in view of the assumption that dVjdt = W < 0.
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Thus, if R (the representative point) on S was inside some surface V = c

initially, it will continue to remain inside that surface. On the other hand,

for c sufficiently small the closed surface V = c surrounding O is also

small, which indicates the stability of the origin.

In the same manner if dVjdt = Wd < 0, the point Ron S will cross all

surfaces V = c from outside to inside, and R will approach the origin

asymptotically; this indicates the existence of asymptotic stability.

The theorems of Liapounov regarding stability amount thus to the

establishment of conditions under which all trajectories of a differential

system cross the Liapounov surfaces V inwards. If, by some means, it is

possible to demonstrate this circumstance with weaker conditions than

those previously set forth, the validity of the above theorems is still main-

tained. From this point of view, the condition that all surfaces V = c are

free from self-intersections is not

necessary.

The preceding conditions hold for a

sufficiently small c. In some cases the

surface V = c ceases to be closed for

c > c0. Thus, for instance, the function

V-xf +[*,Â»/(I + xt*)]-c (3.1)

determines a family of closed surfaces

V = c only if e Â£ 1. For c > 1 the

surface consists of two branches* not

having any common points (Fig. 6.1).

In such a case the function (3.1) can

still be used provided c < 1. The condition that a surface V = c is a

M

closed surface is guaranteed if V ceases to be bounded when 2 *<* ~** 00 .

I-1

This condition means that, for a large positive number N, one can always

n

find a sufficiently large number L such that for 2 *<* > L, the function

i-l

V will have values V > N.

Liapounov's theorems concerning stability hold always when the func-

tion V is not bounded.

In a similar manner one can interpret the theorems on instability.

Consider, for example, the case of Theorem III, with n = 2 (the planar

case) and W = Wd > 0. According to the theorem there exists a region

near the origin in which V > 0. As the curve V = 0 separates the region

where V > 0 from that where V < 0 (Fig. 6.2), the shaded area may

4 M. P. Erougin, Prikl. Math- i Mehanika (Russian) 16, 1952.

Figure 6.1
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represent V > 0. A trajectory issuing from some point M of the boundary

curve V = 0 will necessarily enter into the region V > 0 since (dVjdt) > 0.

In fact, if we take a circle around O

with radius e so small that W > 0 in

this circle, every point M on the line

V = 0 must move into the region

V > 0. It cannot reach O without

first leaving the circle since, as it moves

inside the circle, V increases. It

cannot therefore arrive at O where

V = 0. Hence, O is an unstable

point. This permits a completion of

the preceding theorems by a theorem

due to Chetaev.5

(V) If for the system (2.1) there exists

a function V such that every neighbor-

hood of the origin contains a region where V > 0 and on whose boundary

V = 0, and such that at all points of the region V > 0, the derivative W

is positive, then the origin is unstable.

Figure 6.2

4. Certain auxiliary propositions concerning the functions V

We shall narrow the form of the d.e. (2.1) by considering only the linear

terms in Xs. The d.e. are thus of the form

(4.1)

*=i

We shall try to determine a form V, that is, a homogeneous polynomial in

the x so as to have

Tt=%^. (Pa*i + â– â– â– + AvO = W = XV (4.2)

where A is a constant. Assume first that m = 1 (m is the degree of V).

in which case V is a linear form

V = axXx + . . . + ajcn (4.3)

If one substitutes V into (4.2) and equates the coefficients of #,-, one has

PnÂ°x + Px&i + . . . + Pvfin =

(4-4)

/>nxÂ«x + pn&2 + . . . + Pmaâ€ž = Aaâ€ž

â€¢ N. G. Chetaev, ibid. 18, 1952; 20, 1955; W. Hahn, Theorie und Amoendungen

der Directen Method* von Liapounov, Springer, Berlin, 1959.
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This system has nontrivial solutions if and only if

\Pn - A Pit . . . pin

D(X)

pnx pn2

Aâ„¢ - A

(4.5)

Thus (4.2) can be satisfied by a form V if A is a characteristic root of (4.1).

To each root corresponds a form and, if there are n distinct roqts, there are

n linear forms (4.3) satisfying (4.2).

In other words, if one has solutions *,-(r) of (4.1), it is possible to find n

n

combinations with constant coefficients V<{t) = ^ sucn mat

*-i

dVJdt = XfVji that is, V{(t) = C<^V. Hence expressing as a linear

combination of Vi, we find, in fact, = 2 C,-Â«V-

Suppose now that m, the degree of V, is greater than 1. If N is the

number of terms in the mth degree, this number is obviously equal to the

number of different systems that can be formed by nonnegative integers

m1, m2,. .., mâ€ž under the condition mx + m2 + . . . + mn = m and is

therefore N = [n(n + 1) ... (n + m â€” l)]/ml.

If all terms of V are arranged in a certain order with coefficients

ax, ai,.. ., aN, then, by equating the terms on the right and on the left of

(4.2) once V has been substituted, one has a system

N

2^oÂ«> = *=1,2,. ...iV

7 = 1

(4.6)

where A{j are certain constants formed by linear combinations of p{j.

This system, again, can have solutions other than the trivial ones if, and

only if,

Ax2 .

A IN

. ,ANN â€” A

0

(4.7)

Thus a possibility of satisfying (4.2) by a form of the with degree depends

on the condition that A be a root of an equation of the JVth degree. Between

the roots of (4.7) and those of the characteristic equation of (4.1), that is,

Pn ~ A p

12

ZXA) =

pnx pn2

pin

Pâ€žn ~ A

(4.8)
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there exists a simple relation as was pointed out by Liapounov, viz.:

A = + w2A, + ... + mâ€žAT1 (4.9)

where Aj, A, Aâ€ž are the roots of (4.8) and mx,. . mn are nonnegative

integers satisfying the relation

mx + m2 + . .. + mn = m (4.10)

proof: It was shown that to any Ax of (4.8) corresponds at least one

linear form satisfying (4.2) so that

dV "8V

~di = 2 W; (pÂ»Xi + â–  . -+ p^ = XiVii *= h 2 n (411)

Consider a form of the degree m, viz.:

V = Fj-i, Vf%..., V-n (4.12)

The Eulerian derivative of this form is

dV dV dV

_ â€” m V V "h V mâ€ž 1 j. a- m V ms V mi V m.~x"

â€” 1 1 i ' 2~ 'n '"' "1 '* 2 '' " '> Â» *

= (wjAi + m2At + .. . + mâ€ž\,W (4-13)

which shows that the form of the mth degree satisfies (4.2) with A given by

(4.9). This theorem extends also to cases of multiple roots, but we shall

omit these details and pass directly to the following important theorem.

If the roots A, of the characteristic equations are such that (4.9) does not

vanish for any nonnegative integers m, related by (4.10), then for any form

U(xv. .., xâ€ž) of the mth degree, there exists one and only one function

V(xx *â€ž) of the same degree satisfying the equation

dV ^. .8V T. .....

-d7 = Zi(Pa*i + -.-+Pi^I;rU (4.14)

proof: If one designates by ax aâ€ž coefficients of V and by bx,..., bH

those of U, then by equating in (4.14) the coefficients of like powers of #,-,

one obtains for a,- equations differing from (4.6) only in the right-hand

terms, which are here b{ instead of Aa,.

As the determinant of this system is ^ 0 (as A is assumed to be any root

of (4.7) ^ 0), this shows that the system

Aixax + A{02 + ... + AiNaN = bN; i = 1, 2,..., N (4.15)

has one and only one solution for a{. This means that there is only one

form V satisfying (4.14).
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5. Construction of the function V for a differential system with

constant coefficients

We consider again a system

n

* = 2 p'ixi (5-!)

y-i

with constant coefficients />I; and assume that the solution = 0 is

asymptotically stable. This, as we saw in Chapter 5, requires that the

real parts of all roots of the characteristic equation be negative.

In this case it is possible to invert the first theorem of Liapounov:

If the real parts of the roots of the characteristic equation are negative,

there exists one and only one function V(xx,. . ., xn) for any given U(xx,. . .,

xâ€ž); this function U = Ud satisfies the equation

and, moreover, V = Vd of the sign opposite to that of U.

proof: As Re (A,) < 0, Re I V m, A, J < 0 and, hence m,A, 0 for

all nonnegative integers m{. Hence, there is one and only one V satisfying

(5.2).

It remains to be shown that, if U = Ud,V= Vd and Ud and Vd are of

opposite signs.

Given Ud < 0, three cases are possible: (1) V is somewhere negative;

(2) Ve > 0; (3) Vd > 0. In the first case there would be instability in view

of Theorem III. This is impossible since Re (A,) < 0. The second case

is also impossible; for suppose that at some point V(x^0\. . ., *â€ž(0)) = 0.

Take a trajectory through this point such that x,(0) = *,(0). Then

V(t) = ^[*,(r)] must decrease with t since its Eulerian derivative is

negative. We are thus back in the case (1) which was excluded. Hence,

there remains only the possibility (3): V = Vd > 0.

Summing up, if Re (A,) < 0 for all roots of the characteristic equation

and one selects a form U = Ud of an arbitrary degree, then one can

determine a definite form V = Vd of the same degree whose Eulerian

derivative dVjdt is equal to U and which is of opposite sign.

This leads to a construction of the Vâ€”the forms of Liapounov. One

starts with an arbitrary Ud and determines the corresponding V by linear

algebra. If V = Vd is of opposite sign, the stability of the system follows

from Theorem I (Section 2). If V + Vd is of opposite sign, there is

instability. It is noted that the asymptotic stability is not covered.
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The calculations are simpler if the degree m of V is smaller. It is

n

preferable to take for V a quadratic form, for instance T *f2.

i-l

The criteria of instability are proved in a similar manner (we omit their

proofs); they state:

(I) If, among the roots of the characteristic equation there is at least one A

with Re (A) > 0 and the conditions (4.10) and (4.9) hold, then for any

U = Ud there is one and only one V satisfying (5.2), but in this case

V VeorV+ Vdof the sign opposite to V.

(II) If among the roots of the characteristic equation there is at least one A

with Re (A) > 0, then for any U = Ud, there will be always a V of the

same degree and of such a number a > 0 that

but in this case V j= Ve of the sign opposite to U.

6. Stability on the basis of the abridged equations

Consider the nonlinear autonomous system

n

*< = 2 Pnxi + Xi(*f . â– ' *n); Â« = l> 2'- . â– ' n (6A)

where the p{j are constants and the X^xv..., xâ€ž) are power series beginning

with terms of at least second degree.

The theorems of the preceding section permit establishing criteria of

stability on the basis of the variational equation

= J PiFi (6-2)

by the following theorems of Liapounov.

(1) If all roots A,- of the characteristic equation of (4.8) have Re (A,) < 0,

the point of equilibrium x{ = 0 is asymptotically stable for (6.1) whatever

the terms X{.

In fact consider a quadratic form V(xv. ..,#â€ž) defined by the equation

2 (Pn*i + â– â– â– + PiSâ€ž) = ~(*ia + V + â–  â–  . + V) = U < 0 (6.3)

1-1 OXi
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On the basis of the preceding theorem, V exists and is Vd > 0. The

Eulerian derivative is

= -(*Â»Â» + ... + + txs% (6-4)

As the expansion of 2 ^i(^l^xi) begins at least with the terms of the

third degree, dVjdt will be definite negative whatever the X{ so that V

satisfies the criterion of asymptotic stability with respect to (6.1).

(2) If among the roots of the characteristic equation (4.8) there is at least

one A with Re (A) > 0, the point of equilibrium is unstable whatever the X{.

In fact, consider a quadratic form V(xx,. . ., xâ€ž) determined by the equa-

tion

I % + . . . + Ptfii = "V + (V + ... + V) (6.5)

I â–  1 <7*i

where a > 0. Such a form exists and by Theorem II of Section 5 is

# Ve with negative sign. Its Eulerian derivative is

S-F+llh Â«.)

= + ++ (6-6)

, = x

and W = for any choice of X{. The form V thus satisfies the con-

ditions of Theorem IV and the equilibrium is unstable.

(3) If the characteristic equation of the variational equation does not have

any roots with positive real parts, but has some roots with zero real parts,

then the terms in X{ can be chosen as to have either stability or instability.

The last-mentioned case belongs to the so-called critical cases, which

require a special investigation.

7. Certain generalizations

The assumption was made that the perturbing terms X{ are power series

which begin with terms of the second order at the origin. One could

make weaker assumptions and still have the same conclusions as before.
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In fact, we assumed- that

-(*Â«.+ ... + *Â«> + 2xiiz (7-J)

is a definite negative expression.

One could assume also that

XiTx

< A(\x,\ + ... + \xâ€ž\)* (7.2)

where A is a sufficiently small positive constant; in fact, it is not necessary

at this stage to assume the analyticity of the X{. Since W/dx{ are linear

(V is assumed to be quadratic), it is sufficient that Xj satisfy the inequality

2 < Â«(W + ... + W) (7.3)

1-1

where the small constant a depends only on the coefficients of V. It is

sufficient, therefore, that X{ be such that (7.2) be fulfilled.

If the X{ are analytic, it is always possible to determine the region,

provided that (7.2) is fulfilled.

The problem reduces to the determination of a which, in turn, requires

the determination of A, inasmuch as the coefficients of V are known.

The only requirement is that the form (7.1) be definite negative. Thus

A is to fulfill the inequality

A(\Xx\ + ... + \xn\y <Xx* + ... + xn* (7.4)

As both sides of this inequality are quadratic forms, it is fulfilled if one

can show that it is fulfilled on a unit sphere x^ + . . . + xâ€ž2 = 1. This

gives

A K i< I (7-s)

7i* n

where Â» is the maximum of (|xx| + ... + |*â€ž|)2 on the sphere.

One could also require, for instance, that V satisfy the relation

2 (P{xxi + ... + /><â€ž*â€ž) 57 = u(*v . ., xâ€ž)

i.i "*i

where U is some negative definite form. Then there is a requirement:

A(\x1\ + ... + \xn\)*< -U(Xx *â€ž) (7.5a)

and the condition on A is

A < J (7.6)

where m is a minimum of â€” U on the unit sphere.

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 1

5
:3

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



STABILITY (SECOND METHOD OF LIAPOUNOV) 147

Thus, in any case, A depends on the coefficients of the form â€” U. One

can determine a directly from the condition that a condition paralleling (7.2)

be fulfilled, that is,

2Xi^< -Â£/(*Â»...,*J (7.7)

{m\ GXi

In such a case (7.5a) is not necessary. The condition (7.7) is thus a

sufficient one.

In general, problems present themselves in three different manners:

(1) Equations of the first approximation are given (with Re A,- < 0 for

the characteristic exponents); one knows also the forms X{\ the problem

consists in determining the region of stability.

(2) Equations of the first approximation (with Re \ < 0) as well as the

desired region of stability are specified; the problem is to determine X{

which are allowed under these conditions.

(3) The regions of stability as well as X{ are specified; the problem is to

determine the coefficients of linear terms so as to fulfill the prescribed

conditions.

8. Aiserman's problem

In investigation of stability of nonlinear control systems (see Section 13

below) one encounters often the case when the nonlinear terms occur only

in one equation of the system which thus appears in the form:

n n

*i - 2 aUxi +/(**) 5 *i = 2 aUxi (8.1)

where f(xk) is a nonlinear function.

The following argument due to Aiserman* permits analyzing such a

case in a simple manner.

Consider the linear system

n n

*i = 2 aV*i + *i = 2j aH*i (8 2)

corresponding to (8.1) in which f(xk) is replaced by the linear term axk and

assume that the system (8.2) for a = 0, namely,

n

= 2 aHXi (8 2a)

/-I

* M. A. Ai8erman, Lectures on Theory of Automatic Regulation (in Russian),

Moscow, 1958.
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is asymptotically stable (that is, all roots of its characteristic equation have

negative real parts).

Using the Hurwitz criterion it is possible then to find an interval

(a*,a**) such that (8.2) is asymptotically stable for a* < a < a**. If

ax and a2 are in the interval (a*,a**), it seems reasonable to assume that,

if the linear system (8.2) is stable when a is replaced by ax and a2, the non-

linear system (8.1) will be also stable.

This heuristic assumption has been proved for n = 2; for larger n it has

not been proved so far, but on physical grounds it seems plausible to

expect that its application is more general.

For further details of this question we refer to Aiserman6 and indicate

only the application of this procedure to a control system specified by the

d.e.

*i = />ii*i + . . . + pxnxâ€ž + f(xk); k < n

*i = A 1*1 + . . . + Pinxâ€ž; i = 2,. . ., n

where the p are constants and f(xk) is a nonlinear function of one of

By conditions of the problem f(xk) must be between two limiting straight

lines fi(xk) = (a0 â€” ai)xk and f2(xk) = (a0 + a2)xk for any xk where ax

and a2 are constants. It is assumed that the linearized problem in which

f(xk) is replaced by agXk has negative characteristic exponents.

The problem consists in determining the numbers ax and a2 for which

the state of rest: xx = ... = xn = 0 is asymptotically stable for any

initial conditions; this amounts to the determination of a in (7.3). The

problem is solved as follows:

Let V(xv. . ., xâ€ž) = Vd whose Eulerian derivative is given by a pre-

scribed quadratic form U(xx,. . ., xâ€ž) = Ud < 0, so that

"SV dV

Z ^ (A 1*1 + . . . + PiÂ«*â€ž) + Â«o** = U(Xx xâ€ž) (8.4)

The quadratic form

8V ^ 8V . . , . 8V

v + "kWi = I a^'i*1 + . . . + + (aÂ° +

= Ud < 0 (8.5)

if \a\ is sufficiently small. Let â€” ax and a2 be the lower and upper

limits of a for which the form continues to be Ud < 0. which can be

determined by any criterion of definiteness of quadratic forms. Thus, if

Ud < 0 when a is in the interval â€” ax < a < a2, then the function is

n 8V 8V

2 fa. (Ax*x + . . . + pin*n) + /(**) = Ud* < 0

â€¢ See footnote 6, page 147.
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by the definition of f(xk). Therefore, for all a in: â€” ax < a < a2,

/(**) â€” (ao + a)xk make the origin asymptotically stable.

This argument was used by Aiserman in connection with the speed

control of a motor. Let x be the departure of speed from its set value;

z, the displacement of a control member; s, the displacement of the control

element of the servomotor; and y, the displacement of the servomotor.

We count z > 0 if it corresponds to Ax > 0; s > 0 if it corresponds to

Az > 0;y > 0 if it corresponds to As > 0; likewise* > 0 if it corresponds

to the increase of speed of the motor.

Disregarding the details of the scheme, we mention only that for the

linearized performance the following d.e. exist:

where a, b, cv c2, c3, and dx are positive constants. As to N, it is +1 if, in

the absence of the control scheme, the speed of the motor is stable;

N = â€” 1 in the contrary case and N = 0 if the speed of the motor does

not have any tendency to settle on a definite value.

We consider the case when this natural tendency of the motor to

"settle" on a certain speed is a nonlinear function f(x).

One has to replace the linearized term â€”Nax by f(x). Eliminating 5

and z one has a system

x = /(*) - by; y = cx - dy; c = c^c^^; d = dxc3 (8.7)

We assume N = â€” 1. In such a case /(0) = 0 has a positive derivative

Equation of the controlled object: x = â€”Nax â€” by

Equation of the servomotor: y =

Equation of the control element: s = c^z â€” dxy

Equation of the control member: z = c^x

(8.6)

x = OqX - by;

y = cx â€” dy

The requirement that the roots have negative real parts is here

(d - a0) > 0;

be â€” atfl > 0

(8.8)

we assume that these conditions are fulfilled.

We set:

2U = -M(x* + y2); 2V = Ax2 + 2Bxy + Cy2
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M being a positive constant and determine A, B, and C so as to satisfy the

equation

W(aoX_by) + W (cx _ dy) = M(X2 + y2) (8.9)

Equating the coefficients of the like terms, one gets

aoA + cB = -M; bB + dC = M; -bA + (a0 - d)B + cC = 0

(8.10)

Hence

AA = M[d(d - a0) + c(b + c)]

AB = -M(aoc + bd) (8.11)

JC = M[b(b + c) - a0(d - a0)]

where A = (be - agd)(d - a0) > 0 in view of (8.8).

Consider now the form

8V

-M(x2 + y2) + axâ€” = (-M + aA)x2 + aBxy - My*

This form is negative definite if

5*fl2 + 4M(-M + aA) < 0

This condition is fulfilled if a is in the interval: - <zx < a < a2, where

a, = â„¢(~A + VA* + B*); -a, = â„¢(-A- VWT^)

In view of (8.9), M cancels in these expressions and the roots ax and a2 are

= Wt(Â±A* + VA** + BÂ«) (8.12)

A* = d(d - a0) + c(b + c); B* = -(a^c + bd)

Thus, if for all values of x, the curve / = /(*) is between the limits

fi = (ao â€” ai)x> ft = (ao + at)x> where ax and a2 are given by (8.12),

the equilibrium of the control system is asymptotically stable for any

initial conditions.

9. Critical cases

Liapounov investigated also two following critical cases; other critical

cases were studied later.1-2

Â»â€¢ * See footnotes x- *, page 134.
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(1) The characteristic equation has one zero root while others have

negative real parts.

(2) The characteristic equation has a pair of purely imaginary roots, all

others have negative real parts.

In order to give an idea of the difficulty of the problem we outline only

case (1). Consider a system of d.e.

9i = + . . . + ?,,â€ž+i%+i + (9-1)

where q{j are constants, and F, are analytic in jy, beginning with terms of

the second order.

Assume that the characteristic equation of the abridged system (Y{ = 0)

has one zero root, the others having negative real parts.

We replace one of the y{ by x defined by

FI+ 1

x = 2 ai>'i. ai being constants

i-l

and shall try to determine ai so as to have x = 0. We have an identity

n n

X = 2 fl,j, = 2 ai(?ftfx + . . . + = 0 (9.2)

I-l 1 = 1

Equating to zero the coefficients of yi, one has a system

+ . . . + ?fl+i,*an+i = 0; * = 1.2 n + 1 (9.3)

As the characteristic equation of (9.1) has one zero root, the determinant

of (9.3) vanishes, which means that we can find a, not all zero. Assume

Â°n+i ^ 0. One can take thenyâ€ž+1 as the * just mentioned; we may call x

the critical variable; all other remain the same, but we shall designate

them also as

This amounts to transforming the abridged system

yi = qnVi + â– .â–  + ?,-,â€ž+iJn+i (9.4)

by means of the transformation

x = aiyi + ... + a^yâ€ž + an+xyn+x ^

xi = Vi\ * = 1. 2 Â»

which reduces (9.4) to the form

x = 0; ii = />a*i + . . . + />,â€ž*â€ž + PF (9.6)
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For this system the characteristic equation is

\Pn - A

p2x

pnl

0

.D(X) =

px2

. Pin

Pi

p22 â€” A .

p2n

Pt

pn2

â–  pm - A

pn

0

0

-A

= 0 (9.7)

which splits into A = 0 and D^X) = 0, where D^X) is shown by a broken

line. As the characteristic equation is invariant with respect to linear

transformations, all roots of D^X) = 0 have negative real parts. This

transformation reduces (9.1) to a system of the form

(9-8)

We consider first

(9.9)

x â€” X(x,xx,. . ., xn)

*i = Pn*i + â– â– â–  + pinxn + piX + Xiix^,.

Here again, the first equation x = X is the critical one.

the case: n = 0, in which case (9.8) yields

x = X(x) = gx"> + gm+lxm+x

where m > 2, and Â£j and gm+1 are constants. We consider thus only one

critical equation. If m is even, the motion is clearly unstable; if m is odd,

then for g < 0, it is asymptotically stable; if g > 0, it is unstable.

In fact, if m is even, the right-hand side of (9.8) keeps the same sign,

at least in a small neighborhood around the origin, which means that on

both sides of the origin the direction of motion is the same; thus, if to

the right of O, the motion approaches O, then on the left it will, on the

contrary, move away from O, so that the motion is unstable.

If m is odd, the velocity changes when the origin is crossed; forg > 0,

the motion is always away from O; if g < 0 it is toward O, which proves

the statement.

In this case (m odd) by taking the function V = jgx2, for dV/dt one has

the Eulerian derivative

dV

dt

= Â£V+1 + gg,

m+V

xm+2 +

W

(9.10)

Both functions are V = Vd and W = Wd. Moreover, if g > 0, V and W

are of the same sign; hence one has instability. If g < 0, the signs of V

and W are opposite and by Theorem I one concludes that the motion is

asymptotically stable.

If m is even, we set V = x; then dV/dt is definite; as to V, it is of the

same sign as dVjdt for g ^ 0. Thus, according to Theorem III, the

motion is unstable.
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If n > 0 (that is, one has a system (9.8) the investigation of stability is

far more complicated, and we refer to Malkin's text,3 merely mentioning

the principal conclusions.

In the first place it is assumed that the right-hand sides of (9.8) are

subjected to some further limitations, viz.: denoting by Xw(x) and X*0)(x)

terms of X and X{ not containing xv. . ., xâ€ž so that

X<Â°\x) = X(x, 0,. . ., 0) = gxm +

*,<â€¢)(*) = X{(x, 0,. . ., 0) = g^i + Â£0n<+i)*Â»<+i + . ..

where all g are constants. It is assumed that the AT(0) are different from

zero; m, > m; all pi are zero. In this case the conclusion is: the equilib-

rium is unstable if m is even; if m is odd, it is stable asymptotically for

â– g < 0 and unstable for g > 0. In other words, the problem of stability is

the same as in the case of one single equation

x = X<~Â°\x) = Â£*" + ...

This amounts to the following procedure: one can neglect all noncritical

equations and in the critical one neglect all terms not containing the

critical variable, which thus reduces the problem to one equation with one

unknown function.

In the general case when the right-hand sides of (9.8) are not subject to

any additional restriction, the procedure is:

(1) The right-hand sides of noncritical equations are equated to zero,

which permits solving them with respect to x, by means of equations

2/Â».,*>+A* = 0; i=l,2,Â» (9.12)

(2) The variables x{ are replaced by the functions of x (the "critical

variable") in the right-hand side of the critical equation. If the result is

not zero identically, the stability is obtained from one single equation

x = X[x, Ux(x),. . ., Â«â€ž(*)] (9.13)

In such a case it is sufficient to consider only the lowest degree term in

(9.10). If this form is gxâ„¢, we have the previous condition: for g < 0,

the nonperturbed motion is stable (asymptotically); it is unstable otherwise.

The proof of these propositions is ultimately based on a somewhat

delicate analysis of functions V and W and their transitions (Vd, Ve, Vv;

Wd, We) so as to secure the fulfillment of Liapounov's theorem under the

effect of the various terms in the d.e.

* See footnote 3, page 134.
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The applications of these studies are frequent in the analysis of stability

of nonlinear control systems.

We merely indicate examples of the form7

x = ax2 + bxy + cy2 = X(x,y); y = â€” y + kx + lx2 + mxy + ny2

x = (3m â€” l)x2 â€” (m â€” \)y2 â€” (n â€” l)z2 + (3n â€” l)yx â€” 2mzx â€” 2nxy

y =â–  â€”y + x + (x â€” y + 2z)(y + z â€” x)

z = â€”z + x â€” (x + 2y â€” z)(y + z â€” x)

in which the problem of stability is completely investigated by Malkin by

this method. These critical cases are too complicated to be outlined here

but, on the other hand, the full power of the method is felt precisely in

their treatment.

10. Functions V containing time explicitly

In Chapter 5 we outlined the question of stability of periodic motions on

the basis of the classical theory (variational equations with periodic

coefficients). This subject can be also treated on the basis of the second

method of Liapounov as explained in Chapter 5 of Malkin's treatise.3

As it is impossible to discuss this matter in detail here, we shall limit

ourselves to the definition of the nature of functions V and W in the case

when they contain the variable t explicitly. Once these definitions are

made, it is possible to formulate a number of theorems similar to those in

Section 2.

We consider a function V(t, x,. . ., xâ€ž) in the domain

t > t0 > 0; |*,.| < h (10.1)

where t0 and h are constants; V has continuous partial derivatives and

vanishes for xx = x2 = â–  â–  â–  = xâ€ž = 0.

definition: V admits an infinitely small upper limit, if for any A > 0,

one can find p. > 0, such that for all t, xv. . ., xâ€ž satisfying inequalities

t > r0; |*,.| < /x

the inequality \ V(t, xv. . ., xâ€ž)\ < X is fulfilled.

In other words, V admits (lim 0) if it tends to zero for *, 2 â€”> 0 uniformly

in t.

7 A. M. Letov, Stability of Nonlinear Control System (in Russian), Moscow,

1955; English translation, Princeton University Press, Princeton, N.J., 1961.

3 See footnote 8, page 134.
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Thus V =(*!+... + xâ€ž) sin t has (lim 0) uniformly, but V =

sin [/(#! + . . . + xâ€ž)] does not have this property. A function V is V =

Vv if for r0 large and h small it cannot have in (10.1) values of a definite

sign.

Function V is V = Vdis called positive definite if in (10.1) for t0 large

and h small it satisfies the inequality

V(t, x, xâ€ž) > V*(Xx xâ€ž) (10.2)

where V* = V* > 0. Likewise V = Vd is negative definite if, under

the same conditions,

V(t, . ., *â€ž) < - V*(xv. . ., xâ€ž)

Thus, for instance, the function

V = e-'(V + ... + *â€ž>)

is not F = Fd, in spite of the fact that it vanishes for x1 = ... = *â€ž = 0,

since for the x, it approaches zero for t â€”> oo. Hence it is not a Vd

in the sense of the above definition. On the other hand, the functions

Vx = (2 + sin 0 J *,.Â«; F2 = (-2 + sin t) J *,-2

i f

are namely, Vx = Vu > 0 and F2 = FM < 0.

One can give a geometrical interpretation of Vd(t, xx,. . ., xâ€ž) by con-

sidering surfaces in n space with t as parameter. Let cx be some value of

c in V(tx, xx,. . ., xâ€ž) = 0. Equation V = cx represents a closed surface

surrounding the origin for some t. When t varies, the surface varies also.

Consider, on the other hand, a fixed surface V*(xx xâ€ž) = cx and

assume that V = Vd > 0. It can then be shown that V = c, c < cx

remains inside the fixed surface V* = cx, as all points of the surface V*

are outside the surface V = c or on it. On the other hand, if V = Ve

has an infinitely small upper limit, the surface V = c lies outside a fixed

cube \x\ < fi. One can, therefore, find /x so small that inside, and on this

cube, | V | < c/2; thus the surface cannot penetrate into this cube. On

the other hand, V > W and, hence, the surface V = c must lie inside the

fixed surface V* = cv

11. Theorems of Liapounov for functions V containing t explicitly

Consider the d.e.

*, = X{(t, xv. . ., xâ€ž); i = 1, 2,. . ., n (11.1)

where AT, are determined for t > t0 in |*,-| < h. We assume the usual
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156 QUALITATIVE METHODS

conditions: X{ is continuous and satisfies conditions of uniqueness for

given initial data.

We shall state the theorems of Liapounov, omitting their proofs.

(I) If it is possible to find V(t, xv. . ., xâ€ž) = Vdfor which the derivative

W being the Eulerian derivative, is dVjdt = Fe of the sign opposite to V

or is identically zero, the equilibrium is stable.

(II) If the conditions of Theorem I hold and besides F = Fd and V admits

(lim sup 0) uniformly, the equilibrium is asymptotically stable.

For criteria of instability one has analogous theorems.

(III) If there exists a function V(t, #j xâ€ž) such that (a) it admits

(lim sup 0) uniformly; (b) F = Fd; (c) for arbitrarily small and t â€”> oo,

V has the same sign as F, the equilibrium is unstable.

There exists also a theorem due to Chetaev5 concerning instability:

Given conditions:

(1) For t â€”> oo and for a sufficiently small neighborhood around the ori-

gin, the function V > 0;

(2) In this region V is bounded;

(3) In the same region F > 0, if V > a and F > L, a and L being

positive numbers; L = L(a);

then the equilibrium is unstable.

12. Criteria of stability for equations periodic in t

We shall consider now the d.e. of the form

*i = Ai(0*x + . . . + pin(t)xâ€ž + X((t, xv. . ., *â€ž) (12.1)

where p- are periodic functions with period w and the X{ are nonlinear

in #, and have period w in t.

The problem is analogous to that which was studied previously in

connection with the d.e. with constant coefficients, namely: What are the

necessary and sufficient conditions under which the linear terms in x,

determine the stability of (12.1)?

s See footnote 5, page 140.
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We assume again that the terms X{ satisfy the following conditions:

(1) There exists a region t > 0, |*,| < H in which hold the inequalities

\X#,xx,...,xJ\ < A[\xx\ + ... + \xn\] (12.2)

where A is a constant.

(2) In this region, X{ are continuous and satisfy the usual conditions

under which (12.1) has a unique solution for any initial conditions.

We have, moreover, the condition X^t, 0,. . ., 0) = 0 (from (12.2)).

There are two theorems of Liapounov:

(I) If the roots A, of the characteristic equation (that is, the characteristic

multipliers), for the abridged system 12.1 (X{ = 0) have moduli less than

one, the zero solution of the system (12.1) is asymptotically stable for any

choice of X{ provided they satisfy the conditions (1) and (2) with a sufficiently

small A.

The proof of this theorem depends on another theorem of Liapounov

(inasmuch as it can be found in any text on the theory of differential

equations, we omit it here) which states that there exists a linear trans-

formation

yj = /yi(0*i + . . . + fjn(t)xâ€ž; j = 1, 2 n

with periodic coefficients which transforms a linear system of d.e. with

periodic coefficients into a linear system with constant coefficients. (This

theorem is wholly equivalent to the theorem of Floquet, which we proved

in Chapter 5, and the method of proof is the same. The characteristic

exponents of the resulting system with constant coefficients are precisely

the characteristic exponents as defined in Section 5 of Chapter 5.) As the

determinant of the transformation never vanishes, the stability with respect

to the x variables is the same as that with respect to the y variables.

The original system (12.1) becomes then

Si = fctfi + . . . + qinyâ€ž + Y^t,y1,. . .,yn) (12.3)

with constant ^'s where the conditions on F, are analogous to those on Xi,

viz. r

\Y,(t,yv...,yâ€ž)\ < B[\yi\ + ... + \yn\] (12.4)

B being again a constant, which we assume to be small. The hypothesis

guarantees that the characteristic exponents of (12.3) have negative real

parts.

Under the stated conditions there exists one and only one quadratic

form V(yv.. ., yâ€ž) satisfying the equation

2 ^ foi* + . . . + qinyn) = - J y? (12.5)
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and this V = Vd > 0. Its Eulerian derivative is

If B (in (12.4)) is sufficiently small, U = Ud < 0. It is clear that under

this condition V(yv. . .,yâ€ž) satisfies Theorem II (Section 2) which thus

proves also this theorem.

(II) If among the roots of the characteristic equation of the abridged system

(12.1), there is at least one root with a modulus greater than one, the

unperturbed motion is unstable for any choice of the functions X{ satisfying

the stated conditions if A is sufficiently small.

The proof is based on the investigation of the transformed system (12.3),

which has at least one characteristic root with a positive real part. Hence,

one can always find a quadratic form V(yv. . ., yâ€ž) satisfying the condition

"8V"

I to. fatfi + . . . + =aV + I y? (12-7)

,= 1 ji i= 1

where a is a positive constant. There exists a region where V = 0. The

Eulerian derivative in this case is

^ = Â«F+ W(yi,...,yâ€ž) (12.8)

where W = y{2 + ^ Y{. The function is positive definite for

any Y{ provided A is small enough. The form V satisfies the conditions

of the theorem of Chetaev concerning instability.

13. Application to control theory

In recent years the second method of Liapounov has become a useful

tool for investigations of stability of nonlinear control systems and we shall

indicate briefly this important development. It can be shown that the

d.e. of an uncontrolled motion of a physical system (A) can be specified by

a differential system of the form

Vi=tbiaT,tt; i=l,...,n (13.1)

in which the quantities 77, are the generalized coordinates of the physical

system in question and bia are certain constants.
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The addition of a control action modifies this system and it becomes

n

Vi = 2 + w*; i = 1,- . - n (13-2)

a- 1

where p is the coordinate of the control member (servomotor) and tj,

are constants.

To this, one has to add the d.e. of the control member itself; namely:

V*(i + Wfi + Sf*= f*(a) (13.3)

where V2, W, and S are constant parameters (inertia, damping, and restor-

ing force, respectively) and /*(cr) is the generalized force (or moment)

acting on the control member; this force is a function (generally nonlinear)

of the signal a.

The latter, in turn, is derived from the dynamical state of the physical

system to be controlled and is of the form

Â° = 2 pji* - v <13-4)

the quantity r is the so-called "feedback coefficient".

Equations (13.2), (13.3), and (13.4) constitute the differential equations

of the controlled system. The principal difficulty of this differential system

is that it does not yield itself easily to the investigation of stability.

Lourje 8 introduced an important transformation of variables by which the

abovementioned system can be reduced to the canonical form which yields

itself easier to the investigation of stability by the second method of

Liapounov.

The reduction to the canonical form can be made in different manners

but for our purpose it is sufficient to consider the following form

x = -p^ck + f(a); k = 1,..., m + 1

n+l

n+i

A = 2 A** - r'Ka)

*=i

It is noted that, although the number of degrees of freedom of the uncon-

trolled system is n, the control action introduces an "additional degree"

on a formal basis which is of no further importance here. As to pk, they

are roots of the original characteristic equation involving the coefficients

* A. I. Lourje, Nonlinear Problems in the Theory of Automatic Regulation (in

Russian), Moscow, 1951.
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bik; finally yk and f}k are some constants. The problem of stability can be

formulated now in the form originally given by Lourje.

Wc define the Liapounov function V by the relation

V =0 + F +

P f(a)da (13.6)

Jo

with the following definition of functions 0 and F

n + 1 n + 1 - .

aha;

F(axXx,. . ., an+xxn+x) = 22 â€”ITT

(13.7)

*(*!>- . - *â€ž+i) = iOVi2 + . â–  â–  + A,x?)

+ x*j + 2 + . â–  . + Câ€ž-i Xâ€žXn+x

In these expressions the p's are the roots of the characteristic equation and

the constants a, A, and C result from a number of intermediate trans-

formations which are of no interest in this study. The assumption that

there are $ real roots and (n â€” s) conjugate complex roots, accounts for the

above form of the expression for 0. It is seen from this definition of F,

0, and fÂ° f(c)da that the function V so constructed can be made positive

V = Vd and that one can attempt to determine the regions (in the para-

meter space) for which the condition of stability is fulfilled.

If one replaces in V the quantities x{, etc., from the canonical equations

(13.5), one obtains, after somewhat long calculations, the following ex-

pression

% = -[ + ] ~ [ + ] +/(")(") +/(*)(") (13.8)

in which the first two (square) brackets contain only positive terms; those

in parentheses ( ) and ( ) may be either positive or negative.

The essence of the method is to set both terms in parentheses to zero, in

which case one obtains, clearly, the sufficient condition of stability.

The explicit form of this condition is

n+ 1

( ) = Ai + ^ + 2\/ra, + 2a,. t â€”^â€” = 0

*= i Pk + Pi

n+1

( ) = Ca + p,+a + 2Vras+a + 2a,+a 2 , * ;= 0;

*=1 (Pa + Pk)

a = 1,. ..,(n+ 1 - s)

(13.9)

where Ai, Ca, ai, etc., are certain constants.

It is clear that equations (13.9) define a certain region G in the parameter
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space and, if the parameters are within this region (that is, when ( ) < 0

and ( ) < 0), one is certain that the conditions of the first theorem are

fulfilled. The rest of calculation relates to numerical calculations of

intervals in which the values of different parameters must be located. In

Letov7 the reader can find numerous applications of the method in connec-

tion with various problems of automatic regulation and control.

A remark is noteworthy: the essence of the method is to formulate a

sufficient condition of stability by annulling the third and the fourth terms

in (13.8). It is clear that this condition is by no means necessary. One

can question as to whether the fulfillment of this sufficient criterion would

not impose practical difficulties by providing a margin of stability which

may be unnecessarily too large and, for that reason, difficult to realize in

applied problems.

There is no definite answer to this question at present, but in some cases

calculations were made7 to check the practicability of this sufficient

criterion by the necessary and sufficient criterion yielded by the Hurwitz

theorem. Since the latter holds only for linear systems, this requires a

preliminary investigation as to the possibility of using conclusions derived

for a linearized system as a guide for a comparison, with the results yielded

by the sufficient criterion of Liapounov. A few results so obtained seem

to show that in normal cases the use of the sufficient criterion does not

introduce any practical difficulties. In all cases it guarantees not only the

stability on the whole but permits ascertaining the margin of stability by a

more detailed study of the regions G determined by (13.9).

14. Concluding remarks

The principal advantage of Liapounov's second method is that the

difficult (and often impossible) problem of integration of a system of the

variational equations is obviated and replaced by a much simpler problem

of an algebraic character. The second advantage is that it gives directly

stability in the large instead of stability in the neighborhood of positions of

equilibria as in the classical method. These two basic advantages render

the method particularly valuable for applications as has been shown in the

preceding section.

The difficult part of the method is in the determination of the function V.

It is observed that the method does not give any means for determining

such functions, but merely states that if such a function exists (that it

satisfies the criterion) the stability condition is fulfilled.

In a special case of systems with one degree of freedom the above criterion

7 See footnote page 154.
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leads to planar regions limited by algebraic curves so that the problem of

stability in the large (including the "margin of stability") presents itself

in a very simple manner; we refer to Letov7 where are indicated many

examples of application of the second method to the various control

problems. It is needless to say that all these problems become more

difficult if one attempts to solve them by the classical method (Chapter 5)

and, besides this, ascertaining the regions of stability becomes accordingly

more difficult.

7 See footnote 7, page 154.
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Chapter 7

THEORY OF BIFURCATIONS

1. Introductory remarks

This chapter is a further extension of the theory of Poincare concerning

the effect of changing a parameter on solutions of a d.e.1 We discussed

this subject briefly in Chapter 2 with regard to conservative systems

(Section 4) where it was shown that the passage of the parameter A through

a critical or bifurcation value A = A0 causes a qualitative change in the

topological structure of the trajectories (Sections 5 and 6). Likewise, in

Chapter 3 it was mentioned that a "concentric" pattern of limit cycles may

undergo a similar qualitative change, when, for instance, two neighboring

cycles (one stable and the other unstable) approach each other as the

result of the parameter variation and for A = A0 coalesce, giving rise to a

semistable cycle, an essentially unstable structure that disappears if the

bifurcation value of the parameter is crossed. We shall now enter into a

more detailed study of these effects, which have found important applica-

tions in the theory of oscillations.

Two important cases of bifurcations are investigated below. The first

case arises in the so-called phenomena of self-excitation which we encoun-

tered in Chapter 3. In the simplest and, at the same time, most important

case of soft self-excitation in connection, for instance, with an electron-tube

oscillator, the bifurcation effect occurs as follows: if the parameter A (in

this case the parameter is the coefficient M of mutual inductance between

the anode and the grid circuits) is sufficiently small (A < A0), the circuit

operates as an amplifier and, if there is no signal, one has obviously the

state of rest. If A increases up to the bifurcation value A = A0, the circuit

is just on the threshold between the amplification and the generation ranges.

1 H. Poincare, Les mithodes nouvelles de la micanique cfleste T.l, Gauthier-

Villars, Paris, 1892; also E. Goursat, Cours d'Analyse T.2, Gauthier-Villars, Paris,

1918; H. Poincare, Acta Math. 7, 1885; Figures d'dquilibre d'une masse fluide,

Naud, Paris, 1903.
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For A > A0 a self-sustained oscillation appears and its amplitude begins to

grow with A. The passage of A through its bifurcation value A = A0 can

be described by the following scheme.

, Stable limit cycle

Stable singular point <^ (I)

1 Unstable singular point

which thus justifies the term bifurcation (that is, "a fork"). The phenome-

non is obviously reversible.

The phenomenon of hard self-excitation is the same except that the

limit cycle appears suddenly as soon as A = A0 is crossed; that is, its

amplitude does not grow from zero as in the "soft" case. The phenome-

non is clearly reversible and can be formulated if one reads scheme I with

opposite directions of arrows corresponding to the opposite variation of the

parameter A.

The second important case, also of frequent occurrence in applications,

arises when two limit cycles, one stable and the other unstable, coalesce

and subsequently vanish. This situation can be described by the

scheme:

Stable limit cycle\

\

yâ€”â–º Semistable limit cycle â€”> 0 (II)

/ (A = Aâ€ž) (A>A0)

Unstable limit cycle/

(A < A0)

The sign 0 on the right-hand side means the disappearance of cycles.

There again the scheme is reversible; this means that, under certain

conditions, in a region originally free from limit cycles, a semistable cycle

appears when a parameter reaches its bifurcation value; if this value is

crossed, two cycles, one stable and the other unstable, split from the semi-

stable cycle. The essential point is that the cycles always appear (or

disappear) in pairs. As a limit cycle is a periodic solution, scheme (II) is

merely a topological representation of a theorem of Poincare which states:1

Periodic solutions disappear (or appear) by couples in the manner of real

roots of an algebraic equation.

Returning to the theory of bifurcations in general, there are two ways

to approach this subject: (1) the exact method; and (2) the method resulting

from the theory of approximations.

1 See footnote x, page 163.
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As far as the exact method is concerned, it is based on the use of the

so-called "successor function" introduced by Poincare.f The use of this

method is very limited at present and the only case which could be solved

completely by this method (Andronov2) is the "soft" case of scheme (I).

Some attempts have been made to extend the method to other cases, but

so far they have not been completed.3

With regard to the theory of approximation, the matter is considerably

simpler; in particular, in the theory of the first approximation one fre-

quently succeeds in obtaining the d.e. for the amplitude in the form

Â§ = Hp) (i-i)

where <P(p) is a polynomial. In such a case the problem of circular

motion is reduced to the existence of real positive roots of the equation

= 0, and problem (II) of the bifurcation theory amounts to the

condition of existence of one double (or, generally multiple) root of this

equation at a point where the roots become complex, so that, from the

physical standpoint which admits only real positive roots, such roots

cease to exist. Problem (I) also acquires a simple interpretation, as will

be shown in Section 7.

2. Successor function; geometry of bifurcation effects

We outline first certain theorems of Poincare in his "theorie des con-

sequents."

It is convenient to define the successor function for a planar d.e. in the

following way. Let AB (Fig. 7.1) be a differentiable arc without contact,

and S be a parameter (for example, arc length) on AB. Denote the points

of AB by M = M(S). If the trajectory through a point M0 = M(S0) of

AB has a subsequent intersection with AB at a point Mx = M(Sx), we

call Mx the successor of M0. The function 5x = <p(S0) is called the

successor function and is clearly continuous on any sub-arc on which it is

defined. (<p fails to be defined at S0 if, for example, the trajectory through

t Poincare uses the term consequent; we use here the term successor function

suggested by M. Schiffer. The originally used term function of the sequence does

not seem to translate exactly the meaning of Poincare's term.

* A. Andronov and S. Chaikin, Theory of Oscillations (original text in Russian),

Moscow, 1937; English translation by S. Lefschetz of A. Andronov and S. Chaikin,

Theory of Oscillations, Princeton University Press, Princeton, N.J., 1949; A.

Andronov, A. Witt, S. Chaikin, Theory of Oscillations (in Russian); this book is the

second edition (1959) of A. Andronov and S. Chaikin, Theory of Oscillations

(original text in Russian), Moscow, 1937.

â€¢ E. A. Leontovich, Dokl. Ak. Nauk (USSR) 78, 1951.
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M0 ends at a singular point, and thus fails to return to AB.) We confine

ourselves to the case in which a sub-arc A'B' can be found on which <p is

defined and such that the successor of every point of A'B' is also a point

of A'B1. Thus by the uni-dimensional Brouwer's Fixed Point Theorem

(see Chapter 3, beginning of Section 7), the mapping which carries each

point into its successor has a fixed point; that is, there is a number S*

such that

9(SÂ«) = S* (2.1)

This is obviously the condition for a closed trajectory.

Poincare1 points out that <p(S) is continuously differentiable and,

furthermore, that <p'(S) > 0. If one takes a point M0' on AB (Fig. 7.1)

slightly to the right of M0, the successor point Mx' will be also to the right

of Mx because different trajectories cannot intersect. In other words,

<p(S) is a nondecreasing function.

We consider now the case that the function <p depends also on a parameter

A, and <p(S,X) is differentiable within certain intervals of 5 and A. We

ask for closed trajectories for a range of values of A near A0, assuming that

for A = A0 a cldsed trajectory exists:

<p(S0*, A0) = S0Â» (2.2)

We must therefore find a function

So = HA) (2.3)

defined for A near A0 such that

rfrMA) = r(A)

1 See footnote page 163.

(2.4)
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The existence of t(A) follows from the implicit function theorem provided

<P,(S0;\0) / 1. We then find that

r'(A)

9>aMA),A]

1 - 9,.WA),A]

(2.5)

Equation (2.2) may be interpreted graphically as the condition for the

intersection of the line yx: Sx = S0 with the curve y2: Sx = <p(S0,\0)

(Fig. 7.2). The abscissa 50* of their point of intersection determines the

fixed point on the segment AB, that is, the point at which the limit cycle

cuts AB in Fig. 7.1. If the trajectory is perturbed so that its intersection

with AB occurs at a neighboring point (either at S0' or S0" in Fig. 7.2)

there exists stability, which results in the approach to the point S0* at

which the trajectory becomes closed. The condition of stability results

from the elementary considerations regarding limit cycles in Section 1,

Chapter 3. In fact, if the disturbance

brings the point S0* to the point S0'

corresponding to a greater radius

vector on the spiral trajectory C", the

fact that the value S0'M' of the suc-

cessor function at this point is less than

the value needed for "closing" the

trajectory (since y2 < jyx in this region)

results in the decreasing radii vectors

until the point S0* is reached when the

trajectory is again closed. For a per-

turbation in the opposite direction

(50* â€”> S0"), the opposite effect occurs;

the radii vectors increase (since y2 > yi in this region) and ultimately the

closing takes place again, since S0" is brought to S0*.

The configuration shown in Fig. 7.3 corresponds to an unstable cycle,

as one ascertains by applying the same argument. It is interesting to note

that these graphical criteria resulting from the argument of the successor

function have precisely the same form as those used in the stability criteria

for electric arcs; stabilized by the insertion of an ohmic resistor. In fact,

there exists the so-called Blondel-Kaufman criterion of stability which

states: If the nonlinear characteristic of the arc has a smaller slope at the

point of its intersection with the straight line (of the ohmic resistance

drop), the equilibrium is stable; in the opposite case, it is unstable. It is

noted that the graphical argument based on the application of the successor

function leads to exactly the same formulation; the successor function y2

plays the role of the nonlinear characteristic and the straight line yx,

Figure 7.3
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expressing the condition for a closed trajectory, has a role analogous to that

of the ohmic resistance line.

The situation is different if one considers a contact between y2 and yv

as shown in Fig. 7.4. For the point of contact one has a special situation

in that S0" > 50* is obviously a zone of stability, whereas S0' < S0* is

one of instability. One concludes, therefore, that at the point of contact

M0 there appears a semi-stable cycle. If one now changes the parameter A

so that the curvey2 becomesy2' (Fig. 7.4), the semistable cycle disappears;

but if A is changed in the opposite direction resulting in the curve y2",

there appear two cycles at M' (with "radius" S0') and at M" (with "radius"

S0") of which the former is unstable and the latter is stable.

In the same case (that is, in the presence of a contact between yx and

y2), but with the concavity of y2 turned toward the Sj axis, there is the

So

Figure 7.4 Figure 7.5

difference that the zones of stability and instability are interchanged; this

applies to the semi-stable cycle as well as to the cycles into which it splits

as the result of the parameter variation.

The form of the successor function 5x = 0(So,A) depends on the

form of the d.e., but the above criteria of stability are quite general.

Suppose, for instance, that this function has the form shown in Fig. 7.5.

One sees immediately that the limit cycles M2 and Mt are stable and that

Mj and M3 are unstable. If the successor function y2 either moves as a

whole or undergoes a deformation as the result of the parameter variation,

one ascertains the appearance or disappearance of cycles, but this happens

always in couples of stable and unstable cycles. One can also show that,

if the contact is of a higher order, more than one pair of cycles can thus

originate in a region which was originally free from limit cycles. Like-
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wise, the parameter variation in the opposite direction produces a mutual

annihilation of these cycles in couples.

The geometrical interpretation of the bifurcation theory on the basis of

the successor function of Poincare can be connected with the criterion of

stability in terms of the characteristic exponents (Chapter 5), as was also

shown by Andronov.2

In fact, on the basis of the preceding argument (Figs. 7.2 and 7.3), the

limit cycle is stable if ^s(50,A)5o-so. < 1 and unstable if it is > 1, where

the symbol: ^s(50,A)So-S0.; means the slope of the successor function at

the point S0 = S0*.

If one writes

^5â€ž,A)So.v = eÂ»r (2.6)

where h is the characteristic exponent and T is the period of one rotation

of 2tt of the radius vector, it is clear that the above geometrical formulation

can be connected with the criterion used in the theory of the characteristic

exponents. In fact, if h < 0, ^(^o^s s0Â» < 1 which means stability;

likewise, h > 0 means instability.1

3. Bifurcation of a cycle from a focus

The bifurcation effect of type (I) (Section 1) has been solved completely

by Andronov on the basis of the general theory outlined in the preceding

section, and we shall review this method of attack.

It is recalled (Section 6, Chapter 1) that a linear system corresponding to

a focus is

x = ax â€” by; y = bx + ay (3-1)

One can start therefore with the differential system

x = ax - by + Xt(x,y); y = bx + ay + Y2(x,y) (3.2)

where Xt and Y2 are polynomials of at least the second degree in x and y.

The characteristic equation S2 + pS + q = 0 has in this case a pair of

complex conjugate roots Sx = a 4- ib; 52 = a â€” ib, where Sx + St = 2a

= ~Pj q = a2 + 62; Si - St = 2ib = iV4tf - p2; 4? > />*; 2b =

+ V4? - />*.

As it is desired to investigate the bifurcation point in terms of a para-

meter A, it is convenient to introduce this parameter in the coefficients a

1 See footnote *, page 165.

1 See footnote x, page 163.
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and b as well as in the nonlinear terms X2 and Y2. We shall therefore

write (3.2) as

x = a(A)Â« - b(X)y + X2(x,y;X); y = 6(A)* + a(X)y + Y2(x,y;X)

(3.3)

and, likewise, for the roots

Si - a(X) + ib(X); S2 = a(A) - ib(X); b(X) > 0 (3.4)

We wish to investigate the change of stability of the singular point in

accordance with the bifurcation scheme (I) (Section 1), and it is logical to

expect that this bifurcation point is the root of a(X0) = 0, according to the

well known property of the focal point. Written in polar coordinates, the

system (3.2) is

idr'/dt = a(A)r* + X2(x,y;X)x + Y2(x,y,X)y

de/dt = (llr*)[b(Xy + Y2(x,y;X)x - X2(x,y;X)y)

The d.e. of the integral curves is

dr _ a(X)r + X2 cos 6 + Y2 sin 6

d6 ~ T b(X)r + Y2 cos 6 - X2 sin 8 * )

where X2 = X2(r cos 6, r sin 6,X), Y2 = Y2(r cos 6, r sin 0,X). Using the

expansion 1/(1 - Z) = 1 + Z + Z2 + . . ., with Z = (X2 sin 6 - Y2x

cos 6)lb(X)r, equation (3.6) can be written as

Â»-(ffi'+*-~y,*>+'+''+"-) <37)

Assuming that the problem is nearly linear, X2 and Y2 have a reasonably

small upper bound and, as they begin with terms in r2, (r < 1), \Z\ < 1,

the series in (3.7) converges and, as 6(A) # 0, one can expand the right-

hand side in a power series in r, which gives

drjd6 = rRx(e,X) + rW^X) + r*Rs(6,X) + ... (3.8)

The identification of (3.7) and (3.8) yields

R^X) = a(A)/6(A) (3.9)

The other coefficients, R2, R3,. . ., are polynomials in sin 6 and cos 6 and

are thus periodic with period 2n.

If r = r(0,ro,A) is a solution of (3.8), one can expand it also in powers of

r0, the initial condition, which gives

r = romx(0,A) +r<?u2(6,X) + ... (3.10)
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Omitting the intermediate calculations, one obtains finally a recursive

system of d.e. for the determination of the functions uâ€ž viz.:

duJdO = UjRji6.X)

dujd6 = UtR^X) + Uj*RJ6,X) (3.11)

as r(0,ro,A) = r0, u^O.A) = 1 and Â«,(0,A) = 0, i = 2, 3,. . . with these

initial conditions, one determines the functions M,-(0,A). One finds that

Ux(0,\) = exp [a(A)0/6(A)] (3.12)

We look now for the appearance of a limit cycle at the bifurcation point

A = A0, which corresponds to a(A0) = 0. It is seen from (3.5) that

d6jdt keeps the same sign for small values of r.

The criterion for the existence of a limit cycle (Section 2) is here

#r0,A) = r(2n,r0,X) - r(0,ro,A) = r(2n,r0,X) - r0 = 0 (3.13)

Since ip is analytic in r0, one has

<Kr0,X) = Â«1(A)r0 + a2(A)r02 + a3(A)r08 + . . . (3.14)

where ai(A) = utf^X) - 1 = exp [27ra(A)/6(A)] - 1

a,<A) = u,(27r,A); i = 2, 3,... (3.15)

The condition for the existence of a limit cycle is then

iH'o. Ao) = 'oM^o) + a2(Ao)''o + Â«3(^o)''o2 + ...] = r^r^Xo) = 0

(3.16)

Rejecting the trivial solution r0 = 0, this condition is that A0 is the root of

equation:

<p(r0,X) = ai(A) + a2(A)r0 + a3(A)r0Â« + . . . = 0 (3.17)

This equation may be regarded as defining a certain curve in the (r0,A)

plane, and the question arises whether this curve has a branch in the first

quadrant, since both r0 and A must be positive; moreover, r0 is supposed to

be small, as we are interested here in the problem of a bifurcation only.

It is to be noted that, for the bifurcation value A = A0, one has a(A0) = 0.

Differentiating the first equation (3.15), one has for i = 1

ttx'(A0) = 27ra'(X0)lb(X0) * 0 (3.18)

It can be shown2 that, if ai(A0) = 0, one has also a2(A0) = 0, since

ai(^o) = 0 implies a(A0) = 0 and, therefore R^6^) = 0. Hence, from
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the first equation (3.11), one has dujd6 = 0, so that u^fl.Ao) = const

= k^O.Ao) = 1. From the second equation (3.11) one has du2(6,\o)ld6

= R2(6,X0). Since ua(0,A0) = 0, we have also

Â«*(Aâ€ž) = ut(2n,\0) - Â«2(0,A0) = Â«a(27t,A0) = jj Rtf^ye = 0

since R2 is a homogeneous polynomial of the third degree in sin 6 and

cos 6. More generally, it can be proved that the first nonvanishing term

in (3.16) is always odd.

The assumptions that fl(A0) = ai(A0) = 0; ^'(Ao) ^ 0 show that the

point A of the curve <p = 0 is an ordinary point. If it were a multiple

<M/-,,x)<o

*(/;,x)>0

Figure 7.6

Figure 7.7

point, one would have <pro = <pA = 0, whereas here we have <pT(j = a2(A0)

= 0, but <pA = ai'(X0) # 0.

In order to see whether the curve C: r0 = r0(A) is situated to the right

or to the left of the tangent to it at the point A (Fig. 7.6), we examine the

sign of (diXldr02)A by the implicit functions rule. We "have:

<lro 9*' dr02 d\\<pj dr0 dr0\<pj

Since the derivative is to be taken at the point A: A = A0,

(d*\\ 2a3(X0) = 6(A0)a8(A0)

W/*-^ Â«i'(A0) ~'(Ao)

As 6(A0) > 0, the sign of the second derivative at point A is opposite to

that of a8(A0)/a'(A0) which gives the following four cases:

(1) a'(A0) > 0; a3(A0) < 0

If A increases monotonically and passes through A = A0, the real part

(3.19)
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of the roots changes from negative to positive so that the focus changes

from stable (for A < A0) to unstable (for A > A0); to this corresponds the

positive sign of the second derivative and, therefore, a minimum of <p.

In such a case, the curve <p = 0 exists only for A > A0, as is shown in

Fig. 7.6. One verifies easily that the tangent to the curve at the point A

is vertical. The solution of <p = 0 is possible only for A > A0. For some

value A = Xx the radius of the limit cycle is obtained by drawing a parallel

to the r0 axis through the point A = Xv

(2) fl'(A0) > 0; a3(A0) > 0

In this case the sign of the second derivative is negative, which corre-

sponds to the maximum of <p = 0, Fig. 7.7. As in this region (A < A0) the

singular point is stable, the limit cycle is unstable. The bifurcation of the

cycle in this case occurs for A = A0.

The two remaining cases:

(3) fl'(A0) < 0; a8(A0) > 0

and

(4) a'(X0) < 0; Â«3(A0) < 0

are treated in a similar manner, with stabilities and instabilities reversed.

Thus, in all cases a change of stability of the singular point is accom-

panied by a bifurcation of a limit cycle according to scheme (I) (Section 1).

4. Applications of the bifurcation theory

Numerous applications of the theory have been investigated in the

preceding section. Thus, for instance, an amplifier circuit with re-

generation begins to work as an oscil-

lator as soon as a certain critical value r

of the feedback is reached. Likewise,

one observes frequently that a control

system, operating normally without

oscillations, suddenly begins to oscillate

or "hunt" after a critical value of a

parameter (regulating the intensity of

the control action) is reached.

Let us consider a standard electron-

tube circuit with inductive coupling

(Fig. 7.8). With the usual notations,

the d.e. of the oscillating circuit is:

Figure 7.8

r di

M

dt

(4.1)
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The right-hand term in this d.e. indicates the action of the anode current

Ia exerted inductively, M being the coefficient of mutual inductance

between the plate and the grid circuits. The electron tube may be

regarded as a nonlinear conductor defined by a polynomial relation

Ia = I0 + Sp + S2v* + ... (4.2)

where v is the grid voltage and the 5, are certain numerical coefficients by

which the polynomial (4.2) is fitted to the experimental curve Ia = f(v).

It is customary to introduce the so-called saturation voltage V defined as a

sufficiently high voltage v for which to a Av corresponds practically

ala ~ 0. The expression (4.2) acquires then a more convenient form

Ia = V(fixu + riÂ«2 - SiÂ«3) (4-3)

where u = v/V, the coefficients fiv yv 8x being positive. The minus sign

before the last term results from the usual form of characteristics of

electron tubes.f

As it = (ljCV) J0' idt,u = ijCV, and it = (dijdt)ICV, after a differentia-

tion, one has:

dljdt = (dljdu)(duldt) = + 2Yxu - 38^*)* (4.4)

Substituting (4.4) into the d.e. (4.1) and introducing a new independent

variable t = a>0r, a>0 = Vl {LC, one has

it + u = ()3(M) + 2y(M)u - 38(M)Â«2]Â« (4.5)

where the differentiations are now with respect to t and j3(M) =

(M - RC)w0

y(M) = MOxa>0; 8(M) = MSx<o0 (4.6)

Here the coefficient M plays the role of the A of the preceding theory.

The d.e. (4.5) is of the Ltenard type (Chapter 4) with

/(Â«) (fi + 2yu - 38Â«2)

It is assumed that the coefficients j8, y, and S are small numbers, as it

follows from the assumption that the problem is nearly linear.

The equivalent system is here

du/dr = w; dwjdr = â€” u + (fi + 2yu â€” 38m2)Â«;

The point u = to = 0 is a singular point and, keeping the linear terms

only, one finds that it is an unstable focus, the roots being

Sht = 03/2) Â± V03/2)2 - 1

t We shall enter more fully into the question of signs in Chapter 22.
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It is clear that fi(M) = (M0px - RC) = 0 corresponds to the threshold

separating two different phase portraits; for /3 < 0 the integral curves are

spirals converging to the stable focus; for Â£ > 0, these spirals diverge from

the unstable focus. Hence, M0 = RCf^x is the bifurcation value of the

parameter M.

Setting u = 2axx + lbxy\ w = 2x with a1(A) = 0(A)/2; b^X) =

Vl + (j3/2)2 gives the system

x = - btf + [4r(a!* + brf) - 128(0!* +

a (4.')

y = bxx + axy â€” Y>y(axxx + btf) â€” 128(0^ + b^y^x

As the parameter A of the general theory in this case is M, the usual

procedure of determining the roots of the characteristic equation corre-

sponding to (4.7) shows that the derivative with respect to M of the real

part of the roots for M = M0 is positive, which corresponds to the case

ai'(^o) > 0 of the preceding section. In other words, when the parameter

M increases passing through the bifurcation point, the singular point

changes from stable to unstable; physically this means that the circuit

begins to operate as an oscillator for M > M0 after its previous operation

(M < M0) as regenerative amplifier.

It remains to be seen that M = M0 is a bifurcation point of the first

kind which reduces to showing that a3(A0) < 0. For the sake of sim-

plicity we shall continue using the letter A instead of M.

One ascertains that a1(A0) = 0, i1(A0) = 1. If one compares (4.7) with

(3.11), making use of the polar coordinates, one has

*i(M) = 0;

Ri(6,X) = 4y(A0) sin 6 cos2 0; (4.8)

R3(6,\) = 16y(A0) sin8 6 cos3 6 - 128(A0) sin2 6 cos2 0

and, for A = A0, the recurrent system has the following form:

^ = 0; ^ = 4y(A0) sin 6 cos2 0; ^ = 2Â«2*2(0,A0) + *0(0,A0)

(4.9)

Upon integration of these d.e., one gets

Â«^Ao) = 1; Â«2(0,A) = 3y(A0)(1 - cos30); Â«3(0,A) = -38(\o>

Using expressions (4.6), one has

Â«3(A0) - -IttRC^S^) < 0

which establishes the existence of a stable cycle.
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Similar phenomena are observed in control systems. As an example

we consider the problem of anti-rolling stabilization of a ship by the so-

called activated tank method. This method consists in impressing on the

water column, contained in port and starboard tanks joined by a duct, a

control action through an axial pump in the duct. We will not consider

here the stabilization problem properly speaking but will investigate only

the behavior of the controlled ballast when the ship is on a rigid foundation

(for example, in a drydock).

To simplify the problem, we consider the water ballast as a liquid

pendulum governed approximately by a linear d.e.

J<j> + hp + op = 0 (4.10)

where the significance of the constants J, b, and c is obvious, and <p is the

angle measuring the departure of levels in the tanks from their horizontal

position. The action of the axial pump on the water ballast may be

represented by a function of the form

M(a) = aia - a3a8 (4.11)

where a is the angle of the blades which is adjusted continuously by the

control system; with a suitable scale, M may represent directly the moment

of the water ballast with respect to the center of gravity of the ship.

According to the theory of this method of stabilization, the blade angle

a is varied continuously in proportion to the instantaneous angular velocity

of the ship, and this, in turn, is proportional to the rate of flow of the

ballast in the duct. One can, therefore, replace a by <p in (4.11) so that the

d.e. of the controlled water ballast is

Jip + (b - a^> + ajp* + op = 0 (4.12)

As the coefficients ax and a3 relative to the control system are generally

certain functions of the control parameter (for example, the coefficient of

amplification or "gain" in an intermediate control circuit), it is seen that

the phase portrait of the system depends on the sign of the coefficient

b â€” a^A) = k. As long as k > 0, the d.e. (4.12) has the state of equilib-

rium represented by a stable focus; but, if k becomes negative, the focus

becomes unstable. Hence, the value A = A0 for which b = Â«^Ag) is again

a bifurcation value.

Experiment shows that, if A < A0, the system is at rest, but as soon as

A Â£ A0, the blades begin to oscillate with corresponding oscillations of the

ballast. Here again one is in the presence of the bifurcation scheme (I).

The rest of the problem can be treated in the same manner as in Section

3, but the calculation of the limit cycle is complicated and we do not

reproduce it here.
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The difficulty is due to the fact that, whereas the determination of the

singular point requires only the quantities of the first order, for the

determination of limit cycle one has to go to the third-order quantities, as

was explained in Section 3. For applications this question is of a somewhat

academic interest and, once the existence of the bifurcation point has been

ascertained, one is generally certain that oscillations set in, beginning with

this point.

5. Other bifurcation problems

Leontovich 3 has investigated the bifurcation of a cycle from a separatrix

(Fig. 7.9). The problem may be-

described as follows. For a range of

values of a parameter in the d.e., the

separatrix P issuing from a saddle

point S is approached by the tra-

jectories issuing from the unstable

singular point F in the interior of P.

Conditions are then investigated under

which, near a certain parameter value,

a cycle C appears near P and in its

interior, so that the trajectories depart-

ing from F now wind themselves onto

C.

Another interesting problem of

bifurcations has been investigated

recently by Sansone and Conti * in con-

nection with the d.e.

x = y* - (x + 1)[(*Â« - 1)2 + A];

y = -xy (5.1)

indicated by Uno and Yokomi5; in Figure 7.9

this investigation a considerable num-

ber of bifurcations of the first kind is indicated when the parameter A varies.

A few other cases of bifurcations are also indicated in Sansone and Conti's

treatise 6 but, aside from the classical case which was investigated in Section

3, in all these cases the connection with the theory of oscillations has not

been definitely established so far.

* See footnote *, page 165.

4 G. Sansone and R. Conti, Arm. Math- pur a e appl. (4), 27, 1954; 38, 1955.

5 T. Ono and R. Yokomi, Math. Japonica 2, 1952.

â€¢ G. Sansone and R. Conti, Equazioni differenziali non lineari, Ed. Cremonese,

Roma, 1956.
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Other bifurcation problems are treated in Chapter 22 in connection with

Li^nard's equation whose parameters may be regarded as bifurcation

parameters of the general theory.

6. Examples of coalescing limit cycles

We first give an example of bifurcation from a semi-stable cycle to a

stable plus an unstable cycle. The d.e. in polar coordinates is

f = r(1 - r)(1 + e - r); 6 = 1 (6.1)

which has the cycles r = 1 and r = 1 4- Â£, e > 0. For r < 1 or r > 1

+ E, t > 0; for l<r<l+e, r < 0. Hence the cycle r = 1 is stable

and the cycle r = 1 + e is unstable. As e -> 0, the latter cycle converges

to the former; and, ate = 0, it disappears. The cycle r = 1 is semi-stable

at e = 0. Thus Â£ = 0 may be considered as a bifurcation value for (6.1).

To illustrate the fact that the coalescence of two limit cycles may be

accompanied by the disappearance of both, we cite the d.e. in polar

coordinates

t - r|l - r|Â«|l + â–  - r|- sgn [(1 - r)(1 + E - r)]

which also has the cycles r = 1 and r â€” 1 + e for e > 0. As before, the

first cycle is stable and the second unstable. For e = 0 (6.2) becomes

r = r(1 - ra); 6 = 1 (6.3)

which has no cycles at all, the trajectories being spirals issuing from the

origin. In this case we cannot speak of a bifurcation.

7. Algebraic approach to the bifurcation theory

The analytical method (like that of Section 3) based on the use of the

successor function in the series solution has not been developed sys-

tematically for other problems of bifurcations.

A much simpler approach to problems of this kind appears in the theory

of approximations (Part II). It is useful, however, to outline the method

here, omitting some details which will be taken up in Chapter 16. We

shall encounter numerous applications of this method in applied problems

of Part m.

Let the system

* = X(x,y); y = Y(x,y) (7.1)

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 1

6
:0

8
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



THEORY OF BIFURCATIONS

179

be transformed to polar coordinates p, </<:

*{t = *(<Â»,*); % = Â«W) (7.2)

where p = x1 + *â–  = *Â» + y* = r* and ^ = arctan v/x where * =

r cos ip,y = r sin 0.

In a number of problems relative to self-sustained oscillations, equations

(7.2) appear in the form

*Â£ = <Xp); Â§ = const (7.3)

D.e. of this kind appear generally in the theory of the first approximation

and relate to the van der Pol (or Lilnard) equation when/(x) is a poly-

nomial of even degree.

The second equation (7.3) does not generally play any role in the

theory which centers only on the firstâ€”the amplitudeâ€”equationf

% "*0>) (7.4)

Since the circular motion (dpjdt = 0) corresponds to the roots of the

equation

<Kp) = 0 (7.5)

and these roots are to be positive, the problem reduces to the determination

of real positive roots of 4>(p); if roots are negative or conjugate complex,

they are disregarded, which means that no equilibrium exists in such a

To each positive root, say p0, in view of a unifocm rotation ij> = const,

corresponds a circle in the phase plane and all such roots determine a

polycyclic configuration of a concentric type which we have investigated

by the topological argument in Section 5, Chapter 3. The concentric

circles corresponding to the positive roots p0, p0',. . . are thus the limit

cycles in the first approximation. If one goes to higher approximations,

one finds that there are harmonics superimposed on the fundamental waves

with amplitudes p0, p0',... but this is of no importance for our purpose here.

The variational equation of (7.4) corresponding to p = p0 is

t The case considered here relates to the d.e. of the form: Â£ + pf(xjc) + * = 0;

if, however, one has the d.e. of a more general form: S + pf(xjc) + g(x) = 0 the

second equation does not reduce to a constant as will be shown in Chapter 22,

but this circumstance does not affect the question of bifurcations investigated here.
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and it is seen that a root p0 (and hence the corresponding circular cycle) is

stable if

*>o) < 0 (7.6)

Here, as usual, the symbol <Pp(p0) means the derivative of $(p) with

respect to p in which p = p0 has been substituted after the differentiation.

In what follows we shall often encounter cases when <P(p) is of the form

4>(p) = -K(p - Px)(P - p2).. . (p - Pâ€ž)

which corresponds to the roots pi , p2,. . .; if these roots are distinct

(Pi ^ Pi ^ P3 ^ . . .) one nas a graPn of *(p) shown in Fig. 7.10.

The alternate stabilities of limit cycles result directly from the signs of

the slopes <Pp(pf) at points A, B, C,.. . (Fig. 7.10); thus, roots pv p3>. . . are

Â»(?)

Figure 7.10

unstable and p2, pi,. . . are stable. For the configuration shown, the state

of rest (p ~ 0) must be stable in order to have a regular configuration with

alternate stable and unstable cycles, with the singular point at the center

considered as a cycle reduced to one point.

It is convenient to introduce the following convention: a polycyclic

configuration of a "concentric" type will be designated by a series of

letters: S (stable) and U (unstable), the first letter in the sequence relating

always to the stability of the singular point, and the subsequent letters

relating to the corresponding stabilities of limit cycles from the innermost

cycle to the external one. Thus, for instance, the symbol SUS is equival-

ent to the sentence: a stable singular point is surrounded by an unstable

cycle which, in turn, is surrounded by a stable cycle; this is the well

known configuration of the "hard" self-excitation (Chapter 3). Likewise,

US means: an unstable singular point is surrounded by a stable cycle which

corresponds to the "soft" self-excitation. This convention permits the
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use of more condensed language when dealing with complicated cases of

bifurcations.

Assume that $(p) now depends also on a parameter A in some manner;

thus, the parameter A may modify one or several coefficients of the poly-

nomial <P(p,A). Suppose, also, that the parameter is chosen so that the

curve 0(p,A) rises as a whole and the roots p2 and p3 approach each other

and coalesce into a double root p23 when the curve touches the axis at

point P (Fig. 7.10) corresponding to a bifurcation value A = A0 of the

parameter. If A continues to vary in the same direction, the double root

disappears. Thus the bifurcation of type (II) (Section 1) finds its ex-

pression in the algebraic formulation of the bifurcation problem in the

coalescence of two neighboring positive roots into one double root which

disappears when the roots become complex.

A bifurcation of type (I) can be also given a similar algebraic interpre-

tation. Assume, for instance, that the parameter A is chosen in such a way

that its variation causes only a change of stability of the singular point

(state of rest) without changing appreciably the values of other roots.

This means that the function 0(p,A) is modified in the neighborhood of its

zero root p = 0. This amounts to raising point E (Fig. 7.10) to point E'.

When E coincides with point O, one clearly has a bifurcation point

because the function <P(p,\), as well as its derivative, is zero at this point.

As this function is continuous and E varies continuously, it is obvious that

for A > A0 there appears an additional small root at point N which did not

exist before and, as this root is now stable and the state of rest becomes

unstable, one has the situation in agreement with the bifurcation of type

(I). In our notations we can also represent the phenomenon by the

schemes: before the bifurcation we had SUSU. . ., and after it we have

U,USU. . ., where s indicates the small stable cycle branching off the

state of rest which corresponds to the root at point N of Fig. 7.10. In-

tuitively one can say that the occurrence of bifurcations is such as to

maintain the regularity of the structure. An obvious difference arises

between the two types of bifurcations. In bifurcations of type (II) the

"cyclicity" (number of cycles) of the structure (or configuration) changes

always by two units and this change is internal (within the structure); in

bifurcations of type (I), the cyclicity changes always by one unit and occurs

at the innermost point of the configuration. It is natural to question

whether one can have also a kind of a bifurcation (of the "third" type)

which would change the cyclicity by one unit by either removing or adding

a cycle on the outside of the configuration. In Chapter 22 it will be shown

that such is the case and that bifurcations of the third kind are also

possible.
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8. Bifurcation diagrams; effect of bifurcation points on structures

We shall consider now examples of application of the above considera-

tions without entering for the moment into the physical significance of

these applications; in Part III we shall have a number of examples which

will illustrate these phenomena.

Consider a d.e. of the form

J = P[(Xa -c)- XbP] = <P(p,\) (8.1)

where a, b, and c are positive constants, and A is a variable parameter. In

this case, we have

<P,(P) = -2XbP + (Xa - c) (8.2)

The condition of self-excitation from rest is given by (8.1), in which we

assume that P is very small; this gives:

(dpjdt) ~ (Xa â€” c)p; as in this case

one must have (dpjdt) > 0, the condi-

tion of self-excitation is:

A > c/a (8.3)

The stationary amplitude is obtained

from (8.1) by equating to zero the

bracket which gives

FlGURE 7-n Po = (Aa - c)/Xb (8.4)

As p > 0, the existence of Po requires again the condition (8.3). As to the

stability of p0, it is obtained by replacing (8.4) in (8.2) which gives:

*>o) = ~2(Xa - c) (8.5)

Since for stability this expression must be negative, we encounter again

condition (8.3) which is thus the necessary and sufficient condition for

self-excitation, as well as for the existence of a stable stationary amplitude.

In the meantime, it is observed that A = A0 = cja is the bifurcation value

of the parameter A for which the bifurcation of the first kind occurs.

Figure 7.11 indicates the corresponding bifurcation diagram in the plane

of the variables (A,p0). From (8.4) it is seen that for an increasing A the

curve p0 approaches the straight line p0 = a\b as asymptote. In this

diagram the stable singular points are indicated by points on the axis, and

the unstable ones by small circles; the same notations are used on the curve

p0 to indicate the stability of the stationary oscillation. The slope of the

curve at the bifurcation point is

tan
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As a second example, we consider the d.e.

% = -Â°p(p* - PP ~ q) - *(p) (8.7)

where a and p are positive constants; q is a variable parameter (positive or

negative). As previously, we have to investigate two questions: the state

of rest and the stationary motion. The latter is given by the "radius"

(in the first approximation) of the limit cycle; it is determined by the

positive root (or roots) of the quadratic equation:

Pi.. = pI2 Â± V(/>/2)2 - q (8.8)

If q > 0, there are two positive roots which exist for q < p2/4 ;forq = />2/4

one has one double root p/2, and for q > />2/4 the real roots disappear.

It is obvious that for q = p2\\ a bifurcation of the second kind takes place.

For the question of stability one has to use the criterion (7.6). In this

case we have:

*,(p) = -Â°P(2P-P)

One verifies that for q < p'l\\ the smaller root is unstable and the larger

one is stable. The state of rest in this case is stable, as this follows from

(8.7) in which p ~ 0; this gives p = â€”apq. Here (q > 0 and less than

/>2/4) one has the configuration: SUS. For q = />2/4 the two positive roots

coalesce giving rise to the double root p12 = p/2, and for q > />2/4 the real

roots disappear so that the configuration becomes, simply, S, the stable

state of rest. We have thus a bifurcation of the second kind corresponding

to the critical value of the parameter q0 = />2/4. In this algebraic interpre-

tation of the bifurcation effect, the double root Pi2 = p/2 represents

obviously the amplitude of the semi-stable cycle; it separates the region of

the bicyclic configuration SUS from the acyclic one, S. One ascertains

also that the criterion tf>p(p0) = ^Apl^) = 0 as it should be, inasmuch as a

semi-stable cycle by its nature is a structure with an indifferent stability.

If q < 0, the situation is different, since the quadratic equation has only

one positive root. This root is stable, as one verifies easily by means of

the criterion (7.6); the state of rest is now unstable, giving us the con-

figuration US shown in Fig. 7.12 which uses the same notations as

previously; this configuration US exists for q < 0. On the other hand, for

q > 0, as we saw, the configuration is SUS; and when the parameter q

increases and passes through the value q = 0, one has a bifurcation of the

first kind according to the scheme: US SUS; for q > 0 the configura-

tion is bicyclic; and for the second critical value q = />2/4 of the parameter,

one has a bifurcation of the second kind because the two cycles, one

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 1

6
:1

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



184

QUALITATIVE METHODS

stable and the other unstable, coalesce at the point M and disappear for

From Fig. 7.12 one can ascertain the existence of an interesting non-

linear.effect which Appleton and van der Pol7 call "oscillation hysteresis."

For the sake of clarity, we reproduce the diagram of Fig. 7.12 in Fig. 7.13,

since we are interested only in the variation of the parameter q.

Assume that we investigate the process when the parameter q is negative

and has some value q = ql (point K on the abscissa axis of Fig. 7.13). The

oscillation will establish itself with the amplitude KQ and, if q increases

from that point, the amplitude will follow the curve QM. The fact that

for q = 0 the bifurcation point of the first kind will be crossed will have no

effect on the oscillation which follows the stable branch QM; at the point

M the bifurcation of the second kind takes place and the oscillation dis-

appears as was shown previously.

Suppose now that the system is started when the parameter q has a

relatively large positive value represented, say, by the point T. If q is

decreased from that value, nothing happens when q traverses point N

entering the zone of the bicyclic configuration, since the state of rest

continues to be stable. Only when q reaches the value q = 0, will the

amplitude jump abruptly to point P and follow the branch PQ when q

decreases further. Thus, the evolution of the oscillatory process for

decreasing values of the parameter q is not the same as for increasing ones.

For the latter the amplitude follows the path QPMNT, and for the former

this path is TNOPQ. Everything happens as if there were a kind of a

hysteresis area PMNOP limited by a stable portion of the curve PM, the

abscissa axis, and two jumps OP and MN, of which the former corresponds

to a bifurcation point of the first kind and the latter, to that of the second

kind. Depending on the form of the d.e., the hysteresis effect may have

q > p*\\.

Figure 7.12

Figure 7.13

7 E. V. Appleton and B. van der Pol, Phil. Mag. 42, 1921.
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also different forms, but in each special case there is no difficulty of ascer-

taining what happens by a similar argument.

Assume, for instance, that the curve <?(p,A) is of the form shown in

Fig. 7.14. If one increases the parameter from some small values the

evolution of the oscillatory phenomenon will follow the path RUQSM3T.

If, however, the parameter is decreased

from some large values, the path will

be TM3SPUR. In this case there is

one bifurcation point of the first kind

at the point M3 on the abscissa axis,

and two bifurcation points of the second

kind at the points P and Q for A = Aj,

and A = A2, respectively.

Summing up, the study of the bifur-

cation effects in the algebraic approach

to these problems reduces to the in-

vestigation of the evolution of positive

roots of certain polynomials, depend-

ing on a parameter. For the quadratic polynomials investigated here the

matter is sufficiently simple, but for polynomials of higher degrees one

encounters greater difficulties.

Figure 7.14

9. Noncritical systems

The essential feature of the bifurcation theory is the variation of the

qualitative aspect of trajectories (the phase portrait) for small parameter

variations around a bifurcation value.

In the preceding sections of this chapter we have given examples of the

bifurcation theory. In Chapter 2 similar examples were also given, for

instance, in connection with the critical value of the energy constant for

which the separatrix is crossed, etc. From the standpoint of applied

problems, the bifurcation effects are generally undesirable, and attention

has been centered on formulating conditions under which a given physical

system is immune against bifurcation effects. This led to the formulation

of conditions under which a given system remains noncritical, that is, is

immune (as far as its qualitative behavior is concerned) against small

variations of parameters. These problems received the name of structural

stability, but the term "stability" is heavily overtaxed and we prefer to use

the term "critical" system (or structure) in the above defined sense.

These problems appeared because, in any physical system, parameters

are known only approximately and are always subject to fluctuations. If
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these fluctuations take place when the system is far from its bifurcation

thresholds, their effect is negligible. The situation is different if such is not

the case. Thus, for instance, an electron-tube system becomes critical in the

above defined sense if one tries to receive radio signals with tuning near

the critical threshold when the amplifier circuit becomes the generator of

oscillations.

The usual approach to this study is to consider the perturbation of the

form of the original system of d.e.

x = P(x,y); y = Q(x,y) (9.1)

by small perturbing termsp(x,y) and q(x,y); then instead of (9.1), we have:

x = P(x,y) + p(x,y) = F; y = Q(x,y) + q(x,y) = Q (9.2)

We assume that, in addition to the smallness of |/>(x,jy)|, | q(x,y) |, their

partial derivatives are also small; we shall also assume that p(x,y) and

q(x,y) are analytic, as are P(x,y) and Q(c,y).

Call (9.1) system A and (9.2) A. If |/>(*,j)| and \q(x,y)\ are small

enough, the cycle without contact for A will have the same feature as for

A. Under these conditions for any finite time interval, one can always

determine A sufficiently near to A and take the neighboring initial condi-

tions so that, during a certain time interval, the trajectories (that is, their

representative points) remain also near to each other. Of course this does

not mean yet that for / â€”> oo these features will be preserved.

The condition for a noncritical system can be formulated as follows:

A system A is called noncritical in a domain G if, for any e > 0, one finds

8 > 0 such that for any analytic functions p(x,y) and q(x,y) satisfying

(in G) conditions

\p(x,y)\ < 8; \q(x,y)\ < 8; \py(x,y)\< 8;

\py(x,y)\ < 8; \qx(x,y)\ < 8; \qy(x,y)\ < 8

there exists a topological (1:1 and continuous) mapping of G into itself

for which any trajectory of A is mapped into the corresponding trajectory

of A and inversely so that the corresponding points are at distances less

than e.

In this manner the qualitative behavior of A and A will be practically the

same.

A number of conditions must be fulfilled in order to secure the noncritical

character of a given system. We refer to De Baggis8 for the theory of

these questions and mention only the conclusions.

8 H. F. De Baggis, Contributions to the Theory of Nonlinear Oscillations, Vol. II,

Princeton University Press, Princeton, N.J.
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1. First criterion. A noncritical system A cannot have an equilibrium

point for which

|^*(Wo) ^(Wo)|

A =

= 0 (9.4)

\Qx(x0-yo) Qy(xo,yo)\

In fact, (9.4) means that curves P(x0,y0) = 0 and Q(x0,y0) = 0 do not

interesect (as they should) but have a contact. In such a case (if one

admits that for the original system A, condition (9.4) is fulfilled), one

shows that a neighboring system A (with P(x,y), (Q(xy,)) has several points

of intersections of the curves P and Q in any neighborhood, however small,

around the point O(x0,y0). The analysis follows closely the argument of

Section 3.

2. Second criterion (setting a = Px + Qy). A noncritical system cannot

have positions of equilibria for which

A > 0; a = Px + Qy = 0

From these theorems it follows that a noncritical system can have only

simple equilibrium points of the following three types:

(1) A > 0; a2 - 4d > 0; (2) A < 0; (3) A > 0;

<i2 - 4J < 0; a # 0

Case (1) corresponds to nodes (stable or unstable depending on the sign

of a); case (2) corresponds to saddle points; and case (3) corresponds to

foci (also either stable or unstable, depending on the sign of a).

These positions of equilibria are noncritical in the sense that the tra-

jectories of the original system A and of the neighboring (perturbed)

system A are topologically identical and are merely slightly shifted with

respect to each other. In the case of a saddle point, the same situation

exists for both systems A and A.

The argument of Section 3f can be also used for the analysis of non-

critical or normal limit cycles. It is recalled that, in general, limit cycles

are defined as closed trajectories in the neighborhood of which there are

no other closed trajectories, which specifies the noncritical character of

normal cycles. This results in the theorem:

(2) Noncritical systems cannot have closed trajectories for which:

\ = \ [[PM) + QyWMdt = 0 (9.5)

t If one follows the argument of Section 3, it can be shown in Chapter 1,

Section 8, that the position of equilibrium is a weak focus; the order of "weakness"

depends on the order of the first nonvanishing coefficient o in the expansion of

(3.14). This results in the appearance of a small limit cycle which is the nearer to

the point O(x0,yâ€ž) the smaller is a (Section 3).
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where <p, if>, and t have the same meaning as in Section 2. It is noted that

(9.5) expresses the vanishing of the characteristic exponent. It is recalled

(Chapter 5) that for the systems of the second order having a periodic

solution, one exponent always is zero,1 but the vanishing of the second

exponent (9.5) indicates that the system is orbitally unstable. It is

recalled also that this characterizes the trajectories of the harmonic

oscillator which exhibit an indifferent behavior with respect to incoming

perturbations; in other words, such trajectories are determined solely by

the initial conditions and not by the parameters of the d.e. itself (like the

limit cycles).

We see thus that the condition: Px(<p,ip) + Qy(<p,i/>) = 0 for the systems

of the second order amounts to the existence of a center; on the other hand,

from the criterion mentioned in this section it is shown that this condition

accounts for the critical behavior of trajectories. In this manner we were

led to identify the critical character of these trajectories with their in-

different orbital stability.

We consider an additional case when a separatrix goes from saddle

point to either another saddle point or returns to the same saddle point.

We saw examples of such situations in Chapter 2. In this connection we

had the following important theorem.

(3) Noncritical systems cannot have separatrices connecting saddle points.

Summing up: A system: x = P(x,y); y = Q(x,y) is noncritical in G

(limited by the cycle without contact) if:

(1) Its positions of equilibria are such that A # 0 or, if A > 0, a ^ 0.

(2) Its limit cycles are such that h # 0 (being defined by (9.5)).

(3) Its separatrices do not connect saddle points.

If these conditions are not fulfilled, problems become more complicated

and special investigations are necessary; such cases, however, are not

encountered often in applications; for their study we refer to De Baggis.8

10. Remarks

In this chapter we have attempted to indicate the influence of a para-

meter variation on the modification of the topological structure of solutions

of a d.e. As we saw, there are two approaches to this problem. In the

analytic approach use is made of the "successor function" of Poincare,

and the aim of the method is to investigate what happens directly from the

series expansions satisfying the d.e. This direct method, as we saw, is

1 See footnote x, page 163.

8 See footnote 8, page 186.
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generally complicated and could be carried out completely only in one

special case (Section 3) which happens to be of a great importance in

applications; attempts to extend it to some other cases have not been very

conclusive as yet, mainly on account of computational difficulties.

In the algebraic approach (Section 7), the matter is considerably simpler,

but here one is concerned only with the theory of the first approximation

and, besides, the method is applicable only to d.e. that can be reduced to

the form (8.7). It so happens, however, that this form of d.e. is common

in applications as the result of the use of the stroboscopic transformation,

which will be discussed in Chapter 16. In Chapter 22 we shall return to

this subject which is of a great interest in applications, inasmuch as these

various bifurcation effects ultimately permit controlling the nature of

oscillatory processes by an appropriate modification of the form of the d.e.

It should be noted, however, that even in the theory of the first approxi-

mation in which the algebraic treatment of these bifurcation effects

simplifies the problem so much, the difficulties may still be considerable if

one encounters problems in which the polynomials are of a degree higher

than the second. Thus, for instance, in a problem in which the poly-

nomial is, say, of the third degree, it is necessary to ascertain the existence

of only positive roots. If the discriminant of the cubic form passes

through zero, one single positive root may give rise either to three or to

two positive roots, or to one single root. In general, it is very difficult to

establish conclusions algebraically, and it becomes necessary to proceed

with long and tedious numerical computations in order to ascertain which

of these new roots are stable once the discriminant has changed its sign

(see Chapter 18).

Fortunately, for systems with one degree of freedom which play an

important role in applications, the problem does not go beyond a very

simple discussion of properties of the quadratic polynomials, as we shall

see more definitely in Chapter 22.
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Chapter 8

CYLINDRICAL AND TOROIDAL PHASE SPACES

1. Introductory remarks

In the preceding chapters the investigation of the topological behavior

of trajectories was always conducted in a Euclidean phase space. Often

when one or several coordinates are cyclic (for example, an angle determined

only modulo 2n), it is more convenient to use appropriate phase spaces (or

phase surfaces), rather than a planar representation. Thus, for instance,

in Section 5, Chapter 2 it was mentioned that, if the value of the parameter

is such that a trajectory appears outside the external separatrix (A in Fig.

2.7), the motion becomes rotary. The periodicity of this motion is not

seen directly frOm the planar representation, although it can still be as-

certained somewhat indirectly from the fact that the angular coordinate

+ 77 denotes the same point as â€” w. The matter, on the contrary, becomes

obvious if the phase-plane representation of Fig. 2.7 is wrapped on a cir-

cular cylinder of radius 1 so that the <o axis becomes parallel to the axis of

the cylinder, in which case these two points coincide on the surface of the

cylinder.

It is clear that singular points, limit cycles, separatrices, etc., of the

phase plane are preserved on the cylindrical phase surface on which they

are wrapped. There appears, however, a property inherent to this

surface which does not exist in the phase plane. In fact, there may appear

now certain closed trajectories going around the cylinder and escaping the

planar representation. Note that such a closed trajectory does not require

the existence of a singular point. One refers generally to this special form

of periodicity as periodicity of the second kind; it depends on the existence of

one cyclic coordinate.

With this terminology, a closed integral curve on the surface of the

cylinder which does not go around it may be called a periodic trajectory of the

190
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CYLINDRICAL AND TOROIDAL PHASE SPACES 191

first kind; it is obvious that the latter is just an ordinary planar closed

trajectory merely traced on the surface of the cylinder.

If there are two cyclic coordinates, the representation of trajectories

may require a toroidal surface. This case was investigated by Poincar^,1

Denjoy,2 and, later, by Nemitzky,8 and others. In this case are possible

periodic trajectories of the third kind. This happens when a trajectory

executes a certain number of complete (2n) turns around the torus in

"latitude" 6, while rotating through another number of complete turns in

the other cyclic coordinate <p, the "longitude," before closing. In this

case trajectories of the second kind are possible when a complete rotation

on the surface of the torus takes place

only in the 6 or in the <p coordinate.

Finally, there are possible also trajec-

tories on the surface of the cylinder

which do not turn around a cyclic co-

ordinate.

In this chapter we shall discuss some

details of the cylindrical phase space

with a view toward certain applica-

tions, in particular a number of

phenomena inherent in the operation

of a synchronous motor.

Fewer applications are known at

present which require the use of

toroidal phase space; some of these

phenomena are indicated in the last

section of this chapter.

As regards the cylindrical phase

surface, one must mention a certain

difference in topological properties

between the trajectories of the first

and of the second kind. In fact, the trajectories of the first kind always

bound off certain areas ("inside" and "outside") on the cylindrical surface

on which they are traced, whereas the second do not. This is readily seen

from Fig. 8.1, where M shows a periodic trajectory of the first kind and N

one of the second kind. From an off-hand consideration it seems im-

Singolar point

Figure 8.1

1 H. Poincare, J. des Math. (3), 7, 1881; also (Euvres T.l, Gauthier-Villars

Paris, 1928.

1 A. Denjoy, J. des Math. (9), 11, 1932.

â€¢ V. V. Nemitzky and V. V. Stepanov, Qualitative Theory of Differential Equa-

tions, original text in Russian, Moscow, 1949; English translation, Princeton

Mathematics Series, Princeton University Press, Princeton, N.J., 1960.
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possible to apply to the second kind of trajectories the theorem of Poincare

which asserts that inside a closed trajectory there should be at least one sing-

ular point whose stability is opposite to that of the trajectory (Section 2,

Chapter 3); the reason is that it is impossible to say here where is "the in-

side" for such a trajectory.

The following argument of Lefschetz clarifies this point. The argument

is based on the possibility of representing a cylindrical surface on a plane

with the origin left out (Fig. 8.2). It is sufficient to set p = e*, where

z = <p in order to see that a point M(<p,z) on the cylinder goes into a

point M'(<p,z) of the plane. As the transformation Mâ€”> M' is (1:1) and

continuous, it is topological. As z varies between Â± oo, p varies between

0 and oo, the zero being excluded. Thus, the cylinder is transformed into

the whole plane, the generating lines of the cylinder appearing as radii of

the planar representation; a circle

z = 0 on the cylinder goes into the

circle p = 1 of the plane. The closed

trajectories of the first kind (M in

Fig. 8.1) are those which do not go

around the origin, whereas those of the

second kind enclose the origin in its

interior as does the curve N. In this

process of "flattening out" the cylinder

into a plane, the closed trajectory of

the second kind acquires a familiar

picture, the origin behaving now in all

respects as a singular point.

A most interesting use of the

cylindrical phase space was made by Vlasov4who discussed the behavior

of the synchronous motor on this basis and showed that certain self-

excited parasitic oscillations occurring during the synchronous operation

appear as limit cycles of the first kind, whereas those of the second kind

characterize the abnormal or "asynchronous" operation when the syn-

chronism is lost. A later work of Stoker5 contributed further to this

investigation.

The interesting point of these studies is that a series of complicated

physical facts could be thus accounted for on the basis of certain properties

of trajectories of the cylindrical phase space.

4 N. Vlasov, J. Tech. Phys. (USSR) 9, 1939.

5 J. J. Stoker, Nonlinear Vibrations, Interscience Publishers, New York,

1950.

Figure 8.2
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CYLINDRICAL AND TOROIDAL PHASE SPACES 193

2. Differential equation of an electromechanical system3-6

In this and in the following sections we shall be concerned with a d.e.

of the form

AS + B6 + f(6) = M (2.1)

where A, B, and M are constants, and f(6) is a certain periodic function of

6. In spite of its apparent simplicity, this d.e. presents considerable

difficulties which arise from the form of the "restoring force" term f[6).

If one takes for f(6) the simplest possible form f(6) = Cs'm6, it is

readily seen that the just mentioned difficulty is in the possibility for this

term to change its sign which results in a variable stability of the system,

and the question arises whether, under such conditions, a kind of an

Stotor

Figure 8.3

average stability can still exist so as to enable a trajectory to have a re-

entrant path after its complete turn (2tt) around the cylinder.

As this d.e. appears in the theory of a synchronous motor, it is useful to

outline first this theory without going into too many details. As is well

known, a synchronous motor is an electromechanical system consisting of

a stationary part, the stator S, and a rotating element, the rotor R, Fig. 8.3.

The stator has a polyphase winding which produces a rotating magnetic

field. The rotor has a direct-current exciting field. If the rotor runs in

synchronism with the rotating field of the stator, the two fields of S and R

form in reality one single magnetic field crossing the air-gap, as is shown in

Fig. 8.3. The important feature of this situation is that the lines of the

8 See footnote *, page 191.

â€¢ A. Andronov, A. Witt, S. Chaikin, Theory of Oscillations (in Russian); this

book is the second edition (1959) of A. Andronov and S. Chaikin, Theory of

Oscillations (original text in Russian), Moscow, 1937.
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magnetic force cross the air-gap obliquely. It is also known from the

Faraday-Maxwell theory that the ponderomotive (mechanical) forces due

to the magnetic field act always in the direction of the magnetic lines of

force. Everything happens as if these lines were elastic strings. As

these lines cross the air-gap obliquely, it is clear that the tangential com-

ponents of these Maxwellian tensions manifest themselves as a mechanical

moment which the stator applies to the rotor enabling it to do the mechani-

cal work. If A and B are the centers of the magnetic field distributions

(of opposite polarities) on 5 and R, it is clear that, on that basis, the angle 6

between the radii OA and OB is a measure of the driving moment, O

being the center of rotation.

If the resisting moment M, which the rotor has to overcome, increases,

the angle 6 also increases, but as the driving moment f(6) is a nonlinear

function of 6 such that, beyond a certain value, df(S)jd6 < 0, the angle 6

increases ultimately more than in proportion to the resisting moment and

the value of the driving moment may ev>en change its sign for a sufficiently

large value of 6. For a two-pole scheme, this happens when 6 = n but,

if the motor has several pairs of poles, this happens when the geometrical

angle reaches the value 7r//>, p being the number of pairs of poles. When

this occurs, the rotor "drops out of synchronism" with the rotating field

of the stator. The synchronism lost at one pair of poles may be still

momentarily established at the next pair when the distributions of magnetic

force happen to be again of opposite polarities; then it may be lost again,

and so on. This abnormal or "asynchronous" performance of a synchron-

ous motor is precisely the one in which appear periodic trajectories of the

second kind.

Before proceeding with the analysis of these complicated phenomena,

it is useful to simplify first the d.e. (2.1) by assuming f(6) = C sin 6. If

one divides the d.e. by C and changes the independent variable from t to

t, where t = V(CjA)t, the d.e. becomes

ST + a6T + sin 6 - p = 0 (2.2)

where the subscript t indicates differentiations with respect to t. As no

confusion is to be feared from now on, we can drop this subscript. The

values of the constants are a = BlVAC > 0; /3 = Af/C Â£ 0. Written

as an equivalent system, (2.2) is

6 = z\ z = -oar - sin 6 + p (2.3)

and the d.e. of the integral curves is

dz/d6 = (/3 - cur - sin 6)lz

(2.4)
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3. Cylindrical phase trajectories of a conservative system

For a conservative system a â€” 0 and (2.4) becomes

dzfdB = (j8 - sin 6)/z (3.1)

This d.e. admits a simple integration which gives

z = Â± V2(j80 + cos 6) + C (3.2)

where C is an integration constant.

The construction of integral curves for the cylindrical surface can be

made first on the plane, after which these curves can be wrapped on a

circular cylinder of radius 1. For the planar construction of trajectories

Figure 8.4 Figure 8.5

z(6) given by (3.2), we can follow the graphical procedure outlined in the

beginning of Chapter 2, namely, we first set y = 2(cos 6 + fiff) and cal-

culate z = Â± Vy + C. For any value of C we obtain two values of z(6),

provided y + C > 0. The results will depend also on /3.

If p = 0 (that is, the external moment absent), one obtains the results

shown in Fig. 8.4 in which (a) gives the auxiliary curve y(6), and (b) gives

the integral curves z(6) for different values of C. For C = â€” 2, one has

one point A (Fig. 8.4b) which is a singular point, a center. For

â€” 2 < C < 2 one has a family of closed integral curves with vertical

tangents on the 0 axis; for C = 2 this gives two curves passing through the

points Sx and St. These curves are separatrices of the saddle points;

for C < â€”2 there are no integral curves. The same situation was en-

countered in Chapter 2 (Fig. 2.3), but here the curves z(6) are to be wrapped

on the surface of a circular cylinder, as shown in Fig. 8.5.
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The curves going outside the separatrices (shown in broken lines in

Fig. 8.4b) clearly close around the cylinder and thus represent periodic

trajectories of the second kind, but they are not limit cycles, since the

system is conservative.

If p / 0, the situation differs as/3< 1 or /3 > 1. For /3 < 1, the

curve y = 2 cos 6 + 2jS6 has maxima and minima given by 0^ = arc sin /J

+ 2hn and 02 = arc sin 0 + (2k + respectively. For /} = 1, the

curve has neither maxima nor minima, but only an inflexion point at

0 = 7r/2; at this point the tangent to the curve is horizontal. For /3 > 1,

the curve increases monotonically. If /3 < 1, the graphical construction

yields a singular point of the type center and a saddle point, as shown in

Fig. 8.6. When these curves are wrapped on the cylinder, one has the

situation depicted in Fig. 8.5; in this

case there are no trajectories of the

second kind, but only those of the first

kind, encircling the center inside the

separatrix.

For p = 1 one has a singular point

of a higher order resulting from the

confluence of a center with a saddle

point; in this case there are no closed

trajectories; the same conclusion holds

forjS > 1.

The physical significance of this

analysis is sufficiently simple if one

considers a physical pendulum acted

on by a constant external moment.

If this moment is not too large, the

pendulum starts oscillating about the new (displaced) position of equili-

brium as long as it is less than tt/2. In this case the pendulum moving

in the direction opposite to the new equilibrium point releases the same

amount of energy that has been stored owing to the displacement of its

equilibrium point under the effect of the constant external moment. If,

however, the initial deviation is sufficiently great, the effect of the constant

external moment may swing the pendulum over its upper (unstable) posi-

tion of equilibrium which will result in rotary motion increasing in speed

after each turn. This occurs when fi < 1 with the initial condition

(the initial deviation) large enough to enable the external moment to

cause a rotary motion.

Finally, if /3 > 1, the external moment exceeds the moment of gravity

for any initial position including 6 = 0, when the pendulum is at its lowest

point. This results in a rotary motion for any initial condition.

Figure 8.6
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All this follows from the consideration of total energy (potential as well

as kinetic) stored in the system, inasmuch as we consider here a conservative

system (a = 0).

Summing up, for conservative systems, the behavior of trajectories on

the phase cylinder does not differ much from that of the planar systems,

except for the fact that the existence of trajectories of the second kind is

more readily seen on the cylinder than in the plane. The whole situation

becomes apparent when the planar trajectories are wrapped on the cylinder

surface, as was previously mentioned.

4. Cylindrical phase trajectories of nonconservative systems

More interesting and, at the same time, more complicated, is the behavior

of nonconservative systems of the type (2.1), which were first investigated

by Tricomi, Andronov6 and others. A brief outline following the

presentation of Andronov will suffice here.

We assume now that a / 0 and j8 ^ 1, and consider two cases: j8 > 1

and/3 < 1.

(1) jS > 1

In this case the system (2.3) has no singular point since |sin 6\ < 1.

Moreover, the resisting moment M in this case is larger than the maximum

value C of the restoring moment f(0) = C sin 6, owing to the electrodynamic

couple applied to the rotor R. Intuitively this means that the rotor cannot

keep in synchronism with the rotating field, but "drops out of step" or

"slips" continuously as previously mentioned. One may expect, there-

fore, that in this case an asynchronous operation will set in, if we are able to

show that a periodic solution is still possible.

In order to show this we have to try to find two solutions, z^6) and

z2(0), such that

z^e + 27t) < z^S) and *2(0 + 27t) > z2(6) (4.1)

If such solutions exist, the existence of the periodic solution z0(6 + 2v)

= z0(6) will follow from the consideration of continuity.

Since z = 6, the conditions (4.1) have the obvious meaning: the second

condition alone means that, after dropping out of step (that is, loss of

velocity &), the rotor is pulled again into synchronism; in such a case

we shall not have the asynchronous operation we are looking for. The

first condition alone, on the contrary, means that with each "skipping" 2n

the velocity 6 will decrease, that is, the rotor will finally stop.

* See footnote *, page 193.
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If one is able to show that two such solutions exist, one can assert that

there must be a periodic solution z0 somewhere between zx and z2, since

no singular points exist in this case that might account for some other

situation besides the one just mentioned. The argument is conducted by

considering the isocline dz/d6 = 0, which is given by the curve

K:z = (fi â€” sin 6)/a. The physical significance of this isocline is obvious:

Figure 8.7

it characterizes such points in the operation of the motor for which, to a

variation d6 in the angle 0 between the stator and the rotor fields, corre-

sponds no change in the velocity 6; this is clearly a kind of a threshold

separating the regions in which (dz/d6) > 0 from those in which (dz/d6) < 0.

It is observed that the curve K crosses the 6 axis if /J < 1 and is always

above that axis if /J > 1; the curve is a sinusoid merely shifted in the

direction of the z axis, as shown in

Fig. 8.7. The shaded and nonshaded

areas of the curve correspond, respec-

tively, to the regions where (dz/d6) > 0

and (dz/d6) < 0. As we consider now

the case j3 > 1, we have to deal with

the curve K shown in Fig. 8.7b. For

the solution zx(6) we can choose a

solution passing through the point

(fi + l)/a, as this point is above K

and is thus in the region where

(dz/d6) < 0; this fulfills the condi-

tion imposed by the first inequality (4.1).

For the second solution z2(6) (Fig. 8.8), one can take the solution

passing through lowest point A of K, with the coordinates 0 = w/2,

z = (fi â€” l)/cc. The trajectory issuing from this point will remain in the

region where (dz/d6) > 0 until it reaches the point Q on AT, at which

(dz/dff) = 0; beyond this point z2 will be in the region where (dz/d6) < 0,

Figure 8.8
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so that after A6 = 2it (counting from 60 = 7r/2), the solution z2(6) will

intersect the line 60' = 5tt\2 at a point M which is never lower than B.

Thus, for the trajectory z2(6) so selected, we have z2(tt\2 + 2tt) > z2(tt\T)

which satisfies the second condition (4.1).

It is to be noted that in this argument we have chosen a special initial

condition 80 = n[2, but it is easy to show that one could use any 6 in the

interval (0,7r/2). In fact, suppose that the first condition (4.1) holds for

some 6 = 6x; then <p(8) = zi(8 + 2v) â€” z^ff) is a continuous function,

negative for 0 = 0V Assume that <p(6) could be made positive for some

6 = 82; then one can assert on the basis of continuity that for some 6 = 63,

^(^3) = 0- But this would mean that z^ff) is a periodic solution. Hence,

the choice of 6 in both conditions (4.1) is immaterial and it is sufficient to

prove the statement for some particular 60 as we did above for 60 = tt\2.

It remains to be shown that the periodic solution z0(8) whose existence

has just been proved is unique. For this we integrate the second d.e.

(2.4) between 61 and 6x + 2n, which gives

\[z\0x + 2n) - z\6j\ = -a f1+2" zdB + 2np (4.2)

For the periodic solution z0(6) this reduces to

f1+Â«" z0(6)d6 = 27rj8/a (4.3)

If there were two periodic solutions, say z0x and z02, one could have either

^oi > zo2 or *oi < zo2> since the solutions cannot intersect. In this case

the corresponding integrals would be unequal, but in view of (4.3) this is

impossible. Hence the periodic solution z0(6) is unique.

Summing up, if j8 > 1, an asynchronous periodic solution always exists,

and it is necessarily of the second kind, that is, the closed trajectory turns

around the cylinder. There are no periodic solutions of the first kind

since there are no singular points.

(2) P < 1

In this case singular points exist, namely: z = 0; /J â€” sin 6 = 0.

There are two kinds of points:

(a) Points Ak: z = 0; 6 = Ikn + 00

(b) Points Bk: z = 0; 6 = (2k - l>r - 60

where 60 = arcsin/J; k an integer, and we assume 0 < 60 < (7r/2). In

order to ascertain the nature of these singular points, one applies the usual

variational procedure. Thus, for Ak one sets, 6 = 2kn + 60 + 88 and
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develops sin 6, keeping only the terms of the first order .in 80 which gives

the characteristic equation:

S2 + aS + cos 60 = 0 (4.4)

whose roots are

51.t= â€” Â± Jj-cos60 (4.5)

Hence, as (a2/4) > cos 60 or (a2/4) < cos 0O, one has either a stable node

or a stable focus.

A similar procedure applied to *he points Bk leads to the characteristic

equation

S* + aS - cos 60 = 0 (4.6)

whose roots are

Si,2= ~\Â± Jj + â„¢0o (4-7)

but as (cos 60) > 0, the roots are real and of opposite signs, which indicates

a saddle point. The slopes of the separatrices at these saddle points are

given by the equation

m2 + am - cos 0â€ž = 0 (4.8)

so that these slopes are

m =~2 Â± J J + cos^o (4.9)

If a = 0 (conservative system), instead of nodes or foci, one has centers

for singular points Ak. As to Bk, they

still remain saddle points.

We can now analyze the operation

of the synchronous motor in this case

(fi < 1) following an argument similar

to that used previously (Fig. 8.9).

The points 5x and S2 are two saddle

points with the separatrices 7\ and

r2; the curve K is again the isocline

Figure 8.9 dzjd6 = 0. One ascertains as pre-

viously, that there exists a solution

3^(0), for which the first condition (4.1) holds. For the second condition

we consider the curves rx and rt issuing from the separatrices of the

saddle points 5x and Sa. The slope of ri at the point 5x is less than that

of the sinusoid K at the same point, as is seen from (4.9) and from the

expression for the slope of K at the point Sv The slope of rx thus
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decreases, since it becomes zero at the point Q at which Z\ intersects the

isocline K. Beyond the point Q the curve ri decreases and intersects

the straight line 6 = 60' at the point Hv The other curve P, issuing

from the saddle point S2 intersects the same line 6 = 60' at the point H2.

Denote the ordinates of Hx and H2 by Ax and h2, respectively.

It can be shown by a more detailed analysis 4 that for a sufficiently small

a (that is, small damping) A2 < hv In such a case the trajectory /\ and

other neighboring trajectories above it satisfy the condition

Hence, for a sufficiently small a, there exists a periodic solution z^Oj)

= ar0(^i + 2w); and, by the same argument as before, one can show that

this solution is unique. It can be shown also that for a sufficiently large a,

ht > hv There is thus a certain value a = a0 for which h2 = hx, so that

the curves 7\ and rt form one continuous curve. Moreover, it can be

shown that for a > a0 there are no periodic solutions, and for a < a0

there exists only one solution in the upper half plane (z > 0). Finally,

one can ascertain also that there are no closed solutions of the first kind;

this can be shown from a more detailed analysis of the form of the separa-

trices for a < cc0; a = <x0; and a > a0. Thus only for a < a0 does there

exist a periodic solution of the second kind; for a > a0 there is no such

periodic solution.

Summing up, for /3 > 1 and any a there exists always a periodic solution

of the second kind; for /J < 1 a periodic solution exists provided a < a0;

moreover, these periodic solutions are stable. There is an additional

circumstance to be noted: for /J > 1 the periodic solution is reached for

any initial conditions, whereas for /3 < 1 there is a certain region of initial

conditions for which the system always falls into step, which manifests

itself by a gradual approach to a stable focal point at Av

It is seen thus that the case /J < 1 is more complicated than the case

P > 1. The physical significance of this is sufficiently clear; in fact for

P > 1 there are no singular points, and this, as we saw, means that the

resisting moment in the synchronous motor always exceeds the synchroniz-

ing moment. The rotor "slips" continuously and a stationary condition

exists when the work done by the constant resisting moment is compensated

for by the electrodynamic moment at a lower (asynchronous) mechanical

velocity of rotation.

The case when /3 > 1 can be illustrated by the behavior of a physical

pendulum to which one applies a sufficiently large moment, as the result

of which the pendulum, instead of oscillating, starts rotating in the same

* See footnote page 192.
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direction. In this case the motion reaches a stationary state when the

work done during one revolution by the driving moment is balanced by the

dissipation of energy in friction.

5. Topological configurations on the cylinder

Summing up the various cases discussed in the preceding sections, one

can state that everything which holds for the phase plane, holds also for the

cylindrical phase space, inasmuch as this is merely a matter of "wrapping"

the phase-plane diagram on the

cylinder, as we have mentioned. This

means that for a limit cycle of the first

kind there must be a singular point on

the surface of the cylinder. The

essential feature of the cylindrical

phase-surface representation is trajec-

tories of the second kind.

In the case of conservative systems,

the periodic trajectories of the second

kind form a family of closed curves

depending on a parameter, in the same

manner as happens in the phase plane.

As regards the limit cycles of the

second kind, they are some closed

curves C (going around the cylinder)

to which approach the helicoidal curves

C (Fig. 8.10) with a gradually decreas-

ing pitch. In the process of "flatten-

ing out" the cylinder into the plane, these helicoidal trajectories become

the usual spiral curves C.

6. Oscillations of a synchronous motor

In the preceding section we outlined the physical character of the prob-

lem in a rather general manner, but one can elaborate it in more detail if

one introduces the theory of the synchronous motor as did Vlasov4 in his

work. We cannot enter here into all details of this interesting investiga-

tion, but merely mention its salient points; the d.e. of the synchronous

motor is ultimately reduced to the following form:

4 See footnote *, page 192.
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9 + sin 9 + ljÂ£ cos p sin 9>(sin 9 â€” 2A sin p) â€” kb â€” j9

8

= T-i-â€” + A sin p (6.1)

ft cos p r v /

This d.e. can be obtained from the d.e. of the synchronous motor by

introducing notations:

k â– = E0IU0; a2 = mp2kU0 cos p/20a>Â«; c = my2aj2wxRe\

b = a/4a>; fl = 2McDxjmpU02

where 6 is the moment of inertia of the rotor, p the number of pairs of

poles, m the number of phases, E0 the amplitude of the induced voltage

per phase; y = dEJdi/, ie is the exciting current; w = 2tt/; f is the fre-

quency, U0 the amplitude of the applied voltage per phase, n â€” y the

angle between the vectors E and U; p = arctan (r/x); r is the ohmic

resistance (per phase) of the rotor, x the reactance per phase, M the resist-

ing moment, and Re the resistance of the exciting winding.

If one introduces <p = y + p, at t = t, one obtains (6.1), where the

differentiations are with respect to t. The equivalent system is obtained,

as usual, by setting 9 = z, etc.

Summing up, one obtains the familiar system

9 = z; z = A â€” sin 9 + f(<p)z (6.2)

The rest reduces to the analysis which has been reproduced in the preceding

sections.

The experimental part is particularly interesting and we mention a few

principal conclusions, as well as the assumptions under which this investi-

gation was carried out.

(1) It is assumed that the magnetic fields have sinusoidal distributions.

(2) The resistance of the field winding is small.

(3) Magnetic stray fluxes are negligible.

(4) Iron loss is negligible in comparison with ohmic resistance.

(5) The frequency of "hunting" is small compared to the frequency /.

(6) Damping winding removed.

In view of (6.1) it was possible to observe also oscillations of the first

kind. The quantity p = arctan (r/x) was used as the parameter, and it was

possible to ascertain its bifurcation value p = p0 for which the limit cycle

(of the first kind) disappears in its coalescence with the separatrix.

For sufficiently large z, trajectories become unstable. For other values

of p, other conditions exist (either a limit cycle or a stable singularity when

the motor runs without "hunting", etc.).
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Most of these experiments were carried out with knowledge of the

numerical values of the various parameters; therefore these results are

quantitative. The phase trajectories were plotted on a cylindrical surface;

some of these cylindrical diagrams were given in the preceding sections.

So far as is known, no other applications of cylindrical phase space have

been made so far, but the matter is still of current interest, especially in the

theory of the synchronous motor. Thus, for instance, the assumption of a

linear friction is hardly justified when most of this friction consists in

"windage," so that the basic d.e. (2.1) is presumably still too oversimplified

to account completely for these complicated phenomena.

7. Toroidal phase surface

Let the phase surface with two cyclic coordinates <p and 0 be the surface

of the torus whose equations are

x = (R + r cos 0)cos <p;

y = (R + r cos 0)sin <p;

z = rsin0 (7.1)

where 0 < <p < 2tt\ 0 < 6 < 2n;

0 < r < R.

One may call the coordinate <p (Fig.

8.11) the "longitude," and 0 the

"latitude," and any point on the sur-

face of the torus is determined in terms

Figure 8.11 of these two coordinates.

The problem in this case is to find

out whether, for a given differential system, there are periodic trajectories

"of the third kind" which are characterized by a certain number of com-

plete (2tt) rotations in the 0 coordinate and some other number of such

rotations in the <p coordinate.

There may obviously also be closed trajectories of the second kind; these

are of two different types. One of these types is obtained when <p is held

constant and 0 varies, and the other one when 0 is constant and <p varies.

There may be also closed trajectories of the first kind, but these require the

presence of singular points on the toroidal surface.

Consider a dynamical system of the form

d<Pjdt = <%,0); d0jdt = 9(<p,0) (7.2)

where 0 and & have period 2tt in <p and 6.

We introduce two restrictions: (a) the system has no singular points on

the surface of the torus (which eliminates closed trajectories of the first
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kind), and (b) the function never vanishes. One can then investigate

the behavior of integral curves from the d.e.

d6'jd<p = e(<p,6)l<P(<p,6) = A(<p,6) (7.3)

where A(q ,8) is a continuous function with period 2tt in both arguments

and we shall assume that the unicity condition is fulfilled.

It is clear that, instead of studying the motion of the representative

point on the surface of the torus, one may use the plane â€” oo < <p < + co;

â€” cc < 8 < +oo formed by squares of side 2tt\ that is, 2mi < <p < 2tt

(n + 1), 2twi < 8 < 2n(m + 1), m and n integers.

Since the function A(<p,8) is bounded, a solution of (7.3) with arbitrary

initial conditions <p0, 80 is defined for all <p. Let

6 = u(<p,<p0,60) (7.4)

be the general solution. For the sake of simplicity assume <p0 = 0; the

solution then depends on only one parameter, 80. Out of this family we

consider the curve L0 corresponding to 80 = 0, L0: 8 = n(<p,0).

We consider the behavior of L0 as <p varies. Two cases are possible:

(1) Lo passes through an "integer point" (2npy2nq), p and q being integers

and p > 0. Clearly, in view of the periodicity, L0 will pass also through

the points 2npn, 2nqn, where n = Â± 1, Â±2,. . ..

On the surface of the torus L0 corresponds to a closed curve making p

rotations in "longitude" and q rotations in "latitude." This is precisely

what we have defined as periodicity of the third kind. In such a case one

has, according to Poincare,1 the relation

lim [Â«(<P,0)/9i_.â€ž = Plq (7.5)

for all 0O. (2) The second possibility arises when L0 does not pass

through an integer point. It can be shown that, if /.â€ž goes, say, above one

point (/>,</), it also goes above all points (27rpn. 2nqn). In the proof this

conclusion results from the assumed unicity of solutions.

Each of these integer points is characterized by the ratio q\p = r but,

to a given r corresponds an infinity of such points.

If one takes r as a parameter, it is shown that, if a point of the set

corresponding to r = r, lies above L0 and if r2 > rv the points of the set

r2 lie also above those of rv etc.

Consider the two classes of integer points for one of which the r numbers

correspond to the points above /-â€ž and, for the other one, below it. Thus,

if L0 cuts q- = 2tt for 6 = 6x, then the rationals smaller than 8X belong to

one class and those larger than tf, belong to the other class.

These classes of rationals define a real number the rotation number,
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which characterizes the distribution of integral curves on the torus. It

is shown that

n = lim [u(<p,e0)lv]^x (7.6)

The rotation number may be regarded, therefore, as the average rotation

of a trajectory on the surface of the torus.

Poincare establishes the following theorems:

(a) If the rotation number is rational, there exists a closed trajectory on

the torus.

(b) If this number is irrational, closed trajectories are impossible; the

surface of the torus is densely covered with trajectories which never

close; any point on the surface of the torus is approached by every trajec-

tory arbitrarily closely; this is the so-called ergodic case.

As an example, consider the d.e.: d6jd<p = sin 6. It is obvious that there

are two closed trajectories: 6 = 0 and 6 = n. The other trajectories are

of the form

6 = 2 arctan [(tan â– Â£0o)<f]

These trajectories approach the limit cycle 0 = tt for <pâ€”> o0, and 6 = 0

for <p â€”> â€” o0. Hence all trajectories approach the stable orbit 6 = it and

the rotation number is zero.

8. Examples of nonrecurrent trajectories

The use of the toroidal phase space is helpful each time a problem

involves two (or several) oscillations with incommensurate frequencies,

as, for instance, in the case of the so-called Lissajous curves.

A similar situation often appears in the use of a cathode-ray oscilloscope.

It is well known that a wave of a certain frequency, say /, can be made to

"stand still" on the screen by means of a special "sweep circuit" synchro-

nized with that frequency. If the wave in question is represented by a

Fourier series, a synchronizing arrangement of this kind "stops" not only

the fundamental wave but also the harmonics because the period T of the

fundamental harmonic is also the period for all harmonics. In this case

the trajectory on the torus has a re-entrant path as, in accordance with the

preceding theory, top rotations in one degree corresponds q rotations in the

other degree, p and q being in a rational ratio.

In Chapter 21 (Part III) we shall study a special problem characterized

by the existence of a certain transcendental spectrum of frequencies

between which no rational ratios exist. If one takes two such fre-

quencies, say p and q, and investigates the resultant oscillation, one finds
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that, if one makes one of these waves (A in Fig. 8.12) stand still, this does

not produce the same effect on the other wave B. This is due to the fact

that the switching circuit that starts each electronic beam exactly at the

same phase point with respect to the wave A produces the wave B with a

gradually shifting phase, since the periods of the two waves do not stand

in a rational ratio to each other.

It appears to the eye as if the wave B were "riding" on the wave A with

a velocity depending on the difference between the existing (incommen-

surate) ratio of frequencies and the nearest rational ratio. This situation

characterizes precisely the existence of an irrational ratio qjp between the

two frequencies.

If a parameter of the system is

varied, the whole pattern of the trans-

cendental spectrum generally changes,

and it may happen that the incommen-

surate ratio of frequencies comes nearer

to a rational ratio. This manifests

itself. in a decrease of the speed of

"riding" of the wave B on the wave A. Figure 8.12

It may even happen that, for a suit-

able value of the parameter, the two frequencies appear, at least moment-

arily, in a rational ratio, which stops the relative motion of B.

9. Gliding flight

It is possible to reduce the problem of gliding flight to the topological

representation on a cylinder.7 Designating by 6 the angle of the tangent

to the trajectory, v the speed of the center of gravity of the aircraft, m its

mass, F the area of supporting surfaces, g the acceleration of gravity, p the

air density, and Cx and Cy the aerodynamical coefficients (of drag and lift),

the d.e. for the tangential and normal components of acceleration are

mil = â€”me sin 6 â€” ipFCjv2

K TP x (91)

mvd = â€” mg cos 0 + $pFCyv2

If one assumes that the moment of inertia of the glider is small in com-

parison with the aerodynamic forces (which permits neglecting small

variations in the angle of attack), one can consider Cx and Cy approximately

as constants. Introducing v = v0y, where v0 = y/2mgjpFCy (that is, the

speed of the horizontal flight for which the weight is balanced by the lift)

7 N. E. Joukovsky, Collected Works (in Russian), Moscow, 1959.
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and taking as n. w independent variable t* given by the formula t =

(v0/g)t*, in the nv.w variables v and /*, equations (9.1) become

y = -sin 6 - ay2 = F(6,y); 6 Cos O + = 0(6,y) (9.2)

y

where differentiations are with respect to /* and the constant a = CJCy.

As conditions (6 + 2n,y) and (6,y) are physically identical, the right-hand

terms in (9.2) are periodic functions of 6 with period 2n, and the cylindrical

phase ^pace is obviously adequate. One can use a circular cylinder with

the y axis along the generating line of the cylinder and the 6 axis along the-

circular cross-section. We consider only trajectories for y > 0. In such

a case the integral curves on the cylinder are given by the d.e.

dy y(sin 6 + ay2)

d6 cos 6 - y* v'

It is noted that this d.e. has the solution y = 0, which is a special trajec-

tory corresponding to 6 = â€” n/2 as soon as the speed v (ory) becomes zero

for y = 0; 6 = +oo if -3n/2 < 6 < -7r/2; and 6 = -oo if -7r/2

< 6 < +w/2. This corresponds to an instantaneous rotation of the

glider. This absurd conclusion is the result of the hypothesis regarding

the constancy of the angle of attack, which does not hold for small speeds.

If one assumes for a moment that a = 0, the d.e. (9.3) has the integral:

^ - y cos 6 = C (9.4)

It has three singular points of whicn only one: 6 = 0, y = +1 corresponds

to the equilibrium of the system (9.2) for a = 0; two other singular points

are located pn a special integral curve: y = 0 corresponding to the reversal

of the craft for v = 0 and which are not, therefore, positions of equilibrium

(since y # 0 at these points).

The construction of integral curves is facilitated by the fact that (9.4)

can be solved for 6:

6 = Â± arccos tj (9.5)

This permits tracing the family of the 77 = ^.v.C) curves; for equilibrium,

6 = 0, y = +1 degenerates into the singular point of the type center.

We refer for the details to Joukovsky7 but merely mention that according

to the value of C, this family is divided into two subfamilies, of which one

does not go around the cylinder and the other, on the contrary, goes around

it.

7 See footnote 7, page 207.
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The next step is to take into account the aerodynamic forces. The

analysis follows the argument analogous to that used previously. The

principal conclusion is that, in the presence of air resistance, a periodic

solution is impossible and that, after having described a series of closed

"loops," the craft approaches a rectilinear descending trajectory with a

gradually decreasing swing.

The establishment of d.e. leading to these results is due to Joukovsky

(1891) and is based on the observation of the flight of birds.7

7 See footnote 7, page 207.
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PART II

QUANTITATIVE METHODS

INTRODUCTION

In Part I we outlined the principal qualitative (or topological) methods

and concepts.

In Part II we propose to study the quantitative methods which reduce

to the approximations involving solutions in the form of certain power

series. This implies that one deals always with approximations, depending

on the number of terms used in the series solution. In fact, the cases when

the d.e. can be integrated in a closed form are very rare.

The importance of quantitative methods, as the name implies, lies in the

fact that they permit obtaining numerical results; their drawback is that

they do not give any idea regarding the totality of all possible situations as

do the topological methods. For that reason it is often useful to start

the exploration of a new problem by a qualitative method and, once the

character of the solution has been ascertained, to use one of quantitative

methods for numerical determination of the solution with a desired degree

of approximation.

The origin of quantitative methods lies in astronomical calculations

where it received the name of the perturbation method. This term acquired

later a somewhat different meaning.

There are two different stages in the development of the perturbation

theory, one preceding the work of Poincare and the other, the modern one,

following it. We shall be concerned mostly with the latter. It is,

however, useful to say a few words about the earlier period limited to

astronomical calculations and, as far as known, initiated by Poisson (around

1830). This somewhat broader viewpoint on the situation will be an aid

in understanding the important contribution of Poincare and of later

mathematicians, which forms the principal object of Part II.

It is plausible to consider that the motion of a celestial body (for example,

the earth) is specified by the d.e. of the form

% = *â€ž* + + W + â– â– â– ; i = 1, 2, . ., n (II.l)
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where x> is a coordinate and Xfax,.. ., x") are certain functions of

coordinates representing the gravitational forces emanating from other

bodies arranged according to the order of their smallness (p. 1 is a

small factor). On this basis the first (finite) term X0' is the gravitational

force of the sun and pX^, n2Xt',. . ., are much smaller forces (perturba-

tions) from other planets.

This led Poisson to suggest that the solution should be sought in the

form of a series:

*â€¢(*) = *0'(r) + /x^i'(O + /***â€¢'(*) + . . . + /*%'(r) + . . . (IL2)

If one substitutes (II.2) into (II. 1) and equates the coefficients with the

like powers of /x, one obtains a number of d.e. which can be integrated

recursively. We shall go into this matter more in detail later, but at

present it is sufficient to mention that this procedure has been adopted

later for the quantitative study of nonlinear oscillations. In the simplest

case of a system with one degree of freedom with which we shall be

concerned in the first place, the d.e. are generally of the form

x + x + nf(t, x,x) = 0 (II.3)

where f(t, x, x) is an analytic function of x and x and periodic in t with

period 2n; p is a small number (the parameter). The application of the

Poisson procedure at this stage is purely formal and it is not certain

whether it is legitimate.

In fact, it is not certain as to whether the somewhat heuristic astronomical

hypothesis regarding the form of the solution can be transferred into an

entirely different problem in which "the perturbation" concerns the form

of the d.e. and has nothing to do with a more or less intuitive concept of

perturbation of the gravitational forces.

A serious difficulty has been encountered in applications of this procedure

in the form of the so-called secular terms, that is, such terms in (II.2)

which grow up indefinitely when t â€”> oo and thus destroy the convergence

of the series solution. By "secular terms" are meant the terms containing

the variable t (the time) as a multiplier of trigonometric functions.

Astronomers were first to encounter these terms in their calculations,

and the practice consisted in introducing corrections for the effect of these

terms. This did not present any special difficulty as the astronomical

tables were usually computed for a certain number of years so that the

secular corrections remained always within a reasonable bound.

However, toward the end of the last century there appeared a tendency to

determine the constants of integration so as to eliminate the secular terms,

as the approximations develop, instead of correcting the expansions for

these secular terms. The names of Gylden, Lindstedt, Bohlin, and other
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astronomers of the end of the last century are associated with these

developments, but it was especially Poincare who investigated these new'

methods in detail.

The secular terms appear whenever one uses a finite number of terms in

an infinite series representing a certain function. Thus, for instance, in

the case of

t3 r5

sin* = ' - 3! + 5! - '.

if one limits the expansion, say, to the first three terms, the approximation

of sin t by these terms is satisfactory up to a certain value of t in /(r) = t â€”

(r8/3!) + (r5/5!). after which the two functions sin/ and /(/) will differ

from each other by a quantity exceeding the prescribed limit of accuracy.

If one takes more terms in /(r) the limit of accuracy can be extended to

t = t2, r2 > tx but, again, for t > r2 the difference |sin t - f(t^)\ will

exceed the prescribed limit, and so on. In actual calculations one does not

know whether the function is periodic or not, and this complicates the

situation still further as there is no certainty as to whether the lack of

periodicity is in the nature of the unknown function itself or is due to the

effect of the secular terms.

Lindstedt suggested (Section 3, Chapter 8) the elimination of secular

terms in each step of the approximation procedure owing to the availability

of the integration constants, so that the ultimate series solution is free

from secular terms. The question of secular terms was of importance to

the astronomers when the prediction of the coordinates of celestial bodies

was more vital than the question of periodicity'.

With Poincare opens the new period in the perturbation theory in that

the periodicity begins to play the primary role, and this question became

of fundamental importance in the theory of oscillations. In fact, in

astronomy the predictions are made for a relatively small number of

periods (years), and the question whether the motion is strictly periodic or

is only approximately periodic is not as vital as in the oscillation theory

where the departure can be observed in a very short time. For that

reason the formulation of the conditions of periodicity is of greater im-

portance for the theory of oscillations than for astronomy. Thus, for

instance, an electron-tube oscillator oscillating with a frequency of, say, one

megacycle per second in one millisecond passes through the same number

of cycles that our planet accomplishes in one thousand years; thus the

aims of astronomy and of the theory of oscillations are clearly different.

Instead of looking for the convergence of the series expansion (II.2) for

m â€”> oo, the applicability of the quantitative methods is now sought for the

asymptotic behavior for fixed m, for /x -> 0, and for t -> oo, as will be shown
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in Chapters 14 and 15 concerning the recent developments of Krylov-

Bogoliubov-Mitropolsky.

Although the question of secular terms is of a relatively secondary

importance for the theory of oscillations, we outline it briefly in Chapter 9

in order to have a better grasp on the situation. The modern aspect of

the perturbation theory (in the sense of the perturbation of the form of the

d.e.) may be considered by itself without any connections with astronomy.

The problem of periodic solutions (or the problem of Poincare) can be

formulated with reference to (II.3) as follows: If /x. = 0, we have a harmonic

oscillator having an infinity of periodic solutions depending on two

arbitrary constants of integration. Topologically this amounts to a

continuous family of concentric circular trajectories of radius r = V*2+**.

On each of these circles there exists an infinity of "motions" differing

from each other by the phase r0; one has thus a two-parameter family

(ro>*o) of possible motions.

What will happen if we "perturb" the d.e., x + x = 0 by adding a

small term, say, fif(t, x, x)? It is clear that it is impossible to answer this

question on the basis of any offhand consideration. In fact, assuming that

fif(t, x, x) = fibx, it is seen that the perturbation of the d.e. * + x = 0 by

the term of this nature destroys the original periodicity; the trajectories,

instead of being circles, become now logarithmic spirals (convergent if

b > 0 and divergent for b < 0).

To ascertain the conditions under which (II.3) has periodic solutions

constitutes the problem of Poincari which we shall study in Chapters 10

(for systems with one degree of freedom) and 11 (several degrees of free-

dom). It must be noted that this problem is possible only under the

assumption that the parameter fi (in 11.3) is sufficiently small to guarantee

the convergence of the series solution. For that reason the method of

Poincare is often called the small parameter method. The solution of (II.3)

appears thus ultimately in the form

For fi = 0 one obtains the simple harmonic solution.

If one goes to the first approximation: x(rr) = x0(rr ) + fix^t); y(t)

â€” Jo(r) + J*yi(')i the problem is to determine the functions x^r) and

yi(t) in such a manner that x(t) and y(t) remain periodic. An interesting

feature of this determination is that it is possible only for definite values

x0*(t) and y0*(t) of the "zero order" solution x0(t) and jyo(0- The par-

ticular zero-order solution: (x0*(t), y0*(t)) is called the generating solution.

Summing up, for \l = 0 there exists a continuous two-parameter family

x(t) = x0(t) + iix^t) + n*x2(t) + ...

x(t) = y(t) = y0(t) + m(t) + yflyjfy + ...

(II.4)
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(x0(t), y0(t)) of the "zero order" solution (solution of the harmonic oscil-

lator); if /x / 0, but small, and if some special conditions (Chapter 10) are

fulfilled, the family (x0(t), y0(t)) shrinks to one isolated solution (x0*(t),

y0*(t)), the generating solution (g.s.) and the periodic solutions are possible

only in the neighborhood of this g.s. and are given by

x(t) = x0*(t) + ^(0; y(t) = y0*(t) + Â«yi(0 (H.5)

where x^t) and jj(r) are yielded by the same procedure.

If one goes to higher-order approximations, this merely adds terms

n2x2(t), n3x3(t),. . .; p*yjt), /*8yÂ»(')>- . ., on the right-hand side of (II.5),

each subsequent approximation being determined by the data yielded by

the preceding one.

There is another fundamental point in the theory of Poincare, namely:

the justification of the heuristic assumption of Poisson regarding the form

(II.2) of the series solution. More specifically, Poincare shows1 that if a

d.e. contains terms with a small parameter (like II.3), the solution is

analytic in terms of this parameter (last section of Chapter 9). This

theorem has been proved recently by K. O. Friedrichs2 in a different

manner; the proof given in Section 4, Chapter 9, is due to Goursat. In

other words, in all small parameter methods it is legitimate to use the power

series arranged according to the ascending powers of the parameter as the

solution giving rise to successive approximations.

In applications one seldom goes beyond the first approximation for the

reason that all qualitative features of an oscillatory process generally are

completely revealed by the first approximation. The second (or higher)

approximation does not add anything new from the qualitative point of

view, but merely adds a small quantitative correction of the order (or

higher) which is usually not justified by the amount of the computing work

involved. For that reason, although we indicate below the procedure for

carrying approximations beyond the first order, in the various applied

problems treated in Part III we shall limit ourselves only to the theory of

the first approximation.

It must be mentioned that in some (very rare) cases the first approxima-

tion may fail to give the answer and a special study is required. In what

follows we will not consider such "pathological" cases, because they are not

usually encountered in applications.

As regards the remaining chapters of Part II, Chapter 12 gives an

1 H. Poincare^ Les mithodes nouvelles de la micanique cfleste T.l, Gauthier-

Villars, Paris, 1892.

* K. O. Friedrichs, J. Inst- of Math- and Mechanics, New York University,

New York, 1946.
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outline of the theory of almost periodic oscillations; this theory is less

developed than that of periodic oscillations and, from the standpoint of

applications, these oscillations are less important. We enter into this

question in some detail only because almost periodic oscillations appear

often spontaneously in oscillatory systems beyond the range of synchroniza-

tion when autoperiodic and heteroperiodic frequencies separate and an

almost periodic process sets in, but this is a somewhat special case.

Chapter 13 concerns the calculation of the characteristic exponents by

successive approximations. As is well known, the principal difficulty in

calculation of these exponents is the fact that the characteristic equation

for d.e. with periodic coefficients depends on the (unknown) solutions and

the latter, in turn, depend on these exponents. This results in a vicious

circle from which successive approximation is the only issue.

In Chapters 10, 11, 12, and 13 we have followed closely the exposition of

Malkin3 who introduced considerable improvements in the adaptation of

the theory of Poincare to problems of the oscillation theory. Chapters 14

and 15 outline the recent asymptotic theory of Krylov-Bogoliubov-

Mitropolsky (KBM) which is a further extension of the earlier (1937)

K.B. theory. It is recalled that in the earlier theory, equations of the first

approximation were established directly by a procedure reminding of the

classical method of Lagrange; but, for approximations of higher orders, it

was necessary to use an additional procedure analogous to the Linstedt

method. In the new derivation of the theory, approximations proceed

symmetrically from a recursive system of d.e. and, owing to an additional

condition, the secular terms are absent in all approximations. Chapter 14

deals with autonomous systems and Chapter 15 with nonautonomous ones.

The last two sections of Chapter 15 relate to recent (1955) work of

Mitropolsky regarding nonstationary processes.

Chapter 16 concerns the stroboscopic method, developed by the author

in collaboration with M. Schiffer. It is based on the transformation

theory of d.e., and its purpose is to replace the original nonautonomous

system by the d.e. of its "stroboscopic image" having the property that

the existence of a stable singular point of the stroboscopic system appears

as a criterion for the existence of a stable periodic solution of the original

system. Owing to this transformation the difficult problem of determina-

tion of characteristic exponents is replaced by a much simpler problem of

stability of singular point of the stroboscopic system. We shall make

extensive use of this method in Part III devoted to the analysis of the various

types of nearly linear oscillations. Chapter 17 outlines some recent

attempts to extend the Nyquist criterion to nonlinear systems; its connec-

tion with the theory of approximations is somewhat indirect.

'I. G. Malkin, Theory of Stability of Motion (in Russian), Moscow, 1952.
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Chapter 9

PERTURBATION METHOD

1. Secular terms

In the Introduction we discussed the basic idea of the perturbation

method. It is sufficient, therefore, to give a few examples of the appear-

ance of secular terms in the series solution.

As an example, consider the d.e.

x + !*x + * = 0; |p| 4. 1 (1.1)

whose exact solution is

x = Ae-v* sin (Vl - ^ t + 6) (1.2)

where A and 0 are the integration constants.

If one attempts to solve this d.e. by the power series solution (II.2), one

places it in the d.e. (II.3) and equates the coefficients of the like powers

of (i which results in the following recursive system

*o + *o ~ 0

*i + *i - -/(*o.*o)

*Â« + *i= - [*i/*(*o.*o) + *i/*(*o>*o)] (1.3)

*,(0) = *,(0) = 0; i = 1, 2,. ... n

In the particular case of (1.1), /(*,*) of the general theory is x. The first

d.e. (1.3) yields x0 = A sin (r + 6), A and 6 being the integration constants.

If one replaces x0 and x0 into the second equation (1.3), one gets

*i + *i â„¢ -A cos (' + 0)

217
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(1.6)

the integration of which yields

a

x^t) = - (At/2) sin (r + 6) + sin 6 sin t (1.4)

so that the solution of (1.1) in the first approximation is

x(t) = x0(t) + fix^t) = A[l - /xr/2] sin (t + 6) + ^ sin 6 sin / (1.5)

and it is seen that it has a secular term (â€” Afit/2) sin (t + 6) which is at

variance with the exact solution (1.2) which is bounded.

As another example, consider the d.e.

mx + ax + yx3 = 0; a > 0, y > 0 (1.5a)

This d.e. may be regarded as representing a mechanical system with a

nonlinear restoring force p(x) = ax + yx3. In order to be within the

limits of the nearly linear theory, we assume that y <^ a. If one sets

a/in = a>2; yjm = fi and forms the d.e. of the first approximation, accord-

ing to (1.3), one has

x0 + w3x0 = 0

x\ + <o2x! = -*03

From the first equation (1.6) one has

x0 = a cos (<ot + 6)

The second equation becomes

+ <o2*! = - ia3 cos (<ot + 6) - \a3 cos 3 (<ot + 6) (1.7)

and its solution is

xx = -g^ ta3 sin (<ot + 6) + cos 3(o>f + 6) (1.8)

Here again the first term of (1.8) is a secular term.

Although in this case the exact solution is still known in terms of

elliptic functions, it is possible to reach the conclusion as to the bounded-

ness of the solution in a simple manner by the consideration of energy

since (1.5a) represents obviously a conservative system; that is, has an

energy integral. If one multiplies (1.5a) by x and integrates, one obtains

the first integral

\mx3 + \ax3 + fyx* = E (1.9)

expressing the law of conservation of energy. From (1.9) it is apparent

that for a > 0 and y > 0, the quantity x* < 2Efa, which shows that x(t)

\% bounded so that the result (1.8) cannot be justified.
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As was mentioned in the Introduction to Part II, the appearance of the

secular terms does not mean that the series solution does actually diverge

if one considers the whole series just in the same manner in which the whole

series t â€” (r8/3!) + (*5/5!). . . converges to sin t. As it is impossible to

build enough terms by successive approximations to be able to ascertain

this fact, the appearance of secular terms renders the method impracticable.

A simple example given by Bogoliubov and Mitropolsky makes this

statement particularly convincing. Suppose we have the function:

sin (<o + fi)t with period 27r/(<o + fi). If fi is small, one can expand it in

the series

sin (<o + fi)t = sin <or + fit cos <or

- (m2*2/2!) sin <of - (/x3r8/3!) cos <or + ... (1.10)

If one looks only at the right-hand side of this equation, it is impossible to

see that it represents a function periodic on the whole axis of real r. The

appearance of secular terms, thus, does not mean that the approximation

solution is "wrong" but merely that it is presented in such a manner that

it is impossible to form an idea as to its periodicity.

As was mentioned in the Introduction to Part II an important practical

result was achieved by astronomers (end of the last century) who suggested

the elimination of secular terms in each step of the approximation proce-

dure and thus rendered the perturbation method a practical tool in the actual

computation of successive approximations. The method of Lindstedt,

outlined in Section 3, is particularly suitable for our purpose, but in order

to prepare a ground for this procedure we consider first a special case in

which the operation of the perturbation method is particularly simple.

2. Energy fluctuations in a van der Pol oscillator

In Chapter 4 it was mentioned that the Lienard criterion means that,

after one period, the energy stored in the oscillation is of exactly the

same value that it had at the beginning of the period. Aside from this

circumstance, Lienard's criterion does not give any information regarding

the energy fluctuations during the period. On the other hand, since the

system is not conservative, the energy cannot remain constant throughout

the period.

We propose now to establish what actually happens by means of the

perturbation method and consider the d.e. of van der Pol

X + /x(*Â» - 1)* + * = 0 (2.1)

with the corresponding equivalent system

x = y; y = /x(1 - **)>- - * (2.2)
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220 QUANTITATIVE METHODS

Introducing the polar coordinates * = rcos^;^ = r sin ip and multiplying

the first equation (2.2) by x, the second by y, and adding, one has

-~ = 2/x(1 â€” p cos2 ip)p sin2 <p (2.3)

where p = r2 = x2 + x2 = x2 + y2; ip = arctan (y/x). It is observed

that p is a measure of total energy stored in the oscillation (up to a certain

factor of proportionality and with a proper normalization). Likewise,

multiplying the first equation by y, the second by x, and subtracting the

first equation from the second one, one has

^jr = â€” 1 + p.(l â€” p cos2 ip) sin ip cos ip (2.4)

at

If fi = 0, (2.3) and (2.4) give the d.e. of the harmonic oscillator. Equation

(2.3) in this case is dp/dt = 0 and expresses the law of conservation of the

total energy; the second one gives ip = â€”t + c, expressing the rotation of

the vector with a constant velocity ip = â€” 1 in the clockwise direction, c

being an arbitrary constant.

If one wishes to investigate only the magnitude of the energy exchanges

between the oscillator and the outside source without taking into account

the time element, it is sufficient to eliminate t between (2.3) and (2.4) and

investigate the integral curve given by the equation

dp = 2/*( 1 - p cos2 i/>)p sin2 ip

dip p.(l â€” p cos2 ip) sin ip cos ip â€” 1

Assuming p. ^ 1 and expanding the right-hand side into a power series,

one gets

^ = â€” 2p[/x(1 â€” p cos2 ^r) sin2 ip + /x2(1 â€” p cos2 ip) sin3 ip cos ip

+ .. . + /x"(1 - p cos2 ^>i)" sinn+1 ip cos"+1 ip + . . .] (2.6)

Setting

/#) = PoGA) + WiM + /*Wtf) + . . . (2-7)

and equating the terms with equal powers of p., one obtains a recursive

system of the d.e. yielding successive approximations. Thus, the approxi-

mation of the order zero is: dpjdip = 0; p0 = K0 = const.

The first approximation is: dpjdip = â€” 2(1 â€” p0 cos2 ip)p0 sin2 ip which

yields

Pi(<f>) -Kx- PoO - iPoM + Â±Po si" ~ lW si" H (2.8)

where Kx is a constant of integration. It is seen that the second term is a

secular one.
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PERTURBATION METHOD 221

Determining the constant K0 so as to eliminate the secular term, we have

K0 - Po = 4 (2.9)

and one has:

PiM = + 2 sin 20 â€” sin 40

the constant Kx being determined from the second approximation by the

same method.

For the second approximation we have:

~ = â€” 2px sin20 + ^pip0 sin2 0 cos2 0

â€” 2p0 sin3 0 cos 0 + 4p02 sin8 0 cos3 0 â€” 2p02 sin3 0 cos5 0

Replacing p0 and Pi by their values, integrating, and eliminating again the

secular term (which yields Kx = 0), one gets

p2(0) = Kt - i cos 2l/l + Â£ cos 40 + & cos 60 - i cos 80 (2.10)

where is a constant of integration to be determined in the third approxi-

mation by the condition of elimination of the secular term which yields

Kt = f. Thus,

P8W = -\2 sin 20 - yfj sin 40 + ff sin 60

- rife sin 80 - sin 100 + sin 120 + JST, (2.11)

the constant if3 to be determined again in the following approximation.

If one stops at the third approximation which limits its accuracy up to

the order p.*, the integral curve /j(0) is given by the following expression:

M = (4 + fr* + . . .)

+ [(2f - tVm8 + ...) sin 20 + (-J/x2 + ...) cos 20]

+ [(-/*- t!^8 + . . .) sin 40 + (i/Lt2 + . ..) cos 40]

+ [(Mp* + . . .) sin 60 + (^2 + ...) cos 60]

+ K-T^V/*" + . . .) sin 80 + (-iM2 + . ..) cos 80]

+ ...

where the nonwritten terms in the brackets are of higher degrees in p.; the

odd ones for sines, and the even for cosines. This permits ascertaining the

order of magnitude of the energy fluctuations for different values of 0.

These approximations do not as yet give an idea about the time variations

of these fluctuations inasmuch as we were dealing with the geometrical

curve p(0) and not with trajectories defined by (2.3) and (2.4).
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222 QUANTITATIVE METHODS

For the latter one has to use the series solutions in the parametric form,

viz.:

KO = Po(0 + /WO + fÂ»WO + . . â– 

m = +#) + + w) + â– â– â–  ('

As the variable ip enters into the arguments of the trigonometric functions,

one has to expand also the latter. Thus, for instance, writing ^, for <f>,{t),

we have:

cos 24 ~ cos 2^0 - 2(/^-1 + /xVj + . . .) sin 200

sin 2^r ~ sin 2^r0 + 2(/x^1 + /x V2 + . . .) cos 2^o

The d.e. (2.3) and (2.4) can be written in terms of the multiple argu-

ments, namely:

dpjdt = fi.p(\ - cos 2</<) - iw2(1 - cos 4$ (2.15)

dip/dt = â€” 1 + fa sin 2^r â€” ^ip sin 2^r - Â£p.p sin 4^ (2.16)

We propose to carry out the calculation to the second order; for this

purpose it is sufficient to set p ~ p0 + p.px\ i/> ~ <p0 + pjpx and, for the

trigonometric functions:

sin 2ip ~ sin (2tp0 + p2ipi) = sin 2ip0 + p!b\>i cos 2^>0

cos 2aJi â€” cos (24>0 + ptyi) = cos 2ip0 â€” p.2^ sin 2^>0

and similarly for sin 4ip and cos 4^.

If one substitutes these values into (2.15) and (2.16), one finds that the

approximation of the zero order, as previously, is

po(0 = P0: WO = 9o - t (2-17)

p0 and <p0 being arbitrary constants. As to p0 it is determined, as before,

by the condition of the elimination of a secular term in the following

approximation, whereas <p0 is determined from the initial conditions.

One has then the following d.e.:

dp/dt = p[pjl - cos 2^-0) - ip0*(1 - cos4^o)]

+ /**[Pi(1 - cos2i/-0) + 2^0 sin 2Vr0

- ipoPi(1 - cos + 0iPo2 sin ^0] (2-18)

dip/dt = -1 + /x(i sin 2^r0 - ip0 sin 2^r0 - $Po sin 4^0)

+ MÂ«(^ico8 2^o - i^isin 2^o - iPdf>i cos 2^o

- |Px sin 4V-0 - iPo0i cos 4^0) (2.19)
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The d.e. for the first-order corrections are

dpjdt = p0[(1 - iPo) - (cos 2^0 - i/)ocos40o)]

di/jjdt = i(1 - i/)0) sin 2^0 - $Po sin 40o

It is seen that the first term in the first equation is a secular one; its

elimination determines p0 = 4; with this value of p0, the d.e. becomes

dpjdt = -4 cos 2</r0 + 4 cos 4^0; d<pjdt = sin 2^0 - ^ sin 4^r0

(2.20)

and the integration yields

Px(t) = -2 sin 2^.0 + sin 4^.0; ^(r) = Â± cos 2^0 + $ cos 4^â€ž (2.21)

For the second approximation we have

dpjdt = Px(l - cos 2*p0) + 24xPo sin 2^0

- iPoPiO ~ cos ^Ao) + "AiPo2 sin

= Pi(1 - cos 2ipo) + sin 2ip0

- 2Px(1 - cos 4^0) + 16^i sin #0 (2.22)

Taking the values of Pi and ipx from (2.21), one calculates the various

terms; these are of two types: the periodic terms and the secular ones.

The periodic terms do not present any special interest and merely add

harmonics; we omit their calculation. The secular terms are more

important and give an idea as to the behavior of the approximation in the

long run. One ascertains that the term Pi(l â€” cos 2tp0) does not yield any

secular term; the second term 8^ sin 2ip0 gives the secular term â€”2; the

third one â€” 2px(1 â€” cos 40o) gives the secular term +1; and the last one

l(xpx sin 4^0 gives +4. The three terms together give +3; therefore

dp9

â€”j-* = 3 + periodic terms and pÂ«(0 = 3z + periodic terms

On the basis of the second approximation, the \ triable p has a slight

tendency to drift away from its stationary value p0 = 4 but, as the latter

is stable, this merely shows that the equilibrium point is slightly displaced

from this value. The effect is, however, slight, since this secular term

enters with the factor p.*.

For the phase one has the d.e.

-jf = -ficos 2<Ao - ipi sm 2^r0 - $Px sin 4^0 - 2^ cos 4^0 (2.23)

If one carries out the calculation of these four terms, one finds that the

third term â€” $Pi sin 4^>0 has no secular term. As to the other three, their
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respective values are +Â£, â€” J, the secular term thus cancels out in the

second approximation.

Thus, as far as the first two approximations are concerned, one can make

the following conclusons:

(1) The amplitude has a fixed value very near to the value p0 = 4; the

slight difference is due to the displacement of the point of equilibrium on

account of the secular term in the second approximation.

(2) As to the variable ip(t) = if>0(t) + ^(t) + /*VÂ«(0 4- . . ., it varies

continuously in the same direction with small oscillations around the value

of ip0(t) = <p0 â€” t (where 9>0 is an arbitrary constant).

This simple, although somewhat lengthy, calculation reveals an ex-

tremely complicated structure of energy fluctuations reducing to an infinite

spectrum of even harmonics, of which only those of the order 2ip and 4^

are more or less important, inasmuch as their amplitudes are proportional

to (i; for the higher harmonics (6^, 80,. ..) the amplitudes are small of

higher orders in /x.

One readily sees that, if p. is small (as we suppose), all these harmonics

are negligible in comparison with the term p0 = 4 yielded by the first

approximation, and this is the reason the solution of the van der Pol

equation is so simple in the first approximation (r0 = 2). A similar

situation appears in the angular velocity of rotation of the radius vector.

The first approximation yields d<pjdt = â€” 1, that is, uniform rotation just

as in the case of the harmonic oscillator, but beginning with the second

approximation there appear perturbing phase modulations with small

amplitudes 0(/x2).

Thus, although a van der Pol oscillator with a small value of fi appears

as an almost ideal image of the harmonic oscillator, in reality it contains a

germ of a complicated structure consisting of an infinite spectrum of

amplitude and phase modulations which escapes observation only because

this structure is very small if (i is small.

This complexity becomes apparent, however, when p. increases and

becomes very large. The phenomena then become very complicated,

and the infinite spectrum of even harmonics begins to dominate over the

above-mentioned simple result (p0 ~ 4), when (i is small. It is obvious

that for large /x the power series solution has no meaning and one has to

use entirely different methods as we shall see in Part IV.

3. Lindstedt's method1

We consider a nearly linear d.e. of the form

x + a>*x + fif(x) = 0 (3.1)

1 A. Lindstedt, Mem. de I'Ac. Imper. de St. Petersburg 31, 1883.
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which characterizes a conservative system with an unknown period T

(frequency Q = 2nfT). In order to avoid dealing with an unknown

period, we select a variable z(r), which has the period 2n; clearly an angle

satisfies this requirement. If such a variable is selected, the system has

the period 2n in that variable but, as we had to change the time scale as

well, the frequency is not Q. In the new variables (the dependent

variable z and the independent t), (3.1) becomes:

Q2z + w2z + fif(z) = 0 (3.2)

As we changed both the dependent variable (from x to z) and the inde-

pendent variable (from t to t), we can set

z(t) = f i**Jt?); & = t (3-3)

n-0 n-0

It is clear that, for fi = 0, one must have Â£22 = <o2 = a0, since in this case

one has the harmonic oscillator whose period is 2n with the new choice of

the time scale t.

We have also

/(*) = /(*o + M*i + ^2*2 + . . .)

= f(*o) + f**i/'(*o) + M2[*<t/'(*o) + z-Â±Â£^\ + ... (3.4)

The substitution qf (3.3) and (3.4) into (3.2) results in a sequence of linear

d.e.:

<o*z0 + a>*20 = 0

a>*z\ + <o'zi = -/(*â€ž) - Â«i*o

<o2z2 + o>2z2 = -f'(z0, zj - a2z0 - axzx (3.5)

"2*n+i + a>2*n+i = . .. *n) - Â«n+i*'o ~ "n*! - . . . - Â«i*â€ž

where F(z0, arj,. . ., zâ€ž) is a polynomial in z0, zv.. ., zâ€ž.

As the system is autonomous, the solution z(r) is determined up to a

translation on t. One can thus always select <p in the t = Qt + <p so as to

have i(0) = 0.

If ar0, zv. .., arN and aâ€ž a2,.. ., aN are the solutions of the first N+1

JV JV

equations of (3.5), it is clear that z(r) = 2 M"^7") and Q2 = 2 w1''

n-0 n-0

satisfy (3.1) and may be regarded as the (N+ l)th approximation.
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226 QUANTITATIVE METHODS

The first equation (3.5) yields z0 = a cost (in view of z(0) = 0), where

a is an arbitrary constant.

There appears, however, an arbitrariness in the following approximations

since we have introduced two expansions (3.3) in the same d.e. The

essential feature of the method is that this arbitrariness enables us to dispose

of the available constants so as to eliminate gradually the secular terms in the

subsequent approximations.

Consider now the second equation (3.5)

w\z\ + zj) = â€”f(z0) â€” ajir'o = â€”/(a cost) + oncost (3.6)

The function f(a cos t) being developed in a Fourier series contains only

the cosine terms, that is,

00 00

f(a cos t) = 2 /n(Â«) cos Â«T = /o(Â«) + /i(Â«) cos t + 2 /â€ž(Â«) cos nr

n-0 n-2

and (3.6) becomes

00

a>\z\ + zx) = - ^ fn(<*) cos m + [a^a - /x(a)] cos r - f0(a) (3.7)

n-2

It is seen that the secular term is bound to appear in this case, since the

variable zx has period 2w and cost has the same period. The d.e. has

thus a resonance solution increasing with t. Since the constant at is at

our disposal, we determine it by the condition

which eliminates the secular term in the first approximation and, in the

meantime, determines the latter: zi, ax, since (3.6) becomes

1 1 â„¢

*i + *x - -â€”Jo(a) --, 2 /n(Â«) cos m (3-9)

yielding the solution

. 1 . 1 ^ /_(a)cosnT /-Â«n\

*, = a cos t - -2/0(fl) - -2 2 JAjr=r (3-10)

where A is a constant of integration; one can set A = 0 in order to

simplify the solution.

Replacing z0 and zx into the third equation (3.5) and eliminating again

the resonance solution, one obtains the value of a2.

The procedure becomes now clear, viz.: the subsequent approximations

develop recurrently from the system (3.5) which determines the sequence

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 1

7
:0

3
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



PERTURBATION METHOD 227

z0, zv z2,. . . of successive approximations but, as in each of them the

resonance terms are eliminated, this results in another sequence axt

a2,.. . which determines the frequency Â£22.

It is clear that, if one has determined two sequences z0, zx, z2,. . ., zâ€ž

and a0, ax, a2,. . ., Â»â€ž in this manner, one reaches the d.e.

1 / 00 \ 1

+ *Â»+i = -5 (*o(Â«) + 2 bn(a)cos nr) + -i(Â°Wia + Ha) cost

and, again, the elimination of the resonance term requires

Â«Wi = (3-H)

which results in the d.e.

4Â»a + = 4 (*o '+ 2 *n cos nT) (3-12)

yielding the solution

As an example, consider the d.e.

x + x + px* = 0 (3.14)

Taking z0(t) = a cost; <o2 = 1 and a0 = 1, one has

*i + *!=*â€” ^o3 â€” ai^o = â€” a8 cos8 t + a-fi cos T

= (axa â€” Ja8) cos t â€” cos 3t

Hence, ax = JaÂ« and the first-order term is

zx = -^a3 cos 3t

Substituting ax and zx by their values, the third equation (3.5) gives,

after the reduction of the trigonometric functions to multiple arguments:

*Â» + ZS ~ ("20 + T2Â¥fl5) cos T + ~x2Sah cos â€” T2"8a5 cos 5t

whence a2 = j^ga* and the integration yields
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QUANTITATIVE METHODS

Hence the approximate solution satisfying the d.e. to the order of ii8 is:

x ~ a cos (uot + <p) + n <z8^l - /x j^*2j cos 3(wt + <p)

where w = 1, a and <p being arbitrary constants of integration. As to the

frequency Â£2, it is obtained from another series into which enter the

quantities a,-. This gives

Â£2* ~ 1 + ifUl* + T28M*Â«*

4. Theorem of Poincar6

As was mentioned in the Introduction, the heuristic assumption of

Poisson concerning solutions for nonlinear d.e. in form of a power series

was proved by Poincare by the method of Cauchy.2 In view of the

importance of this theorem for all developments outlined in Part II, we

indicate briefly the proof of this theorem with a slight simplification due

to Goursat.2

What is essential here is the analytic dependence of the solution on

the parameter /x; otherwise the theorem follows closely the "Calcul des

Limites" of Cauchy. There exists another proof of this theorem due

to K. O. Friedrichs8; for our purpose the proof given here is likely to

be more familiar from the general theory of d.e.'s.

We consider a differential system of the first order depending on a

parameter ix

* = /('. *. y\ M) = I aao^V ..

(4.1)

We assume that the right-hand sides of these equations are entire series in

*, v, and fi, whose coefficients aa0Y and baffY are continuous functions of r in

the interval: t0 Â£ t Â£ tf. We assume further that the series converge for

any t in this interval as long as |*|, \y\, and are less than a certain

number p > 0 and, moreover, the series do not contain any constant

terms so that, for /x = 0, the system (4.1) has a particular solution x = y

= 0.

* H. PoincarÂ£, Les mdthodes nouvelles de la mdcanique c&este T.l, Gauthier-

Villars, Paris, 1892; also E. Goursat, Cours d'Analyse T.2, Gauthier-Villars, Paris,

1918.

* K. O. Friedrichs, J. Inst. of Math. and Mechanics, New York University,

New York, 1946.
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PERTURBATION METHOD 229

We shall try to satisfy formally (4.1) by the solutions of the form

<t) = p.x^t) + p*xjt) + . . . + (iâ€žXn(t) + ...

y(t) = Wx(rr) + n*y2(t) + ... + p"yn(t) + ...

whose coefficients *f(r), y,{t) vanish for t = r0.

If one replaces x and y in (4.1) by their expressions (4.2) and equates the

coefficients of like powers of p, for the first terms xx and yx one has the d.e.

*i = 0ioo*i(0 + Â«oioyi(0 + Â«ooi

(4.3)

$i = *ioo*i(0 + ^oio^iCO + *ooi

With the initial conditions ar1(r0) = yi(t^) = 0, these d.e. determine

xx(t) and Vi(0- The system (4.3) is, in fact, a variational system relative

to the particular solution: x = y = 0.

In a similar manner for the terms xâ€ž(t) and yâ€ž(t), one has a corresponding

system:

*â€ž = flx00*n(0 + ^010^(0 +'Un

(4.4)

A = *100*â€ž(0 + ^io^O +

where kâ€ž and are certain polynomials depending on aafiY, bafiY and on

x,\t) and yj(t) for which j < n.

One ascertains that for any n all functions xâ€ž and together with their

derivatives xâ€ž and % are continuous in (r0>*i); moreover, they all are

determined by quadratures, if one knows the solution of (4.3).

The problem is to show that the expansions (4.2) converge and, thus, can

actually represent a solution of (4.1).

From now on one can follow the argument of "Calcul des Limites" of

Cauchy. We consider an auxiliary system:

X = F(t, X, Y,n) = Z A^X-Y'r

Y = 4>(t, X, Y,H) = 2 B^X'Y^Y

where the coefficients AafiY and are certain majorating functions

relative to aafiY and ba&Y in the same interval (rr0>*i)-

We look again for a possibility of satisfying (4.5) formally by the series

solutions of the form

x(t) = + n*xt(t) + ... + px#) + ...

- Y(t) = Mya(0 + p*Ya(t) + ...+ ^Yn(t) + ...

which satisfy the same condition: X{(t0) = ^i('o) = 0-
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One has again the differential system (compare to 4.3):

X\ = -^100-^1 + -^0io^x + -^001

(4.7)

Yi = Bx00Xx + B0x0Yx + B00x

which determines Xx and Yx that vanish for t = r0. If one compares

(4.7) with (4.3), one ascertains that Xx and Yx are majorating functions as

compared to xx and yv respectively; the same holds for X, Y as compared

to x, y.

The same argument holds in general for Xn, Yn, Xn, and Yâ€ž compared to

*â€ž. yÂ» *â€ž> and yâ€ž.

It is sufficient to show now that, by a proper choice of the majorating

functions AagY and BaBY, the series (4.6), as well as those obtained by the

differentiation with respect to t, are uniformly convergent in (t^t^ if is

sufficiently small.

Let M be the upper limit of |/| and l^l in (4.1) when r is in (rr0i'i) and

\x\, \y\, and \fi\ are less than, or equal to a certain number p > 0.

The coefficient of a term x?y*ixY is clearly less than the corresponding

coefficient in the development of

M(x + y + fi)

j _ (x + y + M) ''

P

in powers of x, y, and /x.

One can take, therefore, as a majorating system:

X + Y + M

M(X + Y +

dX dY "21 ' I 'r'V + Â£ V (4o,

dt dt IV ^ V ^ ..\ lMJ

so that the problem reduces now to showing that a solution of this system

vanishing for t = r0 can be developed in a power series in p. in (r0,f j) for a

sufficiently small |/x|.

With the above initial conditions and setting X + Y + (i = pr, the

system (4.9) reduces to one single d.e.

* . 2^0+1) (4.10)

a* 1 â€” t

with the condition: t = for r = f0, t being real. Separating the

variables, the solution is then the root of the equation: t = o(t + l)2, where
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For t = t0 this solution reduces to t0 = pjp. On the other hand, for

^i = 0, one has a = 0.

It is clear that the root of the equation in t, vanishing for a = 0, is an

analytic function of a as long as a < J.

It is sufficient therefore to take \yt\ sufficiently small:

ggy < \ (4.i2)

in order to guarantee the convergence of power series solutions (4.6) in

(rr0>'i)- This guarantees also the convergence of the differentiated series.

As the series solutions satisfy formally the d.e. and since they are con-

vergent, they are the actual solutions of (4.1).

Summing up:

The solutions of (4.1) are analytic functions of the parameter /x provided |/*|

is sufficiently small.

This theorem is of a fundamental importance for all that follows excluding

Part IV. It means that if the nonlinear terms enter with a certain para-

meter fi, there exists a power series solution in terms of this parameter,

provided it is sufficiently small.
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Chapter 10

PERIODIC SOLUTIONS (POINCARE)

1. Introductory remarks

In this chapter we outline the theory of Poincare1 following closely the

exposition of Malkin.2 The early adaptation of this theory to autonomous

systems was made by Andronov,3 and its application to nonautonomous

systems was indicated by Mandelstam and Papalexi in their theory of

subharmonic resonance (Chapter 19). At a later time Malkin unified

these early developments and gave a general outline of the theory of

Poincare in its applications to the theory of oscillations.

Most of the nonlinear problems with one degree of freedom encountered

in the theory of oscillations are amenable to the d.e. of the form:

x + x + (iF(t, x, x) = 0 (1.1)

Sometimes this equation is also written in the form

x + x + f(t) + fiF(t, x, x>fi) = 0 (1.1a)

In these equations F(t, x, x) is an analytic function of its arguments and

periodic in t (as well as f(t) in (1.1a)) with a period which can be always

assumed to be 2tt with a proper choice of the time scale; (i is the parameter

assumed to be a small number.

In applications, the explicit dependence on t appears generally under the

1 H. Poincare^ Les me'thodes nouvelles de la me'canique celeste T.3, Gauthier-

Villars, Paris, 1892; also E. Goursat, Cours d'Analyse T.2, Gauthier-Villars, Paris,

1918.

* I. G. Malkin, Certain Problems in the Theory of Nonlinear Oscillations (in

Russian), Moscow, English translation, U.S. Atomic Energy Commission, 1959.

3 A. Andronov and S. Chaikin, Theory of Oscillations (original text in Russian),

Moscow, 1937.
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sign of trigonometric functions, therefore (1.1) appears frequently in the

form

x + x + A cos <or + hf(x,x) = 0 (1.2)

where A and w are constants.

There are two principal cases to be investigated according to whether a>

is not an integer or is an integer (or close to an integer). The first case is

relatively simple and leads to the so-called nonresonance oscillation (Section

2). The second case corresponds to the resonance oscillation (either exact

resonance or its neighborhood).

If the independent variable t (time) appears explicitly in F, one has a

nonautonomous system (NA); if t does not enter explicitly in F the system

is called autonomous (A).

As is known from the theory of d.e. in the case of (A) systems, one can

replace t by t + t0 (t0 being arbitrary) and still have a solution; this is

sometimes called the translation property of autonomous systems. For

(NA) systems this does not hold and the period of oscillation either is in

most cases equal to that of the external periodic excitation (that is, the

time dependent term in the d.e.) or is in a rational ratio relative to it. As

in (A) systems the external periodic excitation is absent, the period of

oscillation (if it exists) depends on the parameters of the system; in other

words, it is determined by the d.e. itself. This constitutes the principal

difference between (NA) and (A) systems.

One may consider the broader problem of a system:

x, = X,(t,xÂ».. .,*,;/*); 5=1,2,. .., r (1.3)

where the right-hand sides depend analytically on a parameter /x. We

may then write (1.3) in the form:

x, = X,W(t, xx *,) + ixX,^(t, xv. . ., xr)

+ WHt,x,,...,xr) + ... (1.4)

If p. = 0, one has the generating solution of which we spoke in the Intro-

duction:

X, = *,<")) (1.5)

and one may expect intuitively that, if the periodic solution exists, it must

branch off this generating solution when ti ceases to be zero while still

being small. As mentioned previously, this is a rather delicate point, since

it is not at all certain that the solution exists if it # 0. It is precisely here

that the problem of Poincare intervenes.

In this chapter we shall investigate the question of the existence of

periodic solutions when p. / 0 but is small. The question of stability of

such solutions is treated in Chapter 13.
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2. Nonresonance oscillation of an (NA) system

We consider a nonlinear (NA) system with one degree of freedom, viz.:

x + k*x + f(t) = nF(t, x,x\p) (2.1)

wheref(t) is a continuous periodic function with period 2n and F(t, x, x; /*)

is a nonlinear function analytic in x and x and also periodic in t with period

27t.

It is proposed to find a periodic solution of (2.1). Inasmuch as f(t) and

F are periodic with period 2tt, clearly the period of the solution of (2.1) (if

it exists) is also either 2n or is in a rational ratio to 2ir.

For fi = 0, one obtains the periodic solution of the generating d.e., viz.:

v (t\ _ ao V a* cos bt + bn sin nf _

since /(rr) is periodic and ft is not an integer. It is necessary to investigate

under which conditions (2.1) has a periodic solution which, for fiâ€”*-0,

becomes (2.2) the generating solution.

Poincare introduces two parameters pi and p2 denned as initial deviations

between the nonlinear solution x(t,fi) and the generating solution xo(t,0)

= <p(r); that is, *(0,,x) - <p(0) = fa x(0,,x) - <j>(0) = /34. Thus, by

definition, one has:

â€¢(0.fr./W) - <P(0) = Pi

It is clear that the solution is periodic (with period 2n), provided the

following conditions are fulfilled:

x(2n, pv Pt, p) - Â«(0, pV Pt, fi) = }x(pV j8â€ž /*) = 0

*(27t, ft, /8,-, - x(0, fiv pÂ» p) = +tfx, Pâ€ž n) = 0

It is also clear that, if (2.4) is fulfilled, x and x at the time t = 2n are the

same as for t = 0. Hence, taking for the initial conditions of the second

interval (277r,47r) the terminal conditions of the first interval, one obtains

exactly the same conclusions in the second interval and the solution * is

obviously periodic in such a case.

The conditions (2.4) are thus the necessary and sufficient ones for the

periodicity of the solution, and it is now necessary to determine the

parameters j3x and j32 48 functions of fi so as to secure the fulfillment of

(2.4). It is noted that fi^ = Pfa) and pt = p2(jx) such that px and pt

approach zero when fi â€”> 0 which follows from their very definition.

We have seen that, under the assumed condition of analyticity of F

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 1

7
:1

2
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



PERIODIC SOLUTIONS (POINCARfi) 235

with respect to x and x, the solution x(t, pv j32, /x) is also analytic in f5v p2,

and /x. As these quantities vanish for /x = 0, one can write the solution

in the form of a series

x[t, px, p2, p) = <p(t) + Api + Bp2 + Cp + .. . (2.5)

where A, B, and C are unknown functions of t. The solution can be

continued for higher orders by adding terms Z)/8jj82 + Ep^x + Fp^

+ Gpx2 + . . ., but we shall limit ourselves to the first order. If one

substitutes (2.5) into (2.1) and equates the coefficients of the like powers of

Pi , Â£2, /x one obtains first

A + k*A = 0; J5 + k2B = 0 (2.6)

with the initial conditions

,4(0) = 1; A(0) = 0; B(0) = 0; 5(0) = 1 (2.7)

which determines: A = cos kt; B = ^ sin kt, so that (2.4) to the first

order become

tfiO&i. Pt , /*) = M = (cos 2kn - l)px + - (sin 2k7r)p2 + [C> + .. .

(2.8)

^(Pi, Pâ€ž M) = [x] = -k(sin 2kTT)Pr + (cos Iter - l)p2 + [C]fi + ...

where we use the notations [x] = x(2tt) â€” x(0) etc.

Conditions (2.8) are identically fulfilled for /x = /Jx = j82 = 0. Besides

this, the Jacobian of the left-hand terms with respect to jSj and p2 is

different from zero for /x = /3x = p2 = 0. In fact, we have

[SttNI = (cos 2hr-l)* + sin2 2krr * 0 (2.9)

L<v>iiPÂ«) J #,-0,-^-0

Hence, on the basis of the implicit functions theory, one can assert that for

a sufficiently small /x, there exists only one solution pi = P^fi); P2 = j82(/x)

which vanishes with n and, besides this, this solution is analytic in /x.

In view of this, one can write this solution as a series

x = x(t) = <p(r) + ux^t) + n2x2(t) + ... (2.10)

where *,(r) are certain periodic functions with period 2tt. For their

determination one replaces (2.10) into (2.1) and equates coefficients of the

like powers of /x. One verifies that, for the first approximation term x^t),

one has the d.e.

*x + &xx-Fx = F(rr , 9,9,0) (2.11)
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and, more generally, for *,-(/) (t > 1), one has the d.e.

*, + k\ = F, (2.11a)

where F, are periodic functions of <p, x^t),. .., x^^t).

If all xv x2,..., have been calculated and are periodic, F, is then a

known periodic function and, as k is not an integer, there exists one and

only one periodic solution of the form (2.2) for all approximations

Thus, there exists one and only one series solution (2.10), and it con-

verges if /x is small enough. In this case the formal solution so obtained is,

in fact, the actual solution.

The procedure outlined in this section ceases to hold when k is either

an integer or near to an integer. In fact, in such cases the denominator of

(2.2) would either vanish or become very small, which inevitably would

destroy the convergence of the series solution (2.10), since in applied

problems the parameter (i is generally a small fixed number. In view of

this it is necessary for the resonance case (or its vicinity) to apply a some-

what different procedure.

3. Resonance oscillation of an (NA) system

If k is near to an integer n, we assume that n2 â€” k2 ~ 0(ii) so that

n2 â€” k2 = fia, where a is finite and fi <^ 1; we assume that the coefficients

of the nth harmonic of /(rr) are also 0(ii); that is: aâ€ž = iuzn'; bn = fJ>â€ž', aâ€ž'

- and bâ€ž' being finite. If one includes the terms \kax and /*(0â€ž' cos nt

+ bâ€ž' sin nt) in the term fiF(t, x, x, /x), (2.1) becomes

x + n2x + f'(t) = (xF(t, x, x, n) (3.1)

where

/'(r) = /(/) - aâ€žcosnr - iâ€žsinnf = ^ + 2 [flicos7f + fry sinjV].

Consider the generating equation

*o + Â»2*o+/'(0 = 0 (3.2)

The general solution of (3.2) is

a0 a* cos it + b; sin it ... .

*Â° = ~2n^ ~ 2 â€žTZTji + ^ocosnr + iV0sinÂ«r

= <p(r) + M0 cos nt + A^0 sin nt (3.3)

where M0 and iV0 are arbitrary constants.

This solution is periodic with period 2n for any values of M0 and N0.
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Hence, in this case, the generating solutions form a family depending on

two arbitrary constants, whereas in the nonresonance case there was only

one isolated generating periodic solution.

Since in the resonance case there is a family of periodic solutions, one

can try to determine the constants M0 and N0 in such a manner that (3.1)

should have a periodic solution which becomes the generating solution for

/x = 0.

One starts again with the series solution of the form

x(t, px, pâ€ž fi) = *0(r) + Apx + 2J/}, + Q* + rtWi + EP* + Ff) + . . .

(3.4)

It is noted that all terms of higher orders vanish for /x = 0, since in this

case (3.4) becomes the solution of the linear generating equation which

contains the initial conditions only linearly. For the periodicity of (3.4)

we have again condition (2.4). This yields as previously: A + n2A = 0;

B + n2B = 0 with the initial conditions: A(0) = 1; .4(0) = 0; 5(0) = 0;

25(0) = 1, whence A = cos nt\ B = - sinnf so that [A] = [A] = [B]

= [B] = 0 and the conditions of periodicity acquire the form

*iG&i, Pi, /*) = K[C] + [Wi + [E]p2 + [*> + ...} = o

(3.5)

PÂ« h) = yilC] + [D]Pi + [&]P* + [F]n + ...} = 0

The problem is reduced now to the determination of the functions Pi(ji)

and pt(jx) solutions of (3.5) which vanish with p. Equations (3.5) have no

linear terms with j3x and j32; therefore the Jacobian in this case vanishes for

/x = /3j = j32 = 0 and we cannot use the argument of Section 2.

It is possible to use, however, the following reasoning: from the periodicity

^x = 0 and ^>2 = 0; one can drop the factor /x since for fi = 0 the condi-

tions of periodicity are automatically fulfilled.

It is necessary, therefore, to equate to zero the brackets in (3.5) (which

clearly corresponds to the case: /x # 0), but one has to determine /^(/x)

and /J2(/x) m such a manner that the vanishing of the brackets should exist

for any /x provided it is small.

Clearly, the problem is now purely algebraic and one sees at once that

the necessary condition for the fulfillment of the above condition is:

[C] = 0; [C] = 0 (3.6)

It is necessary, therefore, to determine the conditions under which (3.6)

can be fulfilled. If one replaces (3.4) into (3.1) and equates the coefficients

of ti, one has the d.e.

C + n*C = F(t, *â€ž, *0, 0) (3.7)
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with the initial conditions C(0) = C(0) = 0. The solution has then the

form

C(t) -If Fir, *0(t), *fr), 0] sin n(r - T)rfr

= f F[t, *0(t), *o(t), 0] cos n(r - t>/t

(3.8)

Replacing #0 and x0 by their values (3.3), and then letting t = 2n, one

obtains two relations between the constants of integration M0 and N0 which

fulfill the above conditions, viz.:

P(M0,N^ = J F[t, M0 cos m + No sin nr + 9>(t);

â€” Mf/i sin m + N</i cos nr + <p(t), 0] sin mdr = 0

f2. (3.9)

Q(M0,N0) = Jo F(...)cosnrrfT = 0

Equations (3.9) are thus the conditions determining particular values of

the constants M0 and N0 for which a correspondence between the generat-

ing solution (3.3) and the solution of the nonlinear d.e. (3.1) is guaranteed.

One can visualize this situation also as follows: For the generating d.e.

(3.2) there exists an infinity of periodic solutions depending on two arbitrary

constants of integration M0 and N0, but this multiplicity of solutions

shrinks to only one periodic solution which is in the neighborhood of a

definite generating solution corresponding to definite values of M0 and

N0. This isolated periodic solution is precisely the solution of the non-

linear d.e. (3.1). We shall see in Chapter 19 that this approach is the

foundation of the method which Mandelstam and Papalexi developed in

connection with the theory of the subharmonic resonance.

Once the constants M0 and N0 have been determined so as to fulfill the

conditions (3.6), the rest of the problem (equation (3.5)) does not present

any difficulty. In fact, we have

'â€ž (3.10)

+t = Wi + fcP. + [*> + . . . - 0

and these equations can be solved for and /92(/x) for any arbitrary

(but small) /x, if the Jacobian

[D] [E]

/ 0 (3.11)

In fact, in such a case there is one and only one solution /J,- = Â£,(/*) for
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which j8,(0) = 0, and this solution is analytic in p. If one substitutes this

solution into x(t, fiv f}2, one obtains also a periodic solution of (3.1)

which is analytic in p.

For the actual calculation of the Jacobian (3.11) it is necessary to calculate

[D], [E], etc. For this purpose the series of Poincare (3.4) has to be

placed into (3.1) and the terms with Â£j/i. and /Jj/x are to be equated after

this substitution.

It is to be noted that in this substitution the nonlinear function F in

(3.1) has to be developed into the Taylor series around the generating

solution, viz.:

F*(t, px, Pâ€ž h) = F*(r, 0, 0, 0) + + V/3t + *> + ...

= F(t, x0, x0, 0) + (F^4 + FtAfa + (Ffi + F^)p2

+ (FxC + FxC + F> + ... (3.12)

where the notations Fx, Fx mean partial derivatives of F with respect to

x and x into which the generating solutions have been replaced after the

differentiation (that is, f}x = j82 = p. = 0 and x = x0; x = x0).

For the determination of D and E one has to use the d.e. which are

obtained by equating the coefficients of /3j/x and fi^ on each side after the

substitution of the series (3.4) into the d.e. (3.1).

We omit these intermediate calculations which are similar to those

which were carried out in connection with function C and give directly the

result

(3.13)

so that the Jacobian (3.11) has now the expression

\[D] [E] _ _l d(P,Q)

\[D] [E] n* 8(M0,N0) K â–  )

Summing up these results one can say:

The periodic solution of the nonlinear d.e. (3.1) corresponds to a

generating solution (3.3) if the constants M0 and iV0 satisfy the equations

(3.9).

In other words, out of the infinity of periodic solutions of the generating

system depending on two arbitrary constants M0 and N0, the solution of the

nonlinear d.e. appears only in the neighborhood of one single generating

solution, namely, the one for which M0 and iV0 satisfy the equations (3.9).

This constitutes an essential difference with the nonresonance case in

which one solution (the generating one, n = 0) goes into the other (jx / 0)
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without any change in the order of multiplicity of solutions as this happens

in the resonance case for fi = 0.

4. Calculation of periodic solutions; example

We assume that the constants M0 and N0 in the generating solution

(3.3) satisfy the conditions (3.9), which shows that there is a periodic

solution of (3.1) which is analytic in fi.

In such a case one can look for a series solution of the form

* = x0(t) + px^t) + ^x2(t) + ... (4.1)

where x0 = x0(0 i* me generating solution and x^t), x2(t) are certain

unknown periodic functions of t with period 2n.

As usual, one replaces (4.1) into (3.1) and, equating coefficients of like

powers of p., one obtains a sequence of d.e. In the first place,

+ n**! = F(t,xo,xo,0) (4.2)

As n is now an integer, (4.2) either has no periodic solutions or all its

solutions are periodic. In fact, we have

00

F(t, x0, x0, 0) = ^ + y [amx cos mt + bmx sin mt] (4.3)

Z m = l

To any summation term of this series corresponds a periodic term in the

solution of (4.2) of the form

amx cos mt + bmx sin mt

n2 â€” m2

with the exception of the term with the nth harmonic which accounts for a

secular term:

^ (aâ€ži sin nt - bnx cos nt)

Hence, in order to avoid such terms it is necessary that anx = bnx = 0,

or more explicitly

J F(t, x0, x0, 0) cos ntdt = J F(t, x0, xo, 0) sin ntdt = 0 (4.4)

These are precisely same form as the equations (3.9) which specify the

values of M0 and Afâ€ž. Hence, (4.2) has also a periodic solution and, thus

/-.\ aoi \r Â«.i cos mt + bm, sin mt .

Mx and iVj being arbitrary constants. This solution will be also periodic
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with period 2n. It is clear that the procedure can be continued for

x2(t) We leave out some details in the formal argument here but

refer to Malkin's text.2 This shows that, for any combination of values of

M0 and N0 forming a simple solution (3.9), there exists a series solution

(4.1) with periodic coefficients which formally satisfies the d.e. (3.1); if fi

is small enough the series converges and represents the actual periodic

solution.

As an example we consider the operation of an electron tube circuit of

the standard (induction coupled) type on the grid of which is impressed

external periodic excitation with frequency wv The equation of the

circuit is

L jt + Ri + 1 J*' idt - M ^? = P sin <oxt (4.5)

where i is the current in the oscillating circuit, and Ia is the plate current.

If"

One can introduce the variable v = -~ \ idt and consider two forms of

^ Jo

nonlinear characteristics, viz.:

IJv) = S0v - iS2v*; IJv) = S0v + iS2v* - \Stv> (4.6)

The first of these two characteristics is the "soft" one and the second, the

"hard" one. Consider the first case; the d.e. is

IR MS0 MS. A. â€ž P . ..

Introducing as independent variable t = wjt, one has

vr + w*v = (a' + y'iv2)vr + A' sin t

where subscript t designates differentiation with respect to t and a>, a', y,

and A are certain constants. Finally, setting a' = a/x, y'2 = y2fi, we have

v + wh) = fi(a â€” yV)z) + A' sin t (4-8)

where we have dropped the subscript t, since no confusion is to be feared

from now on. In this form the d.e. is that of van der Pol with a "forcing

term,"

x + <o2* = /x(1 - x2)x + Asinr (4.9)

In order to obtain (4.9) from (4.7) and (4.8), one has to set

1 See footnote *, page 232.
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We can investigate now the solution of (4.9) for nonresonance and for

resonance.

(a) Nonresonant oscillations. We assume that w2 is not an integer. In

such a case the generating d.e. is

x0 + <o2x0 = A sin t

and its periodic solution is: w0 = â€”5-^â€”j sin t. Using the series solution

we obtain for ux the d.e.

a, + ^ = (i - u0*)u0 = [-5â€”1 - ^Jl 1)3]

A 4(a>2 - 1)

cosT

A8

+ 4^2 - nÂ»cos ^

which has the periodic solution

[ A A8 1 L AÂ» ,

mi = _ 1)2 ~ 4(a>2 - 1)*J cosT + 4(<*2 - l)3(a>2 - 9) co8 3t

(4.10)

One can calculate similarly the other terms: u2, Â«3,. ...

(b) Resonance oscillations. We assume <o2 = 1 + pa; A = /xA0. The

d.e. (3.5) becomes then:

x + x = /x[A0sinr â€” ax + (1 â€” x2)x] (4-H)

The generating solution u0 = Af0 cos t + iV0 sin t contains two arbitrary

constants. The series solution yields

ux + Â«x = A0 sin t - au0 + (1 - u02)ii0 (4.12)

Â«t + Â«a = -Â«<i + (1 - k02)mi - 2Â«0m1Â«0 (4.13)

or

*'i + Â«i = (N0 - aM0 - iiVoM02 - iAT08) cost

+ (A0 -M0-aN0 + Â±M0Â» + iM^2) suit

+ iN0(N0* - 3Mo2) cos 3t + iM0(M02 - 3iV*02) sin 3t

This d.e. has a periodic solution only if

P(M0,N0)/n = -aN0- M0[l - i(M02 + AT02)] + A0 = 0

(4.14)

Q(M0,N0)/n = -aM0 + N0[l - *(M02 + iV02)] = 0
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These equations determine M0 and N0 in the generating solution. If M0

and N0 have been so determined, then we have

ttx = Mi cos t + Nx sin t + -&N0(3M02 - N02) cos 3t

+ &M0(3N02 - M0Â«) sin 3r (4.15)

where Afj and JV^ are arbitrary constants which are determined from the

condition of periodicity of Â«2(T)-

In a similar manner for the next approximation, one has

mi + u2 = /Wo N0, Mx, Nx) cos t + g(M0, N0, Mx, sin t + ...

(4.16)

where / and g are known functions. Setting / = 0, g = 0, one expresses

the condition of periodicity for u2(t). One finds that the equations for the

determination of Mx and Nx are linear, as they should be from the general

theory. Moreover, the determinant of these equations coincides with the

Jacobian

88(M0QNq) ~ ~1 - "2 + W + ^o2) - Y6 (Mo2 + ^o2)2 (4-17)

which is also in agreement with the general theory. If one considers now

the values of M0 and N0 determined by (3.9) and (4.14), one finds

tan?-(l A*[a* + (l - = V (4-18)

which determines A* from a cubic equation. Hence, depending on the

amplitude A0 of the external periodic excitations, one may have either one

or three values of A2.

We do not continue this problem further inasmuch as it coincides at

this point with a different approach to this question suggested by van der

Pol and further developed by Andronov and Witt, as we shall see in

Chapter 18.

5. Autonomous systems

As previously mentioned, one calls autonomous systems (or d.e.) those

in which the independent variable t (time) does not appear explicitly. In

the theory of d.e. the autonomous systems appear merely as a special case

of more general nonautonomous ones.

In the theory of oscillations the studies started, on the other hand, from

autonomous cases, inasmuch as the van der Pol equation, which appeared

first in these studies, belongs to the autonomous type.
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As we mentioned in the introductory remarks to this chapter, the

difference between the nonautonomous and the autonomous systems is that

the solutions of the former have period of the external periodic excitation

(or, more generally, are in a rational ratio to this period), whereas those of

the latter are determined by the parameters of the d.e. itself.

It is also known from the general theory that the period of a solution of

an autonomous system in some cases does not remain constant but is a

function of the amplitude; a variation of period with amplitude is illus-

trated, for instance, in the case of a pendulum for larger angles of deviation.

Also, in an autonomous d.e. one can always replace t by t + t0, where t0

is an arbitrary constant (the phase), and still have a solution of the same

equation. This means that one can select arbitrarily the time origin in

view of this property of translation in time which remains arbitrary.

This permits selecting the origin of time at the instant when dxjdt is zero.

This introduces a difference as compared to the nonautonomous case as

regards the functions ft(/x) and /32(h-) of Poincare.

In fact, since x0(0) = 0, the generating solution of .r0 + k2x0 = 0 is of

the form

x0 = A/0 cos kt (5.1)

If one assumes a certain generating solution for a fixed value of M0, our

problem is to find the solution of the original autonomous equation

x + k2x = (xf(x, x, xi) (5.2)

where, as previously, we assume that/ is an analytic function in x, x, and /x.

This solution x(t, ft ix) is specified by the initial conditions

x(0, ft /*) = *0(0) + p = M0 + ft x0(0, ft /x) = 0 (5.3)

where we assume ft/x) â€”> 0 as before.

Thus, in the autonomous systems (we consider here only systems with

one degree of freedom), instead of two parameters ft and ft, there is only

one parameter ft and there will appear another function t = t(ii)â€”the

nonlinear correction for periodâ€”which has a similar property of vanishing

together with /x.

The determination of fl and t is obtained again from the conditions of

periodicity, viz.:

x(T + t, ft M) - *(0, ft /*) = x(T + r, ft n) -Mo-p = 0

x(T + r.ft/*) = 0
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Expanding these expressions in terms of t, one gets

x(T, p, M) + x(T, p, + i[-k*x(T, p, ,x) + .. .]tÂ» + ... -M0 - p=0

(5.5)

*(T, P, h) + [-k*x(T, p, M) + .. .]t = 0

The series of Poincare in this case is:

x(t, p, n) = x0(t) + Ap + n[C + Dp + En + . . .] (5.6)

which yields: A + k2A = 0; ^4(0) = 1; A(0) = 0; whence A = coskt.

If one substitutes (5.6) into (5.5), one gets

+ ir\-MJi* + ...) = 0 (5.7)

fÂ»[<?(2f) + ...] +t(-Mo*Â» + ...) = 0

From the second equation (5.7), one has

'-Hot*Â®4-"] (5-s)

with this value of t, the first equation (5.7) gives

,[c(^) + D^)p + ft. + ...]- 0 (5.9)

Q being some coefficient.

We encounter here a problem similar to that discussed in Section 3,

viz.: we wish to determine p = P(ji) for any value of p as long as it is small.

The necessary condition is, therefore,

c(Â£) = 0 (5.10)

If DiZnjk) / 0, the solution for p will be unique and analytic. For the

calculation of the functions C and D, we have the d.e.

C + k*C = /(*â€ž, x0 0); D + k*D = fa cos kt - fa sin kt

C(0) = C(0) = I>(0) = D(0) = 0

where fa and are the partial derivatives of the function /with respect to
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* and x into which the generating solutions have been substituted after the

differentiation. Whence

C= \ f7(Â«Â»**0)sinA(Â»-T'>fr'

Â° (5-11)

D = l JoWo8*7' ~ *A,sin*r')smA(r - r')]dr' = ^

Therefore, the condition appears ultimately (after a change of the variable)

as

P(M0) = I /(M0 cos Â«, - kM0 sin u, 0) sin udu = 0 (5.12)

As the condition Z)(27r/&) ?t 0, it can be written as (dP(Mo)]/0Mo / 0.

Thus to any single nonzero root of (5.12) corresponds a unique analytic

solution of (5.4) and, therefore, of (5.2).

6. Calculation of periodic solutions of autonomous systems

Given the d.e. (5.2), one could try to satisfy it by a series solution of the

form:

x(t) = *â€ž(rr) + ixx^t) + n*x2(t) + ... (6.1)

In the case of autonomous systems there is, however, a complication

owing to the fact that their period is now: T + t(/x) and, thus, depends on

fi. For that reason from the equation of periodicity, viz.:

*o(* + x + T) + T + T) + - '- = *o(/) + + " '"

one cannot conclude that x,[t + (2nlk) + t] = x,(t), inasmuch as the

period of the left-hand side depends on fi (though t = t(/x)), while that of

the right-hand side is independent of p.

Thus, for instance, the development of sin (1 + fi)t yields

sin (1 + n)t â€” sin t + fit cos t â€” sin t + ...

which shows that the periodic function sin (1 + n)t has nonperiodic

coefficients. This is due to the fact that the period 27r/(1 + /x) in this case

depends on p. It is impossible, therefore, to form any idea regarding the

periodicity of the solution from the form (6.1).
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According to Krylov-Bogoliubov, this difficulty can be obviated by

setting

r = ^ + t - ^(i + v + vÂ« + ...) (6.2)

where T' is the period of the solution and A,- certain unknown constants.

This amounts to replacing the variable t in (5.2) by means of a substitution

t = ^ (1 + V + V2 + â–  . .) (6-3)

To the periodic solution of (5.2) corresponds that of the new d.e.:

d2x

j-Z + *(1 + hjfi + hfn1 + ...)*

= y [*, *(1 + V + . . % /*](1+ V + . . -)2 (6-4)

whose period is 2tt.

We can now look for the periodic solution of (6.4) in the form of a series

x(t) = xVÂ»t + nxjfr) + u2x2(t) + . . . (6.5)

As the period is now 2it and is independent of fi, the coefficients x,(t) are

periodic functions with period 2n.

As dx\dt = 0 for t = 0, one must also have

Since the periodic solution exists, we shall show that it is possible to

determine a series (6.5) satisfying formally the d.e. and that this is the only

series solution. The procedure, to some extent, reminds us of the one

already encountered in Section 4.

We have first, the d.e. #0) + "*(0) = 0 (differentiations are with respect

to t) whose solution (in view of (6.6)) is: *(0) = M0 cos t, M0 arbitrary.

Then we have the second d.e.:

+ â€”IhiMo cost + J|/(M0cost, -Mf08inT, 0)

This d.e. has a periodic solution only in the case when

f2"

P(M0) = J /(M0 cos t, - kM0 sin t; 0) sin rdr = 0 (6.7)

1 f2

â€” 2/i1M0 + J /(M0 cos t, â€” kM0 3in t, 0) cos rdr = 0
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The first of these d.e. determines the amplitude M0 of the generating

solution, and the second determines hv We have thus

xx = <pi(t) + Mx cos t + Nx sin t

where <pi(r) is a certain periodic function of r with period 2tt, and Mx and

iVj are arbitrary constants. These constants are determined from the

initial condition (6.6) and also from conditions of periodicity of x2(t).

This, in turn, determines the constants A2.

We omit here the formal argument by which it is shown that if xm has a

periodic solution, it is of the form

xm = <pm(r) + Mm cos t + Nm sin t

where Mm and Nm are arbitrary constants, and <pj^r) are certain periodic

functions. From the integration of the d.e. for xm, together with the

initial conditions, one determines Mm_x, Nm_v and hm. We refer for these

details to Malkin.2

It is seen that the procedure reminds one of that of Lindstedt (Chapter 9).

In both cases the existence of two constants of integration in each step

of the approximation procedure serves to determine the periodicity of the

solution, on one hand, and add a term to the series development of the

unknown frequency, on the other hand.

As an example we consider a standard electron-tube oscillator with an

inductive coupling. Its d.e. is the same as in Section 4 (equation (4.8))

with A' = 0, viz.:

v + wh) = /x(a â€” y2vT)v (6.8)

We change first the independent variable by the substitution

/ = - (1 + h^p. + A,/x2 + . . .)

<o

which transforms (6.8) into the d.e.

vr + v(l + V + . . -)2 = - (Â« - Y*v2)(1 + V + . . -K (6-9)

where the subscript t means: differentiation with respect to t.

We shall try to satisfy this d.e. formally by a series

v = M0cost + ^Â»i(t) + y^v^r) + . .. (6.10)

where the Â»,(t) are periodic functions with period 2tt for which hold the

initial conditions: v^Q) = t>2(0) = . . . = 0.
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We have

+ + 2/i,M0 cos t = â€” â€” (a â€” y2M02 cos2 t)M0 sin t

CO

Â«M0 vW0Â»\ . _ vW,

sin t + - ""Â° sin 3t +

4oj

\ <o 4a> /

(6.11)

Equating to zero the coefficients of cos t and sin t, we have

7r <O 4<O y

This yields for t;x the solution

= â€” 0 sin 3t + Mx cos t + Nx sin t

j/<o

where Mx and iV^ are arbitrary constants.

For v2 we have the d.e.

a MJ y2Mâ€ž2

*2 + v2 â€” â€” 2AjM0 cost Hâ€” *i â€” y2 â€”â€” t)xcos2T + -â€”â€” vx sin 2t

<o <o

= M0(-2A2 + cost + y2yMx sinT + ... (6.12)

\ o<o / L<o

where the nonwritten terms do not contain cos t and sin t. Equating to

zero the coefficients of cos t and sin t, we get

3y

Thus, the periodic solution is of the form:

T3y2 y2 1

i> = M0 cos t + ^i- M0S sin t - M03 sin 3t Ui + ...

\_OA<O ii.CO J

T = ft"[1-^5/*, + ""]; Mo = v4"/y (6-13)

The solution is real if a > 0, in which case the state of rest is unstable.

The period of oscillation is given by the formula

r-!(1 + iÂ£i**+-) ("4)

In this manner the two series solutions for v(t) and t(jx) progress in
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parallel in each step of the approximation procedure as was explained in

connection with the method of Lindstedt (Chapter 9).

7. Nonanalytic case

In all previous discussions we considered the d.e. whose right-hand sides

are analytic in x, x, and /x. It often happens that the above conditions are

not fulfilled in applications and, instead of analyticity, the problem is

limited to the existence of continuous partial derivatives of the first order.

In such cases it is impossible to look for the solution in the form (6.5),

but it is necessary to try to determine it in the form: x(t) = #0(r), x^t),

#2(r), ..., where x^t), x2(t) are successive approximations.

Thus, for instance, in the case when the generating d.e.

*o + ***o+/(0 = 0 (7.1)

has a unique periodic solution x0(t) = "K0> â€¢* st^' possible to find the

periodic solution of the nonlinear d.e. for fi sufficiently small by the method

of successive approximations.

We assume x0(t) as the zero-order approximation; then for the first

approximation we have

+ k*Xx + f(t) = nF(t, x0, *â€ž, m) (7-2)

and so on. As we deal here with a nonresonance case, there is only one

periodic solution which is gradually made more accurate by the successive

approximations.

For the resonance oscillations we have the d.e.

x + n*x + /(rr) = (xF(t, x, x, /*) (7.3)

where the Fourier development of/(rr) does not contain the nth harmonic.

The generating solution, as previously, will have the form

*o(0 = <Po(*) + M0 cos nt + N0 sin nt (7.4)

where <p0(t) is a particular solution of the generating equation. It can be

shown that the generating solution (/x = 0) goes into the solution of (7.3)

if M0 and N0 satisfy the conditions

P(M0,N0) = f" F(t, xo, x0, 0) sin ntdt = 0

Q(M0,N0) = Â£" F(t, x0, x0, 0) cos ntdt = 0

(7.5)
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which shows that the Fourier expansion of F does not contain the nth

harmonic. .

Hence, just as in the analytic case, there exists one periodic solution of

(7.3) if the Jacobian

If M0 and N0 satisfy these conditions, we can determine the periodic

solution of (7.3) by successive approximations.

As the first approximation we take

*i(0 = 9 + M\ cos nt + Nisin nt (7-7)

where Mx and. jVj are for the time being unknown. We proceed in the

same manner with other approximations.

Consider for instance x2(t); as n is an integer, it is necessary that x2

should be periodic and for this we must have

f2"

Px(Mx, Nx, n) = J F(t, xx, xx, /*) sin ntdt = 0

Qx(MÂ» NÂ» H) = jj *i. *i. y) cos ntdt = 0

(7.8)

which determine Mx and Nx. In view of (7.5), (7.8) are satisfied for

/* = 0, and Mx = M0, iVx = iV0. Since (7.6) is fulfilled, there exists

only one solution Mi(/x), N^) for n # 0, which becomes Mi(0) = M0;

Using Mx and Nx determined from the next approximation we have

x2(t) = 9>2* + M2 cos nt + N2 sin nt

where M2 and N2 are yet unknown. The procedure becomes thus appar-

ent from now on. We refer to Malkin 2 where the reader will find further

examples of these calculations.

'See footnote *, page 232.
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Chapter 11

OSCILLATIONS IN SYSTEMS WITH SEVERAL

DEGREES OF FREEDOM

1. Introductory remarks

In the preceding chapter we were concerned with systems with

one degree of freedom which are amenable to a d.e. of the second

order or, which is the same, to an equivalent system of two d.e. of the

first order.

One encounters occasionally systems with two degrees of free-

dom amenable to a differential system of the fourth order; this occurs

generally when two oscillatory systems are coupled together in some

manner.

In applications one rarely encounters systems beyond the fourth order.

The mathematical treatment of systems with several degrees of freedom is

usually conducted on a general basis of systems with n degrees of freedom

inasmuch as, from a theoretical point of view, this generalization does not

introduce any special difficulties. The difficulties appear, however, in

applying the general theory to concrete examples, inasmuch as the cal-

culations are inevitably more complicated. We omit here a number of

proofs that can be found in Malkin's text. The subject matter can be

readily followed from the contents of the preceding chapters inasmuch as

the procedure is essentially the same, being merely generalized to systems

of In d.e. of the first order.

The last section, concerning the method of averaging, represents an

abstract of a relatively long chapter in a recent treatise of Bogoliubov and

Mitropolsky.1

1 N. N. Bogoliubov and J. A. Mitropolsky, Asymptotic Methods in the Theory of

Nonlinear Oscillations (in Russian), Moscow, 1948.
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SYSTEMS WITH SEVERAL DEGREES OF FREEDOM 253

We briefly recall certain facts from the theory of linear d.e., some of

which were obtained in Chapter 5. Given a differential system

2 w>

s = 1, 2,. . ., n

(1.1)

where the asj are constants, its solution is related to the nature of the roots

A of its characteristic equation

(1.2)

a12

a22 â€” A .

Â£>(A) =

Â«n2

If A is a root of (1.2), the functions

x, = A,e"

(1.3)

are solutions of (1.1); A, is a system of constants determined by a homo-

geneous system of equations

a,xAx + . . . + (aâ€ž - X)A, + . . . + asnAn = 0; for s = 1, 2 n

(1.4)

If all roots are distinct, one obtains n particular solutions forming a

fundamental system. The general solution is then a linear combination of

these particular solutions multiplied by arbitrary constants.

If one of the roots A is multiple, then the system (1.1), in addition to the

solution (1.3) has also solutions of the form

x, =f,(ty

(1.5)

where the /, are polynomials whose degree does not exceed p â€” 1, and p is

the multiplicity of the root. It is also known that, if the system has a

solution of the form (1.5), it has also a solution x, of the form

x, = e*<

dm

dt

(1.6)

as one verifies by differentiating (1.1) and noting that the derivatives of any

solution are also solutions. In such a case the solution has the form:

(1.7)

If p is the multiplicity of the root A which does not eliminate at least one

minor of the (n - l)st order of (1.2), the system (1.1) admits solutions of
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the type (1.5) in which the degree of one of the polynomials reaches (p â€” 1).

If one replaces these polynomials by their subsequent derivatives, one

obtains p particular solutions of the form

*H-**Â£xfJLt) (1.8)

The last solution in this sequence will be, obviously, (1.3). We shall not

elaborate further on this question but will refer the reader to standard

texts for further details.

If A is a complex root, say A = n + iv the quantities As and fe(t) are also

complex, say A, = Bs + iC,\fs = P, + iQâ€ž where Bâ€ž Câ€ž Ps, and Q, are

real. In such a case there are two real solutions, either of the form

*, = (B, cos vt - C, sin vt)e"'; x, = (B, sin vt + C, cos vt]e"'

or of the form

*, = (P, cos vt - Qs sin vt)eÂ»'\ x, = (P, sin vt + Q, cos vr)e*'

2. Periodic solutions of homogeneous linear systems with constant

coefficients

From the preceding it follows that (1.1) has periodic nontrivial solutions

either when (1.2) has a zero root or, more generally, purely imaginary roots.

In the first case, if (1.2) has a zero root of multiplicity p to which corre-

sponds k groups of solutions, (1.1) will have also k groups of partial solutions

of the form

*â€ž = A'J (s = 1, 2,. . ., n; ;= 1,. . ., k) (2.1)

where the Asj are constants. Other solutions will be polynomials in r.

Solutions (2.1) may be regarded as periodic with an arbitrary period. If

(1.2) has a pair of imaginary roots Â± vt of multiplicity greater than one, the

system (1.1) has Ik solutions

xsi = B,t cos vt â€” C,i sin vt

> 1 > (2.2)

xsj* = Bsj sin vt + Csj cos vt

(s = 1,. . ., n;j = 1,. . ., k), Bsj and Csj being constants; these solutions are

periodic with period a> = 2tt\v. Other solutions corresponding to the

roots + vi of any (that is, if the multiplicity of Â± vi exceeds k) are of the

form tm sin vt, tm cos vt, that is, are not periodic.

System (1.1), however, may have periodic solutions of period <o which

are not (2.2) if (1.2) has roots Â±pvi, where/> is an integer. In fact, in such
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SYSTEMS WITH SEVERAL DEGREES OF FREEDOM 255

a case the system will have solutions of period wjp which may be regarded as

being still of period a>.

Assume that (1.2) has a zero root to which correspond k groups of

solutions and r pairs of imaginary roots Â±p,vi, where pj are integers; we

assume that to these roots correspond kj groups of solutions. In such a

case the system will have m = k + 2kx + . . . + 2kr periodic solutions

with period <o = 2tt/v. If we designate each of these solutions as <p,a, the

system (1.1) will have periodic solution of period <o:

x, = + Ctf>,2 + . . . + Cm<psm (2.3)

containing m arbitrary constants C.-.

We shall make a distinction between two possible cases: (1) nonresonance

and (2) resonance. In the first case the trivial solution is the only periodic

solution with period <o of (1.1). In the second case there are m linearly

independent periodic solutions of (1.1) with period <o other than the zero

solution.

We consider the system

y + + â– .. + ansyn = 0 (2.4)

which is called the adjoint system to 1.1 (the latter may be considered as the

adjoint of (2.4).

It can be shown that to the resonance of (1.1) corresponds the resonance

of (2.4) and vice versa.

In the case of nonresonance if m' denotes the analogous of m, for the

adjoint system we have m' = m.

We conclude this section with certain theorems concerning periodic

solutions of linear nonhomogeneous d.e. with constant coefficients.

Given

x, = anxx + ... + asnxn+ fe(t) (2".5)

where the asj are constants and the/,(r) are continuous periodic functions

with period <o. The following theorems show under which conditions

the system (2.5) has periodic solutions. For proofs we refer to Malkin.Â«

(1) In a nonresonance case, the system (2.5) admits one and only one

periodic solution for any choice of functions fs(t)-

(2) In a resonance case (that is, when the characteristic equation has either

a zero root or roots of the form Â± 2npi\w, p integer), the system (2.5) has

periodic solutions only in the case when the functions fs(t) satisfy the

conditions

f 2 Ur}Pai(r)dr = 0; i = 1 m (2.6)

Jo â€ž=1

1 I. G. Malkin, Certain Problems in the Theory of Nonlinear Oscillations (in

Russian), Moscow, 1956, English translation.
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256 QUANTITATIVE METHODS

where ipsx(t),. â–  ., </>,m(T)(s = !,.... Â») are periodic solutions (with period <o)

of the adjoint system

V, + <*u>\ + . . . + amyâ€ž = 0; 5=1, 2 n (2.7)

In the first case the determinant

xiM - 1 xn(^) â–  . â–  *xnH

x2x(oj) x22(w) - 1 ... x2â€ž(w)

*m(<o) Xâ€ž2(a>) . . . xm(w) - 1

is: #0; in the second case it is: =0. Here xis represents a fundamental

system of solutions of (1.1) with

*â€ž(0) = 1,; *â€ž(0) = 0 for !/;

If the conditions (2.6) are fulfilled, (2.5) admits an infinity of periodic

solutions of the form

xs = Mx<psx + M2<ps2 + ... + Mn<psm + ws(t) (2.8)

where the M, are arbitrary constants and ws(t) is a particular periodic

solution of (2.5).

Consider the example

x + k\x = f(t) (2.9)

where /(/) is a continuous periodic function with period <o = 2inlk. The

usual conditions of periodicity are

f "' /(/) cos ktdt = \' k f(t) sin ktdt = 0 (2.10)

Jo Jo

In order to make use of the general condition (2.6) we write first (2.9) as a

system

x1 = x2; x2 = -k2xx + f(t) (2.H)

and form the system

ji = *2>'2; y* = -yi (2.12)

which is adjoint with the homogeneous part of (2.11). This system has

periodic solutions

ipu = smkt\ ip2x = -^cosfo; ipx2 = coskt; ip22 = --^sinfo

If one substitutes these solutions into (2.6), one finds that the condition is

fulfilled.
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SYSTEMS WITH SEVERAL DEGREES OF FREEDOM 257

As a second example, consider the system

x, = -kx2 +f(t); x2 = kxx + F(t) (2.13)

where f(t) and F(t) are again continuous periodic functions of period

2nlk = o>. The adjoint system in this case is

yi = -*yÂ«; >'2 = b'i (2-14)

and one can set as solutions

</in = cos kt; </<12 = sin/f/; ip2\ = sin Ar; </i22 = â€” cos/tf

If one substitutes these functions into (2.6), the conditions for the existence

of periodic solutions of (2.12) are

Inlk

[/(/) cos kt + F(t) sin kt]dt = 0

ii

n/A

(2.15)

[f(t) sin kt - F(t) cos kt\dt = 0

3. Nonresonance oscillations of nonautonomous systems

Consider a system

*, = 2 a,,-xy + /,(0 + -vi *n. m): i = 1, 2,. .., n (3.1)

; = i

where the /,(/) are continuous periodic functions with period 2tt and the

F, are given for p. < fi0, /iâ€ž > 0 for .v,- e G, where G is a certain region of

the variables we assume here that the Fs are analytic in /x and are

continuously differentiable in the other variables up to an order k.

Consider a corresponding generating system

*/â€¢) = 2 Â«,,*/â€¢)+/,(0 (3.2)

and assume that the characteristic equation (of the homogeneous part) has

neither zero nor purely imaginary roots +pi, p an integer. In such a

case (3.2) admits one and only one periodic solution

xw = 9s(t) = vjp)x,x(t) + ...+ 9JL0)xJt)

+ r i *Â«e - tvawt> (s=1 Â») (i3)

Jo

which we consider as the generating solution. Here xsj, as before, is the
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258 QUANTITATIVE METHODS

fundamental system of solutions of (1.1) with xss(0) = 1; .rsJ(0) = 0 for

s*j.

We wish to look for periodic solutions of (3.1) with period 2tt which

approach y(t) when fi â€”> 0. We shall show first the existence of just one

such solution and we shall indicate later how to calculate it. From the

theory of d.e. it is known that to every (n + l)-tuple of numbers^,. . .,

/?â€ž, fi) corresponds a unique solution of (3.1)

xs = x,(t,Pi,. . .,Â£,â€ž n), (s = I,..., n)

such that

*,((), j8â€ž. ..,Pn,h) =9,(0) +p, (3.4)

holds. This solution is continuously differentiable with respect to

Px,- â–  .> Pn, M> as can he verified, and it satisfies equations

*, = CxX,x(t) + ... + C,Xsâ€ž(t) + f 2 Xjt - r)fa(r)dr

+ /* f - X, rfdT (3.5)

where F,(t, x, stands for F,(t, xv. . ., xâ€ž, n), and xs(t, P, m) stands for

x,(t, H) w1th

c. = ?,(o) + P,

Hence if one takes into account (3.3), (3.5) may be written as

x,(t, pu. . ., pâ€ž n) = pAx(t) + ... + pnxsn(t) + 7,(t)

+ /* f 2 *,a(t -T)Fa(T,X(T,P,p),n)dT (3.6)

for every (n + l)-tuple (Â£,,. . ., pn, /x). If one imposes now the condition

of periodicity

x,(2n, pv. . ., pâ€ž n) - x,(0, px,. . ., pâ€ž fi) = 0 (3.7)

one obtains

Pp.,!?*) + ... + Pâ€žxsn(2n) - p,

+ r 2 x^in - t)f..(t- *. *)dT=Â° (3-s)

that is, a system of n equations with n + 1 unknowns: /3â€ž. . ., pn, fi.
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SYSTEMS WITH SEVERAL DEGREES OF FREEDOM 259

This system is satisfied with ^ = p2 = . . . = {}â€ž = /x = 0 and its

Jacobian reduces to

*n(27r) - 1 *12(27t) . . . *xn(27r)

*21(2tt) x22(2tt) -4 ... x2â€ž(2n) ^ ^

Xâ€ži(2n) xâ€ž2(2tt) . . . xJItt) - 1

As we are in the nonresonant case, the determinant does not vanish and we

may apply to (3.8) the implicit function theorem; one can then assert that

in the neighborhood of /x = 0 there exists a unique w-tuple continuous

functions: fix = . ., Pâ€ž = |8â€ž(a0- If for every ix sufficiently near to

fi = 0 we choose this w-tuple set of fi^. . ., f}n, the corresponding

. -.A.. M) or. rather

*, = x,(t, Pfa),. . ., /x) = x,(t,n)

will have the following properties:

(1) It is a solution of (3.1).

(2) It satisfies (3.7), that is, it has period 2n.

(3) It satisfies (3.4) or, rather

*,(0>) = 9,(0) + AG*)

so that xs(0,fi) -> 9>,(0) for /x â€”> 0 and, therefore

*,(*./*) ^9>,(0

over the period and, hence, everywhere, as ix â€”> 0.

We conclude that for a sufficiently small i< there is one and only one periodic

solution which becomes the generating solution for ix = 0.

For the effective calculation of solutions, one has to distinguish between

the two cases, viz.: (a) the function F(xv. . ., xn, ix) is analytic with respect

to its variables; (b) F is not analytic. For the first case the periodic

solution is also analytic in n (since /3i(ii),. . .> PJj*) are analytic in ix) and

one has to look for a series solution of the form

xs = <p,(t) + ?xU\t) + ... (3.10)

with the resulting Poincare's procedure of the substitution of xâ€ž xs etc.,

into the d.e. and identification of the coefficients with like powers of ix,

etc.
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260 QUANTITATIVE METHODS

In case (b), one starts with the generating solution and determines

further approximations by the method of successive approximations

*Â«) = fl,i*iW) + â–  . . + ajcW +/s(0

+ /*F.(/,*1o--1),...,^o--1)f/4) (3.11)

It is to be assumed that the functions Fs have continuous first partial

derivatives with respect to the x,-.

4. Resonance oscillations of nonautonomous systems

We shall assume now that the characteristic equation (1.2) has some

zero roots or purely imaginary roots Â±pi,p being an integer. This gives

rise to the resonance oscillations; it is to be noted that the neighborhood of

these roots is also considered as belonging to resonance zones. We

consider the generating system (3.2); it has aperiodic solution if the condi-

tion (2.6) is fulfilled. One can show that this is actually so if the Fourier

development of fs does not contain either resonating terms with cos pt'and

sin pt or constant terms if there are zero roots. We assume thus that (2.6)

is fulfilled.

In such a case the generating system has a family of periodic solutions

xsÂ° = *,Â»(/) + Mx9,x + ... + Mm9sm; s=l,...,n (4.1)

where xsÂ°*(t) is a particular periodic solution and M, are constants. We

select one solution of this family as generating solution; for this it is neces-

sary to show that for fi â€”> 0 there is one solution of (3.1) tending to this

particular generating solution.

Let xs(t, Pi>- â–  ft,, /x) be the solution of (3.5) with the initial conditions

(3.4) or rather xs(0, ft,. . ., ft,, ,x) = <p,(0) + ft where

9,(0 = *.0,(0 + A/jV.i + . . â–  + Mm*9m (4.2)

and the M* indicate the choice of one particular solution (4.1).

The procedure of the preceding section is still applicable but the

Jacobian of (3.8) now vanishes for ft = . . . = ft = /x = 0.

It can be shown (we refer to Malkin's text) that the system (3.1) may

have for a sufficiently small fi a periodic resonance solution which becomes

the generating solution for /x = 0 if, setting

P.WS,. . ., Mm*) = f" ^ Pair, 9, 0)^ai(r)dr (4.3)

the parameters M,-* satisfy the equations

P,(Mx* Mm*) = 0 (4.3a)
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8(P P )

For any simple solution of these equations for which n,â€ž, 3'' ' '' . # 0,

%MX*,..., Mm*)

the periodic solution exists and is unique. This condition requires that

the functions P^Mx,..., Mm) possess first derivatives with respect to

Mx Mm.

Here again, the subsequent calculations are different according to

whether the functions F, in (3.1) are analytic in xv.. ., xn and /x or not.

If they are analytic, one looks for a series solution of the form

*s = 9. + M*/1)(0 + MW) + . . .

which, being substituted into the d.e., gives rise to a recurrent system of

d.e. obtained, as usual, by equating the coefficients of like powers of the /x.

One has thus:

I a.jxiW + W> 9i Â¥>Â», 0) (4.4)

y-i

*.<*) = i Â«w*)

+ J + F/*-Â«); k = 2,... (4.5)

a = 1 ^*po

where are entire rational functions with periodic coefficients of

*fO) for which; < (k - 2).

Equation (4.4) admits a periodic solution if

^ 2 9,i- . .> 9m Waidt = 0; i = 1 m (4.6)

0 o-l

which is again the condition (4.3a) determining the parameters M,* of

the generating solution. As this is possible in our case, one obtains a

periodic solution for x,w of the form

xw = xm* + Miw9n + ... + Mmw9,m

where is some periodic solution of (4.4) and the M,w are arbitrary

constants which can be selected so as to obtain conditions of periodicity for

jc,(i), and so on.

If the functions x/1),. .., x/*_2) have been so determined and are periodic,

one substitutes them into (4.5) and gets

*,<*) = 2 atjXjW

+ 2 M/*-Â« 2 (4.7)

iâ€” 1 oâ€”1 Â°Ta

t
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262 QUANTITATIVE METHODS

For the periodicity one has again the condition

+ f 2 //*)lM' = 0 (4.8)

which in view of (4.3) and (4.1) reduces to

I jW.;,;.Af/) a/,.<*-Â« + P 2 = o (4.9)

One has thus for the determination of constants a linear system with the

t(P P )

determinant which coincides with .,_. 1 "# 0 and which

^Mj* A/,,,*)

permits their determination.

There is, therefore, one and only one system of the series solution.

As an example consider a system

*, = *â€ž- . .. *n- . .> *â€ž. p) = pF,(t, x, X, p) (4.10)

Here s = 1,. . ., n and F, are analytic in xx,. . ., .vâ€ž, xx,. . ., .vâ€ž and n, and

periodic in t with period 2tt, which we shall write as:

*, = x,p); *=1,2 n (4.11)

The generating system

.i;5Â° = 0

has a zero root of multiplicity 2n\ the system has therefore a family of

periodic solutions containing n arbitrary constants and has the form

.v,Â° = A/,. We look for a periodic solution

.v, = M* + M.r,<" + /x2xs(2) + . . â–  (4.12)

where x, = xs(t). The recurrent system is

*/Â» = F,(r, M* 0, 0) (4.13)

Â«/Â»Â»- i [^y;o'o)x.Â».+(^r'*'0)) H

a = i ^A/â€ž \ rxn /.v-o J

+ {iF.(t.Uâ€¢M)

The periodicity of .vs(1) in view of (4.13) requires

f " F,(f, M*. 0, 0y/ = 0; j=l,...,n (4.15)
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SYSTEMS WITH SEVERAL DEGREES OF FREEDOM 263

and we shall assume that the Jacobian of the left-hand side with respect to

Ma* is different from zero. In fact, with this condition the functions

will be periodic of the form

ifa) = I"* F,(t, M* 0, 0)dt + A,â„¢ (4.16)

Ju

where the Asw are constants. If these constants are determined by the

formula

AfÂ» = -Â± f"dt {' F,(t,M*,0,0)dt

Jo Jo

the functions xs will be also periodic of the form

*,<Â») = #/1)* + A//1)

where the A/s(1) are constants. Equations (4.15) determine M* in the

generating solution, after which one calculates

For the constants A/,(1) one forms the conditions of periodicity of x,i2)

which are

^ w (. *> dF.it, MÂ« 0, 0) r2" [/aF.(f, A/*, 0, g)\

.4,â–  Jo ^/Q*" Jo U ^ ;â€ž-.

(4.17)

Thus, for the determination of the constants M,(1) one has a system of

linear equations whose determinant is different from zero. As we have

assumed, calculation of other approximations proceeds in a similar

manner.

5. Periodic resonance solutions of nonautonomous systems with

nonanalytic d.e.

If in the d.e. (3.1) one maintains all conditions except the analyticity of

Fâ€ž one can apply the method of successive approximations, as was men-

tioned in Section 4, in which case it is necessary to assume only that the F,

have partial derivatives of the first order in all variables.

The problem is to find a periodic solution of (3.1) which reduces for

fx = 0 to the generating solution

x,o = <p,(t) = *,(0)* + MiVn + . â–  . + Mm*<psm (5.1)
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264 QUANTITATIVE METHODS

The constants M,*, as previously, are solutions of equations

P^MS,. . ., Mm*) = J Fa(t, 9x,. . ., Vn, WJtydt = 0;

JO 3-1

i = 1,. . ., m (5.2)

assuming that the condition

8(Px,. . ., Pm)

W,...,Mm*)* (5"*>

is fulfilled. In such a case the periodic solution exists and is unique.

The method of successive approximations consists in taking as the first

approximation the function

xw = xm* + MidVji + . . . + Mmâ„¢9sm

where the M/1)^) are, for the time being, unknown functions of /x for

which Af,<!)(()) = M^.

The procedure can be continued for other approximations . ..

Thus if the functions #/*-1* are periodic, one can write

Xf<k-i) = Mf-V<P,x + ... + MJ*-Â«9>â€ž + *,<â€ž)* + iix,W (5.4)

where the are arbitrary constants and s/*-1)* is some periodic

solution of the equations

4(Cft-1)Â« = fljxJC(*-1)* + . . . + aâ€ž,*â€ž<*~1)* + ^,(', *1(*-2),. . ., *â€ž(*-2), /*)

A = 2, 3,. . .

The constants M,(*-1) are determined from the conditions of periodicity

for the */*-!)*

"2 *"Â«('. ^-", . . - AtJt = 0 (5.5)

0 o=l

These equations are satisfied identically for /x = 0, ./If/*-1) = M,* and, as

the Jacobian is different from zero, they yield for p small one and only one

solution M/*-1)^) such that M/*"1)(0) = M, *.

Malkin2 illustrates the above procedure by an example due to Butenin

relative to the behavior of the follow-up system shown in Fig. 11.1.

The contact segments C, C, C", and C are connected with the follow-up

axis. An arm A is actuated by some control mechanism which releases a

follow-up action through the motor M rotating the follow-up contact

segments; G is a generator with a separate excitation.

2 See footnote page 255.
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SYSTEMS WITH SEVERAL DEGREES OF FREEDOM 265

If y is the angle of the arm A and x is the angle of the follow-up system

(motor M and associated with it rotation of contact segments), the dif-

ference <p = y â€” x releases the follow-up action, which has a tendency to

reduce <p to zero.

The system is specified by the d.e.

Ox + nx = al (mechanical d.e. for the armature of M)

dl (5'6)

RI = E(<p) â€” cx â€” L -j- (the balance of electromotive forces)

Figure 11.1

Figure 11.2

where 6 is the reduced moment of inertia of the follow-up element; n is

the coefficient of friction, a is a constant coefficient, R, L are the resistance

and inductance in the armature of the motor, and / is the current; Â£(</<) is

an electromotive force applied to the armature of the motor, and c is the

coefficient entering into the expression of the counter e.m.f. The quantity

E(ip) is a nonlinear function shown in Fig. 11.2. We assume, for instance,

that the arm A executes a sinusoidal motion, say y = A sin wt, and propose

to establish the follow-up motion. Eliminating / between the two equa-

tions (5.6) and introducing the variable ip, we have the d.e.

- RB + Ln Y Rn + ca ,

* + -Teâ€”<l> + â€”nr-<f

>

L6

a i\ aI s Rn + ca. \

cos <ot â€”

RS + Ln

L6â€”

Aw2 sin wt

(5.7)
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266 QUANTITATIVE METHODS

Changing the time scale, this equation can be written as

0 + _ * = -E*M - i-A(l- cost

R6 + Ln . . 0. â€”-^sinr (5.8)

where t = <or; k* = (Rn + ca)/L0; E*(<p) = [al(w*L0)]E(+).

We express the nearly linear character of the problem by writing

= ^ZT^ = Â»m (5'9)

assuming p <^ 1. Moreover, we assume oscillation near resonance so that

k differs from w by the order of /x. Expressing this: &2/o>2 = 1 + /x5 and

taking into account (5.9), the d.e. (5.8) reduces finally to the form

<f> + <ji = /x[-F(^) - - $ + bA cost - A sinr] (5.10)

where the differentiations are with respect to t. The characteristic equa-

tion of the generating system has one zero root and one pair of purely

imaginary roots. The general solution of this system is:

ip0 = L + Mcost + Nsinr

where L, M, and N are arbitrary constants. As generating solution we

take:

<p = L* + M* cos t + N* sin r

As the first approximation we take ^(r), which is the periodic solution

of the d.e.

$x + r'i = /4--F(?>) + (bM* + N* - A) sinr

+ (-bN* + M* + M)cost]

The solution of this d.e. will be periodic if the Fourier development of its

right-hand term does not contain either constant terms or terms with

cos t and sin t; whence

[2W F(<p)dt = 0; -- f " F(<p) cos rdr - bN* + M* + bA = 0

Jo Jo

sin rdr + bM* + N* - A = 0

1 f2"

- ~ F(<P)

n Jo

These three equations permit determining three constants L*, M*, and N*

in the generating solution. As F(ip) is odd, the first equation yields

L* = 0
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|2Â»

= 0

o

In such a case, designating/^) = JF(i/>)di/j, we have

f " F(<p)(N* cos t - M* sin r)dr = f(9)'

Jo (

and, instead of the second and the third equations (5.11) we get two

combinations. Multiplying the second by N*, the third by â€” M* and

adding, we have:

b(M*2 + N*2) - AM* - bAN* = 0 (5.12a)

and likewise multiplying the second by M*, the third by N* and adding:

-- F\F(<p)dT + M*2 + N*2 + bAM* - AN* = 0 (5.12b)

w Jo

From these equations one determines M* and N* for the generating

solution.

6. Oscillations of autonomous systems

Consider an autonomous system of d.e.,

n

*> - 2 a'ixi + /*/'(*!>. ..,*â€ž/*); J = 1 n

J-l

We assume that the functions /, possess continuous partial derivatives of

the first-order relative to the variables xv. . ., xâ€ž for /x sufficiently small.

We also assume that the generating system

i,

*, = 2 a'ixi (6-2)

i-i

has m independent particular periodic solutions of the same period T,

corresponding to the roots Â±pji(JLnt\T) = Â±ia> of the characteristic

equation; pj is an integer.

Let the generating solution be

*,(0) = <p.(t) = M.V.i + . .. + MBVâ„¢. (6-3)

where the Mx* are constants. The problem consists in establishing

conditions under which a periodic solution of (6.1) becomes (6.3) for

p. â€”> 0. In fact, if x*(t,fi) is a function vanishing for \l â€”> 0, the solution

of (6.1) will be generally of the form

x,(t) = A^V.i + . . . + Mm*9sm + x*(t>H) (6.4)

The term with Mm* can always be set to zero by a proper choice of time
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268 QUANTITATIVE METHODS

origin inasmuch as the system is autonomous. In fact, if <psim_i and <psm

correspond to the pair of roots Â± t'a>, the solution, as we saw, has the form

â– pi,m-x(0 = A-s sm wt + cos 9s, m = A, Cos Oit â€” Bs SlTx Ojt

and by replacing t by t + h, h constant, one can always determine this

constantj- so as to eliminate the coefficient of <psm and, thus, obtain the

expression

x,(t + h) = Nx9sx(t) + ... + Nm_x9si ^(/) + x*(t + h, /*) (6.5)

On the other hand, although the number of independent parameters N{

is reduced by one in view of the "translation" property of autonomous

systems, there appears instead another parameterâ€”the nonlinear frequency

(or period) correction, which we encountered already in the theory of

autonomous systems with one degree of freedom (Chapter 10).

If T is the period of the generating solution, that of the autonomous

system will be T(\ + /xa), where generally a # 0 and appears as an un-

known in this problem.

Introducing a new independent variable t related to the old one t by the

relation

t = t(1 + ixa) (6.6)

the problem will be to find a periodic solution with period T of the new

differential system

n n

= 2 a'JxJ + + .;Xn,fi) + im 2 a,JXj (6.7)

y-i y-i

Let a = a* for /x = 0. It can be shown that Afj*,. . ., Mm_j* and a*

satisfy the following system of equations

f 2 M<PV â–  - <P*> Â°>M' + Â«Vd^x* + ...+A,, m_x - Mm_x)

m P,(a*, M*,. . ., Mm_*) = 0; i - 1 m (6.8)

where ipsj(t) are, as previously, periodic solutions of the adjoint system

corresponding to the given system; moreover,

= Ti (6-9)

are constants by property of adjoint systems as d<p^dt are clearly solutions

of (6.2).

We omit the proof of this theorem and merely mention that the search

t It is sufficient to take h determined by the formula tan wh = â€” Mm,/Afm_1#
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SYSTEMS WITH SEVERAL DEGREES OF FREEDOM 269

for the periodic solution is conducted by the method of successive approxi-

mations (Malkin2) taking as approximation of the zero order, the generating

solution (6.3), and as approximation of the kth order, the periodic solution

of the system

*,<*) = 2 + Mi + .

y-i

+ /*oW J (6-10)

y-i

If the functions /, are analytic in it is possible to look for a periodic

solution in the form of a series, viz.:

*.M = 9,(r) + ixxW(r) + W\t) + ...

= Mfyn(r) + ... + Mm_x V, m-iM + /^,(1)(r)

+ m2x/2)(t) + . . . (6.11)

where, without any loss of generality, the term with Mm* in the generating

solution has been set to zero again in view of the "translation" property of

autonomous systems.

The functions *(*)(t) will be periodic of period T as this period does not

depend now on p..

For the function one has the equation

H

*, = 2 a'JxiW + . ., 9Â»; 0) + + . . . + asn<pâ€ž)

y-i

= M*,. . ., Mm_*) = 0; Â» = 1,. . ., m (6.12)

For the periodicity one must have

f 2 Mr*- â–  â– ' Â°>MT + a*(AnM* + . â–  . + Ai.

0 3=1

= P,(a*. Mx*..., Mm_S) = 0; t = 1,..., m (6.13)

where the A{ j are given by (6.9); assume that M,* and a* are determined by

these equations. If, moreover, one has

. - 0 (6.14)

then the periodic solution is guaranteed and one can set

*a)(r) = X,W(t) + M^9sx(r) + ... + Â«_1<Â«V.,-iW

1 See footnote 2, page 255.
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QUANTITATIVE METHODS

where the first term on the right is some particular periodic solution and the

Af,(1) are constants.

The constants M,(1), as well as a2, are determined from the conditions

of periodicity of the *,(2). For this, one follows the usual procedure, that

is, one replaces the xs by their expressions (6.11) and equates the coefficients

with equal powers of after which it is necessary to express the condition

of periodicity which, in turn, requires a determination of constants from

the next approximation.

The problem ultimately depends on the solution of m linear equations

determining the quantities ak and M,(*_1), the determinant of which (in

view of (6.14)) is different from zero.

7. Self-excited oscillations in coupled circuits

As an example consider the circuit shown in Fig. 11.3, consisting of two

coupled oscillating circuits of which one is self-excited by the presence of

Figure 11.3

an electron tube. Neglecting grid current and anode reaction, the d.e. of

the currents iv i2, and ia are

r di, â€ž . If'., ,.di. di,

L*Tt + R^ + cXl*dt = Mft+Tt

(7-1)

T di, â€ž . If'., . T di,

L>Tt+R^ + ct]0^t = NTt

where M and N are the coefficients of mutual inductance shown in

Fig. 11.3.
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If. If.

Introducing new variables vx = -fr I i\dt\ v2 = â€” I i^lt with

t-i Jo Jo

wi2 = 1/L1C1; n22 = 1/L2C2; Aj = TVC^2; A2 = NCxn22, one gets

- Axti2 + nx2vx = nA-RxCxvx + Af-M

ii2 - A^ + n22f2 = -n22R2C2v2

If one approximates the characteristic by the polynomial

ia = Savr - %S2v*

and if one introduces dimensionless voltages x = d1v/M52/(M50 â€” C^);

y = v2VMS2l(MS0 - C^j) and takes as /x the quantity

/x = ^(MSo - CJIJ

equations (7.2) become

x â€” AjV + nx2x = /xnx(1 â€” #2)*; v â€” A^ + n22y = â€”/x â€” 83)

nx

(7.3)

where 8 = (C2R2)/(MS0 - C^).

The general solution of the generating system

*o ~ *ijo + Â»i2xo = 0; y0 - Ajjico + n22y0 = 0 (7.4)

is of the form

x0 = Mx cos Wjt + M2 sin o^r + M3 cos a>2r + M4 sin a>2r

(7.5)

y0 = cos a>j/ + M2kx sin <oji + M3k2 cos a>2r + M4A2 sin w2t

where Mâ€ž M2, M3, and M4 are arbitrary constants and kx and A2 are the

values which take the quantity

k = ^f-^ = (7.6)

Ax<o2 a>2 - n22

for a> = wx and oj = a>2, and wx and a>2 are the roots of the characteristic

equation

(1 - X^w* + (ni2 + n22)w2 + n^a2 = 0 (7.7)

From (7.5) it follows that the generating system has two families of

periodic solutions, depending on two arbitrary constants and having the

periods 7.nt\wx and 27r/a>2.
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We take one of the generating solutions, say

x0 = M* cos <o/; y0 = M*k cos wt

where <o and k are either <o^, kx or <o2, k2.

We introduce the change of time scale in (7.3):

t = r(1 + aV + Â«2M2 + â–  . â– )

where a*, a2 are certain constants. The d.e. (7.3) become

x â€” Ajjj + nfx = fi.[ â€” 2a*nx2x + w^l â€” x2)x] + . . .

(7.8)

(7.9)

-2a*nt*y + ^- Sj; + . . .

(7.10)

y - X& + n22y = /x

where the differentiations are with respect to t.

Looking for a periodic solution in the form of a series

x = M* cos wt + px^r) + . . .; y = kM* cos <or + /^y2(T) + â–  . â– 

we have the d.e. for xx and yx

*i - + Â»i2*i

= -2a*n2M* cos <or - n^l - M*2 cos2 <ot)M*<o sin <or (7.11)

y\ - X2xx + n22yx

n 2

= â€” 2a*n22M*k cos <or + â€” .BkM*w sin <or

We now have to formulate the conditions of periodicity of xx and .y1. It

is necessary to determine the coefficients P, Q, R, and 5 in the differential

system

so that this system has a periodic solution. Letting x = A cos <or

+ B sin <ot; y = C cos <or + D sin <or, we have

(n2 - <o2Vl + A,<o2C = P; A,<oM + (n22 - <o2)C = R

(n,2 - <o2)B + Ax<o2Z) = 0; A2<o25 + (n22 - <o2)Z) = S

As <o2 is a root of (7.7), the last equations have solutions only if

X2w2P - (n2 - <o2)/? = A2<o2g - (Â», - w2)S = 0 (7.14)

which is the condition of periodicity.

x â€” Xxy + n^x = P cos <ot + Q sin <or

y â€” XjX + n22y = R cos <or + S sin <ot

(7.12)
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SYSTEMS WITH SEVERAL DEGREES OF FREEDOM 273

Applied to (7.11), this yields

a*M* = 0; n^w^l - l- A/*2j + Â£ (nf - co2)ok = 0

Hence, in view of (7.6), one has

a- = 0; AfÂ« = 4 - 4Â§"2*;(V ~ ^ (7.15)

This gives the amplitude of the generating solution and the frequency

correction in the first approximation.

8. Method of averaging

It is useful to supplement the preceding material, principally based on

the theory of Poincare, by a short outline of the method of averaging

established by Krylov and Bogoliubov in connection with the asymptotic

methods to which Chapters 14 and 15 are devoted. The method of

averaging, as far as is known, was used for the first time by van der Pol in

his early researches, but the full justification of the method appeared in the

classical work of Krylov and Bogoliubov3; an improved version of this

important development can be found in a recent text by N. N. Bogoliubov

and J. A. Mitropolsky.1 We shall give a brief outline of this work here in

view of its importance in connection with the theory concerning many

degrees of freedom.

It can be shown that in many cases the d.e. can be reduced to a form in

which the right-hand terms are proportional to the small parameter p..

Such a form of the d.e. is designated by Krylov-Bogoliubov (K.B. for short)

as the standard form, and many important generalizations of these authors

arise from the discussion of d.e. in this particular form. We shall return

to the same question in the following chapter in connection with almost

periodic oscillations.

K.B. show that in many cases the d.e. are reducible to the standard form

** + <V** = y-Xk(t, xk, xk), k = \,...,n (8.1)

Moreover, by a special change of dependent variables, one can reduce the

system to the form:

xk = (iXk(t, xx,. . ., *â€ž), k=l,2 n (8.2)

3 N. Krylov and N. N. Bogoliubov, Introduction to Nonlinear Mechanics (in

Russian), Kiev, 1937.

1 See footnote x, page 252.
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274 QUANTITATIVE METHODS

where

Xâ€ž(t, xi,..., xâ€ž) = ^ *â€ž) (8-3)

v being the constant frequencies. One can consider also the cases when

the d.e. in the standard form (8.2) have also terms with /*2, /x3,. . ., etc.

For systems with many degrees of freedom it is useful to simplify the

notation by designating xx, x2,. . ., xâ€ž by one letter x and dropping the

indices and, instead of (8.2), writing in the vectorial form:

x = nX(t,x) (8.4)

where X(t,x) = T e'"'Xâ€ž(x). The formulas of differentiation of functions

in this notation will be, for instance

where â€” is the matrix

dx

dF 8F BFdx 8F

8Fk

dt dt + dx dt dt +

(dx8_\

XdtTx)

attached to the vector -r- and -r- ^- is an

dt dt dx

operational scalar product 2

We assume that F(t,x) is of the form

F(t,x) = ^ e^FXx) (8.5)

In such a case it is convenient to introduce the following operators

M[F(t,x)] = F0(x)

i

from which it follows that

| = f, 8-=F-M[F] = F-F0 (8.7)

In these operational notations, the operator ~ will be called the inte-

grating operator and M the averaging operator (considering x as constant

i

and averaging with respect to t).

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 1

7
:5

5
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



SYSTEMS WITH SEVERAL DEGREES OF FREEDOM 275

We consider the system (8.4) with X(t,x) of the form (8.4). One can

attempt to find an approximate solution of (8.4) by means of somewhat

intuitive considerations. Thus, as x is small, in view of (8.2) where /x is a

small quantity, x varies slowly but it is quite logical to expect that there may

be rapidly varying terms inasmuch as they do not affect the slow variation

of x in the long run. If the slowly varying term is Â£ one can assume

x = Â£ (that is, disregard the rapidly varying terms), in which case one has

as the first approximation

x = ?X(t,x) = pX(jg) = (i 2 X,(QfÂ« (8.8)

that is,

x = fiX0(Â£) + small oscillatory terms (8.9)

Assuming that these oscillatory terms do not influence the (relatively) slow

variation of one obtains the d.e. of the first approximation

i = pXJfi = (iM[X(t,$)] (8.10)

i

For the second approximation it is necessary to take into account the

small oscillatory terms, that is, the terms: ixei,,X,(g) = (iP. which accounts

for the oscillations: (iPjiv.

For the following approximations we have

* = f + m2? = f + (8-n)

Substituting this expression for x into (8.4), we have

x = (iX(t, Â£ + fiX) (8.12)

yielding

x = ixM[X(t, Â£ + (iX)] + small oscillatory terms

i

If one neglects the effect of these small oscillatory terms on the steady

variation of one can write

â‚¬ = pM[(Xt, t + ?X)] = ixM[X(tfi + Jx j\ X(t,{)] (8.13)

This intuitive reasoning can be made more rigorous by the following

argument. If, in the substitution of (8.11) into (8.4), one considers f as

variable, one has

dX i 8X , ~ ~. â€ž

x = t + fl-fieZ + p-fi7'> where X = X^
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In this expression, in view of the property of the integrating operator, one

has

H = X(t,$) - X0(Â£)

Substituting x and x into (8.4), one obtains after certain rearrangements

(l + ,x ^ji = + n[X(t,$ + ?X) - X(t,g)] (8.14)

where 1 is the unit matrix. Multiplying on the left by [1 + ^dX/dgj]-x,

it is observed that the new variables f must satisfy equations of the form

i

1 4.

x0(0 + p\i +?[X(t,$ + xp) - X(t,$]

(8.15)

On the other hand, the development in series yields

so that (8.15) gives

i = ft=nX0(Â£) + n*... (8.16)

Hence, if Â£ satisfies (8.16), the right-hand side of which differs from the

right-hand side of the equation

i = f*o(Â£) (8-17)

by quantities 0(/x2), the expression

x = Â£ + ixX(t,Â£) (8.18)

represents the exact solution of (8.4) up to terms of the first order. Then

x = Â£ is the solution of equations of the first approximation and x = Â£

+ pxX(t,Â£) may be called the improved first approximation. If one sub-

stitutes the latter into the d.e., one finds that they are satisfied up to the

second order of smallness.

It is seen that in order to go to higher approximations by this method it

is necessary to be able to solve first the equations of the first approximation.

In many applied problems, although this is possible, the accuracy with

which the parameters are known does not justify additional work in building

up higher approximations. If, however, it is desired to obtain higher

approximations, the above procedure permits carrying this out, assuming
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that it is possible to obtain the first approximation in a simple manner,

which is generally the case.

It is to be noted that by the very definition of the averaging operator

X0(Â£) = pM[X(t,Â£)], equations of the first approximation can be written as

i - Jt - nM[XÂ«>Z)] (8-19)

In this way the equations of the first approximation are obtained from the

exact d.e.,

x = jt = pX(t,x) (8.4)

by averaging the latter with respect to time appearing explicitly; in this

process of averaging, f is treated as constant.

The formal process consisting in the replacement of the exact d.e. (8.4)

by the "averaged out" d.e. (8.19) is called sometimes "the averaging

principle." For the justification of this principle it is not necessary that

X(t,g) be of the form X(i,x) = T e'"lX,(x), but the essential requirement

is the existence of an average value

XJÂ® = lim I [T X(t,tyt (8.20)

r-Â»Â°o â– Â» Jo

The principle of averaging has been known for a very long time in connec-

tion with theory of gases and astronomical calculations, but its application

to the theory of oscillations is relatively recent. Many of these develop-

ments are due to Krylov and Bogoliubov.3

In a similar way for the second approximation one tries to find a change

of variables from x to Â£ satisfying a d.e., of the form

l = jt= f*X0(t) + MÂ«P(fl + M*. .. (8.21)

For this purpose one looks for an expression

x = 0(r, p) (8.22)

which, for f satisfying a d.e. of the form

Â£ = pX^i) + p*P(t) (8.23)

satisfies also

dt

* See footnote 3, page 273.

% = /**(Â»,*) (8-24)
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with the accuracy 0(/x3). For Â£ determined from the equation of the first

approximation

i = nXM) (8.25)

the expression

satisfies (8.25) with accuracy 0(/x2), one tries to determine (8.22) in the

form

x = Â£ + nX(t,t) + /*V(Â«,f) (8.26)

where we take again F(t,Â£) = T eik'Fk(g). Omitting a somewhat long

argument at this point,1 it can be shown that for Â£ determined by the d.e.,

f = ft = fdfcf[*(f,fl] + M2f[(^ |)*('.f)] (8-27)

the expression

* = Â£ + pX(ttf + - *o(Â£) (8-28)

satisfies the d.e. (8.4) with accuracy 0(/x3), where the symbol ~ is the

same as in (8.6).

We refer to Dragilev4 in Chapter 4, where the complete theory of

averaging up to the approximations of the nth order can be found. We

shall apply this to an example.

We consider a physical pendulum whose fixed point is caused to oscillate

in the vertical direction with small amplitude a and a relatively high

frequency w, such that the conditions

<o > <o0//a; a\l < 1 (8.29)

are fulfilled, where / is the length and <o0 = Vgjl is the free frequency of

the pendulum.

It is known that under such conditions, the upper (generally unstable)

position of equilibrium becomes stable.

The d.e. of the pendulum in this case is

8 + M& + [(g - aaj* sin <or)//] sin 0 = 0 (8.30)

1 See footnote x, page 252.

4 A. D. Dragilev, Prikl. Math- i Mechanika (in Russian), 16, 1949.
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SYSTEMS WITH SEVERAL DEGREES OF FREEDOM 279

where 6 is the angle of deviation from the lower position of equilibrium;

y = a sin wt is the vertical displacement of the suspension. We assume

that A corresponds to a damped oscillatory motion if the suspension

point is fixed, in which case, as is well known, A2/4 < <o2.

It is useful to change the time scale by introducing the "dimensionless

time" defined by the relations

d__)_d_ ^_ _

T ~ Wt> dr~ wdt' dr2 ~ oj2 dt2

With this new independent variable r and setting k = wJoj: a\l\

a = (A/2w0)A, the d.e. can be written as

8 +2a-{6 + k*(jj2 - (jj sinrj sin 6 = 0

where the differentiations are now with respect to t. If one sets p = ajl,

one has finally

6 + 2^8 + (*V2 - px sin t) sin 6 = 0 (8.31)

where a and k are less than 1.

In this form the d.e. is not yet in the standard form but, by a change of

variables, it can be reduced to an equivalent system of two d.e. of the first

order which will be in that form.

We introduce two new variables <p and Q defined by relations

8 = <p â€” p. sin t sin <p; 6 = fiÂ£2 â€” cos t sin 9 (8.32)

where 6 = d6/dr.

Differentiating the first of these two equations and comparing with the

second, one has

(1 â€” fi sin t cos <p)<j> = fiQ (8.33)

Differentiating the second d.e. (8.32) and substituting into (8.31), one gets

8 = (/x sin t - k V2) sin 6 - 2aft6 (8.34)

Whence through some intermediate transformations, one obtains

dQ . .

= (sin (<p â€” (i sin t sin <p) â€” sin <p) sin t

â€” k2fi sin (<p â€” n sin t sin <p)

fiÂ£2 cos t cos <p ,0 ic\

+ r- â– . â€” - 2aa(Q - cos t sin g>) (8.35)

1 â€” [i sin t cos 9?
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From (8.33) and (8.35) it is seen that y> and Â£2 satisfy two d.e. of the first

order in the standard form

|-^ + ,,..,

dQ . . , . . â€ž â€ž _ (8.35a)

â€” = fi( â€” sinz t sin <p cos <p â€” kl sin 9 + U cos t cos 9 â€” 2aL2

UT

+ 2a cos t sin <p) + p2

We can now apply the averaging procedure noting that

M[cost] = 0; M[sin2T] = \

r t

which gives equations of the first approximation

^j- = [xQ; = â€” fi. ^ sin <p cosy + k2 sin <p + 2aQ (8.36)

If we eliminate Q between these equations, we obtain

9> + 2ixcup + p-2(k2 + \ cos <p) sin <p = 0 (8.37)

It is noted that this d.e. does not contain the variables t explicitly and

represents a pendulous system with a fixed suspension point. It is seen

directly from (8.37) that a stationary solution is possible for <p = it. The

variational equation in this case is

d28<p

+ 2^a ^ + u2^ - A2)8<p = 0 (8.38)

dr2

and as pa > 0, the condition of stability is: \ â€” k2 > 0; that is,

w > V2w0 - (8.39)

Thus, if the frequency of the vertical oscillations of the pendulum's

suspension is large enough, the pendulum settles on the upper (otherwise

unstable) position of equilibrium.

Thus, for instance, for / = 40 cm; a = 2 cm, the above formula gives:

r Â«icl 13ns

a> > 140 â€”; that is, if the frequency of oscillation is greater than 22.3

cycles per second, the abovementioned phenomenon takes place. It is

noted that a considerable simplification in the final result (of the d.e. (8.37))
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SYSTEMS WITH SEVERAL DEGREES OF FREEDOM 281

is possible here owing to a special choice of new variables <p and Q intro-

duced by equations (8.32).

For a complete mathematical presentation of the principle of averaging

as well as for the justification of the asymptotic methods (chapters 14 and

15) the reader is referred to chapters 4 and 5 of Bogoliubov and Mitro-

polsky.1

1 See footnote 1, page 252.
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Chapter 12

ALMOST PERIODIC OSCILLATIONS IN NEARLY

LINEAR SYSTEMS

1. Introductory remarks

In the preceding two chapters we investigated the principal properties

of periodic oscillations, as well as the conditions for their existence in nearly

linear systems. The terms "periodic solution" and "periodic oscillation"

will not be considered here in any different sense, inasmuch as "solution"

clearly relates to a d.e. and "oscillation" to the phenomenon governed by

this d.e.

The question of periodicity is now sufficiently clear and, as one recalls,

is defined by the existence of a number T, the period, such that f(t + T)

= f(t). If such a number T exists, we call the function f(t) the periodic

function.

One has difficulty if one tries to find something analogous in the case of

a function x(t) = ax sin <ojf + a2 sin <o2r, where the ratio w1Ioj2 is an

irrational number. Intuitively one feels that one is in the presence of

something which repeats itself, more or less, particularly if one waits long

enough but one needs yet a more precise definition. Experimentally

such facts are of a common occurrence in connection, for instance, with the

so-called "Lissajou curves" in mechanics; in Chapter 21 we shall see other

examples of such phenomena in connection with the so-called "retarded

actions."

The difficulty in this case is in that it is impossible to define the period

and proceed by the classical methods of Chapters 10 and 11.

The oscillatory phenomena of this kind are called almost periodic and we

propose first to establish some preliminary starting points before formulat-

ing the definition of almost periodicity.1

1 H. Bohr, Acta Math. 45, 1925; 46, 1925; 47, 1926; A. S. Besicovich, Almost

Periodic Functions, Cambridge, 1938.
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ALMOST PERIODIC OSCILLATIONS 283

We consider the set of all finite sums

s(x) = f a^V (1.1)

n=l

where aâ€ž are arbitrary complex and Aâ€ž arbitrary real numbers. The set of

functions s(x) is "closed" by the addition of those functions f(x) = u(x)

+ iv(x) which can be approximated by s(x) uniformly for all x.

Thus for any e > 0 there exists some s(x) satisfying the inequality

\f(x) - s(x)\ <Â£ for - oo < * < +oo (1.2)

We call the function class obtained by this extension the closure of the set

[s(x)] and denote it by H[s(x)] or, simply by H.

The main problem is to characterize the functions f(x) of the class H by

certain structural properties bearing no relationship to the concepts used in

the definition of H. It is useful to give an example. Let us assume that

s(x) = exp (i'Aj*) + exp (lA^x;) (1.3)

We shall endeavor to obtain the closure H with this form of s(x), which

clearly means the sum of two periodic functions with periods Tl = 27r/| Ax|

and T2 = 2nj\A2| and, of course, with all integral multiples of these periods.

Two cases are of importance:

(1) Aj/A2 is rational, in which case TxjT2 is also rational. In this case

there exists a common period T â€” nxTl = n2T2, and the sum s(x) is

purely periodic with period T.

(2) A^Aj is irrational and, also, TJT2 is irrational. In this case there is

no common period and s(x) is not periodic.

On the other hand, from the number theory (the Diophantine approxi-

mations) it is known that, given 8 > 0, there exists a pair of arbitrarily

great integers nx and n2 such that

\nxTx - n2T2\ < 8 (1.4)

If t is a number near enough to nxTx and n2T2 (for example, between

these two numbers), then t is "almost" a period of exp (i'Aj*) as well as of

exp (/Ag*) and, accordingly, "almost" a period for their sum s(x), the

difference s(x + t) â€” s(x) being small for all x.

One can now define the translation number t as a real number such that,

given an arbitrary function f(x) = u(x) + iv(x) continuous in (â€” oo, + oo),

one has

\f(x + t) â€” f(x)\ < e for - oo < x < +x (1.5)

One could study functions f(x) with the following property: for every
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e > 0, there exists a translation number t(e) of f(x) and these numbers are

arbitrarily great. This is not yet a desired definition, as shown by Bohr,

because certain properties of invariance are not fulfilled.

By narrowing the assumption by the requirement that the numbers are

relatively dense (that is, to any interval a < x < a + L, there exists at

least one number t of the set, where L is a certain length), one obtains the

definition of an almost periodic function (A.P.F. for short), namely

A function f(x) continuous for â€” oo < x + 00 will be called almost

periodic when, given an e > 0, there exists a relatively dense set o/t(e).

In other words, to every E > 0 a length L = L(e) exists such that each

interval of length L(e) contains at least one translation number t = t(e).

A continuous periodic function of period T is a special case of an almost

periodic function inasmuch as we can take the periods nT where n = 0,

Â± 1, Â± 2,. . ., as translation numbers t(e) for each e.

For an almost periodic f(x) the same conclusion holds for f(x + c),

where c is an arbitrary real constant, and for cf(x), where c is an arbitrary

complex constant. If can also be shown that A.P.F. characterizes the

class H previously defined.

From an intuitive point of view, the above definition means that a

certain almost periodic phenomenon x(t) is characterized by the following

property: If one starts from some initial value x(t0), the phenomenon will

repeat itself as nearly as desired if we wait long enough.

The concept of almost periodicity should not be confused with that of

near periodicity, also sometimes encountered in applications but not

possessing the above features of almost periodicity. Thus, for instance

x(t) = sin t + j-J-p (1.6)

would be an example of the near periodicity, which merely means that in

the course of time the motion approaches a purely periodic one.

Finite Fourier polynomials with incommensurate frequencies are

examples of almost periodic functions.

There exists a number of other properties of A.P.F. which we indicate:

(1) An A.P.F. is always bounded in the interval ( â€”00 < # < +00).

(2) An A.P.F. is uniformly continuous in the interval ( â€” 00 < x < + oc ).

(3) A sum or product of A.P.F. is A.P.F.

(4) If an A.P.F. satisfies the condition > a > 0, a being a positive

constant, then \jf(x) is also an A.P.F.

(5) The limit of an uniformly convergent sequence /i(*),/2(=),. . . of

A.P.F. is also an A.P.F. Hence the almost periodicity is not only the
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ALMOST PERIODIC OSCILLATIONS 285

property of finite trigonometric sums but holds also for infinite trigo-

nometric series as long as they converge uniformly.

(6) Any A.P.F. is characterized by its limit

which is called the average value of the A.P.F.

(7) For A.P.F. there exists a denumerable set [A,] of frequencies such that

for any A not belonging to this set, one has

(8) For any A.P.F. there exists a denumerable set [<oj of real numbers

having the following property:

(a) Between a finite number of wa there exists no linear relations of

the form 2 nawâ€ž = 0 with integer coefficients not all zeros.

(b) Any number A, can be represented as a linear combination of a

finite number of wa with integer coefficients. The set [<oa] is called the

base of a given A.P.F.; for a periodic function the base consists of only

one element; for some A.P.F. it consists of a finite number of elements.

(c) The base has the following important property: if [rm] is a sequence

such that for any wa one has: exp (iwaTm) â€”> 1 for m -> oo, then one

has uniformly on real axis the relation

2. Almost periodic solutions

Although the theory of A.P.F. has developed as a further generalization

of properties of periodic functions, its subsequent development proceeded

on its own basis without any connection with the theory of d.e. which

appeared later in the work of Favard2 who investigated systems of linear

d.e. with almost periodic coefficients and established conditions under

which such d.e. may have almost periodic solutions (A.P.S. for short).

With later developments in the theory of nonlinear oscillations it was

natural to inquire whether such solutions are possible under certain

conditions? A number of experimental facts seemed to point in that

direction, as we shall see later. Thus, for instance, in the case of the

so-called synchronization phenomenon (Chapter 18), there exists a range

of the "forcing frequency" (that is, the frequency of the external periodic

Â» J. Favard, Acta Math. 51, 1928.
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excitation) in which the free (or, better, the autoperiodic) frequency of the

self-excited oscillation is "entrained" by the forcing (or heteroperiodic)

frequency, so that there exists only one frequency, which means that the

oscillation is purely periodic. If this range is exceeded and the synchroni-

zation is lost, the two frequencies separate, thus giving rise to "beats"

which means an almost periodic phenomenon.

In Chapter 21 we shall come across another example of almost periodic

oscillations, caused by the so-called "retarded actions" in systems amen-

able to certain functional equations of the difference-differential type.

Here again the oscillation is of an almost periodic kind, inasmuch as the

frequencies of component oscillations are generally in an irrational ratio.

Finally the numerous phenomena of modulated oscillations very often

lead to the same type of oscillations.

All this seems to indicate that certain well known nonlinear d.e. may

exhibit occasionally A.P.S., and one is thus confronted with a general

problem of establishing conditions under which such solutions may exist.

Some initial work in this direction was done by Bohr and Neugebauer3

but, later on, Krylov and Bogoliubov4 developed a special transformation

which facilitated this task. Finally, Malkin5 coordinated these various

developments and introduced further generalizations of the theory which

ultimately led to the establishment of conditions under which A.P.S.

may be expected in a given differential system. The investigation of

Malkin occupies nearly ninety pages in his book, and for that reason, we

give here only a brief outline of his results, referring to the original text for

the proofs of numerous theorems and other details.

The starting point for this investigation is the usual system of d.e.

x, = 2 a,jXj + f,(t); s = l,2,...,n (2.1)

= i

which we encountered previously in connection with the study of periodic

solutions. In this system, the first terms on the right-hand side of (2.1)

characterize the autonomous part of the system (if fs(t) = 0) and the term

fs(t) is the forcing term so that the form (2.1) is a differential system of non-

autonomous type.

It is obvious, on physical grounds, that A.P.S. in the case of non-

autonomous systems can exist only when "beats" between the autoperiodic

and heteroperiodic oscillations may be expected, as was just mentioned.

The subsequent analysis is purely formal, but it must be borne in mind

3 H. Bohr and O. Neugebauer, Nachr. Ges. Wissen., Gottingen.

4 N. Krylov and N. Bogoliubov, Ac. Sc. (USSR), 1945.

4 I. G. Malkin, Certain. Problems in the Theory of Nonlinear Oscillations (in

Russian), Moscow; English translation.
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that, taking the d.e. in the form (2.1), one may expect almost periodic

solutions, so that the aim of this sequence of theorems is merely a justifica-

tion of this expected result.

Consider the characteristic equation for the homogeneous system (2.1)

(that is,/,(/) = 0)

Â«12

. â–  axâ€ž

D(\y =

a22 - A .

= 0

(2.2)

Â«n,

<*â€ž2

There are two theorems of which (1) is due to Neugebauer and Bohr,

and (2) to Malkin.

(1) If D(X) has no roots with vanishing real parts, (2.1) has one, and only

one, A.P.S. satisfying the inequality

\x,(t)\ < AM (2.3)

where M is the upper limit of fs(t) in the interval (-co, + oo) and A is a

certain constant depending on asj but not on fs(t).

(2) If fs(t) is a finite trigonometric sum, the system (2.1) may have an

A.P.S. in the case when the real parts of the roots of (2.2) are zero, provided

the following condition be fulfilled:

lâ„¢ f 2 fJMJU = 0; r = 1,2 m (2.4)

(-â–ºoo Jo a=l

where ipar are A.P.F. of the adjoint system corresponding to the differential

system:

y. + 2 a.jyj =0 (2-5)

; = i

It is useful to mention certain difficulties which appear if one tries to

proceed in the same manner as with periodic solutions. In the first place,

the usual procedure (of Poincare) does not hold here, because it is im-

possible to determine the period.

One could think, however, that by proceeding formally (that is, by

identifying the terms with like powers of /x) one can still obtain the series

solution if one succeeds in showing that such a formal series converges.

It is not difficult to show, however, that in an almost periodic case such a
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formal series always diverges and thus cannot represent the solution. In

order to show this we consider a d.e. of the form:

x + x = fi(yx3 + A sin t + B sin wt) (2.6)

where p. is a small parameter and <o is an irrational number.

If one tries to satisfy this d.e. by a series solution of the form: x(t)

= x0(t) + fJ-x^t) + . . . and proceeds in the usual manner, one finds a

sequence of d.e.

*o + *o = 0; *i + *i = Yxo3 + A sin t + B sin wt;

As x does not enter in these d.e., the solution will have no cosine terms.

We have thus x0 = M0 sin t, where M0 is an arbitrary constant determined

by the condition of almost periodicity of x1; this requires that in the d.e.

for xx, there should be no term with sin t. This yields: M03 = â€”4/1/3;

therefore for xi(t) one has the expression

1 B

xi(t) = To yMo3 sin 3f + - sin wt + Mx sin t

62. 1 â€” <o

where Mx is another arbitrary constant; equating to zero the coefficient of

sin t in the equation for x2(t), one has: Mx = -4$yM03, after which one has

*2(/) = Mi yMÂ°M s1n 3t ~ 2(^8 yM*A s1n 5'

3 ,â€ž . 3yMJB . .

+ 2(1 - <oy yMÂ° B sin a>* - 2(1 - Â«,Â«)[! - (<o - 2)1 sm (io ~ 2)1

3yMn2B . . ,, .

'" sin (<o + 2)t + M2 sin t

2(1 - <o2)[l - (<o + If]

where A/2 is still another constant, etc.

In this manner one builds gradually a series solution which satisfies

formally the d.e. but, as in this case, the formal series does not converge,

it cannot represent the actual solution. In fact, on the right-hand side of

the equation for xk there will be terms of the form Amn sin (m<o + n)t,

where m and n are integers of which the second may be positive or negative.

For a sufficiently large k the equation for xk will therefore have terms with

large m and \n\ and to these terms in the d.e. will correspond in the solution

x(t) the terms of the form {AmJ[l - (mw + w)2]} sin (m<o + n)t.

As was mentioned in Section 1, the expression (w<o + n), where <o is

irrational and m and n are integers, can be made to differ from unity as
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little as desired by a proper choice of integers m and n (of which the latter

may be negative).

The presence of these small divisors: [1 â€” (mw + n)2] may produce the

divergence of the series formed in this manner. In spite of these difficulties,

certain progress has been accomplished owing to the Krylov-Bogoliubov

transformation, as we shall presently show.

3. Existence of A.P.S. in noncritical cases

We indicate first a relatively simple case mentioned by Malkin in

connection with (XA) nearly linear systems

*, = 2 asj*j+ />(*)+ ^'V' . .. *n. s = 1>2'- . â– .n (3.1)

under the same assumptions as previously. We also assume that the

characteristic equation of the generating system (/x = 0), viz.:

D(A) =

"12

a22 - A

'2m

*n2

- A

= 0

(3.2)

has no purely imaginary roots; such roots will be called "critical roots" in

what follows. Under these conditions the generating system admits one

and only one A.P.S. xs = <pÂ£t) which may be taken as the generating

solution of (3.1).

One can apply the method of successive approximations by taking the

generating solution as the first approximation. For the kth approximation

one has then:

*/*) = 2 + L(t) + nFfr x^-Â».. ., *â€ž<*-Â», h) (3.3)

y-i

It is shown that for a sufficiently small /x, the sequence {*,(*)} converges

uniformly toward the A.P.F.: xs(t) satisfying (3.1). Malkin5 formulates

the theorem.

If (3.2) has no critical roots, the system (3.1) has one and only one A.P.S.

which approaches the generating solution when p. â€”> 0.

4 See footnote s, page 286.
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4. Transformation of Krylov-Bogoliubov; standard systems

The case when critical roots are present is more complicated, but it may

be reduced to the previously considered case owing to a transformation of

Krylov and Bogoliubov.4

We assume first that the constants asj and the functions/,(/) in (3.1) are

zero, in which case (3.1) becomes:

x, = ixF,(t, xx,. . ., xn, px) (4.1)

We call the d.e. in this form the standard form.

A number of systems can be reduced to the standard form by an appro-

priate change of variables. An example of such transformation was

indicated in the last section of the preceding chapter.

Inasmuch as Fs depends on ll analytically one can write the preceding

equation as

xs = pFW(t, xv. . ., *â€ž) + W\t, xx,. ..,*â€ž) + ... (4.2)

In these notations the functions Fs<>) are of the form

where As^') and Bsf><l) are functions of x{ only.

Krylov and Bogoliubov show that for any integer k one can find a

system of functions U,U\t,yx,. . â–  ,}'â€ž) such that, after the substitution:

*, = y, + + . . . + hW.w (4.4)

equations (4.2) are reduced to the form

y, = pY,â„¢ + ... + /x*K/*) + (ik+xYs* (4.5)

where the functions T/".- . .> Ysw depend only on yx,. . .,yâ€ž and not on

t, whereas Y* = Y*(t,yv. . .,yn, p) depends also on /.

If one substitutes (4.4) into (4.2) and equates the coefficients of the like

powers of li, one has in general

CrÂ«) + FsO) = RU\t,yi yn) (4.6)

where RW are entire functions of those of U^'\ Pur0)j8ya, F/'),

FrU\t,yx,. . .,}'â€ž) and SFr<-')lcya, for which i < j. The essence of this

transformation is that the substitution (4.4) is carried out so that the

functions containing / appear in the terms of the order k in the transformed

equations and do not change much the accuracy of the approximation.

4 See footnote *, page 286.
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Let/(/) = A0 + 2 [Ap cos vpt + Bp sin vpt] be an A.P.F. and introduce

the following notations:

M[/(0] = A0 = lim 1 f/ii)*; W)] = 2 ^sinV-^cosV

Tâ€”*oc J Jo fj)

(4.7)

Then, \f(t)dt = M [/(/)]' +[/(')] + Â«. where a is an arbitrary

constant.

It can be shown that (4.6) is satisfied if one sets

YÂ«Kyv . â–  ->yâ€ž) = lim UrFy\t,yi y)dt = -M[F,Â«\t,yx,. . .,yâ€ž)]

Tâ€”**> -* Jo

U^Kt,yi,...,yn) = J[FÂ«\t,yv...,yj\

and so on for higher approximations.

5. Almost periodic solutions of standard systems

Consider a standard system:

xs = nF,w(t, xx,. . ., xâ€ž) + n2F,W(t, xv. ..,xâ€ž) + ...; s = 1,. . ., Â»

(5.1)

where the functions F,<>) = A,V\xv. . ., xâ€ž) + 2 [^W)(*i *n) cosV

p

4- BipU)(xx,. . ., xâ€ž) sin xy] and Aso^, Asp(i\ and are polynomials in

Using the Krylov-Bogoliubov transformation (k = 1)

x, = y, + nU,(t,yi,. . .,yâ€ž) (5.2)

where t/, = J[F,m(t, yv. . .,yâ€ž)], equations (5.1) become

y, = p Y,(yi,. ..,yn) + ^ Y,*(t, yx yn, M) (5.3)

where

â–  = 1â„¢ i fTF.<Â»)(/,y1 %> Oy* (5.4)

Tâ€”*ao 1 JO

and ys* is an A.P.F. of the same form as Fs.

Assume that the system of the first approximation

ys = ^Ys(yi,..,yn) (5.5)

has a particular solution ys = ysÂ° corresponding to the equilibrium point

so that

YAyA--,ynÂ°) = o (s.6)

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 1

8
:1

3
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



292

QUANTITATIVE METHODS

The variational equations in this case are of the form

,= fpjj (5-7)

j = i

where psj = BYJdyj0 are constants, once yv. . .,yn have been replaced by

yiÂ°,. â–  -,yâ€ž0 after differentiations. If one assumes that the characteristic

equation of (5.7) has no purely imaginary roots, one can show that (5.3)

has, for a sufficiently small /x, an A.P.S. tending to yi â€” ysÂ° for \l â€”> 0.

By a somewhat lengthy argument which we omit here, Malkin proves

the following theorem:

If all roots of the characteristic equation of the variational system (5.7)

have negative real parts, then the A.P.S. of (5.1) is asymptotically stable.

If this equation has at least one root with a positive real part, it is unstable.

6. Almost periodic oscillations when all roots are critical

Consider a nearly linear (N.A.) system:

n

*> = 2 a'ixi + /,(0 + *'->. . â– - *n. s = l,...,n (6.1)

i=\

where the functions fs and F, satisfy the previously formulated conditions.

Assume the case when the characteristic equation of the system

x, = 2 a,jXj (6.2)

; = l

has only critical roots. It can be shown that then all solutions of (6.2)

will be A.P.S. If <p(; is a fundamental system of solutions of (6.2) and </isJ

that correspond to the adjoint system, all these functions will be finite

trigonometric sums, as was previously mentioned.

The condition for an A.P.S. of the generating system (/x = 0) is:

Hm | f 2 fa(t)tttidt = 0; f = 1,. . ., n (6.3)

7'-^oo * Jo a=x

If this condition is fulfilled, the generating solution will be an A.P.F. of the

form

*. = I Mi<P,j + *sÂ°*(0 (6-+)

;= i

where M are arbitrary constants and xsÂ°* is some particular A.P.S. of
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the system. In view of the properties of fs(t), xsÂ°* will be some finite

trigonometric sums.

This result suggests solving (6.1) by using Mj as variables. This gives

(6.5)

;'= i

where x, on the right-hand side must be replaced by (6.4).

On the other hand, by the theorem of Liouville, we have the determinant

*>â€ž<0 = 9>â€ž(0)Â«(aii+ " '' = 9>â€ž-(oy*

where, in view of the conditions imposed on the roots of (6.2), the quantity

a is real. Hence, if (6.5) is solved with respect to Mi, in the standard

equations so obtained, viz.:

Ms = *,(Â«, Mv. .., Mn, (6.6)

the functions 0, will have with respect to t, Mv. . ., Mn, fi the same form

which the functions F, had with respect to t, xx,. . ., ;cn, (i.

One can now assert that these equations have an A.P.S. which, for

fl = 0, becomes a certain number of constants M* that correspond to (5.6).

1 f

In view of the definition of Ys(yx,. . .,.yâ€ž) = Hm ~. Fs(t,yv. . .,

r->oo i Jo

yn, 0)dt, equations (5.6) have the form:

P,(MV. . ., Mâ€ž) = lim I CcpXt, MV. . ., Mn, 0)dt = 0 (6.7)

7'-*oo 1 Jo

In this case we have to assume that the characteristic equation has no

purely imaginary roots, and in view of the form of the coefficients psj in

(5.7), this characteristic equation has the form

BP,

BP,

8P,

cM, P

8M2

â–  8Mâ€ž

BP2

dP2

8P2

cMx

8M2

.. 8Mâ€ž

- p

= 0

(6.8)

Substituting the values M, into (6.4), one obtains A.P.S. of the system

(6.1) which, for fi = 0, becomes the generating solution

*, = + . . . + M*9a + x,Â°*(t)

The A.P.S. so obtained is stable if all roots in (6.8) have negative real
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294 QUANTITATIVE METHODS

parts. If one of these roots has a positive real part, the solution is un-

stable.

7. General case; combination of critical and noncritical roots

Consider again a nonautonomous nearly linear system

*, = 2 a'JXi + + ^fr, . .. *â€ž. * = 1,. . . , n (7.1)

y-i

where /, and Fs are functions satisfying previously stated conditions.

We assume now that the characteristic equation

n

*. = 2 a'iXi (7-2)

j = i

has m < n critical roots. The system (7.2) will have then m A.P.S. which

will be designated as <psj and, likewise an adjoint system of (7.2) will have

equally m A.P.S., called </>,y.

It is always possible to select the functions </rj; so as to have relations

29Wfci-SÂ«; 8,,= 1; 8,>-0 (t*Â» (7.3)

iâ€” i

We shall assume that these conditions of normalization have been fulfilled

and that the fs(t) satisfy also the condition

Tâ€”oo 1 JO 0=i

Under these conditions the generating system

= 2a-jx,Â° +/,(0; f-i,...,n (7.5)

will have the following general A.P.S.

m

= ^ Mi9>.y + *,Â«(0 (7.6)

i-i

depending on m arbitrary constants Mj, where xÂ°*(t) is some particular

A.P.S. of (7.5) (see Section 6).

Malkin proves now the important theorem regarding A.P.S. of (7.1).

In order to formulate that theorem (the proof of which requires ten pages

in Malkin's book), we introduce the expressions

P,(Mx,. . ., Mn) = lim i T 2 F,(t, XxÂ°,. . ., xnÂ°, 0Waidt = 0 (7.7)
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where xsÂ°, Mj, and ipai have the previous meaning-

equation:

8Px 8Px dPx

dMx 9 dM2 ''" 8Mm

dP2 BP2 8P2

8M[ ~m2 ~ 9 """ eM~m

dPm 8Pm cPm

SMx cM2 ''' 8Mm

and assume that this equation has no zero roots.

Now Malkin's result is as follows:

We assume that (7.5) has a general A.P.S. of the form (7.6) and that the

characteristic equation of (7.2) has exactly n â€” m noncritical roots.

Moreover, the quantities A/, satisfy the conditions P, = 0 and, finally,

(7.8) has neither zero nor purely imaginary roots; then, for a sufficiently

small p., the system (7.1) has A.P.S. which reduce to the generating A.P.S.

as n â€”> 0.

This theorem applies to the first approximation if higher approxima-

tions are desired, one has to apply the methods of successive approxima-

tions, and it is shown that these approximations converge if /x is sufficiently

small.

It is mentioned that there are certain essential differences between these

conditions for A.P.S. and the corresponding conditions for the periodic

case, namely:

(1) It is essential to assume in this case that the characteristic equation

of the generating system has n â€” m noncritical roots, which was not

necessary in the periodic case.

(2) In the periodic case it was sufficient to assume that equation (7.8)

has no zero root; in the almost periodic case, a stronger requirement is

necessary, namely, that (7.8) not only does not have zero roots, but does

not have purely imaginary roots either.

It is stated that the theory of periodic solutions cannot be considered

merely as a particular case of a more general theory of A.P.S., but is

rather a special case requiring a separate treatment.

We shall not continue the review of other parts of Malkin's text devoted

to the theory of A.P.S. of nonlinear nonautonomous systems, but shall

indicate an example illustrating this subject.

We form also the

= 0 (7.8)
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8. Van der Pol equation with two forcing terms

As an example, we consider a system described by the d.e.

x + k2x = /x(1 â€” x2)x + A sin ojjt + B sin w2t (8-1)

assuming that the ratio <oj/w> 2 is irrational. In the case of one forcing

term, it is known that the system approaches the synchronized state if the

autoperiodic frequency is not far from one of the heteroperiodic frequencies.

The phenomenon then consists in the "entrainment" of the autoperiodic

frequency by the neighboring heteroperiodic one.

For the present case, as in the periodic one, two separate cases are to be

considered: (a) the nonresonance oscillation, and (b) the resonance oscilla-

tion. The case (a) appears when none of the quantities mk + mlw1

+ m2w2 approaches the order of smallness of /x where m, mx, and m2 are

integers for which \m\ + + \m2\ < 4; m # 0.

For p. = 0, the general solution of (8.1) has the form

x = M, cos kt + Mo sin kt + A1 sin w,t + Bx sin <o4

(8.2)

x = -kMl sin kt + kM2 cos kt + Axa> cos a>^ + Bxw2 cos w2t

where A1 = Aj(k2 - u,2); Bx = Bl(k* - wf) and Mx and M2 are

arbitrary constants: k wx, k # w2.

Our first concern is the calculation of the quantities P, as defined by

(7.7). In order to make this calculation simpler, we consider the quantities

Mx and M2 as new variables (instead of x and x). The procedure is

essentially the method of the variation of constants which consists in the

differentiation of Mx and M2 once the generating solution (where A/j and

M2 are constants) are replaced in the nonlinear equation (8.1). This

yields the system

cos ktMx + sin ktM2 = 0

-k sin ktMx + k cos ktM2 = /*(1 - x2)x

so that the new system of d.e. is

Mi = -Â£(1 - x2)xsinkt

(8.3)

M2 = ^ (1 - .x2)*-cos

Averaging out with respect to t, one has

M, = nP^M^M*); M2 = /.P^M^M,) (8.4)
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where

Px = -{ lim i f (1 - x2)x sin ktdt

Â« r-â–ºÂ» â– * Jo

(8.5)

P2 = r lim .

â–  cos

It is noted that the system (8.4) is now autonomous. The functions Px

and P2 are the free terms in the expansion of the right-hand sides of (8.3)

in the trigonometric series. Taking into account (8.2) one finds the

required result:

P, = p/,[4 - (A/!2 + M2) - 2 A'2 - 2fi'2]

P2 = J A/2[4 - (Mi2 + M,2) - 2/1'2 - 2J3'2]

(8.6)

The A.P.S. of (8.1) in the first approximation is determined by (8.2) in

which Mx and M2 are constants satisfying the condition

P^M.M2) = P2(MVMJ = 0

assuming that the equation

D(y) =

8P,

8Px

dMx y

8M2

dP2

SP2

8Mx

BM2

- Y

= 0

(8.7)

(8.8)

does not have any critical roots.

In this case equations (8.7) have solutions Afx = M2 = 0 and also an

infinity of solutions corresponding to equating the square bracket to zero

in (8.6). For the latter, however, the Jacobian c(Px,P2)ld(Mx,M2) is

zero, as is easily seen, which shows that (8.8) has a zero root; for our

purpose here these solutions are of no interest.

As to the solution Mx = M2 = 0, it corresponds to the A.P.S. of the

d.e. (8.1) with the roots

n = y* = \ [2 - (Si

For ^ = 0, this A.P.S. goes into the generating solution

A2 B2

sin <o9t

(8.9)

(8.10)

in which the frequency k is absent.
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It is visible that A.P.S. is stable if the roots (8.9) are negative, which

leads to the condition

A* B*

+

> 2

(8.11)

(k* - V)2 (k* - co2)2

This condition is obviously not fulfilled if k differs much from <ox and o>2.

We investigate now the resonances case when k differs from a>1 by a

small quantity which we assume to be 0(/x); we also assume that the

amplitude corresponding to w1 is small.

Setting k2 = a>j2 â€” /xa; A = /xX, we start with the d.e.

x + ojj2# = â€” x2)x + pax + fiX sin wxt + B sin <o2r (8-12)

We compute again P, with variables Mx and M2, and we obtain the system

Mx = [(1 â€” x2)x + ax + A sin co^] sin <oj*

M2 = â€” [(1 â€” *2)* + ax + X sin cojr] cos oi^

(8.13)

where

# = Mx cos o>jÂ£ + M2 sin toji +

<o,' â€” <o

-j sin a>2*

x = â€”Mxwx sin ojji + M2<ol cos oi^ +

Bwa

(8.14)

a>, â€” <o,

cOs <o2*

We arrive thus at the equations:

2co1P1(M1,M2)

= - A + aM2 + â€žxMx[l - 2(wÂ»[ ^ - \ W + M22)]

2co1P2(M1,M2)

= - aMj + <o^/V/jj

(8.15)

1 -

5s

1

(MxÂ« + M22)

2(Wx* - <V) 4'

For the exact resonance (a = 0) there is a solution: M2 = 0, Mx = A/,

where M is given by equation

Q(M)=-jM3+

The roots of (8.8) are:

2\2

A/

2toJ

= 0 (8.16)

_ dgm.

Yx dM'

B2

M2

4(0;^ - <o22) 8 2<OjAf
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Hence, if (8.16) has one or three distinct real roots, (8.8) will have nonzero

real roots. In such a case (8.12) has one or three A.P.S. reducing for

fi = 0 to the solution

xÂ°(t) = Mcos a^r + â€”l 5 sin a>2r (8.17)

of the generating system.

As (8.16) cannot have a triple root, one A.P.S. always exists. Stability

conditions for these A.P.S. have the form

M<0; *-ffiQ<0 (8.18)

Hence stable A.P.S. are those which correspond to the negative roots of

(8.16). This equation has, however, always one negative root; if this is

the only real root, this root is stable as P( â€” oo) > 0 and, for this root,

P*(M) < 0.

If (8.16) has three real negative roots, the A.P.S. corresponding to the

largest and to the smallest roots are stable while the A.P.S. corresponding

to the middle root is unstable.

9. Parameters of the generating system; nonresonance and reson-

ance frequencies

We consider again (7.1) and the A.P.S. (7.6) of its generating system

depending on m arbitrary constants Mv. . ., Nm.

We assume that the characteristic equation of (7.2) has m critical and

(n â€” m) noncritical roots. We denote the former roots: iA^',. . ., Xj,

where A, are free frequencies of the generating system; m = 2q and

"i, . . -i vN tne frequencies which appear in the developments in trigono-

metric sums of /, and F, in terms of the variable t.

We adopt the following definition of the resonance frequency: We call

Xp the resonance frequency if, at least, one of the linear combinations:

mjAx + . . . + mpXp + . . . + mqXq + nxvx + . . . + nNvN (9.1)

can become 0(/x). The numbers mx,. . ., mq, nv. . ., nN are integers,

(mp ^ 0) for which {m^ + |m2| + . . . + |nx| + . . . + \nN\ < r + 2,

where r is the maximum degree of Fs with respect to xv. . ., xN. Hence,

if Xp is not a resonance frequency, the roots are always simple. In such a

case it can be shown that in the system

P,(MV. . ., MJ = lim ^ fT 2 Fa(t, V xnÂ°; V)4,aidt = 0 (9.2)

two of the constants Mx = M2 = 0.
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This simplifies the calculations inasmuch as the parameters M, corre-

sponding to nonresonance frequencies are zero.

As an example, consider the d.e.

x + k2x = /x(1 - x2)x + A sin wjt + B sin w2r (9.3)

with wxlco2 being an irrational number. In this case k is not a resonance

frequency and one can write the generating solution as

*Â° = sin W^t + A2"^? sin Wit (9-4)

For the characteristic equation (8.8) we form first the variational system,

which yields

t + w = + mi - v)Â£

Changing the variable, Â£ = eÂ»y'a, and limiting the calculation to the first

order only, one has

a + k2a = â€” 2px0x0a + fi{l â€” x02)d â€” 2pxya

Conditions for the existence of an A.P.S. of the d.e. are:

a + k2a = â€”2xqX0a0 + (1 - #02)<T0 - 2y<r0

where a0 = M cos kt + N sin kt. Equating to zero the coefficients of

cos kt and sin kt on the right-hand side of the d.e. and taking into account

(9.4), one obtains

1 ~ 2(k* - v)2 ~ 2(k2 - w2*y ~ 2yM = Â°

1 ^ o \7 n

2(k2 - u2)2 ~ 2(k2 - w2)2 y\

which gives for the roots y in (8.8) the values

A2 B2

= Y2 = \ 2 -

[k2 - OJ^)2 (k2 - w22)2

This almost periodic solution becomes (for p. = 0) the generating solution

in which the frequency k is absent. The theory permits finding those

A.P.S. of (9.3) which are "entrained" by frequencies of the external

excitation.
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ALMOST PERIODIC OSCILLATIONS 301

We shall not reproduce here further properties of the nonresonance

solutions which are investigated by Malkin in great detail.

10. Forced oscillations of a mono-rail car

As an example of the preceding theory, Malkin 5 refers to a recent paper

of Boutenin regarding the behavior of a mono-rail car stabilized by means

of a forced precession of a gyroscope suitably controlled and shown in

Fig. 12.1. The mono-rail is shown as ABCD containing inside a gyro

frame supported in bearings MN; the gyro G is mounted within the frame

on the MN axis. Designating by x the angle of rotation of the frame, by y

that of the car, and byMj sin vt the external disturbing moment, the

differential system is

A$ - CQy - pbx = -y"x + M

J0y + CQx - Phy = -yxy + Mx sin vt

where A0 and J0 are certain effective

moments of inertia (A0 relative to the

gyro and J0 relative to the car), CQ =

K angular momentum of the gyro P

and p, the weights of the car (without

the weight E) and the weight of E,

respectively, y and y" coefficients of

linear friction of the car and the frame.

Finally M is the control moment

which may be determined in any

manner one wishes; it is assumed here

that it is of the form

M = (a1 -

a1 > 0, p > 0

One introduces notations: yx = K/A0\

y? = KIJ0; n* = pblA0; n2* = PhjJ,

dimensionless quantites are <^ 1,

The differential system can be written then as

* - Yiy - ni2* = - #*8) =

y + Y2x â€” n22y â€” ~p.ni^y + Qsm vt â€” p.F + Qsm vt

wherep = ^/(a* - y"); A = A0y^J^ - y");Q =

h See footnote 6, page 286.

(10.1)

Figure 12.1

and assumes that the following

n^lA0

(10.2)
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302 QUANTITATIVE METHODS

The system (10.2) is investigated assuming first that one does not have

the resonance condition expressible by a relation of the form

Wjojj + m2w2 + nv ~ 0

where wx and w2 are free oscillations of the linearized system and the

external frequency, and mv m2, and n are integers.

The general solution of the linear part of equation (10.2) is

x = A1 sin 0j + A 2 sin 62 + d cos vt

x = A^wl cos 0j + A2w2 cos 62 â€” dv sin vt

y = A^x cos 0j + ^4^2 cos ^2 + c sm (10.3)

y = â€” ^Jja>^! sin â€” A2co2k2 sin 02 + cos i/*

= w,/ + e^; 02 = oi 2' + a2

where Ax, A2, aj, and <x2 are arbitrary constants, and the frequencies o>1

and w2 satisfy the equation

<o4 + (nj2 + k22 - YiY2W + n!2n22 = 0 (10.4)

Moreover, d and c have the following values:

d = yiH?/K + (ni2 + n22 - yiy2)"2 + n,W]

c = -(â€žâ€¢ + Wx2)<3/K + K2 + n22 - yiy2).2 + H^2]

For kx and &2 hold relations:

kx = (o^2 + n^/y^ = y^Jfoij2 + n22)

62 = (oj2 + n12)/yiw2 = y2w2j(w22 + m22)

If one introduces the new variables Av A2, 8x, 62 instead of .v and y

making use of (10.3), one obtains, after certain transformations and

taking into account the above expressions for kx and k2, the following

system:

Ax = -n(F* sin ei + kj* cos 0J;

A2 = px[F* sin 0j + kj* cos 02]

6x = w, + ^(-F*cos01 + Â£2/*sin01); (10.5)

#2 = a>2 + -J" (F* cos 8l ~ kxf* sin #2)

A2

where = -(yiF)/(Â«tÂ« - = (y^/n^* - <V).

Expanding the right-hand terms of these expressions into trigonometric
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303

sums and dropping all terms except the free terms, one obtains the follow-

ing equations of the first approximation:

Ax = ixbi(ci - A2n>2 - 2A2co22 - 2d2v3)Ax = (iR^A^)

A2 = (ib2(-c2 + 2Ax2wx2 + A22oj22 + 2d2v2)A2 = ixR2(AvA2) (10.6)

8l = wx; 62 = o>2

where bx = (3^2n2y1<o1)/8(w,2 - a>22); 62(3^1n2y1<o2)/8(a>12 - a>22)

In the first approximation the oscillation is given by the following

expressions

x = A)* sin (<oj* + Ej) + A2* sin (<o2t + e2) + d cos vt

y = Ax*kx cos (ojj* + Ej) 4- A2*k2 cos (a>2f + e2) + c sin vÂ£

(10.8)

where ex and e2 are arbitrary constants, and Ax* and A2* are the roots of

two equations appearing as coefficients of fibx and /xb2 in (10.6). For free

oscillations Q = 0 and, thus, d = 0, the system for ^4,* and ^42* yields

then

A* = 0; ,4x*2 = cJuS (10.9)

To this solution correspond periodic oscillations with frequency a>l and

the roots of the characteristic equation

8Rx

- y

BRx

eA~9

- Y

= 0

(10.10)

BA1

cR2 8R2

cA j dA 2

are here yx = â€”Ib^Ax*^^; y2 = (2c â€” c2)b2. The stability conditions

for this solution are: wx2 > a>22; 2cx â€” c2 < 0.

The stationary equations have also a solution (for d = 0)

A j* = 0; ^2*2 = c2/a>22

to which correspond periodic oscillations with frequency a>2.

There is still another solution for d = 0 corresponding to

A,*2 = (2c2 - Cx)l3w

i ,

^2*2 = (2tx - c2)/3a>22 (10.11)

To this solution corresponds almost periodic oscillations with frequencies

a>j and a>2. The characteristic equation corresponding to this solution is

Y2 + 2y(blA*2w2 - b2A2*2w2) + l^Mi^^WVi2 = 0 (10-12)
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304 QUANTITATIVE METHODS

If this equation is real (that is, if the right-hand sides in (10.11) are posi-

tive), the corresponding oscillations are stable in the case of inequality:

3(Mi*W - b2A*2<u2) = *i(2e8 - ti) ~ b2(2c1 - c2) > 0

If one assumes Q / 0, in such a case equations

(c, - AW - 2A2*<oJ - 2dh2)A, = 0

(10.13)

(-c2 + + + 2d2v2)A2 = 0

have a solution

Af = 0; A2*2w22 = c2 - 2d2v2 (10.14)

to which correspond almost periodic oscillations with frequencies w2 and v.

Besides this there is also a solution

A* = 0; A*2w2 = cj - 2d2v2 (10.15)

to which correspond almost periodic oscillations with frequencies oij and v

and, finally the solution

,VX2 = i(2c2 - fi - 2*/V); A,*2w22 = ^(2ci - r2 -

(10.16)

to which correspond almost periodic oscillations with three frequencies a>,,

o>2, and v.

The conditions of stability are:

For (10.14): w2 - w2 < 0; cx - 2c, + 2d2v2 > 0

For (10.15): - <o22 > 0; 2cx - c2 - 2d2v2 < 0 (10.17)

For (10.16): b,(2c2 - cx - 2,/V) > 62(2Cx - c2 - 2d2i>2)

Consider now the resonance case; for instance, v = w., and assume

Q = nQ* as customary in the resonance cases (otherwise the generating

system has no A.P.S.).

In this case, for /x = 0, the solution of (10.2) can be written as:

x = A sin 8 + Mj cos ojJ + M2 sin oj2/

x = Awx cos 8 â€” Mxw2 sin a>2t + M.,a>2 cos w2t

y = Akx cos 8 â€” MjA2 sin a>2t + M2k2 cos w2t (10.18)

y = â€”Awxkx sin 8 â€” MJi^o cos <o2t â€” M2k2a>2 sin w2t

6 = oij/ + a

where ^4, Mv M2, and a are arbitrary constants.
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Taking A, Mv A/2, and 8 as new variables, one has

A sin 8 + Mx cos <o2*

+ Kl2 sin w2r + A cos 8(6 - <oj) = 0

Akx cos 6 â€” Mxk2 sin a>2t

+ M2k2 cos w2t â€” sin 8(6 â€” a>j) = 0 .jq ^

^oij cos 0 â€” TV/j<,ij sin o>2/

+ Ai?2<o2 cos <o2f â€” ^wi sin 0(0 â€” a>,) =

â€” A<oxkx sin 0 â€” Mx<o2k2 cos a>2f

â€” M2w2k2 sin oj.,J â€” ^4a>^j cos 0(0 â€” oij) = pxF + ^Q*

Whence

AiT, = /x(F# cos oj2* â€” k^f* sin oj2Â£)

A/, = u(F* sin w.,f + k,f* cos a>,t)

(10.20)

^ = /x(-F* sin 8 - k2f* cos 8)

8 = <o, + ju( - F# cos 0 + &2/* sin 6)

where

F* = + F* and F* = /â€¢ = _2^_

<oj" â€” a>2 a>2 â€” (o^ n1(<o2z â€” oj, )

If one replaces in (10.12) on the right-hand sides x, x, y, and y by their

values (10.18) nnd averages out the variables, one obtains equations of the

first approximation

= pJ'2(-ct + M^wS + M22w22 + 2A2w2)Mx = pRiiMx , M2, A)

A'/2 = i*bJ-c2 + M2w2 + M22w22 + 2A2wx2)M2 + T^* _

= MMV M2, A) (10.21)

A = libx(cx - 2M12oj22 - 2M22w22 - A2w2)A = ^(Mj, M2, A)

6 = wx

The stationary solutions in the first approximation are

x = A* sin (<o,* + e) + Afâ€ž* sin a>â€ž*

V 1 ) 2 2 (10.22)

^ = ^4 cos (w^ + e) + M2*k2 cos co2t
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where Â£ is an arbitrary constant, and A* and M2* are the roots of equations

b2(-c2 + M22w22 + 2Aiwx2)Mi +

= 0

(10.23)

(Cx - 2M2w22 - A^w^A = 0

These stationary solutions are stable if, for M1 = 0, Mt = M2*, and

A = A*.

The roots of the characteristic equation

D(Y) =

3Rl

8Rr

8Rx

8M1 y

8M2

8A

8R2

8R2

BMx

8M2 y

8A

8R

8R

8R

8Mx

8M2

8A

= 0

(10.24)

have negative real parts.

11. Physical aspects of A.P. oscillations

We have attempted to give in this chapter an outline of recent develop-

ments regarding A.P.S. in the theory of nearly linear d.e.; these develop-

ments, in turn, are based on the earlier work of Krylov and Bogoliubov.

There is a certain analogy between the treatment of almost periodic

solutions and that of periodic ones (Chapters 10 and 11); thus, for instance

the effort still centers on the determination of the generating solution

which is approached by the solution of the nonlinear system where /x â€”> 0.

In spite of this, the treatment of almost periodic cases is quite different

from the periodic ones, as Malkin observes. Thus, in the almost periodic

cases the characteristic equation of the generating system must have at

least a certain number of roots other than purely imaginary roots, although

this is not necessary in purely periodic cases, and so on.

Malkin states that at present it does not seem possible to consider the

theory of periodic solutions as a particular case of more general theory of

almost periodic solutions and that it is necessary to treat the former on its

own merit as a very special case.

We shall not enter into this question of a purely formal nature but

merely observe that this difficulty does not arise in the theory of oscilla-

tions.

In fact, in all oscillatory phenomena which we shall study later the

interval in which almost periodic oscillations exist and that in which
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ALMOST PERIODIC OSCILLATIONS 307

oscillation becomes periodic are formed together by a bifurcation value of

a certain parameter. In this manner, when a periodic oscillation appears,

the almost periodic disappears or vice versa so that, on formal grounds, it is

impossible to consider that one phenomenon is a particular case of the

other unless one wishes to consider this question from the standpoint of

the bifurcation theory.

Thus, for instance, a regenerative amplifier amplifying a certain fixed

frequency a>0 may be regarded as producing a purely periodic oscillation.

If, however, the parameter A (the coefficient of coupling between the anode

and the grid circuits) reaches a critical value A = A0, an autoperiodic

oscillation appears with a frequency <o, generally, not standing in any

rational ratio with respect to w0; therefore an almost periodic oscillation

begins in this manner.

In Chapter 18 we shall study the phenomenon of synchronization which

consists in the existence of a certain zone in which the autoperiodic

frequency (of the self-excited oscillation) is "entrained" by the hetero-

periodic frequency (of the external periodic excitation). As long as the

parameter determining this phenomenon remains within the interval cor-

responding to the zone of synchronization, only one frequency w exists and

the oscillation is periodic. If the parameter reaches its bifurcation value

and goes beyond it, the two frequencies w and a>0 separate and an almost

periodic oscillation results. These bifurcation effects are always re-

versible, as was mentioned in Chapter 7.

There are still more complicated situations as we shall learn later, but

in all cases the periodicity and the almost periodicity are distinctly sep-

arated by the bifurcation point so that it is meaningless to consider that

one aspect of the phenomenon (the periodicity) is a kind of "continuation"

of the other aspect (the almost periodicity).

In the above example of a regenerative amplifier, the almost periodic

"aspect" is characterized by the bifurcation of the first kind so that,

topologically, the situation is also quite different from that of the amplifier

as such.

In the second example (synchronization) the situation is also different

between the zone of synchronization (periodicity) and the zone when the

synchronization is lost (almost periodicity); here again the two cases are

not comparable. In the first case the system has a singular point, whereas

in the second case this singular point vanishes (Chapter 18).

In some other cases these transitions from periodicity to almost periodic-

ity can be traced to complicated conditions of stability, but in all cases the

two zones, periodicity and almost periodicity, relate to entirely different

situations. On this basis the difference in the mathematical approach to

these two cases is to be expected.
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Chapter 13

DETERMINATION OF CHARACTERISTIC

EXPONENTS

1. Determination of characteristic exponents on the basis of

Poincare's theory

The question of existence of periodic solutions (Chapters 10 and 11) is

supplemented in this chapter by an investigation of stability on the basis of

the general theory; this introduces the rather difficult question of de-

termination of the characteristic exponents. The difficulty, as will be

presently shown, is that the characteristic equation (for the general case of

d.e. with periodic coefficients) contains coefficients depending on the

solutions of the d.e., that is, ultimately, on the characteristic exponents that

are unknown. One is thus in a kind of vicious circle from which the only

issue is the method of approximations outlined in the last four sections of

this chapter. It is possible, however, to proceed without the somewhat

long calculations of these exponents by merely finding conditions under

which they are all negative; very often this is sufficient if one is merely

interested in ascertaining stability.

We recall (Chapter 5) that the variational equations give information

only about asymptotic stability and orbital stability (or instability). The

first holds if all characteristic exponents are negative (if they are real) or,

more generally, have negative real parts. The instability occurs when at

least one exponent has positive real part.

The theorems of this chapter are of importance for nonautonomous

systems. If the system is autonomous, the situation is simpler; in

particular, for autonomous systems of the second order which will be our

first interest, Poincare shows1 that, inasmuch as one exponent is always

1 H. Poincare, Les me'thodes nouvelles de la mecanique celeste T.l, Gauthier-

Villars, Paris, 1892; also E. Goursat, Cours d'Analyse T.l, Gauthier-Villars, Paris,

1918.
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DETERMINATION OF CHARACTERISTIC EXPONENTS 309

zero, stability (or instability) is determined by the sign of the real part

of the second exponent and this, as will be shown, is a simple matter.

Finally, if the real part of the second exponent (always for the second-

order systems) vanishes, one has a very special case of indifferent stability

which characterizes the harmonic oscillator.

In the general case, the reversal of a strict inequality implies the existence

of an exponent with positive real part, and one obtains an instability

criterion of equal validity for autonomous systems.

We follow closely the presentation of Malkin2 throughout this chapter.

In Chapter 5 it was shown that the stability of a periodic motion depends

on the variational system with periodic coefficients

where

(1.1)

(1.2)

are partial derivatives into which one substitutes the solution corresponding

to the periodic motion after differentiation.

The characteristic equation is

yiM - 5 â–  . . yiâ€ž(Â°>)

ytM y2i(Â«>) - s ... v2â€žH

= 0 (1.3)

\yÂ«i(<u) yâ€žM â–  â–  â–  ym(<u) - s \

where y{j is the fundamental system of solutions with the initial conditions

f 1 for Â» = j

[0 for * # j

It was shown that the characteristic equation can be written also in the

form:

+ An_xS + Aâ€ž = 0

(1.5)

but the principal difficulty here, as was just mentioned, is that, aside of An,

all other coefficients of (1.5) are unknown.

It is to be noted that the coefficients A{ are invariants in the sense that

they remain the same under a linear transformation of variables. To

2 I. G. Malkin, Certain Problems in the Theory of Nonlinear Oscillations (in

Russian), Moscow; English translation.
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determine these invariants it is necessary to integrate the variational

system, which is generally impossible.

As far as the problem of stability is concerned, it is not necessary to

know the exact values of the roots 5,- but only whether their moduli are

greater or less than one. Hence, it is sufficient to determine the invariants

A{ only with a certain approximation.

One can follow the general method of Poincare by assuming that the

right-hand sides of the d.e. depend analytically on the parameter p..

Thus, if the coefficient pij depends analytically on /x, the same is true for

y{j as well as for the invariants Af.

We assume that the periodic solution also depends analytically on /x and

is of the form

<Pi(t) = <p,<Â°)(0 + w,<1>(0 + â–  . . (1.6)

so that for p. = 0, <p,(t) = <p,(0)(0 is the generating solution.

One can also write

Pu = A/0) + Maâ„¢ + rtuw + . . . (1-7)

where

Puw = = ?('); m = o (1-8)

It is clear that the system

Viw = ip./'V0). i=\,2,..,n (1.9)

is the variational system for the generating solution. Moreover, if the

functions p{ - depend on a parameter, y,j and, therefore, the invariants A,

will also be functions of that parameter. We may assume that this

dependence is analytic, as expressed by (1.6) and (1.7). One can connect

now these considerations with the theory of Poincare concerning the exist-

ence of periodic solutions (Chapter 10).

Let <p,<0)(0) + jS.(/x) be the initial conditions of a periodic solution and

consider slightly modified initial conditions <p,<0)(0) + /J,(m) + yâ€ž where

Yi are small numbers, the differential system in question being

= *,<â€¢)(Â«, xv. . ., *â€ž) + MA7Â»(r, *â€ž. ..,*â€ž) + ... (1.10)

The solution clearly depends analytically on y, and one can write

*.(', yâ€ž. â– ., Vn) = *,(Â«, 0, .., 0) + 2 FikVk (l.H)
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where the quantities rik satisfy the system

ipiâ€žrik (1.12)

*= 1

with the initial conditions

fl for i = j

JV(0) = (1.13)

[0 for i # j

Hence, in our case

ru = yu (i.i4)

By forming the expressions [*,] = *,(Â«, y, yn) - x,(0, yv. . ., yâ€ž),

we have

(1.15)

On the other hand, the functions *,-(/, yl> - . ., yn) can be obtained from

x,(t, j3â€ž. . ., j8â€ž, n) of the Poincare theory by replacing /3, by /J,(m) + Yi>

giving

(1.16)

where ip, are the functions whose vanishing determines the periodicity of a

solution (Chapter 10). This permits writing the characteristic equation

(1.3) in the form originally indicated by Poincare:

#1

#1

+ 1 - 5 ^

= 0 (1.17)

0i"/Me)

It is to be noted that the determination of the functions ip, requires also the

integration of the variational system of the generating solution.

It is possible now to express the conditions of stability in the form of

inequalities. This does not require the actual calculation of the char-

acteristic exponents but involves only the limits at which these exponents

cease to be negative (that is, when the moduli of the roots cease to be less

than one).
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In a particular case of a system of the second order, the characteristic

equation is:

S2 - 2AS + B = 0 (1.18)

For this equation to have only roots with moduli less than one, it is

necessary that

\B\ < 1 (1.19)

This condition is sufficient if the roots are complex. If they are

real, additional conditions are required. It is sufficient to set 5 =

(1 + A)/(1 â€” A) and require that in the quadratic equation so obtained

the real parts of the roots should be negative. One obtains thus two

additional conditions

1A + B + 1 > 0; -2A + B + 1 > 0 (1.20)

With the Poincare form (1.17) of the characteristic equation, one has

m*Â»â™¦>}

-0|<H)

B

= 1

#2

op*

#Â»

where J is the Poincare Jacobian:

J =

The conditions (1.20) are then:

4+2(t:+fl

The condition (1.19) can be written as

(1.21)

(1.22)

+ J > 0

(1.23)

(1.24)

dt < 0

using the notations of Chapter 10. There are then three conditions of

stability. If ^ = 0, the characteristic exponents of the solution become

the characteristic exponents of the generating solution.

If p. is small (which we always assume), the criterion of stability requires

that the characteristic exponents of the generating solution must be

negative, in which case the stability is asymptotic. It is noted that here
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there is no necessity for an actual determination of the characteristic

exponents inasmuch as this is implicitly contained in inequalities (1.19)

and (1.20) which are equivalent to the assertion that the characteristic

exponents arc negative. The inequalities (1.23) and (1.24) merely specify

the conditions (1.1(>) and (1.20) on the basis of the theory of Poincare.

It is believed that this procedure was used for the first time in the theory

of oscillations by L. Mandelstam and N. Papalexi in their theory of

subharmonic resonance; in Chapter 19 we shall return to this question.

2. Stability of periodic solutions

We are now in a position to complete the investigation of stability of

periodic solutions whose existence was studied in Chapter 10. Consider,

for instance a nonautonomous system with one degree of freedom in a

nonresonant case.

In this case the functions and ip., (Chapter 10) are given by equations

i/,< = [x] = (cos 2kn - 1)0! + - sin 2knp2 + [C]fi + . . .

<f,i = [x] = -k sin 2knpi + (cos 2kn - l)j3, + [C> + . . .

and the left-hand side of inequalities (1.23) are, respectively, 2( 1 â€” cos 2kn)

and 4 if one limits oneself only to the first terms. Hence, for small p. these

inequalities hold.

As to (1.24), it is here

^ P 0 (2.i)

Jo cx

where x and x in /<'(/, x, x, /x) must be replaced by their expressions in the

power series

.v(0 = x0 + ,x.r,(/) + ^x2(t) + ... (2.2)

For the first approximation one replaces x and x by the generating

solution x0 and .v0 so that (2.1) becomes

p f <F(t- Xn: dt < 0 (2.3)

Jo ^'o

where x0 and x0 constitute the generating solution. Condition (2.3) is the

only one required for stability since the other two are automatically fulfilled

for small ix.

In the case of resonance (2.3) still holds, but the function x0 is now given

by the expression (3.3), Chapter 10. As the functions <f>i and </<2, (Section
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2, Chapter 10) vanish for/x = 0, the second condition (1.23) is fulfilled as

inequality; as to J > 0, it can be written (leaving out terms of higher

orders in /x) as

TO)

8(M0,N0)

> 0 (2.4)

Equations (2.3) and (2.4) are the conditions of stability.

In an autonomous system with one degree of freedom (Section 6,

Chapter 5) one of the roots of the characteristic equation is one (that is, the

corresponding characteristic exponent vanishes); hence, the second root

is B (in 1.19) which requires the fulfillment of inequality (1.24). If this

condition is fulfilled (as inequality), there will still be stability but one

cannot assert that this is an asymptotic stability. Here condition (1.24)

has the form

r^M,^<0 (2.5)

Jo 8x

In the condition (2.5), <o is the period of the solution and x and x

correspond to this solution. Again, if one considers the first approxima-

tion, the condition (2.5) acquires the form

T2"/* c)f(M0 cos kt, -M0k sin kt; 0)

M Jo a*

k Jo

c/(M0 cos a, -kM0 sin a; 0) ^ < Q

fix a - ( â–  )

where M0 is determined by

P(M0) = J f(M0 cos m, - kM0 sin w; 6) sin udu (2.7)

By integration by parts and after some transformations (2.6) can be written

as

.. dP(M0)

dM0

> 0 (2.8)

which is then the required condition of stability.

3. Determination of characteristic exponents by approximations

Although the method of the preceding two sections gives generally

satisfactory results in applications, there are cases when it is necessary to

go to higher approximations in the determination of characteristic ex-

ponents and also to establish the limits between the zones of stability and
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DETERMINATION OF CHARACTERISTIC EXPONENTS 315

instability. For that purpose it is useful to introduce a parameter in the

d.e. and to form a recursive system which permits one to carry out the

calculations with any degree of accuracy.

It may be useful to mention in passing that the applications in which

these calculations are encountered are very numerous. Thus, for in-

stance, vibrations of driving rods in locomotives, critical zones of self-

excitation of parametrically modulated circuits, etc., are within the scope

of this problem.

We outline here the procedure due to Malkin, omitting some details.

We consider a differential system with periodic coefficients

n

*,â–  = lLpiixi< t = *> 2>- . .>n (3-J)

i'-l

where the periodic coefficients />I;(i) may depend on some parameters

fii, i = 1,2.,..,* with respect to which they are analytic in a certain

region

N =Â£ E, (3.2)

where Â£, > 0 are certain fixed numbers; we assume also that the period w

of pjj(t) does not depend on /*,-. In such a case a solution x( = x,(r, px,

.. ., p.k) will be also analytic in /x, and, in view of the form of the characteris-

tic equation (Section 5, Chapter 5), one reaches the following theorem of

Liapounov.3

The coefficients of the characteristic equation of (3.1) are analytic functions

of the parameter

This results from the fact that the region of analyticity of pij coincides

in this case with that of the coefficients of the characteristic equation.

This theorem can be used for an approximate calculation of coefficients

of the characteristic equation and, hence, also for that of the characteristic

exponents.

Without any loss of generality, we assume that there is only one para-

meter fi (not to be confused with /x of the preceding chapter) so that the

coefficients (3.1) are of the form

PiA*) = fc/O + /*A>(1)(0 + rW* + â–  . .; i - 1.2,...,Â» (3.3)

where q{j and />,y(1), />,y(2),. . . are continuous periodic functions with

period <o and we assume that the series (3.3) converge for < E.

* A. Liapounov, C.R. 123, Paris, 1896.
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We consider a fundamental system of solutions xi;(r,/x) of (3.1) repre-

sented by power series expansions in terms of /x, viz.:

= *,/0)(0 + /**,,(1)(0 + m2*,/2)(0 + . . . (3-4)

converging for all values of t in the region |/*| < E with the initial condi-

tions

p for i = j

|o forÂ«-#y (35)

*u<x\0) = *,y(2>(0) = . â–  . = 0

If one substitutes (3.4) into (3.1) and equates the coefficients of like

powers of ^, one obtains a recursive system for the determination of

X <0) X Â°> \17 â– 

*,./o)(0) =

//r..d)""

= 2 9,**â„¢ +1 />,-,(ivo)

dt >-> (3.6)

(k) Â» n A-l

'" =2W*' +22Pi.ik-M*.iwi i=l-2 Â»

* = 1, 2,. . ., Â»

It is observed that this system has the same terms with q. Assume that

the integration of the system

^ -ygikyâ€ž (3.7)

is known. For /x = 0, this is the system (3.1). In such a case (3.6)

permits a successive determination of all .v(/*> beginning with k = 0

under the assumed initial conditions.

The series solution (3.4) is ihus determined. If one sets / = oj, one

obtains the coefficients of the characteristic equation and, hence. the values

of the characteristic exponents.

We have obtained a possibility of carrying out this approximation pro-

cedure due to the fact that for /<. = 0 we assume the solution of the system

to be known. It is possible. however, to reduce more general cases to this

particular case.
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Assume, for instance, that we wish to determine coefficients of the

characteristic equation of a differential system with periodic coefficients

*i = 2 r*(0** (3.8)

* = i

in which there are no parameters. We replace this system by

= 2 PÂ»M*k (3-9)

*-i

where the function Â£,>(/,/*) are so chosen that, for /x = 0, the system (3.9)

admits integration in a closed form (for example, becomes a system with

constant coefficients), while for ii = ix* (where xx* is a certain fixed number

in the region of convergence of coefficients />,*(r,xx)), it becomes (3.8).

Let M be a maximum of |.T,a(i)| for all f, k, and t and consider

where Pik(t) = ril,(t)/M so that \Pik(t)\ < 1.

We have thus:

*.- = M 2 Pit*)** (3-11)

*= l

For ix = 0, we have by assumption a known solution, but for n = M we

have the original system. If M is small, one has a good convergence,

assuming that /x = M is still within the limit of convergence of the co-

efficients p,k(t,p.).

The method is particularly convenient when /x* is small, that is, when

the given system does not differ much from a system which can be inte-

grated in a closed form inasmuch as in such a case only a few approximations

will be sufficient.

4. Second-order systems; invariants A{

As an example, we consider a system of the second order

x + p(t)x = 0 (4.1)

and study first the d.e.

y = ?my (4-2)

where /x is a parameter. If ix = â€” 1, one has (4.1).
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318 QUANTITATIVE METHODS

(4.6)

Let/(/,/x), <p(t,px) be two particular solutions with the initial conditions

/(0jx) = 1; /'(0,/x) = 0; <p(0,M) = 0; 9'(0,/x) = 1 (4.3)

On the other hand, we have

/Cm) = /o(0 + fA(0 + m2/2(0 + . . .

(4.4)

9(t,V<) = 9>o(0 + M9>i(0 + + â–  . .

Substituting these expansions into (4.1), one gets

/o = 0; <pâ€ž = 0;. ..; fâ€ž = pfn-u <pâ€ž = /><pn_r. Â» = 1, 2,...

(4.5)

Moreover,

/o(0) = 1; /o'(0) = 0; <p0(0) = 0; <p0'(0) = 1

/â€ž(()) = /n'(0) = <pB(0) = <pn'(0) = 0; Â» = 1, 2,.. .

whence,

/o(0 = i; <po(0 =';

/â€ž(r) = r* r pfn-idt-, <pn(t) = r a r^-i*

Jo Ju Jo Jo

As the coefficient A in (1.18) is

A = Â±[/H + 9Â»]

this coefficient for (4.2) is

A*(n) = 1 + J | [/â€ž(Â«) + (4.7)

As this series converges for any values of we can set, for instance,

(i = â€” 1, which gives the coefficient A for (4.1)

A = A*(-\)=l + lf [/â€žH + <?â€žÂ»](- 1)" (4.8)

n = 1

Suppose that p(t) can have either negative or zero values, without

being equal to zero identically. In such a case all functions/â€ž,/â€ž', <pâ€ž, and

<pâ€ž' are negative for 1 odd and positive for n even; therefore all terms of

(4.8) are positive. This conclusion results in the following theorem of

Liapounov.

(I) Under the just specified conditions, the characteristic equation has two

real roots, of which one is greater than one and the other less than one.
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DETERMINATION OF CHARACTERISTIC EXPONENTS 319

We give without proof 2 another theorem of Liaponuov:

(II) If p(t) can have either positive or zero values (without being equal to

zero identically), then the characteristic equation of (4.1) has complex roots

with moduli equal to one provided

w J" pdt < 4 (4.9)

5. Zones of stability

We consider now a second order d.e. of the form

x + A2(1 + iiflx = 0 (5.1)

where/ = /(/) is a periodic function with period tt (which can be obtained

by a change of the independent variable). The quantity A2 is a parameter.

We also assume that f(t) can be expanded in a power series

/ = /i(0 + + Mt) + ... (5.2)

where the functions /,-(/) do not depend on /x and are periodic with period

it; the series (5.2) converges for |/*| < a, a being a constant.

The parameter A2 will be assumed to vary, and we propose to investigate

the regions or zones of stability as functions of A. As we use A2, it is

immateriai whether A > 0 or A < 0.

From the preceding it follows that those values of A for which A (in

1.18) satisfies the inequality A2 < 1, correspond to stability and those for

which A2 > 1, to instability. Hence, the separation of zones of stability

and instability occurs at the thresholds at which the functions A have the

values

A = +1 (5.3)

A = - 1 (5.4)

The functions A are our unknown functions and we shall try to determine

them in terms of other quantities by successive approximations.

From the general theory we have

A = HxjOO + X2(tt))

where .v, and x2 are two particular solutions satisfying the usual initial

conditions.

- See footnote 2, page 309.
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320 QUANTITATIVE METHODS

These solutions are entire functions of X2 and analytic functions of /x for

< a. We have thus

*i = *i(0)(0 + /**i(1)(0 +...

(5.5)

*2 = *2<0)(0 + fÂ«Â«(1)(0 + â–  . .

Substituting (5.5) into (5.1) and taking into account (5.2), one obtains the

system of d.e.:

*.Â«)) = _avo); = -A2x/1) - Ay,(0*,(0);. . . i = 1, 2,. . .

(5.6)

with the initial conditions

x^\0) = 1; ^("(0) = 1; *2Â«Â»(0) = 0; *2<Â°)(0) = 1;

*iw(0) = *iw(0) = x2W(0) = *2<*)(0) = 0; k = 1, 2,... (5.7)

This recursive system determines the functions x^'\ *2(*). In particular

we have

= cos Ar; *2<Â°) = \ sin Ar

so that

A = cos A7r + + *2(1)M]/* + . .. (5.8)

We determine now the thresholds (5.3) and (5.4). It is seen that (5.3)

and (5.4) are satisfied for p. = 0, A = n, n being an integer. In particular

for n even, equation (5.3) is satisfied and, for n odd, (5.4). One can expect

that for px # 0 but small, these equations r ie still satisfie d in the neighbor-

hood of integer values of A = n. We set A = n + a and equate expressions

(5.8) to +1 for n even, and to â€” 1 for n odd. One obtains thus the follow-

ing expressions

/ Â«\ ^A**2it* a*TT* 1 r .

(--2f ~ "4T + . . . +2 t*x(7r) + *2W]a-n+Â«-/* + . . . = 0

(5.9)

The left-hand side of this equation is an analytic function of a and ^

vanishing for a = /* = 0. As the first derivative of this expression with

respect to a vanishes for a = (i = 0 and the second derivative is ^0,

from the theory of implicit functions it follows that (5.9) admits two

solutions for p. small. One of these solutions is an analytic function of \l

and the other of Vp.

If one substitutes these solutions a(/x) into A = n + Â«(/*) and gives a

sequence of integer values to the parameter A, one can obtain a sequence of
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relations (5.3) and (5.4). As previously, for n even one has conditions (5.3)

and for n odd, those given by (5.4).

It can be shown (we omit the proof, referring to Malkin,2 that: (1) all

such solutions are real, and (2) only the solutions in terms of developments

according to the powers of fi are to be retained, as those corresponding to

the powers of vV do not give rise to real solutions and thus are to be ruled

out.

In this manner one can construct a curve A(X) (Fig. 13.1) for a fixed /x

with roots (5.3) and (5.4) marked on the A axis. These roots A/ and A,*,

4U)

+1

0

-1

/ 1 \

\ T

K

i

1

1

i \

!

/

x2

2

x"

**

Figure 13.1

for instance, surround the integer values of A. Along the A axis they

determine intervals of two kinds, namely: those limited by the roots of

the same parity corresponding either to (5.3) or (5.4), such as Ax', Ax";

A2', A2";. . ., which we shall call intervals (I); and those, corresponding to

the roots belonging to the regions of the different parity, such as \{, A2';

A2", A3';. .., which we shall call intervals (II).

The intervals (I) and (II) alternate, as is seen from Fig. 13.1. There

may be special cases when two roots of the same parity coalesce, giving rise

to a double root (with the disappearance of the corresponding interval I)

but we shall be concerned only with the case of distinct roots.

It is clear that in each interval (I) one has A2 > 1 and in (II), A2 < 1.

1 See footnote *, page 309.
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Thus the zones of stability are in (II) and those of instability in (I). In

fact, in an interval II, the quantity A varies from â€” 1 at the beginning of

the interval to +1 at its end. As A cannot become +1 or â€” 1 in the

interval (II), A2 < 1 in such intervals; in an interval (I), the quantity A is

the same at the ends of the interval; thus, for instance, in (A/jA^) the

terminal values of A are + 1; hence, inside the intervals (I) one has either

A > + 1 or A < - 1.

Summing up, if A varies continuously, one has a sequence of alternate

zones of stability and instability; the thresholds separating these zones are

the roots of equations (5.3) and (5.4). The zones of stability are located

in the intervals (II) and those of instability in (I) and all roots are in the

neighborhood of integer values of A. For p. = 0, the roots coalesce on

the integer values A = n; for small values of /x the roots are analytic

functions of /x.

6. Calculation of zones of stability

We consider the d.e. (5.1) as

x + A2[l + iif(t,y)]x = 0 (6.1)

where

/(*,/*) =/i(0 + /*/Â«(') + ... (6-2)

and assume that for /* = 0, a root becomes some integer n. As this root

is an analytic function of fi, one can write

A2 = n2 + ajp. + a^2 + . . . (6.3)

As was shown previously, (6.1) has a period of 27r if n is even and period it

if n is odd. We inquire as to whether this solution is also analytic in p..

As the coefficients in (6.1) are analytic in /x, any solution of this d.e.

whose initial conditions do not depend on /x are also analytic in /*. If

x = x(t) is a solution corresponding to the initial conditions x(0) = 1,

x(0) = 0, the characteristic equation has a double root equal to +1 (n even)

or â€” 1 (n odd). Hence, solutions of (6.1) are either periodic or of the

form *(r) = ftp(r) + ip(t), where <p and ip are periodic. In such a case,

<p(rr) determines the solution of (6.1) which is the periodic solution in

question but, as the initial conditions do not depend on this solution is

analytic in \l as well as <p(t).

If this solution is multiplied by C(n), where C(ji) is an arbitrary function

of (i (not necessarily analytic), one obtains another periodic solution.

However, not every periodic solution is analytic in fi.
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DETERMINATION OF CHARACTERISTIC EXPONENTS 323

We consider an analytic periodic solution

x = x0(t) + ^(0 + fi*x2(t) + ... (6.4)

where *,-(/) are periodic and the series converges for /x sufficiently small.

In order to guarantee this property, it is necessary to impose additional

conditions determining a constant factor in this solution. If x(0) # 0,

one can multiply it by a factor so as to have the initial condition of a value

given in advance:

M = M0 + /xM, + MW2 + . .. (6.5)

In this manner one obtains the condition x,-(0) = Mâ€ž where M, are

constants satisfying the only condition that (6.5) converges. Thus one

can select the first n constants M, in an arbitrary manner.

If x(0) = 0, the derivative x,(0) # 0 and, again, one can impose the

condition x,(0) = Ni, where N{ are arbitrary constants for which the series

N = N0 + /xiVj + p*N2 + .. . converges.

Hence, in one way or the other one can obtain as initial conditions either

x,(0) = Mf or x,(0) = N (we exclude the case when x0(0) = xo(0) = 0).

In each special case it is necessary to determine which of the two initial

conditions, x,(0) = M, or x,{0) = Ni, can be satisfied. If x0(0) # 0,

then the solution (6.4) does not vanish for / = 0 and one has *,(()) = M,-.

If *0(0) = 0 but x0(Q) # 0, then one can satisfy the condition: i,(0) = N{.

If, however, x0(0) = x0(0) = 0, one has identically x0(t) = 0. This case

can be excluded, as it is always possible to divide (6.4) by a suitable power of

fi so as to have a term independent of fi.

If one replaces the series (6.2) and (6.3) into (6.1), one has

| *,y + (n2 +1 (i + 2 fp') 2x^ =0 (6-6^

i-o \ j=\ I \ y-i / i-o

which yields a recursive system

*0 + n2x0 = 0

*i + "2xi = -"2/i*o - "1*0

*t + n2x2 = -(n2/! + o^K - (n2/2 + o<j^ - a^0 (6.7)

*k + "2xk = -(n2/! + ajx^ - aâ€žx0 + Fk(t, x0 xk_2)

where Fk are linear functions of x0,. . ., xk_2 with periodic coefficients

depending on o<v. .., ak_v This permits a recursive determination of *.

For the first function x0 one has

*0 = A0 cos nt + B0 sin nt (6.8)
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In the second equation for x1 the condition of periodicity is fulfilled if the

Fourier development on the right-hand side has no terms with cos nt and

sin nt; otherwise the secular terms due to the resonance solution would

occur.

As jx is periodic with period n, its Fourier development proceeds with

integer arguments of t (even, if n is even; odd, if n is odd). One has thus

n2fi cos nt = ^ (am cos mt + *m sm mt)

CO

n2fi sin nt = V (cm cos mt + dm sin mt)

m = x

where

aâ€ž = 0/2; 6â€ž = y/2; câ€ž = y/2; rfâ€ž = -0/2 (6.10)

P and y being the coefficients of cos 2nt and sin nt in the Fourier develop-

ment of n2fi- This development does not contain any constant term as

the average value off(t) is zero.

From these expressions one obtains the coefficients of cos nt and sin nt

on the right-hand side of equations for xx, viz.:

(/3 + 2ax)A0 + yB0 = 0; yA0 + (2a, - p)B0 = 0 (6.11)

which must be satisfied by A0 and B0.

The condition for a nontrivial solution of (6.11) is that a, satisfy the

quadratic equation

(2Â«x + j3)(2a1 - - y* = 0 (6.12)

whence

Â«! = * WPx + y2 (6.13)

Here there are obviously two cases according to /J2 + y2 / 0 or = 0. If

)82 + y2 5^ 0 one has two real roots for av If one takes one of these roots,

one of the quantities A0 and B0 can be taken arbitrarily.

Assume that A0 is arbitrary; for this it is necessary that it be different

from zero; this can be obtained if y # 0; in this manner *0(0) # 0 and one

can, therefore, use the initial condition #,(0) = M{ for the calculation of

*,(r). In particular, one can set A0 = 1, then (6.11) permits determining

B0.

With such a choice of av A0, and B0, the function x^t) will be periodic.

But in such a case the general solution

*i = *i*(0 + ^4i cos nt + ^i sm nt

(where *i*(0 is a particular solution) will be also periodic with two

arbitrary constants A, and Bv If one sets A1 = 0, then Mx = xx*(0).
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One proceeds in a similar manner for other approximations. Thus, for

instance, for x2 one equates to zero the coefficients of cos nt and sin nt;

this results in equations

2A0a2 + yBx + 2p2 = 0; 2B0a2 + (2ax - p)Bx + 2q2 = 0 (6.14)

where p2 and q2 are coefficients of cos nt and sin nt of the development of

Â»2/i*i* + (Â«i/i + *2/2)*o-

We shall not pursue this calculation further but merely mention that,

if one starts from a root of a quadratic equation in aj (equation (6.12)), one

can obtain a formal expansion (6.3) for A2 for which (6.1) admits a periodic

solution satisfying the prescribed initial conditions. To each root

corresponds a formal expansion, and two periodic solutions result. On

the other hand, to any integer n correspond two values of A2 which limit

the corresponding region of stability. It follows, therefore, that the above-

mentioned formal expansions for A2 represent precisely the limits of the

zone of instability and are thus convergent.

There is still another case to be considered, when f}2 + y2 = 0; the only

difference in this case is that the constants Ak and Bk are determined by

the condition of periodicity of the (k + 2) approximation and not by that

of the (k + 1) approximation. We shall not enter into further details of

this case because the argument remains the same.

Malkin gives several examples illustrating the application of this method;

we indicate here one relative to the parametric excitation of an electric

circuit which we shall investigate in Chapter 20 by a different method.

The d.e. in this case is

* + A2(1 + /x cos 2t)x = 0 (6.15)

where

_ 4L - R2C0 \Lm

L2C0a>*' M ~ 4L2 - R2C0

This d.e. represents an oscillatory process in an electric circuit (with

constants R, L, and C0) with capacity C modulated around its average value

C0, the quantity p. being the index of modulation; it is assumed that /* < 1.

We consider the zone of instability in the neighborhood of A = 2 value

and set

A2 = 4 + aj/x + a^2 + . . . (6.16)

We shall try to satisfy (6.15) formally by a series solution

x = x0 + (IXx + (i2X2 + .

(6.17)
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with periodic coefficients (of periodw); we have: *0 = ^40cos2t +

B0 sin 2t and a recursive sequence of d.e.

*i + 4*i = â€”^xo cos 2t â€” aiX0; x2 + 4*2 = â€” 4xx cos 2t â€” o^Xj

+ 4x3 = â€” 4x2 cos 2t â€” a^cx â€” cÂ£2cos2t#0 â€” a^c0 â€” o<jXj

â€” ax cos 2t-x1

Equating to zero the coefficients of cos 2t and sin 2t in equation for xx,

one has: ax = 0, A0 and B0 being arbitrary, which corresponds to the

special case: /Jz + y2 = 0. With at = 0 we have the following approxi-

mation:

*! = + ^ cos 4t + ^5 sin 4t + Ax cos 2t + Bx sin 2t (6.18)

where Ax and Bx are arbitrary. As A0 and fi0 are still unknown, we go to

the next approximation

x2 + 4*2 = (i â€” o<2)A0 cos 2t â€” + a2)B0 sin 2t â€” 2/4x cos 4r

- 2B1 sin 4r - cos 6r - sin 6r - 2A1

The condition of periodicity results in (f â€” a2)^o = 0; (i + a2)B<> â€” 0

which yields for a2 two different values. In one case we have:

a2 = |; A0=l; B0 = 0

In the other case we have:

Â«i = -i; ^o = 0; B0 = 1

In the first case: as A0 ^ 0, one can set Ax = 0 which gives

*2 = sin 4t + ^5 cos 6r + B2 sin 2t (6-19)

B2 being arbitrary. If one substitutes these approximations into x3 and

imposes again the conditions of periodicity, one has a system of equations

for a3 and Bx which turn out to be: Bx = 0; a3 = 0.

The following approximations are calculated in a similar way. In this

particular case (y2 + /32 = 0) the constants Bk appearing in xk are de-

termined not from the condition of periodicity for xk+1 but from those for

In the second case we have:

x, = i sin 4t + A, cos 2t;

(6.20)

x2 = â€” \AX + \A1 cos 4t + 9*5 sin 6t + At cos 2t
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DETERMINATION OF CHARACTERISTIC EXPONENTS 327

The condition of periodicity for x3 yields: a3 = 0, Ax = 0. Thus, up to

0(/x3) the second region for <o (frequency of the capacity variation) for

which (6.15) has unstable solutions is determined by inequalities

4 - fr* + . . . < A2 < 4 + V + . . . (6.21)

From these inequalities it is seen that the necessary condition for the

existence of this zone is

4L - R2C0 > 0 (6.22)

In a similar way one can investigate the zones of stability around the

value A = 3. Setting A2 = 9 + a^x + a2px2 + . . .; x0 = A0 cos 3t â€”

B0 sin 3t + fixx + (m2x2 + . . ., one obtains a recursive system

xx + 9xx = -9cos2t-x0 â€”

x2 + 9*2 = â€” 9 cos 2T-*! â€” ax(xx + cos 2tx0) â€” a^o

(6.23)

+ = â€” 9 cos 2t *2 â€” ax(x2 + cos 2t *i)

-a2(*i + cos 2t-z0) - a3*0

The condition of periodicity for xx requires a, = 0, A0 and B0 being

arbitrary. For xx one has the expression

*i - -Â£sA0cosr - fgB0 sin t

+ ~32-A0 cos 5t + ^2^0 s1n 5t + Ax cos 3t + fix sin 3t

where Ax and Bx are arbitrary.

Substituting ax and *x into the second equation (6.23), one has

x2 + 9*, - K^0 - A,) cost - K^-Bo + BJ sinr

â€” \A1 cos 5t â€” ffix sin 5t â€” QA0 cos 7t

- & sin 7t + (H - Â«2)A0 cos 3r + (H - Â«2)S0 sin 3r (6.24)

which yields the conditions of periodicity for x2:

(fi - Â«*)A = 0; (fi - Â«2)B0 = 0

thus

Â«2=f* (6.25)
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328 QUANTITATIVE METHODS

The expression for x2 is

*Â« = -&(vsA0 - cost - Mt6Bo + Bi) sinr

+ â– iiAx cos 5t + T2Bi sin St + yfio^4o cos 7t

+ 2 5 6o^o s1n 7t + ^42 cos 3t + B2 sin 3t

where A2 and 52 are arbitrary.

Equation for x3 after the substitution of values for xxx2, av and a2 is

*3 + Â°*3 = -Ksfi^o - tMi + ^2) cost

- K-HiBo + rtBi + B2) sinT - (Â«3 + jfD^o cos 3t

+ (fff ~ a3)Bo sin 3t - lV2Â«Mo cos 5t - iV^So sin 5t

â€” \A2 cos 5t â€” Â§.B2 sin 5t + a7 cos 7r + b7 sin 7t

+ a9 cos 9t + 69 sin9

where a7, a9, Â£7, 69 are definite coefficients which will not be needed. The

conditions of periodicity are

(Â«. + iH)Ao = 0; (Â«3 - m)B0 = 0 (6.26)

One has thus two branches of the periodic solution. For the first branch:

a3 = â€” yf-f; B0 = 0; A0 = 1

One can now set Ax = A2 = 0 and omit the terms with cos 3t. This

yields the terms x3

*8 = - eHi cos t -fci&Bi + B2) sin r + yl 3 Mo cos 5t + ^B2 sin 5t

- (a7/40) cos 7t - (i7/40) sin 7t - (a9/72) cos 9t

- (i9/72) sin 9r + B sin 3t

B3 being arbitrary. If one substitutes these approximations into xt and

expresses the conditions of periodicity, one determines Bx and ee4, viz.:

R _ fl- Â« â€” 235467

nx â€” v> ai â€” 327680

For the second branch one has

â€ž â€” lis. a â€” ft- a â€” (\- n â€” isLSSAl

a3 â€” 519> -"0 â€” Ji "0 â€” u> â€” "> "4 â€” 327680

The region of instability (that is, of the parametric excitation) is then:

O . 8J. 2 _ 729 3 _ 23 5467 4 i

"+ 64A1 5 1 2H- 32768 0M + . . â– 

< >2 < Q -L. SJ-,,2 1 729â€ž3 1 26p9 V3_ 4 .

â€” A S V + 64^ +512M + 32768 oM + . . â– 

It is to be noted that the above calculation relates only to a linear d.e. of

Mathieu.
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Chapter 14

ASYMPTOTIC METHODS OF

KRYLOV-BOGOLIUBOV-MITROPOLSKY

Autonomous systems

1. Introductory remarks

Independently of the methods of approximations based directly on the

theory of Poincare (chapters 10 and 11) and introduced in the theory of

oscillations by Andronov and his school, there appeared another method

due originally to N. Krylov and N. Bogoliubov (K.B. for short) which

treats the same subject, that is, the existence and stability of periodic

solutions of nearly linear d.e.

The first publication of these authors, which appeared in 1937, was used

considerably in applied problems. Quite recently (1955) a treatise by N.

Bogoliubov and J. Mitropolsky1 extended this method, particularly its

mathematical foundations. The authors call this method asymptotic in

the sense of >0. It should be noted that the term "asymptotic" in

the theory of oscillations is frequently used also in the sense of /xâ€”> oo,

in which case the mathematical approach is entirely different, as will be

seen in Part IV.

2. Successive approximations for the autonomous systems

We consider a nearly linear d.e. of the form

x + w2x = hf(x,x) (2.1)

If fi = 0, one has the d.e. of the harmonic oscillator whose solution is

x = a cos ip; ip = wt + 6 (2.2)

1 N. N. Bogoliubov and J. A. Mitropolsky, Asymptotic Methods in the Theory of

Nonlinear Oscillations (in Russian), Moscow, 1958.
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The amplitude a is constant and the total phase i/p = wt + 6 increases

monotonically with t. The term pf(x,x) perturbs this simple situation

as we saw previously. Physically that means that the fact that ^ =^ 0

accounts for certain absorptions and generations of energy which did not

exist when /* = 0.

On a purely formal basis, which will be justified later, one can assume

that for n / 0 (but small), we have a relation

where Â«<2),. . ., are certain periodic functions of ip with period 2tt.

As to a and i/j themselves, we shall try to determine them from the equa-

tions

The problem is to determine the functions Â«'>), A^, and in such a

manner that their substitution into (2.1) satisfies this d.e. with prescribed

accuracy. As far as the procedure is concerned, we shall encounter

again a recursive system as in the method of Poincare, but the approach is

different. In fact, the aim of the method is to determine certain periodic

functions uw(a,<fp) which give the solution (2.3) under the conditions (2.4).

These conditions have the form of d.e. in which there is only one dependent

variable a (and not 0). We shall omit for the moment the question of the

physical significance of these assumptions; it will be clearer in the following

chapter concerning the application of the same method to nonautonomous

systems.

In the first place one must note that there is a certain arbitrariness in

selecting the functions u<'\ Suppose that one starts with some arbitrary

functions a^a), a2(a),. . ., P^a), P2(a),..., respectively, for A^ and and

replaces in (2.3) and (2.4) a and <p by expressions

a = b + fia^b) + /*2a2(6) + . . .; ip = <p + hfi^b) + ^P2(b) + ...

One obtains then, instead of (2.3), similar equations but with different

coefficients. It is clear that one has to impose some additional conditions

in order to remove this arbitrariness at the start.

As one such condition one could require, for instance, that there be no

first harmonic in u'(a,ifi); to some extent this is an intuitive approach by

which one wishes to have the solution in the form of a Fourier series.

This assumption results in the conditions

rl* Pin

u^a.<p) cos ipdip = 0; u<,')(a,0) sin <pdip = 0, i = 1, 2,. . . (2.5)

x = a cos ip + fiuw(a,<p) + fihi^\a,ip) + . . .

(2.3)

d = pA<-x\a) +ji2AV\a) + ...

if; = w + fiB^\a) + ^B^ia) + ...

(2.4)
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ASYMPTOTIC METHODS 331

In the following calculations we designate the partial differentiations by

subscripts; thus ua(1) = 8u^/da, etc.; we use dots for differentiations with

respect to /; that is, d = dajdt, etc. One has thus

X = d[cos </< + /Xua(1) + fi2Â«a(â€¢) + . . .]

+ t[-asinip + fiujÂ» + phiâ„¢ + . . .]

x = fl[cos ip + /*ua(1) + ixhiW + . . .]

+ $[-a sin <p + puâ„¢ + /x2m/2) + . ..]

+ dK(I) + /*2mJ2) + . . .]

+ 2a^[-sin^ + + M2maÂ«(2) + . . .]

+ cos iA + iwâ€žm + fi.*uâ€žâ„¢ + ...] (2.6)

From (2.4) one obtains also expressions

a = (^.(w + n*Aaâ„¢ + .. .)(jxAW + ,*M<2) + ...)

$ = (pBmm + ^Baâ„¢ + .. .)frAW + n*AW + ...)

= p*AWBaw + n3 ...

and likewise from (2.4) for d2, dif>, and i/j2.

Substituting these various expressions into (2.6) and then x, x into the

left-hand side of (2.1), it becomes

x + w2x = n[-2<oAWsin<f> - 2<oaJ3<1) cos ^ + cohi^W + aV1)]

+ p*[(AmAW - aBW - 2a>aBW) cos <p

- (2a>Aâ„¢ + 2AWBM + AWB,fÂ»a) sin ip + 2a>,4<1)ua/1)

+ 2ofia)â€ž^(1) + + ^<*i] + ^ j + _. (2.8)

As to the right side of (2.1), it is:

pxf(x,x) = /i/(a cos <p, - aw sin 0) + /*2[Â«(1)/x(a cos ^, â€” a<o sin <f>)

+ (AW cos - aBW sin ^> + <ou/1))

x f^a cos <p, â€”aa> sin ^)] + /x8[ ] + . .. (2.9)
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332 QUANTITATIVE METHODS

If one equates the like powers of /x on both sides, one obtains a recursive

system

w\uâ€žâ„¢ + u<1)) =/(0)(tf,</0 + 2a>A<Â» sin./- + IohiBwoos^

a>2K/2) + m(2)) = P\a,<f>) + 2wA^ sin <f> + 2a>aB<2) cos 0

(Z.1U)

">2(w^(m) + Â«(m)) = /(m_1)(a.^) + 2<oj4<m) sin ^ + 2waB^m) cos ^

where

f-0)(a,ip) = /(acos<p, â€”acDs'mip)

fw(a,ip) = uWfx(a cos ip, -awsinip) + [^(^cos^ -aB^smip + arti/1)]

x fi(a cos 0, -aw sin ip) + (aBâ„¢2 - A^Aâ„¢) cos l/-

+ (^WflW + AWBW-a)sin<f> - 2wAâ„¢uatâ„¢

-2<oB<%/*) (2.11)

It is clear that/<*)(a,^>) is a periodic function of i/p with period 27r depending

also on the amplitude a; its explicit expression is determined as soon as

one determines AU)(a), BU)(a), Â«(,)(a,^) to the kth order.

Consider first the functions /(0)(a,</<) and u^\a,ip); their Fourier develop-

ments are

00

/(o>(Â«></0 = g0(a) + ^ [gn(a) cos n<f> + hn(a) sin /Â«/-]

(2.12)

00

Â«(1)(a,</<) = v0(a) + ^ [^nC0) cos "0 + ^fiC0) sm "0]

n = l

Substituting these values into the first equation (2.10), one has

o>27;0(a) + ^ â€” n2)[wâ€ž(a) cos n</f + K>â€ž(a) sin w</<]

n = x

= Â£o(Â«) + + 2<oa5<1)] cos ./r + [h^a) + 2wA<Â»] sin </r

CO

h = 2

Equating coefficients of harmonics of the same order, one has

gx(a) + 2waB^ = 0; h^a) + 2wA^ = 0; v0(a) =

oj
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One has thus Aw(a), B<J)(a) and all harmonics of the development of

Â«(1)(a,^>i) except the first two: v^a) and tv^a). However, in view of the

requirement that none of m(,)(a,^) should have a fundamental harmonic,

one has: v^a) = 0; w^a) = 0, so that

n â€” 2

Since uw(a,ip), Am(a), and 5(1)(a) are determined, one knows also

fw(a,ip); its Fourier development is

fwM = *â€ž<Â»(Â«) + f [&,<Â«(Â«) cos + Aâ€ž<Â»(Â«) sin #]

71= 1

Using the second equation (2.10) and conditions (2.5), one has also

^1<1)(a) + 2waBW = 0; + 2wAâ„¢ = 0;

â€ž (a0) = iÂ£M + 1 f gâ€ž(1)(fl)cos^ + Ana)(a) sinner (2-15)

tn2 <o2 n^2 1 â€” w2

The determination of the approximations of higher orders is thus suf-

ficiently clear.

Summing up, the conditions (2.5) eliminate the fundamental harmonic

in the functions Â«(,)(a,0) and this, in turn, guarantees the absence of secular

terms in all successive approximations.

This new derivation due to N. Bogoliubov represents a considerable

improvement as compared to the early K.B. derivation in which the first

approximation was established by a direct argument and the higher-order

approximations were introduced owing to an additional procedure resemb-

ling the Lindstedt method. Here all subsequent approximations develop

recursively from a sequence of equations (2.10) obtained directly.

The apparent complexity of these calculations results from somewhat

complicated substitution of the series development and subsequent

differentiations but, once all this is completed, the rest amounts merely to

the discussion of the first, and possibly, the second approximation and

these are the only cases which are encountered in applied problems.

3. Differential equations of the first approximation

Consider the first approximation

x = a cos if> + im^x\a,^i) (3.1)

d = <J> = w + pB^a) (3.2)
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Let Aw and 2?(1) be average values of Aw(a) and Bw(a) in an interval

(0,0, that is:

Aa = a(t) - a(0) ~ fitAâ„¢; Aty - wt) = [0(r) - wt] - ^(0) ~ ptBâ„¢

It is seen that the time t during which a and ip = wt may acquire finite

changes is of the order 1//x. On the other hand, the d.e. (3.2) of the first

approximation results from neglecting terms with px2 (in equation 2.4).

An error of this order in d and </> during / results in the error of order (iH

in the functions a and Hence, in the interval during which a and ip

undergo finite changes, errors in these quantities are of the order fi. Thus

there is no necessity for keeping the term pxuw(a,ip) in (3,1) inasmuch as the

error of using x = a cos ip is of the same order. It is simpler to take

x = a cos ip.

For the stationary state d = 0, that is, pAn\a) + fi2A^(a) + . . . = 0;

hence, if one neglects terms beginning with /x2, the condition of the

stationary state is

Clearly the error in determining the stationary amplitude a = a0 is of the

first order of smallness.

Summing up, for the first approximation one takes x = a cos i/pj , where

a and ip are given by d = /x^4(1)(a); <Jj = w + fiBw(a). In a similar

manner, for the second approximation one has x = a cos ip + pxu^\a,ip),

where a and i/j are given by the d.e.

d = nAW(a) + ii*A*\a)\ ^ = w + pj?d)(Â«) + /x2J3<*)(a) (3.4)

A<x\a) = 0

(3.3)

From the general formulas of the preceding section, one has

f(a cos ip, â€” aw sin ^>) sin <pdi/j

(3.5)

BW(a) =

1

f(a cos ip,

â€” aw sin ^>) cos ipdip

tmaw

o

uW(a,<f,) =

go(a)

gâ€ž(a) cos nip + hâ€ž(a) sin n<f>

(3.6)

where

(3.7)
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and analogous formulas for Aw(a) and B(2)(a) which follow from the

preceding section.

We return to a more detailed study of equations of the first approxima-

tion:

x = acos</r; a = fiAW(a); $ = w + fiBw(a) = w^a) (3.8)

with expressions (3.5) for Aw and this yields

u f2"

pAw(a) = â€” ^â€” /(a cos </<, â€” aa> sin ip) sin ^<f</r

Z7rCU Jo

a f2"

w^a) = a> â€” = /(acosip, â€” aw s'm <p) cos ipdip

Lnaw J0

(3.9)

It is to be noted that this form of equation of the first approximation was

obtained earlier by van der Pol by using the solution of the form x =

M cos t + N cos t and by substituting this solution into the nearly linear

d.e. Here it appears as the first approximation in the general method of

the preceding section.

If one squares the second equation (3.9) and neglects the term with /x2,

one has

1 f2"

^i2^) = â€” I [a>2acos^> â€” pf(a cos i//>, â€” aw sin i/j)] cos <pd<p (3.10)

na Jo

Setting: F(x,x) = w2x â€” fif(x,x), (3.10) can be written as

1 f2"

u\%a) = â€” F(a cos ip, â€” aw sin ip) cos ipdi/> (3.11)

na Jo

f2"

Since I w2a cos <p sin ipdip = 0, one can also write

Jo

i r2'

AW(a) = â€” F(a cos./., â€” aw sin ip) sin ipdip (3.12)

J.nW Jo

Equations (3.11) and (3.12) give w^a) and Am(a) in terms of F(x,x)

avoiding somewhat unsymmetrical formulas (3.9).

The preceding theory of the first approximation follows from the general

theory. It is possible, however, to derive the d.e. of the first approxima-

tion in a different way as was done originally (1937) by Krylov and

Bogoliubov. In fact, suppose we start with the solution x = a cos ip,

where a = a(t) and i/p â€” wt + 6(t) and impose the condition that x should

have the form: * = â€” aw sin ip. Proceeding as previously we have

x = d cos ip â€” ad sin i/j â€” aw sin ip (3.13)
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In view of the form which we wish to have for x = â€” aoo sin ip, one has an

additional condition

d cos i/> â€” aB sin ^ = 0 (3-14)

If one differentiates now x = â€”aw sin ip, considering a and 6 as variables,

x = â€”dats'mip â€” aw6cosip â€” aw2 cos i/p (3.15)

If one substitutes x\ x, and x into the nearly linear d.e., one gets

â€” wa sin </r â€” aw6 cos ip = fif(a cos <p, â€”aco sin ip) (3.16)

The system (3.14) and (3.16) can be solved for d and 8 and one has

d = f(a cos <p, â€”aw sin </r) sin ^

CD

(3.17)

8 = â€” â€” /(a cos ^, â€” aw sin i/p) cos

As d and # are small in view of the small factor p., a and 6 are slowly varying

functions of time.

The right-hand side of (3.17) can be represented by trigonometric series:

â€”â€”f(a cos ip, â€” aw sin </<) sin i/i

CO

= M 2 L/*i(1)(*) cos H + /â€ž(Â«(Â«) sin ty]

u %" (3-18) /(a cos â€” aa> sin <f>) cos ^

AO>

= M 2 t/*i(2)(Â«) cos + /â€ž<Â»(Â«) sin fafl

We can consider a and 0 as consisting of slowly varying components and of

small rapidly oscillating terms; call the first a and B and assume in the first

approximation a = d, 6 = B; hence $ = wt + 8. Then:

& - â€”â€”/(a cos â€” aa> sin $) sin $

to

= /Â» 2 L/*i(1)(a) cos AÂ£ + /â€ž<Â«(Â«) sin *fl

(3-19)

B = â€” 4â€” /(a cos 0, â€” aa> sin >Jj) cos $

a<o"

= M 2 [/*i<2)(Â«) cos ^ + /"(2)(Â«") sin

A = 0
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otherwise

i = Ai/oi(1)(a) + small rapidly oscillating terms

v = (*foiW(a) + small rapidly oscillating terms

On physical grounds one can assume that the slow process is not influenced

by small rapid oscillations, and we can consider the d.e. without these rapid

oscillations.

In fact, carrying out the averaging and introducing ip, one obtains

w f2"

a = â€” /(acosip, â€” aa> sin ip) sin ipdip

2.TTio Jo

(3-21)

ifi = w â€” = f(a cos ip, â€” aa> sin 1/1) cos ipdip

lnaoj Jo

These are the d.e. of the first approximation in the form in which they

were originally obtained by Krylov and Bogoliubov and in which they are

generally used in applications.

One can improve the accuracy of the first approximation by taking into

account the small oscillating terms just mentioned. These terms are

/x/A1(,)(d) cos kifi and /a/*2<f)(a) sin k$. This results in more accurate

values for a and 6, viz.:

a = & + /* I % [/*1(1)(Â«) sin H + /*2(1)(Â«) cos kfi

(3-22)

6 = 9 + /* I % ^ + /*2(2)(Â«) cos kfi

This may be regarded as an improved first approximation. Of one sub-

stitutes these expressions into the formulas of the first approximation:

x = a cos ip\ x = â€”aw sin ip

one obtains the explicit form of the first approximation

x = a cos i// > + puWfaip)

For the second approximation determining a and 6 with the accuracy of

the order /x2 (inclusive), one has to replace (3.22) into the right-hand side

of the d.e. and average out with respect to time appearing explicitly.

One can apply this method to conservative systems (for example, friction-

less pendulum) of the form: mx + p(x) = 0, where p(x) is a nearly linear

function of the form

p(x) = kx + ix0(x)

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 1

9
:3

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



338

QUANTITATIVE METHODS

Using the preceding notations, we have w2 â€” kjm; f(x,x) = â€” ^>(x)lm

and, for the first approximation, one has to expand <P(a cos ip) into a

Fourier series which has here only cosine terms, that is

CO

0(a cos ip) = ^ CJ.a) cos n<f>

n = 0

From the general formula one has

gn(a) = -Cn(a)lm; hn(a) = 0

and

AW(a) = 0; B^(a) = ^ Cx(a)

One has for the first approximation: xx = a cos </>

This shows that a = a0 = const and ^ = a>1(a0)f + 0.

In the first approximation, the oscillation is still harmonic but the non-

linearity is felt in that now that frequency depends on the amplitude. For

approximations of higher order, harmonics appear and the dependence

of frequency on the amplitude becomes more complicated. We shall not

go into a detailed investigation of this case but refer to the treatise of

Bogoliubov and Mitropolsky where the reader can find numerous examples

of these calculations.

4. Nonlinear damping

We consider a d.e. of the form

mx + kx = ixF(x) (4.1)

where F(x) may be regarded as characterizing a nonlinear friction term.

We have to use the general formulas of Section 2.

In the first place we have

- F(-aw sin </-) = Â£ Fâ€ž(am) cos n\<p +

Comparing this with the general form of expansions

CO

/<Â°)(a,</r) = g0(a) + ^ [gn(a) cos n<f > + hâ€ž(a) sin nip]

CO

Â«(1)(a,</<) = v0(a) + ^ [vn(a) cos # + H>n(<0 sin nip]

(4.2)
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one has:

gJLa) = FJLaw) cos (mr/2); hâ€ž(a) = - FJaa) sin (mr/2) (4.3)

whence

i4(Â«(a) = l-FAaw); = 0 (4.4)

Z<U

Taking into account relations, # = acos^; d = /x^4(1)(a); <Ji = a> +

fi.B<x\a), we have the first approximation:

x â€” a cos </i; d = ~- F^aw); <jj = w; w = Vk/m (4.5)

It is seen that the frequency remains the same as in the linear case but the

amplitude decreases.

For the second approximation one has

n = 0

Moreover, for ^4(2)(a) and 5(2)(a) one has the following expressions

(omitting some intermediate calculations)

AW(a) = 0;

1' 8w3a da 4a>3a2 2a>3a2 â€ž42 n2 - 1

The second approximation has then the form

p. Fâ€ž(aw) cos n(</' + 7r/2) _

* = a cos </r - â€”2 > â€”â€”'â€”-â€” â€” (4.7)

n = 0

d = nF^awyiw; $ = <o + ^25<2)(a) (4.8)

Thus, for instance, for x + Xx + <o2x = 0, A < 2w one has F(x) = â€”foe;

A = ixk; F(x) = -kx; F^aw) = â€”kwa; Fn(aw) = 0 so that the second

approximation is

x = a cos <p; d = â€”Aa/2; ^ = <o^l â€” g |â€”j j

For the amplitude this approximation gives the exact value a = aâ€že_A'/2

and for the frequency it gives a correction corresponding to two first

terms of the expansion of the exact formula (which is known here)
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which is to be expected since we do not take here any terms beyond the

second order.

Consider a d.e. of the form:

x Â± ax2 + w2x = 0; a = fik (4.9)

where the sign plus must be taken for x > 0, and minus for x < 0. In this

case F(x) = â€” kx\x\. As previously one has to find nth term in the ex-

pansion F(a cos i/j) which yields relations

F0(a) = F2(a) = . . . = F2g(a) = 0 q = 0, 1, 2,. ..

_8ka2 F , >_ Ska^-iy+x

fxW - ^ - ^ - 1)[(2? - 1)2 _ 4]

The second approximation is

8aa2 y sin (2q + 1)0

x _ a cos 0 - â€”- 2 (2? + 1)[(2j + 1)2 _ 1][(2? + 1)2 _ 4]

, aa2 I . . . 1 . , \

= a cos 0 â€” jj- I sin 30 + sin 50 4- . . .1

with a and 0 given by

a = â€”â€” a2; 0 = w 1 r- C (4.10)

.57r 7r'

and

c =8 2 [(2? + i). - ipj + i). - 4]Â» = 00407

Integrating the first equation (4.10), one gets

1 1 4aa>

whence

3.'

Â« = 7Tâ€”r (4-1J)

is the law for the decay of the amplitude on the basis of the first approxima-

tion theory.

If one substitutes (4.11) into the second equation (4.10), one obtains

1

0 = wt - ZCaaÂ°

7r

1 -

, 4oÂ£Cl>fln

1 +

37r

+ 0â€ž (4-12)

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 1

9
:3

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



ASYMPTOTIC METHODS

341

The d.e. can be reduced to a quadrature which cannot be integrated in a

closed form, although it is still possible to derive the law for the decay of

amplitudes. In this manner one can verify the accuracy of the asymptotic

method by comparison with the data derived from the exact theory.

This applies also to all cases in which the exact integration is known, as,

for instance, for the d.e. of the pendulum in the general form

Â»i* + |sinx = 0 (4.13)

Readers interested in the quantitative results will find a number of

tables in the Bogoliubov-Mitropolsky treatise giving a comparison between

the results of exact methods and those obtained on the basis of the asymp-

totic theory for the first and the second approximations. In the case of the

d.e. (4.9) and for 4aa0 = 1, the difference between the exact values of

decreasing amplitudes and those obtained by the theory of the first

approximation is only of the order of 1%; for 4aa0 = 0.1, it is of the order

of 0.4%. For the second approximation, the error is considerably less.

Although this result is to be expected on theoretical grounds, it is still

more persuasive when the comparative results are presented in a form of

tables which thus permits a better appreciation of the method in cases

when no explicit integration is possible as in the example of the following

section.

5. Self-excited systems

Consider the nearly linear d.e. (2.1) in the form

x + w2x = pf(x)x (5-1)

In order to bring this d.e. within the scope of the general method, we can

start with the d.e.

my + ky = (iF(y) (5.2)

with x = y and a differentiation having set y = x. One then obtains

mx + kx = fiF'(x)x (5.3)

(where F = (dldy)F), that is, of the form (5.1).

It is necessary to consider the Fourier expansion of f(a cos ip)aw sin ip;

ip = tot + 6. Define F*(x) = j* f(x)dx and consider its development

00

F*(a cos <f>) = 2 Fn*(a) cos n<f> (5.4)

n = 0
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Comparing with (4.4), one gets

AW(a) = Â±FS(a), B<Â»(a) = 0 (5.5)

Hence, in the first approximation,

x - acosip; a = ^Fx*(a); if> = oj (5.6)

For the second approximation, one has

fi Â£ nFâ€ž*(a) sin ip

n = 2

where a and ip are determined by the d.e.

d = Â£ Fx*(a); ^ = a> + /xÂ«fi(Â«(a) (5.8)

and

In the case of the van der Pol equation

x â€” ^i(1 â€” x2)x + x = 0

f(x) = 1 â€” x2; F*(x) = x - *3/3 which gives

/ a2\ a3

F*(a cos <fi) = al 1 â€” y I cos ^ - cos

We have thus:

FS(a) = a(l - F3* = -g; Fn*(a) = 0 for n / 1, # 3

For the first approximation one has:

x = a cos a = ^1 â€” ^-j; ifj = w (5.10)

The d.e. for d is integrated by a quadrature if one multiplies both sides by

a. Omitting this calculation, one has

a = a0 exp (^/ia>r)/Vl + ia02(exp (/xa>r) - 1) (5.11)

For r â€”> oo, a â€”> a0 = 2, so that in the first approximation

x = 2cos(r + 0) (5.12)
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For the second approximation, one has

x = a cos ip - sm 30 (5.13)

where a and xp are given by the d.e.

-^('-T> + ,5.4,

Hence, if one uses the result of the first approximation a = a0 = 2, the

second approximation yields

x = 2 cos (a>r + 0) - ^ sin 3(wr + 6); a> = 1 - ^ (5.15)

6. Stationary amplitudes and their stability

In the preceding section we always encountered the amplitude equa-

tion in the form

d = 0(a) (6.1)

where 0(a) = fiAW(a) - fi2A^(a) + ...

This d.e., at least theoretically, is reduced to quadratures, but integrations

may be still difficult in certain cases and it is useful to investigate the

properties of functions 0(a) with a view to determining their real roots.

If 0(a) > 0, this means that no stationary state exists. From a physical

point of view the amplitude a cannot grow indefinitely, but this generally

means that the form of the d.e. changes for large a, as we mentioned in

Section 10, Chapter 3.

The interesting cases are associated with positive roots a = a0. It is

clear that the stability of the stationary amplitude is given by

0a(a*) < 0 (6.2)

which means that the derivative of 0(a) with respect to a must be negative

for a = a*, a* being the stationary value of a, in general, and a0, ax,. . .

used below are stationary values of particular amplitudes.

This result is obtained from the variational equation; it is sufficient to

replace a by a0 + Sa in (6.1) which gives the condition (6.2).

In order to investigate the condition of the state of rest, we set a0 ~ 0

and use:

0a(O) > 0 (6.3)

which is obviously the condition of self-excitation. The conditions (6.2)

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 1

9
:3

8
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



344

QUANTITATIVE METHODS

and (6.3) considered together give rise to a usual topological configuration

(Chapter 1) which consists in instability of the state of rest and in stability

of the periodic motion.

If fi is sufficiently small, it is clear that the first approximation dominates

the rest to such an extent that the addition of higher approximation terms

does not modify the qualitative character of solutions but merely modifies

*(<7)

Figure 14.1

its quantitative nature slightly, assuming that there are no critical thresh-

olds in the neighborhood of these solutions.-]-

One can represent these relations graphically in the (a,0) plane, Fig. 14.1.

Thus for instance if 0(a) has a stable root, a = av 0a(a) < 0, the ampli-

tude a returns to this root ax if disturbed; if the root is unstable, the

opposite effect takes place. Figure 14.1 shows the curve 0(a) plotted

against a. The roots of 0(a) are the

points where 0(a) cuts the abscissa

axis. The condition of stability

0a(a) < 0 is clearly: tan a < 0, where

a is the angle between the tangent to

0(a) and the a axis. For the curve

0(a) shown, the point a = ax is ob-

viously stable, whereas a2 and O are

unstable. This means that the oscilla-

tion with amplitude a = ax is able

to maintain itself while a0 and at are

unstable.

The theory of approximations gives thus the same result which has

previously been analyzed topologically (Chapter 3), viz.: an unstable

singular point O is surrounded by an stable limit cycle a = ax, which, in

turn, is surrounded by a unstable cycle a = a2 (Fig. 14.2); in other words

t This corresponds to what we have called "noncritical structure" (Section 9,

Chapter 7).

Unstable

Stable

Figure 14.2
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the configuration is USU, Chapter 7. One can, likewise, ascertain a

similar situation in the case of other polycyclic configurations. One can

also take, on the axis of the ordinates, the ratio Fig. 14.3 shows a

polycyclic configuration consisting of stable cycles av a3,. . ., with the

intermediate unstable cycles a2, ai,. . ., the origin O being an unstable

singularity.

The theory of approximations permits a quantitative analysis of such

situations. In fact, the exact form of the function 0(a) is

$(a) = fiAW(a) + /xM<2)(a) + . . . + ^A^\a) (6.4)

hence, the stationary amplitude a = a* is given by the expression

Aâ„¢(a*) + pAW(a*) + ... + /x-MWfo*) = 0 (6.5)

Â«(o)/o

a

Figure 14.3

this equation can be solved by approximations assuming

a* = Â«<â€¢' + fia^ + n2a<v + ... (6.6)

where a(0) is the root of Aw(a) = 0. In applications very often this is

sufficient when the accuracy of calculation of the amplitude is less im-

portant than the knowledge that it exists and when one is satisfied with the

value of its fundamental harmonic. The solution is then merely a = a(0)

and the limit cycles are circles with the radii corresponding to these values

of a. If it is desired to have the amplitude with a greater approximation,

one calculates the next term a(1) in (6.6), which is

a(1) = -AV\a0*)/AW\a0*) (6.7)

where AW(a0*) is the derivative of Aw(a) with respect to a at the point

a = a0*, and so on.
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Likewise the stability or instability of a stationary state (a = a*) is

determined by the condition

Here we come across a situation mentioned in connection with the fixed

point theorem (Section 6, Chapter 3), namely: if u- is sufficiently small and

the system is far from critical thresholds (that is, is structurally stable), the

stability of the first approximation decides the question, provided A<iy(a*)

is sufficiently great. If this quantity is very small or zero, the determina-

tion of stability depends on the next term Aw\a*) and, again, it is to be

assumed that |^4(2)'(a*)| is sufficiently great to be able to neglect the rest of

the series.

One can also apply the conclusions of the bifurcation theory (Chapter 7)

to these subsequent approximations. We can assume, for instance that the

d.e. contains a parameter A; this parameter is different from the parameter

p associated with the nonlinear function f(x,x). If A is varied, the solution

varies as we have investigated previously (in Chapter 2 in the discussion of

conservative systems and in Chapter 7 in connection with more general

forms of d.e.).

The preceding conclusions are to be modified in that, instead of #(a),

we have now <P(a; A).

We consider, for example, the state of rest (a = 0). The stability of the

state of rest, as we saw, is given by <Pa(0,X) < 0. Assume that for small

values of A we have this condition but for larger values (say A > A0) we

have 0a(0,A) > 0. Clearly A = A0 is the bifurcation value of the parameter

for which the stability of the state of rest is changed and becomes instability

for A > A0. In Chapter 7 we encountered similar situations. If this

passage through A = A0 value of the parameter corresponds to a continuous

variation of a beginning with a = 0, this is obviously the case of a soft

self-excitation; if this passage of A through A = A0 is accompanied by a

jump in the amplitude a, this is a hard self-excitation, using the terms

defined in Chapter 3.

A graphical construction of the type just mentioned permits exploring

further these bifurcation phenomena. It is interesting to note that such

constructions have been used by engineers on a more or less intuitive basis,

long before the advent of the modern theory of oscillations.

Let us assume that the function 0(a,X) appearing in the amplitude d.e.

A<Â»\a*) + pxAW(a*) + ... + ^"-Mn'(a*) % 0

(6.8)

d = $(a,\)

(6.9)

has the form

(6.10)
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where ^(a,A) is some positive function and 0(a) does not depend on A.

The amplitude a is stationary if 0(a,A) = 0; this requires that the curve

yx = 0(a) and the straight line y2 = a/A have a point of intersection.

Referring to Fig. 14.4 the curve yx

has the form shown; its slope at the

origin is maximum and decreases with

a. As to the straight line y2 its slope

for small A is greater than f 0 so that yx

and y2 have no point of intersection

and, thus, no stationary state: 0(a,A)

= 0 is possible. When the parameter

A reaches the bifurcation value A = A0

for which the slope of y2 becomes

equal to f 0, the system is at the limit of

self-excitation; for A > A0 there will be

a point of intersection M of yx and y2 o

corresponding to that particular value Figure 14.4

of A. For this point the stationary

amplitude is Om. This case corresponds to the soft self-excitation since

the stationary amplitude a starts from zero and increases smoothly with A.

Figure 14.5 shows the case of a hard self-excitation. The difference with

â– a

Figure 14.5

the preceding case is that the curve yx has now an inflexion point at M0.

If one repeats the preceding argument concerning the clockwise rotation of

the straight line yt with the increasing A, one finds that the contact between
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yx and y2 occurs only at M2 to which corresponds a finite amplitude Oa2;

the self-excitation thus starts abruptly with an amplitude Oa2 and increases

thereafter monotonically with A as in the previously considered case of the

soft self-excitation. The portion OM0M2 of the curve yl is unstable and in

this range the oscillation cannot exist because, for any point of this range,

the slope of yx is greater than that of y2 (see Chapter 7).

If one plots a as a function of A, the situation (characterizing a hard

self-excitation) appears as shown in Fig. 14.6: for increasing A the ampli-

tude follows the path OAyA^A^ if A begins to decrease, the path will be

I I Â±= b .

o' o â€”*" X, X

Figure 14.6

A3A2AtO. This is the phenomenon of the "oscillation hysteresis" which

we have investigated in Chapter 7 by a different method.

7. Equivalent linearization

In applied problems equations of the first approximation play generally

an important role inasmuch as the qualitative aspect of a given problem

appears already in the first approximation, as was mentioned in the

Introduction to Part II.

Krylov and Bogoliubov have indicated a method, the method of equivalent

linearization, in which a given nearly linear d.e. can be replaced by an

equivalent linear d.e. with the property that the solutions of the two equa-

tions can be made to differ from each other by an error of the order /*2.

Although it may seem that nothing of special interest can be gained by
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this method, inasmuch as a nearly linear d.e. can be solved directly by

approximations with any accuracy, there are cases when the method is

valuable. This happens, for instance, in the theory of modern control

systems where certain linear loops are interlinked with nonlinear (generally

nearly linear) ones. If one applies to the nonlinear loops of the system

the method of equivalent linearization, one can treat the whole system as

linear, which simplifies the problem.

Consider, for instance, one of these nearly linear loops of the form

mx + kx = /jf(x,x) (7.1)

where m and k are positive constants.

If one follows the theory of the first approximation, one starts with a

solution of the form

x = a cos <f> (7.2)

where a and ip are given by the d.e. of the first approximation:

u. r2'

a =â€” f(a cos <p, â€” a<o sin ^r) sin <pdip (7.3)

Zttwm Jo

</> = <oÂ«(Â«)

where

ix r2n

<oe2(a) = a>2 ffacosip, â€” a<o sin <f>) cos ipdip (7.4)

tma j0

<o = VA/m being the linear frequency (for n = 0).

It is recalled that the solution x = a cos ip is the fundamental harmonic

of the true nonlinear series solution

x = a cos ip + iMw(ajli) + ixhiw(aj]i) + . . .

which can be calculated by approximations as was shown previously.

We define the following functions

a r2*

Xe(a) = f(a cos iff, â€” a<o sin <Ji) sin ipthp

na<o Jo

u r

ke(a) = k f(a cos ip, â€” a<o sin ip) cos ipdip

Jo

The equations of the first approximation become then

d = Â°; ^ oM With w42(a) = kMlm (7-6)

Equations (7.5) define the so-called linearized parameters Xe(a) and ke(a).
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In order to see that the linearized d.e. (7.6) have a solution differing

from the solution of the nonlinear d.e. by a rest 0(^2), we differentiate

(7.2) taking into account (7.3); this gives

x = â€” awe(a) sin <lp â€” a cos (7.7)

and, differentiating once more:

% i ^(a) , \ . i AÂ«2(a) I

* = â€” a<oe2(a) cos + -^-i <ia>((a) sin </< + ^2 a cos <//

A.(a) â€ž </a>.(a) . . dXJa) a Aia) â–  G.

This can be written also (taking into account x = a cos i/p and also (7.7) as

m m 4Â»i2

2m rfa T 2m da 2m

Substituting this value into (7.1) and in view of (7.5), one has

mx + Xe(a)x + ke(a)x = 0(^2) (7.10)

Thus, the first approximation of the nearly linear d.e. (7.1) satisfies also

the linear d.e. (7.10) with accuracy of the order fi2; this is precisely the

accuracy with which the first approximation determines the solution of the

nearly linear equation.

From this point of view the first approximation of the nearly linear d.e.

(7.1) and the linearized d.e. (7.10) are equivalent.

It is seen that the process of linearization has introduced two parameters:

(1) Xe(a) which may be called the equivalent coefficient of damping, and (2)

ke(a), the equivalent coefficient of restoring force. It is noteworthy that

inasmuch as both Xe(a) and ke(a) are functions of the amplitude a, the direct

solution of the linearized equation is likely to be more complicated than

the original nearly linear d.e.

It is to be recalled, however, that the theory of oscillations is concerned

primarily with a stationary state. If so, the quantities Xe(a) and ke(a) are

constants defined by the relations

a r2n

Xe(a) = f(a cos ip, â€” a<o sin ip) sin ipdip

naw Jo

a f2"

ke(a) = f(a cos ip, â€” aw sin ip) cos ipdip

(7.11)

ita Jo
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of which the first is the same as the first equation (7.5) and the second

merely defines a corrective term by which the coefficient of the nonlinear

restoring force ke(a) differs from the corresponding coefficient k of the linear

case.

One can proceed now by a linear argument by defining the decrement

8e(a) and the frequency we(a) by the usual formulas

m = ^; = ^ (7.12)

The d.e. are now linear

a = -8e(a); $ = to (7.13)

and it is sufficient to replace 84(a) and <o by the above formulas and thus

obtain a solution with accuracy of

The procedure so far is purely formal and one may ask the question:

How could one guess that the new parameters (7.11) would produce such

an interesting result, namely, that the two d.e. happen to have the same

solution up to 0(n2)?

The authors of the method offer a justification to what may appear as a

"guess" in the solution of these equivalent parameters (7.11). There are

two different ways of justifying this initial "guess" on physical grounds:

(1) consideration of energy, and (2) consideration of the harmonic balance.

The two justifications of the "plausible guess" (7.11) are called: (1) the

principle of energy balance and (2) the principle of harmonic balance.

Strictly speaking if one is satisfied with a purely formal result (7.10)

there is no necessity for these physical "principles" but, if one wishes to

understand why A,(a) and ke(a) have been so defined, these principles throw

an interesting light on the procedure and permit having a deeper insight

into the general method of averaging which is at the very foundation of the

whole theory.

We consider first the principle of the energy balance, using the well

known fact in the theory of alternating currents where the power W â€” EI

is considered in terms of its components: the energy component, We = EI

cos <p, and the wattless component, WK = EI sin <p, <p being the phase

difference between the vectors E and / (one uses also the term "power

factor" referring to cos <p).

Consider first the energy balance. In the nearly linear d.e. the force

capable of producing a work is F = fxf(x,x); in the linearized equation

such a force is Fe = [â€”ke(a)x + Ae(a)x]. If we postulate that in both

cases the average power per cycle is the same, we can write

M !Tf(x,x)xdt = -\(a) C' x*dt (7.14)

Jo Jo
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since the average work per cycle produced by the restoring force â€” ke(a)x is

obviously zero.

On the basis of the first approximation: x = a cos t(wt + 0); x =

â€” aco sin (<or + 6), where a and 6 may be regarded as constant during the

time interval (0,T). Since w is the frequency, (T = 27r/a>), the expression

(7.14) becomes

/.2ir/eu

â€”fiw f[a cos (ot + 6), â€”aw sin (wt + 6)]a sin (cot + ff)dt

Jo

= -\(a)\ a2a>* sin* (a>t + 6)dt (7.15)

The right-hand term in this equation is: â€” \e(a)a2nw. Thus

f2"

Xe(a)TTwa2 = (ia f(a cos ip, â€”aw sin ifi) sin ipdip

Jo

and this is precisely the expression that defines Ae (equation (7.11)). In a

similar manner one can give a physical interpretation to the equivalent

term ke(a) in (7.11) if one makes use of the concept of the reactive power

which, as is recalled, is-

Pr = Â±j*E(t)i*(t)dt

where E(t) is the electromotive force and :* is the reactive component of

current: Â»*(r) = i(t â€” T/4-). We can use this concept also in a mechani-

cal case.

Since the average (active) power per cycle is

i j*F(t)x(t)dt

the corresponding reactive power is

Â± j* F(t)x(t - tydt (7.16)

We have to equate the average reactive powers corresponding to the

nonlinear force pf[x(t), x(t)] on one hand, and to the linearized force

ke(a)x(t) + \e(a)x(t) on the other. This gives

/* J jg /WO. *(0]*(* - jjdt

= - j[ [*e(Â«W0 + Ae(Â«)*(0]*(* - j)dt (7-17)
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It is clear that Ae(a) and ke(a) are of the same order. We can now use

again the data of the first approximation for x and x and obtain

M Jo ^X^' ~ jjdt = j f(a cos ^' ~aw sm <Wcos ^

It is sufficient to set: f[x(t), x(t)] = ke(a)x(t) + \e(a)x(t) to obtain

a f2"

ke(a) = â€” â€” f(a cos ip, â€” aco sin ^r) cos <pdip (7-18)

Jo

which is the second formula in (7.11).

The principle of the harmonic balance consists in equating the expression

F â€” J cos (<or + <p) (representing the fundamental harmonic) to the

equivalent linear force Fe = Je cos (cot + <pe) calculated by the foregoing

procedure. The identification of terms results in the relations of defini-

tion:

JÂ« = J, <Pe = <P

In fact, for a harmonic oscillation the equivalent linear force is

-ke(a)a cos (a>r + 6) + coXe(a)a sin (cot + 6) (7.19)

and the fundamental harmonic of the nonlinear force is

l^i j /( ) cos ipdip cos (cot + 6)

+ j2"f( ) sin </<# sin (wt + 6) (7.20)

where /( ) = f(a cos ip, â€”aw sin <p).

If one equates (7.19) and (7.20), one gets

ake(a) = -- f"/( )cos^#; a>\e(a)a = - f"/( ) sin 0# (7.21)

"â– Jo w Jo

which gives again the values (7.11) for Ae(a) and Ae(a).

The method of equivalent linearization requires a calculation of equiva-

lent parameters in the first place. Once this is done the d.e. can be treated

as a linear one.

Assume, for instance, that we wish to investigate the oscillation of a

weight suspended on a nonlinear spring specified by a relation

F=f(x)
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Then, for a harmonic oscillation x = a cos (wt + 9), the fundamental

harmonic of the "spring constant" is

cos (a>r + 0) f2"

- '/(a cos 9) cos <pa<p

if Jo

Hence, by the above principle of harmonic balance

1 C2"

ke(a) = â€” f(a cos 9) cos 9^9 (7.22)

w Jo

which gives the frequency of the linearized system

we(a) = Vke(a)lm

Since ke(a) = c + k(a), c being the linear spring constant [c > k(a)]> tn1s

gives the formula

valid in the first approximation (that is, error 0(/x2)).

If the system is acted on by a small nonlinear damping of the form

0 = <P(x) and the oscillation is not far from being harmonic, the funda-

mental harmonic of the damping action is

sin (wt + 6)

[2.

0( â€” aa> sin <p) sin <pd<p (7.24)

Jo

The principle of the harmonic balance introduces the equivalent linear

damping

= K(a)x (7.25)

where

If2"

Ae(a) = <P( â€” aw sin 9) sin <pd<p (7-26)

acoTT J0

With this value \(a) the original nonlinear system can be treated as a

linear one with decrement

*M = K(a)l2m (7.27)

As another example, consider an electron-tube circuit of a standard

(inductively coupled) type; if i is the current in the oscillating circuit and

/a the plate current, one has the well known d.e.

L7t + Ri + lSidt = Mlf (7"28)
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where L, R, and C are the constants of the oscillating circuit, and M is the

coefficient of mutual induction between the plate and the oscillating

circuit. The nonlinear element of the scheme is the electron-tube

characteristic

Ia=f(E)=f(E0 + e)

where E0 is a constant voltage and e is the oscillating grid voltage. If

e = a cos (wt + 6), the fundamental harmonic of Ia is

cos(wi + 6) C2"

/(^o + a cos <P) cos <P"<P

w Jo

One can thus replace the nonlinear relation by the equivalent linear

h = Se (7.29)

which defines the average transconductance S of the tube

1 f2"

S(a) = â€” f(E0 + a cos <p) cos <pd<p (7.30)

na Jo

One can write (7.28) as

Lt + Ri + \\idt = MSTt ^

If one neglects the anode reaction, the voltage on the grid is

idt

c J

This gives finally the d.e.

LCe + (RC - MS)e + e = 0 (7.32)

which can be treated as a linear d.e., that is:

1 RC - MS(a)

â„¢=VZd; S<(fl) = 2LC

It is seen that for a stationary state the oscillation establishes itself for

such a value of a = a0 for which the transconductance S(a0) = RCjM.

In this case the decrement vanishes and the system operates as a harmonic

oscillator, at least in the first approximation. In Chapter 9 we have seen

that in reality the mechanism of oscillation is more complicated due to the

presence of an infinite spectrum of even harmonics which are, however, so

small that the first approximation (in which they are neglected) is generally

sufficient if fi is sufficiently small.

The authors give a number of other applications of the method of

equivalent linearization. As previously mentioned, this method has been

used recently in connection with the theory of nonlinear control systems.
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Chapter 15

ASYMPTOTIC METHODS OF

KRYLOV-BOGOLIUBOV-MITROPOLSKY

Nonautonomous systems

1. Introductory remarks

Sections 2, 3, 4, 5 of this chapter relate to the application of the Krylov-

Bogoliubov methods to nonautonomous systems in the new version of

Bogoliubov and Mitropolsky,1 the last three sections present a brief review

of a recent monograph of Mitropolsky2 concerning nonstationary processes.

The material contained in these two references is so voluminous that it was

possible to abstract only a very small part concerning the salient points of

these methods. It was necessary to omit the greater part of the examples,

which constitute, perhaps, the most important part of this work for those

who are interested primarily in applications.

The essence of these methods is the same as that of the preceding chapter,

that is, the successive approximations are developed formally by a recursive

procedure for a fixed number m of terms, but for px->0; this permits

determining the accuracy of approximations to any desired degree 0(jim).

On the other hand, the question of convergence of expansions for m â€”> oo

is not considered.

The difference between the subject treated in the preceding chapter and

in this one is that for the nonautonomous systems there appears an

additional variable vt (dependence on t explicitly) which relates this

investigation to the rather difficult subject of nonlinear resonance. As

this subject is inherently welded, so to speak, with the asymptotic method,

1 N. Bogoliubov and J. Mitropolsky, Asymptotic Methods in the Theory of

Nonlinear Oscillations (in Russian), Moscow, 1958.

s J. Mitropolsky, Nonstationary Processes (in Russian), Ac. Nauk (USSR), 1955.
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we follow the exposition of the authors although the problem of resonance

per se is presented only in Chapter 19. This situation remains, however,

the same as in Chapter 10 where the consideration of resonance was also

inevitable if one follows the theory of Poincare in its application to the

nonautonomous systems.

The subject of the last three sections in this chapter follows the general

method of the preceding chapter but here appears another variable t, the

slow time, which complicates calculations still further; for that reason, it

was necessary to condense the presentation still more. Although these

exceedingly long calculations may appear somewhat disappointing to a

beginner, one must have in mind that, once they are completed, the matter

reduces merely to writing down the conditions for each particular case in

which one is interested.

In view of the presence of additional variables, the series expansions

appear here in the form of double Fourier series which are taken in the

exponential form. Aside of this, the general method of approach is

similar to that of the preceding chapter.

For the same reason as in Chapter 10 dealing with Poincare's method,

it is necessary to separate studies of nonresonance oscillations from those

taking place at resonance. In the latter case the phase angle (between

autoperiodic and heteroperiodic oscillations) appears as a new variable in

the series expansions which are more complicated for that reason.

As regards the last three sections of this chapter devoted to a brief

outline of Mitropolsky's extension of the asymptotic method, it was

impossible to go into a survey of their numerous applications which

constitute perhaps the most interesting part of this monograph. In fact

the existing methods are limited to the investigation of series solutions of

d.e. under the assumption of fixed parameters so that the behavior of the

system when the parameters vary may be quite different. In this way a

passage through a resonance zone may be quite different from the stationary

state of resonance and depends largely on the rate at which this passage is

effected. Thus, for instance, torsional oscillations in mechanical problems

appear differently in stationary and nonstationary (transient) states, and so

on. All this opens a new approach to certain applied problems and

requires supplementing the existing theory of nonlinear oscillations, built

on the concept of stationary periodic solutions, by extensions arising from

the variable parameters. At the same time these new extensions take

care also of different modulations on the same basis on which the earlier

theory deals with the periodic solutions. Owing to this a variety of new

problems, such as those dealing with phase or frequency modulations, are

merged into the general theory of asymptotic methods.
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2. Formulation of the problem

We consider now a nonautonomous nearly linear d.e. containing t

explicitly

x + w2x = ^f(vt, x, x) (2.1)

We suppose that the explicit dependence on time (term with vt) appears

in a periodic term (period 2tt) whose right-hand side is a trigonometric

polynomial:

f(vt,x,x) = f e'-%(x,x) (2.2)

n= -N

where each fâ€ž(x,x) is a polynomial in x and x.

Considered as representing a certain oscillator, (2.1) characterizes an

oscillator with unit mass, free frequency <o acted on by a small nonlinear

perturbation term /x/with the explicit (periodic) dependence on t through a

trigonometric term with argument vt.

If one proceeds with the general method outlined in the preceding

chapter, starting with the solution x = a cos (wt + <p) and x = â€” aw sin

x (wt + <p), one obtains ultimately terms containing sin (nv + muu)t and

cos (nv + moj)t, where n and m are integers. Such terms will appear also

in the expressions for m(1), Â«(2\. . ..

If one of these combination frequencies nv + mw happens to be close

enough to the free frequency <o of the system, one can expect that the

amplitude will grow just as in an ordinary (linear) resonance.

We reach thus a more or less obvious conclusion that the cumulative

effects (in which the amplitude grows) in nonlinear systems appear not

only when v = w (as in the linear systems) but also when nv + m<o = <o,

that is, when

v ~ <o (2.3)

q

where p and q are sufficiently small relatively prime integers.

We introduce the following classification:

(1) p = q = 1, that is, v ~ <o; this is the fundamental (or "ordinary")

resonance.

(2) q = 1; v ~ pw; this is the so-called subharmonic (or "the fractional

order," or a "demultiplication") resonance.

(3) p = 1; v = w/q; this is a superharmonic resonance which does not

present any particular interest in what follows.

The most interesting and important feature oi^ nonlinear systems is

the subharmonic resonance (2) to which we shall return in Chapter 19,

Part III.
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As the ratio p/q is any rational fraction and the resonances occur in the

neighborhood of plq, it may seem that they form an everywhere dense set.

In reality this is not so inasmuch as resonances arise only if p and q are

sufficiently small relatively prime integers and, besides this, there are

additional conditions to be fulfilled, which eliminate some of these cases,

as we shall see later. In Part III we shall go into a more detailed investiga-

tion of these conditions as the result of which it will appear that only in a

few special cases it was possible to establish completely the necessary and

sufficient conditions for a physical existence of a subharmonic resonance.

By the term "physical existence" we shall mean both the mathematical

existence of stationary amplitude and phase and their stability. For the

time being we shall be concerned mostly with the formal aspect of the

argument.

What is important at this stage is the fact that a relatively small per-

turbing force fif may, under certain conditions, account for a relatively

large effect as far as the increase of amplitude is concerned.

This plausible assumption permits approaching the problem in a more

definite manner. In fact, if a small force produces a finite effect, this

means that the work of this force per cycle is conserved (in the form of

energy) and is added to the work during the preceding cycles.

The expression for the virtual work in a harmonic condition: x0(t)

= a cos (<ot + <p) is obviously

where we assume that this work changes the amplitude (8a) as well as the

phase (89).

On the other hand, the "external force": pxf(vt, x0, x0), in which * and x

are replaced by their values *0 and x0, can be represented as a Fourier

series in terms of the "combination frequencies" A^,,, = nv + moo with a

view to calculating the virtual work:

In the process of averaging over a sufficiently long time it can be shown that

there will remain only relatively small combination frequencies Aâ€žm whose

"secular effect" on the cumulative process will be apparent under some

special conditions. This means that under the assumed pattern of the

formation of the cumulative effects, only such resonances are possible for

which 8W ~ 0.

There appear thus two separate cases: (1) nonresonance oscillation, and

(2) resonance oscillation. For the case (1), one has the condition

8#0 = cos (cot + <p)8a â€” a sin (<or + <p) . S<p

(2.4)

pf(vt, x0, x0)8x0 = 8W

(2.5)

nv + mco # w

(2.6)
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From the number theory, it follows that, given any irrational ratio v/<o,

one can always find such integers n and m that the expression

nv + (m - l)w (2.7)

can approach zero as closely as we please. As we do not wish that ex-

pression (2.6) should approach zero (otherwise we would be in the case of

resonance which we wish to avoid at present), it is necessary to have a

rational ratio plq and, moreover, to impose later an additional condition.

3. Successive approximations in nonresonance cases

The derivation of a recursive system of approximations follows a

method similar to that used for the autonomous systems in the preceding

chapter. However, certain differences will appear later.

If /x = 0, (2.1) has a harmonic solution, x = a cos i/j, and the amplitude

and phase d.e. are, respectively: d = 0; <ji = const.

If fi # 0, we look again for a solution of the form

x = a cos 0 + fiu<x\a, ip, vt) + /x2M<2)(a, <p, vt) + . . . (3.1)

The only difference with (2.3) of the preceding chapter is that the w(,)

depend now on vt and are periodic with period 27r with respect to both

angular variables.

The amplitude a and the phase ip are still given by (2.4) of the preceding

chapter, namely:

d = uA^Ha) + ixMCifa) + . ..

(3.2)

if, = w + nBW(a) + n2B^(a) + ...

The right-hand sides of these d.e. depend only on a as, in the absence of

resonance, there is no stationary relation between the phase of the external

periodic excitation and that of the oscillation. The situation will be

different, however, in the case of resonance when this phase relation

becomes stationary. Thus, for the nonresonance case the matter is still

similar to that discussed in Section 2 of the preceding chapter, with the

exception that the functions m(,) depend now on vt in addition to: a and ip.

The fundamental requirement (2.5) of the preceding chapter remains the

same as before; this guarantees the absence of "small divisors" in the

functions m(,). We omit the calculations of x and x which are the same as

previously with the exception that now there will appear additional terms

with and ti(2), m(2),. . . in view of the explicit dependence on t of these

functions.
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The left-hand side of (2.1) after substitutions becomes:

x + w2x = fifÂ«^W + u<x) + 2u^-w + w*uâ„¢ - 2aw&Â» cos 0

- 2wAW sin ft + /**[Â«,/Â»a>* + k<2) + 2u^w

+ oj2k<2) - 2aojB<2) cos ^ - 2a>.4<2) sin </<

+ (^(D^d - aBW) cosi/> - (aAWBâ„¢

+ 2AwBw)smip + 2a>AWua/Â» + 2a>B<%/1)

+ 2uJÂ»AM + 2mâ€ž(1)B<1)] + M3[ ] + . . . (3-3)

The right-hand side of (2.1) can be written as

pf(vt, x, x) = nf(vt, a cos i/j, â€” aw sin ip)

+ fi2[fx(vt, a cos ip, â€” aw sin ^i)m(1)

+ fx(vt, a cos â€” aw sin 0)(^4(1) cos i/> â€” aBw sin ip

+ u/Â»-w + *Â«)] + m3... (3.4)

In order that the series solution (3.1) should satisfy the d.e. (2.1) with

accuracy 0(^m+1) it is necessary to equate the coefficients of like powers of

/x up to the order p.m.

This results in a recursive system of d.e., viz.:

w*uâ€žw + 2a*,/1) + fiW + uV1)

= /0(a, ip, vt) + 2aojB<1) cos 0 + 2u,4(1) sin ^>

a>X/2) + 2wk0,<2) + u<Â« + w2^2)

= /^a, vr) + 2awBW cos </< + 2a>J4<2) sin 0

where

f0(a, ip, vt) = f(vt, a cos </f, â€” aa> sin ip)

f^a, ip, vt) = fx(vt, a cos </r, â€” aw sin </,)m(1) + /^(vr, a cos </r, â€” aw sin ^)

x [A<Â» cos ^ - a5(1) sin + u^w + ti(1*]

+ (afi<1)2 - AWAM) cos ^ (3.6)

+ (Aâ„¢Bâ„¢a + 2^(1)5(1))sinV' - 2wfl<1)uâ€ž/1)

- 2AWuJ" - 2B<1)uâ€ž,<1) - 2wA<Â»ua/Â»
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The functions fk(a, ip, vt) are periodic with period 2tt with respect to both

arguments ip and vt and depend also on a.

Since we have here periodic functions of two arguments, with period 2tt,

one can use a double Fourier series in a complex form.

For a periodic function of one argument x one can write the Fourier

expansion

/(*)= f (3.7)

n = - oo

with

Cn = h jl'f^yim'da (3-8)

which yields the following relations between c,-, a{, and 6, of the usual

Fourief series (in real notations)

namely

CI

f(x) = + ^ [an cos nx + K sin nx]

a. â€” ibâ€ž aâ€ž + ibâ€ž

câ€ž = -^2â€”; C-â€ž = (3-9)

For a function f(x,y) periodic (with period 2tt) both with respect to x and

y, one can consider formally f(x,y) as a function of * which gives:

/(*o0- f (3.10)

n â€” â€” go

with

^00 = ^ f(*,y)tr{mde (3.11)

The coefficient câ€ž(.y), in turn, can be expanded as a complex Fourier series

OO

m = â€” oo

with

C"m = i JT = 4^ Â£" ['Mvy^^drt (3.13)

If one substitutes (3.12) into (3.10), one has

f(*,y)= f t (3.14)
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One can now undertake the determination of j4(1)(a), B(1)(a), and

Â«(1)(a, ip, vt) from the first d.e. (3.5)and, in the firstplace, develop f0(a, <f>, vt)

into a double Fourier series with respect to both arguments. We have

Ma, vt)=22 WW"1^ (3.15)

n m

In view of (3.13) we have:

/nm(o) = â€” f(vt, a cos ip, -aw sin if>)e-i<--"+m'i'ldtd<p (3.16)

Jo Jo

One can also do this with respect to Â«(1)(a, <p, vt), viz.:

Â«<"(Â«, 0, vo - 2 2 /-w*'-" (3-17)

Substituting (3.15) and (3.17) for /â€ž and u(1) into the first equation (3.5),

one gets

I2[Â«â€¢ - (nv + wia,)Â«]/Â»'<Â»'+^)

n m

= 2awfi<1) cos ^ + 2<o,4<1) sin ^ + 2 2 /nÂ«Â°(a)Â«("""+m*) (3-18)

It is necessary to determine/â€žâ€ž, and B<x) so that has no resonance

terms. This condition is fulfilled if one has:

2a<oS<1) cos <p + 2wAw sin ^

2 2 /JÂ«(i)Â«pKin< + #)] (3.19)

[u*-(m' + m<i>),]-0

the double summation extending for all and n for which nq + (m Â± l/>)

= 0. Equating the coefficients of the like harmonics in (3.18) one has

f Wfd)

- a>* Tnvlm^ (3-20)

for all n and m satisfying the condition: a>2 â€” (nv + m<o)2 # 0. This

condition is equivalent to: n2 + (m2 â€” l)2 / 0 (that is, n # 0, m ^ Â± 1).

If one substitutes (3.20) into (3.17) and sets vt = 6 (the angular variable),

one has:

n' + <m'-'JVO

x f" f "/â€ž(Â«. 0>rf<"Â»+"*)<#-# (3.21)

Jo Jo
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Returning to the trigonometric functions and equating the coefficients of

the like harmonics in (3.19), one has

A<x)(a) = -IT- f" f'M*,+,QÂ«n*M+

w w Jo Jo

, (3-22)

Once Â«(1)(a, ^, 0), ^4(1)(a) and B<1)(a) are determined, one can also de-

termine fi(a, <p, 0) by a further generalization of the Fourier expansion of a

periodic function of N arguments xv x2>- â–  ., *n> vlz-:

00

/(*!, *â€ž. . ., XN) = ^ Cnx.n2 â€ž/,(B'X>+',^+ . â–  ' +"n"Â»)

n,.n,..... nâ€žv = â€” oo

with the corresponding Fourier determination of

C"<- "2 "N

(^"T Jo(.v) Jo

x expt-ifn^, + . . . + Â»jvÂ£tf)]<#i,. . ., d"Â£v

In this manner one determines m(2)(a, ^, 0); j4(2)(Â«) and B(2'(a) and so on:

the formulas become rather complicated even for the second order but the

procedure is quite definite.

From (3.22) it follows that in the equations of the first approximation

appears only the free term f0(x,x) of the expansion of the perturbing force

f(6, x, x), so that (in view of (3.6)) one has

1 rT

f0(x,x) = hm â„¢ /(t, x, x)dr (3.23)

T->oo 1 Jo

For the d.e. of the first approximation it is sufficient, therefore, to average

the perturbing term /x/with respect to the time appearing explicitly. One

thus falls back on the determination of A(1\a) and Bw(a) in the preceding

chapter.

It follows that the nonresonance treatment of the nonautonomous

systems leads to the same procedure as for the autonomous systems except

for the use of the multiple Fourier series instead of the ordinary Fourier

series; this merely results from the periodicity of solution in terms of more

than one argument.

The second approximation is

x = a cos i/p + (iuW(a, i/j, 6) (3.24)

where Â«(1)(a, <p, 6) Is given by (3.21). As was just mentioned, the effect
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of the external periodic excitation in this case is felt only in the second

approximation; this means that the "combination frequencies" (like 2.6)

appear only in the second approximation; the amplitudes of these com-

bination harmonics are O(p).

Considering now the case of a stationary oscillation (in 3.24), one has:

a = const; ip = w(a)t + 6; 8 = const (3.25)

The oscillation of x consists of an "autoperiodic oscillation" with frequency

a>(a), "heteroperiodic oscillation" with frequencies nv(n = 1, 2, 3,. . .)and

"combination oscillations" with frequencies nv Â± moj (n,m= 1,2, 3,. . .).

The amplitudes of the latter increase with the approach to a corresponding

resonance when the divisor <o2 â€” (nv Â± mco)2 becomes small.

If the free (or "autoperiodic") oscillations are absent (a = 0), (3.24)

becomes

^ Aâ€ž cos n6 + Bâ€ž sin n6 ., 0

where

An = - C"f0(6, 0, 0) cos n6d6; Bâ€ž = - C" f0(6, 0, 0) sin n6d6

V Jo Jo

Here one has a purely heteroperiodic (or forced) oscillation. It was

mentioned previously that the term with /0(^,*) which appears in the first

approximation (and corresponds to the first term of the expansion f(0, x, x))

determines the stability of the autoperiodic oscillation. In fact, if the

equivalent decrement (Section 7, Chapter 14)

X*(a) > 0 (3.27)

then a(0f^oo -> 0.

The equivalent decrement is given by the expression

1 c2n c2n

K*(a) = a /("> a cos ^' ~aw s1n r) sin ipd6dip

+7r <u Jo Jo

1 C2n

= =â€” f0(a cos ip, â€” acn sin <p) sin ipdi/p (3.28)

If the external periodic excitation is absent (that is, the function / in

(2.1) does not depend on t explicitly), one has the usual condition of self-

excitation

\e(a) < 0 (3.29)

where

i r2"

Kia) â€” oâ€” f(0, a cos ip,â€”a<o sin ifi) sin ipdip (3.30)

Znw Jo
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It may happen (depending exclusively on the form of the function f)

that a system which is self-excited in the absence of the external periodic

excitation loses its self-excitation as soon as external periodic excitation is

applied. This corresponds to the so-called asynchronous quenching.

There may be also an opposite effect of asynchronous excitaton.

As an example, consider the van der Pol equation

x + n(x2 - l)x + x = Â£sin vt (3.31)

If one sets x = y + U sin vt where U = Â£/(1 â€” v2) (we consider a

nonresonance case), (3.31) becomes

y + y = nW - (y + ^sin vt)2](y + Uv cos vt) (3.32)

In the first approximation, the solution of this d.e. is

y = Â«cos(r + 6); 6 = const (3.33)

where a is given by the d.e.

fl=Tr-4-T) (3-34)

If U2 < 2, the system is self-excited and there exists a stationary state with

amplitude:

a2 = 4 - 2U2 (3.35)

For U2 > 2, a(r )'-â–ºÂ«>â€”> 0, which is the phenomenon of asynchronous

quenching.

In the second approximation, the solution of (3.31) yields

t/v(4 - U2 - 2a2) a U*v

x = a cos <f> + /* 4(1 _ y2) 'cosO + u.jQâ€”â€”cM36

Ua2(2 + v) /n ...

+^4(i+;)(3 + v)cos(g + ^

Ua\2 + v) .. ... U2a(2 + v) . ... ..

+ ^4(i-;)(3-v)-cos(e~ + M isj^-t" + Â«

+ " 1% ~? (^ ~ 0) ~ T2 sin 3* (3-36)

where a and ^ satisfy the d.e.

a = T[l- T ~Tj'

, , ,/l a2 7a4\ , I/2(5k - 1)

^ = 1 - "Is ~ T + 256) + **W^T (3-3?)

, U2a2(7v* - 40k2 + 32k - 9) , U*(l + 4k - 8k2)
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In the second approximation, in addition to the forced oscillations with

frequencies v and 3v, there are also oscillations with frequency 3w as well

as the combination frequencies v Â± 2w; 2v Â± <o. Besides, if U2 < 2, the

heteroperiodic oscillation becomes unstable; if U2 > 2 the heteroperiodic

oscillation is the only one possible in the stationary state (since the auto-

periodic oscillation vanishes), so that, ultimately, the oscillation is

CM4 - U2) . U3v Â«.Â»

x = * ^ _ v2} cos 6 + n 4(1 _ 9v2) cos 36 (3-38)

4. Successive approximations for resonance oscillations

We assume now that

=?" (4-1)

where p and q are relatively prime. Two cases are possible: (I) when (4.1)

corresponds to the equality, that is, the exact resonance; and (II) when (4.1)

corresponds to an approximate equality, that is, the neighborhood of the

resonance, at the limit of which the resonance zone transforms itself into a

nonresonance zone (the matter treated in the preceding section).

One can define by p.A the deviation between oj2 (square of the free

frequency when n = 0) and vj , i.e.

'2 + (id (4.2)

The basic d.e. can be written then as

x + ^ v^* = /x[/(vr, *, x) - Ax] (4.3)

which amounts to the transfer of the deviation fiA to the right-hand side.

We look again for the solution of the form (compare with (3.1))

x = a cos ip + (iuw(a, i/p, vt) + /x*2Â«(2)(a, i/>, vt) (4.4)

where a and ip are functions of t and ip = (p/q) vt + 6, 6 being the phase;

it is clear that for the exact resonance 6 = const.

In the nonresonance case, as was mentioned (beginning of Section 13),

there is no stationary relation between the phase of the external periodic

excitation and that of the oscillation; here, on the contrary this circumstance

plays an important role and we can set

6 = ^ - t vt (4.5)

q
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368 QUANTITATIVE METHODS

This means that in the d.e. for a and ip the terms Aw,. . ., . . will

depend not only on a, as previously, but also on 6, so that we have

a = (iAW(a,8) + (i2AW(a,6) + ...

ft (4-6)

if, = J v + â– .(iBW(a,6) + n2B<2)(a,0) + . . .

Inasmuch as on the right-hand side appears the phase angle 6 and not

the total phase </r, it is useful to keep the variable 8 everywhere so that

instead of (4.4), (4.6) we can write

x = a cos ^ vt + 6j + ^{a, 6,-^ + /x2u<2)(a, 6, ? rj (4.7)

d = uAW(a,0) + u.*AW(a,6) + ...

(4.8)

6 = ixBW(a,6) + n*B(v(a,6) + . ..

where, for the sake of convenience, we shall use 8 instead of 0, since

p-vt + 8 = 0 (4.9)

9

but it must be recalled that now we have two partial derivatives ip, = if> and

<p9 in carrying out calculations.

As previously we have first

x = [cos i/p + fiujÂ» + fihdJ-V + . . .]d + [-a sin ^ + mÂ«s(1) + ...]&

+ - a Â£ v sin </r + /xÂ«iW + p*uW + ... (4.10)

X = [cos if, + pU^ + M2Ua<2) + . . .]d + [jiujÂ» + n2liJV + . . .]fl2

+ 2[-sin.Â£ + pumm + p*uj*> + . . .]d6

+ 2^-^ vsin 0 + pujÂ» + /i.2Â«a,(2) + . .

+ [-asin</r + /xk^d + /rV2)]#

+ [-acos<A + + m2Â«w(2) + . . .]02

+ 2^-a^ vcos^ + /x*u^1) + /x2^/2) + ... 6

+ ")* cos 0 + Mm(1) + /*2m(2) + . . .] (4.11)
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Likewise from (4.8) we have

a = p*[A<Â»AW + B<Â»AeW] + fi3. ..; d2 = ^AW* + M3. ..;

6* = + ...; 0 = n*[AWBW + BÂ»BeW] + n3. . .;

d0 = p.*AWBâ„¢ + n3...

The rest of the formal procedure is the same as before, viz.: one forms the

left-hand side of the d.e. (4.3), then carries out the development of its

right-hand side according to the powers of and, finally, equates the

coefficients of like powers of /x which results in a recursive system of the

d.e. of successive approximations. One has thus:

Â«<Â« + ^ = /â€ž(Â«, vt, <l>) + 2? vAW sin0

+ (2apv/q)B^x) cos $ â€” Aa cos ip

Â«<Â») + (| vj2Â«<2) = f^a, vt, 0) (4.12)

+ [(2pv/q)Aâ„¢ + aAWBm + aBWBjn + 2A^B^]sin^

+ [(2apv/q)Bâ„¢ - AWA.â„¢ - BMAeâ„¢ + aB<1)2]cos^

where

fo(a> vt, 0) = /["'. a cos ./r, - (apv/q) sin #|

/^a, vt, ip) = fx[vt, a cos <p, - (apv/q) sin </<]h< Â«

+ /x[vr, a cos ^r, - (apv/q) sin 0] (4.13)

x (ylW cos ip - aBâ„¢ sin </> + ti<1*)

- Ju^ - 2A^uatW - 25(1V1)

As previously, fk(a, vt, i/>) are periodic with period 2tt with respect to

both angular variables vt and ip; as to .<4(,)(a,0) and B^'\a,8), as will appear

later, they are periodic in 6 with period 2n.

The next step is the integration of the first d.e. (4.12). One begins by

representing Â«<'") and /â€ž in the form of a Fourier series

Â«<â€¢â– )(Â«, vt, â– /-) = 2 2 uÂ«-(0 exp [<(nvr +

n m

/0(Â«, = 2 2/nm(0)(Â«y(w'+mrt (4.14)
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Substituting these expressions into the first d.e. (4.12) and identifying

the terms corresponding to the same harmonics, one has

Â«â€žm(1)(a) = /â„¢(0>(Â«)/[(/W?)2 - (nv + mpv\qY\ (4.15)

for all n and m for which the denominator is different from zero, which is

equivalent to the condition

nq + (m Â± l)p # 0 (4.16)

There is also a relation between Aw(a,8) and Bw(a,6) given by

(2pv/q)AW sin ip + ((2apv/q)B^ - Aa) cos ip

+ 21 e'f^fmn^(a) = 0 (4.17)

n m

[nq + (m Â± l)/> = 0]

the double summation extending for all m and n for which nq + (m Â± \)p

= 0.

If one substitutes (4.15) into the first equation (4.14), one obtains the

explicit expression for Â«(1)(a, vt, ip), viz.:

1 â€ž â€ž gH.mt+m+)

Â«(Â«(Â«, vt, Â« = ^2Z (pvjqy _ (nv + mpvjqy

x P" C"f(a, vt, 0V-,(Â»"+'n*).J(vO# (4.18)

Jo Jo

In the double summation the indices n and m must be taken for all values

for which nq + (m Â± l)p / 0. In (4.18) appear complex exponential

functions

exp Â»|(fi9 + mp)^- + m6 = exp i| + t + 6j + (m Â± 1)#J

= jcos ^(^jt + fl] + i sin [^jr + flRe*"'"'

When, instead of (4.16), we have nq = (m Â± l)/> = 0, m Â± 1 is divisible

by q and we designate it as a; then equating the coefficients of cos ip and

sin ip in (4.17) one gets

^(1)M) = 4^2exp (*Â°0)

n2ir

/0(a, rf, ^) exp (-iqa6) sin ipd(vt)dip

i

/0(a, rt, ^) exp (-iqa6) cos ipd(vt)dip
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Thus for the first approximation of the resonance case, the solution of the

d.e. (4.3) is

x = a cos ^jjt + flj (4.20)

where a and 6 are given by the d.e.

d Â«

(4.21)

4^ 2 eit"" Â£" Â£"â– /â€¢(Â«. *. M)^''40' sin ^(rt)#

tf = $ - sffi* ? ^ JT Â£Vo(Â«. * *y- cos m*)#

taking into account that /xJ is of the first order of smallness. Once

Â«(1), Aw, and are determined, one can calculate fx(a, vt, </<) and,

therefore A^(a,6) and &*\a,8).

One can also extend this analysis to cases when the deviation J is not too

small; this permits investigating the function region between the resonance

zone and the nonresonance zone. This is the most general case from which

both the nonresonance and the resonance cases appear as special cases.

The solution is taken in the form

x = a cos </r + iutW(a, vt, <p) + phi^a, vt,ip) + ... (4.22)

and two other associated d.e. are

d = pAW(a,9) + p*A<*>(a,6) + ...

6 = o - Â£ + ixB<Â»(a,6) + n*BW(a,6) + ...

where a> = pvjq is not small.

In these formulas uw(a, vt, <fi), Â«(2)(a, vt, <p) have period 2n with respect

to both angular variables <p and vt and A<->\a,ff) and B'(a,ff) \ i = 1, 2,. . .

are periodic with period 2tt with respect to the angular variable 6.

For the determination of these functions one could use the procedure

of direct differentiations and substitutions into the fundamental d.e. with

the subsequent equating terms with equal powers of jx as was done

previously. It is more convenient, however, to use the method of the

harmonic balance (Chapter 14). One replaces the expression for the

fundamental harmonic: x = acosip; ip = \pjq)vt + 6 into the basic d.e.

(2.1), taking into account (4.23), and one equates the fundamental har-

monics on both sides of (2.1) after these substitutions.

For the second approximation for the determination of the fundamental

harmonic on the left side of (2.1) one must take into account the terms with

p.2 and for f(yt, x, x) one introduces /*Â«(1)(a, vt, ifi).
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For the details of these calculations we refer to Bogoliubov and

Mitropolsky1, pages 176-177; we indicate here only the result of this

procedure in connection with the first approximation:

H-)

1 nw p2n

= Tfâ€”, 2 eXP (I<t?0) /Â«(a, 6' M eXP ( - i9a0') cos HOd<p

^ a JO JO

(4.24)

J fÂ»2ir /Â»2i,

= ~ii2exP (,ff9^) /o(a, ^> ^ exP (-,?<T^') sin ^d6dip

a JO Jo

It is noted that the right-hand sides of these equations are periodic in 6

and can be represented as 2 K(a) exP (in6). In view of this for the

determination of A'(a,6) and B'(a,&) one can use expressions of a similar

form which amounts to simple trigonometric operations.

For the first approximation one has

d = nA<Â»(a,9); 6 = w - Â£ + p&Â»(a,0) (4.25)

where Aw(a,6) and BW^aJS) are periodic solutions of the system (4.24).

Equations (4.25) generally cannot be integrated in a closed form because

their right-hand sides depend on a and 6. However, the qualitative aspect

of solution can be established from the theory of Poincare. This amounts

to the determination of singular points of the system:

AU\a,6) = 0; w - Â£ v + nB<Â»(a,0) = 0 (4.26)

There may be also periodic solutions. This leads to two principal

forms of stationary oscillations: (a) those which correspond to the constant

solution (singular points) and (b) oscillations corresponding to the periodic

solution.

In the first case and in the first approximation, oscillations occur with

frequency equal exactly to (pjq)v; this may be called the exact resonance.

For higher-order approximations in addition to the fundamental frequency

(pjq)v are present also other harmonics of the "divided"! frequency vjq.

1 See footnote l, page 356.

t "Subharmonics " but we shall introduce this term only in Chapter 19.
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If the system has a constant solution a = 0, one obtains clearly the non-

resonance case; this may be regarded as a heteroperiodic solution, since the

autoperiodic component vanishes.

For the stationary synchronous state the question of stability reduces as

usual to the investigation of the variational equations

^ = M.(1)K^ + pAeW(a0>60)80

^ = pBW(ao,0o)8a + ^BeW(ao,0o)86

(4.27)

which leads to the characteristic equation

S1 - n(Aaâ„¢ + BeW)S + n\Aâ„¢BeW - AJVBW) = 0 (4.28)

with the conditions of stability:

Aâ„¢ + Bâ„¢ < 0; AWBeâ„¢ - A9<Â»Bâ„¢ > 0 (4.29)

If no singular point exists, there are beats of two oscillations with

frequencies w and (pvjq) + Aid. As an example consider the operation of

an ordinary (induction coupled) electron-tube circuit on the grid of which

(in addition to the feedback from the oscillating circuit) is impressed an

electromotive force F cos vt.

The d.e. of the circuit is

e + w*e = -a>2[^ e - (M - DL)/aJ (4.30)

where e is the grid voltage; L, R are, respectively, inductance and resistance

of the oscillating circuit; M is the coefficient of mutual inductance (between

the anode and the grid circuit); D is the transconductance; <o2 = 1/LC is

the free frequency of the oscillating circuit and

4 = f(E0 + F cos vt + e) (4.31)

is the anode current considered as a nonlinear function of the grid voltage.

Thus, for instance, if/(Â£0 + u), u = e + F cos vt is a cubic polynomial,

viz.:

f(E0 + u)= f(E0) + S0u + SxU* - S2Â«8, S2 > 0 (4.32)

and all terms on the right-hand side of (4.30) are small, one can apply the

preceding formulas.

Thus, forp = 1, q = 2, that is, a> = v/2 and in the first approximation

one has

e = a cos

(|* + 8)
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where a and 6 are given by the d.e.

cos 26

(4.32a)

where

L

R(M - DL)

Settings = 3S2/4Scr.;r = (50 - 5cr. - |S2F2)/5cr.; s = (5^/25..;

k = a> - (v/2), (4.32a) is

d = a[-Soffia2 + (r + s cos 25)]; 6 = k - s sin 26 (4.33)

where m and s are positive constants.

It is noted that there may be a point of equilibrium 6 = 0 if \k\ <

in which case 6 = 60 = $ arcsin (&/$). The stability of equilibrium is

determined from the variational equation which is here d86jdt = â€”2s cos

6086 which requires that cos 60 > 0. All depends on the existence of a

positive root of the bracket in the first equation (4.33). As S0 > 0 and

(we assume) m > 0, then

is a stationary amplitude assuming that r + s cos 260 > 0. In such a case

the system operates in a "synchronous" condition; that is, there exists an

oscillation

with a0 and 60 determined as previously explained.

It may happen, however, that a0 does not exist; this occurs if r +

s cos 60 < 0, that is, for a sufficiently large value of F. The only possible

stationary state is then a0 = 0, in which case the only oscillation possible

is the heteroperiodic one, that is, one produced by the external periodic

excitation e â€” F cos vt.

If k = <o â€” (y/2) is large, (so that \k\ > \s\), 6 keeps the same sign.

One can integrate the second equation (4.33) and represent 6 as

(4.34)

(4.35)

6 = Aa>t + <P(Acot + 6) (4.36)

where <J>(6) is periodic with period 2tt. In this case 6 does not vary

uniformly but undergoes a phase modulation.
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Here again, the equilibrium of the amplitude may take place either for

a = 0 or for a = a0, depending on the existence of a real positive root

a = a0 of the first equation (4.33). If such a root a = a0 exists and is

stable, the phase modulation produces a corresponding amplitude modula-

tion owing to the term 5 cos 28 in the bracket of (4.33).

Summing up:

If k = a> â€” (v/2) (the deviation between the "free" frequency and the

"forced" frequency) is sufficiently small, there may be a synchronous

operation with frequency v/2 provided a0 exists. It is clear that, if F is

sufficiently large (and r < 0), the amplitude a = a0 will cease to exist, in

which case the only stationary condition is a = 0, that is, a heteroperiodic

state.

If k is large enough, both amplitude and phase are "modulated"

quantities, which means that both the autoperiodic (self-excited) and the

"heteroperiodic" (forced) oscillations exist at the same time ("the beats")

but, again, if the condition for the existence of the autoperiodic amplitude

is not fulfilled, the heteroperiodic oscillation exists alone.

5. External periodic excitation of a nonlinear oscillator; jumps of

amplitude

We consider an oscillatory system specified by the d.e.-f-

mx + kx = ixf(x,x) + ju.Â£sin vt (5-1)

and investigate its fundamental resonance (/> = ?= 1, Section 2).

In the first approximation we look for a solution of the form

x = a cos (vt + 6) = a cos y (5.2)

where a and 6 are given by the d.e.

a = â€” â– = /o(a.y)sin yÂ«y 1 ^cos 1

2nwm Jo J0K ri 'r m(w + v)

6 = <o â€” v â€”-

|o2'/,(a,y)co8yrfy + OTa(^+y)3infl

(5.3)

2na>am.

where f0(a,y) = f(a cos y, â€”aw sin y).

t It is assumed that the amplitude of the external periodic excitations is small;

if such assumptions cannot be made and we have the d.e.: mx + kx = ^if(x,x)

+ E sin vt, the change of variable x = y + [E/(k â€” v2m)\ sin vt removes the term

with E sin vt.
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We introduce the notations

u. r2"

\e(a) = â€” f0(a,y) sin ydy;

naw J0 (5 4)

ke(a) = k - \ f0(a,y) cos ydy

ita Jo

which may be regarded as equivalent parameters (Section 7, Chapter 14)

if E = 0. Equations (5.3) can be written as

d = â€”S,(a)a tâ€”â€”cos 6;

m^ + v) (5.5)

6 = <D.(a) - v + â€”-r^-â€”r sin 8

ma(w + v)

where 84(a) = Ae(a)/(2wi) and we(a) = VHe(a)jm may be considered as

equivalent decrement and frequency, respectively.

The stationary state exists if (5.5) has a singular point, that is, if

Ua)a + ,y'E . cos 6 = 0; we(a) - v + â€”j^-â€”r sin 6 = 0 (5.6)

v m(a> + v) ma(w + v) v'

Up to 0(/x2) these expressions can be written as

2mva8e(a) = -^Â£cosfl; ma[we\a) - v2] = -nEsin6 (5.7)

whence, upon the elimination of 8, one has

mW[(w*(a) - v2)2 + 4i/2Se2(a)] = /*2Â£2 (5.8)

which determines the amplitude and the phase in (5.2).

In the resonance case (<o = v) the system (5.3) can be written as

u.E

2vd = â€”2va8e(a) â€” â€” cos 6;

",E (5-9)

2vad = [ojMa) - v2]a + ^â€” sin 6

m

If one sets the right-hand side of these equations as R(a,8) and <P(a,6),

respectively, the stationary state is given again by two equations

aR(a,6) = <P(a,8) = 0 (5.10)

The conditions of stability are (we use subscripts a and 6 to designate the

partial derivatives with respect to these variables)

aRa(a0,60) + *Mo) < 0;

*a(*o. WKA) - ReMWaM) > o

where a0 and 60 are the roots common to two equations (5.10).
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If one takes into account the first equation (5.9), the first condition (5.11)

of stability becomes

aRa + *e = -2,Â«^M - Iva8Xa) = -2vÂ«^ < 0 (5.12)

Moreover 2va?8e(a) = Â° v = â€”^ W(a) where we define

m m<o

1 C2"

W(a) = =- /x/(a cos y, â€”aw sin y)aw sin ydy (5.13)

^ Jo

which may be regarded as average power dissipated for period by the

oscillation (5.2) and, in normal cases, it is obvious that W(a) increases

monotonically with a so that Wa(a) > 0. Thus, the first condition (5.11)

is always fulfilled.

As to the second condition (5.11), we differentiate (5.10) with respect to

v, taking into account the fact that R and 0 depend also explicitly on v

which gives

Raa, + RJO, = -R,; 0ji, + Vft, = (5.14)

where aâ€ž = dajdv and 0, = d6/dv. The second condition of stability is

then

a,(Ra0e - Re<Pa) = <PJte - R,*t (5.15)

where

*, = ^sin0; *fl = ^cos0; ^

Rr = -28e(a)a; <Pâ€ž = -2va

so that the right-hand side in (5.15) becomes

<PJie - R& = 2a(- sin O + 8e(a) | cos ^ (5.17)

Taking into account (5.14)

(0Jte - Ry0e) = 2va\Ma) - v*) - 28*(a)] (5.18)

we have

(Ra0e - = 2va*[Ma) - v*) - 28*(a)] (5.19)

The problem of stability depends on the fulfillment of the second condition

(5.11), that is, whether the system (5.9) does not or does have a saddle point.

In the first case the system is stable and, in the second, unstable.
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This condition for stability requires the fulfillment of two partial

conditions.

w*(a) > v2 + 28 *(a) for a, > 0

W V (5.20)

we\a) < v2 + 28e\a) for ar < 0

If 8e(a) is a small quantity 0(/x2), the above criteria are simplified, viz.:

(1) a, > 0; a>e(a) > v; (2) a, < 0; ^(a) < v (5.21)

These conditions are convenient for the graphical analysis of a(v) as is

often done in connection, for instance,

with Duffing's equation, which we

shall examine subsequently.

If one constructs the function a =

F(v) solution of (5.8) and the curve

a â€” F0(v) for the exact resonance

[we(a) = v], called sometimes, the back-

bone curve (broken line in Fig. 15.1)),

then the branches to the left of

Figure 15.1 a = F0(v), in which a increases with

v, are stable; on the branches to the

right of a = F0(v), the contrary is true. The stable branches are shown

in heavy line in Fig. 15.1. This representation is convenient for the

analysis of stability of amplitudes in nonlinear systems. Thus, for

instance, if one starts with v = vx (Fig. 15.2) and increases the frequency,

the amplitude a follows the stable branch AB. For v = vt (point B), the

amplitude drops suddenly onto the lower branch CD (point M) and follows

it (from M to D) if v continues to increase. If, however, v decreases (say,

Figure 15.2
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m

from v = v2), the lower branch will be followed up to C; at this point there

will be an upward jump CN on the stable branch AB.

It is observed that these phenomena relate closely to the theory of

bifurcations (Chapter 7), the forced frequency v appearing here as the

parameter A of the general theory having a number of bifurcation values at

which there appear "exchanges of stability," using a term of Poincare.

This leads to the so-called "hysteresis phenomena" often observed in

nonlinear systems, as was mentioned in Chapter 7. As an example,

consider the Duffing equation with a forcing term:

d2x dx

y% + ^ + cxx + fubcS - sin (5.22)

We introduce the change of the variables

*i = Vdjcx; tx = Vmfct

and set: S = b/Vcm; E = EfVcd; v = v{\Zmjc\ E^ = pE. The trans-

formed equation will be

* + n8x + x + /j(dlc)2x3 = Ex sin vt

Taking d = c, one obtains the d.e.

X + x = y-f(x,x) + nEs'm vt (5.23)

where f(x,x) = â€” 8x â€” *8.

Equations (5.5) are here

d = -\8a - [Â£a/(l + v)]cosO; 6 = 1 - v + |aÂ« + .sing

L o a\\. + v)

(5.24)

For the fundamental (synchronous) resonance one has the relations

8a -!- Ex cos 0 = 0; a^l + - v2] + E^ sin 0 = 0 (5.25)

From (5.4) we have

8.(a) = |; wJLa) = l + y (5.26)

If one eliminates 0 between the two equations (5.25), relation (5.8) becomes

+ t)* - "']' + - (5.27)

that is

v = Vw.V) Â± ViEJay - 8* (5.28)
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The curve v = we(a) is given by v = 1 + (3a2/8) and the resonance curves

are given by (5.28). It is noted that for this construction one considers v

as a function of a (Fig. 15.2).

As was explained in connection with Fig. 15.1, the branches ANB and

DMC are stable and CB unstable. The hysteresis cycle is clearly MCNBM.

One can also carry out the second approximation, which merely intro-

duces harmonics into the stationary oscillations and slightly changes the

curves of resonance.

It is to be noted that the first approximation reveals only the fundamental

resonance (p = 1, q = 1). The subharmonic resonances can be detected

only in approximations of higher orders; we shall enter into their more

detailed study in Chapter 19, and shall limit the discussion here to the

question of stability of amplitudes.

We have followed closely the Krylov-Bogoliubov method (in a later

exposition by N. Bogoliubov and J. Mitropolsky) but the same subject of

"jumps" of resonance has been also treated independently by J. J. Stoker.8

Considerable experimental data on these phenomena has been obtained by

Ludeke.*

6. Nonstationary processes; slow time

The asymptotic method has been recently (1955) applied by J. A.

Mitropolsky 2 to the investigation of nonstationary phenomena, that is, to

a field which has been entirely neglected from the beginning of modern

developments in the theory of oscillations.

In general, by the term "nonstationary" phenomena (or oscillations) is

meant all cases in which the coefficients of d.e. vary slowly in time. The

phenomena of this nature are not necessarily periodic.

Perhaps the best known type of these phenomena is that resulting when

the parameters of an oscillating system with a relatively high (for example,

radio) frequency are modulated by a much slower (for example, audio)

frequency. The same situation occurs in the frequency modulated

phenomena.

In mechanics one encounters a number of problems of this nature; a

typical problem is that of a pendulum with a variable length. Similar

problems of modulation occur also in mechanics; we refer to Mitropolsky*

for details.

* J. J. Stoker, Nonlinear Vibrations, Interscience Publishers, New York, 1950;

R. Reissig, Wiss. Zeitsch. der Humboldt Un., No. 2, Jg. V (1955/56).

* C. A. Ludeke, J. Appl. Phys., July, 1946.

* See footnote *, page 356.
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A number of these problems which are usually studied from the point

of view of a stationary state acquire a different aspect when approached

from the standpoint of a nonstationary condition. Thus, for instance, a

resonance effect is considerably attenuated if the zone of resonance is just

passed instead of allowing the oscillation to build up for a fixed value of the

frequency at some point in this zone.

All this leads to a number of questions which so far have been dis-

regarded in the classical approach.

In order to simplify such problems, it is necessary to assume that the

rate of variation of parameters is much slower than the frequency of the

motion considered at a fixed value of these parameters. If one assumes, for

instance, that both processes (that is, oscillation and the corresponding

parameter variation) are periodic, this amounts to assuming that, although

for the oscillation the period is T, for the parameter variation it is Tjp., p

being small. This, clearly, requires the introduction of a different time

scale for the parameter variation.

In some cases the parameter variation does not need to be periodic as

this happens, for instance, in the case of a pendulum of a variable length;

in this particular case the variation of the length is a nonperiodic function

of time. One can consider a general problem specified by a d.e. of the

form

where m is a mass (or moment of inertia, or coefficient of inductance) and c

is the coefficient of restoring force (that is, "spring constant" in mechanical

problems; "elastance," that is, l/c, in electrical problems, etc.), but here

we have to make an assumption that m and c may also depend on the slow

time r and are, therefore, m(r) and c(r). The same duality of independent

variables (the ordinary, or "rapid" time t and the "slow" time t) appears

on the right-hand side of (6.1); we merely have written the angular co-

ordinate 6 corresponding to the normal time t for the sake of having

period 2n.

Summing up, the problem is now specified in terms of two independent

variables t and t with an additional relation dr/dt = /x when differentiations

are to be carried out with respect to t, as usual. Consider, for instance,

in terms of the "slow time" t. Introducing t = t//x, it becomes

Jt KT)*] + c(t)* = (iF(r, 6,x,x); * = Jt

(6.1)

a d.e.

+ p(r)x = 0

(6.2)

x + p(jit)x = 0

(6.3)
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where x = d^/df*, as usual. Thus, with t as independent variable and /x

appearing before the second derivative, the d.e. is transformed into (6.3)

where p is now slowly varying function of the ordinary time t.

It is obvious that the functions m(r) and c(t) in (6.1) are always positive;

otherwise the problem would have no physical meaning. Moreover, in

differentiations, one has:

likewise for c(t). A differentiation of a function of t with respect to t

always introduces a small factor /x and this is to be taken into account in

the approximation procedure where the terms are arranged as coefficients

of like powers of fi.

We can assume that, for a certain interval (0 < t < T), the slow time t

is in the interval (0 < t < (T/n)) and in this interval the functions

ot(t), c(t), (d6jdr) = v(t) and F(t, 6, x, x) are continuously differentiable an

indefinite number of times for all finite values of their arguments.

One immediate conclusion results from these assumptions, viz.: even if

the parameters m(r) and c(r) vary periodically, nothing indicates that the

solution x(t) will be periodic. We are now sufficiently acquainted with

the theory of d.e. with periodic coefficients to be able to notice this

circumstance. In fact, the frequency w(t) defined in the conventional

manner as <o(t) = Vc(t)/Â»i(t) does not now remain constant, and all

familiar concepts of the theory of oscillations governed by d.e. with fixed

parameters cease to hold here. One can retain the concept of frequency

(either v(t) = d6jdr or w(t) = Vc{j)lm(T)) as being a function of the slow

time t.

A few examples of d.e. with slowly varying parameters illustrate these

new concepts inherent in the use of "slow time."

The d.e. of a pendulum with a variable length is

where /(t) is a slowly varying length / of the pendulum.

Likewise, it can be shown that a nonstationary process of an approach

to a stationary condition in electron-tube circuits can be brought to a d.e.

of the form

dm(r) dm(r) dr dm(r)

~dt dr~ ~dt~ ^ dr

(6.4)

(6.5)

x + x = |u(t)/(t, x, x) + A0 sin n(r)t

which is also of the type (6.1). A number of other processes in the theory

of clystrons, frequency-modulated circuits, etc., reduce also to the d.e. of
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the same type; to the same d.e. belong certain mechanical phenomena, for

instance, longitudinal oscillations of cables of a variable length observed in

connection with the operation of mine hoists, that is, problems involving

varying constraints, for which, as is known from theoretical mechanics, the

kinetic energy may have linear terms, in addition to the terms of zero or of

the second order in velocities.

Consideration of these (generally parasitic) modulations opens a number

of problems which were discussed under the assumption of fixed para-

meters in the d.e. Such problems are to be supplemented by the investiga-

tion of the effects of these slow modulations arising from changes in the

parameter values.

7. Successive approximations for nonstationary processes; slow

time

If p. = 0 in (6.1) and m and c are constant, we have the d.e.

mx + cx = 0 (7.1)

whose solution is

x = a cos (a>r + <p) (7.2)

<o = Vc\m and a and <p are arbitrary constants determined by initial

conditions.

In the general case there appear a great variety of possible solutions,

most of which are related to the so-called nonlinear (or subharmonic)

resonance, which we shall study in Part III. Here the situation is more

complicated inasmuch as the solutions are not periodic.

As we are interested here only in formal solutions of (6.1) by approxima-

tions, we may disregard the physical significance of the problem for the

moment and concentrate on the derivation of successive approximations,

This follows the usual argument (Chapter 14) with the difference that the

calculation is more complicated in view of the presence of the additional

variable t.

We can look for the solution of (6.1) of the form

x = a cos (s<p + <p) + p.uw(t, a, 6, s<p + ip)

+ /AWfo a, 6, s<p + <fi) + ... (7.3)

where and m(2) are periodic functions oft? and s<p + ip with period 2n,

9> = (1/r)c?; j and r are small relatively prime integers. The variable

s<p + ip is introduced for the purpose of taking into account the passage of

the solution through the various kinds of subharmonic resonances. As

this matter will be treated only in Part III, we may simplify this exposition
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by assuming the fundamental resonance: s = 1, r = 1; under this assump-

tion s<p + <p = 6 + i/p.

As previously, we assume that the amplitude a and the phase <p are given

by the d.e.

a = M(1)(T> a> $) + ^AV\t, a,<f,) + ...

<f) = a>(t) - v(t) + (iBW(r, a, <p) + p.W*\t, a, <p) (''^

where oj(t) = Vc(t)/Â»i(t); v(t) = d6/dt; r = /xf. We set Jw(t) = w(t)

â€” y(t), that is, the difference between the frequency of the external periodic

excitation v(t) and the instantaneous frequency of the system <o(t).

The problem is to find such functions Â«(2),.. ., Aw, Aw,...,

Jg(1), jgu)^ tjjat trie series (7.3), after the substitution of a and <p, as

given by the series (7.4) should be the actual solution of (6.1).

The applicability of the method does not depend on the actual con-

vergence of the series (7.3) and (7.4) (which may be even divergent), but

depends on their asymptotic properties for /x â€”> 0. We shall consider the

series (7.3) as a formal solution necessary for the construction of the

asymptotic approximation.

x<Â») = a cos (0 + <p) + /xÂ«(1)(T, a, 6, 6 + <fi) + ... + /*",Â«<")(t, a, 6, 6 + <p)

(7.5)

where a and <p are determined from d.e.

a = uAw(r, a, <h) + . . . + pMWfr, a, <fi)

(7.6)

<ji = Ja>(t) + (iB^\t, a, i/i) + . . . + ^m-B(m)(T, a, <p)

The problem of determination of Â«<Â« Â«<*) Aâ„¢, Aâ„¢ J5<Â«, #Â»),...

has a certain degree of arbitrariness, inasmuch as any replacement of a and

<p by new variables b and <px related by equations

a = b + ua^b) + fi2a2(b) + <p = <px + rfM + + . . .

results in similar expressions but with different coefficients.

One can impose, however, an additional condition, as we did in Chapter

14, which consists in the requirement that the fundamental harmonic

should be absent in all functions t<(1), uw,. ...

This requirement is expressed by the conditions

Â«(,)(t, a, 6, y) cos ydy = 0; I Â«(<)(t, a, 6, y) sin ydy = 0;

Jo Jo

i = 1, 2 m (7.7)

where y = 6 + <p.

Physically this means that we take as amplitude a the full amplitude of
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the fundamental harmonic so that no resonance terms can appear in Â«(1),

Â«(2) for any t in the interval 0 Â£ r Â£ X; X T/fji, where T is some finite

value.

In order to determine u<1), Â«(2),. . ., AW, Aâ„¢,. . ., B<Â», Bâ„¢,. .. under

the condition (7.7), one has to determine a, \f> and also the function F in

(6.1). For the sake of simplification we introduce the same notations for

partial differentiations as previously, viz.: Aa, A^, AT,. . . means differentia-

tions with respect to a, ip, r. Moreover, in differentiations with respect to

t in the derivatives depending on t (the slow time) appears the factor

dr/dt = p., which transfers the corresponding term to the next higher order

in /x, etc.; we recall that J <o = a>(t) â€” v(t) in this notation; finally by dots

(for example, x, x, d, d, ifi, ..) we shall mean always differentiations with

respect to t (that is, dx/dt, d'xldtt, dajdt, d*aldt2,. . .). One has then

a = fiAoAJ" + ll*[Aâ„¢AW + A^Bâ„¢ + Aâ„¢ + AwAJV] + n3. . .

J, - p[(A<o)r + (Jw^/"] + n*[BWAM + B/1)fid) (7.8)

+ BTW + AwBJÂ»] + fi*...

With these expressions, one obtains for x and x the following expressions:

x = â€” aw sin y + fi[Aw cos y â€” Bwa sin y + Â«e(1)v + mY(1)a>]

+ fi*[AW cos y - 5<2)a sin y + itâ„¢ + u^Aâ„¢

+ + uâ€žâ„¢v + uâ„¢a>] + ix3...

x = â€” aa>2cosy + p.{[AwA/x^ â€” 2awBW] cosy

- [AwaBJV + 2awAW] sin y - [wra sin y + uM(1)v2

+ lu^vw + uâ€ž.(1)a>2]} + n*{[A<oA/V - 2a<oB<2)] cos y

- [AwaB/v + 2wA<*] sin y + [Aâ„¢AW + AJW* (7.9)

+ AJV - aB<W] cos y - [2Aâ„¢&Â» + aB^AW

+ Â«B/Â»B<Â« + aBW] sin y + 2UrYâ„¢w + 2uJÂ»

+ 2uJÂ»vAW + 2u^wAâ„¢ + 2u^vBâ„¢ + 2u^wBW

+ uWBJVAw + AwuWAJÂ» + ufÂ»vT + uâ„¢wr

+ Â«M(2)v2 + 2u^vo + u^Ww*} + /J.3...

If one substitutes x and x into the right-hand side of (6.1) and develops it

into a Taylor's series, one obtains

liF(t, 6, x, x) = fiF(r, 6, a cos y, -aw sin y) + p*[FjtM + Fu^Aâ„¢ cos y

- flWasiny + ueâ„¢v + uâ„¢w)] + ] + ... (7.10)
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The next step, as usual, is the identification of coefficients with like powers

of p. We omit here the very long calculations that follow and merely

mention that this permits determining the functions ir^r, a, 6, y),

Again a double Fourier series is used. Thus, for instance,

PW(t, a, 6,y)= J FJ^'K^y^^ (7.H)

n^m = â€” x

where

Fâ€”WM = P Ft*)(T'fl- y)e-ii'**mr)dBdy (7.12)

The next step is the determination of the coefficients. In the general case

(when r and s are necessarily 1) we find that in order to introduce the

requirement that u*1* should not have the first harmonic in the angular

variable y, the summation determining u*1)

*Â»(T,a,e,y) = 2 (713)

n.m Â«= â€” <c

should be carried out only for such values of n and m for which

n6 + my # Â±y + s,<(i (7.14)

where in y = s<p + i/p the quantity 9 = 8jr. This amounts to the re-

quirement gâ€žJj,a) = 0 for all n and m satisfying the condition

nr + s(m Â± 1) = 0 (7.15)

Substituting F<0) and u(1) into the d.e. and equating the coefficients of the

like harmonics, one determines gnJj,O), which, finally, determines the

function i^1*

^\r,a,e,y)

Â±rr*m n^T. x Â«â€¢ - (mw + nv)* J0 Jo

(7.16)

the summation runs along all indices for which nr + s(m Â± 1) ^ 0.

If one equates the coefficients of the fundamental harmonics of y, one

obtains the coefficients A^\t, a, ip) and jB(1)(t, a, 1/>). We do not reproduce

all these calculations but merely indicate the results.

As the first approximation one takes

x = a cos y = a cos (s<p + $)

(7.17)
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where a and </< are determined from equations of the first approximation

d = M(1)(-r. a, I - co(t) - i v(t) + jiB<Â»(t, a, 0) (7.18)

where Aw and are given by formulas

[2n f*2ir

(r<o â€” 5v)Â« Ftf'â„¢* cos y</y</0

Jo Jo

f*2Â» [2*

- 2w \ F0e-,'or* sin ydydO

Jo Jo

4 <o 2 â€” (r<o â€” fi>)2a2

a d(m<n)

2irm<ti dr

(7.19)

[2* r2*

(rw â€” sv)ai F0e~iaT* sin y</y</0

Jo Jo

+ 2a> Ftf-*0** cos y<fy</0 Jo Jo

4 co* â€” (rto â€” jv)2<t2

where

y = J9 + <f>

One proceeds thus to the second approximation but we shall not reproduce

these long calculations.

8. Oscillations of a pendulum with a variable length

In his monograph Mitropolsky gives examples of application of the

general method to a number of problems. We give here one concerning

oscillations of a pendulum with a variable length. The d.e. in this case is

Jt [ml\r).6\ + 28jt [/(T)0] + mgl(r) sin 6 = 0 (8.1)

where m is the mass, 0 the angle of deviation of the pendulum from the

vertical, 28 the coefficient of damping, g the acceleration of gravity, /(t) the

length of the pendulum varying slowly as a function of the "slow time" t

so that t = fit.

For small oscillation one can use the first two terms of the development

of sin 6; then (8.1) can be written

jt [ml\r)&\ + mgl(r)6 = M/(t, 0, 6; M)

(8.2)
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where

tf(T- 6, 6-.H)=- [28/(t).0 - + 2M8 ^ fl] (8.3)

In the first approximation,

6 = a cos 0

where a and ^ are given by the system of d.e.

a - ~^w - "HO-' '= w(t) ~ IT" (8-4)

with g>(t) = V^//(t).

Integrating the first d.e. with the initial condition a(0) = a0, one has

a = Â«0[/(0)//(t)]Â»/Â« exp [-i Â£ A] (8.5)

Replacing this value into the second equation, one has

'-M'-S^-I-SJ&hD* Â«

If one sets / = const in these expressions, one obtains the usual formulas

a = aoe-Wâ„¢')'; ^ = a>[t + ^L(e-<"/*')' - 1)J + <p

and, therefore

6 = s.r<'M' cos Jr + (*-<Â»/-Â«' - 1)J + 9| (8.7)

where A = 28/m/ and <p is the initial phase. From these expressions one

can form an idea as to the effect of the parameter variation in the d.e.

For instance, if the length / of the pendulum varies linearly with the time,

that is,

/(t) = /â€ž + /xt = /â€ž + ~t (8.8)

and amplitude a and the phase <p are given by the expressions

Â°\/0 + plj)

lx = dljdr (8.9)

V Jo V /0 + V 16 |/0 + fdjt\ r
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The amplitude of oscillation will not vary exponentially but inversely

proportional to a power function of time. If 8 > 0 and /x > 0 for 8 < 0,

/x > 0, with â€” SKjjUjm) < J, the oscillation will be damped.

We refer to Mitropolsky2 for other applications of this theory which

could not be presented in this chapter.

* See footnote ', page 356.
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Chapter 16

STROBOSCOPIC METHOD

1. Introductory remarks

In Chapters 10 and 11 we reviewed the theory of Poincare concerning the

existence of periodic solutions and in Chapter 13, the stability of periodic

solutions. From the latter chapter it was seen that the determination of

the characteristic exponents, in general, is a rather difficult problem for the

reasons explained there. This difficulty is inherent in the d.e. with

periodic coefficients (Section 6, Chapter 5).

There is, however, a possibility (and this forms the subject of this

chapter) of obviating this difficulty by replacing the original differential

system, generally containing time explicitly, by an auxiliary system of an

autonomous type having the property that the existence as well as stability

of a singular point of this auxiliary system is the criterion for the existence

and stability of a periodic solution of the original system.1 The method is

based on the transformation theory of d.e. (see, for instance, Levinson *) and

its development is due largely to discussions with M. Schiffer during the

early period of this work. The method turned out to be very convenient

in applied problems studied in Part III.

We shall give the exposition of this method to the first approximation.

Approximations of higher orders are obtained by the perturbation method.

2. Transformation of points and regions; planes (i|>) and (<p);

stroboscopic image

The derivation of the stroboscopic d.e. is outlined in the following

section but it is useful to indicate first an intuitive approach to this prob-

1 N. Minorsky, C.R. Ac. Sc. (Paris), t. 232, 1951; Rendiconti, Acc. Sc., Bologna,

1952; Cahiers de physique, No. 119, Paris, 1960.

* N. Levinson, Am. oj Math. (2), 45, 1944.
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lem. We shall be concerned with a transformation % of a point in a plane

as a result of a certain operation; in our case this operation is specified by

the d.e. in question.

In order to illustrate this idea we can consider one of the trajectories of

the harmonic oscillator specified by some initial conditions #(0), ^y(0)

which determines the initial coordinates of the representative point R = R0

in the phase plane. We may define the transformation by letting the d.e.

X + x = 0 operate for some time, say 2n. In view of the fact that 2tt is a

period, R having been at t = 0 at the point R0 will return to the same

point. This we can indicate in the form of an identical transformation

3Â» = Ro (2-1)

One can consider this situation also in an intuitive manner. The

trajectory of the harmonic oscillator is a circle (whose radius is determined

by the initial conditions) described by R with a uniform angular velocity 1.

This may be visualized as a wheel rotating uniformly with this velocity,

and we may mark some point R on the wheel that gives an image of a

continuous angular motion with period 2n.

Suppose we illuminate the wheel by stroboscopic flashes occurring once

for each period 2n. We shall not see the continuous motion any more but

shall see only a fixed point R0. Thus we shall actually "see" the result of

the transformation (Â£) but not the continuous motion.

We may define two planes (which in reality are the same plane): (1) the

plane (if>) in which we observe a continuous motion (a continuous illumina-

tion), and (2) the plane (<p) in which we observe only a fixed point R0 (a

stroboscopic illumination). This physical interpretation is particularly

simple but one can also use a formal argument. One could, for instance,

consider, instead of a phase-plane diagram (a circle traversed with a

constant angular velocity), a circular cylinder with a helix of a constant

pitch traced on its surface, which gives a third dimension t. Along the t

axis we trace planes perpendicular to the t axis at equal distance 2n from

each other. The point R following the helix will cross those planes at

/ = 0, 277, 47r,. . ., and the intersections of the helix with these planes at

these instants when projected on a plane parallel to these planes will

obviously give again a fixed point R0.

Instead of a point R0 one could consider a certain area (representing a

certain continuous region of initial conditions) and, in this particular

identical transformation, this area will be transformed into exactly the same

area. Here again in the (</<) plane we shall "see" a bundle of trajectories

and in the (<p) plane we shall "see" only the invariant area.

For an identical transformation arising from the d.e. x + x = 0, this is

so trivial that it is hardly worth mentioning but, for operations performed
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by other d.e., a variety of different situations may occur as we shall see later.

As the next case in the order of difficulty we may consider a van der Pol

oscillator. In the first approximation, as we know, this oscillator is

characterized by a stable limit cycle of radius 2 to which approach spiral

trajectories both from inside and from outside, the rotation on trajectories

being uniform at least in the first approximation. If we represent again

what happens by a rotating wheel, the motion along the radius is non-

uniform, approaching the value r = r0 = 2 with an exponentially decaying

velocity, but the wheel itself rotates with a constant velocity.

In the (ip) plane we shall see a spiral C, Fig. 16.1, approaching the circle

r = r0 in an asymptotic manner; in the (<p) plane we shall see a succession of

discrete points Av A2,. . . gradually

approaching the limit point A0 for

which r = r0, both from inside and

from the outside. The "slow motion"

of these stroboscopic points occurs

along the radius since, in the first

approximation, the angular velocity of

rotation is constant. If, however, one

takes into account the second approxi-

mation, this slow motion of the

stroboscopic points will occur not

exactly along a radius but along a

curve C slightly different from the

radius, so that the ultimate fixed point

will be at A0' slightly different from

Figure 16.1 A. If we wish to think in terms of

the transformation theory, with the

van der Pol equation (with small fi) as "operator" of the transformation,

we can write

= R* = 2 (2-2)

For the phase (<p), if we wish to limit the investigation to the first approxi-

mation only, we have an identical transformation

Â£"(9>o) = 9o (2-3)

but if higher-order terms are taken into account, we have

Â£"(9>o)n-Â« = 9* (2.4)

These two examples give sufficient insight into the meaning of the point

transformation effected by a d.e. acting as an operator defining the trans-

formation. In the first case (the d.e. x + x = 0), we have an identical
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transformation (2.1), and in the second case (the d.e. x + n(x2 â€” l)x

+ x = 0), we have an asymptotic transformation (2.2), (2.3), or (2.4)

which establishes a limit point (R*,<p*) in the (9) plane.

We note in passing that both planes (ip) and (9) are in reality the same

phase plane in which the things are "seen" under a different light; the

plane (ip) is that in which a "constant illumination" is used and (<p) is

merely what appears under a "stroboscopic illumination." We shall

confine our remarks exclusively to the (9) plane, but this correspondence

between the two planes must be kept in mind in order to follow the argu-

ment.

If a fixed point exists in the (9) plane, a trajectory of the (ip) plane passes

always through this point. This, in turn, means that this trajectory is

periodic. Thus, if by some argument we show that a fixed point exists in

the (9) plane, this amounts to the assertion that the corresponding motion

in the (ip) plane is periodic. Likewise, if one can show that the fixed point

in the (9) plane is stable, the periodic motion in the (ip) plane is also stable.

This is a purely intuitive argument at this stage but, as we shall see, its

implications are justified also by a formal reasoning.

The stroboscopic points Ax, A2,. . . form a discrete sequence, but in our

optical analog}', this sequence appears as a pseudocontinuous sequence of a

"slow motion" owing to a persistence of vision. This slow motion may

either approach a limit or not.

We have thus a definite physical pattern which will enable us to carry

out the stroboscopic transformation in two steps:

1. We replace the original d.e. (whose solutions are trajectories in the

(ip) plane) by two sequences of difference equations which, from the

knowledge of râ€ž and 9,, (in the nth step of the transformation) determine

râ€ž+1 and <pâ€ž+x for the (n + l)st step. This amounts to establishing a

discrete sequence of points Ax An, An+x... in the (9) plane.

2. One can also be guided by the "persistence of vision" which accounts

for a (pseudo) continuous slow motion. Thus, one can pass from the

differential equations (in the first step of the argument) to the stroboscopic

d.e.

The preceding conclusion can be then formulated as follows:

The existence of a stable singular point in the (9) plane corresponds to the

existence of a stable periodic solution (motion) in the (ip) plane.

The stroboscopic method, as will be shown, is particularly useful for the

nonautonomous systems inasmuch as their stroboscopic counterparts are

always autonomous; therefore the difficult problem of stability of a

periodic solution (Chapter 13) is reduced to a much simpler problem of
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stability of a singular point (Chapter 1). Before entering into this

question more fully in the next section, it is useful to consider the various

forms of point transformations.

1. The most important and also frequently encountered case is when

SWâ€” = R* (2-5)

which amounts, as we saw previously, to

rn(r0)â€ž^ = r0* and ^(90)^ = <p* (2-6)

We shall give an example of this situation in Section 4; a number of similar

examples will be found in Part III dealing with nonlinear oscillations.

2. Occasionally 2"(r0)n_00 = r*, but there is no similar limit trans-

formation for <p. This means that in the plane (<p) "we see" a vector of a

constant length r0* rotating with a certain (generally small) angular velocity

<p. The only case that one encounters in applied problems of a nearly

linear type is when <p = 77,77 < 1 being a small constant. Such a situation

occasionally arises in the first approximation; in some other cases (for

example, the van der Pol equation), it manifests itself only in the second

approximation. All depends on the form of the d.e. which appears here

as an operator of the point transformation. Whenever such a slow rotation

<p occurs, the periodic solution does not have the period 2n but has a

neighboring period 277 Â± e, e being a small constant.

This case does not present any difficulty inasmuch as, instead of con-

sidering the plane (<p), we may introduce a plane (<p') rotating with respect

to (<p) with angular velocity 77 and thus obtain a fixed point in the (9/) plane.

In a physical language, we can say: we can "stop" the rotating stroboscopic

image if we space our stroboscopic flashes (in time) not by the intervals 2n

but by intervals 27r + e.

3. It may also occur that Â£"(<?>o)>i-mc = 90*' Dut t does not approach any

limit going, for instance, to infinity. We "see" in the (<p) plane the point

R moving along a radius 9 = <p0* beyond any bound. We shall encounter

this case when a linear d.e. of Mathieu acts as operator of the trans-

formation. A very interesting experiment of Mandelstam and Papalexi,

of which we shall speak in Part III, illustrates this somewhat special case.

4. It may happen that neither r nor <p approach any limit but oscillate

about some limits; this means that R describes a small curve around a fixed

point R0. We shall return to this question later, but it is sufficient to say

here that this indicates the presence of almost periodic oscillations inasmuch

as both amplitude and phase undergo modulations.

5. Neither r nor <p approach any limit nor oscillate around some limits;

this case is clearly of no interest and merely means that no stationary state

exists.
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It is useful to add that these intuitive considerations are possible if there

is a well-defined sequence of the stroboscopic points Av A2,. . ., An,

An+x,. . . which may form a definite pattern resulting in a possibility of

"seeing a slow motion" in the (<p) plane. This is possible if both r and <p

change but little during each period 2n; this circumstance, in turn, is

related to the near linearity of the problem. It is clear that, if a system is

strongly nonlinear, the stroboscopic points would be scattered so that it

would be impossible to talk about the polygon Av A2,. ...

3. Stroboscopic differential equations

We consider a nearly linear nonautonomous system of the form

x=X(x,y,t); y=Y(x,y,t) (3.1)

It is more convenient to introduce the variables defined by equations

p = r2 = x2 + x2 = x2 + y2; ip = arctan (y/x) (3.2)

This is accomplished in the usual manner by forming two combinations

xx + yy = ^(dpjdt) and xy â€” yx = p(dipldt) and by replacing x = r cos <p

and y = r sin ^ in the right sides of the d.e. (3.1).

We note in passing that the variable p generally is more convenient than

r inasmuch as in physical problems it is a measure of energy, as we have

noted previously. The introduction of the variable p is not always possible

and depends on the form of the right-hand terms in (3.1). Very often it

is more convenient to use the variables r and <p in the stroboscopic d.e.

Finally, in some cases the polar coordinates are not convenient and one has

to deal directly with the cartesian variables * and y. We shall postpone

the detailed study of these various cases until a later section and assume

here that the introduction of the variables p and i/p is possible.

In these variables the system (3.1) takes the form

g = FM>r); d-+ = G(p,*,t) (3.3)

where F and G are periodic functions with period 2n in t.

As we wish to consider the case of a nearly linear system, the d.e. (3.3)

are in the neighborhood of the d.e. of the harmonic oscillator whose d.e. in

these variables are

dÂ± = o- ^ - -1 (3 4)

dt U' dt 1 K'

The significance of these d.e. is obvious. In fact, the first shows that the

total energy p of the oscillator is constant: p = p0, which is clearly the
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energy integral; and the second merely shows that the angular velocity of

the radius vector on a trajectory (which is a circle p = p0 here) is constant

and is equal to â€” 1, that is, takes place clockwise.

If the d.e. (3.3) are nearly linear, they can be put in the form

J = /*/(p,&0 + ...; Â§ = -1+^,^0 + ..- (3-5)

as, for p. = 0, they reduce to (3.4). The functions /and p are again periodic

with period 2tt in t.

We apply the usual procedure of integration by the series of the form

p(0 = Po(0 + /*pi(0 + iK0-iM0 + wM0'+--- (3-6)

and limit ourselves to the first approximation only, since p. is small. As

regards the approximation of the zero order, it is clearly the solution of the

harmonic oscillator. This yields

Po(0 = Po = const; 0o(O = <Po -' (3-7)

where p0 and <p0 are the initial values p(0) = p0; <p(0) = <p0. The first-

order corrective terms p^t) and i/pi(t) are obtained from the perturbation

series and are

Pi(0 = | /(Po> <po ~ CT> a)dÂ°; 0i(O = I g(Po> <Po ~ a> a)dÂ° (3-8)

Jo Jo

so that the solution in the first approximation is

p(0 = Po + /WO; 0(0 = <Po - t + Wi(0 (3-9)

We may use these expressions for evaluating p(t) and <p(t) for r = 2n,

47t,. . ., but we cannot do that for t â€”> cc inasmuch as the higher-order

terms in the expressions (3.6), which we have neglected, may impair the

accuracy of the approximation in the long run.

To avoid this, we adopt the following procedure: instead of letting t vary

indefinitely in the expressions for p^t) and <pi(t), we vary it only during an

interval 27r and calculate the variations Pi(27t) and 01(27r) during one

interval 2n. With the new values of p(2n) and ip(2n), which we consider

for the second interval as p(0) and ip(0), we calculate the new values of p

and ip at the end of the second interval, and so on. In this manner we

vary t only by finite intervals 2tt in each interval and adjust the initial

conditions so that the terminal conditions of the (n â€” l)st interval become

the initial conditions for the nth interval. This avoids the cumulative

error that might otherwise occur due to the presence of higher-order

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 2

0
:3

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



STROBOSCOPIC METHOD

397

terms omitted in the first approximation, if we let t â€”> oo. We obtain a

transformation

Px(2n) = K'(Po,9o); ^(2n) = L'(PoW (3-10)

where K\p0,<p0) and L'(p0,<p0) are the integrals (3.8) between 0 and 2n.

It is noted that the independent variable t has already disappeared inasmuch

as K' and L' are certain numbers, functions of the initial conditions p0 and

<p0 (that is, of a point T0 in the phase plane). As p(t) = p0 + ppi(t) and

^r(/) = ip0 + fjup^t) and, in view of the remark just made, the result

obtained can be specified by two transformations

p(27t) = K(Po,<p0); 9>(27t) = L(Po,<p0) (3.11)

Transformation (3.11) may be regarded as a manifold of initial values

subject to the transformation. Starting from some initial values p0, <p0, we

obtain the new initial values (for the second period T). This is a purely

spatial transformation which gives a sequence of points (po'>W)> (Po">9o"),

. . . starting with some point (p0,<Po)-

We shall try to relate the preceding argument to the existence of a fixed

point in the (<p) plane and, for that purpose, it is useful to give an example.

Suppose that, instead of p and <p, we have cartesian coordinates x and y and

a certain transformation, say, x(T) = x0y0; y(T) = x0ly0, T being the

period, say, 2n.

If we start, for instance, with x0 = 1, y0 = 2, we have x(T) = 2;

y(T) = \. This defines completely the transformation. In fact, for

*(2r) andy(2T) we start with the initial conditions *0 = 2,y0 = \ so that

*(2r) = l; M2n = 4

and so on for x(3T), y(3T),. . ..

If a transformation is given, say, x(T) =/ifo^o); y(T) = AOWo).

one can explore different situations in the phase plane when T goes

through a sequence of integer values T = 1,2, 3,. . ..

One can, for instance, take an arbitrary area, say, a small square with

coordinates of its four corners (x0,y0), (x0',y0'), (x0",y0") and (x0"',;y0",) and,

under the prescribed transformation x(T) = fi(x0,y0); y(T) = f2(x0,yo)

investigate how, starting from each four corners, the transformation

progresses for T, 2T, 3T,. . .. The initial square (as defined by the

coordinates of its four corners) will be thus transformed into some other

area limited by four points (x0,y0), (x0',y0), (x0",y0"), and (V^o"). if one

proceeds as shown, the bars indicating the result of a repeated number

of transformations. The new area may either expand or contract, de-

pending on the transformation used. The situation is a purely formal one

at this stage.
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It may be worth mentioning at this point that we touched on a similar

question in Chapter 2 when we spoke about the invariance of areas in the

Hamiltonian variables in conservative systems. This is a purely formal

result of the transformation theory.

We shall try to introduce a more definite requirement, namely: the

original area (the square) must contract indefinitely under the effect of

repeated transformations. In fact, if we succeed in imposing such a

condition, the transformation applied to different points of a certain area

and repeated indefinitely will ultimately end at a fixed point. Since we

have lost our variable t, in integrating between 0 and 2tt, we have to

reestablish something analogous to it in order to follow the process of

repeated iterations. From a purely spatial manifold of the initial condi-

tions, we have to introduce a kind of temporal element which could guide

the path of the transformation to a fixed point which is our aim.

We return to (3.11) which can be written in the form (3.9) as

P = P + pPi> <P' - <P + V4\ (3-12)

where p and <p' are the values of p and <p at the end of the transformation

(27r), and p and <p mean these values at the beginning of the interval; we

drop 2tt as the angles are determined only modulo 2n. Thus p' â€” p = Ap

and <p' â€” <p = A<p is the effect of the transformation during one period 2n.

As in integrations (3.8) appear generally the factor 2tt, we can write

Ap = 2nnK(p0,<p0); A<p = 2npxL(po,<p0). . . (3.13)

It is obvious that, if the transformation leads ultimately to a fixed point,

Ap â€” A<p = 0.

It is convenient to introduce here the temporal element (which we have

lost in integration (3.8) between 0 and 2n) by defining as element of the

new ("stroboscopic") time r the expression

At = 2np. (3.14)

The transformation equations (3.13) acquire now a more familiar form

27 = K(Po><PoY> ^ = L(Po><Po) (3-15)

These may be regarded as difference equations by which, starting from

(p0,<Po) we determine the increments A p/ At and A<p/At which we add to p0

and <p0, so as to obtain the initial conditions p0', <p0' for the next interval

2n, 47r, and so on. In our physical analogy this process amounts to

determining the successive stroboscopic points A(i\ A^\.. . starting

from the first one (Fig. 16.1).

We may still be guided in our analogy by introducing a passage to the
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limit; in fact, in this analogy, the persistence of vision produces the im-

pression of a slow (quasi-continuous) motion along the trajectory C

(Fig. 16.1) instead of a set of discrete points Aw, A^2\. . . appearing

successively after short time intervals 2tt. This merely amounts to

replacing the polygon Aw, A^2\. . . formed by stroboscopic points by a

continuous curve C and by considering (approximately) Ap, A<p, and At in

(3.15) as dp, d<p, and dr. It is clear that we can do that if the total duration

of the process is long enough compared to one period 2tt and, moreover,

At is sufficiently small, as is seen from (3.14); the approximation is the

better, the smaller is p..

We obtain the stroboscopic d.e.

which will be important in the sequel.

It is noted that these d.e. are of the autonomous type and this enables us

to find the condition for the existence of the fixed point inasmuch as the

coordinates of this point are the same as those of the singular point (3.16).

The problem of establishing the existence of a periodic solution of the

original nonautonomous system (3.1) is thus reduced to ascertaining the

existence of a singular point of (3.16). Likewise the question of stability

of the periodic solution of (3.1) is reduced to the investigation of stability

of the singular point of (3.16) which is a relatively simple problem.

There is an important link in the chain of these arguments worth

emphasizing here, namely the passage from (3.13) to (3.15). In fact,

(3.13) is still a purely topological transformation of the manifold of the

initial conditions which merely gives a point (p0',<Po) if a point (p0,<Po) xs

given; in other words, to any point (p0.9o) oftne plane it gives a correspond-

ing point (/V,9o )! tn1s1s a purely planar transformation of one point into

another point or of one area into another area.

As regards (3.15), there now appears a temporal element owing to the

introduction of the concept of the stroboscopic timeT defined by (3.14); this

permits "following" one particular transformation starting from a point

(/30,90) by discrete steps 2np.. It is clear, however, that the element At so

introduced has the significance of time, inasmuch as from the very be-

ginning we spoke about "a period 27r" meaning also that 2n is an angle,

which merely amounts to saying that the frequency is one.

The necessity for assuming p. small in this argument is also clear. In

fact, we assumed that the time 2n is small as compared to the total duration

of the process. If p. is small, At satisfies the condition of smallness (with

respect to the total duration) still better, and the replacement of At by dr

is justified on this basis as a reasonable approximation (of order p.2).

= L(P,<p)

(3.16)
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Thus, in this case the smallness of p. is required on the topological basis,

viz.: the subsequent points A^,. . . should be near enough to each

other to be able to make the passage to the limit (3.15) â€”> (3.16) without

too much error.

There is still another point to be mentioned. We have assumed the

transformation of the form (3.12) which can be written also as

($): p' = p + fJ-K'(P,<p); <p' = <p + p.L'(p,<p) (3.17)

This enabled us to obtain the stroboscopic system (3.16) and determine

the fixed point of the transformation as the singular point of (3.16), viz.:

K(p*,<p*) = L(P*,<p*) = 0 (3.18)

The question arises as to how the result obtained from the transformation

(3.17) is related to a more accurate result that results from a more precise

transformation

(%'): p' = P + p.K'(P,9) + n2K"(P,<p); <p' = <p + p.L'(P,<p) + p.*L"(P,<p)

(3.19)

in which the terms with p.2 are taken into account.

It is clear that, instead of the roots p* and <p* of (3.12) we have to find

the roots of equations

K\P,<p) + p.K"(P,<p) = 0; L'(p,<p) + L\p,<p) = 0 (3.20)

The difficulty now is in that K' and L' have been computed by lineariza-

tion, but K" and L" are yet unknown; their determination would require a

complete integration, which is generally impossible. It should be noted,

however, that one can still proceed by the general theory of approximations

even if one does not know the functions K" and L"; as long as these func-

tions are bounded and p. is sufficiently small, the original result: K' = L'

= 0 may be still a good approximation for the full equations (3.20). We

may consider (3.20) as a system of two equations in which p and <p are

functions of p., that is, p(p.) and <p(ji) such that for p. â€”> 0, p(p) â€”> p* and

<p(p.) <p*.

We can impose this condition on p(p) and <p(p) provided the Jacobian

\B(K' + p.K", L' + p.L")\

J =

d(p><p)

# 0

f=0, ,

(3.21)

This is the argument of Poincare which we encountered in Chapter 10.

Developing (3.21) we have

8K' 8K"

dp ^ dp

8Â£

8P

+

8K'

8K"

8<p ^ d<p

8L"

L~P

8L_ 8U_

8<p ^ 8<p

8K'

8L'

8P

8p

8K'

81!

8<p

8<p

e-0

* 0

(3.22)

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 2

0
:3

8
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



STROBOSCOPIC METHOD

401

If this condition is fulfilled, the transformation (3:) in (3.17) gives a good

approximation and the use of (Â£') (equation (3.19)) merely adds a very

small correction so that one can be satisfied with a similar result yielded

by (S). If, however (3.21) is not fulfilled the result yielded by (Â£) may

be quite different from a correct result of application of (Â£'). In such a

case the problem becomes more difficult.

We merely mention this point; in applications which follow we shall be

concerned mostly with normal problems for which (Â£) is sufficient.

4. Application of the stroboscopic method to the Mathieu oscillators

We shall illustrate the application of the stroboscopic method in con-

nection with two oscillators governed by the d.e.

x + (1 + a cos 2/)* = 0 (4.1)

and

x + bx + (1 + a cos 2t)x + cx3 = 0 (4.2)

These are the Mathieu d.e., the first one (4.1) being a linear one and the

second (4.2)â€”nonlinear on account of the term cx3. We assume that

a, b, and c are small quantities of the same order.

This problem has a definite physical meaning, as we shall see in Part

III in Chapter 20 dealing with the phenomenon of the so-called parametric

excitation.

The smallness of a, b, and c is required by the condition of the near

linearity as is generally the case of all analytic methods of approximations.

Consider first the linear case (4.1). Written as an equivalent system this

d.e. gives

x = y; y = â€”x â€” ax cos 2t

Forming the two combinations xx + yy = \(dp/dt)\ xy â€” yx = p(dipldt)

(with p = r2 = *2 + x2 = x2 + y2; ip = arctan (y/x) x = r cos ip y = r

sin ip) we have

-p = â€” ap sin 2ip cos 2r; ^ = â€” 1 â€” acos2^cos2r (4.3)

at at

With the series solutions (3.6) and, in view of the assumed smallness of a,

the approximation of the zero order is again (3.7), that is

Po(0 = Po\ <Ao(0 = 9o - t (4-4)

p0 and <p0 being two arbitrary constants. Substituting (4.4) into (4.3), one

obtains the d.e. for the first-order corrective terms pi(t), ipi{t), viz.:

-rjl = â€” p0 sin 2(<po â€” J)cos2r; = â€” cos2 (<p0 â€” *)cos2r (4.5)
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whence

Pi(2tt) = â€” p0sin 2<p0 I cos2 2tdt = â€” ^2np0 sin 2<p0

Jo

and

p(2n) = Ap = â€” $2na-p0 sin 2<p0 (4.6)

Setting 2na = At, the preceding equation becomes

27 = -^Posin2<p0 (4.7)

This gives the first sequence of difference equations (3.13) for p0, p0',

.... The passage to the continuous variable yields the first stroboscopic

d.e.

^=-lp8in29 (4.8)

In a similar way the second d.e. (4.5) yields <pi(2in) = â€” %2tt cos 2<p0, and

A<p = ^(27r) = - \2na cos 2<p0 (4.9)

This gives the second sequence (3.13) in the form

^=-lcos2Po (4.10)

which, at the limit, yields the second stroboscopic d.e.

%= ~\cos Z< P (4.11)

The d.e. (4.8) and (4.11) give the stroboscopic system in the first

approximation. As no confusion is to be feared from now on, we change

the notations and assign the subscript 0 to the stationary values.

It is observed that the system (4.8), (4.11) has no singular point as

sin 2xp and cos 2<p cannot be zero at the same time.f On the other hand,

from (4.11) it is clear that the (<p) phase has a point of equilibrium <p0 when

cos 2<p0 = 0. This occurs when <p0 = 7r/4 or <p0 = 37r/4 which requires

the investigation of stability for these two values of 9>0, since <p0 is defined

only modulo 277r.

The variational d.e. for (4.11) is:

t^S 1 1

-jjr- = -7 cos 2(<p0 + 89) ~ ^ sin 2<p08<p (4.12)

t We exclude p = 0 which is the position of equilibrium.
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Since cos 2<p0 = 0, sin 2<p0 = Â± 1 and it is seen that the condition of

stability requires that sin 2xp0 should be â€” 1, which means that <p0 = Sn/4

is a stable phase, whereas <p0 = ir/4 is unstable. Thus, from any value the

phase approaches the stationary value <p0 = 7>nj\ and settles on it.

The first stroboscopic d.e. (4.8) then becomes

* = i, (4.13,

which shows that p increases exponentially, that is, without any bound.

It is seen that a linear d.e. of Mathieu sets ip a transformation of the type

(3) in the classification of Section 2 as we have already mentioned.

If one wishes to go beyond the first approximation, one has to use more

terms in the series solutions

= i ""pity, m = i Â«vâ€ž(0 (4.i4)

n = 0 n=0

One can do that by replacing p and i/p in (4.3) by the series (4.4) and

collecting the terms with equal powers of the small parameter a. This

applies also to the trigonometric function. For instance, for the next

approximation the term sin is replaced by sin 2(^r0 + aipj) = sin 2*p0

x cos 2aipx + cos 2ap0 sin 2ai/ix ~ sin 2a[i0 + a2ipx cos 2ip0, and the first d.e.

(4.3) becomes

d(Po + aPi + a2Pi + ...)

dt

â€” â€”a(po + apx + . . .)(sin 2</r0 + a2if>x cos 2ip0 + . . .) cos 2t

likewise for the second equation (4.3). If one collects the terms with equal

powers of a, one obtains two sequences of the d.e. in dpjdt, dpjdt,. . .,

dipJdt, di/p3jdt,. . . by which additional terms in the stroboscopic d.e. can

be computed.

If the parameter a is small, these higher-order approximations are

generally of no special interest in applications inasmuch as they modify but

little the quantitative character of the solution without changing anything

in its qualitative aspect, provided, of course, the condition (3.22) holds,

which is generally true in applied problems.

Only in some special cases difficulties may arise and the first approxima-

tion may fail to give an answer. We have already mentioned that such

difficulty arises when the Jacobian of (3.21) vanishes, in which case the

singular point p = p*;<p = <p* is not an elementary one, which we studied

in Chapter 1. Likewise, when frequency correction is zero in the first

approximation, one is obliged to go to the second approximation for

d<pjdt (Section 5, below).
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In what follows we shall be mostly concerned with normal cases and,

unless stated to the contrary, shall deal with the first approximation only

under the assumption of the smallness of parameters.

As another application of the stroboscopic method, we consider the d.e.

(4.2). It is to be noted that in the standard form (4.1) of the Mathieu

d.e., the term bx does not appear inasmuch as it can always be eliminated

by the well known transformation of the dependent variable. This is

impossible, however, for a nonlinear d.e. of Mathieu and, for that reason,

one is obliged to keep this term. As there are now three small parameters,

it is more convenient to have the series (4.14), where we use p. instead of a.

Following the preceding calculation, we have

jÂ£ = â€”2Jbp sin2 <p â€” ap sin 2^r cos 2t â€” 2cp2 cos3 >p sin ip

M 1 (4-15)

= â€”1 â€” ^ i sin 2^> â€” a cos2 ip cos 2t â€” cp cos4 ip

Since a, b, and c are small of the first order, the zero-order approximation

still remains (4.4). As to the first-order corrections p^t) and ipx(t), they

are given by the d.e.

= â€”Bp0 â€” Ap0 sin 2<p0 cos2 2t

(4.16)

-jf ~ cos 2ip0 cos2 2t Cp0

where A = alp.; B = bjp. and C = cjp. and the terms, whose integration

between 0 and 2n gives zero, are omitted; we assume a, b, c, and p. positive.

We have thus:

Px(2n) = -Po(b-2tt + A sin 2<p0 j*" cos2 2tdtj

= -Â±pq2tt(2B + A sin 29>0)

and therefore p(27r) = pp^n). Setting p(2n) = Ap; 2np. = At, one has

^= ~Po(2B + Asin2<p0) (4.17)

and the first stroboscopic d.e. is

% = -\p[2B + A sin 2<p] = K(p,9) (4.18)
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As to the second, we obtain from the second d.e. (4.16)

0(27t) = A<p = -2n(i-$[A cos 2*p0 + fCp0]

that is,

2; = - \ (A cos 2<po + I Cpo)

The second stroboscopic d.e. is

^ = -1 p cos hp + \ Cp] = L(P,9) (4.19)

The d.e. (4.18) and (4.19) form the stroboscopic system corresponding to

(4.2). We change the notation, attaching the subscript 0 to the co-

ordinates of the singular point which exists if the terms in brackets of

(4.18) and (4.19) can be equated to zero simultaneously.

From (4.18) we have

smhp,= -^ (4.20)

and, as |sin 2<p0\ < 1, one must have 2B < A.

From (4.19) follows

3C

cos2<p0 = -â€”Po (4.21)

From sin2 2<p0 + cos2 2<p0 = 1, we obtain

Po = ^VA*-4B* (4.22)

The reality of p0 imposes again the condition 2B < A.

It is necessary to ascertain also the stability of the stationary values p0

and <p0. The simplest is to write the characteristic equation in the form

(Chapter 1)

S2 - (K, + LJS + (K^ - K^p) = 0 (4.23)

where Kp, K9, Lp, and Lv are partial derivatives of the functions K(p,<p)

and L(p,<p) in (4.18) and (4.19), into which the stationary values of po and

<p0 are replaced after the differentiation. Carrying out this calculation,

we have

K, = 0; K9^ A (A2 _ 452); L, = -| C; = -B

and (4.23) becomes

S2 + BS + $(A2 - 4fl2) = 0 (4.24)
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The singular point is not a saddle point if 2B < A but is a stable singularity

(either a node or a focus), since B > 0.

We conclude that the condition

2B < A (4.25)

is the necessary and sufficient condition for the existence of a stable singular

point in the (<p) planef and, therefore, for the existence of a stable periodic

solution of the d.e. (4.2) with amplitude p0 given by (4.22), and the phase,

by (4.20). The physical significance of the d.e. (4.1) and (4.2) will be

explained in Chapter 20 in connection with the phenomenon of the so-

called parametric excitation, as was just mentioned.

5. Application of the method to autonomous systems; second

approximation

The stroboscopic method is particularly advantageous in connection with

nonautonomous systems inasmuch as it permits replacing a difficult

problem of stability of a periodic solution (Chapter 13) by a much simpler

problem of stability of equilibrium (that is, of a singular point).

In cases when an autonomous system has no frequency (or period)

correction in the first approximation, the second stroboscopic d.e. reduces

to d<pjdr = 0 and in such a case it is necessary to go to higher approxima-

tions in order to have a more precise representation of what happens in the

stroboscopic plane.

As an example we consider the van der Pol equation

x + n(x2 - l)x + x = 0 (5.1)

With the variables p and ip, the equivalent system is

p = pp(l â€” cos 2</r) â€” \p.pH\ â€” cos 4</r)

, ... (5-2)

</j = â€” 1 + \p. sin 2ip â€” p.p(\ sin 2ip + Â£ sin 40)

Since p. is small, the approximation of the zero order remains the same as

before

Po(0 = Pol 0o(0 = <Po ~ * (5-3)

where p0 and <p0 are integration constants.

The d.e. for the first-order corrections Pi(t) and ip^t) are

Pi = Po(1 - iPo) ~ Po(cos 2^0 - ip0 cos 4^â€ž) (5.4)

f The above conditions result from the fact that J = 8(K,L)/d(p,<p) jt 0.
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we have thus by integration

Px(2n) = Po(1 - Â±Po)2n (5.5)

since the second term on the right-hand side of (5.4) cancels out in inte-

gration between 0 and 2n. Since p(2tt) = /xp1(27r), setting p(2n) = Ap

and 2np. = At, we have a difference equation

^ = Po(l-^o) (5.6)

which permits calculating p0', p0",. . . after each interval 2n. If one passes

to a continuous variable by assuming the small quantity At as <It at the

limit, one obtains the stroboscopic d.e.

3M1-!') (")

which shows that there is a stationary value p* = 4 (that is, r* = 2) which

is the well known result.

We apply the same procedure to the second equation (5.2) which yields

0i = i sin 20o - p0(i sin 2^0 + \ sin 4t/r0) (5.8)

where ip0 is given by (5.3). It is clear that here ^^tt) = 0 since the

trigonometric functions cancel out in the integration between 0 and 2n.

In the first approximation we have thus <p\2n) = >p0(2tt) + pAp^n)

= i/j0(2tt); whence A<p(2n) = 0, since ip is determined only modulo 2tt.

This means that the variation of ip (that is, in our previous notations: q>)

is zero over one period which one can write formally as A<p/At = 0 or, at

the limit, as

g = 0 (5.9)

Thus, if one limits the calculation to the first approximation only, the

stroboscopic system is given by (5.7) and (5.8).

In the stroboscopic plane (<p) the amplitude is p = p* = 4, but the

phase remains arbitrary. In other words, any point on the circle p* = 4

may be a fixed point. This result is, however, only approximate inasmuch

as the first approximation does not give yet a complete information as

regards the second equation (5.2).

For that reason, it is useful to go to the second approximation. We

start, therefore, from a more general form of equations (5.2) by replacing

p by p0 4- p.Px and ip by ipo + and keeping only the terms of the order

p.2 (that is, neglecting the terms with p.3, p.*,. . .).
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(5.10)

A simple, but somewhat long, calculation results in the d.e.

â– Â£ = /*tPoO - ipo) - Po cos 20o + ip02 cos 40o]

+ f*Â«[PiO - iPo) r Pi cos + tydpi s>n 20o

+ iPoPi cos 40o - po2^! sin 40o]

^ = - 1 + p-[i sin 200 - Â£p0 sin 20o - |p0 sin 40o]

+ M2[W1 - iPo) cos 20o - }Px sin 20o - \p^x cos 40o

- iPi sin 40o]

The zero-order approximation remains the same:

Po(0 = Po! M*) = 9o - t (5.11)

The first-order correction p^r) is given by the d.e.

^ = Po(l - \ Po) - Po cos 20o + ^ po2 cos 40o (5.12)

where the first term must vanish in order to avoid a secular term; this

gives po = 4 as previously; we have thus

= -4 cos 2(,p0 - r) + 4 cos 4(<p0 - t)

and the integration yields

Px(t) = -2 sin 20o - sin 40o + Cx (5.13)

In a similar manner one obtains

MO = - i cos 20o - i cos 40o + C2 (5.14)

The integration constants Cj and C2 are determined by the conditions:

Pi(0) = 0x(0) = 0. For the second-order corrective terms p2(t) and

02(/) we have the d.e.

^ = â€” Pi + Pi cos 20o + 80x sin 20o + 2px cos 40o â€” 160j sin 40o

(5.15)

It is seen that the first equation (for p2) has no secular terms; therefore

^ = -0! cos 20o - | pj sin 20o - 20x cos 40o - g Pi sin 40o
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in the integration between 0 and 2n, one has /o2(2tr) = 0 and, for similar

reasons from (5.13), Pi(2n) = 0; thus p0 = 4 holds, at least, up to the

order p.3. The situation is different, however, for the second equation

(5.15) where, in the first term, appears cos2 2ip0, in the second, sin2 2<p0,

etc., which results in

A9 = ,p(27r) = n*a + 0(^3) (5.16)

There appears a small positive term p.2a which accounts for a slow rotation

of the stroboscopic point on a circle of radius p0 = 4 with angular velocity

In the first approximation the stroboscopic image of the van der Pol

equation is a circle of radius 4 with an arbitrary phase (in view of d<p/dt = 0)

but, in the second approximation, it is the same circle but traversed with a

very small angular velocity </i2. We are thus in case 2 (Section 2); there

is no fixed point in the (9) plane but such a point exists in the (9') plane

rotating with respect to (9) with average angular velocity p.2a(t). This is

again an approximation inasmuch as a(t) fluctuates between some limits.

6. Further properties of the stroboscopic transformation

Case 5 (Section 2) may also occur in some problems. As an example,

assume that the stroboscopic system is of the form

^ = A(P) + p sin 9; ^ = C + D cos 9 (6.1)

uT UT

where B, C, and D are positive constants: C > D and B sufficiently small;

A(p) is a polynomial in p with a constant term, say A*.

Since C > D, d<pjdr keeps the same sign and 9 varies continuously in

the same direction, although with a variable velocity d<p/dr. The trigo-

nometric functions sin 9 and cos 9 vary between the limits + 1 and â€” 1 and

the last term of the polynomial A* + B sin 9 oscillates between the values

A* + B and A* â€” B (we assume for simplicity: A* > B). The oscilla-

tion of the last term (free of p) in the polynomial A(p) produces an oscilla-

tion of its roots; if the equilibrium point is at some root, say p0, this root

will oscillate between some limits around its value p â€” p0. If one had

B = D = 0, this would be case 2 (Section 2) and a fixed point would

exist in a plane (9') rotating with respect to (9) with d<pjdr = C. With

B # 0 and D / 0, both amplitude and phase are now modulated so that

in the stroboscopic plane there will be a small trajectory around a fixed

point; this trajectory is not necessarily a closed curve but may be of an

ergodic nature, that is, passing as near as desired to some point in this

neighborhood if the time is sufficiently long; only when the amplitude and
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phase have modulations of commensurate periods will the curve have a

re-entrant path. Clearly, the ergodic case characterizes an almost

periodic solution (Chapter 12).

Two additional remarks are noteworthy. For the sake of simplification

we shall call the original d.e. (either (3.1) or (3.3)), the system (A) and the

corresponding stroboscopic system (3.16), the system (B).

1. To a given (A) corresponds always one and only one (B) but the

inverse is not true; to a given (B), in general, corresponds an infinity of

systems (A). This is due to the fact that the stroboscopic transformation

is not a topological one (that is, 1:1, continuous). In fact, to an arc of a

trajectory in the (ip) plane corresponds just one point in the (<p) plane.

2. It may happen that (B) exhibits the presence of more than one stable

singular point, which shows that (A) has also more than one stable periodic

solution or, topologically, has more than one stable limit cycles. This, as

we saw, is quite possible, for instance, in the case of the polycyclic structures

(for example, of a "concentric" type); only one of them is "actual," the

others being only "virtual" (Chapter 3). A situation of this kind will be

encountered in (Chapter 23).

It is to be mentioned that the property of the stroboscopic plane (<p)

permits one also to have an insight into the order of multiplicity of periodic

solutions for three major classes of oscillatory systems, viz.: (1) harmonic

oscillator, (2) autonomous systems (for example, a van der Pol oscillator)

(3) nonautonomous systems (for example, nonlinear non-autonomous

oscillator of Mathieu, Section 5).

As any fixed point in the plane (<p) (or in the plane (<p')) characterizes a

periodic solution of the original system, there is a double infinity of solu-

tions of (1) which is merely a different way of saying that periodic solutions

of the harmonic oscillator depend on two arbitrary constants of integration.

First, there is a continuous family of circles of radius p and, on each of these

circles, there is another continuous family of solutions differing from each

other by the phase. The double infinity of solutions is represented by the

infinity of fixed points in a finite region of the plane (<p).

As regards (2), the periodic solutions reduce here to a simple infinity

(infinity of points on a closed curve) since p (or r) ceases to be arbitrary and

is determined by the d.e.; as to the phase, it is still arbitrary so that, on the

circle p0 = 4 (or r0 = 2) (in the case of the van der Pol oscillator) there is

an infinity of possible periodic solutions differing from each other only by

the phase.

Finally for (3), the number of periodic solutions shrinks to one, rarely

to two and, generally, only to a finite number. In the case of a nonlinear

Mathieu oscillator we established the existence of one single periodic

solution with amplitude p0 and phase <p0. This is due to the fact that, in
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case (3), both amplitude and phase are determined by the d.e. It is also

possible that there is no periodic solution at all, as was found in the case of a

linear Mathieu oscillator.

Summing up, the periodic solutions which form a double infinity for (1),

and a simple infinity for (2), shrink to isolated solutions (or no solutions)

for (3). It must be noted that this classification relates only to mathe-

matical solutions. In physical applications these considerations become

more or less evanescent inasmuch as "multiplicity of solutions differing

from each other only by the phase" does not have any special physical

meaning unless it is compared to some fixed reference phase. Thus,

periodic solutions of nonautonomous systems are exceptions, whereas

those of autonomous and conservative systems are the rule.

One can also say that in case (1) neither the amplitude nor the phase are

determined by the d.e.; in case (2) only the amplitude is determined by the

d.e. but not the phase; in case (3) both amplitude and phase are determined

by the d.e.

The expression "amplitude is determined by the d.e." is clearly equiva-

lent to the previously defined concept of "orbital stability," whereas the

expression "phase is determined by the d.e." is equivalent to the non-

autonomous character of the system in question; in fact, for an autonomous

system the translation property applies and the phase is indeterminate.

7. Existence and stability of the fixed point

In Section 3 we used the argument of the transformation theory and

indicated the form (3.12) of the transformation in which the quantities <px

and ^x appear as increments (of the first order since we are concerned here

with the first approximation) of p and i/j during the time 2n. After this we

introduced the "stroboscopic time" defined by its element At = 2np.

which enabled us to obtain this result in the form of two difference equa-

tions (3.15); this, in turn, resulted in the stroboscopic d.e. (3.16) through

the obvious passage to the limit: Ap^-dp; A<p^-d<p; Ar-^fdr. In our

optical analogy this is equivalent to the persistence of vision which assimi-

lates a discrete sequence of points Ax, A2,. . . to a continuous curve C".

Once the stroboscopic system (3.16) is established, one can investigate the

existence and stability of its singular point instead of speaking about the

fixed point of the transformation in the (ip) plane. In this manner there

appears a convenient "short cut" which is useful in applications, as we

shall see in a number of cases in Part III.

This argument contains, however, a certain heuristic element by which

a purely spatial transformation (3.12) is ultimately adapted for a temporal

representation appearing in the stroboscopic system (3.16).
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It is possible, however, to use directly the transformation theory as was

done by Gomory3 whose proof follows.f Given a differential system:

x = y + fif(x,y, t, fi); y = -x + ng(x,y, t, fi) (7.1)

where / and g are analytic functions of the indicated variables containing a

small parameter p.; the functions / and g are periodic in t with period 2n.

For p = 0 these d.e. become those of the harmonic oscillator.

Following Poincare's theory (Chapter 10), we can assume a solution of

the form:

*o>Jo> /*) = <po(/, *o>Jo) + WiC *o> Jo) + ^<Piit, *o> Jo) + . . .

(7.2)

y(t, *o,y0, = W> *o. yo) + *o. jo) + /*VÂ»(*. *o. jo) + . â–  â– 

where x0andy0 are the initial conditions. Since (7.1) for fi = 0 represents

the harmonic oscillator, we have

9>o(2"-. *o> Vo) = *o; <f>o(27r> *o> Jo) = Jo (7-3)

Setting t = 2tt in (7.2), we have:

x(2n, x0,y0, /x) = x0 + Wx(2^, x0,y0) + px\2(2tr, x0,y0) + ...

(7.4)

y(2*, x0, y0, ix) = y0 + fuf>^n, x0, y0) + /xV2(2^, *0, Jo) + . . â– 

These expressions give the position of the representative point R after

the time 2n. Consider now the stroboscopic system (3.16) which can be

written as:

^ = g(2Wo); (7.5)

In fact, by their very nature, the stroboscopic d.e. assimilate the discrete

variation of the initial conditions after each period 2tt to a continuous

change of these initial conditions; this approximation is possible, as was

mentioned previously, when one period 2n is small as compared to the total

duration of the process which we assume.

One has to prove that, if the point (x,y) of (7.5) is a stable singular point

(a node or a focus), then (7.1) has a stable periodic solution: x(t, x0(jj),

Jo(m)> m); y(t, *â€ž(/*), y0(ji), p) such that

(*o(/*)> JoO*)) (&>$) for ^ -> 0 (7.6)

3 R. Gomory, unpublished communication to the author, 1956; see also M. Urabe,

J. Science, University of Hiroshima, 1956; Masataka, Yorinaga, ibid., 1960.

t Notations below are different from those in the preceding sections but no

confusion is to be feared.
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One can specify this by writing:

9i(27r> *o>Jo) = a(xo ~ x) + b(y0 - y) + .

^i(2^. *o>Jo) = c(xo - x) + d(y0 - y) + . .

(7.7)

where the nonwritten terms are, at least, of the second degree in x0, y0.

We wish to consider the case of a positive damping for the system

a b

c d

containing only linear terms and

# 0; this means that the root A

of the characteristic equation is of the form A = a + ijS with a < 0.

For periodicity one must have

x(2n, x0, y0, /x) - x0 = 0; y(2n, x0, y0, fi) - y0 = 0 (7.8)

This may occur for such a special point (x0(jx), y0(jx)) which satisfies (7.8).

The condition for this is

a(x0 - Â£) + b(y0 - j>) + /*p2 = 0

c(x0 -Â£) + d(y0 - y~) + ^2 = 0

Under this condition one can assert that there exists a point

x0(ji) â€” Â£ = aj/x + a^2 + . . .

joM - y = + + . . .

for which (7.8) holds and for /x = 0; this point is:

(*o>yo) = (x,y)

(7.9)

(7.10)

(7.11)

This establishes the existence of a periodic solution.

We investigate now the question of stability. In the neighborhood of

the fixed point (x0,y0) the transformation is:

(x â€” x0) = A(x0 â€” x0) + B(y â€” y0) + higher-order terms

(y ~ Jo) = C"(*o _ *o) + D(y - Jo) + higher-order terms

(7.12)

It is clear that if the modulus |A| of the root A of the characteristic

equation

\A - A B

C D - A

= 0

is less than one, a point near to (x0,y0) will approach it under the effect of
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repeated transformations; if |A| > 1, this point is unstable. In fact, we

have

x(2n, x0, y0, n) = x0 + w^2in, x0, y0) + /xx0, y0) + . . .

x = x + ^i(2n, x, y) + n2<p2(2n, x,y) + . . .

thus

x(2n, x0,y0, n) - x = (*0 - x)

+ ^-*) + ^r (*-*) + .-.1 +/**[ ] + ... (7-13)

+ 0(m) = a + Oiji)

But

0*

+ 0(,x) = 6 + 00*)

since x â€” x, y â€” j> = 0(/x). Hence

x(2n, x0,y0, n) - x = (1 + fia + O(/x2))(*0 - x)

+ \pb + O(m2)](^0 - jf) + (*. - *,y0 - y)t (7.14)

M2^. *o.:vo. p)-y = + O(^2))(*o - *)

+ [1 + yd + O^)]^ - jO + (*0 ~x,y0- y)t (7.15)

The characteristic equation therefore is

\l+pa+ Ofa*) -A fib + 0<jl2)

fu: + 0(/*2) 1 + lid + 0(M2) - A

If p ^ 0, one can write it as

= 0 (7.16)

a + OQx) - J- - b + OQi)

c + 0(/x) d + Ofa) -

A - 11

(7.17)

If fi -> 0, the coefficients approach the values: a, b, c, and d. On the

other hand, by our hypotheses (A - 1)//x = 8(/x) + iy(/x), where 8(/x)->a

< 0; yfc)->0and

A = 1 + M[8(/x) + ,>(/*)]; A = 1 + ,i[80*) - iyO*)]

AA = |A|Â« = 1 + 2^80*) + *xÂ«[8Â«0*) + Y2M]

= 1 + ,x{28(M) + M[8ty) + V V)]}
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Since we can choose fx. < fi0, <p(ji) < a/2 and then choose /x so small that

f*[8V) + y2M] < lÂ«|

the term in brackets will be negative and

|A| < 1 (7.18)

This means that for fi sufficiently small and positive, (x0(p), y0(p)) 1s a

stable point.
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Chapter 17

GENERALIZATION OF NYQUIST'S DIAGRAM

FOR NONLINEAR SYSTEMS

1. Introductory remarks

Although the Nyquist diagram is probably sufficiently well known to need

no further elaboration here, it is useful to outline its principle as an aid to

extending its use to nonlinear systems.

This diagram describes the behavior of a linear system with a feedback

when the frequency of the system varies from 0 to oo; its principal purpose

is to establish the condition of stability.

If one assumes first that the system in question is open (that is, the feed-

back connection is removed), the application of a harmonic input signal:

xin = exp (jot) results in the corresponding output signal

*ou< = A(w) exp [jwt + yH] = A(w) exp [<p(w)]xin (1.1)

This means that *oo< is a certain vector (in the complex plane) determined

by the known laws of the alternating current theory.

If the feedback connection is restored, that is, the system is closed, the

effect of the retroaction may either increase or decrease the input signal

and this, in turn, will produce either increasing or decreasing oscillatory

phenomenon at the output.

It is useful to introduce the concept of stability by certain a posteriori

considerations. Suppose that we open the system when it is in a steady

oscillatory state. In the closed condition one has:

*out = ~*in = if(,5) exp (/Â«0 (1-2)

One can consider this condition as a threshold of stability for which the

energy introduced through the feedback is just sufficient to maintain

oscillatory level, provided one does not exceed the limit

*oUt/*,n = -1 (1.3)

416
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NYQUIST'S DIAGRAM FOR NONLINEAR SYSTEMS 417

which is the expression for "closing." This simple physical consideration

permits formulating the following criterion due to Nyquist.

If a linear oscillatory open system is stable and if its amplitude-phase

characteristic (1) does not include the point (â€” 1 ,j0) of the complex plane,

the corresponding closed system is also stable when frequency <o varies in

the interval 0, oo.

It has been shown that for 0 < <o < oo the path of the vector (1.1) is

always a closed curve and that the above theorem has a definite physical

meaning. In fact, if the retroaction (feedback) from xoux is so great that

the phenomenon becomes cumulative, there is no equilibrium in the above

sense. In terms of the engineering practice the Nyquist criterion is the

formulation of the concept of the regenerative amplification which can exist

only up to the limit beyond which the regenerative amplification becomes

self-excitation and there is no possibility of using the linear theory.

We shall not give here the proof of Nyquist's theorem because it can be

found easily in standard textbooks; it is sufficient to say that it is based on

the application of Cauchy's theorem (in the complex domain).

It is seen that as far as fundamentals are concerned the situation seems

to be somewhat obscure; the Nyquist diagram is based on the theory of

the complex variable whereas it is desired to adapt it to the real domain

where everything, beginning with singularities, is different from the

complex domain. Moreover the concept of the limit cycle which is

fundamental for nonlinear oscillations (the real domain) simply does not

exist in the theory of d.e. in the complex domain and other definitions and

concepts.

However, occasionally in applications physicists or engineers use

certain algorithms without bothering about their formal justifications. If

the thing "works," this is considered as correct procedure and it is up to

mathematicians to justify it formally.

Apparently something of this kind occurs here. Under certain assump-

tions of a somewhat postulational character it can be shown that this

purely linear tool, the Nyquist diagram, can be "twisted" so to speak into

the nonlinear domain at the cost of certain additional complications. In

this manner practically all that is known from the standard nonlinear theory

can be obtained also from the generalized Nyquist diagram. The whole

question is then: Is this worth while? In fact, we shall see that the

practical difficulties, such as constructing a family of Nyquist diagrams

(instead of one single diagram needed in the linear domain), are so great

that it seems to be simpler to follow the general theory because the principal

advantage of the diagramâ€”its simplicityâ€”is lost on account of these

complications.
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QUANTITATIVE METHODS

Although the development of analytical methods renders the use of the

generalized Nyquist diagram somewhat obsolete, brief mention of these

attempts is still of interest. The approach to this generalization can be

made if one tries to establish the difference between what is linear and what

is nonlinear from a physical point of view. The fundamental idea is that

in all nonlinear oscillations the amplitude and the frequency are inter-

related, whereas in the linear case they are independent of each other. If

one admits this as a (somewhat hidden) postulate, one can formulate

(heuristically) the following theorem:

In the nonlinear case, instead of one single Nyquist diagram (as in normal

linear cases), there exists a continuous family of such diagrams depending on

amplitude as parameter.

This may be regarded as a plausible assumption from which one starts

the argument without attempting to analyze the theoretical foundations.

This physical approach appeared independently in the work of Theo-

dorchik1 (USSR) and Blaquiere2 (France), the former preceding the latter

by about five years; the two developments follow different procedures but

the result is ultimately the same. The work of Theodorchik is illustrated

by numerous examples and, in its theoretical part, it uses the data of the

first approximation with which we are now familiar. In the development

of Blaquiere more attention is attached to the theoretical part which is

presented in a form of an operational method but, unfortunately, the

applications of this method are less worked out and it is difficult to judge

the merits of this method.

For these reasons we shall outline in some detail the procedure of

Theodorchik and shall mention the second approach briefly in the last

section.

It must be noted that these attempts to generalize the Nyquist diagram

for nonlinear applications should not be considered as an elaboration of a

new method but rather as a representation in a special phase plane of the

variables: a (amplitude) and w (frequency), instead of the conventional

phase plane. This accounts for a somewhat special form of variational

equations; thus, for instance, one comes across the question of stability of

the frequency (instead of the phase), etc. In other words, nothing essenti-

ally new is gained but some known results appear differently due to this

special representation.

It is to be noted also that the principal advantage of the usual (linear)

1 K. F. Theodorchik, Auto-oscillatory Systems (in Russian), Moscow, 1948.

1 A. Blaquiere, J. de Phys. et Radium (8), 13, 1952, Mecanique non line'aire,

Memorial des Sciences Mathematiques CXLI, 1960.
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NYQUIST'S DIAGRAM FOR NONLINEAR SYSTEMS 419

Nyquist diagram, its simplicity, is somewhat lost because of this additional

parameter a, the amplitude which introduces certain complications.

2. Theory of generalized Nyquist diagrams (Thoedorchik)

Theodorchik1 approaches the question of Nyquist's diagram from a

purely physical point of view, as was mentioned previously.

The usual treatment of a linear system with a feedback is reduced to a

four-pole scheme, the stability of which can be predicted by open-circuit

measurements, as was mentioned in Section 1.

If one applies to the input terminals of a four-pole scheme an electro-

motive force u = Re (u0e'p')f from a source whose internal impedance is

equal to the output impedance of the four-pole scheme and measures the

amplitude v0 and the phase ip at the output terminals (always in open cir-

cuit with the feedback removed) for 0 < p < oo, where/> is the frequency,

these open circuit data are sufficient to predict the performance of the

four-pole scheme when the feedback connection is restored.

The measurements permit thus determining two factors: (1) amplifica-

tion factor (or "gain"): fi(p) = (v0lu0); and (2) the phase angle ip(p).

These two quantities can be reduced to one if one defines the complex

amplification factor

n*(p) = Kpy*ip) (2.i)

If p varies, p*(p) describes a locus in the complex plane and, from the

known relation in the circuits ^x*(0) = /x*(oo), it is noted that the curve

l**(p) is closed when p varies from 0 to oo.

This results in the Nyquist theorem:

If the closed curve (i*(p) contains the point /x = 1,J <p = 0 in its interior,

the four-pole system (with feedback) is statically unstable. If this point

(1,0) is outside the loop n *(/>), it is stable.

Theodorchik is not interested in the manner in which the Nyquist

diagram was originally obtained but considers rather its physical signifi-

cance which enables him to formulate immediately a corresponding

interpretation, namely: "statically unstable" means "self-excited" and

"statically stable," on the contrary, means: "not self-excited."

Thus all underlying mathematical considerations, such as the complex

1 See footnote page 418.

t We conserve here Theodorchik's notations.

J We use here Theodorchik's notations which are somewhat different from those

in use in the U.S.A.; for unstance, instead of writingfi = â€” 1, one writes here

f* = +1, which does not change the meaning of the following conclusions.
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domain versus the real domain, etc., are completely by-passed and the

theory starts from the physical concept of the Nyquist diagram under the

above interpretation.

The next step in the argument is to introduce the concept of non-

linearity by postulating that in this case, instead of one single diagram,

there exists a family of such diagrams depending on the amplitude a (or

u 0) as a parameter. With this heuristic assumption the nonlinear coefficient

/x* will have the form

M*(Â«o>/>) = KUo,py*<u*p) (2.2)

Still another step in this argument is to introduce a distinction between

the "soft" and the "hard" systems which, in the analytical theories, is

characterized by the degree of the polynomial appearing as the coefficient

of x. In this interpretation a "soft system" is characterized by the

property: p(u0,p) â€”> 0 as w0 increases. In such a case the family of closed

loops p.* is contained inside a limit loop fi*(0,p) and the criterion of the

static stability (no self-excitation) is that the point p. = 1, ip = 0 is outside

the loop fi*(0,p). The condition of stability can be specified as follows:

the system is stable for all frequencies for which ^(0,p) = 0, p = a>,

corresponds to/x(0, <o,) < 1. If this condition is not fulfilled (that is, if the

point (1,0) is inside the loop fi*(0,p) the system is unstable.

The next step in this "fitting" of the two-parameter Nyquist diagram

into the known facts of the theory of nonlinear oscillations is to consider

more carefully the mechanism of self-excitation. It is noted that the limit

diagram for u0 ~ 0 (that is, the point of its intersection with the real axis)

may be regarded as the unstable singular point of the analytic theory.

In this interpretation the increasing amplitudes during the transient

period of self-excitation are equivalent to the motion of the representative

point R toward the origin traversing gradually the family of Nyquist's

loops. This transient period ends when R reaches the point (1,0) on the

px axis (in reality this approach is asymptotic so that the above statement

means: close enough to the point 1, 0).

Once this point is reached, which means the stationary state, the

amplitude a0 and the frequency w0 are determined by two equations

#*o>a>o) = Â°; Mao>wo) = 1 (2.3)

and the self-excitation from rest is then given by the condition

fi(u0,p) = M0.a>o) > 1 (2.4)

It is seen that the result of this "fitting" the known phenomena of

self-excitation into the Nyquist diagram representation is reminiscent of

familiar features of the analytic theory. In fact, equations (2.3) determine
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NYQUIST'S DIAGRAM FOR NONLINEAR SYSTEMS 421

the conditions of the stationary state for which the phase <p and the

coefficient of amplification p. acquire, respectively, the values 0 and 1; and

the condition (2.4) merely states that, for a = 0, the coefficient of amplifica-

tion is in the region where the amplitudes grow. The difference here is

the fact that, instead of the coordinates: amplitude and phase of the

analytic theory, these "coordinates" are: amplitude and frequency. This

involves, obviously, a different graphical representation.

It is apparent that all this does not constitute any theory properly

speaking, but merely amounts to an interpretation of the two-parameter

family of Nyquist's diagrams on the basis of known conclusions of the

analytic theory.

The fact that the frequency appears now as a parameter raises a new

question, namely: the stability of the frequency. If ip > 0 during the

transient process of self-excitation and the phase angle increases, the

frequency also increases; conversely if ip < 0 and </< increases, the frequency

decreases. The question of stability of the frequency plays an analogous

role as stability of the phase in the analytic theory (for example, in the

examples of the stroboscopic method, Chapter 16).

As regards the stability of the amplitude, it reduces to the criterion

(g) < 0 (2-5)

which again reminds us, at least formally, of the criterion of stability

. *>o)<0

which we encountered often in the theory of the first approximation (for

example, Section 6, Chapter 14).

It is to be noted that the topology here is peculiar to the Nyquist diagram

but, otherwise, the procedure is essentially the same as that in the classical

theory.

For instance, if one takes the stroboscopic method as a kind of a com-

parison system, we have the stroboscopic d.e.

dÂ£ = R(P>9); dÂ£ = 0(P,<p) (2.6)

and the condition of the stationary state: p0, <p0 is obtained from two

equations:

R(Po,<Po) = 0; <P(Po,<p0) = 0 (2.7)

In the Theodorchik's adaptation of Nyquist's diagram for the nonlinear

cases, the stationary state is given by equations

<f>(ao>wo) = Â°; Mflo.wo) = 1 (2-8)
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from which the stationary state a0, w0 is determined in a similar manner.

One sees that the known results guide this identification but the results

remain in terms of the Nyquist diagram. If n does not vary monotonically

with Â«0 but follows, for instance, curve A, Fig. 17.1, the results are

different and lead to the interpretation of a "hard" self-excitation (Fig.

17.2). In such a case there are two limiting Nyquist loops L and L'

representing /**. If the point (1,0) is inside the smaller loop L shown in

shading, the self-excitation occurs as previously explained; the point R

approaches first the boundary and from there settles at the point (1,0). If

however, the point (1,0) is in the region between the two loops, the state

of rest is stable but, if an impulse transfers R and L', the condition of

self-excitation occurs in a previously described manner and this gives the

interpretation of a "hard" self-excitation.

3. Stationary state of self-excitation

The identification of conditions of stationary state with equations (2.8)

of the generalized Nyquist diagram permits applying this procedure to the

investigation of the various nonlinear phenomena which are treated in

Part III by the general theory.

Assume, for instance, that the complex coefficient ^* is of the form

Figure 17.1

Figure 17.2

p* = n(cos ip + i sin ^) =

gi + igi = giri + g2?2 +./(>. ig2 ~ r&gi)

(3.1)

where g and r are known functions of amplitude, frequency and, possibly,

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 2

1
:0

2
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



NYQUIST'S DIAGRAM FOR NONLINEAR SYSTEMS 423

some other parameters. We look for the points of the intersection of the

curves /x* with the real and imaginary axes.

The real values of [x* are obtained as roots of equation

MM-'ftTff-O (3.2)

and the imaginary ones are determined by the equation

^=â‚¬Â£Â±1* (3.3)

'1 T '2

The modulus is given by the expression

|M*| = V(rlgt ~ TjgxY + i?lgx + ^3 4j

fx2 + r22

Theodorchik applied this method to a number of problems and found,

practically, all results that have been established previously by analytical

methods, at least as far as the first approximation is concerned.

As an example of this procedure consider an ordinary electron-tube

oscillator with an inductive coupling between the anode and the oscillating

circuits. In the notations of Theodorchikf the d.e. is:

x + 28* + a>02x = (3.5)

where /a is the anode current, M the coefficient of the mutual inductance

of the coupling, <o0 the frequency of the oscillating current, and S the

decrement.

Using the previous notations, the grid voltage is

u = Re u^PÂ» (3.6)

If one takes Ia in the form Ia = S0u â€” $S2u3, (3.5) becomes

x + 28* + wn*x = -ipUoMw0\S0 - iSj/t^P' (3.7)

keeping on the right-hand side only the fundamental frequency.

t Theodorchik prefers to write the van der Pol equation with a soft characteristic

in the form x + [28 + M<o0*S0 â€” M<a^StX^x + oo0*x = 0. In terms of

electrical circuits 8 = R/2L is the decrement of a linear circuit. Then, if one

defines 80 = 8 + ^Moo^S,,, the van der Pol equation with these notations becomes

* + 2(80 + 8^*)* + <o01x = 0

where 8, = Afa>^S,. We shall not use these notations later and it is sufficient to

consider 8 and 8, as some constants because this is rather irrelevant to the argument

in this i
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One looks for a solution of the form: x = x^'"1. After the substitution

of this expression in (3.7), one gets

n*(Â«op) = *o/mo = - iÂ«W)]/[(<V - p2) + 2ip8]

/* = [-MPoj0\S0 - iS^]/^W + P

sin^ = (w02 - p2)/V ; cost/f = -Ip8jV;

V = V(<V - P*Y + (W

One obtains thus for frequencies the following equations

/>(oj02 â€” />2) = 0; hence, either/> = 0 or p = w0

(3.8)

(3.9)

Figure 17.3

to which correspond the real values of /**

KÂ«0.0) = 0; MK<*o) = -Mw0%S - iS2Wâ€žÂ«)/2S (3.10)

From the expressions g^ + g2r2 = 0 and (gjr^a = -(gjr^a = Ag,

where Qk is the frequency corresponding to the intersection of the loop

with the imaginary axis, one finds p = Â£2 = 0 and, therefore, An = 0.

This gives the diagram shown in Fig. 17.3. It is seen that, for M > 0,

the feedback is negative and oscillations are impossible; for M < 0 the

self-excitation is possible.

The condition (2.4) in this case is

|Af |Â«0Â«S/28 > 1
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and from (2.3) one obtains the equation for the stationary amplitude

[\M\w0\S0 - i-W)]/28 = 1

fl0 = 2V[\M\w0*S0 - 28]/|M|<VS2 = VS0/S (3.11)

For a hard self-excitation one has to take the nonlinear characteristic

h - S0U + - \S4U*

One then obtains a diagram in Fig. 17.2 and, as we mentioned previously,

according to the location of the point (1,0) one has either soft or hard

self-excitation.

4. Interaction of nonlinear oscillations

Another interesting application of the generalized Nyquist diagram

relates to the impossibility of a biharmonic state in nonlinear systems with

soft characteristic. This phenomenon has been discovered by van der

Pol and we give a more detailed investigation of this question in Chapter 23

by the classical theory. We mention it merely as an example of the use of

the generalized Nyquist diagram.

Let us assume first that the condition (2.4) of self-excitation be fulfilled

for two frequencies: wx and w2. Under this assumption one has

fi(0,wi) > 1 and /x(0,w2) > 1 (4.1)

In order to see whether these two frequencies can coexist, we assume

that

u = ax cos Wjt + a2 cos a>2f (4.2)

and that there is no rational ratio between wx and a>2- It is sufficient to

assume a soft characteristic: Ia = Su â€” $S2u3 and calculate the real

coefficient of amplification for both cases.

Omitting the intermediate calculations one obtains the following

expressions

rt*>Â» ax, fla) = \M\[S - iS^"S + 2V)]/2LC[8 + 8x ^1

/*(Â«â€ž = W\[S - iS2(2axÂ» + at*)]l2Lch + 8,~

L vx ~ w2 J

(4.3)

where v2 and vi2 are certain constants (characterizing free frequencies of a

system with two degrees of freedom), and 8 and 8x are corresponding
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decrements. From the mere inspection of formulas (4.3) it is seen that the

existence of the asynchronous frequencies (that is, those for which the ratio

a>1/oj2 is an irrational number), spoils the conditions of self-excitation for

both oscillations since, as the amplitudes ax and a2 begin to grow, both

coefficients ^(ojj, ax, a2) and /x(a>2, av a2), which were at the start greater

than one, begin to decrease.

A moment will be reached when one will have, for example, relations

K<ox , ax. "2) > 1 and tiw* aÂ» a2) = 1 (4-4)

This means that the oscillations with frequency wx is still growing, whereas

that with frequency oj2 is just about to disappear which happens when

/x(<o2, ax, a2) < 1. The final stationary state will be then characterized by

the presence of only one frequency wv In terms of the generalized

Nyquist diagram this will result in conditions

K^k aio> 0) = 1; m(a>2. <*io. 0) < 1 (4.5)

If the parameters of the system are changed, the oscillation with frequency

wx will disappear, whereas that with frequency a>2 will reach the stationary

state

/x(w2, 0, a20) = 1; rfwv Â°> a2o) < 1 (4-6)

One can develop this argument further and find the phenomenon of

quenching of one oscillation by the other (Section 2, Chapter 23).

5. Stability

From the preceding it follows that the d.e. appear in the form

^ = A^SOz - 1); dJt = NtH (5.1)

which is a generalization of the results indicated in Section 3. For the

stationary state we have

/x(a,a.,..., e) = 1; ^-(a, w e) = 0 (5.2)

where a is the amplitude, w is the frequency, and e is a parameter. If the

value of this parameter is changed from its stationary value e = e0, one

obtains conditions of stability in the usual form resulting from the varia-

tional equations. Replacing instead of the stationary values a = a0,

<o = a>0, etc., the perturbed values a = a0 + da, a> = a>0 + dw0, etc., and
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limiting results only to the linear terms in da, dw,.

system in terms of dajde and dw/de, namely,

., dz, one has the linear

(SA (Â¥\

Wo Wo

da

\Bw)0 \dt)0

dw

Wo Wo

dz

(?) (?)

di

(r) It)

(t) (?)

if) if)

Wo \Â«Wo

(5.3)

Following the argument of Chapter 1 (equation (6.8)), one finds that the

conditions of stability are

{da)0 + Ga>)(

< 0

(5.4)

The first condition (5.4) shows that the singular point is stable and (5.5)

indicates that the singular point in question is not a saddle point. In

formulas (5.3), (5.4), and (5.5), the notations (dp/da>)0 (8ip/dw)0 mean

the partial derivatives of p and ip with respect to a, w, and e which appear

in (5.2) into which the stationary values are substituted after the differentia-

tions.

It is seen that the question of stability reduces again to the classical

procedure of the variational equations. In this theory the variables /x and

ip replace x and y of the general theory.

One can simplify these criteria on the basis of certain considerations of

the order of magnitude. For instance, the quantity (Bip/da) in applications

is always very small and is zero in the first approximation for a number of

problems. Likewise (d/u./da>)0 is also small in systems operating not far

from resonance, which is generally the case. Under these conditions the

criterion (5.5) reduces to

> 0

18A /djA

WoW

which splits into two conditions

< 0

(5.6)

(5.7)
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Equations (5.3) become then

Â£-[&/Â©]. da--mj(m m

These relations show the dependence of amplitude and frequency on

parameter e.

6. Retarded actions

An interesting application of the generalized Nyquist diagrams was made

by Theodorchik to cases in which the so-called retarded actions appear.

Although we shall enter into this matter more fully in Chapter 21, we

outline it here in order to give a further illustration of the use of this

method.

Consider a d.e.

x + 2(8 + Sa*2)* + <o02x + v2xT = 0 (6.1)

The notation xT is equivalent to x(t â€” t); that is, although x, x, and x

could be written x(t), x(t), and x(t) emphasizing the fact that they relate

to the time t, the term with xr = x(t â€” t) is a retarded one and relates to

the past time t â€” t, t being a time-lag. Such equations are called dif-

ference-differential equations, but we postpone their study to Chapter 21.

We consider here only the relatively simple case in which we look only for

one simple harmonic solution which permits proceeding in an elementary

manner.

One can write (6.1) in the form

X + <o2x = (a>2 - w02)x - 2(8 + S^2)* - v2x7 = 25 (6.2)

We have merely added and subtracted: + <o2x â€” co2x to (6.1) and re-

grouped the terms so as to have the form (6.2) of the d.e. If one substitutes

into (6.2) the harmonic solution x = a sin wt where both a and a> are

unknown quantities, it can be shown, that, according to the general theory,

this equation can always be brought to the form

x + cd2x = F[a(t), <o] cos <ot + f[a(t), w] sin <ot + const + harmonics

(6.3)

If one limits the calculation to the terms of the fundamental frequency <o,

one obtains for the first approximation (we omit here some details)

a(t) = i IF[aÂ®' * 0 = i Jo/[a(a w]d* (64)
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For the transient condition the first equation gives

(6-5)

and for the stationary state one has

F(a,oS) = 0; f(a,w) = 0 (6.6)

If one calculates the coefficients of cos cot and sin <ot in the expression

2 S in (6.2), one has for (6.5) the d.e.

57 = 2"w ("2 s1n 0Xt ~ ^M ~ \ ^iCoa2) (6-7)

(6.8)

and for (6.6) the following equations

(<o2 â€” uo02)a â€” v2a cos <or = 0

a[v2 sin ojt â€” 2Sa> â€” ^82a>a2] = 0

The equilibrium a = 0 is stable if

v2 sin ojt - 28w < 0 (6.9)

and unstable if this expression is positive. If a # 0, the first equation

(6.8) gives

<o2 = oo02 + v2 cos oj0t (6.10)

and the second equation gives the stationary amplitude

a = V(2v2 sin ojt - 48<o)/S2<o (6.11)

If the condition of self-excitation is fulfilled, the stationary amplitude

always exists. If, however, one changes the parameter v2, the oscillations

can maintain themselves as long as

v2 > (28a>)/sin a>t (6.12)

An electron-tube oscillator may be regarded from this point of view as a

retarded system in which the feedback (at least as far as the fundamental

harmonic is concerned) produces a time-lag of 7r/2, the period being 2n.

In fact, under this approximation one has

v*x*T-T/t â€” v2acos(cot â€” w/2) = â€” v2asin <o/ = +(v2*)/<o (6.13)

In view of this (6.1) acquires the form

* + 2[(8 - (v2/2<o)) + Sj*2]* + uo02x = 0 (6.14)
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If one compares this d.e. with the general form, one sees that

(6.15)

We shall limit ourselves to a short review of the theory which postulates

the existence of a simple harmonic solution: x = a sin ait and neglects

harmonics. It is clear that, by this, we limit our investigation to the first

approximation only.

In Chapter 21 we shall return to this question from the standpoint of

the exact theory and it will be shown that in general the problem is more

complicated and leads to an infinite spectrum of harmonics, whose fre-

quencies are not in commensurate ratios.

If, however, one limits oneself to the fundamental harmonic, the above

method leading to the d.e. (6.2) with the resulting reduction of the problem

to two algebraic equations (6.6) is sufficient if the problem is nearly linear,

inasmuch as the fundamental harmonic dominates the others.

Theodorchik gives a number of examples in which this method can be

used, such as operation of an electric bell, oscillations of thermostats, of

Helmholtz resonators, short-wave generators, etc.

Returning now to the corresponding Nyquist diagram, one finds that

the effect of a retardation manifests itself in the appearances of a term of

the form

so that, instead of (2.2), the complex coefficient of amplification is now

This shows that each radius vector is merely turned over an angle y

and, by a more detailed analysis, one reaches the following conclusions:

(a) All frequencies tend to decrease.

(b) For some frequencies conditions of self-excitation become better;

for some others, they become worse.

(c) A new frequency may appear and the corresponding amplitudes

may become sufficiently large that they cannot be neglected even in the

first approximation.

If one assumes that the time-lag t is constant, one can conclude that

there appear infinitely many frequencies which disappear if t = 0. It is

simpler, however, to deal directly with the exact theory based on properties

of solutions of difference-differential equations, as will be shown in Chapter

Y(uo>p) = ~Muo>p)

(6.16)

(6.17)

21.
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7. Concluding remarks

It is useful to say also a few words about the theory of Blaquiere2

mentioned previously. In this approach use is made of the operational

calculus, which is too long to be entered into here.

The existence of a family of Nyquist's loops depending on the parameter

a (the amplitude) is also assumed in this theory but the subsequent

development is different. More specifically, Blaquiere considers especially

the transient state of a nonlinear oscillation and shows that the original

solution of the d.e., which is practically linear when the amplitude is

small, becomes gradually "distorted" by the nonlinear terms. In terms

of this theory this amounts to a "distortion" of the originally existing

Hilbert's space by the effect of the nonlinear operator. By Hilbert's

space is meant the functional representation of the solution in the form of

a Fourier series satisfying the d.e., and by its "distortion" is meant the

modification of the coefficients of this series as the transient trajectory of

the oscillator traverses the family of the subsequent linear Nyquist's

loops. The actual nonlinear trajectory is considered as a kind of envelope

of linear trajectories so traversed that there exists at any moment a state

of tangency with some linear trajectory. It is seen that the transient state

is more important in this approach than in other theories with which we

have been concerned so far. The fundamental problem of the stationary

state does not differ much, however, from that in other approaches,

namely: the stationary amplitude and frequency are still determined from

two algebraic equations (for example, (2.3)) as in all other theories of the

first approximation.

In one respect the work of Blaquiere specifies more clearly the true

nature of this generalization, namely: it introduces essentially curvilinear

coordinates in the Nyquist phase plane by defining "equi-amplitude" and

"equi-pulsation" (or equi-frequency) curves whose intersection gives the

operating point for which the stationary state exists if conditions of stability

are fulfilled. However, in contrast with this simplification, the stability

conditions are more complicated and we do not propose to go into this

question here.

We merely mention these few salient points because the entire develop-

ment is yet in a somewhat preliminary state, particularly in view of a lack

of any, more or less uniform, relationship with known nonlinearphenomena.

In part III these phenomena will be treated by the classical theory.

There remains still the fundamental question: What will be the place of

the generalized Nyquist's diagram in the theory of oscillations assuming

that the various difficulties existing at present are ultimately eliminated?

2 See footnote 2, page 418.
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In the first place, one must bear in mind that, by its very nature, this

diagram does not constitute any special method in the theory of oscillations

but is merely a very interesting graphical interpretation of conditions

existing in linear systems with a feedback connection. By this diagram

one can visualize the behavior of the solution of the d.e. when the parameter

(the frequency) varies.

In the nonlinear domain .this interpretation is much more complicated

since, instead of one parameter, there are two such parameters; what is

particularly difficult is the fact that these two parameters are in reality

interdependent. As the result of this, the nonlinear extension of this

diagram complicates the problem considerably, instead of simplifying it.

In fact, the main advantage of the diagramâ€”its simplicityâ€”(in the linear

case) is lost as soon as one tries to use it in nonlinear problems. Since the

two parameters <o and a are connected together through the d.e., this d.e.

is not permitted to be more or less in the background, as in the linear case

when the amplitude does not play any role; therefore one can concentrate

on the behavior of the solution directly in terms of the frequency.

Since in the nonlinear case the principal advantage of the diagram is lost

anyhow, the question arises as to why it is necessary to build up a graphical

representation which on one hand is not simple and on the other hand

requires the analytical solution (at least the first approximation).

Such questions are inevitable if one considers the nonlinear problems in

their normal form, that is, when the existence of a stationary state is the

only point of interest. In fact, in the previous examples it was necessary

to solve first the nonlinear problem by the standard procedure and only

then to identify the conditions of the stationary state, with the point (1,0)

of the Nyquist diagram.

It must be noted, however, that this somewhat negative attitude toward

the extension of the diagram is probably not quite justified since its

primary use, very likely, will be not in cases when a stationary state (in the

usual sense of this term) exists but rather in cases when it does not exist.

In fact, it does not seem to be of any particular interest to look for a

stationary state of a self-excited system by means of the Nyquist diagram

inasmuch as it is much easier to establish this directly from the equations

of the first approximation. On the other hand, the diagram can still be

useful in the investigation of a nonlinear passive system under a certain

periodic (or almost periodic) excitation. Thus, for instance, the problem

of nonlinear filters belongs to this class and, as control problems are closely

related to such questions, it is likely that such extensions of Nyquist's

diagram may be of interest particularly in view of a gradually increasing

importance of nonlinear control systems.
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PART III

OSCILLATIONS OF NEARLY

LINEAR SYSTEMS

INTRODUCTION

We shall investigate in this Part III the principal nonlinear oscillatory

phenomena under the fundamental assumption of their near-linearity, in

which case the analytical methods of approximations outlined in Part II

are applicable.

The assumption of a near linearity as a rule is sufficiently well justified

in a great majority of nonlinear oscillations. In fact, the phenomena with

"a strong nonlinearity" (large constitute a somewhat restricted class of

the so-called relaxation oscillations encountered most frequently in electrical

circuits. As the methods of analytic approximations do not hold here and

an entirely different method of attack is necessary, we postpone this subject

to Part IV.

As regards nearly linear oscillations, it would be, perhaps, an exaggera-

tion to say that their treatment is merely a straightforward application of

analytical methods of approximations we encountered in Part II. The

reason is due to the fact that what is generally called "phenomenon" (in a

physical sense) is, as a rule, only a somewhat idealized condition or

"aspect" of a more complicated situation involving some other aspects as

well.

Thus, for instance, it is customary to consider the phenomenon of

synchronization by itself, and likewise that of nonlinear or subharmonic

resonance; but these two phenomena generally take place together and are,

therefore, merely two different aspects of a more complicated real phenome-

non. In fact, the studies of resonance are directed primarily to the estab-

lishment of conditions for the existence and stability of the amplitude,

whereas those of synchronization are related to the investigation of a

433
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434 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

possibility of existence of a fixed phase relation between the autoperiodic

and the heteroperiodic oscillations.

Although from a mathematical point of view it is somewhat meaningless

to speak about two different "phenomena" in this case, from a physical

standpoint it is convenient to introduce this distinction which simplifies

the problem by inviting attention to features in which one is primarily

interested.

The theory of nonlinear oscillations (as contrasted with the theory of

nonlinear d.e.) developed historically as the result of attempts to explain

various physical phenomena considered in this, somewhat simplified,

manner.

One reaches the somewhat paradoxical conclusion that the same d.e.

may explain entirely different "physical phenomena" according to the

different regions of its parameter space. This circumstance is generally

not considered in the theory of nonlinear d.e. which are at the foundation

of these studies but, on the contrary, become very important when one

tries to obtain a physical insight into these questions.

For example, if one considers a frequently encountered d.e. of the form

x + f(x)x + x = A sin wt (HL1)

and investigates the effect of the parameter 01 (the frequency of the external

periodic excitation) one readily sees that a number of "phenomena"

appear according to the value of this parameter.

It is noted first, that, for A = 0, the frequency of the left-hand term

(considered as representing an oscillator) is one. If, however, A # 0 and

<o has integer values, say w = 2, 3,. . ., the d.e. (III-l) gives rise to the

theory of the subharmonic resonance. The problem here is to establish

the existence and stability of the periodic solution with period 2n while

the forcing term has the period 2n\w. No synchronization "aspect" is

involved in this formulation of the problem and, for that reason, the theory

so formed relates to the conditions of occurrence of an exact subharmonic

resonance.

But one can approach the same problem from a different angle involving

the question of synchronization. Here one can avoid the necessity of

considering the subharmonic resonance and investigate only the funda-

mental resonance: w = 1, but as one is now interested in synchronization,

it is necessary to "arrange" the d.e. somewhat differently, viz.:

x + f(x)x + (1 + z)x = A sin t; e Â« 1 (HI.2)

In this formulation, for A = 0, the frequency of the left-hand term is

Vl + e, whereas that of the forcing term is one. The problem now
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consists in establishing the conditions under which the solution of (111.2)

has frequency equal to one, in spite of the fact that for A = 0, the auto-

periodic oscillation has a somewhat different frequency; the quantity e is

sometimes called "detuning."

One could begin the same problem obviously by considering the d.e.

x + f(x)x + x = A sin (1 + (III.3)

and show that the oscillation can, under certain conditions, have fre-

quency (1 + -q) instead of 1, which amounts to the same thing.

One could also attack a more general problem of the d.e. (III. 1) by

.considering u as a variable parameter. When w has integer values

a> = 2, 3, there may be occasionally subharmonic solutions with frequency

1. In the neighborhood of these values (that is, <o = 2 + rj, 3 + tj) there

may be still subharmonic solutions but any such neighborhood involves

inevitably the question of synchronization (in this case this would be

"synchronization on subharmonics" using a technical term).

Outside these regions of synchronization, there appear "beats" or

interference between the heteroperiodic and autoperiodic oscillations and,

if the latter disappears for some reason, there remains only, generally, a

very small heteroperiodic oscillation.

Finally, it may happen also that the resonance oscillation may disappear

within the range of synchronization. In such a case the amplitude sud-

denly drops to a very small value without any intermediate beats on two

frequencies.

It is seen thus that the phenomena present themselves in a very com-

plicated manner in spite of the fact that the d.e. remains the same. The

variety of different cases herr depends on the different ranges of one single

parameter <o.

Even if one considers a relatively simple case when the resonance

oscillation is absent (that is, when the ratio between the heteroperiodic and

autoperiodic frequencies is sufficiently far away from a rational number),

there appear the so-called asynchronous actions, the term "asynchronous"

emphasizing the lack of any subharmonic effect. In some cases the asyn-

chronous action manifests itself in that the heteroperiodic oscillation

extinguishes the autoperiodic one; in some other cases it, on the contrary,

releases it.

Here again the d.e. is the same (III.l), but these asynchronous actions

appear again in special regions of the parameter space. The first of these

two effects, the asynchronous quenching, appears generally when w is large

but otherwise quite arbitrary. The second effect, the asynchronous

excitation, does not involve <o but depends on the parameters of the function

j(x), that is, on the coefficients of its polynomial representation.
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436 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

We have touched these questions in order to emphasize the fact that in

the theoretical study of nonlinear oscillations very little progress could be

accomplished without a continuous guidance by experimental evidence.

Lord Rayleigh, van der Pol, Appleton, and other early investigators used

analytical methods in conjunction with the knowledge of the order of

magnitude of different parameters, which ultimately permitted a localiza-

tion of these various phenomena in their respective regions of the parameter

space, specifying their principal features, neglecting the others which are

less important.

Summing up, the study of the various kinds of nonlinear oscillations

which we are about to undertake should not be considered as a purely

formal application of the methods of approximations but these approxima-

tions appear rather as a tool in hands of a physicist once the knowledge of a

physical phenomenon has been established.

Referring specifically to the contents of the various chapters of Part III,

Chapter 18 discusses the phenomenon of synchronization. The beginning

of the chapter deals with the theory of van der Pol supplemented by the

topological analysis of Andronow-Witt. As this matter is discussed in

existing texts, it is somewhat abridged here. The application of the

stroboscopic method is given in Section 5 of Chapter 18; it presents certain

advantages in obtaining quantitative results at the cost of additional

calculations.

Chapter 19 deals with the subharmonic resonance. The beginning of

the chapter is devoted to a somewhat abridged outline of the classical

theory of Mandelstam and Papalexi, omitting details of electron-tube

circuits by which these authors verified their theory. The important work

of Krylov and Bogoliubov is touched but slightly in this chapter since its

fundamentals have been presented in greater detail in Chapters 14 and 15.

The application of the stroboscopic method, on the other hand, is presented

more fully, because it is necessary to introduce some additional extensions

of this method. The essential feature of this extension is in that it is

often necessary to operate here with the cartesian components x(t), y(t) of

the solution instead of the variables p(t) and ip(t), as was indicated in

Chapter 16.

Chapter 20 concerns the phenomenon of the so-called parametric

excitation. This subject has become more important in view of recent

experimental material which has permitted the introduction of certain

generalizations.

In Chapter 21 are treated oscillations amenable to difference-differential

equations. Recently this field has developed very rapidly in connection

with parasitic oscillations frequently observed in modern automatic

control systems. Although there has been considerable theoretical
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development in this field, most of this material relates to linear difference-

differential equations which are of relatively little use here. For this

reason Chapter 21 aims primarily at the formulation of applied problems

rather than at its final solution which does not exist at present. Certain

connections with the classical theory are indicated, however, under an

additional restriction of smallness of time-lags.

Chapter 22 deals with some additional studies of the van der Pol-

Lienard equation considered in the parameter space of coefficients of the

polynomial representation of functions f(x) andg(x); Chapter 23 relates to

the question of interaction of nonlinear oscillations.

Chapter 24 discusses the so-called asynchronous actions and Chapter 25

deals with a somewhat new class of phenomena discovered by Theodorchik,

concerning the d.e. with coefficients exhibiting "inertial" nonlinearities.

This is as yet a little explored field of "hereditary" phenomena which is

outlined briefly with the aid of some plausible simplifications. Owing to

this, some conclusions can still be obtained in the first approximation.

Present knowledge of these phenomena is far from being uniform.

Thus, for instance, the manifestations of the synchronization and the

subharmonic resonance effects are apparently better understood than those

of other phenomena, but the difficulties of their quantitative treatment are

yet too great for applied problems.

As regard some other phenomena, even the mathematical fundamentals

are not yet available as was mentioned in Chapters 21 and 25, for instance.

In view of this, it often becomes necessary to introduce certain physical

idealizations with a view to bringing the problem within the scope of the

differential equations of the first approximation.

All this merely emphasizes the fact that not all gaps between the mathe-

matical treatment and the corresponding physical facts have been bridged

as yet, but such situations are inevitable in a new science which has not

reached its complete codification.
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Chapter 18

SYNCHRONIZATION

1. Introductory remarks

The phenomenon of synchronization or "entrainment of frequency" was

the first to be studied among other nonlinear phenomena. Apparently, it

was observed for the first time by Huygens (1629-1695) who reported that

two clocks, which were slightly "out of step" with each other when hung

on a wall, became synchronized when fixed on a thin wooden board.

These effects were rediscovered more than two centuries later in electrical

circuits by a number of physicists among whom one should mention Lord

Rayleigh,1 Vincent,2 Moller,3 Appleton,4 van der Pol,5 and others. The

last two authors developed the theory of this phenomenon; in the following

section we indicate briefly these results in the van der Pol version which

permits establishing a connection with a topological extension of this theory

by Andronov and Witt6; this approach was extended by Stoker.7

The synchronization effect can readily be observed in electronic circuits.

If one applies to the grid of an electron-tube oscillator oscillating, say, with

frequency w0, an extraneous electromotive force of frequency <o, one

observes the "beats" of the two frequencies. If the frequency a> approaches

the frequency w0, the frequency of the beats decreases but this happens

only up to a certain value of the difference |a> â€” <o0| after which the beats

disappear suddenly and there remains only the frequency <o. Everything

happens as if the "free" (autoperiodic) frequency w0 were "entrained" by

the extraneous (heteroperiodic) frequency <o. Figure 18.1 shows the

1 Lord Rayleigh, Theory of Sound, Vol. 1, London, 1894.

2 J. H. Vincent, Proc. Phys. Soc. (London) 32, 1919.

3 H. G. Moller, Zeitsch. drahtl. T. und T. 17, 1921.

4 E. V. Appleton, Proc. Cambridge Phil. Soc. (London) 21, 1922.

6 B. van der Pol, Phil. Mag. 43, 1922.

â€¢ A. Andronov and A. Witt, Arch- fur Electroth. 24, 1930.

7 J. J. Stoker, Nonlinear Vibrations, Interscience Publishers, New York, 1950.
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difference |<o â€” a>0| plotted against a>. On the basis of the linear theory

the variation of \w â€” w0| should follow the path ABCDE, whereas in

reality it follows the path ABB'CD'DE.

The phenomenon of synchronization is, perhaps, the best known among

other nonlinear phenonema. It has been observed not only in electrical

systems but also in mechanical, acoustical, electroacoustical systems and,

finally, in control systems using relays. Moreover, this effect has been

produced artificially in some cases in order to secure a very accurate

synchronization of clocks or electric motors with frequency of quartz

oscillators.

In the following section are given the fundamentals of the early Apple-

ton-van der Pol theory; we use the version of the last-mentioned author

because it is a little more convenient for the topological representation of

Andronov-Witt outlined in Sections 3 and 4.

In Section 5 is outlined the theory of synchronization on the basis of the

stroboscopic method; this permits con-

necting the theory of this phenomenon

with the general theory of d.e. without

using any special form of solution like

(2.5). This method permits proceed-

ing directly with the theory of approxi-

mation without involving the topologi-

cal arguments, as the result of which

the procedure is better adapted for a

quantitative work. There is, however,

a certain disadvantage, as in all quanti-

tative methods, consisting of computa-

tional difficulties when the problem is

ultimately brought to an algebraic formulation.

The last section deals with certain physical and engineering applications

of the synchronization effect.

B A-

B' C D'

Figure 18.1

2. Theory of van der Pol

The d.e. of an electron-tube oscillator with an inductive coupling is

dl

r di ...

M

dt

(2.1)

where i is the current in the oscillating circuit (having constant parameters

L, R, and C), / is the current in the anode circuit of the electron tube, and

M is the coefficient of mutual inductance between the anode and the
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440 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

oscillating circuit whose frequency is a>0. If one introduces an external

periodic excitation E0 sin <ojt on the grid (in addition to the usual feedback

connection), the d.e. takes the form

L jt + Ri + i J" idt - M jf = E0 sin (2.2)

The nonlinear element of the circuit is here / = f(eK): the anode current

/, considered as a function of the grid voltage eg, and the usual approxima-

tion of the nonlinear function by the polynomial is taken here in the form

/=/(Â«,) - V/3FJ (2.3)

where 5 is the mutual conductance, and V, is the so called "saturation

voltage." As usual, one neglects the secondary effects, such as grid

voltage, anode reaction, etc. Using the notations

r s J

idt_ MS R

:v; a ~~ lc l

MS â€ž En 1

Y = Wc' B = v; wÂ° =Tc

the d.e. (2.2) takes the form

i) â€” av + yv3 + coo2v = fl<o^sin (2-4)

which will now be investigated.

Van der Pol assumes the solution in the form

v = bx sin o^f + b2 cos oj^ (2.5)

where b1 and b2 are slowly varying functions of time. If one substitutes

this solution into (2.4), one obtains the following d.e.

2^ + zb2 - abJl - b2ja02) = 0

(2-6)

2b2 - zb, - ab2(l - 62/a02) = -BÂ«>2

where z = 2(a>0 - w^); b2 = b^ + b22; a02 = 4a/3y.

It is obvious that if b^t) and b2(t) are constant, the solution z(t) is

periodic with frequency wv One is inclined to call r(t) the "forced"

oscillation, but in the nonlinear case this term is rather misleading and it

is preferable to call it heteroperiodic oscillation (or solution). If b1 and b2

are slowly varying functions of time, the solution v(t) is almost periodic

(Chapter 12).

It is noted that the d.e. in the form (2.6) are autonomous, being of the

form

b, = P(bâ€žb2)- b2 = Q(bub2) (2.7)
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In the derivation of these d.e., van der Pol assumes that bx and b2 are

negligible since bx and b2 are slowly varying functions. This also pre-

supposes that the parameters a and y in the original d.e. are small.

Under these assumptions one reaches the following important conclu-

sion: the periodic solution of (2.4) exists if the system (2.7) has a singular

point. For the state of equilibrium bx = b2 = 0, which results in the

equation of the stationary state

Z2 + a2(1 _ b2^2)2 = B2w2\b2 (2.8)

As both bx and b2 are stationary, (2.8) represents the condition of the

heteroperiodic oscillation. This equation, with certain transformation of

variables, reduces to the form

x2 + (1 - y)2 = Ely (2.9)

wherey = b2/a02; E = w^B/a0; x = zja.

We shall leave the argument of van der Pol at this point and consider the

topological representation of the synchronization effect by Andronov and

Witt.6

3. Topological analysis of Andronov and Witt

If one introduces the notations

* = *i/Â«o; y = *2/<v> a â€” */Â«; A = -Bwilw,

r2 = x2 + y2; t = at/2

the d.e. (2.6) becomes

dxjdr = x(1 - r2) - ay; dy/dr = ax + y(\ - r2) + A (3.1)

These are still the van der Pol d.e. but written in a different form and the

procedure remains the same as before, namely, one determines the singular

point and discusses its stability. The coordinates of the singular point are

here

*0 = -aptA; y0= + p(l - P)\A (3.2)

where p â€” r02. As to p, it is determined from the cubic equation

P[a2 + (1 - p)2] = A2 (3.3)

This equation is discussed graphically considering a and p as variables

and A as a parameter. The family of curves represented by (3.3) is shown

in Fig. 18.2. For sufficiently small values of A, the curve consists of two

branches Mx and For an increasing A the branch Mx increases in

"See footnote 6, page 438.

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 2

1
:2

2
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 2

1
:2

3
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



SYNCHRONIZATION

443

a convenient way of ascertaining at a glance what may be expected in a

given oscillatory system under the different values of detuning as well as

the external periodic excitation (parameter A). As the variable a increases

from small values, there appears first the region in which there are three

real roots, the discriminant of the cubic equation being negative. One

ascertains that only one root is stable. For larger values of a the dis-

criminant changes sign and there is only one real root. As long as this

root is stable, the synchronization still exists but, as soon as this root enters

the region of instability, the synchronization is lost. At this point the

functions bx and b2 of the van der Pol theory cease to be constant and the

almost periodic condition sets in.

It was shown in Chapter 3 that the d.e. (3.1) admit a limit cycle, as is

easily ascertained by applying the Poincare-Bendixson theorem. The

question of the appearance of limit cycle in this case has been analyzed by

Andronov and Witt6 and elaborated still further by Stoker.7

Summing up, the theory of synchronization outlined in this and in the

preceding sections is based on a very elegant procedure of van der Pol to

reduce an essentially nonautonomous system to the autonomous form

owing to the form (2.5) of this solution. Once this reduction has been

accomplished, the rest of the problem does not present any difficulty. It

is to be noted also that this procedure is still within the scope of the small

parameter method of Poincare as it appears somewhat implicitly from the

fact that the second derivatives bx and b2 are neglected by van der Pol.

4. Conditions of the stationary state of synchronization

During the synchronization the autoperiodic oscillation is suppressed

and there remains only the heteroperiodic oscillation. The solution of the

d.e. (2.4) is then

v = bx sin wjt + b2 cos w2t = b sin (w-J. + <p) (4.1)

where cos <p = bjb, sin <p = b2lb, b = Vb^ + b22, and <p is the phase of

the oscillation relatively to the external voltage.

One has thus

tan <p = bjbi = y0/x0 = (1 - p)/a (4.2)

The amplitude of the oscillation is

b = W + b* = a0 VV+V = k V4Â«/3 (4.3)

where k = (p/a)Va2 + (1 â€” p)2. As a0 is the amplitude of the generating

'See footnote 6, page 438.

7 See footnote 7, page 438.
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444 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

solution of (2.4) when 5 = 0, the amplitude of the heteroperiodic solution

during the synchronization is equal to the autoperiodic amplitude affected

by the factor k.

5. Theory of synchronization by the stroboscopic method

The synchronization is characterized by the entrainment of the auto-

periodic frequency by the heteroperiodic one. One can start the investiga-

tion either from the d.e.

x + (cx2 â€” a)x + x â€” e sin (1 + y)t

or from the d.e.

x + (cx2 - a)x + (1 + y)x = e sin t (5.1)

In the first case the frequency one (ife = 0) is "entrained" to the fre-

quence (1 + y)(ife # 0); in the second case this entrainment occurs from

frequency Vl + y to the frequency one. As in the first case the integra-

tions are to be carried out between 0 and 27r/(l + y), and in the second case,

between 0 and 2n, the latter is simpler so that we shall start with the d.e.

(5.1). It is to be noted that the coefficients c, a, and e in (5.1) are

assumed to he small in what follows. As regards c and a, this is the usual

assumption of near-linearity. As to e, this requires an explanation. In

fact, in applications e is always a finite quantity. If e is finite the ampli-

tude will increase considerably since small nonlinear terms (with c and a)

are unable to limit it at a finite value. It can be shown, however, that

by changing the variable x for x/p (n small), one obtains the asymptotic

form of the d.e. in which the coefficient of sin t is again small as is

assumed directly in (5.1), which is thus quite general for all conditions.

We recall the essential points in the stroboscopic reduction. The

equivalent system is x = y; y = ay â€” cx2y â€” x â€” yx + e sin t.

We form two combinations: xx + yy = r(drjdt); r = Vx2 + y2\ >/> =

arctan (yjx); and xy â€” yx = r\dty\di).

One obtains two d.e. in terms of r and ip:

1 yt

or sin2 ip â€” - cr3 sin2 2ip â€”^ sm 20 + e sin </< sin t

(5.2)

a e

â€” 1 + - sin 20 â€” cr2 cos3 ip sin <p + - cos </i sin t â€” y2 cos2 </<

Assuming that a, c, y, and e are small 0(/x), in the series solution for the

first d.e. (5.2): r(t) = r0(r) + pr^r), one has obviously r0(t) = r0 = const.

dr

dt

dt
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whereas the second equation yields: ip0(t) = <p0 â€” t, where r0 and <p0 are

the initial conditions. For the first-order corrective terms r^t) and ^(r),

one has the d.e.

^ = Ar0 sin2 ip0 â€” ^ Cr03 sin2 2ip0 â€” sin 2</r0 + E sin </i0 sin t

1 E (5.3)

-i^ = -z sin 2^r0 â€” Cr02 cos21/r0 sin >p0 H cos </r0 sin Â£ â€” cos2 <p0

dt Z r0

where A = ajfi, C = c/n, r = and E =

In order to obtain the variations r^2n) and <f>i(2tt) of rj and ^ after one

period 27r, one integrates (5.3) between 0 and 2tr recalling that dt = ~dip0.

Some terms vanish and the remaining ones are

r1(27r) = 2n[Â±Ar0 - JCr03 - ^cos<pj

(5.4)

01(27r) = 27r[Â£ sin 950/2r0 â€” P/2]

Clearly r(27r) = ^(2t1-) and ip(2n) = /x01(27r); changing notations:

r(27r) = Ar; <p(2tt) = A<p; 2nfi = At (the stroboscopic time) and, passing

from difference equations to the d.e. (that is, Ar^-dr; A<pâ€”>d<p; and

At â€”> dr), one obtains the stroboscopic system

dr 1 , . n. . 4A 4Â£

^- = -g C(r3 - />r + 9 cos 9) = R(r,<p); p = â€”; ?=

</<p 1 \E sin dj _]

(5.5)

The condition of synchronization is expressed by the singular point of the

system (5.5). The difficult point of the problem is that the variables r and

<p do not separate; moreover, the variable r is yielded by the real root of the

cubic equation which involves an additional difficulty (the change of sign

of the discriminant).

It is preferable to establish first the conditions for T â€” 0, that is, for the

fundamental resonance of the order one. To simplify the discussion we

assume that the parameters have been so chosen that the cubic equation

has only one real root.

If r = 0, d<PjdT = 0 for sin <p0 = 0 (from now on we shall indicate by

the subscript zero the stationary quantities because no confusion is to be

feared with the previous notations), that is, for cos <p0 = Â±1. The varia-

tional equation for the second equation (5.5) shows that the phase is stable

for cos <p0 = â€” 1.
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446 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

The usual procedure (Section 4, Chapter 5) for the investigation of

stability yields here

R, = -i C(3r0* - p); R9 = \cq sin <p;

E_

2^'

(5.6)

= -â€”sin <p;

These partial derivatives are to be evaluated at the point: p = p0;

<p = <p0 = 7r. The characteristic equation is then

52 + \ [\ C(3rÂ°2 ~p) + Â§~}S+ 8T0 CE(W -ri = Â° (5-7)

From the explicit form of the roots of the cubic equation, it follows that

3r02 = p > 0, and the resonance point (r0,<p0 = tt) is stable, which is the

well known fact.

We consider now the question of synchronization: jT # 0. In particular

we study the system

R(r,<p,r) = 0; 0(r,<p,r) = O (5.8)

which has the solution r = r0; <p = tt; f = 0, as has been just shown.

The Jacobian of R(r, <p, r) and $(r, <p, .T) with respect to r and 9 at the

point (r0,7r, 0) is

|-iC(3r02 -/Â») 0

_E / 0

2r0i

then, for a T sufficiently small, there are two functions: r = r(r) and

<p = <p(r) which satisfy the system (5.8) and are such that

0

lim r(r) = r0; lim <p(r) = n

(5.10)

Since for r = 0 the stability conditions are satisfied, they will be

satisfied also for a sufficiently small F. This establishes the existence of the

synchronized state but not its vanishing for a larger r.

If r # 0, the characteristic equation has the form

S* + l[\ (3rÂ°2 ~ P) + ^0COS'Po]S

+ ^ [^sin2<p - (3V -/,)cos<p0] = 0 (5.11)
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In this expression sin <p0 = rrJE > 0; cos9>o < 0 (since for r = 0,

cos <p0 = â€” 1), and (5.11) can be written

S* + l[\(3r0*-p)-Â£o\cos<p0\]s

+ ^ [1 sin* 0 + (3r02 - /0|cos Vol] (5-12)

In this form the characteristic equation shows that near the point

(r0, n, 0) there is still a stable synchronized state if the coefficient of 5 is

positive; this is possible since 3r02 â€” p > 0 by our assumption provided

that the condition 3r02 - p > (2Â£/r0)|cos <p0| is fulfilled.

On the other hand, the condition for the existence of one single real root

is:

A = q* cos2 9>/4 - p3/27 > 0 (5.13)

and as |cos <p\ decreases with increasing r, it is clear that A decreases and

may become negative for a sufficiently large r. When this happens,

instead of one single real root there will be three such roots and the factor

3r02 â€” p may become negativef with the resulting loss of stability and the

disappearance of the synchronized state when the coefficient of 5 in (5.12)

vanishes.

We have been able to carry out only a qualitative discussion; in order to

ascertain this quantitatively, it is clear that one has to use a numerical

approximation procedure.

For instance, one will start with the cubic equation r3 â€” pr â€” q = 0

(for a chosen combination of parameters A, C, and E) and determine the

real positive root r = r0'. With this value r = r0' one determines <p = <p0'

from the second equation (5.5) and then one determines again the real

positive root r = r0" of the cubic equation r3 â€” pr â€” ^|cos9>0'| = 0.

One continues the procedure for increasing T until, for a sufficiently large

r, calculation will indicate that the coefficient of 5 in (5.12) is near zero,

which shows that the threshold of stability is reached. The procedure is

long and tedious because the variables r and <p do not separate and one has

to use successive approximations.

Unfortunately, in all nonlinear problems one encounters similar diffi-

culties as soon as one tries to obtain quantitative results. If one wishes to

explore only the qualitative aspect of this phenomenon, the matter is

considerably simpler, as can be seen from Sections 2 and 3 of this chapter.

t It is recalled that, for J > 0, the real root is râ€ž = r0' = Â±2V/>/3 cosh (n/3)

and for A < 0 the three roots (instead of cosh (u/3)) contain factors cos (u/3),

cos (w + Â«)/3 and cos (7r â€” u)/3, so that the absolute values \r0"\ of roots in this

case are smaller than \r0'\ for A > 0.
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448 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

A remark is noteworthy: this problem is a nonautonomous one and,

strictly speaking, its solutions cannot be represented in a phase plane but

should be considered in the three-dimensional space (x, y, t).

This circumstance manifests itself in the present case by the fact that

the initial conditions influence the behavior of the solution.8 This is

apparent if in (5.1) one puts' the right-hand term in the form e sin (t + n)

= â€” e sin t instead of e sin r, as we did. If one carries out these calcula-

tions, one finds instability where one formerly had stability.

However, through the transient period of the phase adjustment the

phenomenon will ultimately swing into the state which we have analyzed

in this section for F = 0.

From a physical point of view this initial transition for r = 0 is ac-

complished, so to speak, automatically, the system seeking its stable

resonance point (râ€ž, n, 0). If, from this point, one introduces the "de-

tuning" of frequencies (r ^ 0), the phenomenon of synchronization

properly speaking takes place; the variational equations are "modified" as

compared to their pure resonance values (sin <p0 = 0, cos <p0 = â€” 1) which,

through somewhat complicated relationships just outlined, influences the

characteristic equation (5.12). When the latter goes through the threshold

of its stability, the singular point of the system (5.5) disappears and with it

vanishes also the synchronized state.

6. Mutual synchronization

In the preceding section it was assumed that the synchronization is due

to the action of an external source on the oscillator but the reaction of the

oscillator on the source was disregarded. In physical terms this means

that the external source has a sufficiently high energy (or power) level to be

able to neglect this reaction.

The situation is different' if one considers the problem of a mutual

synchronization of two oscillators, which we may assume to be identical in

all respects except for a certain small relative detuning of their frequencies.

It must be noted that the problem of this nature is at the same time that

of a coupled system, that is, a system with two degrees of freedom of which

it forms a particular case. However, since this is also the problem of

synchronization of a somewhat particular type, we investigate it here.9

As an example, we consider the system of two d.e. of the form

+ w^x, = (a - bxx2)xx + eO^sj

x\ + a>22x2 = (a â€” bx22)x2 + tQ2x1

8 N. Minorsky, Rend- del Semin. Mat. di Torino, 1954.

'Ch. Hayashi, Forced Oscillations in Nonlinear Systems, Nippon Printing Co.,

Osaka, 1953.
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which represents two identical van der Pol oscillators coupled together

inductively with a certain detuning of their frequencies to the values a>1

and a>2.

As the derivation of these d.e. is well known, we omit it here and merely

indicate the significance of the symbols:

Qx = Mw^C, = (M/L)(C2/C1); Q, = Mwt^Cx = (MIL)(CJC2)

C, = C0 - AC; C2 = C0 + AC; AC/C0 < 1

M

ki + k2 = w,2 - a>22; oV = 1 + Aj; <o22 = 1 - A2; y = 7J

This means that we consider two identical oscillators loosely coupled to

each other (which is indicated by the small factor e) and slightly "detuned"

in frequencies so that wx- = 1 + Aj and <o22 = 1 â€” k2, kx and k2 being

small positive numbers; this detuning is effected with respect to the

frequency a>0 which can be assumed to be w0 = 1. The positive constants

a and b are assumed to be also small and within the scope of the nearly

linear theory. In view of these assumptions it will be sufficient to discuss

the problem only within the limits of the theory of the first approximation.

We apply the stroboscopic reduction omitting the details, since the only

difference between this problem and the previous ones is in the existence

of two degrees of freedom.

In what follows we shall use double subscripts such as r10, rn, <px0,

</in,. . ., etc., the first subscript relates to the degree of freedom and the

second one to the order of approximation; for instance, r10 will mean: the

first degree of freedom and the zero order of approximation, and so on.

There is a slight difference in calculations due to the fact that the

detuning in one degree (the first one) involves = 1 + kx and in the

second degree, o>22 = 1 â€” k2. In this manner it is sufficient to calculate

the data for the first degree and to introduce the above correction only in

one term of the second degree.

As this calculation has been carried out on many occasions we omit it

here and indicate directly the stroboscopic equations for rx and r2, where

r, = Vxj2 + jy,2; r2 = V*22 + y22; y = x, namely:

~r = _CT[ri3 ~ pri + n2r2 sin <p] '. ~r = -CT[r23 _ pri ~ n^isin^]

ut ar

(6.2)

where a = 6/8; p = \A/B; nx = 4e<?1/6; n2 = 4zQJb; <p = <Px - <p2;

A = ajpx, B = bjpx, n being the parameter of the series solution.

The interesting feature of this reduction is that the phase angles <px0
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450 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

and 9>jo (which appear in the zero-order approximation: 010(O = <pio â€” 'I

<f>2o(t) = <P2o â€” 0 do not appear in each degree of freedom but appear in

both degrees by their difference <p = <px â€” <p2. In this manner the coup-

ling manifests itself mainly in the phase.

The second stroboscopic equations (for the phase <p) are here

^ = ~\ &i + EQi\zÂ°s (<Pio - <Pto)

d^ = \ [K2 - EQ2X cos (<px0 - 9t0)] (6.3)

where A = rx/r2.

These two equations can be combined into one equation which gives

g = - \ [K - E cos 9(Q^ - QJIX] (6.4)

where K = K, + Kt = k-Â±Â±Â±* = ^l^l.

p n

This reduction of two d.e. (6.3) into one equation (6.4) is not always

possible, however. If it is possible, the stroboscopic system, instead of

being of the fourth order (6.2 and 6.3) becomes of the third order (6.2

and 6.4).

If this reduction to the third order is possible (and this is the principal

part of the problem), everything happens as if the two frequencies

oij2 = 1 + k and oj22 = 1 â€” k (assuming kx = k2 = k <t I) were

"entrained" to the same common frequency <o02 = 1.

The singular point of the stroboscopic system in such a case is given by

equations

^1 = 0; ^ = 0; J = 0 (6.5)

ar <1t cIt

The determination of the first two conditions does not present any

particular difficulty (except rather complicated calculations in the general

case), but the last one can be fulfilled only under a special condition which

we shall examine.

Before preceding further, it is useful to emphasize the significance of

this condition d<P/dr = 0. As <p = 9^ â€” <p2, it is clear that d<pjdr = 0

exists if the difference (rf^j/rfr) - (d<PJdT) = const. The other alternative

d<pxldr = 0 and d<p^dr â€” 0 requires too special conditions to be of interest

here. In other words, although nonlinear frequency correction exists in

each component degree of freedom, it cancels out in the final result so that,

if all three conditions (6.5) are fulfilled, the period remains 2tt in the first

approximation.
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This justifies a posteriori the stroboscopic reduction in which integra-

tions are performed between 0 and 27r.

The condition d<p/dr = 0 is obtained from (6.4) and yields

KX

cos9>=/(A) = (6.6)

The function/(A) can take any values (/(0) = 0;/(oo) = O-JiVQJQ2)

= oo). In order to represent cos <p by the function /(A) it is necessary to

Figure 18.3

consider it in the intervals in which -1 < /(A) < 1. If then equation

(6.6) is satisfied, the requirement d<p/dr = 0 can be fulfilled and this

combined with two other conditions drjdr = 0 and drjdr = 0 establishes

the existence of the synchronized state of the two oscillators. The graph

of the function /(A) is shown in Fig. 18.3. For small values of A, /(A) < 0

and for large A it is positive. For A0 = VQJQ2 the function undergoes

the discontinuity from â€” o0 to +o0 when A traverses the value A = A0

increasing.

The useful part of the curve /(A) is limited by the values /(Ax) = +1

and /(A2) = -1.
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The values A = Ax and A = A2 obtained from (6.6) are:

J? I pi f /F2

Ax = 2 + VT + D' x>=~2 + Jt + d (6-7)

where F = KIEQ2; D = QJQt.

In the interval (A2,Aj) equation (6.6) cannot be fulfilled so that there is

no root of the right-hand side of (6.4). In this interval synchronization

cannot exist since d<pjdr # 0. In the intervals (0,A2) and (A^oo), on the

contrary, condition d<Pjdr = 0 can exist.

The interval in which the synchronization is lost is

AX = A, - A2 = F = ^- (6.8)

It is seen that AX decreases if K decreases or if EQ2 increases, which is

sufficiently clear on physical grounds, since a certain amount of work is

required to bring two frequencies together and this work is the smaller,

the smaller is the detuning K or the larger is the coupling EQ2.

It is necessary also to take into account equations (6.2) since the station-

ary values rx0 and r20 in (6.4) are the same as in (6.2). From the latter

equations one obtains

('"io/r2o)2 = A2 = (pX - n2 sin 9>â€ž)/(/>A + n^2 sin <p0) (6.9)

which can be written as

(nx sin <p0)X* + pX3 - pX + n2 sin <p0 = 0 (6.10)

This equation results from two equations (6.2), but it is necessary to

express also that sin <p0 appearing in (6.8) corresponds to cos <p0 calculated

from (6.4); this can be expressed from the relation sin2 <p0 + cos2 <p0 = 1,

but the calculations are long and we do not reproduce them here.

In the symmetrical case (A = 1; r10 = r20), conditions are much simpler

and (6.8) reduces to:

(nx + n2) sin <p0 = 0 (6.11)

As (nx + n2) Â± 0, one must have sin <p0 = 0, that is, cos <p0 = Â± 1; on

the other hand, we have /(1) = kj(s2 â€” and as (s2 â€” < 0, one has

cos <p0 = cos (<px0 â€” <p20) = â€” 1 which shows that for the symmetrical

equilibrium state <p0 = <p10 â€” <p20 = tt. This means that the individual

phases <p,0 and <p20 of oscillators are in opposition to each other.

Under this condition equations (6.2) show that the stationary amplitudes

r10 and r20 of each oscillator are equal and are:

rio2 = '202 = p =

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 2

1
:3

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



SYNCHRONIZATION

453

For a = b, this yields

r10 â€” r20 â€” 2

which is the well known result.

Summing up, in the symmetrical case of two identical van der Pol

oscillators, with a symmetrical detuning, each oscillator oscillates with the

same amplitude r0 = rx0 = r20 =2 as if it were alone. The condition

of coupling imposes the opposition of the individual phases of <px0 and <p20

but the period continues to be 2n in spite of the fact that the individual

frequencies are made to be different (being <oj2 = 1 + k for one oscillator

and Â£o22 = 1 + k for the other one).

If the condition of synchronization d<p/dr = 0 cannot be fulfilled, that is,

(d<pjdr) # (d<Pjdr), <p = <pj â€” <p2 ceases to be constant and varies con-

tinuously (although not uniformly); this results in similar variations of

sin 9 and cos <p between the limits +1 and â€”1. In other words, both

amplitudes and phases undergo modulations and the oscillation becomes

almost periodic. From the quantitative point of view the problem becomes

complicated in view of these cross-modulations.

In the general case when the synchronization disappears the problem is

amenable to a differential system of the fourth order since in addition to two

amplitude equations (6.2) one has also two phase equations (6.3) without

any possibility of combining the latter into one single equation (6.4).

The question of stability of the stationary state reduces to the variational

equations which are obtained from (6.2) and (6.4) if one replaces the

stationary values r10, r20, and <p0 by r10 + 8r,, r20 + 8r2 and <Po + 89, where

8rv 8r2, and 8<p are small perturbations. One has to perform the variation

of A = rx0/r20 in the same manner.

For equations (6.2) the variational equations are

an2r20 cos <po]^9

(6.12)

-^-i = [-lar^Sr! + [a(p + n2 sin <p0)]8r2 + [-<m2r20 cos cp0]89

d8t

-IT ~ ia(P + "1 sin <po)]8ri + [-3or202]8r2 + [ancos <p0]b\p

For the phase in the synchronized condition the variational equation is

do 1 1

â– j- = ^ [ycos9p0( + )/r102r20]8r1 - ^iY ^os <p0( + )lrx0r202]or2

+ \ Wsin <Po( - )lrior2o\8<p (6-13)

where ( + ) = wi2r20 2+ o>22rx02 and (-) = Â£oi2r202 - w2hri02.
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The characteristic equation of the synchronized system is

An-S

Ax2

^413

â– An

A22 s

-^23

= D(S) = 0

(6.14)

^31

â– A32

^433 â€” .5

where

An = -3ar10; Ax2 = a(p - n2sin<p0); Ax3 = -an2r20 cos <p0

A2\ = a(p + Â»isin<p0); Ai2 = -3ar202

(0.15)

A23 = on^m cos <p0; = i[y cos <po( + )/rio2''2o]!

^32 = ~\{y cos ?â€ž( + )/''ior202] I ^433 = ib sin <po( - V^io^o]

In the developed form D(s) is

53 + B2S* + 5j5 + B0 = 0 (6.16)

where 50, Bv and B2 are functions of A,i; i,j = 1, 2, 3.

In the symmetrical case, r10 = r20 = r0; A = 1; sin <p0 = 0; cos <p0

= Â±1. As in this case cos <p0 appears only as cos2 <p0, its sign is immaterial.

The characteristic equation in this case becomes

S* + (6ar02)S2 + [<t2(9r02 - />2) + Â±oy(<V + *>,*)(Â», + n2)]S

+ ^M3r0a - />)K2 + a>22)K + n2) = 0 (6.17)

By Hurwitz's theorem (6.14) has no roots with real positive parts if

(1) B2 > 0; (2) B0 > 0; (3) B2Bx - Bo > 0 (6.18)

As condition (1) is always fulfilled, conditions (2) and (3) reduce to one

single condition:

3r02 - p > 0 (6.19)

On the other hand, for the synchronized state one has r0 = x'p and it is

seen that (6.19) is always fulfilled and the system is stable.

We do not attempt to carry out calculations of stability for an asym-

metrical condition A ^ 1 in view of their complexity but, on physical

grounds it seems plausible to assume that any such asymmetrical state is

unstable as long as two oscillators are identical and the detuning of their

frequencies is symmetrical.

The situation would be different if the oscillators would have different

parameters and their detuning were also different. In such an asym-

metrical case calculations would be more complicated although the

physical nature of the synchronization would be the same, namely: for a
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sufficiently large detuning the synchronized state disappears and the

stroboscopic system becomes of the fourth order giving rise to an almost

periodic oscillation.

For a coupled system involving more than two oscillators, the synchro-

nized state is impossible in view of the impossibility of fulfilling the condi-

tion drp/dr â€” 0 for the whole system, although for a partial synchronized

coupling of two oscillators of the system this does not seem to be impossible

as shown in this analysis.

7. Other forms of synchronization

In the analysis of the synchronization effect it is customary to develop

the theory on the basis of the d.e. of the electron-tube circuits. The only

reason for this, as in other investigations of nonlinear phenomena, is the

simplicity with which the d.e. can be formed on the basis of the Kirchhoff

laws. This does not mean that the synchronization is a special property

of the electron-tube circuits. On the contrary, the numerous experimental

data seem to indicate that this phenomenon is rather general and appears in

any system possessing appropriate nonlinear features regardless of its

physical nature.

We mentioned previously that the first discovery of the phenomenon of

synchronization by Huygens (1629-1695) was made in connection with the

synchronization of the periods of the two clocks hung on a thin wall.

Similarly, Lord Rayleigh notes that two organ pipes of slightly different

frequencies, when placed near to each other, vibrate at the same frequency

but, if their frequencies are sufficiently far apart, one hears the frequency of

the beats. Later on Lord Rayleigh1 improved his experiment by moving

the pipes sufficiently far from each other and obtaining the same result by

means of an appropriate coupling through an acoustic resonator.

A detailed investigation of synchronization of clocks in the presence of

the escapement mechanism was carried out by T. Haag10; this is precisely

the domain in which the synchronization effect was observed for the first

time by Huygens.

Phenomenon of acoustic synchronization was investigated by S. Chaikin

and K. Theodorchik.1x These authors used the arrangement shown in

Fig. 18.4.

A telephone T is inserted in the anode circuit of an electron-tube

oscillator and a microphone M in its grid circuit. The elements T and M

are coupled acoustically by means of two armatures Ax and A2 fixed on the

I See footnote page 438.

10 J. Haag, Ann. Ecole Norm. Super., Paris, Ser. 3, 64, 1947.

II K. F. Theodorchik and S. Chaikin, J. Tech. Phys. (USSR) 2, 1932.
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456 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

same rod R, which is centralized by means of a spring not shown; a

suitable damper is also attached on R.

The mechanical system A1RA2 is described by a linear d.e. of the 2nd

order and has a frequency a>. As to the electronic oscillator, it has its

own frequency a>0 of the self-excited â–  oscillations. If the difference

oj â€” oj0 is not too small, the beats of the two frequencies are observed; but

if leo â€” a>0| becomes sufficiently small, both frequencies coalesce into one,

frequency <o. The nonlinear frequency a>0 is thus "entrained" by the

external frequency and it is found that the ratio (w â€” <o0)/a> is proportional

to the ratio aja0, where a is the amplitude of oscillations of the mechanical

system driven by the acoustic pressure waves emitted by telephone, and a0

Figure 18.4

is the amplitude of the self-sustained oscillation of the electron-tube

oscillator.

This method has been applied to measure acoustic intensity by observing

the magnitude of the zone of synchronization, knowing o0 and determining

the proportionality factor by calibration.

In recent years the synchronization phenomenon has been used ex-

tensively for a very accurate speed control of electric motors, such as those

used in high precision clocks and similar devices in which an extreme

accuracy of speed control is necessary. The usual scheme consists of a

quartz oscillator circuit with an additional circuit for frequency demultiplica-

tion. The latter, as will be shown in Chapter 19, depends on the so-called

subharmonic resonance involving the subharmonics (harmonics of a frac-

tional ratio). As the quartz oscillator maintains its frequency with a very
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rectifying elements; the direction of rectification is indicated by arrows.

The diagonal points of the bridge are connected to the saturation coil of the

iron core M.

In the circuit BACD there are thus two induced voltages: Ev with

frequency <o, induced in the AB branch; and Et, with frequency <ot

induced in the CD branch.

We consider the case when the difference <o, â€” oj1 = <o is small. The

vector diagram is shown in Fig. 18.6; we can assume that the vector E is

fixed; then Et rotates with frequency Ju in one direction or other,

depending on the sign of the difference <o, â€” <o,.

The resultant vector Er is the voltage between B and D and represents-

therefore, to a certain scale the rectified current i

flowing through the coil G.

As eu, = 1 \ Â£,(/)(?,, where L,(/) is a non-

linear function of /(decreasing with an increasing

/ or vice versa), it is apparent that

â€”â€” = UJ, â€” CO, = J(U

1

where <p is the magnetic flux through the coil.

If, initially, J <o > 0, this means that <o, > <oj

and that E. rotates in the direction of the

arrow A (that is, toward the advance) around the

end of Â£, as center. The resultant voltage E, is

thus increased and so is the current i owing to

the rectifier scheme. This reduces that value

of L,(i) and increases the frequency <o, until the

initial difference J <o is reduced to zero. Owing

to this arrangement, the equilibrium point

<o, â€” <o, = J<o = 0is stable. The argument

is the same if <os < <o, with an opposite rotation of the vector Et.

In this way the scheme just mentioned produces exactly the same effect

which occurs naturally in the phenomenon of synchronization. Likewise,

if the frequencies <o2 and <o, are far apart from each other. the circuit is

unable to produce enough variation of Â£,(/) to keep the two frequencies

"locked" together; in such a case the vector Et rotates continuously

(although not uniformly) around the end of the vector always in

the same direction. Here, again, one has the phenomenon of "beats"

of the two frequencies <o, and <o, that occurs in the phenomenon of the

natural synchronization, once the zone of synchronization has been

exceeded.

In this scheme the origin of the synchronizing effect is in the non-

FlGlTtE 18.6
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linearity of the inductance L1; if this inductance were linear, it would be

impossible to produce this result.

Summing up, in all such schemes, whatever their nature may be, the

origin of synchronization phenomenon lies in the existence of a point of

stable equilibrium when the two frequencies coalesce. This means that

the phenomenon in such a case has a natural tendency to approach this

point of coalescence of the two frequencies.
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Chapter 19

NONLINEAR RESONANCE

1. Introductory remarks

Phenomena of nonlinear resonance exhibit a far greater variety than

those of an ordinary (linear) resonance owing to the existence of the so-

called "subharmonics," that is, harmonics of a fractional order which

constitute the essential property of nonlinear systems.

Historically, the study of subharmonics or, more generally, of combina-

tion tones (or frequencies) preceded the establishment of modern theories

of nonlinear resonance; in Section 2 we indicate briefly the nature of

subharmonics from a physical point of view.

The theory of resonance appeared first as a component part of the general

theory long before a study of physical manifestations of resonance was

undertaken. Thus, Poincare, in his early (1892) studies of nonlinear d.e.,1

observes that "there exist periodic solutions with period 2kir distinct from

solutions with period 2n and coalescing with the latter for /x = 0, which

clearly indicates the bifurcation of subharmonic solutions at this point.

In Chapters 10 and 14 we^had occasion to go into this matter in some

detail by two different methods. In particular in Chapter 10, we saw

complications which appear when k approaches an integer value. Like-

wise in Chapter 15 dealing with the asymptotic methods of Krylov-

Bogoliubov, it was seen that the condition of resonance leads to an essential

modification of the theory in that there appears a fixed relation between

the phases of the external periodic excitation and that of the oscillation

itself, which results in a modification of the form of the asymptotic series.

A fundamental investigation of the theory of the subharmonic resonance

with its physical implications was undertaken by L. Mandelstam and N.

1 H. PoincarÂ£, Les me'thodes nouvelles dt la micanxque cileste T.l, Gauthier-

Villars, Paris, 1892; also E. Goursat, Cours a"Analyse 1.2, Gauthier-Villars, Paris,

1918.
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Papalexi2; this study is reviewed in Section 3 where its connection with the

theory of Poincare (Chapter 10) is apparent. In fact, these authors take

as generating solution, the solution the nonhomogeneous linear (ji â€” 0)

d.e. and develop the theory on this basis. The existence of a subharmonic

solution is obtained relatively simply in this case but for stability there are

certain complications in view of the fact that the d.e. is a nonautonomous

one. The authors avoid, however, the difficulty of calculation of the

characteristic exponents by establishing sufficient conditions for stability

in a form of certain inequalities as was explained in Chapter 13. Most of

the treatment concerns "potentially self-excited systems" and electronics

plays an important role in verifying the conclusions of the theory developed

in detail for the subharmonic resonance of the order \ and, to a lesser

degree, for that of the order ^. This theory served as a basis for numerous

experimental developments in USSR (between 1933 and 1940) and recent

researches of Ch. Hayashi3 follow also this method.

A different approach to this question was followed by Krylov-Bogoliubov

in their early (1937) work4 which was developed further in a recent treatise

of Bogoliubov-Mitropolsky (1955)5 reviewed in Chapters 14 and 15.

This work follows the "asymptotic method" of these authors; the features

of resonance are related in this theory to the existence of a fixed phase

between the heteroperiodic and autoperiodic oscillations. This idea

appeared in the earlier work of Krylov and Bogoliubov and, in fact, is

related to the question of synchronization.

What complicates the theory to some extent is the fact that resonance

properly speaking is generally accompanied by synchronization. The two

phenomena, in reality, form merely two distinct features or "aspects" of

the same effect: namely, the resonance feature relates to the amplitude and

synchronization to the phases that are "locked" together during the

resonance as was mentioned in the Introduction to Part III.

In addition to these two principal theories of the subharmonic resonance,

there appeared recently a third one as the result of discussions with M.

Schiffer. This approach is based on the application of the stroboscopic

method and the starting point is the same as in Mandelstam-Papalexi

theory, that is, one takes as a generating solution the solution of the linear

(p. = 0) nonhomogeneous equation but the subsequent treatment is

2 L. Mandelstam and N. Papalexi, Zeitschr. fin Physik 73, 1932.

3 Ch. Hayashi, Forced Oscillations in Nonlinear Systems, Nippon Printing Co.,

Osaka, 1953.

4 N. Krvlov and N. Bogoliubov, Introduction to Nonlinear Mechanics (in Russian),

1937.

s N. Bogoliubov and J. Mitropolsky, Asymptotic Methods in the Theory of

Nonlinear Oscillations (in Russian), Moscow, 1958.
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462 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

different inasmuch as the stroboscopic transformation is introduced

immediately after the formulation of conditions of periodicity (Poincare).

This results, as usual, in an ultimate autonomous system. The problem

of the determination of the stationary state reduces to that of determining

real roots common to two algebraic equations in terms of the integration

constants appearing in the generating solution. Although this method, at

least theoretically, leads to a simple problem of determination of singular

points and their stability, the practical difficulties of carrying out calcula-

tions lie in the last (algebraic) step of the problem as will be seen from

examples in Section 6.

2. Subharmonics

The existence of harmonics (or "ultraharmonics" as some authors call

them in order to distinguish them from "subharmonics") is sufficiently

well known from the linear theory and needs no further mention here.

It. is likely that Laplace was first to observe that in the case of celestial

motions with frequencies a>1 and a>2, disturbances with frequencies

<x> = mcDx + nw2 (m and n being integers) are occasionally observed.

It was, however, Helmholtz6 who definitely discovered the existence of

subharmonics in his theory of physiological acoustics. In particular, he

showed that the ear often hears sounds of frequencies that are not contained

in the incoming acoustic radiation; he showed also that the reason for that

is due to nonlinearity of the d.e. governing the oscillations of the tympanic

membrane.

The conclusions of Helmholtz can be demonstrated in a simpler manner

by means of the well known properties of the electron tubes, whose non-

linear characteristic has the form

ia=m (2.1)

where ia is the anode current and v is the grid voltage. If one uses the

customary approximation of f(v) by a polynomial, for instance:

ia = axv + a2v2 + azv3 (2.2)

and assumes for the sake of simplicity that v consists of two sinusoidal

oscillations of the same amplitude but of different frequencies:

v = k(sin <ojt + sin w2r) (2.3)

the substitution of this expression for v into (2.2), after a reduction of

trigonometric functions to a finite Fourier polynomial, shows that in

â€¢ H. Helmholtz, Sensation of Tone, Longmans, Green, London, 1895.
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addition to the frequencies wx and o>2 there appear also terms with

frequencies

2<Ov 2uJ2, 3oJv 3a>2, W1+C02, Wxâ€”OJi,

2wx + CJ2> 2<x}xâ€”wi, 2<x>2+ <Â»i, 2a>2 â€” f)\

The first four frequencies are the ordinary harmonics (or "ultraharmonics")

but the last six are the "combination tones." Those of them whose

frequency is lower than the lowest of the impressed frequencies (a>x or a>2)

are subharmonics. By a proper choice of and a>2, as well as.of the form

of the nonlinear characteristic, one can obtain subharmonics of a relatively

low (fractional) order and, by cascading some of such arrangements, one

can obtain subharmonics of an exceedingly low order. In this way one

obtains that which is called frequency demultiplication, to which we referred

in Section 7, Chapter 18, when we referred to the synchronization of an

electric motor with the frequency of a quartz oscillator.

If one considers the existence of numerous subharmonics in a nonlinear

system, one can form an intuitive idea as to how a subharmonic resonance

occurs. In fact, if one of these subharmonics has a frequency near to that

of the free oscillations of the system, an oscillation of this particular fre-

quency will be singled out relatively to the other subharmonics; this may

happen either as the result of interaction of a subharmonic with the

external frequency or on account of a mutual interaction of harmonics.

Such an intuitive approach, however, does not lead anywhere, inasmuch

as what is generally given is not a subharmonic but the d.e., and the as-

certaining of whether a given d.e. has a definite subharmonic, which, in

addition, is stable, constitutes precisely the principal part of the problem.

The problem, as we will see, generally splits into two parts: (1) proof of

existence of a certain subharmonic (of a given order, say, ^, etc.) and (2)

that of its stability. Only if these two conditions are fulfilled can one be

certain that a corresponding subharmonic resonance actually exists.

A remark is noteworthy: from the form a> = mwx + n<o2, where m and n

are some integers (positive or negative), one could conclude that "combina-

tion frequencies" are densely distributed in the continuous spectrum of

frequencies. If so, the subharmonic resonances are also distributed more

or less continuously. This conclusion is not true, however; in fact,

Krylov and Bogoliubov have shown in their earlier study (1937) that the

resonances become "washed out" for increasing m and n. Hence, only

those of them are actually observable which occur for relatively small

integer values of m and n.

In this manner the condition of subharmonic resonance appears each

time when the following approximate relation is fulfilled

oi0 = mw1 Â± no>i (2.4)
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464 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

where m and n are small integers and a>0 is the "free" frequency of the

system.

In spite of this limitation, the variety of subharmonic resonances is still

considerable, and whether they actually exist (that is, exist mathematically

and are stable) constitutes the principal problem of this chapter.

We mention in passing that, as far as known, no applications of these

phenomena exist at present, very likely on account of the fact that the

problem is still not quite thoroughly explored.

3. Theory of L. Mandelstam and N. Papalexi

Consider a nearly linear d.e. of the form

x + x = pf(x,x) + X0sin nt (3.1)

which represents a nonautonomous system in view of the external periodic

excitation with period In\n. The problem is to establish the conditions

for the existence of a subharmonic oscillation with period 2n. It is noted

that this problem has been already investigated in Chapter 10 on the basis

of the general theory; we take it up here in a somewhat special form due to

Mandelstam and Papalexi in order to establish a closer connection with

applications. We omit details relative to electron-tube circuits by which

this theory was confirmed later and consider only its essential points.

If /x = 0, (3.1) is a linear nonhomogeneous d.e. whose solution is of the

form

*(r) = a0 sin t â€” b0 cos t + ^Â° n2 sm nt (3-2)

where the first two terms on the right side represent the free oscillation

and the last one represents the forced oscillation, a0 and b0 being two

constants of integration. One has thus an infinity of periodic solutions

depending on two parameters a0 and b0.

The argument is clearly the same as in the theory of Poincare (A0 = 0),

namely: try to establish the conditions under which a periodic solution still

exists for p. J= 0 but small: this merely amounts to selecting the generating

solution in the form (3.2) instead of x(t) = a sin t â€” b cos t corresponding

to the harmonic oscillator x + x = 0.

A generating solution of this kind is possible if, in turn, it is possible to

demonstrate that the solution of (3.1) can be represented in the same form

as (3.2) with functions a(ji) and b(jp.) instead of a0 and b0 such that

a(ix)-+a0\ b(n)^-b0 when n 0 (3.3)

Once the possibility of such a generating solution is ascertained, it is
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NONLINEAR RESONANCE 465

necessary to show that it is stable. The second part of the proof (stability)

is more difficult than the first part (existence) as will appear in what follows.

The authors use a double transformation of variables; one introduces

first the variable: z = x â€” [A0/(1 â€” n2)] sinnr which is substituted into

(3.1) and then the second change of variables:

u = z cos t + z sin t; v = zsint â€” zcost (3.4)

results finally in the equivalent system

m = (z + z) cos t = iup(u, v, t) cos t

v = (z + z) sin t = fjupiu, v, t) sin *

(3.5)

where ip(u, v,t)= f(u sin r â€” v cos t + [A0/(1 - n2)] sin nt; u cos t +

v sin t + [nA0/(1 â€” n2)] cos nt). The function ip(u, v, t) is periodic with

period 2n. It is seen from this expression for ip(u, v,t) that the x which

appears in f(x,x) of (3.1) is of the form:

* = u(p) sin t â€” v(px) cos t + | ^Â°^a sin nt (3.6)

so that what we have just called a(ji) and b(ji) in (3.3) appears now as m(/x)

and v(ji) in these notations. One has to show then that Â«(/x) -> a0 and

vQjl) ->- i0, when /x â€”> 0.

From (3.5) one can write:

u = uÂ°(fi) + n \ ^(Â«, t>, t) cos t<It

Jo

v = vÂ°(fi) + p. f ^>(m, f, t) sin t</t

Jo

(3.7)

The constants of integration uÂ° and wÂ° relate to the nearly linear problem;

but for the linear one (ji = 0), they are a0 and b0.

One can, therefore, following Poincare, define two constants a and /3 by

relations

Â«Â° = a0 + a(M); vÂ° = b0 + jS^) (3.8)

a(/x) and /3(/x) in these notations playing the role of the parameters j3i(/x)

and /32(/x) (Chapter 10) of the theory of Poincare\

On the other hand, the functions uQi) and v(ji) can be expanded into

series arranged according to the ascending powers of parameters which, in

view of (3.8), gives:

u = a0 + a + pCtf) + (ixtD^t) + fipE^t) + ^G^t) + ...

v = 60 + 0 + nC^t) + vutDJt) + rfEt(t) + mÂ«G2(0 + . . .
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466 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

If, on the other hand, one expands the function ip(u, v, t) in Taylor's

series around the values a0 and b0 and compares (3.7) and (3.9), one finds

the following expressions for the coefficients C^t), D^t),. . .

= { <Ka0, b0, r) cos rdr; C2(r) = f <p(a0, b0, t) sin rdr

Jo Jo

Dx(t) = Â£ [fÂ£] cosrdr- D2(t) = Â£ [g] sinrrfr (3.10)

Â£x(/) = Io[^]cosTiT; "Â£ [Â£] *"*

where the symbols and designate the partial derivatives of <p with

respect to u and v for = a = fi = 0.

If u and v are periodic, u(1it) â€” m(0) = 0; v(2n) â€” v(0) = 0, and one

has from (3.9):

C-SItt) + aD-Sln) + pE^2n) + (iG^2in) + ... = 0

C2(2n) + aD^2n) + f3E2(2n) + p.G2(2n) + ... = 0

Since fi, a(n), and fi(jp.) are small and, moreover, these equations are to be

satisfied for any small p., the first condition is

Cx[2ti) = J ^a0, b0, t) cos rdr = 0

C2(27t) = J ip(a0, b0, t) sinrrfr = 0

(3.12)

This permits determining the constants a0 and b0. For the determination

of a and /}, one has the system

aZ)1(2w) + /3Â£1(27t) + nGtfn) = 0

aZ)2(27r) + pE2(2n) + p.G2(2n) = 0

(3.13)

if one limits the expansion to the first order only. These equations permit

determining the unknowns a and /3 approaching zero together with p.

provided

Z>2(27t) Â£2(27t)

ft 0

(3.14)
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NONLINEAR RESONANCE 467

This proves the existence of the subharmonic solution under the condition

(3.14) so that

u(ji)->a0; v(ji)-+b0

as was previously set forth.

The second part of the proof is somewhat more involved as the d.e. in

this case is a nonautonomous one, but the complication inherent in the

calculation of the characteristic exponents is avoided here by merely

formulating conditions in the form of inequalities which show that these

exponents are negative (see beginning of Chapter 13).

If one introduces in equation (3.5): u = u0 + rj; v = v0 + f, where

u0 and v0 are periodic and ij and f are perturbation functions, the variational

equations are

?} = ii4u cos t)r, + (j4v cos t)i ^

i = (wk sin t)n + (jjupv sin f )f

Since uÂ° and vÂ° satisfy the d.e. (3.5), the system (3.15) has periodic

coefficients (Section 5, Chapter 5). If ?h(rr), Â£i(t) and 7j2(r), Â£2(r) are two

sets of solutions forming a fundamental system, one can assume the initial

conditions: ^(0) = 1, ^(0) = 0; 7^(0) = 0; Â£2(0) = 1.

Since rj^t + 2tt), fx(r + 27r),. . . are also solutions, one can write

Vx(t + 27t) = a^t) + 6t,2(0; Ziit + 27t) = a^(t) + bÂ£2(t)

(3.16)

T,2(r + 27t) = o^r) + dr,2(t); Ut + 27t) = <&(*) + d{2(t)

For t = 0 and, in view of the initial conditions, one has

t,^27r) = a; U2n) = b; Va(2n) = c; Â£2(27t) = * (3-17)

Reducing (3.16) to the canonical form, one has ij^r + 27r) = Stf^t),

. . .; this is possible if S is a root of the characteristic equation

F(S) =

that is:

a - S b

c d - S

Vx(2n) - S W)

t,2(27r) f2(27r) - S

= 0 (3.18)

F(S) = S2 + pS + q = 0 (3.19)

where

P = -hi(2^) + Â£2(27t)] and q = [^(2n)^) - t^7r)^^)] (3.20)

If one sets/x = 0, the variational system yields drjjdt = 0 and dÂ£jdt = 0;
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468 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

that is, 77 and f remain equal to their initial values. Hence, for p = 0,

p = â€”2, q = +1, stability exists if the real parts of the characteristic

exponents Ax and h2 are negative or, which is the same, \euki\ < 1 and

|e2irA2| < i This requires that the moduli of the roots Sx and S2 should

be less than one. On the other hand, (3.19) has roots with moduli less than

unity only if

p > -2; 1 + p + q > 0 (3.21)

This follows from equations: 1 + p + q = (Sx + 1)(52 â€” 1); p =

~(Sx + SJ.

The conditions of stability can be thus fulfilled only when the first

nonvanishing derivatives of p and p + q with respect to /x are positive for

/x = 0. If either (dp/dp) or [d(p + q)]/dn are zero, one has to investigate

the sign of either (d^p/dfi*) or \d\p + q)]/dfi2 in order to ascertain the

condition of stability. This is precisely the point we mentioned owing to

which the actual calculation of the characteristic exponents is avoided.

In order to determine the sign of these derivatives, one replaces ?7 and Â£

in (3.15) by 77 x and f x (and, likewise by rjl, Â£2) and integrates between 0 and

2tt, which gives

1i(2w) - iji(0) = ih(2Â») - 1

= f* tuVi cos tdt + p. \ <pJi cos tdt

Jo Jo

(3 22)

^(2*) - ^(0) = &(2Â»)

= p 'f>uVi sm tdt + n \ fjÂ£x sin tdt

Jo Jo

where ipu and ipv are partial derivatives of 1/> in (3.5) or (3.15).

Differentiating these equations with respect to p and, after that, passing

to the limit (i = 0, with the above initial conditions, one obtains

(3.23)

[^]

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 2

1
:5

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



NONLINEAR RESONANCE

469

One obtains thus

f] = -[Dtfn) + EJ2n)];

.Â¥Jr0

Dtfn) + E2(2n) < 0;

Et(2n)

> 0

(3.24)

(3.25)

Wp + g)l =

L ^2 Jâ€ž-o |Z),(27r)

so that the conditions of stability (from (3.19)) are:

pi(2Â») Â£^27r)

|Z)2(27t) Â£2(27t)

If one compares these conditions with the condition (3.14) of a sub-

harmonic solution, it is seen that the second condition (3.25) is the same

but more restrictive inasmuch as "different from zero" is replaced here by

"greater than zero." But the first condition (3.25) of stability is an

additional one not appearing in the conditions for the existence of sub-

harmonic solution. Thus, in this case the stability conditions (3.25) are

both necessary and sufficient not only for stability but also for the existence

of a subharmonic solution.

As previously mentioned, the method does not require an actual cal-

culation of the characteristic exponents but merely investigates the sign of

these exponents in the neighborhood of /x = 0 by means of derivatives with

respect to fi, once the signs of p and q in the characteristic equation (3.19)

have been ascertained directly from the variational equations.

4. Application to the resonance of the order $

Mandelstam and Papalexi investigated very thoroughly the fractional

(or subharmonic) resonance of the order \, which is the most frequently

encountered case. We abridge somewhat their presentation as it contains a

considerable amount of data relative to the calculation of various constants

of electronic circuits by which this theory was checked. The reader can

easily find these details in the original paper; here we are interested mostly

in conclusions. The nonlinear element of the system is here the anode

current /a of the electron tube which is represented by a polynomial.

h = /i(*) = Ia0 + ouc + fix* + yx3 + 8x* + e*5 (4.1)

The term 8*4 is disregarded in calculation. If the nonlinear characteristic

is of a "hard" type, this polynomial is of the fifth degree; for a "soft"

self-excitation it is sufficient to set E = 0. We can consider first the

latter case. The coefficient j3 characterizes the asymmetrical term (the one
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which does not change its sign when the grid voltage reverses); normally

this term is very small and it is logical to consider it as a small parameter of

the general theory. The reduction of the electronic data (which we omit)

gives the following values

/(*,*) = (k + 2x + Yxx* + zxX')x + (Â£//})* (4-2)

Yi = 3y//S; ex - 5c//3; Â£ = (*>â€¢- 4a>0*)/4a>0Â»;

p = J8/(1 + Q; k = [a - 20(1 + fl]//3 (4.3)

As to the coefficients in (4.1), they are:

Â« = (Â«o^o)//o; j3 = 0W)/'o; Y = (y0W.; â–  = MWo

the original (experimental) characteristic being: ia = ia0 + a0V + /20F2

+ y0V3 + s0VB, where V is the grid voltage, <*> the frequency of the

external excitation, <o0 the frequency (free) of the system, and n the order

of the resonance; thus, for the exact resonance Â£ = 0.

For n = 2, the solution (3.6) can be written as

x(t) â€” a sin t â€” 6 cos r â€” y sin 2r (4.4)

As was shown in the preceding seC.ion, for a(/x) and b(ji) one has to solve

two equations

^r(a, 4, t) cos t</t = 0; l/f(a, 6, t) sin-roV = 0 (4.5)

Jo Jo

In these integrals the function ip is f(x,x) where, instead of x and one

substitutes their expressions (4.4). We omit the intermediate calculations

and give oniy their result in the form of two algebraic equations

â– M("+Â»,+H]-j(t.+D;

s[*+?('*+ii+H]-*(i-f) (4-6)

From these equations one obtains

X* = a* + b*~ -I A02 - - [k Â± VA0Â»/9 - PlfP\ (4.7)

where X = Va2 + b2 is the amplitude of the subharmonic oscillation and

-..i.[Â» + ?(* + Â«L')]/gr + g ,4.s)

is its phase.

For the question of stability one has to form the criteria (3.25) by

calculating the functions of Poincar^: D1(27r), .... Since, by (4.4) x and *
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are expressed in terms of a and b, these calculations are obvious and,

omitting them, the criteria (3.25) reduce to the following inequalities:

k + * (*Â» + ^) < 0; yi[A + * (*Â» + ^)] > 0 (4.9)

If A" = 0 (that is, the subharmonic oscillation is absent), (4.9) gives the

stability condition of the small heteroperiodic oscillation which is of no

special interest.

From (4.7) and (4.9) one can obtain another combination, namely:

+ VA0*/9 - $W* + j *2 < 0; yi( + VA.Â»/9 - Â£> 0 (4.10)

For a "soft" characteristic yx is generally negative, one has then:

X* = X [k + V\0*I9 - PIP + yiAâ€žÂ«/18) (4.11)

which gives X* as a function of A0 and The condition of reality gives:

VA0*/9 - ppi > -(* + yiA0Â«/18) (4.12)

If one considers X2 as a function of Â£, the values of ^, for which X2

vanishes, determine the interval in which the subharmonic resonance exists.

In this interval (gvÂ£2)X* goes through a maximum; for these details we

refer to the paper of Mandelstam and Papalexi and give here only the

conclusions.

If the characteristic is soft (that is, 8 = e = 0 in (4.1)), the curve of the

resonance has the appearance shown in Fig. 19.1 for a given value of Aâ€ž.

Figure 19.1
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472 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

If A0 increases, the maximum of X2 increases with the incidental increase of

the interval of resonance; this increase, however, is not monotonic with

A0, as in the linear case, inasmuch as, for a sufficiently large A0, the reson-

ance oscillation suddenly disappears. The behavior of the resonance

oscillation is thus entirely different from that of the linear resonance.

In the case of a "hard" characteristic calculations are similar but are

much longer. In this case one has to use the full polynomial (4.2) which

means that (4.4) has to be raised to the 4th power and then multiplied by x

before the integration. Equations analogous to (4.6) in this case are:

*{* + 2Â£ (x* + \ A0Â») + h [x* + A0*/81 + ^ (5x* + 46*)]}

-(H)

(4.13)

b{k + 2Â£ (x* + ^ Ao<) + h [X* + V/81 + Y (5x* + 4Â°**]}

In order to simplify the discussion, it is assumed that X2 > (A02/9) on

the basis of some experimental considerations. In such a case the preced-

ing equations are simplified and are:

â– (Â»â™¦?*Â»+**â– )(4M)

which gives for X2 the quadratic equation:

hx* + ^ X2 + [k Â± V\02I9 - pjp*] = 0 (4-15)

Conditions of stability of the subharmonic solution arc re:

k + ^ X2 + 1 ^X* < 0; (SxX2 + 2yi)(ei^* + 2YxX* + 8*) > 0 (4.16)

Combining these conditions, one obtains the stable subharmonic solution

X* = -YJh + VYTl*? - 8/cx(* + VA0Â»/9 - PIP*) (4.17)

which is subject to the additional condition of the reality of X*.
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These long calculations result in the curve of resonance shown in Fig.

19.2. The only difference as compared to curves of Fig. 19.1 is that the

resonance in this case appears and

disappears abruptly for certain critical

values of detuning; all other features

remain the same as in the case pre-

viously studied.

As far as known, most of this work

was conducted in connection with the

various resonances observed in elec-

tronic circuits inasmuch as the theory

of these authors was particularly well

adapted for this purpose. As we

mentioned, the recent (1954) experi-

mental work of C. Hayashi followed

closely this theory for the investigation

of subharmonic resonances of higher

orders without going, however, into a

detailed investigation of the various

factors as did Mandelstam and Papalexi in their original research in

connection with the resonance of the order \.

Figure 19.2

5. Subharmonic resonance by the stroboscopic method

We consider again a nonautonomous nearly linear d.e.

Â£ + x + ff(x,x) = sin nt

and the corresponding solution for /* = 0,

x0(t) = A sin t + B cos t + | â€” ^a sin nt

Thus,

x0(t) = y0(t) = A cos t â€” B sin t + j -j cos nt

*o(0) = B; y0(0) = A +

(5.1)

(5.2)

(5.3)

Forming the conditions of periodicity (of Poincare) and, taking as initial

conditions, x^O) = 0; ^i(0) = 0, one finds easily

*i(0 - ~ f (t - r)f[x0(r),y^r)]dr

Jo

yi(t) = - f cos (r - T)/[*0(T),;y0(T)]<*T

Jo

(5.4)

as was explained in Chapter 18.
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474 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

The problem, therefore, is to determine the constants A and B, so that

the nonlinear solution be periodic with period 2n. In fact, since the

external periodic excitation here has period 27r\n (n integer) and the

system has a stable periodic solution with period 27r, clearly this is a

subharmonic solution of order n (or of a fractional order 1 /n, which is merely

a different term).

We shall investigate the first approximation only, assuming that /x is

small. As was mentioned on several occasions, higher-order approxima-

tions do not add anything new from a qualitative point of view but merely

add small corrections 0(/li2) at the cost of extremely long calculations which

we shall avoid.

There are two distinct stages in this procedure: (1) exact subharmonic

resonance; and (2) existence of a subharmonic solution in the neighborhood

of the exact subharmonic resonance. The first problem is relatively

simple inasmuch as all integrations in this case are to be carried out between

0 and 27r; whereas the second is more complicated since these integrations

are between 0 and T = 2n + e, e being the detuning. We indicate here

both possibilities but give examples of calculation only in connection with

the exact resonance. The calculation of the neighborhood in which a given

subharmonic resonance can maintain itself does not present any basic

difficulty but merely requires very long and tedious calculations which,

likely, can be better produced by computing machines if a detailed study

of this question is deemed desirable. We note in passing that inasmuch as

here we are not limited to any particular type of the problem (for example,

self-excited, potentially self-excited, or passive systems), the discussion

can be conducted in general terms and the procedure holds in all cases.

If a subharmonic solution (of order n) exists, it is to be periodic and we

begin by formulating the condition of periodicity (Poincare). In order to

approach the problem in its full generality, we consider rather the case (2)

of detuning. The problem is then: the external periodic excitation takes

place with period T = 2tt/k but this period does not stand in an exact

rational ratio with period 27r of the system, the relation being T = 27r + e,

e being a small detuning. One must, therefore, show that the system may

still exhibit a subharmonic oscillation with period 27r. It is clear that this

requires two distinct "aspects" of the real phenomenon (see Introduction,

Part III): (a) synchronization, (b) resonance. The stage (a) has been

investigated in the preceding chapter where it was shown that, generally, if

the detuning is small, the oscillation is synchronized with a nearest

submultiple of the external frequency. If one assumes this, there remains

still the question as to whether the amplitude can maintain itself under this

condition of "detuning" (stage (b)); we concentrate, therefore, our atten-

tion only on this stage (b) of the phenomenon.
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NONLINEAR RESONANCE 475

In the first approximation x(t) = x0(t) + /**i(0; y(t) = x(t) = y0(t)

+ yy^t) so that we have

x(T) = x0(T) + ivc^T) = A sin T + B cos T + _ , sin nT + /x*^)

(5.5)

M^) -yÂ£T) + Wi(T) = AcosT- BsinT + ^-Zâ€”^osnT + m(T)

and *(0) = B; y(0) = A + n/(1 - n2).

The first step in the stroboscopic method is to introduce the difference

equations which are here

x(T) - *(0) = A$ = A sin T + B (cos 7-1)

+ 2 J ff2 sin + W^)

(5.6)

><r) - y(0) = Jij = A (cos jT - 1) - B sin J

+ r^(cosn:r~1) + ^i(7,)

where x^T) and^T) are the integrals (5.4) taken between 0 and T; for

simplicity, we set x^T) = M(A,B); yi(T) = N(A,B), since, obviously

these integrals are functions of A and B.

We can divide (5.6) by (iT = At resulting in

AÂ£ _ AsmT B(cosT-\) n sin nT 1

2; ~ ~Tf~ + ~y7r + F^77>T +

(5.7)

Aij B sin r j4 (cos jT - 1) n cos - 1 1 .

a7 - ^ + â€”^â€” + â€”â€” + T^B'A)

When the system traverses the sequence of its periods, in each period the

constants A and B undergo a change and, in order to emphasize this

circumstance, we set

*(0) = B = {; y(0) = A = v - (5.8)
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476 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

The usual passage to the limit (At â€”> dr) from the difference equations to

the stroboscopic system (Chapter 16) results in the d.e.

dÂ£ _ t cos T - 1 sin T n /sin nT sin T\

dr

, cos T - 1 sin T n /sin nT sin T\ .

= ( Â»t +r>Tr+ T=l? i75T ~ T^j + P(^}

, sin T cos 71 â€” 1 n .â€ž

^=-^ + ,_^ + T_i (5.9)

(cos â€” 1 cos J1 â€” 1\ .

â€”7T ?r-J + ^

where

Ptf,,) = - p^); Â«?(^) = Ijv(f,, - r-^).

If the detuning e is small, sin !T = 0(/x); (cos 71 â€” 1) = 0(/x2); setting

(sin T)/nT = />, the system (5.9) can be written as

fT=PV + P(tÂ«Y, % = ~pt + (5.10)

If, however, one considers that the detuning is zero, T = 2n and the

preceding equations become

t = rA^-r^-' J-s*(*Â«-n??) (5">

The condition of the stationary state requires

M(^o. ,o - i^i) = 0; iv(lo. Vo - j-^i) = 0 (5.12)

The d.e. (5.11) are much simpler than (5.9), and in the following section

we shall give examples of application of this method. In Section 7 the

general procedure (equation (5.9)) is indicated.

6. Applications of the stroboscopic method

We propose to explore the possibility of a subharmonic resonance of the

order Â£ in connection with the d.e.

9 - n(a - 09>2>P + <p = e sin 2r; a > 0, p > 0 (6.1)

Setting <p = ex, this d.e. becomes

* â€” /x(a â€” Â£e2*2)* + * = sin 2r (6.2)

where, as usual, fi is a small parameter.
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NONLINEAR RESONANCE 477

As a zero-order solution x0(t) we take the solution of the d.e.: x0 + *0

= sin 2t, which gives

xa(t) = A sin t + B cos t - \ sin 2t

V T (6.3)

y0(t) = A cos r â€” B sin t â€” Â§ cos 2*

with the initial conditions: x0(0) = B; y0(0) = A â€” Â§; we assume also

that x1(0) = yx(0) = 0, so that the first-order corrective terms xx and-j^

are

*i(0 = P sin (Â« - t)(Â« - j8e2x0*)VT

(6.4)

We consider here the exact subharmonic resonance (detuning zero) so

that integration in (6.4) is between 0 and 2n.

The conditions of periodicity of the subharmonic solution is

x(2n) - *(0) = *0(27t) - *0(0) + p*a(277r) = 0

y(2n) - y(0) = y0(2n) - y0(0) + w&tt) = 0

and since x0 and y0 are periodic with period 2n, the conditions of the

stationary state reduce merely to *1(27r) = 0, y^n) = 0. We consider,

however, first the approach to such a state; this yields (after the passage

from difference equations to the stroboscopic d.e.) the system

Tr= ~5 J. Â«MÂ« - W)*-*

(6.6)

gr = + ^ J cos r(a - 0e2xo2)*o^T

It is convenient to integrate these integrals by parts observing that

(o - pe2x0*)x0 = jj- (ax0 - J0***o3)

As the integrated parts vanish on both limits, the stroboscopic system takes

the form

d$ l ru d-n 1 r2n

where g(x0) = ax0 - |j3eax08, #0(t) being given by (6.3).
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478 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

A simple, although somewhat long, calculation gives

rg(x0) cosrir = n{*B - y[&B* + A*B) + -&B]}

y = Pe* (6.8)

I "g(x0) sinrrfr = tt{oA - y[&A* + AB*) + &A]}

Jo

One can conduct calculation either in variables f and 77 or in B and A,

since, in view of the initial conditions, x0(0) = B = Â£;y0(0) = A â€” f = rj,

so that d$/dr = dB/dr and d-qjdr = dA/dr. We take, for instance, the

variables B and A, in which case the system (6.7) becomes

and one sees at once that the polar coordinates simplify the matter. We

set p = A* + B3; ip = arctan (A/B). The simple way of doing this is to

introduce two combinations of equations (6.9), as we did previously, on a

number of occasions, viz.:

Bâ€” A â€” and Bâ€”-A-- ^

dr dr 2 dr dr dr ^ dr

The first combination yields

% = p[(- ~ Tspe2) ~ \Pe2p] = (610)

As to the second, it gives merely dipjdr = O.f

The interest thus centers on the d.e. (6.10) which shows that there

exists a stationary solution

II*') (6-H)

provided a > -fefie2, since p is essentially positive. Thus the subharmonic

t This circumstance is due to the fact that we have taken the last term on the

left side of (6.1) as 95. In a more general case when, instead of <p, one would have

g(<p), the second stroboscopic equation dip/dr would not be zero identically in the

first approximation (see Chapter 22).
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resonance exists as long as the amplitude e of the external excitation is

below a certain limit given by inequality

e * J-j (6.12)

It is necessary to show also that p0 is stable. In this case the condition of

stability is very simple and is expressed by the inequality (Section 6,

Chapter 14)

*,(Po) < 0 (6.13)

If one differentiates the right-hand side of (6.10) with respect to p and

substitutes for p its value p0 given by (6.11), one finds easily that the

condition (6.13) is fulfilled.

Thus the subharmonic resonance of order ^ exists in this case as long as

the amplitude e is not too high (condition (6.12)). We find thus the same

result which Mandelstam and Papalexi obtained by a different method.

In the form (6.1) or (6.2) with a > 0 and /J â– * 0, the d.e is the van der

Pol equation, but it is interesting to explore the different cases when the

condition a > 0, fi > 0 is not fulfilled; in such a case this will not be a van

der Pol equation but some other equation whose physical nature can easily

be ascertained.

In the first place, if both a < 0 and j8 < 0, this merely amounts to the

change of sign before and we have

* + f4\a\ - \p\e2x2)x + x = sin 2t (6.14)

This is a kind of an "inverted" van der Pol equation; considered as an

oscillator, this is an oscillator with positive damping for small x and a

negative damping for larger x. In order to explore whether the sub-

harmonic resonance in such a system is possible we have to replace a and /3

in the preceding formulas by â€” |a| and â€”1)3|. We have thus

the criterion (6.13) remains the same, but the condition of stability is not

fulfilled.

In the two remaining cases when either a > 0, /3 < 0 or o < 0, /3 > 0,

the same argument shows that the subharmonic amplitude does not exist.

For the subharmonic resonance of the order ^ (for the same d.e. (5.1))

*0 = A sin t + B cos r â€” 4 sin 3r

Â° * (6.16)

y0 = A cos i â€” B sin t â€” f cos 3r
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and the calculation of j*"f(x0) cos rdr and j*"f(x0) sin rdr is to be

carried out with the new value of x0.

We shall not reproduce this calculation here but merely note that, unlike

the symmetrical system (6.9), one obtains here a rather unsymmetrical

system.

S-^-H^+^-n^w] (617)

which precludes the use of the variable p which was helpful in the case of

the system (6.9). The determination of the roots A = A0, B = B0

common to both equations (6.17) is here more difficult inasmuch as it

hinges on the algebraic solution of two equations of a rather complicated

type which are obtained by equating to zero the right-hand sides of equa-

tions (6.17).

This is a typical kind of difficulty which one encounters in the de-

termination of the subharmonic resonance by this method, but similar

difficulties arise also in other methods. The difficulty is not in the

theoretical fundamentals of these methods but rather in carrying out the

actual calculations when it becomes necessary to determine roots A = A0

and B = B0 common to two algebraic equations. If this reduces to a

simple case which we encountered in the case of the subharmonic resonance

of the order \, the answer is given at once, but in the case of the resonance

of the order ^ the algebraic problem is more difficult and a considerable

amount of work is to be done before one is in a position to answer with

certainty as to whether this particular resonance exists or not.

The preceding examples relate to the subharmonic solutions of the van

der Pol equation which represents by its very nature an energy absorbing

physical oscillatory system.

The method applies, however, to purely passive (energy dissipating

systems). As an example we investigate the existence of a subharmonic

resonance ^ in the case of the Duffing equation by considering the d.e. of

the form:

Â£ + aÂ£ + cÂ£3 + Â£ = e sin 3r (6.18)

which, by means of the change of variable Â£ = ex is transformed into the

d.e.

x + x + fi(ax + ye2x3) = sin 3r (6.19)

where a = /xa and c = fiy.
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Following the same procedure one has

x0(t) = A sin r + B cos t â€” A sin 3r

(6.20)

y0(t) = A cos t â€” B sin t â€” % cos 3r

Whence xx + *i = â€” (Â«*o + ye2xo3) = â€”/(*o>*o)- The conditions of

periodicity are here

Xi(27r) - x^O) = J*!(0) = sin rf(xo,x^d.T = 0

Jo

tt(2*) - Ji(0) = J*(0) = -(i f cosT/(*0,*0)aY = 0

Jo

(6.21)

The calculation reduces to the evaluatiop of integrals J?" sin rf(x0,x0)dT

and J*" cos t f(x0,x0)dT which are to be equated to zero. We omit this

calculation and give the result. The ultimate algebraic system for the

determination of A0 and B0 is:

aA + $ye2[B(A2 + B2) - \AB + &B] = 0

(6.22)

-aB + h'\(A - \\A2 + + lV^] = 0

The real roots A = A0 and B = B0 common to these two equations give

L <&(0) â€ž rfv(0) dv n , .

the stationary state , = â€” = 0; . = â€”l = 0 of the stroboscopic

AT <ZT flT AT

d.e. The amplitude of the subharmonic oscillation is then: V A02 + B02

and its phase: <p0 = arctan A0lB0.

In this case no simple reduction is possible and the difficulty is again of

a purely algebraic character. In the first place one notes that neither

A = 0, B ^ 0 nor A ^ 0, B = 0 satisfy the system (6.22); the case

A = B = 0 is to be rejected anyhow.

There remains thus the case A # 0, B # 0. One can set A = XB

where A is any finite number; it appears here as an undetermined parameter.

If one substitutes A = XB in both equations and cancels B throughout,

one obtains a system of two quadratic equations,

OoB* + axB + a2 = 0; b^2 + bxB + ft, = 0 (6.23)

where the coefficients a0,. . ., b are functions of A. By expressing that

these two equations have one common root by one of the existing proced-

ures (for example, Sylvester, Cauchy, etc.), this determines the value of

A = A0. It is sufficient to solve one of the equations for B = B0 in order

to obtain also A0 = B0A0. The procedure is long and tedious but it is

straightforward.
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482 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

As regards the equations of stability, it does not present any special

difficulty, once the stroboscopic system is written in the form

The principal amount of work is, however, in the actual numerical

calculation of roots common to two algebraic equations.

7. Zones of subharmonic resonance

The phenomena of subharmonic resonance are observed not only for the

exact fractional ratios, say, \, . . between the free (e = 0) frequency of

the system and that of the external periodic excitation but also for a certain

detuning of the former. This circumstance has been mentioned already

in connection with the theory of Mandelstam and Papalexi where the

detuning is used as a parameter against which the resonance curves are

plotted.

In the general case relative to the neighborhood of an exact subharmonic

resonance the two phenomena take place simultaneously, viz.: there is tbe

entrainment of frequency to the exact subharmonic value and there are also

modifications in the curve of resonance which exists only for a certain

interval of detuning.

As the phenomenon of synchronization has been investigated in the

preceding chapter, we concentrate our attention here on the resonance

part of the phenomenon. This requires the investigation of the system

(5.9) instead of (5.11).

In spite of the asymptotic character of the differential system (5.9)

obtained under the assumption that sin T ~ 0(/x); cos T - 1 ~ O^x2), the

calculations are considerably more complicated than when T = 1n.

In the first place, in the integration by parts (now between the limits 0

and T, and not between 0 and 2tt), the integrated part does not vanish

and for M(A,B) and N(A,B) we have now the expressions:

M(A,B) = -sin T(aB - |/3B3) + cos (T - t)(o*0 - ^x03)dr

[lA> + lABt + T2^ + B^ + i6A]}

â– B3 + lAiB-T6AB + 2T6B}}

(6.24)

N(A,B) = -(cos T - 1) (aB - ij3fl8) * +

(7.1)

lo

.T

0
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In the case of the exact resonance, all integrations were between 0 and

2tt, which accounted for vanishing of a considerable number of terms; now

none of these terms vanishes.

Thus, for instance, the term x03 cos rdr gives rise to the polynomial

of the form

A3ax + B3at + 3AB2a3 + 3A*Bat + 3mA2as + 3mB2a6

+ 3mABa1 + 3m*Aaa + 3m2Ba9 + m*ax0 (7.2)

where m = (1/(1 â€” n*)) and the coefficients ai, i = 1,. .., 10, are

ax = \ 8in* t

f t + -fe sin 2t + Â£ sin t cos3 t

a, =

cos* t

at= -3^sin4r + |r

- Â£ sin (Â» + 3)* - i sin (n - 3)r]</f

rr (7-3)

at = J [i sm (n + 3)r + i sin (n â€” 3)f

+ | sin (n + l)r + | sin (n - l)t]dt

an â€” f [\ cos (n â€” 3)r â€” \ cos (n + 3)r

Jo

+ Â£ cos (n - \)t - \ cos (n + l)f

as = j [i sin 2r - Â£ sin 2(n + l)r + Â£ sin 2(n - \)t]dt

aÂ» = j [i - i cos 2n* + i cos 2r

- i cos 2(Â» - l)f - Â£ cos 2(n + l)r ]<fc

flio = j [f sin (n + l)r + f sin (n - l)f

- Â£ sin (3n + l)f - Â£ sin (3n - \)t]dt
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There is still another similar polynomial for F x03 sin rdr with analogous

coefficients, say bx, b2,. â–  ., bx0. We consider here the general case but

for particular cases, one must set n = 1, 2, 3,. . . and take the corresponding

m and n.

It is seen that the problem reduces to the determination of real roots

A = A0 and B = B0 common to two algebraic equations with 10 terms

whose coefficients axv . ., a10, bv. . ., i10 are ultimately functions of T, that

is, of the detuning.

In this manner a region of detuning e (that is, of T in which the right-

hand terms of (5.9) have real roots A = A0, B â€” B0 common to both

equations) is that in which a given subharmonic resonance can exist; if

these roots cease to be common to the two equations for some value of

detuning, this indicates the limit at which the subharmonic resonance can

maintain itself. To this is added, of course, the investigation of stability.

The problem is very complicated if attempted by ordinary procedure

but, presumably, is within the reach of computing machines if such a

thorough investigation of the subharmonic resonance is ever to be at-

tempted.

8. Comparison of different methods

The preceding survey of the principal methods shows that the phe-

nomena of nonlinear resonance exhibit a striking contrast between the

simplicity of their physical nature considered in terms of subharmonics and

very long calculations required in order to obtain quantitative results.

This probably explains a scarcity of information regarding resonances of

orders other than the order of \ which is the only one relatively well

explored.

The experimental work, on the other hand, has progressed considerably

in recent years particularly in the interesting researches of Ch. Hayashi3

(electrical oscillations) and K. Ludeke7 (mechanical oscillations). There

is also a considerable experimental evidence on this subject published

earlier by the Russian school of physicists under the guidance of L.

Mandelstam and N. Papalexi (1932-1940) and more recently in a number

of other publications.

As it is impossible to enter into a detailed survey of this experimental

work and its relation to the various theories, we shall endeavor merely to

correlate the various methods.

The Mandelstam-Papalexi (M.P.) theory, in view of its adaptation to

* See footnote *, page 461.

7 K. Ludeke, J. Appl: Phys., July, 1946.
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the electronic circuits, continues to play an important role in studies of the

subharmonic resonance in electron-tube circuits. Very often investigators

are more concerned with the question of existence of the exact resonance

than with a more tedious calculation of the effect of detuning in the range

in which the resonance persists.

As the question of nonlinear resonance was also investigated in Chapter

10 (in connection with Malkin's work) and in Chapters 14 and 15 (in

connection with the asymptotic methods of Krylov-Bogoliubov-Mitro-

polsky) where it is organically welded with the general theory, it is useful

to correlate these various developments.

In the M.P. method the procedure follows closely the theory of Poincare

(Chapter 10) as was mentioned in Section 1. The problem of the existence

of a subharmonic solution is established from the identification of the

results with the series solution which determines the functions C1(27r),

C2(27t), Z)1(27r), D2(27t), Â£1(27t), and E2(2v) of the Poincare theory.

The problem of stability reduces to the determination of the sign of the

characteristic exponents since the authors operate directly with the d.e. in

their original nonautonomous form. The calculation of these exponents

is avoided, however; and, instead, it is shown that, for fi small, it is possible

to formulate conditions of stability in the form of inequalities, which

guarantees the existence of negative characteristic exponents. The rest of

the theory is merely its adaptation to the electron-tube circuits by which it

has been checked experimentally.

The method is thus closely connected to the subject of Chapters 10 and

13 and the complication is rather in the effective calculations of integrals

(4.6) and in the discussion of results so obtained, particularly when the

nonlinear function is approximated by a polynomial of the 5th degree.

These difficulties of carrying through long and tedious calculations exist,

however, in other methods.

In the extension of the stroboscopic method outlined in Section 5, the

beginning is the same as in the M.P. method, viz.: the generating solution

is sought in the form of the solution of the linear nonhomogeneous d.e.

(3.1), but, after this, the method consists in formulating the conditions of

periodicity (of Poincare) per one period (2w in the case of the exact sub-

harmonic resonance and 2n + e in the case when a detuning e exists).

This leads finally to the stroboscopic procedure in which the constants A

and B of the linear solution appear as variables of the transformation; at

the limit At â€”> dr, these variables become continuous which leads to the

stroboscopic d.e.

The problems of existence and stability reduce thus to analogous

problems relative to the singular point of the stroboscopic system. In

some cases when it is possible to introduce the variable p = x2 + x2 in the
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final result, the determination of the stationary state is considerably

simplified as in the case of the d.e. (6.1), but this is rather an exception

than the rule and, in general, the principal difficulty's in the calculation of

stationary values appearing here as real positive roots common to two

algebraic equations. The problem of stability, on the contrary, is relatively

simple, since the discussion of the variational equations does not present

any difficulty once the stationary values A = A0 and B = B0 are de-

termined.

Thus, both the M.P. method and the stroboscopic method start in a

similar manner. The practical difficulties in obtaining quantitative results

are, however, different in these two methods. In the M.P. method the

existence of a subharmonic solution is relatively simple, but the question

of stability is more difficult inasmuch as one operates with a nonautonomous

system. In the stroboscopic method, the problem of stability is simple

enough but the major part of calculations concerns the determination of

stationary values A = A0 and B = B0, as was just mentioned.

In the K.B.M.-f approach to the theory of resonance (Chapters 14 and

15), the solution is sought in the form (2.3), Chapter 14, where a and ip in

the nonresonance case are determined by the d.e. (2.4), Chapter 14,

namely:

In the resonance case for the same form of the solution, a and ip are

determined by the d.e. (4.6), Chapter 15, namely:

where 6 = \p â€” (pjq)vt may be regarded as phase difference between the

autoperiodic and heteroperiodic oscillations. It is clear that, in the

nonresonance case, 0 has no physical significance since the two frequencies

are different; but, in the resonance case, the variable 6 acquires a physical

meaning inasmuch as, for the stationary condition, it approaches also a

stationary value which implicitly amounts to assuming the existence of a

synchronized state in the presence of a certain detuning. This is the

reason why the variable 6 appears in the d.e. (8.2) and not in (8.1). This

circumstance complicates somewhat the formal argument as was mentioned

in Chapter 15. Moreover in the resonance case the variables do not

t Krylov-Bogoliubov-Mitropolsky.

d = fiAW(a) + /xM<*)(a) + ...

j, = a> + fi.BW(a) + /*Â«fl(Â»(a) + . . .

(8.1)

d = nAW(a,6) + n2AW(a,6) + ...

<!> = p- v + nBW(a,0) + ,*2B<2)(a,0) + . . .

(8.2)
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separate in the d.e. of the K.B.M. theory, but it is possible to determine the

stationary values since the ultimate system is still in Poincare's form, viz.:

d=f(a,6); d=g(a,6) (8.3)

and the stationary values are determined as real roots common to two

algebraic equations

fM) = g("oA) = 0 (8.4)

Thus, the K.B.M. procedure in its final stage becomes analogous to the

stroboscopic method, although the intermediate procedure is entirely

different in both cases.

As to the procedure, the stroboscopic method occupies, in some respects,

an intermediate position between the M.P. and the K.B.M. methods.

With the former it has common starting points; and with the latter it has

a common algebraic problem at the end of calculations, leading to the

determination of the stationary state.

In the K.B.M.- method and in the stroboscopic method, the practical

difficulty is in the determination of roots common to both algebraic

equations ((8.4) or in similar equations of the stroboscopic system). This

comparison concerns, however, only the calculating procedure in the two

methods but, in reality, the M.P. method and the stroboscopic method are

similar and are derived directly from the theory of Poincare, however,

the stroboscopic method transforms the initial nonautonomous system to

the autonomous form, while the M.P. method operates directly with the

nonautonomous system.

We have made this comparison in order to emphasize the evolution of

the theory, as well as its practical implications, with a view to obtaining

quantitative results concerning resonance.
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Chapter 20

PARAMETRIC EXCITATION

1. Introductory remarks

It has been known for a long time that, if a parameter of an oscillatory

system is made to vary at frequency 2f, f being the free frequency of the

system, the system begins to oscillate with the frequency /. Lord Ray-

leigh produced an experiment1 in which a stretched string was attached at

one end to a prong of a tuning fork capable of vibrating in the direction of

the string. It was observed that when the fork vibrated with frequency

2f, lateral vibrations of the string were built up with frequency /.

In later years Brillouin2 and Poincare3 studied this effect in electric

circuits. Similar experiments were produced in 1934 by Mandelstam and

Papalexi with a specially designed oscillating circuit which they call

"parametric generator".4 These latter experiments were particularly

valuable in throwing light on the physical nature of this phenomenon, as

will be mentioned below.

The term parametric excitation, or action, is generally used in connection

with these phenomena to emphasize the fact that the effect is due to the

variation of the parameter with a double frequency.

The parametric effect is apparently a frequent occurrence in physics, but

its systematic study is relatively recent. The old problem of pendulum

with a variable length belongs to this class, although it is generally treated

in theoretical mechanics on the basis of the theory of the variable constraint

which is difficult to generalize for electrical phenomena. Finally, the

operation of a swing, which consists in a periodic raising and lowering of

1 Lord Rayleigh, Phil. Mag., April, 1883.

2 L. Brillouin, Eclairage Electrique, April, 1897.

* H. Poincare, ibid., March, 1907.

4 L. Mandelstam and N. Papalexi, J. Tech. Phys. (USSR), 1934.
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the center of gravity of the body of the person on the swing, belongs also

to the same class of phenomena.

These phenomena are generally amenable to the d.e. with periodic

coefficients, more specifically, to the d.e. of Mathieu. The theory of this

linear d.e. is of relatively little help in studies of these phenomena which

are essentially nonlinear in most cases.

In fact, the Mandelstam-Papalexi experiments have shown that, if the

circuit of their "parametric generator" has a small amount of resistance

(that is, a practically linear circuit), the amplitude of oscillation grows

indefinitely until the insulation is destroyed by an excessive voltage. If,

however, a nonlinear conductor is inserted in series with the circuit, a

stable stationary condition is reached with amplitude determined by the

d.e.

As the treatment of both casesâ€”the linear and the nonlinearâ€”has been

given by means of the stroboscopic method in Chapter 16, we do not

reproduce it here, but merely mention the conclusions.

In the linear case the phase stabilizes itself on the stable value <p0 = 37r/4

for which the amplitude is unstable. This is also in agreement with the

Mandelstam-Papalexi experiments which show that, in this case, the

amplitude grows indefinitely until the circuit is destroyed by an excessive

voltage.

In a nonlinear case, on the contrary, the amplitude reaches a fixed

stationary value which is again in agreement with the experimental results.

The physical significance of the threshold (4.25) (Chapter 16) is also

clear; it means that a cumulative phenomenon is possible if the energy

input introduced into the system owing to a periodic variation of the

parameter is greater than the energy dissipated by the system.

Summing up, the cumulative character of the phenomenon is sufficiently

clear on this basis since the stability of the phase is always associated with

the instability of the amplitude. The difference between the linear artd

nonlinear cases is that this instability is permanent in the former case,

whereas in the second case it decreases with the increasing amplitude and

vanishes for a certain fixed value of amplitude for which the oscillation

becomes stationary.

2. General form of the differential equation of parametric action

The case given in Chapter 16 relates to the most frequently encountered

form of parametric action, but in recent years a number of other phenomena

were discovered which, in one way or the other, are related to the periodic

variation of a parameter in a d.e.
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We shall indicate one such case, known under the name of the phenome-

non of Bethenod,5 which gave rise to some discussions before its nature was

understood.

It is useful to consider the d.e. of the parametric action in a somewhat

more general form than that investigated in Chapter 16, namely:

x + bx + x + (a - cx2)x cos 2t + ex3 = 0 (2.1)

The essential feature of this d.e. is that a certain polynomial containing

even powers of x appears as a coefficient of the term x cos 2t. Nothing

especially interesting is gained by considering more complicated poly-

nomials, and the form (2.1) is sufficiently general. We shall again suppose

that all coefficients are small, which will permit establishing conclusions

from the first approximations.

Since the derivation of the stroboscopic d.e. is sufficiently clear from

Chapter 16, we omit it here and indicate the form of these equations:

% = \p[iCP -2A)sm2*p- 42*]; J = \ ](Cp - A)cos2p-\ep}

(2.2)

where A = a)p.; B = &//*; and E = el p.

It is noted that the case C = 0 gives the d.e. (4.2), Chapter 16 which has

been discussed.

The system (2.2) has a singular point denned by the expressions

sin Zp0 = 4BI(CPo - 2A); cos 2p0 = 3EPo/2(Cp0 - A) (2.3)

and the stationary amplitude p0 is obtained from the expression sin2 2<p0

+ cos2 2<p0 = 1, in which the values (2.3) for sin 2<p0 and cos 2<p0 are

replaced. This results in the quartic equation for p0:

4(Cp0 - A)\CPo - 2AY - (AB\CPo - A)* - 9Â£%2(Q>0 - 2^)2 = 0

(2.4)

The variational equations result in the characteristic equation

S2 + BS + Q = 0 (2.5)

where

Q = -l[(CPo - A)3 sin2 Zpo - 2B(Q>0 - A) sin 2p0

+ iCPo(Cp0 - 1A) cos2 2p0 - }EPo(CPo - 1A) cos 2? J (2.6)

with p0 > 0 obtained from (2.4).

Â» J. Bethenod, C. R. Ac. Sc. (Paris) 207, 1937; N. Minorsky, Colloque Intern- de

Porquerolles, France, 1951.
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The singular point is stable if

B > 0; Q > 0 (2.7)

If the system is dissipative (B > 0), the first condition (2.7) is fulfilled

so that the determination of stability reduces to showing that Q > 0.

In view of this, the determination of a stable periodic solution of (2.1)

reduces to the determination of such positive root p0 of (2.4) which, upon

its substitution into (2.6), makes Q positive.

In the general case, when all four parameters A, B,C, and E are different

from zero, the computational problem is rather complicated but, if one of

these four parameters is zero, the discussion is facilitated by the possibility

of using a representation in a three-dimensional space of the remaining

three parameters. In the meantime one can ascertain better the physical

nature of these complicated phenomena.

We shall consider, therefore, the following cases:

C = 0; the parameter space of the variables A, B, and E; this case

corresponds to a linear parametric modulation and the well known ex-

periments of Mandelstam and Papalexi were carried out under such

condition.

A = 0; it will be shown that the parametric excitation does not exist in

such a case for the reason which will appear later. These two cases are

relatively simple and will be outlined in this section.

The remaining two cases, 5 = 0 and E â€” 0, are more complicated and

are investigated in the following section.

Case: C = 0. The d.e. becomes

* + bx + jc(1 + a cos 2t) + ex* = 0 (2.8)

From (2.4) one finds:

p0 = $EVA* - 45* (2.9)

The stationary amplitude exists if

A > IB; E*0 (2.10)

One has also

sin 2^0 = -2B/A; cos 280 = - 3EPI2A (2.11)

If one replaces these values into (2.6) where one sets C = 0, one has

Q = Â£EV > 0 (2.12)

which shows that the stationary amplitude p0 is always stable as long as

E # 0.
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492 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

As regards the first condition (2.10), its physical significance can be

readily ascertained. In fact, assume that, in addition to c = 0, one has

also b = e = 0. In such a case one has a linear Mathieu equation:

x + (1 + a cos 2t)x = 0, which we investigated in Chapter 16. There

it was shown that the stable phase is <p0 = 37r/4, to which corresponds an

unstable amplitude as was also demonstrated by the Mandelstam-Papalexi

experiments. It is obvious that the coefficient a (or A) is a measure of the

energy absorbed by the system just as b (or E) is a measure of the energy

dissipated.

We can consider now the parameter space (A, E, E). Inasmuch as the

first condition (2.7) requires B > 0, it is sufficient to consider only the

half-space for B > 0. Besides this, it is necessary to eliminate the volume

limited by the planes A = Â±2B passing through the E axis which ex-

presses geometrically the first condition (2.10). In the remainder of the

upper half-space to each point (A, E, B) is attached a value of p0 defined

by (2.9), and for any such point there exists a stable stationary state.

One can investigate in a similar manner the corresponding subcases if one

fixes the value of one of the three variables which leads to a planar repre-

sentation of the remaining two variables. Thus, for instance, if one sets

A = A0, one obtains the corresponding relation in a (B,E) plane,

p0 = %EVAq2 â€” 4B2 which may be regarded as a curve in that plane.

As p0 represents the total energy stored in the oscillation, this gives the

information about the equal energy levels if, in the above equation p0, is

considered constant. The same procedure can be applied to other sub-

cases, namely: B = B0; p0 = p0(A,E) and E = E0; p0 = p0(A,B).

Case: A = 0. The parametric space in this case is (B, C, E). In view

of the previously explained significance of the coefficient A, one can expect

that the oscillation cannot exist in this case because the system does not

absorb energy necessary to cover its dissipation. If one carries out the

calculation for Q, one finds that it is negative, which shows the instability

and, therefore, the absence of the self-maintained oscillation.

3. Special casesâ€”bifurcation surfaces; stability of the state of rest

The two remaining cases, 5 = 0 and E = 0, are more interesting and we

shall investigate them in more detail.

Case: B = 0. In this case the system is nondissipative, although it is not

conservative since the parametric action accounts for the energy input into

the system. Under that condition the amplitude can be still limited by the

nonlinearity; we shall see that, in fact, the presence of two nonlinearities

(one associated with the coefficient C and the other with E) may account

for a somewhat special situation.
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It is to be noted also that the characteristic equation (2.5) shows that the

only singular point here is the center if Q > 0. This means that in such a

case the stability may exist, although it is not an asymptotic one. In view

of this, any small perturbation deviating the system from its singular point

(in the <p plane) accounts for a small closed trajectory which manifests

itself in the <p plane as a small modulation (Chapter 16). In what follows

we shall investigate the stability disregarding the fact that it is not asymp-

totic here.

From the second equation (2.2) one has

In this expression one has to consider two cases: cos 2<p0 = 1 and cos 2<p0

= â€” 1. As regards the stability condition: Q > 0, it is determined here

(omitting constant positive factors) by the expression:

It is convenient to consider again the parameter space of the variables

A, C, E with four octants corresponding to A > 0; the octants correspond-

ing to A < 0 are of no interest here, as was previously mentioned. For

each of these four octants it is necessary to express p and Q as positive; one

has thus two conditions and the one which dominates the other is thus

the sufficient condition for the existence of a stationary stable state.

The results of these simple calculations are indicated in the following

two tabulations, of which case I relates to A > 0, cos 2<p0 = 1 and case II

to A > 0, cos 2<p0 = â€” 1. Each tabulation gives data for each of the four

octants, namely: (1) C > 0, E > 0; (2) C > 0, E < 0; (3) C < 0, E < 0;

and (4) C < 0, E > 0. For each octant are indicated: the values of the

stationary amplitude p0 (the energy), if it exists, and the sufficient condition

of stability. If the latter is not indicated, this means that stability exists

for any point of the octant in question. When one of the variables (C or E)

is negative, we indicate it as â€” C, â€”E. With these conventions we have

p0 = 2A cos 2<p0/(2C cos 2<p0 â€” 3E)

(3.1)

(Cp0 - 2A)(ZE cos 29>0 - 2C) > 0

(3.2)

Case I Case II

(1) p0 = 2^/(2C - 3Â£); C > 3E Po = 2^/(2C + 3E)

(2) Po = 2Aj(2C + IE) Po = Z4/(2C - 3E); C > 3E

(3) po = 2Aj(3E - 2C); 3E > 2C Po does not exist

(4) p0 does not exist Po = 2A(3E - 2C); 3E > 2C

It is noted that in some octants p0 does not exist; this happens each time

that one obtains for p0 = r2 a negative value; from a physical point of view

this means that there is no equilibrium point. In some octants in which
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494 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

the sufficient condition is not indicated, a stable stationary state exists for

any point in this octant. In the octants in which the sufficient condition

is indicated, the corresponding inequality considered as equation determines

a certain surface E (a plane here) in the parameter space which separates

the two regions; one in which the stable stationary state exists and the

other one in which it does not exist. Thus, for instance in case 1(1) the

sufficient condition is C > 3E. The equation C = 3E is thus a Esurface;

any point of this surface corresponds to the critical condition (appearance

or disappearance of the oscillation).

It is to be noted also that there is a tendency toward an internal resonance

in the system when two nonlinearities (one associated with the coefficient

C and the other with E) cancel each other. Thus, for instance, if />0

= 2AI(2C - 3E), it is clear that pâ€ž oo if C 3Â£/2. In reality the

stability condition limits this approach so that the oscillation disappears

before the resonance has a chance to build itself up.

A similar study can be carried out for E = 0, but here the results are less

interesting; one finds that, except for some special regions of the parameter

space, there is no stability.

This investigation of the existence and stability of the stationary state

must be supplemented by the investigation of the self-excitation. For this

purpose it is sufficient to investigate the stability of the state of rest. If

the state of rest is unstable and there exists a stable stationary state, it is

logical to expect that the oscillation will develop from the state of rest and

approach the stationary condition. The situation is, to some extent,

similar to that designated as configuration: US in Chapter 7. In reality,

in the present case this is merely a formal procedure based on the use of

the stroboscopic (<p) plane since the system (2.1) is not autonomous and,

for that reason, one cannot use the topological concepts of the theory of

Poincare\

With this restriction in mind, we investigate now the condition of self-

excitation of the system represented by (2.1). Assuming in the stroboscopic

system (2.2) p as a small quantity, one has the following d.e.:

dp/dr = -Â±p(2A sin 2<p + 4B); d<pjdr = -\A cos 2<p (3.3)

These stroboscopic d.e. are valid only in the neighborhood of the state of

rest; they contain only the terms with A and B (that is, only the linear

terms) because in the neighborhood of the state of rest the nonlinear terms

are negligible for the obvious reasons. The problem is thus considerably

simplified, and we can use the argument outlined in Chapter 16 on the

Mathieu oscillators. Without repeating it here, we merely mention that

the stability of the phase requires sin 2<px = â€” 1, where by the subscript 1
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we specify the condition near the state of rest. With this value of the

stable phase, the amplitude equation is:

dpldr = p(A - 2B) (3.4)

so that the condition of self-excitation is

A > IB (3.5)

'///////////////,

4. Phenomenon of Bethenod

An interesting application of the d.e. (2.1) is the so-called phenomenon

of Bethenod5 which is essentially as follows.

If one provides a physical pendulum (Fig. 20.1) with a piece of soft iron

P and places the pendulum above a coil C coaxial with the pendulum as

shown and carrying alternating current, it is

observed that under certain conditions, the

pendulum starts oscillating and reaches a

stationary state with a constant amplitude.

Several theories of this phenomenon were

discarded until Y. Rocard4 formulated the d.e.

which seemed to be plausible on physical

grounds, but it was impossible to integrate

them in the form in which they were established

originally.

These d.e. are

dL(6)i

dt

+ zi = E sin cot

(4.1)

j6 + d& + ce = dideftney] (4.2)

Equation (4.1) relates to the electric circuit

formed by the inductance L(6) of the coil, C; Figure 20.1

z is the constant impedance of the rest of the

circuit; and E sin wt is the external periodic excitation applied to the

circuit. The inductance L(8) is clearly a variable quantity depending on

the angle 6 of the pendulum swinging above the coil C and thus modify-

ing the reluctance of its magnetic circuit. Equation (4.2) is the d.e. of

the pendulum having the moment of inertia J, coefficient of linear

damping D, and the restoring couple constant C. We take the d.e. of the

pendulum as linear, inasmuch as this circumstance is not essential in the

* See footnote 5, page 490.

* Y. Rocard, Dynamique gdnerale des oscillations, Masson, Paris, 1943.
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496 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

theory of this phenomenon. What is essential is the form of the non-

linear function L(8), as will be shown later.

The term on the right side of the d.e. (4.2) is the ponderomotive action

of the electromagnetic field which, by Maxwell's theory, is the derivative

with respect to the coordinate of the intrinsic energy \Li2 stored in the coil.

The physical significance of the d.e. (4.1) and (4.2) is very simple: as the

pendulum swings, the inductance L(6) undergoes variations and the

ponderomotive action of the process appears as a mechanical reaction

applied to the pendulum. The whole question is: Can the process of this

kind result in the maintenance of oscillations?

In their present form (4.1) and (4.2) cannot be integrated and, for that

reason, we adopt the following argument.7 It will be assumed that the

stationary motion (that is, the oscillation of the pendulum) exists with some

unknown frequency Q. In such a case the d.e. (4.1) gives a periodic

solution of the form 6 = 60 cos Â£2t, 60 and Â£2 being unknown at present.

If one substitutes this solution into (4.2) under the assumption of a certain

function L(8), one obtains a certain nonlinear d.e. whose form will be

indicated later. If it is possible to show that this d.e. possesses a periodic

solution, this solution will be precisely the one in which we are interested

here, and the quantities 60 and Q will be determined by integrating this

d.e. in the first approximation, assuming the smallness of the various

parameters.

As regards the function L(8), on physical grounds, it is clear that this

function is maximum for 6 = 0 since the magnetic reluctance is maximum

for this value of 8. As |0| increases. the function L(8) decreases, but the

rate of this decrease diminishes for larger angles since the pendulum

recedes into the region of the stray flux which has a tendency to become

constant for larger values of \8\. Thus, on physical grounds, the form

L(6) = L0 - at6* + aj* (4.3)

answers these requirements. It will be assumed that bt = a^L^;

bt = aJL0 are small quantities of the first order.

Under these assumptions a simple but somewhat lengthy calculation,

which we omit here, reduces the electrical d.e. (4.1) to the form

di\dt - 03 + a2 sin 2Qt + at sin \Qt)i

= M sin <or + Â±N sin (a> + Q)t + $N sin (a> - Q)t,

where /3 = zjLo; at = (bt60* + bt0o')Q; at = ib^^Q; M = m(l +

7 N. Minorsky, C. R. Ac. Sc. (Paris) 231, 1950; J. Appl. Pkys. 22, 1951; J.

Franklin Inst. 254, 1952.
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620o2/2); N = mb260*Q; m = EjL0 which is a linear d.e of the form

dijdt + f(t)i = g(t) whose solution is

i(t) = exp l-F(t)] \'g(t) exp [F(t)]dt; F(t) = [ f(t)dt

Jo Jo

If one carries out this calculation taking into account the order of

magnitude of the different terms, the solution is of the form

= i0 cos wt + i2 cos (a> + 2Q)t + i2 cos (a> â€” 2Â£2)t

+ j4 cos (a> + 4Q)t + .. . (4.4)

In this expression the constants iâ€ž, i2, i2, it,. . ., are easily calculated in

terms of the fixed parameters L0, a>, z, b2, and bi, but for what follows we

shall not need these expressions. It is sufficient to note that i0 is of the

zero order (that is, finite), t"2 and i2' are of the first order of smallness, i4 and

x4' are of the second order, so that for the first approximation it is sufficient

to retain only the first three terms of the trigonometric series (4.4).

One can now calculate the coupling terms on the right side of (4.2).

Since i enters by its square, one has to square the trigonometric poly-

nomial (4.4) limited to the first three terms. This results in a constant

term j0 = ^(Â«02 + i22 + i2'2) and also in terms containing the frequency <o.

Since this frequency a> (of alternating current) is very large as compared

to the frequency of the pendulum Â£2, the effect of the terms with <d does

not produce any average action on the pendulum. However, the terms

corresponding to the double cross-products of the terms with cos (a> + Â£7)t

and cos (w â€” Q)t result in the terms of the form j'0t2 cos 2Qt and

*(t,' cos 2Qt, in which the high frequency a> does not appear. These terms

of the double frequency 2Q account precisely for the parametric action.

Once this point has been ascertained, one can drop all terms except those

with cos 2Qt, and the calculation of the coupling terms results in the

expression of the form

^Li2j = -L0[qob26 + ^ofi^3 + (92i2 + 2qtbi8<t)6cos2Qt]

where q2 = i0(i2 + Â»,').

If one substitutes this expression into (4.2) and rearranges the terms

with the change of the independent variable from t to t = Qt, one obtains

the d.e.

0' + b6 + 6 + e6s + (a + c02)0 cos 2t = 0 (4.5)

where b = D/JQ2; e â€” 2aiqoIJQ2; a = a^^JQ2; c = 2atq2IJÂ£22; and

The last expression gives Q = V(C + ce4t70)/7, which shows that the

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

8
 0

2
:3

3
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



498 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

mechanical frequency Â£20 = V CjJ of the pendulum is modified by the

ponderomotive action of the electromagnetic origin.

It is noted that the d.e. (4.5) is the d.e. (2.1). Inasmuch as (2.1) has a

periodic solution, this is the solution in which we are interested here.

Since we have already analyzed the d.e. (2.1) in the stroboscopic form, we

do not repeat the argument here but merely mention that the existence of a

stable periodic solution requires, in addition to the consistency of equations

(2.3) and (2.4), the fulfillment of the condition that Q > 0. One as-

certains easily that the state of rest (p = Pi ~ 0) can be unstable (equation

(3.5)), in which case the pendulum starts spontaneously from rest so that

the position of equilibrium 8 = 0, which is stable for E = 0, becomes

unstable in the case when E # 0.

It is important to note that, in this case, there exists no rational ratio

between the two frequencies <o and Q. At the early stage of the investiga-

tion of this effect it was thought that its origin was in the phenomenon of

the subharmonic resonance which would require a rational ratio of the two

frequencies. Very accurate measurements made by J. Haag at the French

Institute of Chronometry revealed definitely that no such rational ratio

exists, which is in agreement with the aforementioned theory of the

parametric action in which no such ratio is required.

5. Origin of the parametric action

In Section 4, Chapter 16, as well as in the preceding sections of this

chapter, it was assumed that <o = 2 in the d.e.

x + (1 + a cos wt)x = 0

(5.1)

* -I- bx + (1 + a cos <ot)x + cx* = 0

which are the d.e. (4.1) and (4.2), but merely written with <o instead of

<o = 2. The assumption, <o = 2, to some extent was imposed by the

experimental evidence of Melde8 and Lord Rayleigh1 at the beginning of

these studies.

If one introduces the variables p = x* + x* = x* + y* and i/p =

arctan (y/x), for instance in the first equation (4.1) as we did in Section 4,

Chapter 16, this equation is replaced by the equivalent system of two d.e.

of the first order

^jj = - ap sin 2ip cos <or; ^ = - 1 + | a(1 + cos 2if>) cos <ot (5.2)

'F. Melde, Poggend. Arm. 109, 1860.

1 See footnote page 488.
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and, since we assume that a is small (of the first order), the zero-order

term in the solution by series: p(t) = p0(t) + ap1(/) + a2p2(t) + . . .)

^0 = &>(0 + Â°W) + ... is still

Po(0 = Po = const; <p0(t) = <p0 - t (5.3)

as before, p0 and <p0 being the initial conditions. If one limits oneself to

the first approximation only, the first-order corrective terms are given by

the d.e.

= â€”p0 sm 2^o cos *>f; = â€”\ cos cot â€” \ cos 2^r cos <o*

ut or Z Z

Taking into account (5.3) and, after certain trigonometric transformations,

one obtains the changes in px and ipx after the time 277

r

i r. r2"

^Pi = PiC^w) = â€”2 Po J^sin 2<p0 J cos (<o â€” 2)rdr + cos 2<p0

x sin (<o â€” 2)t</t + sin 2<p0 cos (<o + 2)t</t

Jo Jo

f2*

â€” cos 2oj0 J sin (<o + 2)t</t

ir2" i r r2"

J0x = ^1(2w) â€” ~2 j cos <0T^T â€” 4 |^cos &Po J cos (w â€” 2)t</t

(*2n (*2<r

â€” sin 2q30 sin (<o â€” Zfrdr + cos 2<p0 cos (<o + 2)r</r

Jo Jo

+ sin 2<p0 j sin (<o + 2)Tt/rj

Carrying out these calculations and noting that Ap = aApx\ A<p =

= /1<p, one has

Ap = ~ 4lr P0(27ra) [ (o;22- ^ 8m 8m 2lTW

+ ( cos 29>0(1 - cos 27r<o) j

(5.4)

1 1 r / 4 \

Jo> = â€” ^â€” sin 277r<o(27ra) â€” g (2â„¢) â€” Iâ€”j -I sin 2<p0(1 â€” cos 2noi)

+ (^Jrz 4)cos fy>o s1n Z7ra>]
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500 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

If one divides these equations by 2ina = At, one gets

-~ = â€” -!- p0 â€”â€”â€”- [<o sin 2<p0 sin 2nw + 2 cos 2<p0(1 â€” cos 27ra>)]

1 . 9

-r- = â€”.â€” sin Ztt<o - - jr

Ar 4tra> 47r(ojz â€” 4)

^ [â€”2 sin 2<p0(1 â€” cos 27rw) (-â– -)

+ a> cos 2<p0 sin 2nw]

whence the stroboscopic system

â€” = â€” -1 5-^â€”7 (a>m sin 2a> + 2n cos 2m)

AT 2tT <OZ â€” 4

(5.6)

cup

m

4n<jj 47r(a>2 â€” 4)

(wrn cos 2<p â€” 2n sin 2<p) (5.7)

where m = sin 2nw; n = 1 â€” cos 27roj.

These are the stroboscopic d.e. when <o # 2. But if <o = 2, as is

usually assumed in the elementary theory of parametric action, the matter

is considerably simplified and one finds the d.e. that were obtained by

assuming directly <o = 2. It is useful, however, to obtain the principal

parametric resonance (w = 2) from the general equations (5.6) and (5.7)

in which a> is not necessarily w = 2. In these equations appear factors

m/(<o2 - 4) = sin 27r<o/(a>2 - 4) and w/(w2 - 4) = (1 - cos 27rw)/(<o*-4)

and the application of the Hopital rule shows that lim 's1n ~7TW

and lim

Chapter

1 â€” cos 2ttw

w2 - 4

= 0, which gives the d.e. (4.8) and (4.11),

6, where we assumed a> = 2. If the parametric resonance exists

in the neighborhood of w = 2 in a steady state, one must have simultaneously

dp/dr = 0 and d<P/dr = 0. We investigate first the condition d<p/dr = 0,

assuming a> = 2 + e, e<^l being a small detuning. Equating to zero the

right-hand side of (5.7) one obtains to the first order

4Â£m/oi - 2(n sin 2<p â€” m cos 2<p) = 2A sin (2<p â€” y)

(5.8)

where A = Vn* + ffi2; sin y = 2mjX; cos y = 2n/A.

If e is small of the first order, m is also O(e), so that the left-hand side is

O^2) and, since A is O(e), sin (2<p â€” y) must be O(e), that is, small; hence

2<jp0 â€” y ~ 0 or 7r. Since y = arctan (m/n), for e small, y ~ n\2 (since

w ~ O(e) and n ~ 0(e2)); this yields <p0 ~ tr/4 at the limit e â€”> 0 but this,

as was seen in Section 4, Chapter 16, is an unstable phase; there is still

another possibility: y = 37r/2 in which case <p0 ~ 37t/4 and this, as we saw,

corresponds to the region of stability of the phase for the exact parametric
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resonance: <o = 2. Thus the presence of a small detuning merely dis-

places the equilibrium point of the phase by a small amount. The

essential point is that the position of equilibrium for the phase can always

be determined from (5.8) if the detuning is given, which then determines

m, n, A, and y.

As regards the amplitude equation (5.6) for e small, n ~ 0(e2) and

cos 2<p0 is small in the neighborhood of <p0 = 37r/4 so that one can write

approximately

$ = +Â±â€”Pâ€”sin2â„¢ (5.9)

dr it a>z â€” 4

Since sin 2<p0 ~ â€” 1 in this neighborhood, dpjdr is also in the neighborhood

of its value given previously.

It is clear, however, that for a larger detuning dpjjdr may vanish when

tan 2<p0 = â€” Injwm

as this follows from (5.6), and may become negative if tan <p0 < â€” (2n/<om).

This shows that the parametric excitation may disappear if the detuning is

greater than a certain limit since its existence requires that (dp/dr) > 0 (in

the linear case). Although in the above argument it was assumed that

e > 0, one sees easily that for e < 0 it remains the same.

Thus the effect of the detuning is much the same as in the ordinary

subharmonic resonance where the oscillation may exist for a certain zone of

detuning, as was shown in Chapter 19, and is not confined to the exact

resonance only.

The manifestations of the two phenomenaâ€”the subharmonic resonance

and the parametric resonanceâ€”are different. In the former, the resonance

oscillation is produced directly by the external periodic excitation; in the

latter, it is due to the periodic variation of one of the parameters in the

absence of any direct external excitation.

The physical nature of the two phenomena is, however, the same. In

the subharmonic resonance, the energy is introduced directly into the

system by the external excitation and appears there with a subharmonic

frequency; in the parametric resonance the energy is introduced not

directly but through the degree of freedom of the parameter variation but

the subharmonic process remains the same; the degree of freedom of the

variable parameter absorbs the energy with frequency 2f and transmits it

to the principal degree of freedom where the oscillation develops in the

form of an oscillation with frequency/. In both cases the amplitude of the

resonance oscillation decreases with the increasing detuning and vanishes

for a certain critical value of the latter.

It may seem, therefore, that subharmonic resonance exhibits a greater
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variety of oscillations (resonances of order \, \,...) whereas the para-

metric oscillation exhibits only the resonance ^. This is due only to the

fact that here one operates with the first-order approximation in which this

particular resonance appears; the other resonances, appearing in approxima-

tions of higher orders, are very small. In the subharmonic resonance, on

the other hand, the various resonance may appear in the first order,

depending on the form of the d.e. This circumstance inherent in the

parametric excitation is due to a particular feature of the d.e. of the

Mathieu-Hill type; thus by its very nature, the parametric resonance is a

somewhat special form of the more general subharmonic resonance.

Parametric excitation (or resonance) is generally characterized by the

existence of terms x cos 2t, x3 cos 2t, x cos 4/.. .. in the d.e., whereas in the

nonlinear (or subharmonic) resonance the explicit dependence on time

appears usually in the form of a term A sin nt, A being a constant as we saw

in Chapter 19.

Since both forms of resonance have a common feature, the two phe-

nomena can coexist under certain conditions. As far as known, this

question has not been investigated as yet, although no special difficulty

would seem to prevail.

If one starts with the d.e.:

x + bx + (a - cx*)x cos 2t + ex3 = d cos n(/ - 8) (5.10)

where one assumes, as usual, the smallness of a, b, c, and e. lfd = 0, one

has the case of the parametric excitation which was investigated in Section 2.

Ifd^ 0, one has to add to this the study of the subharmonic resonance, the

only interesting cases here being when n = 1 and n = 2.

Calculations do not present any difficulty, but are rather long and are

not reproduced here. It is obvious that the phase 8 of the external periodic

excitation is of importance in this case. In view of the presence of the

right-hand term, it is preferable to use the variable r (instead of p) in the

stroboscopic transformation. With the variables r and 0 tbe equivalent

system is

r = ^br(\ - cos 2</r) - cos 2,/< cos 2t + \cr\2 sin 20

4- sin 4</i) cos 2r â€” %er\2 sin 2^ + sin 4^)

+ d sin <A cos n(t â€” S)

(5.11)

<f> = - 1 - \b sin 74 - \a(\ + cos 2>p) cos 2z + + 4 cos 20

+ cos 40) cos 2t - \er\3 + 4 cos 26 + cos 40)

d

-iâ€” cos 0 cos n(t â€” 8)
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If one assumes also that d is small (of the same order as a, b, c, and e), the

zero order solution is: râ€ž(r) = r0; <p0(t) = <p0 â€” t, r0 and <p0 being con-

stants.

It is sufficient to substitute these values into (5.11) and to carry out the

usual stroboscopic transformation separately for two cases n = 1 and

n = 2. In the final result it is sufficient to investigate the influence of the

parameter 8 on the solution and its stability.

6. Parametric excitation in electrical circuits

It is useful to supplement the preceding theory by certain physical

considerations regarding the parametric effect in electrical circuits where

the relations are particularly simple.

Consider, for example, an oscillating circuit comprising a variable

capacity capable of being changed between Cmâ€ž = C0 + AC and Cmin

= C0 â€” AC. The "parametric generator" of Mandelstam and Papalexi,

to which we referred previously, consists essentially of such arrangement.

As was mentioned previously, a system of this kind is amenable to the

d.e. of Mathieu but very often the qualitative nature of what happens in

such a case can be better ascertained, as was shown by Meissner9 by the

d.e. of Hill with a rectangular ripple. We recall that these d.e. are of the

form

x + M(t)x = 0 (6.1)

In the Mathieu equation M(t) = a + b cos 2t and in the Hill equation

M(t) is a Fourier series. In the Hill-Meissner equation one has

M(t) = <o2 + ^ a^cos / - ^ cos 3r + | cos 5r. . . j (6.2)

which represents a rectangular "ripple." This means that it is assumed

that the capacity variation between maximum and minimum is produced

discontinuously at certain instants. This, in turn, amounts to considering,

instead of the Hill-Meissner d.e., an alternate sequence of two linear d.e.

x + (a2 + b2)x = 0 and x + (a2 - b*)x = 0 (6.3)

with a2 > b2

We shall first discuss the physical aspect of the phenomenon and, once

this point is clarified, we consider its representation in the phase plan

following the argument of Mandelstam and Papalexi.

Assume that we begin changing capacity, as just mentioned, by de-

creasing it discontinuously at / = 0. Since there are always some residual

â€¢ E. Meissner, Schtveitz-Bauzeitung 72, 1918.
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charges on the condenser and the initial stored energy is purely electro-

static, a sudden reduction of capacity requires an impulsive work^Cty2/2C2,

q being a small initial charge on condenser. In the next quarter cycle the

energy will be purely electromagnetic Li2\2 with the zero potential differ-

ence across the condenserj at this instant t = T\\ we re-establish the

capacity (again discontinuously) from C2 to Cl (C2 = Cmin; C\ = C"mM)

without doing any work. It is noted that the amount of energy just added

still remains in the system as we assume it to be conservative (or rather,

nondissipative); therefore the energy stored in the system is now greater

than it was prior to t = 0. At the instant t â€” T/2 we reduce again the

capacity to C2 which adds another increment of energy, and at the time

t = 3774 we re-establish the capacity to Cx without doing any work, etc.

Thus the capacity will be always reduced at the instants t = 0, T/2, T,. . .

with the additions of energy to the system and re-established to its maxi-

mum value at the instants t = T\\, 3774,. . . without doing any work.

In terms of the Hill-Meissner equation a2 corresponds to Câ€ž and b2 to

AC, and the process just described is the solution of this d.e. Since,

however, this equation is nothing but an alternate sequence of two linear

d.e., it is simpler to attack it on this basis which gives a simple phase-plane

representation.

We consider the d.e. of an oscillating circuit

Loq + (1/C)? = 0

and assume, as previously, C varying in steps between Cx and C2. Using

the notations y = ACjC, y <^ 1 and 1/L0C0 = co2, the preceding equation

can be written as

q + (1 + y)a>2q = 0 (6.4)

where the minus sign corresponds to Cx and the plus to C2. This equation

may be regarded as an alternate sequence of two d.e.

q + axq = 0; q + atf = 0 (6.5)

where the independent variable has been changed from t to t = wt and

where ax = 1 + y; a2 = 1 â€” y.

Solutions of each of these two d.e. can be represented in the phase plane

(Fig. 20.2) by families Tx and F2 of ellipses and, since ax > 1 and aa < 1,

the family 7\ corresponds to C2 (the "vertical" ellipses) and rt to Cx (the

"horizontal" ellipses). We use the terms "vertical" and "horizontal" to

designate the orientation of the larger axis of the ellipse. The two

families serve as a kind of curvilinear coordinate system to represent the

motion of the representative point R, because the subsequent changes from

Cx to C2, and vice versa, operate at the frequency of the "ripple." It is

useful to trace the curves of the families in the initial stage but, in as-
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certaining the resultant motion of R, they can be omitted, as in Fig. 20.2.

The abscissa axis serves to represent the quantity q (the charge) and the

axis of the ordinates, the current q.

Referring to Fig. 20.2, if one starts, for instance, with the point ^4(^0,0)

after the capacity has been reduced to the minimum C2, the arc AB of the

vertical ellipse will be followed and, at the point B(0,qo), the capacity is

increased to Cx, which transfers R on the horizontal ellipse through B so

that the arc BC of that ellipse will be followed until, at C, the capacity is

reduced to C2 which transfers R at the point C on the vertical ellipse passing

through C up to the point D, and so on. It is seen that the trajectory of the

point R will be composed of pieces of the elliptic arcs but, on the average,

the radius vector will increase con-

tinuously in the course of time.

As r2 represents the total energy

stored in the oscillating circuit, it is

seen that the energy of the system

will steadily increase as the result of

the operation of the ripple in C. The

system is thus nonconservative, although

it is not a dissipative one.

One notes also that, if the time of

switching from C2 to Cx, or vice versa,

is changed by T/2, the effect would be

just opposite; that is, instead of adding

the energy to the system, the ripple,

on the contrary, will withdraw, as can

be observed from Fig. 20.2.

This graphical representation, while

being simple, does not provide any

criterion as to which of these two possibilities the physical system will

"select." In the analytical treatment of this case the answer to this

question is given by the criterion of stability, which shows that the phe-

nomenon always occurs so as to increase its energy, inasmuch as the stable

phase (9>0 = 37r/4) corresponds to this condition.

As regards the inverse parametric effect when the ripple withdraws the

energy, as far as known it has never been detected directly for the simple

reason that the phase corresponding to this action is unstable. This does

not mean yet that it cannot be produced artificially by imposing the desired

phase by an external feedback arrangement. An arrangement of this

kind may be useful in extinguishing forced oscillations of certain structures

by the inverse parametric effect consisting in applying properly timed axial

stresses.

Figure 20.2
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7. Autoparametric excitation

In the early studies of parametric excitation it was customary to dis-

tinguish between the heteroparametric and autoparametric excitations.

In the former case, parameter variations are produced by an external

periodic excitation (of a double frequency), and in the latter, by the system

itself.

In later years the only cases which turned out to be of interest are those

that correspond to the heteroparametric excitation (which now is simply

called "parametric excitation," dropping the word "hetero").

It is useful, however, to emphasize the physical significance of this

classification although, mathematically, it amounts to the same thing.

For instance, in Lord Rayleigh's experiment, the vibrating tuning fork

may be regarded as an external source of a periodic

excitation (with frequency 2f) which modifies the

tension in the stretched string at this frequency 2f.

However, with respect to the string itself, the fluc-

tuating tension may be regarded as a variable para-

meter which, through the interplay of the Mathieu

equation, produces lateral vibration of the string

with frequency /. The phenomenon here is ob-

viously of a heteroparametric type inasmuch as

the tuning fork in this case appears as an external

source of energy which produces the parameter

variation in the parametrically excited system (the

Figure 20.3 string).

The same applies to the parametric generator of

Mandelstam and Papalexi, where the variations of a parameter (C or L) are

produced by an external source of energy.

There are, however, some cases in which this is less evident, and we

indicate one such case reported by Gorelik and Witt10 which illustrates

well the significance of the autoparametric excitation. These authors

investigated the motion of a physical pendulum suspended on a string and

capable of oscillating in a plane (Fig. 20.3). Let m be mass of the bob;

/â€ž the length of the pendulum in the absence of the dynamical load (centri-

fugal force); r its length under load; k its spring constant; andÂ£ the accelera-

tion of gravity. The system has two degrees of freedom: the angle <p of the

pendulum and the elongation z of the spring.

The kinetic energy of the pendulum is:

T = \m(r* + rV) (7.1)

10 G. Gorelik and A. Witt, J. Tech. Phys. (USSR) 3, 1933.
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and the potential energy

V = \(r-W-mgr{\-ty (7.2)

where 1 â€” fap2 ~ cos 9, the first term corresponding to the elasticity of

the suspension and the second to gravity.

Using notations L = r0 + mgjk; z = (r â€” /)//, one can write

T = ^mL2(i2 + 9>2 + 2V); P = JmL2^.*2 + |92 + f V

(7.3)

where z and 9 are small quantities which we assume to be of the first order.

The Lagrangian equations for both degrees of freedom are:

(7-4)

9 + 19 + ljz<p + 2z<p + 229) = 0

It is seen that, if the terms in parentheses are zero, the first equation

represents the oscillation of the pendulum along its length with frequency

o>j = â– Vk/m; and the second, the 9 oscillation with frequency wv = y/gfz

for a rigid pendulum. The terms in parentheses constitute thus a kind of

a nonlinear coupling between the two degrees of freedom.

The interesting case arises when a>2 = (pjq)^^, the other cases being

of no special interest. One can see, in fact, that when the pendulum

oscillates with frequency w9 in the 9 degree of freedom, the centrifugal

force stretching the spring passes through two periods when the pendulum

completes only one period (in the 9 degree). Thus the oscillation in the

9 degree of freedom induces a double frequency oscillation in the z degree.

Assume that initially 9 ~ 0 and the stretched spring has been released

for t = 0. The z oscillation is, clearly, z = z0 cos wj. If one replaces

this value of z into the second equation (7.4) and rearranges the terms, one

has

(1 + 2z0 cos o>xtyp â€” (2wx sin 0*^)9 + cov2(l + z0 cos wMt)<p = 0 (7.5)

This is a linear d.e. with periodic coefficients and it can be reduced to the

standard form of the Mathieu equation.

In view of what was said previously, the phase (in terms of the strobo-

scope method) will establish itself on its stable value at which the amplitude
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<p is unstable, and the <p oscillation will gradually build up from its initial

<p ~ 0 value.

There is, however, a difference here as compared to the Mandelstamâ€”

Papalexi case of the heteroperiodic excitation. In the latter case there is

an outside supply of energy (in the form of a mechanism producing the

parameter variation); here the system is of an autoperiodic type inasmuch

as the parametric building up of the <p oscillation occurs at the expense of the

parametric decay of the z oscillation, the system being conservative.

Ultimately the <p oscillation will be built up to some extent at the expense

of the z oscillation that will be reduced, which amounts to a redistribution

of energy contents stored in the two degrees of freedom through the

mechanism of the autoparametric excitation.

The phenomenon, however, is not reversible. In fact, if one takes for

t = 0, 9 = <p0, z = 0, in the <p degree, there will be established the oscilla-

tion: <p = <p0 cos wvt. If one replaces <p by this value in the first equation

(7.4), one has

2

z + w,*z = (1-3 cos 2a,vt) (7.6)

which is a d.e. of the harmonic oscillator acted on by an external periodic

excitation with frequency Zw^ = <o2. This is an ordinary resonance for

the z degree of freedom. The energy of the 9 degree will be transferred

into z degree which will ultimately oscillate alone. The asymmetry in

this case is due to the fact that in the parametric excitation the energy is

always absorbed in the degree of freedom of the parameter at a double

frequency 2/ and transferred into the degree of freedom of the principal

oscillation (with frequency /), but the inverse process is impossible as was

previously shown. This inverse process occurs, therefore, in the manner

of an ordinary resonance, as was mentioned in connection with equation

(7.6).

The situation would be different if, instead of an elastic pendulum just

mentioned, this would be a rigid pendulum with a mass m moving up and

down the length of the pendulum with frequency <d, = 2wv by a source of

an external power (for example, by an electric motor). In such a case an

ordinary heteroparametric oscillation would develop just as in the case of a

swing or Lord Rayleigh's arrangement, and a stationary amplitude would

be reached in view of the nonlinearity of the problem for larger amplitudes.

Another interesting case of an autoparametric oscillation was produced

by Sekerska11 who passed an alternating current of 50 cycles frequency

through a stretched wire capable of oscillating with frequency of 50 cycles.

11 Sekerska, see paper by L. Mandelstam, N. Papalexi, et al., J. Tech. Phys.

(USSR), 1934.
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As the heating effect of the current flowing through the wire in this case is

of 100 cycles frequency, the tension in the wire associated with heating

effect is of the same frequency. On the other hand, the stretch of the

spring varies at the 100-cycle frequency so that one obtains precisely the

same case of the heteroparametric oscillation as Lord Rayleigh observed by

causing variations of tension in the wire by means of a tuning fork.

It is seen that the difference between what was called in the past hetero-

parametric and autoparametric excitations is more or less evanescent if one

introduces a parameter variation by some sort of external power; it

becomes real, as in the Gorelik-Witt experiments, when the system is

conservative. In the latter case the autoparametric action always robs the

high-frequency (2/) system of its energy content and transfers this energy

into the low-frequency (/) system, but the inverse process is impossible on

the basis of the parametric action and takes place simply in accordance with

ordinary resonance by which the energy distributes itself between the two

degrees of freedom. The real reason for this, as was shown previously, is

due to the fact that the energy is absorbed in the high-frequency (2/) end

(of the parameter variation) and is transferred into the low-frequency end

(of the principal oscillation), but not vice versa. This, in turn, depends on

the fact that the phase <p (in the stroboscopic analysis) is 37r/4 and not 7r/4,

the latter phase being unstable.

8. Parametric excitation by the asymptotic method

The asymptotic methods of Krylov-Bogoliubov-Mitropolsky reviewed

in Chapters 14 and 15 permit obtaining successive approximations for the

parametric action, as we indicate here, briefly referring for further details

to the recent treatise of these authors.12

In the linear case of a d.e. of Mathieu

x + w\\ - h cos yt)x = 0 (8.1)

where h is the index of modulation and, in the case of w = v/2, the first

approximation is

x = a cos t + (8.2)

where a and 8 are given by the d.e.

a= _?^?sin20; d = u)-v--h-Â£cos26 (8.3)

1* N. Bogoliubov and J. Mitropolsky, Asymptotic Methods in the Theory of

Nonlinear Oscillations (in Russian), Moscow, 1958.

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 2

2
:3

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



510 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

with the variables u = cos 0, v = a sin 6, one can reduce the system (8.3)

to the form

*-[-Â¥â™¦Â»]â–  (*â– <)

where k = a> â€” v/2.

The system, being autonomous, the nature of its solution reduces to the

investigation of roots of the characteristic equation (Chapter 1)

* - (tÂ£) + *' - o <8-5)

thus, the general solution of (8.4) is of the form

u = de5' + Cje-St\

v = Cx[(-hwtl2v+K)lS] e~s') + Ct[(A*>Â»/2^-*e)/S] e~s') (8.6)

Cx and Ct being two constants of integration.

The amplitude a and the phase 8 are given by relations

a2 - u2 + Â»2; O = arctan (Â»/Â«) (8.7)

If 5 = Vh2w*l4v* â€” k2 is imaginary, a is a bounded function of t. If

S is real, a increases exponentially.

The condition of reality of 5 is (Aoj2/2i>) > k or, to the first order,

ki > k (8.8)

since v = 2a> + 0(A). Thus, if v is in the interval,

2Â«(1 - A/4) < v < 2w(1 + A/4) (8.9)

the amplitude increases exponentially; the authors call this case: the

parametric resonance.

One can build up higher approximations following the general procedure

of Chapters 14 and 15.

Thus, for the second approximation (equations (4.7) and (4.8), Chapter

15) one has:

* = a cos (jr t + 6) cos vt + 6 I (8.10)

T + j)

where a and 6 are determined from the d.e

a = -

^\in20; *,i+iSiÂ±4_^.'cos2Â« (8.11)
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The same change of variables: u = cos 6; v = a sin 6 reduces this

system to

hoj2 , hHw + v)uu"\

-s k '-r\v\ V =

Lv

+ k +'

(8.12)

The roots of the characteristic equation in this case are

s^j^'-[k+h^m (si3)

The zone of instability is now:

2a>[l - A/4 - A*/64] < v < 2w[l + A/4 - A*/64] (8.14)

If a = const in the (8.2) or in (8.11), the solution is periodic with

period ^njv. It is necessary for this that S in the above expressions be

zero, which thus determines the relation between <o and h.

For the first approximation, this gives

2w/v = 1 Â± A/4 (8.15)

and, for the second,

2w/y = 1 Â± A/4 + 5A2/64 (8.15a)

With the same degree of accuracy one can write, for the first approximation,

4a>V = 1 Â± A/2 (8.16)

and, for the second,

4w*/*2 = 1 Â± A/2 + 7A*/32 (8.16a)

These relations may be regarded as curves in the (4a>2/v2,A) plane which

limit the regions of periodicity of solutions of (8.1). The periodic

solutions with period ^n\v are thus for the first and for the second approxi-

mations, respectively,

*! = a0 cos ^ t + 0oj; x2 = a0 cos ^ t + - ^ cos 00)

(8.17)

The authors show that the asymptotic method gives the same results as the

classical perturbation method by which Mathieu's functions Câ€ž and Sâ€ž are

developed in Fourier series.

The preceding results were derived in the case when p = 1 in the

expression w ~ (y/2)p, but the authors develop calculations also when

p = 2 and p = 3, the procedure being the same but the calculations more
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complicated. These higher-order parametric resonances are less marked

and require a greater index of modulation h than in the usually encountered

case: p = 1.

In the nonlinear case the method remains the same but the results are

somewhat different. Consider, for instance, the d.e.

x + o>2(1 - h cos vt)x + 28* + yx3 = 0 (8.18)

which is the d.e. (4.2), Chapter 16 but merely written with different

notations.

For the parametric resonance of order ^, the solution in the first approxi-

mation is taken in the form

x = acos^t + O^j (8.19)

where, according to the general theory

(Chapter 15) a and 6 must satisfy the

differential system

ahw2

Figure 20.4

-8a -

3ya

sin 20;

0 = * + ^ _ 1Â£1 cos 20 (8.20)

\v 2i>

and, for the stationary state, one equates the right-hand sides of these

equations to zero. Eliminating 6, one obtains

a2 = i- (y/2)2 - "2 + \ Vh*** - 4v282j (8.21)

In the (v2,a2) plane (Fig. 20.4) this gives the resonance curves ABC; the

branch AB is stable and BC unstable so that the phenomenon exhibits the

usual hysteresis character, depending on the direction in which v2 varies.

For the determination of the interval of the resonance, one has to set to

zero the right-hand side of (8.21). In the first approximation this gives

the interval of the parametric resonance

1

1

so that the width A of the resonance zone is

2 - ^ Vh*w* - 16a>282 < (^) < w* + ^ Vh*w* - 16a>282 (8.22)

(8.23)

(8.24)

A = wVh*w2 - 1682

Thus, the parametric excitation (or resonance) exists if

hw > 48
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One notes that this is the same conclusion that was obtained previously by

the stroboscopic method. The conclusion in both methods is the same'

the energy input into the system through the parameter variation must be

greater than the energy dissipated by the system in order that the para-

metric resonance could develop.
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Chapter 21

OSCILLATIONS CAUSED BY RETARDED

ACTIONS

1. Introductory remarks

Recent developments in the theory and use of automatic control systems

resulted in studies of an entirely different class of oscillations amenable to

the so-called difference-differential equations (d.d.e. for short). The

latter appear, however, as a special class of more general functional equa-

tions, such as integro-differential equations and a number of other equa-

tions of a still more complicated type.

A d.e. in its physical interpretation may be regarded as a mathematical

tool which, from the knowledge of the present, gives a means for obtaining

the future of a phenomenon by proceeding in small steps from a given

initial condition; the past is not involved in this argument.

In the functional equations, on the other hand, the past exerts its

influence on the present and, hence, on the future. Here this influence is

organically welded in the argument and is not of a formal character

(reversing the time). In the integro-differential equations the whole past

exerts its influence in the determination of the present (and the future).

In a more restricted case of d.d.e. which form the object of this chapter,

only a certain finite interval of the immediate past is involved in the

determination of the present.

The entire subject has grown considerably in recent years and it is

beyond the scope of this chapter to discuss this matter in detail, the only

aim here being to outline briefly some connections between certain types of

these oscillations and some aspects of the theory of d.d.e.

These connections are yet poorly defined and not all that results from the

existing theory of these functional equations is useful in the theory of
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OSCILLATIONS CAUSED BY RETARDED ACTIONS 515

oscillations; conversely, not all that is required in the latter can yet be

offered by the former. Thus, for instance, most of the mathematical

work done so far concerns the linear d.d.e., whereas the oscillatory phe-

nomena amenable to these equations are essentially of a nonlinear type, as

we shall see later. The difficulties of using these d.d.e. in a linear form

are much the same as those we encountered in oscillations governed by

ordinary d.e. As regards the nonlinear extention of d.d.e., it is still in an

early stage, limited mostly to the theorems of existence, and not sufficient

for applied problems aiming primarily at the determination of conditions

of the stationary state.

These phenomena appear at certain critical thresholds just as all other

nonlinear oscillations do when a d.e. depends on a parameter. This

suggests a study of these equations with a variable parameter.

In spite of the two complications imposed by applied problemsâ€”

namely, (1) nonlinearity and (2) variable parameterâ€”the establishment of a

first contact between the theory and the observed facts is still possible if

one restricts the problem to a special case when the time lag is also small.

In this case it is possible to bring the problem within the realm of the

theory of the first approximation. The results so obtained seem to be

sufficient to account for the observed facts, but the problem is still some-

what restricted for the above reasons.

The principal difficulty in studies of d.d.e. is in the linear problem

itself which, as will be shown, is of a special transcendental character. In

the preceding theory (of Poincar^) the linear problem was particularly

simple resulting, generally, in a simple generating solution. Here, on

the contrary, the linear problem leads always to an infinite spectrum of

frequencies with which such a system can oscillate. The determination

of this spectrum requires a corresponding determination of zeros of certain

analytic functions.

If one is interested only in connections between the theory and problems

of oscillations, most of these difficulties can be set aside, inasmuch as what

is of interest in such a case is not the entire infinite spectrum of frequencies

but only a few of them (most frequently only one) that are actually

responsible for the appearance of these oscillations in practice. This

simplifies the problem considerably.

Historically the discovery of d.d.e. was due apparently to Laplace1 and

Condorcet.2 Practically nothing was done throughout the nineteenth

century; and only after the First World War did the study of these equations

gain momentum, principally on account of applied problems that appeared

1 P. S. Laplace, Mem. de Math- et Phys., Ac. RoyaU, 1774, 1779, 1782.

2 A. N. Condorcet, ibid., 1771.
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516 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

at that time.3 This progress continues in an ever-increasing manner.

The reader is referred to recent texts on this subject.4' 5

In this chapter we are obliged to restrict the subject considerably,

leaving out most of the mathematical foundations of the theory and

concentrating rather on certain applied questions necessary for the estab-

lishment of a contact with the physical nature of these "retarded oscilla-

tions."

2. Difference-differential equations arising in applications

A sufficiently general form of a homogeneous linear d.d.e. is

*<n)(*) + aâ€ž_-*â€ž_!)+... + aix(t - hj) + aox(t - h0) = 0

(2.1)

where x is the unknown function, t is the independent variable (the time),

a, are constant coefficients (in applications they are always real numbers),

and An_!, hâ€ž_2,. . ., hx, h0 are real constants; if they are positive, they are

usually called time-lags.

In these notations â€” A,) is the derivative of the rth order considered

at the retarded time (t â€” h,). One can consider, therefore, a d.d.e. as a

linear combination of a certain number of retarded derivatives.

If hn_x = . .. = hx = h0 = 0, the d.d.e. becomes an ordinary d.e.

The form (2.1), although not the most general one, is still too complicated

from the standpoint of applications, which have not progressed far enough

as yet.

The most commonly encountered d.d.e. are of the form

x(t) + a^t - h) + aâ€žx(r) = 0 (2.2)

x(t) + a^t) + a<pc(t - h) = 0 (2.3)

If one assigns to these d.d.e. the obvious physical meaning, (2.2) is a d.d.e.

with a retarded damping, and (2.3) is a d.d.e. with a retarded restoring force.

These d.d.e. are studied in more detail in the following section.

In order to simplify the notations we shall attach a subscript h to the

3 E. Schmidt, Math. Annalen 70, 1911.

4 R. Bellman, Report 256, Project Rand, 1954; W. Hahn, Math. Annalen 131,

1956; E. Pinney, Ordinary Difference-Differential Equations, University of California

Press, 1958.

5 A. D. Myshkis, Usp. Math. Nauk (in Russian) 4, 1949; Am. Math. Soc.,

translation No. 55, 1951.
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OSCILLATIONS CAUSED BY RETARDED ACTIONS 517

retarded terms, writing xk, xk instead of x(t â€” h) and x(t â€” A), and (2.2)

and (2.3) will be written as

x + a^ + agX = 0 (2.4)

x + axx + atpck = 0 (2.5)

One can obviously consider d.d.e. of a mixed type in which both non-

retarded and retarded terms are present so that, for instance, one can have

x + a^x + + a^x = 0 (2.6)

x + djX + a0'x + agxk = 0 (2.7)

The first of these equations is characterized by a nonretarded (natural)

damping ax'x as well as by the retarded one: a^,.. The second equation

(2.7) has a nonretarded restoring force (or moment) a0'x and a retarded

one aâ€žzA.

The term "nonretarded" does not require further explanation, inasmuch

as this is the usual significance of terms x(t), x(t), x(t) encountered in

ordinary d.e. As to the "retarded" terms, they are often encountered in

control problems where a certain control action is produced artificially.

In such a case, in view of inevitable time-lags in a control system, this

action does not relate to the instant t at which it is supposed to be exerted,

but to a past instant t â€” h, (that is, appears with a time-lag).

Since in the modern control systems (involving electron-tube circuits)

the intensity of control action can be adjusted, it is preferable to emphasize

this circumstance by attaching the symbol A, a variable parameter, as a

coefficient of retarded terms. In these notations (2.6) and (2.7) can be

written

x + a^x + Xxk + a<? = 0 (2.8)

x + + a0'x + AxA = 0 (2.9)

Equation (2.8) represents, for instance, a certain dynamical (electrical or

mechanical) system in which an artificially produced damping Xxk is added

in order to increase an insufficient natural damping a^x and, likewise, (2.9)

represents a system with a natural (a0'x) and artificially produced (A*A)

restoring forces.

For instance, in a problem of automatic steering (in azimuth) of a craft,

the latter has no preference to follow one direction rather than the other,

which means that a0' = 0 in (2.9); as to the artificially produced restoring

force, this is generally accomplished by connecting the rudder with a

direction indicating instrument through a control system but, in view of a

time lag such an action is again retarded and corresponds to the term A#A

in (2.9).
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518 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

All these effects were of little importance in the past when the controlled

craft or missiles were moving at relatively slow speeds. However, with

increasing velocities, these effects become more important and, at times,

even critical owing to a sudden release of oscillations leading to instability.

Such oscillations are generally unpredictable on the basis of the d.e. of

motion; their presence becomes, however, clear from the study of a

"neighboring" d.d.e. but the zone separating the two equations is generally

so small that this is often overlooked in applications.

3. Characteristic equation; neighborhood of a harmonic solution

A d.e. (for instance, with constant coefficients) has the property that the

degree of its characteristic equation is always equal to the order of the d.e.

The fundamental property of a d.d.e. is that its characteristic equation is

always of an infinite degree whatever its order may be. This means that a

d.d.e. (considered as an ordinary d.e.) may have an infinity of roots of its

characteristic equation and it may happen that some of these roots have

positive real parts, which leads to a self-excitation of oscillations with

frequencies corresponding to the imaginary parts of these roots. It is

precisely in this connection that the interest to these d.e. appeared in

applied problems.

One readily ascertains this peculiarity of d.d.e. if one develops a retarded

quantity as a Taylor series in terms of the corresponding nonretarded

quantities. Thus, for instance

xk = nt -h) = x(t) - Tl&Xt) + ^*(r) - ...

= *(l-Â£(*/*) + ^ (*/*)-...) (3.1)

If one tries to satisfy a d.d.e. by a solution of the form

* = x^e", z = a + iw (3.2)

it is clear that x/x = z, xjx = z2,. . ., and (3.1) becomes

./. hz h2z2 \ . . .â€ž â€ž

*" = *\ U + ~2T ~ . ' 7 = **" (3 3)

If one substitutes this expression for xk into (2.4), for instance, one obtains

an algebraico-transcendental characteristic equation

f(z) = z* + aize-k* + a0 = 0 (3.4)

and the problem consists in determining the zeros of the entire function
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OSCILLATIONS CAUSED BY RETARDED ACTIONS 519

f(z). It is seen that the above passage to the limit simplifies the problem

involving a characteristic equation of an infinitely high degree (if one

considers a d.d.e. as an ordinary d.e. of an infinitely high order) but,

introducing instead, a problem of a transcendental nature.

The characteristic equation of a linear d.d.e. can be thus written at once.

For example, for a d.d.e. of a mixed type

x + a^x + axxk + a0'x + a<pck = 0

the characteristic equation is

f(z) = z2 + ax'z + a^e-1" + a0' + a0e-** = 0

and so on.

Considerable attention has been given to this

problem in recent years; we refer in particular to a

publication of Pontriagin 6 which will be mentioned

later.

In applied problems the situation is somewhat

simpler, but requires some additional extensions.

The simplification in applied problems arises from

the fact that, instead of determining the totality of

zeros of an analytic function f(z), it is often sufficient 0'

in applications to determine only one or two such Figure 21.1

zeros in a limited area of the complex plane (Fig.

21.1). For instance, if a system (for example, control system) normally

operates with a frequency, say, 1 (in some normalized scale), it is obviously

useless to try to determine zeros of f(z) whose imaginary parts are of the

order, say, 100 or higher, although the frequencies of the order, say, 5

may be still of interest. In a similar way, on physical grounds, the

energy absorption (a < 0) or dissipation (a > 0) in such oscillations, as

a rule, is not very large and, if the order is approximately known, it is

always possible to determine a region (shaded area in Fig. 21.1) in which

the location of zeros of f(z) may be of interest.

On the other hand, these problems have an additional complication which

generally is less investigated in the theory of d.d.e., namely, the effect of

the variable parameter A, as we mentioned previously. It is clear that, if

A varies, the zeros of f(z) move in some manner in the complex plane

(Fig. 21.1) and it may happen that, for some special harmonic value A = Ax

of the parameter A, the path of a zero may cross the imaginary axis tea.

When this happens, the analytic function f(z) has a purely imaginary root

zx = iwx which means that for this particular harmonic value A = Ax of

the parameter A, there exists a purely harmonic (or sinusoidal) solution of

the d.d.e.

'L. Pontriagin, Bull. Ac. Sc. (USSR), Math. Series 6, 1942.
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520 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

These harmonic values are of interest in that they permit exploring what

happens not only exactly for these values but also in their neighborhood.

The fact that, on physical grounds, the real part a of the roots is generally

small, permits specifying the problem still closer and this, as will appear

later, gives sufficient information regarding the connection between the

theory of linear d.d.e. and corresponding physical facts.

As an example of a transcendental problem of this nature we consider

first the d.d.e. (2.5) which may be regarded, for instance, as a control

problem in presence of a retarded restoring force (or moment). We have

thus

x + pi + Xxk = 0 (3.5)

with the characteristic equation

f(z) = z* + pz + Xe-** (3.6)

Substituting z = a + iio in this equation and separating the real and the

imaginary parts, one has

a* - <o2 + pa + Ae-*" cos 8 = 0

(3.7)

2a<o + pw â€” Xe~ka sin 8 = 0

where 8 = a>h; whence

cos 8 - (<o2 â€” pa - a2)/Ae-*a

sin 8 = (pw + 2aa>)/A<r*<,

From these two equations one obtains two derived equations

cotan 8 = (<o2 - pa - a2)/<o(p + 2a);

(a.2 - pa - a2)2 + a>2(/> + 2a)2 = AV2*" (3.9)

If a = 0, one has

cos81 = <o12/A1; sin 8x =/(a>j/Ax (3.10)

cotan flx = wjp = (llph)px (3.11)

8* + A2/>282 - A2A* = 0 (3.12)

The subscripts 1 are attached in order to indicate that these quantities

correspond to the harmonic values (a = 0). Equation (3.11) can be solved

graphically as intersection of two curves (Fig. 21.2) yx = cotan 8 and

y2 = (VM)8. The curve y1 is a multivalued function of 8 and we

indicate it in strips 1, 2,. . . of intervals 7r/2, Fig. 21.2. The roots are

indicated as 8', 8", 8", but in view of (3.10), the root 8" is to be rejected and

only the roots in the fir6t, fifth, ninth,. . . strips are to be retained. As

(3.8)
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OSCILLATIONS CAUSED BY RETARDED ACTIONS 521

(3.11) does not contain the variable parameter A, the roots P, P,. . . may be

regarded as fixed roots (depending only on the fixed parameters p and h).

These roots give, therefore, the harmonic frequencies w/, oj^,. . . of the

transcendental spectrum of the linear problem.

There remains yet the second equation (3.12) whose positive root is

Figure 21.2

This root is a function of A: /3n(A) which increases monotonically with A

starting with /}U(0) = 0.

Hence, as A increases continuously from the value A = 0, the root

Pu(X) moves also continuously along the abscissa axis and, for a certain

value, A = Ax may coincide with one of the fixed roots, say At this

point

P = PM (3.14)

and similarly for other fixed roots /J",. . . for other values A/",. . ..

Whenever such a coincidence (3.14) occurs, the two equations: (3.11)
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522 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

and (3.12) have a common harmonic root /?, = hwl and the analytic func-

tion f(z) has a purely imaginary root iwx, so that /(ia>j) = 0.

If A continues to increase, there will appear other coincidences between

the fixed roots and the moving one so that to a discrete sequence Xx, A/,

Aj",... of the parameter values will correspond also a discrete sequence of

harmonic frequencies wx, a,/, a>j",. . ., thus forming a transcendental

spectrum, the ratios a>j/<o/, a^'/a,/ being generally incommensurate.

Consider now what happens in the neighborhood of one such harmonic

root (3.14). For this purpose we have to add a small increment Az to the

harmonic value zx = iwx so that z = ia>, + Az. Substituting this into

f(z), we have:

(zx + Az)* + pizx + Az) + (Ax + JA)e-*(*i+^) = 0 (3.15)

Assuming J A and Az = Aa + iAw as small quantities of the first order and

carrying out calculations only to this order, one has

Aa _ _1 po^i* + hXj* _

AX ~ A^ (p - Aa,!Â»)Â» + + hp)* ~

Aw _ 1 wrf)* + 2w,3 _ (3.16)

JA ~ X[(p - Ao,!*)2 + a.^2 + hp)* ~

where M and N are positive constants. Hence, if AX > 0, both Aa and

Aw are also positive. But for AX = 0, one has a harmonic root, that is,

a = 0; hence for AX > 0, one has also a > 0; and for JA < 0, o < 0.

This means that, for A > Aj, o > 0, the system absorbs the energy; for

A < Xv a < 0, the system, on the contrary, dissipates it but, since the

d.d.e. is linear, there is nothing that would limit this energy absorption for

AX > Oor draining of energy for A X < 0. Therefore, it is obvious that, on

physical grounds, such a linear retarded system is unstable, since the only

point at which it can remain in the stationary state is when the parameter A

has exactly a harmonic value which is meaningless on physical grounds.

Thus from the standpoint of stability of self-excited oscillations, a linear

d.d.e. is unable to account for the observed facts, just as it was impossible to

account for the existence of self-sustained oscillations on the basis of an

ordinary linear d.e. On the other hand, as regards the transcendental

frequency spectrum of these harmonics, the theory of linear d.d.e gives a

correct account, as will be mentioned later.

Hence, if one tries to fit the oscillations appearing in retarded systems

into the framework of the linear theory of d.d.e., one has exactly the same

difficulty that was experienced in the theory of ordinary d.e. when one

tried to fit self-sustained oscillations into a similar linear pattern.
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OSCILLATIONS CAUSED BY RETARDED ACTIONS 523

Obviously, the only issue from this situation is to investigate the non-

linear d.d.e. In fact, all observed oscillations of this kind start spon-

taneously from rest as soon as a certain threshold value of a parameter is

reached; moreover, they generally exist not only for one isolated value of

the parameter (as indicated by the linear theory), but for a certain interval

of these parameter values; finally, oscillation persists with a definite station-

ary amplitude for a given value of parameter.

All this presents a familiar picture of nonlinear, self-excited oscillations.

Before considering this question for the nonlinear d.d.e. in the next

section, we shall briefly outline the procedure for determining the roots of

the characteristic equation corresponding to the d.d.e. (2.8), for instance.

This problem of a retarded damping is also of considerable interest in

applications.7 This equation was encountered under special conditions of

antirolling stabilization systems,8 as will be mentioned later.

It is necessary, therefore, to investigate here a mixed d.d.e. containing

both nonretarded and retarded damping for obvious physical reasons, viz.:

x + px + Xxk + a>02 = 0 (3.17)

The characteristic equation in this case is

z2 + pz + Aze-** + a>02 = 0 (3.18)

As previously, replacing z = a + i<o, separating the real and the

imaginary parts, one has the two following equations (compare with (3.11)

and (3.12)):

a8 + (p + <o cotan j9)a2 + (a>2 + w02)

+ a>[(aj2 - w02) cotan J9 + p<o] = 0 (3.19)

(a + ap - w2 + <o02)2 + w2(2a + p)2 = A2(a2 + <o2)*--2*"

Setting a = 0 in these equations one has the harmonic relations

"Â«Â»> - -PV -A - (3'20)

p* - (2j302 + A2A2 - p2h2)p2 + = 0 (3.21)

recalling that /* = wh. The third equation (3.20) gives the "fixed roots"

by construction similar to that which was explained in connection with

Fig. 21.2. Here we have two curves (Fig. 21.3).

>>! = tanjS and y2 = n/j3 - wi/J; n = w02A//> and m = 1/ph

7 N. Minorsky, C. R. Ac. Sc. (Paris) 226, 1948; J. Appl. Phys. 19, 1948.

â€¢ N. Minorsky, J. Appl. Mech., 1942.
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524 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

The second equation (3.20) allows only the roots which are in the

quadrants in which cos ^x < 0. Moreover, there is an additional re-

striction imposed by the first equation (3.20). In fact, yt = 0 when

P = Vnjm = wji = /30. The point /30 of intersection of the curve yt

with the f} axis represents thus (up to a constant factor h) the synchronous

undamped frequency (Fig. 21.3). To the left of this point Pi2 â€” < 0,

so that sin /3x < 0 and, to the right, /J^ â€” j90* > 0; hence sin /3j > 0.

.'

1 *.

X3>

3ir

2

T S

3' >/>

1

I 2

3

4

5

6

Figure 21.3

In view of these restrictions and for the form of the curves shown in

Fig. 21.3 the admissible roots are: /3j' in the third, /3x" in the sixth quad-

rants, etc., the others being ruled out by the above conditions.

If one sets 2/902 + h2(X2 - p2) = S(X) in (3.21) this equation has always

two positive roots

j8u* = 5/2 Â± VS*/4 - Â£o* (3.22)

Since the quantity under the square root reduces to the expression

h\X2 - p2)[4p02 + h2(X2 - p2)]

which is positive because A > p by the second equation (3.20).
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OSCILLATIONS CAUSED BY RETARDED ACTIONS 525

If the parameter A increases continuously beginning with the value

A = />, the roots and (/}n)2 vary also monotonically; the root (fiu)i

(corresponding to the plus sign in (3.22) increases while (jSn)2 decreases,

and, as was explained previously, one of these two "moving" roots may

coincide with one of the fixed roots. When such a coincidence occurs, the

characteristic equation (3.18) has a purely imaginary root zx = iwx whose

frequency is determined by this graphical construction.

The peculiarity of this system is that there are here two roots moving in

opposite directions from the point fi = /30, and which of these two roots

will encounter first a fixed root is a matter of the configuration of the latter

roots (that is, depends on fixed parameters of the system). Thus a

relatively slow frequency ("floating") may give way suddenly to a rather

high frequency or vice versa. These somewhat erratic phenomena have

a simple explanation on the basis of such frequency diagrams.

In this case, as in the previously analyzed one, no further information

can be obtained from these diagrams for the reasons previously set forth,

viz.: The question of a self-sustained oscillation of this kind cannot be

obtained from the linear d.d.e., although the transcendental frequency

spectrum determined in this manner generally gives a fairly good approxi-

mation to the observed frequencies.

4. Advanced versus retarded actions

Although we referred always to the "retarded actions" (h > 0), the

conclusions are similar in the case of advanced actions (A < 0). The latter

are always possible in modern systems of automatic controls.

In fact from the very beginning of the theory of control action,9 the

effect of higher time derivatives components in a control system has been

ascertained and used for the purpose of a modification of actual parameters

of a system to be controlled so as to obtain more appropriate effective

parameters of the controlled system.

For instance, if one has, say, three control actions: (1) x, the departure

(for example, from a desired equilibrium point); (2) x, the rate of de-

parture; and (3) x, the rate of the rate (that is, acceleration of departure)

and if one combines them linearly, viz.: x 4- mx 4- nx, the combination so

founded may represent a certain number of terms of a Taylor expansion

or not, according to the magnitude of the coefficients m and n. In fact,

if a retarded process (limited to the first three terms of its Taylor expansion)

is

x(t - h) - *(r) - Tlx(t) + T[X(t)

â€¢ N. Minorsky, J. Franklin Inst. 232, 1941.
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526 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

and if it is intended to be compensated for by a control action f(x) = x(t)

+ mx(t) + nx(t), it is necessary that x(r â€” h) + f(x) = 0, which requires

that m = â€”h; n = A2/2!, etc. If the coefficients m and n do not cor-

respond exactly to these relations, the controlled system may still exhibit

either a time-lag (h > 0) of an advance of the phase (h < 0) according

to whether the control system is undercompensated or overcompensated by

these derivatives' actions. In such systems with time-derivatives control

components, an advance is just as possible as a time-lag. Nothing is

changed in the preceding discussions except that one has to introduce

h < 0 instead of h > 0, with a corresponding change in the argument.

An interesting case arises if a dynamical system of the second order has

two retarded actions with the same time-lag h, which gives rise to a d.d.e.

of the form

x + Xxk + pxk = 0 (4.1)

which is a particularly simple case. The coefficients A and p may be

assumed as variable parameters of the preceding theory if one wishes to

carry out a complete discussion as we did previously.

In this case the characteristic equation is

z2 + A*e-** + pe-k* = 0 (4.2)

or, which is the same,

+ Xz + p = 0 (4.3)

but the latter equation may be regarded as a characteristic equation of the

d.d.e.

x_k + Ax + px = 0 (4.4)

which is a d.d.e. of a system with an "advanced inertia." There is no

difficulty in discussing the properties of such a system following the same

procedure as previously, but we shall not enter into this matter here

inasmuch as we shall encounter these properties of "advanced" systems in

the nonlinear case which is of a greater interest than the linear retarded (or

advanced) systems.

5. Nonlinear problem; stationary state; frequency correction and

stability

The exact theory of nonlinear d.d.e. has not yet progressed sufficiently

for use in applications. Most of the work accomplished so far10 is limited

to the theorems of existence but this, in spite of its considerable theoretical

interest, does not give a tool for dealing with applied problems. It is

10 F. H. Brownell, Contribution to Theory of Nonlinear Oscillations, No. 20, 1950.
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OSCILLATIONS CAUSED BY RETARDED ACTIONS 527

necessary, therefore, to restrict the problem to a point at which one can

bring it within the scope, at least, of the first approximation where some

preliminary conclusions may be still obtained.

In all preceding chapters, we made use of the method of small parameters-

affecting nonlinear terms which made it possible to bring problems within

the scope of series approximations.

It seems possible however to extend this general method of attack also to

the d.d.e. in the asymptotic case if one assumes that the time-lag h is also

small as will be now shown.

Consider a nonlinear d.d.e. of the form

x + ax + X(xk + nx,,3) = 0 (5.1)

This is the d.d.e. (3.5) to which we add a small nonlinear term fixk3. If

fi = 0 we have a liner d.d.e. which was studied previously. If h = 0 this

is an ordinary nearly linear d.e.

Since the linear transcendental problem is sufficiently clear from Section

3, we can concentrate our attention on one particular frequency of the spec-

trum and investigate what happens in its neighborhood. For the linear

problem, as was seen in Section 3, to a harmonic root zx = iwx corresponds

a harmonic value A = \x of the parameter. In the neighborhood of this

value for A = Ax â€” A\(A\ <^ 1), a < 0 and the oscillation disappears; for

A = A1 + JA, a>0 and amplitude grows indefinitely and this, as was

mentioned, does not give any correct representation of such phenomena

since, for A = Ax 4- AX, one generally observes a stable stationary ampli-

tude.

We propose now to investigate the problem locally in the neighborhood

of a harmonic frequency ojx which, by a proper change of the independent

variable, can be always reduced to: wx = 1 and, therefore /3j = h. As to

the parameter A, its scale being arbitrary, one can also assume that the

corresponding harmonic value: Ax = 1.

We consider thus the following d.d.e.

x + ax + xk + exk3 = 0 (5.2)

where a, e, and h will be assumed as small positive quantities of the first

order.

We can now apply the stroboscopic method with a view to obtaining the

first approximation. There appears, however, a difficulty in this case in

that, owing to the existence of a nonlinear frequency correction in the first

approximation, the period is not 2tt. It is preferable to begin with the

second equation (in i/p); with notations used previously the equivalent system

corresponding to (5.2) is:

x = y, y = -ay - xn - exh3 (5.3)
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528 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

Forming the combination: xy â€” yx = p(di/>ldt) and using the formula

of the definition:

xk = xe-** = xe-^e-^ (5.4)

where both h and a are 0(/x), exp ( â€” ha) ~ 1, one has to the first order

(since x = r cos <p)

x4 ~ r cos (</. - j9) (5.5)

This formula shows that the retardation is noticeable only in the phase.

It is recalled that /J = wh and, since a> is finite and h ~ 0(p), j8 is also O(^x)

so that in the first approximation cos j8 ~ 1, sin /} ~ /}, which gives

= r cos r cos (<f> â€” P) â€” p cos ^ (cos ^ + /} sin ^r)

= |(1 + cos 2ip + P sin 2</r)

= r sin <pr cos (<p â€” fi) = p sin ^(cos ^ + /J sin ^1)

= i[sin 2^ + /3(1 - cos 20)] (5.6)

xka3 = p2 cos ^(cos + j3 sin = p2(cos4 ip + 3/3 cos3 ^ sin ^)

jy*A3 = p2 sin ^r(cos ^ + /J sin ^r)3 = p2(sin <p cos3 ^ + 3/3 cos2 ^ sin2 ^)

The formula p^ = xy â€” yx upon the substitution of values (5.6) gives

Â§ = f> + ^ = -1 ~ g(- + J8)sin 2* + Epcos^] (5.7)

For this approximation of the zero order we assume that the period is 27r,

which gives <p0(t) = <p0 â€” r, where <p0 is the initial value of ip0(t).

For the first-order corrective term, one has

^ = - fi (A + B) sin 2^-0 + EPo cos* (5.8)

where A = a//x, â€” Pip., and E = s/p; moreover dt = â€” d<p0.

In order to calculate Aipx = 0i(27r) (the variation of <px during Zv) we

integrate (5.8) between 0 and 2n which yields:

ipx^Zn) = %Ep0-2n

therefore: ^(27t) = 2np.$Ep0. We set ip(2n) = J<p and 2np. = Jt (the

element of the stroboscopic time) and obtain as usual the stroboscopic

equation:
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OSCILLATIONS CAUSED BY RETARDED ACTIONS 529

It is noted that we have now the frequency correction already in the

first approximation and, moreover, this correction contains the unknown p.

As we are interested in the stationary state, it is useful to designate the

stationary amplitude p* instead of p. We have thus

dÂ±= -\- 3-EP* = -1 + y; y = \ep* (5.10)

which means that the period is now 27r/(1 â€” y) = 2m) = A; rj = 1/(1 â€” y)

and not 27t.

We have to consider now the first d.e. in p which is formed, as usual,

from the combination xx + yy = ^(dp/dt). Using (5.3) and (5.6), one

obtains

^ = -P[(a + P) - (a + p) cos 24> + 2sp sin ip cos3 ip] ~ 00*) (5.11)

It is clear that p0(t) = p0 = const (the initial value of p) and for the

first-approximation corrective term Pi = p^t) we have the d.e.

tjÂ£ = Po[(A + B) - (A + B) cos 2ip0 + 2EPo sin </r0 cos3 <Â£0] (5.12)

"ro

This equation would be useless for the determination of p0 = p* if the

integration had to be performed between 0 and 2n because the term with

|2" sin cos3 ip</lipo would vanish and it would be impossible to de-

termine p0 = p*. This, however, is not our case now as the period is A

and not 2tt. Designating as before px[A] the variation of Px(r) during the

time A, we obtain from (5.12), by integration between 0 and A, the ex-

pression

PiW = Pol(A + fi)(A - i sin 2A) + W - cos* A)Po] (5.13)

but A contains p0, since A = 27r/(1 â€” y) = 167r/(8 â€” 3Ep0).

It is clear that one has to introduce the necessary condition p0 = p*

^ 8/3Â£. If one introduces this value of A and carries out the usual passage

from the difference equation to the stroboscopic d.e., one obtains

^ = p[(A + B)(2\ - sin 2A)] + Â£p(1 - cos* A) (5.14)

The stationary amplitude p = p* is given by the formula

(A + B)(2A - sin 2A)

9 = Â£(1-cos*A) (5-15)

All depends now on the order of magnitude of A = 27r/(1 â€” y); if the
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530 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

frequency correction y is small in comparison to the fundamental frequency

â€” 1 the period will be somewhat greater than 2n (we assume E > 0 and,

hence, y > 0). In this case 2A â€” sin 2A is positive and, as the denominator

in (5.15) is also positive, one obtains p* < 0 which is impossible as p = rÂ»

is essentially positive.

If, however, E < 0 and, hence, y < 0 the nonlinear period 27r/(l + |y|)

will be less than 2n and (5.15) yields p* > 0 as it should be. It is seen

that the sign of the nonlinear frequency correction determines the existence

(or nonexistence) of p*.

In the linear case it was also shown that the sign of the parameter

variation J A (around the harmonic value A = Ax) determines the sign of

the decrement Ja, but this does not lead to any conclusion in accordance

with experimental data, since Aa > 0 means that the amplitude increases

indefinitely, whereas Ja < 0 means that the oscillation disappears. From

this point of view the nonlinear extension is in agreement with the ex-

periment and shows under which conditions the stationary state is possible.

The problem becomes rather complicated if one tries to obtain the

quantitative results. In fact, in addition to the case E < 0 (or e < 0) with

A > 0 and B > 0, one can obviously obtain the stationary amplitude

with E > 0 but with B < 0 sufficiently large in absolute value so that

(A â€” \B\) < 0. In this case a complication appears in the approximation

procedure since it impossible to take p0(r) = p0 = const as we did.

The question of stability is also somewhat complicated, the stroboscopic

system in this case being

^ = P[(A + B)(2A - sin 2A) + Ep(l - cos* A)] = R(P,<p)

L 3 (5-16)

Tr = 8 Ep"

The second equation is simple but not the first one, since A =

16jr/(8 â€” 3p) is a function of p; moreover this dependence on p enters

also under the sign of the trigonometric functions.

Finally, even if one assumes that p* has been determined and is stable,

the quantitative procedure does not stop at this point since in (5.9) one has

to replace p0 by its stationary value p* and carry out integrations again

using the corrected period of integration A' instead of the old one, A.

In other words, in addition to the usual process of the first approximation

one has to apply also the method of successive approximations, since the

two equations are interdependent. In fact, the frequency correction (5.9)

depends on the variable p yielded by (5.11), but the latter can yield a

correct value of p if one knows the frequency correction; the latter,
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OSCILLATIONS CAUSED BY RETARDED ACTIONS 531

however, depends on this unknown pâ€”whence a typical vicious circle

requiring successive approximations.

We shall not go beyond these remarks which show the difficulty of the

problem if one uses the standard procedure with which we were concerned

in all problems of Part III.

It is noted that, although the standard theory leads to correct conclu-

sions from the standpoint of experimental results, the procedure is cumber-

some if one tries to obtain quantitative data even in the first approximation.

The real reason for this difficulty lies in the linear part of the theory of

the d.e. (Sections 3 and 4), that is, the problem remains transcenden-

tal, in spite of simplifications of the asymptotic case (A x 0(/x)) which we

assumed.

There appeared recently attempts to approach this subject from the

standpoint of the algebraico-transcendental characteristics, but a discussion

of this subject does not come within the scope of the elementary aims of

this text; a reader interested in the quantitative part of these studies should

consult Pinney.*

A remark is noteworthy: there seems to be no doubt that these oscilla-

tions exhibit all familiar features of nonlinear oscillations, namely, they

appear at certain bifurcation values of the parameter; they exist within

a certain finite region of the parameter variation (and not for only

one isolated "harmonic value" of the latter, as predicted by the linear

theory).

Their nature, however, remains essentially transcendental, since their

frequencies are determined by zeros of the corresponding entire functions

(see Section 3). For that reason they seem to be utterly unpredictable if

viewed from the standpoint of the classical nonlinear theory of oscillations.

Very often an oscillation suddenly appears with a period having nothing

to do with the period of the system (in which h = 0); moreover this

oscillation may suddenly give way to another oscillation of entirely different

frequency not standing in any rational ratio with respect to the one which

has just disappeared. It may happen also that under seemingly identical

conditions these oscillations do not appear at all.

One of the possible explanations of this erratic behavior is the lack of

constancy of the time lag h. In fact, if one drops this hypothesis, nothing

remains of the preceding theory and the erratic behavior of these phenomena

is nothing but the result of the corresponding erratic behavior of the pa-

rameter h.

Conversely, if one secures conditions for a definite constant h the

phenomena become very regular, as will be seen from Section 7.

4 See footnote 4, page 516.
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532 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

6. On the physical nature of retarded actions

The fact that in all problems governed by d.d.e. appear (generally

parasitic) self-excited oscillations indicates that, under special conditions

which we have investigated, certain absorptions of energy also appear that

are converted into an oscillatory form with frequencies <o which are

connected with the increments a; therefore the complex number z =

a + i<o corresponds to the root of a certain entire functionâ€”the characteris-

tic equation.

It may be useful to give a more direct illustration of these retarded

phenomena on the basis of energy relations. We consider the harmonic

oscillator whose d.e. is

x + x = 0 (6.1)

with its corresponding equivalent system

x = y; y = â€” x (6.2)

The application of the stroboscopic transformation yields

jt-O; Â£=-. (6.3,

Since p = r2 = x2 + #2 may be regarded as the total energy stored in

oscillation (up to a certain constant factor and with a proper normalization),

the first equation (6.3) shows that the system is conservative, and the second

equation indicates that the frequency is one, that is, the period is 2n. The

minus sign results merely from the existing convention to count the angles

in the counterclockwise direction while the motion of the representative

point takes place clockwise.

Let us consider now the same oscillator but with a retarded restoring

force; this yields the simple d.d.e.

x + xk = 0 (6.4)

With the same assumptions as in the preceding section (the effect of the

retardation is felt mostly in the phase); we have to replace x in (6.1) (and

also in (6.2)) by

xk = r cos (ipt â€” P)

Forming the combination xx + yy = ^ we obtain (under the

assumption that f} is small), after simple transformations,

^=-2^psinÂ«0 (6.5)
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OSCILLATIONS CAUSED BY RETARDED ACTIONS 533

The second combination {xy â€” yx = p shows that the period

remains 2n in the first approximation.

Replacing sin2 <p = \ â€” \ cos 2ip in (6.5) one obtains

so that for the first-order corrective form p1(r) we have the d.e.

^ = -PB(1 - cos 20); B = p/n

The zero-order term for the second equation is :00(O = 9o ~ '<9>o being

the initial phase.

We have to integrate over the period 2n; if we are able to show that

this integral vanishes, one would have p(r) = p0 = const and this would

still be the case of the harmonic oscillator. We have, however,

Px(2n) = pB #0 - Â±B cos W2^0

Jo Jo

(instead of integrating with respect to r, we have done that with respect to

ip0, since dt = â€”dip^).

Hence, for p(2n), we have

p(27t) = Ap = -pBlnp. = -pBAt (6.6)

where Jt, as usual, is the element of the stroboscopic time.

One obtains thus the stroboscopic equation (at the limit At -> dr)

dp

dr

whose solution is

P = p0e-* (6.8)

fr=-PB (6.7)

Comparing (6.8) with (6.3) it is seen that the conservative system of the

harmonic oscillator (6.1) has been transformed into a nonconservative one

owing to the replacement of the nonretarded (natural) restoring force x by

the retarded one xk. If the sign of fi were reversed, the sign of the ex-

ponential would be changed.

One cannot fail to notice a certain analogy with the phenomenon of

parametric excitation (Chapter 20), where the natural (stable) phase 37I-/4

leads to an indefinite increase of energy while the unstable phase n/4

(which can be produced only artificially), leads, on the contrary, to the

draining of energy away from the system.
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534 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

This is, however, only a remote physical analogy, since the phenomenon

of the parametric excitation is governed by an ordinary (nonlinear) d.e.,

while here a similar manifestation occurs in an entirely different (trans-

cendental) system where conditions are more complicated, as was explained

in the beginning of this chapter.

A remark is noteworthy: since the range in which self-excited oscillations

persist is finite on the basis of the nonlinear theory, it may happen that two

(and occasionally several) such oscillations may exist at the same time.

This, as we saw, is impossible according to the linear theory where only

one oscillation exists for the corresponding (isolated) value A = Xx of the

parameter.

Experiment corroborates the nonlinear theory as, very often, two such

oscillations are recorded simultaneously, but as their frequencies do not

stand to each other in any commensurate ratio, this gives rise to interesting

phenomena which are mentioned in the following section.

7. Experimental evidence; electronic analogue

An interesting illustration of the nature of these oscillations can be given

in connection with experiments with antirolling stabilization of ships by

che so-called activated tanks method.

As these experiments do not relate to

this subject and are described else-

where,11 we shall limit ourselves only

to those points that are of interest

here.

In the problem of stabilization by

this method, the ballast is displaced

between the tanks (forming a kind of

a U tube) by means of an axial pro-

peller pump P whose angle of blades

Figure 21.4 is controlled by instruments respon-

sive to ship's angular motion which

the system is purported to counteract (Fig. 21.4).

We have seen (Section 7, Chapter 2) that the phase with which the ballast

should move must be such that the ballast concentration must be maximum

in the tank which rises in space (on account of rolling) at the instant when

the angular velocity of rolling is also maximum. It is clear that the action

of the tanks produces an artificial damping since, in this case, the negative

work of gravity reduces continuously the kinetic energy produced by

rolling.

11 N. Minorsky, Proc. Seventh Intern. Congress Appl. Mech., London, 1948.
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536 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

from the d.d.e. is seen at the point E of the record where a certain inter-

ference pattern can be noticed between the forced oscillation and this

harmonic.

If one increases the value of the parameter A and, hence, the self-excited

oscillation (Fig. 21.5), the interference pattern exhibits a distinctly non-

periodic character in view of a lack of any commensurate ratio between the

two frequencies.

At a later date these phenomena of retarded (or advanced) actions were

reproduced electronically by means of

a circuit shown in Fig. 21.6, where L

and C are constants of an oscillating

circuit having in series two resistors Rr

and R. The voltage across Rx is

applied to a linear amplifier A in the

output of which is provided a special

phase-shifting network P whose pur-

pose is to introduce a constant time-

lag between the input and the output

of P. Under these conditions, the

voltage across R in series with the out-

put of P is: e(t) = XR^t - h) = XRjik,

the current ik being thus a retarded

current in the previous terminology,

and A being the gain of the amplifier

to R measured through the network

P. In this manner, instead of the

usual d.e. of oscillating circuit

L jt + (R + RJi - 1 f idt = 0

one has now the equation

L jt + (R + RJi + S(X)ik + x- j idt = 0

Figure 21.6

(7.4)

where 5(A) = XRV Differentiating this equation with respect to r,

dividing by L, and setting (R + RJ/L = p; 5(A)/L = ?(A); 1/LC = a>0*,

one has

dS di ,..dik â€ž.

+ pjt + ?W IT* + wo*Â« = 0

dt2

dt

(7.5)

which is a d.d.e. of a mixed type with a nonretarded/>(</i'/</r) and a retarded

q(X)(dikjdt) velocity terms.
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OSCILLATIONS CAUSED BY RETARDED ACTIONS 537

This circuit gave means for investigating the transcendental spectrum

of frequencies in a very simple manner and the agreement between the

theoretical and experimental results is generally sufficiently good.12 Since

all these phenomena are nonlinear and are characterized by finite ranges in

which oscillation may exist, it happens

often that, for a given condition, one

observes two transcendental frequen-

cies of this kind. If one arranges the

cathode-ray oscilloscope for the phase-

plane representation and adjusts its

sweep circuit so as to make one of them,

say /j to stand still on the screen, Fig.

21.7, the wave of the other frequency

/2 cannot be maintained stationary in

view of the incommensurate ratio of /2

and /j and this gives rise to a pattern

of a kind of a "luminous rotating

bracelet." This phenomenon gives at the same time an illustration of

the theory of Poincare-Denjoy regarding the solutions on a torus

(Chapter 8).

Figure

8. Econometric and other problems

Recent attempts have been made to give a mathematical formulation to

certain econometric fluctuations ("business cycles") which were more

frequent in the past than now, owing to some governmental regulations

tending to prevent these fluctuations. Similar oscillatory phenomena

are sometimes observed in biology (Section 9, Chapter 2), but their study

is still less advanced.

As far as "econometric fluctuations" are concerned, the most difficult

part, at least in the present state of these studies, is to formulate correctly

the problem. There are so many unknown factors relative, for instance,

to the psychology of masses (or of individuals), etc., that it is impossible

to assert that a certain formulation of a given problem really takes into

account all these factors with a proper mathematical interpretation.

It is necessary, therefore, to assume some simplified "econometric

models" and try to form at least a rough idea on this basis. In forming

such "models," it is unavoidable that a number of factors are to be neg-

lected and, it is quite possible also that, if these factors were taken into

account, the situation would be different.

As a simple example, consider a population of a certain country, more or

"N. Minorsky, Trans. A.S.M.E., 1947.
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538 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

less isolated from other countries (for example, by means of custom

barriers) and having no government regulations concerning the credit

control, etc. The population can subsist on a low level by raising its own

food but there exists an industry capable of supplying the manufactured

goods. It is clear that, if the population having made some savings, begins

to spend them in buying manufactured goods, the industry begins to

flourish up to a point when the demand for goods is satisfied, after which

an economic crisis begins; the standard of living goes down but, as the

country can still subsist on a rather primitive level, some savings are still

being made and another cycle begins at a later time.

This rather crude "model" does not take into consideration many other

factors. In fact, it is logical to admit that people who saved some money

are not going to spend it entirely on automobiles, refrigerators, etc., but

will be more or less reasonable in these expenditures. Those who do not

think about their own future very likely will be still protected by certain

measures on the part of the government which will try to prevent the

development of a periodic phenomenon of this nature. As soon as one

tries to take all this into account, the problem becomes far more compli-

cated, but it is still uncertain as to whether some other factors have been

overlooked and whether those taken into account have been formulated

correctly.

These attempts to form "econometric models" are being made from time

to time and it is interesting to note that most of these "models" result in

d.d.e. One such attempt due to Kalecki13 attracted particular attention

and we give its brief outline in Bellman's version.4

If 7(rr) is the rate of investment and U(t) is the rate of depreciation of

capital goods, W(t) = I(t) â€” {/may be considered as the state of economy.

If W(t) undergoes fluctuations, this characterizes precisely a "business

cycle."

A number of other assumptions are made: for instance, it is assumed that

the producers control the production just in accordance with the unfilled

orders but, as a certain time interval elapses between the time when an

order is received and a corresponding product is available, the question of

"time-lag" appears at this point of the argument; one can normalize the

problem by assuming this time-lag as h = 1.

We note in passing the difference between this problem and those

problems considered in sections 3, 4, and 5. In the latter cases, we

had physical problems (mechanical or electrical) and, on this basis, it was

possible to introduce some plausible hypotheses regarding the smallness of

time-lag h which enabled us to simplify the problem in advance and thus

11 M. Kalecki, Econometrica 3, 1935.

4 See footnote *, page 516.
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OSCILLATIONS CAUSED BY RETARDED ACTIONS 539

obtain in the first approximation results consistent with observed facts, at

least qualitatively.

In this problem we cannot introduce any such simplifications because

the time-lag is finite and, for that reason, one has to try to obtain some

conclusions from a linear d.d.e. which will appear later.

We continue the argument of Kalecki. If A(t) is the production rate

and as manufacturers control it only on the basis of unfilled orders, one

has:

A(t) = f I(r)dr (8.1)

but the actual production P is obviously P(t) = j't_xA(r)dT. One can

begin the process at * = 0, the integrals considered being between 0 and 1.

This means that both the rate of investment and the rate of production are

determined only by the unfilled orders existing during the time interval

h = 1. Moreover, if k(t) is the capital at time / and 7(rr ) is the rate of

delivery of finished product, one has

m = Lit) - U (8.2)

but as L(t) = 7(r - 1), (8.2) becomes

k(t) = I(t - 1) - U (8.3)

There is yet a relation to be assumed between the investment rate, the

amount of capital, and the production rate.

The simplest assumption is that these three quantities are connected by

a linear relation

7(0 = m[c + A(t) - nk(t)] (8.4)

the constants m, n, and c being available for fitting the theory into the

observed facts.

Differentiating (8.1) and (8.4), replacing A(t) and k(t) by their expressions

in terms of I(t), and introducing a new variable u(t) = 7(r) â€” U, one has

the following d.d.e.

u â€” pu â€” qux = 0 (8.5)

where ux = u(t â€” 1). The characteristic equation here is

f(z) = pe* + q - ze* = 0 (8.6)

Since no simplification (resulting from the assumption h <^ 1) can be

made here, one has to proceed by the general method of determining zeros

if the analytic function /(Â«). For more details we refer to the original

work of Pontriagin6 or to the summary of this work by R. Bellman.4

â€¢ See footnote *, page 519.

4 See footnote *, page 516.
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540 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

It is to be mentioned, however, that many assumptions of this theory can

be criticized as being oversimplified and, therefore, not being sufficiently

realistic. We mentioned this, for instance, in connection with a lack of

imagination (or foresight) on the part of producers who control the pro-

duction only on the basis of unfilled orders, etc. But, on the other hand,

the only way to proceed in these extremely ill-defined problems is to take a

very crude model and try to improve it little by little, keeping an eye on the

actual econometric occurrences.

A somewhat different problem leading also to d.d.e. was considered by

Y. Rocard14 in his private publication "Coordination," in which this

author attempted to formulate what may be called the "red tape" problem.

As an example one may consider a production of the aeronautical material

hampered by the action of some bureaucratic agencies (the "coordinators"),

a lack of prompt answers to letters lying too long on the desks, etc. As

the result of this, time-lags appear between the original (more or less a

priori) decisions to go ahead with building a certain type of aircraft and the

later "counterdecisions" based on the actual facts after a certain model has

been built and tested. Oscillations resulting from such retarded decisions

obviously hamper a steady production rate in which no such oscillations

should occur. Here again, the author had to introduce a number of

assumptions in order to be able to form his d.d.e.

In all these attempts the essence of the method of attack is always the

same, viz.: to consider an effect of a certain cause only after a certain

finite time interval so that what determines the present is not an infinitely

near past (as in a d.e.) but a kind of a finite past resulting from time-lags.

At present all these attempts appear more or less as a matter of curiosity

rather than as definite problems on account of the impossibility of a

correct formulation of such problems without a full knowledge of all facts,

but it is possible that, when all this information becomes more definite

(particularly in biology), further applications of d.d.e. will acquire also a

more definite character. In such a case it will be also necessary to develop

further the theory of nonlinear d.d.e. with a view to obtaining their

solutions by approximations in the manner in which we tried to accomplish

this in a particular case of a very small time-lag.

Y. Rocard, C. R. Ac. Sc. (Paris), 1948.
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Chapter 22

TOPOLOGY OF LIENARD'S EQUATION IN A

PARAMETER SPACE

1. Introductory remarks

In Chapter 7 was indicated an algebraic approach to the theory of

bifurcations resulting from the application of the stroboscopic method.

In this chapter we shall investigate this matter in more detail by introducing

the concept of a parameter space; the topological aspect of solutions will be

studied in the various regions of this space.1

The existing theory of Lienard's d.e. in its general form:

x + f(x)x + g(x) = 0 (1.1)

concerns mainly the existence of periodic solutions (Chapter 4) but in

applied problems one is often interested also in the topological aspect of

these solutions as well as in the evolution of the "phase portrait" when a

parameter in the d.e. varies.

The stroboscopic method permits investigating these questions in a

simple manner by reducing the problem ultimately to an algebraic dis-

cussion.

We note in passing that the form of the function g(x) does not influence

the topology in which we are interested here but merely modifies the period

as will be mentioned in Section 7. For that reason it is convenient to

assume first g(x) = x as was done originally by Lienard.

The form of the function f(x), on the other hand, has a direct bearing

on the topological aspect of solutions, and in this chapter we shall be mostly

concerned with this question. As in all applications/(*) is represented by

a polynomial, it is convenient to consider the coefficients of this poly-

nomial as coordinates of a certain parameter space and to investigate the

behavior of solutions in the various regions of this space.

1 N. Minorsky, C. R. Ac. Sc. (Paris) 240, 1955; J. Phys. et radium 18, 1957.
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542 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

In applications the polynomial representing/^) is generally of the form

/(*) = a + cx2 + ex* (1.2)

as we shall see from an example given in the following section. As the

stroboscopic method uses generally the variable p = r2, it will be shown

that the discussion reduces to a simple quadratic equation in p, and it is

useful to conduct it in the three-dimensional parameter space a, c, e (or,

which is the same, A, C, E since A = aljp.\ C = c//x, and E = e//x) by

considering the eight octants of this space. In this manner one obtains

the "phase portraits" of the d.e. in the various octants. As these "por-

traits" vary from one octant to the other, one can also obtain a simple

insight into the theory of bifurcations, the "coordinates" A, C, and E

playing the role of the parameter in the d.e. (Chapter 7).

It is recalled that we have defined two kinds of bifurcations. In the

bifurcation of the first kind, the stability of the singular point changes with

the incidental appearance (or disappearance) of a limit cycle according to

the scheme.

* Unstable singular point

Stable singular point (1-3)

^ Stable limit cycle

or inverse schemes in which either the word "stable" is replaced by the

word "unstable" or directions of arrows are reversed in (1.3). With the

convention introduced in Chapter 7, this can be written symbolically as

S-+US (or as U -> SU)

the first letter (or the letter, if it is single) relating always to the stability

of the state of rest (singular point), and the subsequent letters to the stability

of the corresponding limit cycles (from the singular point outward).

Likewise, by a bifurcation of the second kind we defined the coalescence

of two neighboring limit cycles (internal within the structure) which gives

rise to a semi-stable cycle that disappears with a further variation of the

parameter. The following scheme illustrates the bifurcation of the

second kind:

SUSUS-* S(US)US-v SUS (1.4)

where (US) designates a semi-stable cycle which is always a critical

structure.

In this chapter we shall encounter also bifurcations of the third kind

which consists in adding (or in removing) an external cycle. Thus, for

instance,

S^SU; SU^SUS; SU->S (1.5)

are examples of bifurcations of the third kind.
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LIENARD'S EQUATION IN A PARAMETER SPACE 543

The bifurcations of the first and of the third kinds cause modifications

of the structure at its ends (at the singular point and at the external cycle);

the cyclicity (the number of limit cycles) in this case changes always by one

unit; in the bifurcations of the second kind, it changes by two units and this-

change is internal in the structure.

Problems of this nature present a definite applied interest but their full

significance will probably appear only when it will be possible to produce

nonlinear characteristics given in advance with a sufficiently great accuracy.

For the time being one is yet far from these possibilities but it is thought

that they are of a sufficient importance to be mentioned here.

In the following section we establish the derivation of the stroboscopic

system for the d.e. of an electron-tube oscillator which we studied already

in Chapter 7. In Section 3 is outlined a study of topology of solutions of

this d.e. in various regions of its parameter space.

Section 4 gives additional information concerning bifurcations of the

third kind which we encounter here for the first time.

Section 5 deals with certain special cases of Lienard's equation. The

last section 9 concerns relations between the form of nonlinear characteris-

tics and the phase portraits of solutions.

2. Formation of the stroboscopic equation

In Section 4, Chapter 7 the d.e. (4.5) as an example of the bifurcation

theory was discussed; we consider it again here with a view to investigating

its stroboscopic system. Designating the grid voltage as v and the "satura-

tion voltage" as V, we have the relations

di v v dH v . v r n

dt = M = M*' dT* = MX' x = M)xdr (2A)

x being a "dimensionless grid voltage" which will be used as a new

variable. In these notations and with the independent variable f = <otf,

<o0 = l/VLC, the d.e. (4.5) can be written as

^ + x = <*oM[(Â«0 - ^) + 2p0Vx + 3y0W

+ 480K3*3 + 5Â£oF***j ^ (2.2)

where a0, /30, y0, 80, and e0 are the coefficients of the nonlinear-function

/ = I(v) = a0v + p0v2 + y0Â»3 + 80w4 + Â£0i>5

(2.3)
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544 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

Setting

a>oM(a0 - - a; <o0M2poV = b; o,0M3y0F2 = c;

\ M I (2.4)

a>0M4S0F3 = d and o>0M5Â£0F* = e

equation (2.2) can be written as

x + x = (a + bx + cx2 + dx3 + ex*)x (2.5)

where we write x and x instead of d2xjdf2 and dxjdf since no confusion can

be feared from now on.

We proceed now with obtaining a stroboscopic system corresponding to

(2.5) assuming that the problem is nearly linear, that is, the coefficients

a, b, c, d, and e are small quantities of the first order.

If one uses the series solutions of the form p(t) = p0(f) + p.Pi(?) + . . .;

^(f) = ^0(f) + (jup^f) + . . . after the variables p = x2 + x2 = x2 + y2

and <p = arctan (y/x); (x = r cos ip,y = r sin ip; p = r2) have been intro-

duced, the zero-order solutions are, as usually

Po(0 = Po. lAo(0 = <Po ~ f (2-6)

p0 and <p0 being the initial conditions.

One finds that the first-order correction term </'1(27r) is zero as the

integrals between 0 and 2n vanish in the first approximation. As to the

first-order correction term for Pi(f), it is given by the d.e.

^jr = 2Ap0 sin2 ip0 + 2Cp02 sin2 <p0 cos2 <p0 + 2Ep03 cos4 ^0 sin2 >p0 (2.7)

df

where A = a/p.; C = cjp, and E = e//x, the terms with b and d vanishing

in integrations between 0 and 2n.

The variation of px(f) during one period 2n is therefore

Px(277r) = APx = 2nPo[%EPo2 + iCp0 + A] (2.8)

and, since p(2n) = pp^n), one can set as usual, 27rp. = Ar\ and, passing

to the limit At â€”> dr, we obtain the stroboscopic d.e.

dÂ£= -ap[p2 + pp + q] = <P(p) (2.9)

with a = {E,p = fC/Â£, and q = \AjE.

As the d.e. (2.5) has no frequency correction in the first approximation,

t The variable t is not to be confused with f used in the preceding formulas.
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LlfiNARD'S EQUATION IN A PARAMETER SPACE 545

the second stroboscopic d.e. is simply d<P/dr = 0, and we do not have to

consider it here.

Before proceeding further with the discussion of (2.9) it is useful to

establish a correct sign relation between the original Lienard equation

(2.5) which can be written (omitting terms with b and d, since they cancel

anyhow in integrations) as

x - (a + cx2 + ex*)x + x = 0 (2.10)

and its stroboscopic counterpart (2.9). There is always some uncertainty

about the sign of the right-hand term of the initial d.e. which requires a

careful consideration of positive directions on the circuits.

It is simpler to be guided by physical considerations in comparing (2.10)

and (2.9). If one assumes that a, c, and e are positive, so are also p, q, and

a. In this case (2.9) gives (dp/dr) < 0, which means that the energy

stored in the oscillating system decreases with time, but in such a case, for

the obvious reason, one should take the plus sign in (2.10), viz.:

x + (a + cx2 + ex*)x + x = 0 (2.11)

Since the nonlinear damping term being essentially positive, the energy

is also drained away from the systems for any value of x.

This gives a correct correspondence of signs between (2.11) and the

stroboscopic equation (2.9) which will serve as a starting point for the

analysis in the following section.

3. Phase portraits of Lienard's equation

We consider Lienard's equation in the form

x + (a + cx* + ex*)x + x = 0 (3.1)

to which corresponds the stroboscopic equation (2.9) and consider the

parameters A, C, and E as coordinate axes of the three-dimensional space

in which we shall study the solutions of (2.9) in the eight octants; four for

E > 0 and the other four for E < 0.

In each of the eight octants there will be a certain combination of signs of

A, C, and E (or of a, c, and e, since A = al(x,C = c/|U, andÂ£ = e/n, /x > 0).

To determine the topological configuration, we shall need the following

information: (a) stability of the state of rest (that is, of the singular point);

(b) existence of a stationary amplitude (or amplitudes); and (c) its stability.

The point (a) of these data is obtained by assuming p ~ 0 in (2.9) which

permits writing it approximately as

$La (-â– * (3-2)
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546 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

The sign of ( â€” aq) determines the stability of the state of rest. In the

upper-half-space (E > 0, a > 0), the state of rest is stable if q > 0 and is

unstable if q < 0. For the lower half-space (E < 0, a < 0) the criterion

is reversed.

As regards the point (b), it is equivalent here to the existence of positive

roots of the polynomial p1 + pp + q in (2.9). As the number of such roots

is either 0 or 1 or 2, we call the corresponding cases as acyclic, monocyclic,

or bicyclic, since to each of these roots p0 corresponds a stationary periodic

solution (that is, a limit cycle); in the first approximation, it is a circle of

radius p0.

The last question (c) in this program, the stability of the stationary state,

is obtained in a simple manner because, in this case, we have one single

stroboscopic d.e. (since the second equation is d<pjdr = 0) of the form:

dÂ£= -o[p3 + pP* + qp] = <P(p) (3.3)

and the criterion of stability (equation 7.6, Chapter 7) is

0>o) < 0 (3.4)

where 0p(po) = -a[3p02 + 2pPo + q] = -aPo(2Po + p) since p2 + pP

+ q = 0 for p = p0.

We have to distinguish again between the upper half-space (E > 0,

a > 0) and the lower one (E < 0, a < 0). For the former the criterion

of stability of the stationary state is

Po + | > 0 (3.5)

and for the latter it is

Po + | < 0 (3.6)

Taking into account the expressions for p and q, one has for the eight

octants the following signs of A, C, E (and, therefore, for p and q, Fig. 22.1):

For E > 0, cr > 0, one has for the upper half-space

(1) A > 0, C > 0; (/> > 0, q > 0)

(2) A > 0, C < 0; (p < 0, q > 0)

(3) A < 0, C < 0; (p < 0, q < 0)

(4) A < 0, C > 0; (p > 0,q < 0)

and for the lower half-space (E < 0, a < 0)

(5) A > 0, C > 0; (/> < 0, q < 0)

(6) A > 0, C < 0; (p > 0,q < 0)

(7) A < 0, C < 0; (p > 0,q > 0)

(8) A < 0, C > 0; (/>< 0, q > 0)
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LIENARD'S EQUATION IN A PARAMETER SPACE 547

In the first octant the polynomial p2 + pp + q has no positive roots so

that (dp/dr) < 0; the only stationary state is the state of rest. In accord-

ance with our classification we may call it: 5 (stable state of rest); hence,

the octant (1) is acyclic.

In the octant (2) the state of rest is stable (by 3.2). The polynomial

P2 ~ \p\p + 0 = Â® nas two positive roots, viz.:

\P\ Ip2 ~ , \P\ IF~ u p2

Poi = -J- ~ J j ~ 9 and Po2 = i|i + _ q assuming that ^

> q

Of these two roots the smaller one p01 is unstable and the larger one p02 is

stable as one verifies this by means of (3.4). The topological configuration

in this case is: SUS (or bicyclic).

If (/>2/4) < q, the polynomial has no

positive roots and this clearly means an

acyclic case: S.

Thus, in the octant (2) there are

two configurations possible: SUS and

S, and the surface E separating these

configurations is given by the equa-

tion: p2 = 4q or, in A, C, Â£ variables:

E = C2/40A

If the parametric point is above the

surface E, one has the configuration

SUS; if it is below it, then it is

simply S.

The surface E is thus the locus of Figure 22.1

the bifurcation points of the second

kind, viz., SUS -> S(US) -> S. Algebraically, this is a locus of double

roots p0 = |/> |/2. Topologically this is also a locus of semi-stable cycles

(US).

Thus a d.e.:

* + (a - cx2 + ex*)x + x = 0; a>0, c > 0

exhibits a bicyclic configuration: SUS if c2 > 40ae; and an acyclic one:

S if c2 < 40ae. As negative coefficients of x physically mean absorption

of energy (negative resistance), it is seen that the above condition for a

bicyclic state may be regarded as a relation between the nonlinear terms

of which â€” cx2x is an energy absorbing term and ax and ex*x are, on the

contrary, dissipative terms; we shall return to this question in the last

section of this chapter.
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548 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

In octants (3) and (4) the state of rest is unstable and the polynomial has

only one positive root. In octant (3) this root is

\p\ IP

and in (4) it is

* - Â¥ â™¦ JF*

The criterion (3.4) shows that both these roots are stable; therefore in

these octants the configuration is: US (that is, monocyclic).

Figure 22.2 represents the results obtained for the four octants of the

US

SUS

u

su

s

(3)

(2)

(7)

(6)

(4)

(1)

(8)

(5)

us

s

usu

u

su

Figure 22.2 Figure 22.3

upper half-space (E > 0, a > 0) and one readily sees the nature of

bifurcations. The octant (2) is characterized by bifurcations of the

second kind: SUS â€”> S(US) â€”> S, the bifurcation points (double roots)

being located on the surface 27, as was just mentioned. There are also

bifurcations of the first kind whose locus is the plane A = 0; in fact in this

plane there are bifurcations: US â€”> SUS; USâ€”*- S for the inverse ones.

There are no bifurcations between the octants (3) and (4) since the

monocyclic configuration US goes smoothly from one octant to the other,

as one can easily verify.

For the octants (5), (6), (7), and (8) of the lower half-space (E < 0,a < 0),

Fig. 22.3, the conditions of stability are reversed both for the state of rest

and for the stationary motion, whereas the polynomial remains the same;

and this leads to the inverted topological configurations, as one sees easily

by reproducing these simple calculations, which we indicate briefly.
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In the octant (5): p < 0, q < 0; the polynomial is the same as in (3);

therefore there is only one positive root

which is, however, unstable, the state of rest being stable; hence the

configuration is: SU (compare with (3) where it is US). It is clear that

such an "inverted" configuration is acyclic but of a special kind, viz.:

within the area of the unstable limit cycle U, it is "acyclic S," and outside

that area it is "acyclic U".

In the octant (6): p > 0, q < 0 the polynomial is the same as in (4).

There exists thus only one positive root

and, again, this root is unstable, the state of rest being stable. One has

again the same "inverted configuration": SU as in (5), leading to a "mixed

acyclicity" (viz.: S, if the representative point is inside the area of the

unstable cycle; and U, if it is outside that area).

The octant (7): p > 0, q > 0 is simply acyclic U, since the polynomial

has no positive roots. This case is obvious physically; in fact, all three

coefficients a, c, and e in (3.1) being negative, the amplitude increases

indefinitely, the nonlinearities being turned "in a wrong manner" so to

speak (that is, without limiting the increase of the amplitude).

In the octant (8) the polynomial is the same as in (2) but, as the stabilities

are now reversed, one has also an "inverted configuration" USU and U

(instead of SUS and S as in octant (2)). These two configurations are

separated again by the surface E: p2 â€” 4q = 0 as in the case (2).

It must be noted that the inverted configuration USU in the case of

self-excitation from rest is the same as an ordinary monocyclic configura-

tion: US. However, in view of the presence of an external unstable cycle,

the behavior outside that cycle is different; instead of approaching the

stable cycle from the outside, the trajectories are repelled from it if the

initial conditions happen to be outside the external unstable cycle so that

in this region the system is acyclic U. Such a situation arises in the case of

the d.e.

x - (a - cx2 + dx*)x + x = 0; a > 0, c > 0, d > 0

in the case when the condition c2 > 40ad is fulfilled.

Figure 22.3 summarizes the results which we obtained for the four

octants of the lower half-space (E < 0).
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550 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

The bifurcations of the first kind occur again in the plane A = 0 and

those of the second kind on the surface E in the octant (8).

4. Bifurcations of the third kind; more general cases

In the preceding we encountered bifurcations of the first kind in the

plane A = Q and those of the second kind on the surface E separating

bicyclic and acyclic regions.

A new type of bifurcations, those of the third kind, appears in the plane

E = 0 as will be now shown. This form of bifurcation changes the

cyclicity of the configuration by one unit just as this accurs in a bifurcation

of the first kind, and it consists in adding or in removing the external cycle.

It is sufficient to superimpose the Figs. 22.2 and 22.3 so that the octant

(1) is above the octant (5), etc., and consider the change in configuration

when E varies from E < 0 to E > 0 or vice versa. One has thus the

following transitions

(SUS \^

(1)^(5):S^ <?Â£/; (2)-(6):<

SU;

USU

(3)-*(7):t/S-â–º U and (4) â€” (8):US

U

/

\

These transitions are obviously reversible (that is, hold also for directions

opposite to those shown by arrows).

It is seen, for instance, that the transition (1)â€”>-(5) adds an unstable

cycle to the previously existing state of rest S\ and the inverse transition

(5) â€”> (1), on the contrary, removes an unstable cycle previously existing,

and so on for other transitions. In the transition (2) â€”> (6) there is a

situation similar to that which was previously studied, viz.: a surface E:

(/>2/4) â€” q = 0 separates the regions in octant (2) and, according to

whether (/>2/4) â€” q > 0 or <0, the bifurcation is either SUS â€”> SU or

S â€”> SU or an inverse one.

If the polynomial in the stroboscopic equation (2.9) is of a higher degree,

for example, a cubic one, by reducing it to the standard form p3 + pp + q

(where p and q have different expressions as compared to those in equation

(2.9)), one can still use a tridimensional parameter space, but the relations

are now also different. Since the number of real roots in this case is

either one or three, according to the sign of the discriminant J = (/>3/27)
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+ (?2/4), there are several possibilities, viz.: (a) one single positive root

(A > 0); (b) if A < 0 one may have either one, or two, or three positive

roots. The conditions of stability of roots as well as of the state of rest are

determined in the same manner as previously. There are thus configura-

tions: SUSU or USUS with possible bifurcations of the first kind, viz.:

SUSU->(SU)SU-+USU; USUS -> (US)US â€” SUS; or of the

second kind: SUSU-+ S(US)USU; USUS-+ U(SU)S-+ US; or,

finally, of the third kind: SUSU-> SUS(U) -* SUS or USUS-+

USU(S) -* USU.

The bifurcations of the second kind occur clearly when there appear

double-roots disappearing thereafter, that is, when A vanishes. Those of

the first and of the third kinds are related to the existence of zero roots and

so on.

Summing up, the theory of bifurcations is connected with the investiga-

tion of the evolution of real positive roots of an algebraic polynomial when

its coefficients vary.

5. Special cases of Lienard's equation

One obtains six special cases: (1) A = 0; (2) C = 0; (3) E = 0; (4)

A = C = 0; (5) A = E = 0; (6) C = E = 0. In such cases appear

simplifications.

Case (1): A = 0; (q = 0) and (2.9) becomes

dÂ£= -ap\p + p) = 0(p) (5.1)

The state of rest: â€” â€” ap2P- The stationary amplitude p0 = â€” p

\"T/p=0

is possible only ifp < 0, that is, p0 = \p\ so that <t>(p) = â€” ap3 + a\p\p2;

^p(Po) = -3apo2 + 2a\p\Po = -a\P\- Hence, if E > 0, (a > 0), the

limit cycle po = \p\ is stable; on the other hand, (dp/d^^^o = crp2|^| > 0

is unstable and therefore the configuration is US.

Thus a d.e. of the form

x - (cx2 - ex*)x + x = 0; c>0, e > 0 (5.2)

has a stable stationary solution with the "radius" of the limit cycle (always

in the first approximation) given by p0 = |p| = 2|C|/5Â£. In the same

case but for E < 0, one has

Â£ = + WiP +p) = Â®(P)

(5.3)
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The stationary amplitude can exist only if p < 0, in which case p0 = \p\

but as p = IcjSe and, since t < 0, it can be negative only if c > 0. In

such a case the state of rest is obviously stable. As to the limit cycle

p0 = \p\, one finds that it is unstable, thus leading to the configuration SU.

This corresponds to the.'d.e.

* + (cx2 - ex*)x + x = 0; c > 0, e > 0 (5.4)

One can readily see the physical meaning of these configurations. In

(5.2) and (5.4) we have written the signs explicitly: c > 0 and e > 0.

In (5.2) the quadratic term is negative (â€” cx2x) and the fourth degree term

is positive (+ ex*x); hence initially (for small x) there is a negative damping;

as x increases, the term ex*x begins to dominate the quadratic term and for

larger deviations one has a positive damping. Topologicals the con-

figuration is clearly US as we have found by using the formal argument.

A similar intuitive reasoning permits ascertaining the significance of the

d.e. (5.4) leading to the configuration SU.

Case (2): C = 0; (p = 0). In this case (2.9) is

dÂ£ = -ap[p2 + q] (5.5)

For a stationary state q = Saj5e must be negative, in which case

p = +V|9|. This requires that a and e must be of opposite signs.

Assume, for example, e > 0, a < 0. In the first place, the state of rest is

obviously unstable. As to the stability of the limit cycle p0 = + \- \q\, it

is given by the formula

*,(Po) = -3aPo2 + a\q\ = -3a|9| + a\q\ < 0

which shows that p0 is stable. Thus the d.e.

x - (a - ex*)x + * = 0; a > 0, e > 0 (5.6)

has a configuration: US, with the "radius" of limit cycle p0 =

One ascertains that the other possibility: e < 0, a > 0 leads to the "in-

verted" configuration: SU.

Case (3): E = 0. In this case one cannot use the d.e. (2.9) and one has

to derive the stroboscopic d.e. from (2.8), setting E = 0. We have thus

Pi(2tt) = APx = -2np0[Â±Cp0 + A]; p(27t) = /xp,(27t)

so that the stroboscopic d.e. is:

dÂ£= -p[lCP + A] = <P(p) (5.7)

V 5 E'
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which gives the stationary amplitude p0 = â€”4A/C. As p0 > 0, clearly

A and C must be of opposite signs, that is, either A > 0, C < 0 or

A < 0, C > 0. One ascertains that in the first case one has an "inverted"

configuration SU; but the second case is quite familiar resulting in the

configuration US and corresponding to the d.e.

x - (\a\ - cx2)x + x = 0 (5.8)

If \a\ = c = 1 this is the van der Pol equation with p0 = 4; r0 = 2.

Thus in this general representation in the parameter space the van der

Pol equation appears in the fourth quadrant (A < 0, C > 0) of the plane

E = 0.

Case (4): A = C = 0(p = q = 0). In this case (2.9) becomes

dP

dr - ~ap

For E > 0(<t > 0) the configuration is simply S; and for E < 0, (a < 0) it

is U.

Case (5): A = E = 0. In this case from (2.8), the stroboscopic d.e. is

Hence, for C > 0 the configuration reduces to S, and for C < 0 to U.

Case (6): C = E = 0, by the same argument, results in the stroboscopic

d.e.

Â£ = -Ap

which is the simple linear case of the d.e. x + ax + x = 0. Hence, if

A > 0, the configuration is S; and if A < 0, it is U, which is a well known

result.

It is useful to summarize the results which we obtained in this section.

In the following tabulation we write for the sake of simplicity â€” a instead of

â€” \a\ etc., so that a, c, and e below are positive, the proper signs taking care

of different octants.

In line with each d.e. we indicate the corresponding topological (con-

figuration of the stationary state as well as the stationary amplitude p0 (or

amplitude p0x and p02). We have thus for the eight octants the following

cases:

(1) x + (a + cx2 + ex*)x + x = 0; S; p0 = 0
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554 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

(2) x + (a - cx2 + ex*)x + x = 0

SUS if c2 > I e; p01,2 = J|I Â± jÂ£ - q

S if c2 < ^e; Po = 0

(3) * - (a + cx2 - ex*)x + x = 0; t/S; Po = ^ + Jj + l?l

(4) Â£ - (a - c*2 - + x = 0; CAS; p0 - -| + ^ + \q\

(5) * + (a + cx2 - ex*)x + x = 0; SI/; Po = Y + + ^

(6) * + (a - c*2 - ex4)* + x = 0; St/; pâ€ž = -| + + \q\

(7) x - (a + cx2 + ex4)x + * = 0; t/; p0-> oo

(8) x - (a - cx2 + <?x4)x + x = 0

ft/SÂ£/ if c2 > ^ e; p01 2 the same as in (2)

The special cases are:

U if c2 < | e; p0-Â» oo

(1) Plane A = 0

; * - (cx2

- ex4)x + x = (

); 1/5; p0

x + (cx2

- eX4)x + X = 1

); St/; Po

(2) Plane C = 0

; * - (Â« -

ex*)x + x = 0;

US; Po =

x + (a -

ex4)x + x = 0;

5Â£/; p0 =

(3) Plane Â£ = 0

* - (Â« -

cx2)x + x = 0;

US; p0 =

2c

2Â«

5e

van der Pol equation)

x + (a - cx2)x + x = 0; S*7; p0 = ^4?

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

7
 2

3
:2

3
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le
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(4) Axis E x + ex*x + x = 0; S for E > 0 and U for E < 0

(5) Axis C x + cx*x + x = 0; 5 for C > 0 and Â£/ for C < 0

(6) Axis A x + ax + x = 0; S for .4 > 0 and U for .4 < 0.

In the configuration J7S the limit cycle is stable, whereas in SU it is

unstable, but the "radius" (in the first approximation) is the same in both

cases.

6. Phase portraits of Rayleigh's and mixed equations

In his "Theory of Sound" Lord Rayleigh obtained a d.e. of the form

*+/(*) + * = 0 (6.1)

where f(x) is a certain odd function of x; for instance, ax + cx3 + exs.

When, at a later date, the van der Pol equation was established, it was

ascertained that the Rayleigh equation is reducible to that of van der Pol

by a differentiation and by setting x = y, assuming that/(i) is differenti-

able.

With the stroboscopic method which we are using here, these results

can be obtained directly from Rayleigh's equation:

x + (a + cx* + ex*)x + x = 0 (6.2)

in which case the stroboscopic d.e. is:

dÂ£= -ap(p* + pP + q) = 0(p) (6.3)

with a --- 5E/S; p = 6C/5E and q = 8A/5E.

It is noted that this is exactly the d.e. (2.9) which appears in Lidnard's

case, but the coefficients a, p, and q have now different numerical values,

so that our previous analysis holds also in this case.

In a later extension of Lidnard's equation, N. Levinson and O. K.

Smith indicated a somewhat broader form of Lienard's function f(x) by

introducing f(x,x), which thus combines to some extent Li6nard's and

Rayleigh's equations and may be, for that reason, called a "mixed"

(Li^nard-Rayleigh) equation.

The investigation of mixed equations by the stroboscopic method does

not present any difficulty and we indicate here a simple example.

Consider a mixed equation of the form:

x + (a + cx* + bx2)x + x = 0

(6.4)
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556 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

and its corresponding stroboscopic d.e.

dÂ£= -P[A + i(C + 3B)p] = 0(P) (6.5)

where A = aju; C = a//x, and B = b/px. Setting Â£(C + 35) = m, one

has 0(p) = ~(Ap + mp2); <P\(Po) = -(A + 2mPo); Po = -A/m; with

this value of p0, the condition of stability is: A < 0.

Thus, a stable stationary state is possible if A < 0 and C + 3B > 0.

In the parameter space the stable stationary state is possible in the half-

space A < 0 provided the parameter point is above the plane C = â€” 3B

passing through the A axis.

7. Frequency correction

In the derivation of the Lienard equation in Section 2 we have chosen a

simple case g(x) = x inasmuch as in the example of an electric circuit the

capacity was assumed to be constant. With certain types of capacitors,

the capacity may be, however, a function of x, and in this case one would

have g(x) instead of x, thus resulting in the d.e.:

x+f(x)x + g(x) = 0 (7.1)

In this case there appears a nonlinear frequency (or period) correction

already in the first approximation, as we propose to show now.

In applied problems one has to conserve only the odd terms in g(x) so

that we can set:

g(x) = x + mx3 + n*5 (7.2)

where m > 0 and n > 0 are small coefficients.

The reduction to the variables p and <p results in the system

\jr = + *y - g(*)y

(7.3)

p â€” = -f(x)xy - g(x)x - y*

In the calculation of p^n), the second and the third terms on the right-

hand side of the first d.e. (7.3) cancel out so that the first stroboscopic d.e.

(for dp 'dr) remains the same as before but the difference now appears in

the second d.e. (7.3). The term â€”f(x)xy cancels out when forming

</>i(2n) so it is sufficient to consider only two last terms. One has

dih

Pj-= ~g(x)x - y2 = â€”(* + "Â»*3 + nxs)x â€” y* = â€”p â€” mx* â€” nx*
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and

d4Â± = -Ma cos* J, - NP2 cos6 if,; M = -, N = - (7.4)

dr p. p.

therefore

^ = iPo(6M+5iVp0) (7.5)

after the integrals J02" cos4 ibgdipo and J^" cos6 i>0dip0 are evaluated taking

into account that d\p0 = â€”dr and passing through the usual procedure of

the stroboscopic transformation (2inp. = At; At -> dr; etc.).

Thus, the existence of an odd function g(x) # x introduces generally a

nonlinear frequency correction Aw = d<p\d.T in the first approximation

which depends on the stationary amplitude p0.

This correction may occasionally vanish for special values of coefficients

m and n; this occurs if p0 = â€” dmjSn which requires that m and n must be

of opposite signs but this is a case too special to scarcely be of any interest.

Summing up, the role of the functions f(x) and g(x) in (1.1) on the

solution is quite different, viz.: the form off(x) accounts for the topological

aspect of the solution whereas that of g(x) merely determines the frequency

(or period) correction. As this correction depends also on p0 and the latter

depends on f(x), one can say that indirectly this correction depends also on

J(x). The converse, however, is not true, inasmuch as the topological

aspect of the solution does not depend on the form of g[x).

8. Special forms of the van der Pol equation

In Section 5 we have seen that the d.e. (5.2) and (5.4) have the same

topological configuration: US as the van der Pol equation and may be

regarded as special forms of that equation.

One can also consider the van der Pol equation by itself in a more

general form, for instance:

x - - x*n)x + x = 0 (8.1)

where n > 0.

The well known van der Pol equation corresponds to Â» = 1. The

essential point is that for a periodic solution of a d.e. of the form

x - n(1 - <p(x))x + x = 0 (8.2)

<p(x) must be a positive function monotonically increasing with x beginning

with <p(0) = 0.

One can even dispense with the analyticity of this function and consider
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it as made up of several arcs as long as the above requirement is fulfilled.

It may be an odd function of x, in which case one has to consider its

absolute value \<p(x)\. In all cases it is necessary that the initial negative

damping â€” fix should become a positive damping for a sufficiently large

value of x.

If one considers, therefore, that <p(x) = \x"\, n > 0, the form of <p(*) in

a square :0 < x < 1 is shown in Fig. 22.4. Forn = 1, it is a straight line;

for n > 1 and increasing <p(x) rises

slowly in the begining of the interval

(0,1) and, on the contrary, rapidly at

its end (curves A); for 0 < n < 1

with a decreasing n, the function <p(#),

on the contrary, rises rapidly in the

beginning of (0,1) and increases slowly

at the end of the interval (curves B).

Thus, in terms of the "negative re-

sistance"the curve(A) in (8.2)accounts

for the existence of larger values of

negative resistance in the interval

(0,1) than the curves (B).

Consider, therefore, a van der Pol

equation of the form

Figure 22.4

x + px(x2n - l)x + x = 0; Â» = 1, 2,.

(8.3)

involving an even function <p(x) = x2n; for n = 1, it is an ordinary van der

Pol equation whose stationary amplitude is r0 = 2 (or p0 = 4).

Applying the stroboscopic transformation to (8.3) we obtain

^â€” = 2p sin2 ip â€” 2pn+x sin2 ip cos2" ip

or

so that

P\Q") = ~2Po(j sin2rV#o ~ Po" j sin^ocos^</yfyroj

The stroboscopic d.e. in this case is

1 / r*

7r

dp

dr

in2</r0-#0 - p" f sin2 </r0 cos2" ^o<^0); if>0 = <p0 - t

o Jo I

and the stationary amplitude p* is given by the expression

sin2 iÂ£o#o/ sin2 </r0 cos2n!/<o#o (8.4)

Jo J0
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For n = 1, one obtains p* = 4 which is the well known result for the

usual van der Pol equation.

For n = 2 one has p* = V$ a 2.83; for n = 3, p* = ^192/15 ~ 2.34

and so on; thus the stationary amplitudes decrease for increasing n.

One can also investigate the cases when n is a rational function, but in this

case one has to consider only the absolute values of x2n. Thus, for instance,

for n = \, (8.3) is of the form:

* + p.(\x\ - l)x + * = 0 (8.5)

In this case, instead of the variable p, it is preferable to use r(p = r2).

The d.e. of the first-order corrective term is

dr

= r0 sin2 <p0 - r0z|cos </r[ sin2 </<

and, following the usual procedure (drjdr = ^(drjdr); 2np. = dr, etc.) one

obtains the stationary amplitude

^ ~ 2.36; p0* ~ 5.58

Summing up, for the functions of the form (A) (Fig. 121), approaching

more and more the axis y = 0 and the straight line * = +1, the stationary

amplitude decreases; for the functions of the form (B), approaching more

and more the axis x = 0 and the straight line y = 1, they, on the contrary,

increase.

9. Certain physical considerations

Results obtained in Section 3 can be given a more familiar physical

interpretation. In fact, the form of the function f(x) may be regarded as

characterizing the damping coefficient if (1.1) represents an oscillator.

As is well known, a positive damping coefficient characterizes a dissipation

of energy with the incident decrease of amplitudes, while a negative one,

on the contrary, means the energy absorption and, therefore, increasing

amplitudes. One can consider, therefore, the Lienard equation as

representing an oscillator with a variable damping.

On this basis it is possible to give an interpretation of the results obtained

in Section 3 but it is impossible to establish them.

Without any loss of generality we may assume A = C = E = 1 and

investigate the form of the function f(x) in the first four octants (E = + 1).

sin2

|cos ^0| sin2 ^â€ž</</r0
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560 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

In a bicyclic case (second octant) it is necessary to have a different choice

of parameters; for instance: A = E = 1 and C > V40AE = -^40.

The matter reduces thus to the investigation of the form of the function

f(x) for the first four octants, viz.:

(1) /(*) = 1 + x2 + xf; (2) /(*) = 1 - x2 + x*;

/(*) = 1 - lx2 + x*;

(3) /(*) = -1 - *2 + x*; and (4) f(x) = -1 + x2 + x*

It is to be mentioned also that we are using here the finite numbers A,

C, and E instead of the small numbers a, c, and e which appear in (1.2),

inasmuch as A = ajfi, C = cjp., and E = ejm but, in view of the homo-

geneity of f(x) in these coefficients, the form of f(x) remains the same.

The function f(x) in (1) is positive for all values of x, which means a

positive damping for any x; this case does not represent thus any interest

and obviously is acyclic: S in our terminology.

For the first function: f(x) = 1 â€” x2 + x* in the second octant and also

for f(x) in (3) and (4), the form of f(x) is shown in Fig. 22.5. It is seen

that the curve (2) is everywhere positive; therefore that is also an acyclic

case S since the damping remains positive everywhere, although it is

variable for different x. The curves (3) and (4) exhibit, however, a

typical feature of the van der Pol equation, viz.: for small values of * the

damping is negative (the amplitude increases), and for larger x it becomes

positive which limits a further increase of the amplitude. In these two

octants one has thus a typical monocyclic condition US, as we have

investigated previously in connection with the van der Pol equation.

These four cases are thus obvious on physical grounds. There remains

the only case to be given a further attention, namely, the bicyclic case

corresponding tof(x) = 1 â€” 7x2 + x* in (2).
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LlfiNARD'S EQUATION IN A PARAMETER SPACE 561

In this case (Fig. 22.6), the curve f(x) intersects twice the abscissa axis;

in the first point of intersection x = xx, the curve changes from positive to

negative values and, in the second (x = x2), on the contrary, from negative

to positive values.

Thus for x < the damping is positive; for xx < x < x2 it is negative,

and for x > x2 it is again positive.

One sees thus intuitively that a physical oscillatory system provided

with a damping of this nature exhibits well the features of the configuration

SUS. In fact, if the initial value x0 < xv the system is in the region of

a positive damping and the only stationary state is the state of rest S. If,

however, x0 > xv the damping is negative, amplitude increases, and the

only factor that prevents their further increase is the existence of a positive

damping for x > x2.

Such intuitive physical arguments are helpful in understanding the

nature of these phenomena associated with energy exchanges, but they are

not sufficient for the establishment of quantitative results like this such as

those in Section 3.

Thus, for instance, as regards the van der Pol equation

x + n(x2 - l)x + x = 0

it is readily seen that the region of the negative damping exists in the

interval 0 < * < 1, but nothing a priori shows that the stationary amplitude

is x0 = 2, which is already in the region of the positive damping.
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Chapter 23

INTERACTION OF NONLINEAR OSCILLATIONS

1. Introductory remarks

The fundamental property of linear d.e. (or of linear systems) of the

nth order is that its general solution is obtained as a linear combination of

n linearly independent particular solutions multiplied by the corresponding

number of arbitrary constants.

This general property of linear systems finds a simple interpretation in

the theory of oscillations in the form of the so-called superposition principle,

which states that an oscillation in a system with several degrees of freedom

consists of a number of component oscillations, each behaving as if it were

alone. This means that the component oscillations of a linear system do

not interact among themselves or, which is the same, that the principle of

superposition holds for such systems.

The essential property of nonlinear oscillatory systems, on the contrary,

is that they do not exhibit any superposition of component oscillations or,

more specifically, that they exhibit always an interaction of some kind

between these component oscillations. Perhaps the whole theory of

nonlinear oscillations could be formed on the basis of interactions. This

approach is particularly useful when a nonlinear oscillatory system consists

of two nonlinear oscillators, say, (A) and (B) each of which considered

separately has a definite self-sustained oscillation. The question arises

as to what will occur if these two oscillators are coupled in some manner so

as to form an oscillator (A + B) formed by (A) and (B). In such a case,

if one wishes to speak in terms of an "interaction," the only way of as-

certaining this is to try to compare (A + B) either with (A) or with (B)

since any combination of the "components" (A) and (jB) has no meaning

whatever in the nonlinear cases.

What kind of relation exists between the "resultant" oscillation (A + B)

562
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INTERACTION OF NONLINEAR OSCILLATIONS 563

and its "components" (A) and (E) is impossible to say in advance without

going first through a somewhat lengthy investigation of two preliminary

questions, viz.: (1) Does oscillation (A + B) exist? (2) In case it exists,

is it stable?

Even if these questions are answered in a positive manner, one is not

always certain that such a "resultant" oscillation will actually appear.

This is due to the fact that, in the case when several such oscillations are

potentially possible, the problem cannot be definitely specified unless the

initial conditions are prescribed, as we mentioned on a number of occasions

previously in connection with problems of "hard self-excitation."

All these complications render the question of "interaction" frequently

ill-defined and, for that reason, of a limited use in applications. On the

other hand, it is probable that, when these seemingly complicated phe-

nomena are better understood, a controlled interaction may be advantageous

in a number of applied problems but, at present, one is yet far from these

possibilities.

It is to be noted that the problems involving an external periodic

excitation of nonlinear systems may also be regarded as problems of

interaction effected by the heteroperiodic oscillation on the autoperiodic

oscillation, but the usual procedure consists in looking for a periodic solu-

tion directly in such a case, as was shown, for instance, in Chapter 19, in

connection with the Mandelstam-Papalexi theory.

A particularly typical form of interaction appears, however, when both

oscillations are analogous with respect to the same system; for example,

when they are both autoperiodic, or even nonperiodic. In such cases it is

easier to see the real nature of interaction which generally consists in a

modification of conditions of stability with respect to the "component"

oscillations, although the term "component" here must be used with a

great deal of caution because its significance in the nonlinear domain does

not correspond to anything physically definite as it does in the linear field.

2. The van der Pol theory of interaction

The early work of van der Pol touched a number of subjects in the field

of nonlinear oscillations and, in particular, the question of interaction of

nonlinear oscillations.

In Chapter 18 we outlined the theory of synchronization by the van der

Pol method but, once the d.e. 2.6 have been established, we left the

argument of van der Pol and continued the exposition of the theory of

synchronization on the basis of the topological method of Andronov and

Witt. In fact, since the system (2.6), Chapter 18, is of the autonomous

type (2.7), it is easy to show that the condition of synchronization is
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564 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

nothing but the singular point of (2.7) which justifies the matter here on a

purely formal basis.

If, however, one continues the argument of van der Pol, the same

phenomenon of synchronization is explained on the basis of the theory of

interaction and there is no necessity for reducing the problem to the

existence of the singular point. In fact, if one follows this argument, it is

found that the autoperiodic oscillation becomes unstable under the effect

of the heteroperiodic oscillation and is, therefore, suppressed, but this is

precisely the phenomenon of synchronization approached from the theory

of interaction rather than from a formal concept of a singular point as a

condition for the stationary state.

This merely emphasizes what has been said in the introduction to

Part IIIâ€”that the same (idealized)

physical phenomenon may occasionally

appear as one or the other aspect of the

global "mathematical phenomenon"

(that is, solution of the d.e.) considered

in the various regions of the parameter

space. If in a certain "region" there

are two possible aspects, two different

physical theories are possible and

generally they are both correct from

their respective points of view.

In another paper van der Pol1 con-

siders the problem of interaction more

explicitly in connection with the elec-

tric circuit shown in Fig. 23.1.

In this case L1C1 is the normal

oscillating circuit associated with the electron tube, and LtC2 is a second

circuit coupled to LxCx through an inductive coupling M. It is clear

that this scheme is a particular case of the circuit which was analyzed in

Section 6, Chapter 18, in connection with the problem of mutual synchro-

nization if the second electron tube is omitted and only the oscillating

circuit is left. Van der Pol gives first the result of the experiment, which

Figure 23.1

oj22 at a constant value of a>i2 and recording j'j2 as

Thus, for instance, if one starts with a>2* < a^2 and

consists in varying

shown in Fig. 23.2.

increases a>22, the path EFB is followed, but at B the oscillation jumps

suddenly to the point C of the curve ACD which is followed if a>22 is

increasing. It cannot be followed, however, to the left of A, if a>22

decreases, in which case the current jumps suddenly to the point F of the

first curve EFB.

1 B. van der Pol, Phil. Mag. (6), 43, 1922.
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INTERACTION OF NONLINEAR OSCILLATIONS 565

It is seen, thus, that in the interval AB the function ix2 is not a single-

valued function of w22 inasmuch as to the same value of w22 correspond

two values of ij2, but physically only one of these two values can exist

depending on the direction in which the parameter a>22 varies. If it increases

from small values, the path EFBCD is followed but, if it decreases from

large values, the path is DCAFE.

Van der Pol analyzes the condition of stability by his method which

leads to rather long calculations resulting from the replacement of the

solution v = a sin wjt + b sin (w2t + y) into the d.e. of the fourth order

which represents the coupled system of this kind and reaches the con-

clusion that the jumps occur at the points at which the formerly stable

oscillation becomes unstable.

We do not reproduce here these calculations because we shall be able to

obtain the same result later by a simpler argument resulting from the use

of the stroboscopic transformation.

The theory of van der Pol is, however, very valuable in that it

points out in a definite manner how the question of interaction is linked

to the question of stability, which explains the phenomenon of the

"oscillation hysteresis," that is, a nonsingle valued determination of the

amplitude.
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566 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

3. Interaction of two autoperiodic oscillations

In order to give an example of analysis of interaction of nonlinear

oscillations, we shall investigate the following d.e.2

x + e(x2 - l)x + [1 + (a - cx2) cos 2t]x = 0 (3.1)

If a = c = 0 this equation becomes the van der Pol equation and, if

e = 0, it becomes an equation of the parametric type which was studied in

Chapter 20. In both cases the d.e. have periodic solutions (the second, at

least under certain conditions), and it is natural to inquire as to what

happens when these two simple "component equations" are coupled

together in the form of the d.e. (3.1).

This problem is somewhat complicated and, for that reason, we introduce

certain restrictions that will permit reducing the number of cases to be

investigated without any loss of generality.

We will consider the case when the coefficients a, c, and e are small and

positive. Clearly, if one considers the parameter space (a, c, e), this

restriction amounts to the investigation of conditions only in the first

octant of this space, but the argument developed below is applicable to the

remaining octants. Besides this, we shall be interested only in the self-

excited systems but, again, the nonself-excited systems can be treated in a

similar manner. In other words, our investigation will bear only one of

the sixteen possible cases. However, even in this case there are several

ramifications, as will be shown. The complicated form of these inter-

actions is, probably, the principal reason why so little is known on this

subject.

We shall use again the stroboscopic method and, omitting intermediate

calculations, write down the stroboscopic system corresponding to (3.1):

dÂ£ = \ p[E(4 -p) + (Cp - 2A) sin 2?] = R(p,<p);

^ = l-(CP-A) cos 2? = 0(P,<p) (3.2)

where A = a\p.; C = cjp.; E = el p., p. being the small parameter in the

solutions:

P(0 = Po(0 + Wi(0 + . â–  .

where the nonwritten terms contain p.2, p.3,. . .; we limit ourselves only to

the first approximation (see the Introduction to Part II); finally <p is the

variation of the angular variable ^ during the period 27r; other notations

remain the same as previously.

â€¢ N. Minorsky, C. R. Ac. Sc. (Paris) 234, 1952;^. Franklin Inst. 256, 1953.
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INTERACTION OF NONLINEAR OSCILLATIONS 567

We proceed with the discussion of the stroboscopic system (3.2).

The singular points of (3.2) are:

(1) Pn = 2(A - 2E)I(C - E); sin 2<p0x = +1

(2) Poi = 2(A + 2E)l(C + E); sin 2<p0x = -1

There is also a third singular point p03 = A\C with sin 2<pm calculated so

as to annul the bracket in the first equation (3.2); we shall not carry out the

calculation for the third singular point because the procedure is already

clear from the investigation of the first two singular points.

We omit again a somewhat long calculation in connection with the varia-

tional equations corresponding to (3.2) and merely indicate the characteristic

equation:

S* + UE(P ~ 2)]S -O = 0 (3.4)

where

Q = i[(C> - A) sin 2<p + E(2 - P)](Cp - A) sin 2? (3.5)

It is recalled that the general form of the characteristic equation is:

S* - (R, + <P9)S + [R,09 - Rv<Pr] = 0 (3.6)

where Rr, R^, <Pp, and <Pv are the partial derivatives of R(p,<p) and <P(p,<p) at

the singular points (p0,<Po) in question. For the first two points (3.3), the

matter is simplified since R^ = 0r = 0 and this accounts for a relatively

simple form of (3.6).

As we are interested only in stable singular points, one has the conditions

Po > 2; Q < 0 (3.7)

The first condition means that the energy stored in the oscillation (since

p = r2 = x2 + y2 = x2 + x2 is a measure of the total energy stored in

oscillation) must be greater than the p0 = 2; the second condition merely

rules out the existence of a saddle point as it is not admitted in the strobo-

scopic transformation.

We proceed now with the detailed analysis of singular points (3.3).

4. Analysis of stability of singular points

First singular point:

2(A - 2E) . . . .. â€ž

Poi = C - E' sm2<p01=+l (4.1)

Inasmuch as p = r2 > 0, one has two subcases: (1) A > 2E\ C > E; and
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568 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

(2) A < 2E\ C < E. We shall first investigate subcase (1). We have

thus the following condition:

A > 2E; C > E (4.2)

To this we have to add the. first condition (3.5): p0x > 2, which gives

A > C + E (4.3)

We have to express also the second condition (3.5), namely:

Q = mCpoi -A)- E(Poi - 2)](CPoi -A)<0 (4.4)

As this inequality is given by the product of two brackets, they must be of

opposite signs; on the other hand, as E(p0x â€” 2) > 0, it is clear that

(Cp0x â€” A) must be positive and the bracket in (4.4) must be negative.

The condition Cp0x â€” A > 0 yields

A > â– UT^ (4.5)

If one tries to verify that the bracket in (4.4) is negative, one finds that this

is impossible. One concludes, therefore, that (4.2) does not lead to any

periodic solution.

If one reverses the signs of inequalities (4.2), one obtains conditions:

A < C + E (4.6)

A < ^ (4.7)

One verifies that (4.7) is the dominating inequality (that is, one can omit

(4.6)) and that the bracket in (4.4) is negative. We have thus the condi-

tions:

4EC

A <2E; A < ^ â– , C < E

C + E

here, again, for the same reason we can keep only A < 4Â£C/(C + E)

and omit A < 2E, finally obtaining:

c < Â£; A < (4-8)

These conditions considered in the parametric space (A, C, E) define a

certain region Gv If the parametric point is in this region, a stable

stationary oscillation exists with amplitude p0x and phase <p01 given by

(4.1). Outside Gx there is no stable periodic solution.

It is useful to complete this study of existence of a stable periodic
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INTERACTION OF NONLINEAR OSCILLATIONS 569

solution (oscillation) by the condition of self-excitation, that is, the

spontaneous starting of oscillation from the state of rest.

For this one has to assume p X 0 and neglect terms with p (as compared

to those without p) in (3.2). This gives

(t) si^E-2AÂ«n2q>% ~-$Acos2<p* (4.9)

\"T/p~o V"7p~o

As cos 2<p* = 0 is clearly the equilibrium position for the phase, the

variational equation (replacing <p* by <p* + 8<p, where 89 is a small

perturbation), yields:

(dS<pldr) = \A sin 2<p* . 8<p

and it is clear for the stable equilibrium that one must have sin 2<p* = â€” 1.

With this value of sin 2<p*, the first equation yields

(sL=m+A)>0 (4-10)

which shows that the system is always self-starting. We have thus com-

pleted the study of the first singular point (4.1) yielding the stable periodic

solution (in the <p plane) if conditions (4.8) are fulfilled.

Second singular point:

2(A + IE) .....

Po2= c + E' sin2<po=-l (4-H)

Calculation develops in the same way as in the first case but here the first

condition (4.2) does not exist. One finds the condition

E>C; A> (4.12)

which determine another region G2 in the (A, C, E) space. If the

parametric point is in G2, a stable periodic oscillation in the <p plane exists

in accordance with the coordinates of the singular point (4.11).

Third singular point:

P03 = A\C (4.13)

In this case the phase <p03 is not given directly as in the first two cases but

has to be calculated by annulling the bracket in the first equation (3.2)

after the substitution of (4.13). However, here there appear additional

conditions: |sin 2q?03| < 1 which are to be imposed on the coefficients

A, C, and E. Moreover, the calculation of the characteristic equation
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570 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

becomes more complicated since the partial derivatives Rv and 0r are not

zero in this case. We shall not carry out this calculation because the

procedure is sufficiently clear from the preceding.

5. Special cases

A special case arises when A = 2E and C = E. The expression for

Poi gives 0/0 but, if one replaces A = 2C, both p01 and p0, become

Poi â€” P02 = 4> which means that the energy content is the same as in

the van der Pol oscillator; this case, however, is unstable as one verifies by

the above procedure. Particular cases are obtained from the general case

by setting one of the three parameters equal to zero.

If A = 0, the stable singular points of the first two kinds do not exist;

hence po stable periodic oscillations are possible. The same result is

obtained if E = 0.

If C = 0, the first stable singular point does not exist, but the second

exists under the condition A > C â€” E.

It is to be noted that the case when A = C = 0 cannot be analyzed on

the basis of the preceding formulas because the d.e. (3.1) in this case

becomes the van der Pol equation and the second stroboscopic d.e. (3.2)

disappears. However, expressions (3.3) for p0 hold also in this case and

give p0 = 4. This autonomous case (A = C = 0) should not be con-

fused, however, with the above investigated nonautonomous case (A = 2C,

C = E) in which one has also p0x = p02 = 4 but which is unstable.

Summing up, the above analysis shows the following peculiarities of

interaction:

(1) Stable periodic oscillations exist only in certain regions defined by

inequalities (like 4.8) expressing conditions of consistency of certain

requirements to be fulfilled. Outside these regions there are no periodic

solutions (oscillations).

(2) Condition of stability p0 > 2 indicates the lower energy level below

which oscillations cannot maintain themselves in a stable manner. As, on

the other hand, p0 = 4 is the energy level of the van der Pol oscillator, it

follows that, under normal conditions, the oscillator represented by (3.1)

develops less energy than a simple van der Pol oscillator. Everything

happens as if the "parametric element" of the oscillator (that is, terms with

a and c) were absorbing the energy developed by the van der Pol oscillator.

(3) Only at the critical threshold when A = 2E and C = E (that is,

also when A = 2C) the oscillator (3.1) reaches the energy level p0 = 4

(corresponding to that of the van der Pol oscillator), but at this point it

becomes unstable.

(4) The energy content p of the oscillator represented by (3.1) depends
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INTERACTION OF NONLINEAR OSCILLATIONS 571

on all three parameters in a somewhat complicated manner, as is seen from

(3.3). For the first oscillation (3.3), the equi-energy surface is given by

the equation, 2A - KC + E(K - 4) = 0, and for the second, 2A - KC

â€” E(K â€” 4) = 0, where K is the parameter of the family. In both cases

these surfaces are certain planes in the (A, C, E) space.

6. Remarks

If one takes into account that the above analysis represents only one-

sixteenth of the complete study to be made in connection with (3.1), one

can readily see a considerable complexity of this d.e. from the standpoint

of existence of its stable periodic solutions (oscillations); the latter exist

only in some isolated regions G{ of the parameter space (A, C, E); outside

these regions (as well as on their boundary surfaces) no stable periodic

oscillations are possible.

One can surmise the existence of additional complications when two (or

several) sets of points Gf have an intersection. In such cases several

singular points (and therefore several periodic solutions) exist for points

situated in these common regions but we shall not attempt to investigate

such "pathological" cases here.
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Chapter 24

ASYNCHRONOUS ACTIONS

1. Introductory remarks

In Chapters 18 and 19 we investigated the phenomena of synchroniza-

tion and of subharmonic resonance, respectively. It was mentioned in the

Introduction to Part III that these two phenomena in reality are merely

two different "aspects" of a more general situation that arises in nearly

linear systems acted on by an external periodic excitation ("the forcing

term") when the frequency of the latter passes through the integer values

n = 2, 3,. . ., assuming that the autoperiodic frequency of the system is

one.

The studies of these phenomena are usually carried out in connection

with the d.e. of the form

x + x + hf(x,x) = e sin <or (1.1)

and the various cases arise whether the left-hand side of (1.1) corresponds

to the existence of a stable periodic solution (the autoperiodic oscillation)

or not. In the first case, the left-hand side of (1.1) is generally a Lienard

(or a van der Pol) equation, and the problem is to investigate the inter-

action of an autoperiodic oscillation (with frequency 1) and the hetero-

periodic one with frequency <o. In the theory of resonance, as we saw,

a stable subharmonic oscillation may exist when <o = 2, 3,. . .; this does

not happen for all integers n but only for some of them for which the

conditions of existence and stability of the periodic solution are fulfilled.

It was also shown that these resonance oscillations exist not only for

integer values of <o but for some "detuning" of a> from these integer values.

In such cases, the phenomenon of synchronization appears and brings

the actual frequency to the exact integer value inasmuch the autoperiodic

frequency is "entrained" by the heteroperiodic frequency (Chapter 18).

The combined effects of subharmonic resonance and synchronization

572
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are thus distributed into certain "zones" of the heteroperiodic frequency

co around these integer values. In the intervals between these zones,

there are regions in which the subharmonic resonance cannot maintain

itself and, in these "asynchronous regions" or zones, the phenomena are

less interesting and are rather complicated from the mathematical point

of view, as we shall see below. In general, nothing of a special interest

happens in these regions; there may exist a small heteroperiodic oscillation

(which may be considered as "forced" oscillation, but this term is not very

adequate for nonlinear systems), or there is no oscillation at all if the

condition of stability of the heteroperiodic oscillation is not fulfilled. There

are, however, two special casesâ€”asynchronous quenching and asynchronous

excitationâ€”which present some interest, although these two phenomena

are yet relatively little explored and at present their existence has been

detected only in electrical circuits1'2; in mechanical systems the corre-

sponding effects have not been ascertained as yet.

As regards the quenching, it manifests itself in the following manner:

if one impresses on the grid of an electron-tube oscillator with frequency

co0, an extraneous frequency <o (for instance, through an appropriate

inductive coupling) and if <o is sufficiently high, everything happens as if

this heteroperiodic frequency <o were destroying or "quenching" the

previously existing autoperiodic oscillation with frequency <o0.

In the phenomenon of asynchronous excitation the effect is in some

respects opposite and can be described as follows: suppose we have a

nonlinear system with the topological configuration SUS using the

previously defined term (Chapters 7 and 22); in some publications on this

subject such systems are also called "potentially oscillatory systems."

Under certain conditions, if one applies to such a system an external

periodic excitation with frequency <o, the configuration changes according

to the scheme SUS â€”> US (Chapter 22) and the system begins to oscillate

with its own (autoperiodic) frequency <o0.

In reality, these two phenomena are of entirely different natures and their

apparent resemblance is misleading. In the quenching phenomenon, the

principal condition is that the external (heteroperiodic) oscillation must

have a sufficiently high frequency but that the form of the nonlinear

characteristic is immaterial. In the excitation phenomenon, on the con-

trary, the condition that <o is large is not necessary but, instead, the

necessary condition is that the nonlinear characteristic must be of a

"hard" type, that is, must be represented by a polynomial of at least fifth

degree. One sees readily this point from what was explained in Chapter

1 E. A. Appleton, Proc. Cambridge Phil. Soc. 21, 1922; N. Minorsky, C. R. Ac.

Sc. (Paris), 237, 1953; 248, 1959; J. Franklin Inst. 259, 1955.

1 Kobsarev, J. Tech. Phys. (USSR) 3, 1933.
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574 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

22 dealing with bifurcations of the first kind SUS -> US which is precisely

the question involved here. This seems to be corroborated by the

experimental evidence which, unfortunately, is rather scarce, although these

asynchronous phenomena seem to be of a sufficient interest to warrant a

more detailed study.

It is clear that these two phenomena, the quenching and the excitation,

are possible only in the case when the system is either self-excited (or

"potentially self-excited") which means that the system possesses a

topological configuration US or SUS.

In the following section we shall enter into the theory of these asynch-

ronous actions, but in the general case the problem is too difficult and is

hardly of interest as was just mentioned. However, the general case will

enable us to obtain some conclusions in a particular case of asynchronous

quenching, which, on the contrary, is an important phenomenon. The

discussion in Sections 2 and 3 is conducted under the assumption of a

small external periodic excitation which introduces some simplifications.

In Section 4 we take up the same subject without the above restriction;

we have noticed already the difference between these two approaches in the

theory of subharmonic resonance; we encounter here a similar situation,

although our aim is now different inasmuch as we are interested now not

in the resonance oscillation, but rather in the asymptotic range when the

frequency w of the external periodic excitation is large.

In the last section of this chapter we give an account of the phenonemon

of asynchronous excitation, but instead of following the stroboscopic

method which leads to somewhat long calculations, we use the method of

equivalent linearization (Chapter 14) of Krylov and Bogoliubov which

gives a convenient way of reaching conclusions in this case.

2. Small external periodic excitation

We shall investigate first the case when the amplitude of the forcing term

is small; this will enable us to obtain the d.e. of the first approximation in

a relatively simple manner. As an example we consider the simplest

possible case of the d.e.

x + x = fi[(a â€” yx2)x + Â£ sin <or] (2.1)

which is an ordinary van der Pol equation with a small forcing term

e sin wt = pJE sin wt.

Applying the usual stroboscopic transformation and using the variables

r = Vx2 + x2; i/p = arctan (x/x); x = y, one obtains a system of two d.e.

of the first order which are integrated by the series

Kt) = >o(0 + ^i(0 + + ...',

0(0 = U*) + H>i(t) + mVÂ«(0 + . . .
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and a simple calculation shows that the zero-order solution here is

ro(0 = ro = const; <f>0(t) = <p0 - t (2.2)

where r0 and <p0 are arbitrary constants.

The d.e. for the first-order corrective terms rx(t) and ^(r) are then

fx = ar0 sin2 ip0 â€” ^yr03 sin2 2</r0 + E sin 00 sin <o*

. 1 Â£ (2-3)

ipi = ~a sin 2^r0 â€” yr02 sin ^0 cos3 ^0 H cos <p0 sin <of

We shall limit ourselves to the first approximation only.

As we are interested here in a possibility of obtaining an oscillation with

the frequency of the forcing term, our procedure will be different from that

which we followed in Chapter 19 dealing with the subharmonic resonance.

In fact, in the case of resonance, we were looking for a possibility of a

periodic solution with period 2n under the effect of an external periodic

excitation with period 27r/<o, where <o was a small integer (<o = 2, 3,. . .).

Here we are interested in the existence of a periodic solution with the same

period 27r/<o as that of the external excitation, at least in the beginning of

this calculation.

It follows therefore, that in carrying out the passage to the difference

equations, the integrations are to be performed between 0 and 2tt\<n instead

of 0 and 2n as in the case of the subharmonic resonance.

We omit a series of simple intermediate calculations resulting from the

substitution of ip = ip0(t) in (2.3) by its value (2.2) and the subsequent

integrations.

In the passage to the stroboscopic d.e., we define the stroboscopic time

by its element Jt = 2nnl<o. Setting <p â€” (tt/w) = <p', the stroboscopic

system has the following form

-j- = a \t- cos 4<p sm 1 r3

at o [47t <o J

(2.4)

a [w , . 2tt ,1 E <o2 , .

- ^ U- cos cd sin 1 r H 5 T cos w sin

I \_Ltt t <o J it ur â€” 1

d<p 1 Ty<o / . . 47r , . 2n\

-j- = I sin 4<p sin h sin 2a> sin â€” r3

dr r7r L 8 \ <o <o)

(a<o . . . . 2tt\ Eoj2 . . tr"

sin 2a> sin â€”Ir H 7 sin w sin â€”

Z oj/ <o^ â€” 1 oj

In the general case the discussion of these d.e. is difficult. In fact, one

has to determine the singular point of this system and, for that purpose, it

is necessary to determine a real positive root r0 common to two cubic

equations in r, but the difficulty is in that the coefficients of these equations
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576 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

contain <p. The problem is thus too complicated to be attempted and, as

was mentioned, does not present any special interest. f

In the asymptotic case when <o is large, the matter is considerably simpler

inasmuch as one can replace the trigonometric functions by the first terms

of their series development and reduce the system (2.4) to the usual

Poincare form in terms of r and <p.

There is, however, one point to be mentioned: in the phenomenon of

asynchronous quenching, a relatively high heteroperiodic frequency <o is

applied to an oscillatory system oscillating with an (autoperiodic) frequency

<o0 = 1. If <o were a large integer number, say [<o] and if we are able to

prove the periodicity of the heteroperiodic oscillation with period 2tr/[o>],

by this fact we would be able to prove also the periodicity of the oscillation

with period 2n, since in this case, if 2Â«7[a>] is a period, 2tr is also a period.

However, in our case <o is some large number, not necessarily an integer;

hence if [<o] is the nearest integer to <o, the exact argument valid for [a*]

will be approximately valid for <o, because in equation (2.4) <o appears in

the denominators of arguments of the trigonometric functions and, in the

approximations of these functions by polynomials, the error will be small

if a> is large enough.

This means that, following this argument, instead of the exact singular

point of the stroboscopic system, we shall be able to determine only a very

small orbit around this point and that, instead of the exact periodicity, we

shall have a neighboring almost periodicity; the error will be the smaller,

the larger is <o. This approximation will not affect in any way our con-

clusions.

3. Asynchronous quenching

We can now attack the problem of quenching in the case when <o -> oo.

The expressions of the form: <o cos 4<p' sin {hrjw), <o cos 2<p' sin (2n/<o),. ..

have the limits 47r cos 4<p, 2it cos Z<p,. . . and the limits of the terms with E

are obviously zero.

In the asymptotic case in which we are interested, the system (2.4)

becomes

= Â£ (cos 4p - l)rÂ» - 2 (cos 2<p - l)r = R(r,9)

(3.1)

= â„¢ [(Â§sin4<'' + Â£8in2?)r3 - Â«(sin2<p)r] = 0(r,<p)

t One notes that this procedure is the same as that which we used in Chapter 18

in connection with the problem of synchronization; the only difference here is the

value of the parameter <o.
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and it is seen that this system has singular points for arbitrary values of r

if <p is either <p = 0 or <p â€” n.

In order to investigate stability conditions, we can assume that <p is

small and develop the trigonometric functions around the value of <p = 0;

we get thus:

dÂ£ = r<p\a -yr*); dÂ£ = \ (2a - yr^p (3.2)

If 2a - yr2 < 0, ^1og9? < 0 and the orbit is stable.

dr

If a and y are negative, say a = â€” a; y = â€”g; a > 0, g > 0, we have

Here <p = 0 is a singular solution for every r. Suppose we perturb <p a

little. In order that <p should come to its original value, we need gr2 â€” 2a

< 0; thus the condition r < V2afg is necessary for the stability of the

phase. In such a case (ljr\drjdr) <â–  0 so that r decreases. Thus

r < V2a\g is the condition of stability for the phase and the stronger

condition r < Vajg is the condition of stability of the phase and of the

amplitude as well.

These conclusions are facilitated by the fact that the amplitude of the

external periodic excitation is small, which is not an important case

because in applications one considers always this excitation with a finite

amplitude.

For that purpose we have to modify the method, and the corresponding

conclusions will acquire a more definite form.

4. Finite external periodic excitation

If the amplitude e (1.1) of the external periodic excitation is not small,

the procedure indicated in Section 2 does not apply. One can, however,

follow the method used in Chapter 19. We start with the d.e.

H - n(a - M*)Â£ + | = e sin cot (4.1)

where we do not consider e as small; as regards <o we still assume that it is

some irrational number as previously.

The change of the variable: Â£ = ex transforms (4.1) into the form

jc â€” /x(a â€” yx2)x + x = sin wt; y = jffe2

(4.2)
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578 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

For p. = 0, the generating solution is

xn(t) = A sin t + B cos t + M sin wt

(4.3)

y0(t) = *0(r ) = ^4 cos r â€” B sin r + Mw cos <or

where M = 1/(1 - w2).

We assume that /x is small enough to justify the first approximation only,

namely: x(t) = *0(r) + /^(r); y(t) = y0(t) + nytf).

From the perturbation method one obtains

*i(0 = I sÂ»n (' ~ -r)f(x0,x0)dT; y^t) = f cos (r - r)f(x0,x0)dr

Jo Jo

(4.4)

with /(*0,*o) = (<* â€” Yxo*)*o m tms case-

From (4.3) the initial conditions are:

*0(0) = B; y0(0) = A + Mw; Xx(0) = 0; yi(0) = 0 (4.5)

If a heteroperiodic oscillation with period 2n\w exists, one has the

following conditions of periodicity (Chapter 10)

(4.6)

(4.7)

- m - *.(Â£) - ,m 4 - o

On the other hand, one has

Â«.(^) - xJP) - A ,in Â£ 4 fl(cos ^ - l)

Clearly, (4.7) is a special case of (4.6) when /x = 0; in this case the only

values of A and B that satisfy (4.7) are A = B = 0, since the determinant

of the system is different from zero.

We consider now the case when (i # 0 and determine the variations Ax

and Ay during one period 2it\w, replacing A and B by their expressions

(4.5). We have thus:

a , \ . 27t / 277 r A j*2-/" . 12n \ jr,

Ax = (v â€” M<o) sin h x cos 11 + u I sin t ) fdr

<o \ w ) J0 \w )J

(4.8)

,i / w n/ 2,r i\ â–  2w r2w,u /2Â«- \..

Jjy = (jy â€” A/oj)^cos lj â€” xsin h /x J cos ^ TJfdT

where / = f(x0,x0) with *0 and *0 given by (4.3).
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ASYNCHRONOUS ACTIONS 579

From these difference equations formed for one period 2n\w we pass

now to the stroboscopic d.e. in which we define the stroboscopic time

t = 2innjto, which gives

dx y â€” Mw .

- sin

27t x I 2n ,\ (.*"/<" . /27t \ ,.

1â€” cos 11+ sin a I fda

w/x\a> / Jo \w /

dr fl

(4.9)

dy y - Moo I 2n ,\ x . 2-ir f2"/" /27t \ .,

â– y- = I cos 11 sin h cos ( a\fda

dr n \ a* / p a J0 \<o ]

As our aim is to find what happens to the autoperiodic oscillation which

has the period 2n, we have to change the stroboscopic time-scale from t to

T = t<o, in which case we have relations

dx_\_dx dy = Â±dy

dT cdr' dT wdT K )

With this change of the stroboscopic time-scale, equations (4.9) become

dx _ (y â€” Mi

If

(4.ll)

/ v - Mo>\ . 27t x I 27t . \

= ^i_T_jtt,8,n- + ]5a,^co8--lj

H I sin ( a I /a<r

o>j0 \w y-7

</v / v - Ma>\ / 27t , \ x . 27t

^=(2L^r(cos^-lj-*wsm^

l r2"/- /27t \

H cos | a\fda

where k = /jw2 and M â€” l/(1 â€” a>Â«).

As co is large, we replace the trigonometric functions by the first terms

of their series expansions; one can obviously neglect the terms containing

the integrals as being of a higher order of smallness. The d.e. (4.ll) can

then be replaced by the following approximate ones

dx / 27t2\ /2n\ /2n\

(4.12)

and, for the singular point of the system, one has to solve the system of two

linear nonhomogeneous equations in terms of x and y, which is possible

since the determinant:

b
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580 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

With the values of the coefficients a, b,. .., c' given by (4.12), one finds:

CO

where the subscript 0 refers now to the stationary values of * and y.

As the energy stored in the oscillation is p = x0* + y02, in this case this

energy is 0(a>~*), and, as we assumed that <o is large, this shows the effect

of quenching of the autoperiodic oscillation by the heteroperiodic frequency.

5. Asynchronous excitation

As was mentioned in Section 1, the phenomenon of asynchronous

excitation is of an entirely different nature as compared to quenching and

consists in a change of the topological configuration from SUS to US (in

the terminology of Chapter 7), under the effect of the forcing term.

One could proceed in the manner outlined in Sections 2 and 4 by con-

sidering a differential equation of the form

x + x = /x[(a + yx1 + Sx*)x + Â£sin <ot] (5.1)

and by establishing the conditions under which the bifurcation of the first

kind (Chapter 22): SUS â€”> US is possible; but this leads to rather long

calculations and we prefer to outline here a simpler way of treating this

problem on the basis of the method of equivalent linearization (Section 7,

Chapter 14) as was done by Kobsarev.*

It is recalled that the method of equivalent linearization consists in the

introduction of certain equivalent parameters owing to which the original

nearly linear d.e. is replaced by an equivalent linear d.e., the term equivalent

meaning that the solutions of these two d.e. differ by a quantity 0(p.Â») if one

limits the calculation to the first approximation.

If one considers an electrical problem, the nonlinear function is:

ia = f(e), the anode current ia of an electron tube being considered as a

function of the grid voltage e, the equivalent linear problem is

i. = Se (5.2)

where 5 is a certain integral as was explained in Section 7, Chapter 14.

Here the problem is, however, more complicated because, instead of one

single voltage e (the feedback reaction applied to the grid) we have an

additional voltage representing the external periodic excitation. Krylov

and Bogoliubov 3 show that in such a case the expression for the equivalent

* See footnote *, page 573.

* N. Krylov and N. Bogoliubov, Introduction to Nonlinear Mechanics (in Russian),

1937.
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ASYNCHRONOUS ACTIONS 581

parameter S (the linearized mutual conductance) is given by the expression

of the form:

S = J J /(^o + F cos Ti + a cos T2) cos lyfrjrfr, (5.3)

where J?o is some constant (biasing voltage) and F cos tx and a cos t2 are

the heteroperiodic and autoperiodic voltages, respectively. The integra-

tions are carried out in angular variables and with respect to the auto-

periodic oscillation, since we are interested in the behavior of this oscillation

under the effect of the heteroperiodic (forcing) frequency. If one takes

for the nonlinear functions, the usual polynomial approximation

*'<â–  = /(*) = + P*2 + y*3 + 8*4 + e#5 (5-4)

where x = a cos <p + b cos <p is the voltage resulting from the super-

position of the autoperiodic and heteroperiodic components (reduced to

angular variables), the expression for the equivalent parameter 5 in this

case is

j ru rim

S(a,b) = 2ani J J /(a cos 9 + ^ cos 0) cos <Pd<pd<p (5.5)

where a and b are the amplitudes of the autoperiodic and heteroperiodic

components.

Carrying out these somewhat long but simple calculations, one obtains

the expression

S(a,b) = a + iya* + iyb2 + |eaÂ« + VeÂ«2*2 + Â¥e*4 (5.6)

from which one can discuss the various cases.

If the heteroperiodic oscillation is absent, b = 0, one has

S(a,0) = a + + |eaÂ« (5.7)

which gives the equivalent mutual conductance for the autoperiodic

oscillation. In particular, for a "soft" characteristic, 8 = Â£ = 0;y<0

one has:

S(a,0) - a - }|y|Â«> (5.8)

For a stationary condition, S(a,0) = 0 which gives the stationary amplitude

a = a0.

In the absence of heteroperiodic frequency, the condition of self-

excitation is: 5(0,0) = a but, with the heteroperiodic oscillation, this

condition is

S(0,b) = a + fy62 = a - f|y|6Â» (5.9)

It is seen that the presence of the heteroperiodic oscillation may prevent
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582 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

the self-excitation from rest (a = 0). In fact, the coefficient o > 0

measures normally (that is, in an ordinary van der Pol oscillator) the energy

input into a system at rest which makes the self-excitation possible.

Hence, if S(0,b) < 0, the oscillation cannot start from rest.

In the case of a "hard characteristic," a, /3, y, and 8 in (5.4) are positive,

and e < 0. In such a case and in the absence of the heteroperiodic

oscillation (b = 0), the equivalent parameter S is

S(a,0) = a + |ya2 - i|e|a* (5.10)

The maximum of S(a,0) considered as a function of a1 occurs for a

in which case one has

SmJa-O) = Â« + &(y/M) (5.11)

The asynchronous excitation (b # 0) occurs only if

5(0,0) - 5mâ€ž(a,0) = Jy6* + + AfrVO > 0

that is, if

fyi*> Yle^ + ^/lel) (5.12)

This inequality can be fulfilled if b2 lies in the interval

i(WM) < &2 < KWM) (5-13)

Summing up, in this application of the method of equivalent lineariza-

tion, the following results are obtained:

1. If the characteristic is "soft," a heteroperiodic oscillation can only

quench the existing autoperiodic oscillation.

2. If the characteristic is "hard," a heteroperiodic oscillation may also

release the autoperiodic oscillation if condition (5.13) is fulfilled.

6. Concluding remarks

The asynchronous effects are different from the manifestations of the

subharmonic resonance, where the existence of a certain rational ratio

between the two frequencies (or at least, of a certain neighborhood of such

a ratio) is a necessary condition.

In the frequency spectrum of the heteroperiodic excitation, these

asynchronous actions are located in the gaps between the subsequent

zones of subharmonic resonances and associated synchronization effects.

The stroboscopic method permits approaching the study of these phe-

nomena directly on the basis of the d.e.; in the transformation leading to

the establishment of difference equations, the integrations are to be carried
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out between the limits 0 and In/<o. Since, however, the ultimate analysis

concerns the behavior of the autoperiodic oscillation with period 2n, it is

necessary to consider this period 2n as made up of small periods 2tt\<x>.

If [<o] is large and integer, it is clear that the condition of periodicity for a

period 277r/[a>] remains valid (exactly) for the period 27r. Since, however,

<o is large and irrational, the approximation remains good for the period 2n,

as 27r/<o ~ 27r/[a>] assuming that [<o] is the nearest integer to a large

irrational number <o.

In view of this, the replacement of the trigonometric functions, by the

first terms of their series developments, leads to a relatively simple asymp-

totic form of the stroboscopic system, from which it follows that the

presence of a high heteroperiodic frequency destroys (or "quenches") the

previously existing (in the absence of the heteroperiodic frequency)

autoperiodic oscillation.

The stroboscopic method could be used also for the purpose of the

establishment of conditions of the asynchronous excitation, as defined in

Section 1, but this requires rather long calculations intended to express the

transition SUS-+ US (Chapter 22).

We preferred to use a "short cut" offered by the algorithm of the

method of equivalent linearization (Chapter 14), which leads to the

corresponding conclusions in a simpler manner.

In general, the study of asynchronous actions is yet in a relatively early

stage, and the experimental evidence available is also rather limited as

compared to what is known in connection with other nonlinear phenomena.

These phenomena have been ascertained so far only in nonlinear

electrical circuits, and nothing is known about their existence in mechanical

oscillatory systems, where they probably also exist if one could approach

their investigation with appropriate means. As we saw from the contents

of this chapter, the existence of these asynchronous actions depends on

certain interactions between the autoperiodic and heteroperiodic oscilla-

tions in nonlinear systems. If one leaves out the general case and con-

centrates attention only on two special cases which were investigated in

Sections 3, 4, and 5, the matter is sufficiently clear. In fact, the phe-

nomenon of asynchronous quenching is a relatively simple phenomenon as

compared to the phenomenon of asynchronous excitation. One can

visualize this effect as follows: a nonlinear system is oscillating with a

certain frequency <o0 and we impress on it an oscillation of a much higher

frequency <o which ultimately extinguishes the original oscillation with

frequency <o0. Both experiment and theory show that this is so in the case

of nonlinear electronic circuits, and one may expect that if one succeeds in

obtaining conditions governed by the same d.e. for a mechanical system,

something similar will be observed. For instance, a certain mechanical
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584 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

vibration existing in a steady state with frequency w0 will be extinguished

if we impress on the system a much higher frequency w of another vibra-

tion.

The problem has a definite applied interest and hinges obviously on the

possibility of producing a mechanical system having certain nonlinear

characteristics with which a'corresponding electronic system is known to

exhibit this quenching effect. It is also clear that, in order to be able to

accomplish such a result, it is necessary to produce a mechanical system

with nonlinear characteristics corresponding to the electronic system.

For the time being one is yet far from such a synthetic predetermination of

parameters in mechanical systems where these parameters are always far

less definite than in electronic circuits and are subject to all kinds of

couplings generally difficult to ascertain. Moreover, these parameters are

often distributed; change in one parameter very often causes changes in the

others, etc.

Summing up, all these difficulties are by no means of a basic character,

but are inherent in the practical impossibility to produce a mechanical

system amenable to the same form of d.e. as in an electronic circuit in

which these phenomena exist, and where the determination of parameters

and nonlinear characteristics is relatively a simple matter.

If these practical difficulties are eventually overcome and corresponding

nonlinear coupling effects are obtained also in mechanical systems, very

likely the whole question of asynchronous actions will acquire a greater

applied interest instead of being considered as, more or less, a matter of

curiosity, as it is at present.
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Chapter 25

SYSTEMS WITH INERTIAL NONLINEARITIES

1. Introductory remarks

In addition to the usual nonlinear problems in which nonlinear char-

acteristics are represented by polynomials with constant coefficients, one

encounters from time to time special problems that are not quite definitely

formulated so far. Whether such problems may become of importance

later is difficult to say at present, but very often such new questions raise

a certain amount of interest, at least theoretically.

One such question was raised a few years ago by Theodorchik1 who

investigated the behavior of an electron-tube circuit into which is inserted

the so-called "thermistor"â€”a nonlinear conductor whose resistance is a

function of the temperature, the latter being, in turn, a function of the

current which flows in the conductor.

The behavior of such a circuit depends to some extent on the frequency

of the oscillating current and, in this manner, is not characterized by

constant parameters only, as in all problems with which we were concerned

previously.

In fact, if the frequency of oscillating current is sufficiently high, it is

clear that the temperature variations of the conductor cannot follow

rapidly enough the current variations for a sufficiently high value of the

thermal time constant. One has, therefore, a system in which the non-

linearity, instead of being fixed, is variable as a function of the root mean

square value of the current. One has thus a somewhat particular form of

d.e. in which, in addition to the instantaneous values of the dependent

variable, the average values of that variable also appear. As the latter

reduce ultimately to the square of the amplitude, one has a d.e. in which,

besides the dependent variable x(t), appears also *02(r). In a transient

1 K. F. Theodorchik, Auto-oScillatory systems (in Russian), Moscow, 1948.
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586 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

state both x and x02 are functions of / but, for a stationary state while x is

still x(ty, the amplitude x0 becomes constant.

It seems likely that problems of this kind belong rather to the so-called

integro-differential equations but as they are also nonlinear as a rule, there

are too many difficulties at present to attack these problems following this

argument.

If, however, in the same problem the thermal time constant is reduced,

and a conductor of this kind is connected to an oscillating circuit whose

frequency is within the range of the thermal time constant, it has been

reported on some occasions that the circuit may become self-excited and

oscillates in a stationary state without any electron tubes.f This circum-

stance in itself is not very surprising because it was known long before the

advent of the electron tubes that self-sustained oscillations can be produced

by nonlinear conductors of electricity, such as electric arcs and gaseous

discharges.

There appear two distinct problems corresponding to these two extreme

ranges of the thermal time constant. In one case the thermal inertia does

not permit the oscillatory system to follow the instantaneous values of the

variable but follows only its root mean square value proportional to x0*â€”

the square of the amplitude. Since, on the other hand, there may be some

other variables which vary instantaneously, say *(/), one obtains a special

kind of a d.e. in which, in addition to x\t), x(t), and x(t), as usual, there

appear terms with x^t), x0\t) x(t), etc., the terms x0*(r) tending to

become constant with the approach to the stationary state, while the terms

x(t), x(t), and x(t) remain variable as in an ordinary d.e.

In the following section we shall outline the results formulated by

Theodorchik, and in Section 3 we shall go further into this matter by

assuming a certain explicit form of the nonlinear function and applying

the stroboscopic method which is particularly useful in this case, in that,

for a stationary state, one can replace *0*(0 DY Po m tne preceding notations,

while the instantaneous terms like x(t) will be still x = r cos ip of the

general theory (Chapter 16).

Once this is done, one can ascertain how the instantaneous and the

average variables coexist in the ultimate stationary state, since in the latter

everything appears as a relation between average values.

One can consider also the problem corresponding to the other end of the

thermal time constant, that is, when the thermal time constant is so small

that the instantaneous adjustments of temperature (and, hence, of non-

linearity) can occur within one period of oscillation imposed by the con-

stants of an oscillating circuit branched across such a conductor. This is

essentially a problem of self-sustained oscillations in a circuit with such a

t This holds for nonlinear conductors whose nonlinearity remains constant.
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SYSTEMS WITH INERTIAL NONLINEARITIES 587

conductor but without any electron tube. This problem is more difficult,

as will appear from Section 5, than the usual problem of self-excited

oscillations in an electron-tube circuit. In fact, in the latter the roles of

negative and positive resistances are localized in the electron tube and the

rest of the circuit, respectively; moreover, the electron tube itself gives the

well known transition from the energy absorption to the energy dissipation

in view of its nonlinear characteristic.

As regards the nonlinear conductors, the matter is less definite since their

nonlinear characteristics are hardly known as compared to those of electron

tubes.

It is necessary, therefore, to make some arbitrary assumptions and try to

obtain corresponding conclusions. In this manner one encounters many

theoretical possibilities, some of which are probably useless whenever

these questions are better studied experimentally. This matter may be of

some interest as an example of a certain elasticity in the use of the strobo-

scope method when it is necessary to establish the conditions of a station-

ary state, even if the form of the original d.e. departs from that usually

encountered in applications.

In this particular case, the difficulty of the problem containing at the

same time x(t), x(t), and x\t) (the instantaneous values) and the average

values associated with x02 is ultimately smoothed out because, in the final

result (the stationary state), everything is to be averaged out so that the

initial difficulty in the original d.e. disappears in the stroboscopic d.e.

2. Inertial nonlinearity

We outline first certain conclusions obtained by Theodorchik. If an

alternating current of angular frequency w and amplitude x0 flows through

a conductor having the mass m, resistance R, thermal specific capacity c,

and Newton's coefficient k of cooling, the thermal equilibrium is given by

the d.e.:

mc6 + k6 = Rx02 sin2 wt (2.1)

6 being the temperature. The integration of this d.e. yields:

e = e0 + ex cos [iwt - y) (2.2)

where 60 = a8; a = Rx^/2mc; 8 = mcjk; 0x = aSij; 77 = cosy. The

constant 8 is called the thermal time constant. Expression (2.2) shows that

the temperature of the conductor consists of a constant part 60 and a

variable part of amplitude 6x and (angular) frequency 2w. One has thus

the ratio:

ej60 = V= 1/V1 + (2a>8)Â« (2.3)
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588 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

which shows that if the time constant 8 is large enough (which will be

assumed in the following sections), the amplitude 0x of the variable

component is small, so that:

6 ~ 00 = (RI2k)x0* = fix* (2.4)

which is obvious from the definition of the effective values.

We note that everything happens as if the conductor had a kind of

thermal inertia which prevented its temperature from responding to the

instantaneous value of the heating alternating current but allows it to

follow the root-mean-square value of the latter which depends on xo*.

If the conductor in question is nonlinear, its nonlinearity can always be

approximated by a polynomial which is a purely formal procedure con-

sisting in an approximation of a piece of arc of a smooth (that is, con-

tinuously differentiable) experimental curve by a certain polynomial whose

coefficients are determined by the interpolation procedure so as to give the

best approximation.

In this manner, a nonlinear resistor of the resistance R(0) can be

represented by a polynomial:

R(6) = R0 + + c36* (2.5)

where 6 is the departure of the temperature from its average value for

which this resistance has the value R0.

In accordance with the nearly linear theory, it will be assumed that cx

and c3 are small as compared to R0.

Since the temperature depends on x02â€”the square of the amplitudeâ€”

the preceding expression can also be written in the form:

R(x0*) = R0 + b^* + 63V (2.6)

3. Van der Pol oscillator with a conductor Rfc^)

If a conductor of this kind is inserted into an oscillating circuit of a van

der Pol oscillator (which can be assumed to be, for instance, of a usual

inductive coupling type) it is easy to establish its d.e. First, without

such conductor, the d.e. is:

T di >â–  1 f J. MdI *,dIdV

Ljt + rt + cydt = MTt = MdvTt w

where L, r', and C are the usual constants of the oscillating circuit, M the

coefficient of mutual inductance between the anode and the grid circuits,

V the voltage on the grid, and i and / the currents in the oscillating and in

the anode circuits, respectively.
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SYSTEMS WITH INERTIAL NONLINEARITIES 589

One has: i = C(dVjdi), dVjdt = i/C. As to dl/dV = S', this is the

usual nonlinear element of the electron tube, representing the anode current

considered as a function of the grid voltage.

Setting i = x and changing the independent variable from t to t = <ot,

<o = l/VLC, (3.1) becomes after a differentiation and some simplifications:

x- JÂ£(^.S' -r,y + x = 0 (3.2)

which can be written as:

x - n(nS - r)x + x = 0 (3.3)

where p is a small parameter absorbing some constants of (3.2). If a

nonlinear conductor R = R(6) is inserted in the oscillating circuit, one

has:

x - i4nS - R)x + x = 0 (3.4)

It is clear that, in general, the energy is added to the system through nS and

dissipated owing to R.

Taking for 5 the usual approximation S = S0 â€” S^c2, S0 and S2 being

certain positive constants and setting nS0 â€” R0 = A, we obtain

x - n[A - (nS^c2 + 6^o2 + ft8V)]* + * = 0 (3-5)

If the system is to be self-excited from rest (x ^ 0), clearly one must have

A > 0 which is obvious because the energy added to the system through

the electron tube (term nS0) in this case is greater than the energy dissipated

in the conductor (term R0).

If one applies now the stroboscope transformation recalling that

x2 = p0 cos2 ip0; x02 = p0; x09 = p03, one obtains the stroboscopic d.e.

+ .Â£].*<-) â€ž6)

Aside the solution p = 0 which is clearly the position of equilibrium,

this d.e. may have a stationary solution p0 represented by the positive root

of the cubic equation

p3 + aiP - a0 = 0 (3.7)

where ax = (nS2 + 46^/463; a0 = A\bs.

Two cases are possible according to the sign of the discriminant

Â«x3/27 + a02/4 = A; we shall limit ourselves here to the more important

case when J > 0 which characterizes the existence of one single real root.

As we wish to have p0 > 0, one must have a0 > 0, but as we started with

A > 0, one must also have b3 > 0.
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590 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

We have on the other hand

*0>) = *a[p4 + axP2 - "oP]

whence

nPo) = W + 2axP - Â«J (3.8)

but as p08 + axp0 â€” ao = 0, (3.8) becomes

0(Po) = h[W + axPo] (3-9)

For stability this expression must be negative and, as b3 > 0, we have the

condition

3p0* + ax < 0

that is

Po2 < -3 (3-10)

Clearly, if ax > 0, this criterion shows that there exists no stationary

amplitude but, if ax < 0, it shows that the condition of stability is

Po2 < +^ (3.H)

Referring to the expression for ax = (nS2 + 4^^/463 in which nSt and b3

are positive, the only case when ax can be negative is when bx < 0 and

sufficiently large to render the numerator in ax negative.

The case which we have just considered is when A > 0. When A < 0,

the existence of one positive root of the cubic polynomial, all other things

being equal, requires, on the contrary, b3 < 0. We have to re-examine the

condition of stability, taking into account the new sign for b3.

From (3.9) it follows that now the criterion of stability is

3p02 + ax > 0 (3.12)

Clearly, if ax > 0 the condition

Po2 > - J (3-13)

is trivial and merely means p02 > 0; that is, any positive root of the

polynomial is stable. The condition ax > 0, on the other hand, means

that ax = (nS2 + 46i)/4i3 = -(nS2 + 46i)/4|63| > 0 and this may

happen only if bx < 0 and sufficiently great to make (nS2 â€” 4-j6x|) < 0,

in which case, in fact, ax > 0.

There may be, however, another condition, viz.: ax < 0 in which case,

instead of (3.13), one has

\a

Po* > +Lf (3-14)
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SYSTEMS WITH INERTIAL NONLINEARITIES 591

Clearly, if ax < 0 (with b3 < 0), one must have nS2 + 46x > 0, that is,

either bx > 0 or 6j < 0 but not sufficiently great to render nS2 + 46x

= nS2 â€” 4-|6xj negative.

This means that with this condition (bx > 0, b3 < 0), the condition of

stability requires that the stationary amplitude p0 given by the positive

root of the cubic polynomial must be greater than + \/|ai|/3 in order to

be stable.

One can easily investigate a particular case when S2 ^ 0, in which case

the electron tube works on the substantially linear part of its characteristic

and the nonlinearity is brought into play by the nonlinear conductor.

This discussion merely shows that a nonlinear oscillation based on the

property of one nonlinear characteristic may become entirely different if

another nonliner characteristic is brought into play, in addition to the first

one.

4. Oscillations produced by nonlinear conductors; physical

considerations

It has been known for a long time that nonlinar conductors of electricity,

such as an electric arc, for instance, can give rise to self-sustained oscilla-

tions in a circuit connected across them.

During this early period (the end of the last century and up to, possibly,

1914), the nonlinear theory had not been formed as yet and the experimental

material had to be coordinated on the basis of certain graphical con-

structions, in conjunction with some conclusions derived from the method

of small oscillations of the linear theory. It was during that early period

that the concept of the "negative resistance" was introduced in connection

with the characteristic v = f(i), the voltage across a nonliner conductor

considered as an empirical function of the current through it. According

to this definition the resistance is "negative" if the characteristic exhibits a

negative slope, that is, when the voltage decreases for the increasing current;

the expression "negative resistance" physically means an input of energy

into the oscillatory system. Natural conductors of electricity, such as

arcs, gaseous discharges and the like, presented no problem, because they

usually exhibit this particular feature, and the graphical constructions just

mentioned are sufficient.

However, nonlinear conductors discovered relatively recently are

different because they represent a synthetic product, generally an alloy of

some metals or other chemical substances subjected to a certain treatment.

Very often, a slight change in a chemical composition or in the treatment

changes radically the form of the characteristic. For these reasons, the
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592 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

situation here is far less definite, particularly because there exists no well

established connection between the form of an optimum characteristic and

the properties of a corresponding oscillation.

For that reason, it is useful to attempt to establish at least some theoretical

conclusions regarding these relations in general.

M

5. General problem

On the basis of the preceding conclusions one can formulate a more

general problem2 referring to a somewhat idealized scheme shown in

Fig. 25.1, in which R is a nonlinear conductor of some kind, which for the

sake of connection with the preceding argument, may be considered as a

"thermal" type.f Here, however, we shall suppose that its thermal time

constant is sufficiently small to permit the temperature to follow relatively

rapid oscillations, for instance, those

of an oscillating circuit (r, C, L) con-

r nected across the terminals of R. We

""'vVVW I assume that R carries a constant

current X. The problem is to investi-

gate whether, under some special con-

; ditions of nonlinearity of R, there may

arise self-sustained oscillations in the

oscillating circuit.

When R is an electric arc, it is

definitely known that such oscillations

Figure 25.1 occur. In the case of heat-responsive

conductors of a nonlinear type, such

oscillations have sometimes been reported if the thermal time constant is

small enough to permit the manifestations of the nonlinearity, which we

assume here.

Without attempting a complete investigation, we indicate merely an

approach along the line of the preceding argument.

If there appears an oscillating current x in the circuit rCL, the question

arises whether one can determine the nonlinear characteristic of R so as to

obtain a stable stationary oscillation.

We may again consider the nonlinear resistance to be of the form

R = R0 + b^X + xY + b3(X + *)6 (5.1)

* N. Minorsky, C. R. Ac. Sc. (Paris) 235, 1952; Ann. Fac. Sc. Un. of Marseille,

1953; Symposium on Nonlinear Circuit Theory, Polytechnic Institute of Brooklyn,

t The assumption of the thermal origin is clearly not necessary here.

1953.
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SYSTEMS WITH INERTIAL NONLINEARITIES 593

as we did previously, having in mind its thermal origin; in these notations

x = x0 cos wt is the oscillating current; by a change of time scale one can

always assume that co = 1.

If x = 0, one has R = R0 + b^X* + b3X6 which is a fixed value of R.

If x = x0 cos t exists, the nonlinear resistance undergoes fluctuations and

the problem is to investigate the values of the parameters bx and b3 for

which a stationary condition can be obtained.

Assuming that a stationary oscillation x = x0 cos t exists, the fluctuations

in resistance of the nonlinear conductor R are given by the expression

R = R0 + b^X + x0 cos ty + b3(X + x0 cos r)6 (5.2)

If one develops this expression one has

R(x0) = R = 2 aâ€ž(x0 cos 0" (5.3)

n = 0

where the coefficients a0,. .., ag are calculated by identifying (5.2) and

(5.3). One has thus:

a0 = R0 + bxX* + b3XÂ«; ax = 2bxX + 6b3Xs;

a2 = bx+ \5b3X*; a3 = 2063X3; at = l5b3X2;

as = 6b3X; aâ€ž = b3 (5.4)

The coefficient a0 is obviously the value of R for x0 = 0.

It is more convenient to transform (5.3) into the form of a Fourier

polynomial:

6

R = 2 mn cos nt (5-5)

where the coefficients mn contain aâ€ž given by (5.4) and powers of x0.

Carrying out this calculation one has

m0

-

iVe*o6 + iÂ«4*o* + iÂ«2*o2

wii

=

|as*o5 + iÂ«3*o8 + aixo

w,

=

i|a6V + iÂ«4*o4 + Â±Â«2*o2

m3

=

ii^s^o5 + iÂ«3*o3

mt

=

T^a6*06 + ifl4*0*

ms

=

m.

=
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594 OSCILLATIONS OF NEARLY LINEAR SYSTEMS

In these formulas the various numerical fractions result from the trigo-

nometric-transformations from (5.3) to (5.5).

The d.e. of the circuit MrCLNM can be written as

x + fiR'x + x = 0 (5.7)

with a proper change of the independent variable (so as to have frequency

one), where R' is the value of R in which the constant term R(0) = a0 is

omitted, since it obviously does not contribute anything to the maintenance

of the oscillation.

The equivalent system of (5.7) is

x = y; y = â€”pR'y â€” x

and introducing, as usual, the variables p = x2 + x2 = x* + y2 = r2 and

ip = arctan (y/x); x = r cos \\>,y = r sin ip by means of two combinations:

xx + yy = \dpjjdt \ xy â€” yx = p(dipldt) we obtain

^= -2p.R'y2; ^= -/J?' sin ^ cos if> - 1 (5.8)

Hence, in the integration by the series of the form

p(t) = po(0 + m(0 + . . .; W) = u*) + + ...

the terms of the zero order are: p0(t) = p0; ip0(t) = <p0 â€” t, where p0 and

<p0 are the initial conditions.

Consider the first d.e. (5.8); the corresponding d.e. for the first-order

corrective term p^t) is

^ = -2R'Poam2^0 = -R'Po(l - cos2^0) (5.9)

Since' R' = m0' + mx cos t + m2 cos 2t + . . . + m6 cos 6/ and

1 â€” cos 2ip0 = 1 â€” cos (2<p0 â€” 2t) = 1 â€” cos 2<p0 cos 2t â€” sin 2<p0sin 2t,

in the product R'(\ â€” cos 2a/j0) the only terms which remain after the

integration between 0 and 2n are: m0' â€” m2cos2<p0cos22t, so that the

difference Pi(2tt) â€” Pi(0) = Apx is

Apx = (m0'2n â€” $m2cos2<p0-2in)p

and Ap = fiAPi = 2inp.p(m0' â€” \m2 cos 2<p0). Setting as usual 2np. = At

and passing to the continuous variable (At â€”> rfi-) one has the stroboscopic

d.e.

^ = -\P(m2 cos 2<p - 2m0') (5.10)
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SYSTEMS WITH INERTIAL NONLINEARITIES 595

For the second equation (5.8), we have similarly

-W sin 20o (5.11)

Likewise, the only term on the right side of (5.11) which remains after

the integration between 0 and 27r in the product R' sin 2^0 is $m2 sin 2<p^Zn,

so that the difference equation (setting Inp = At and A<p = ^i(2n)

- 0i(0)) is

Aw , . _

-fc = -iwi2sin2<p0

and the corresponding stroboscopic d.e. is

^ = -im^in^ (5.12)

The existence of a stable stationary oscillation reduces now to the existence

of a stable singular point of the stroboscopic system (5.10) and (5.12). In

the first place one observes that there is a position of equilibrium for the

phase if sin 2<p0 = 0 (we change the notations and now by the subscript

zero we designate the stationary values since no confusion is to be feared

from the approximation procedure).

6. Stability; concluding remarks

The stability of the phase is obtained from the variational equation

which is:

d8w . - t

â€”:â€” = â€” ^OT2 cos Z<p0O<p

UT

If m2 > 0, the phase is stable for cos 2<p0 = +1; for mt < 0, it is stable

for cos 2<p0 = â€” 1.

Assume, for the sake of an example, the first case: cos 2<p0 = +1; then

the first stroboscopic d.e. (5.10) becomes

% = - *p(Â«* - 20 (6-13)

There are obviously two positions of equilibrium, viz.: (1) p = 0, the

state of rest; and (2) m2 = 2m0', which corresponds to the stationary

oscillation. We have (after replacing x02 by p0 and taking the values (5.6)

for m0' and m2):

%=-\p*{ka*pi + \a<p + \a) (6-14)
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5% OSCILLATIONS OF NEARLY LINEAR SYSTEMS

For the stability of the state of rest we have

Hence, the state of rest is unstable (that is, the condition of self-excitation

is fulfilled) if at = bx + l5b3X* < 0, which shows that 6x and b3 cannot

be positive at the same time. The polynomial in (6.14) can be written as

since at = b9.

So far we have not made any hypothesis regarding the signs of the

coefficients bx and b3 in the nonlinear function R. We shall be guided

here by physical considerations. In fact, in arcs and gaseous discharges

where self-sustained oscillations are observed there is always present

the so-called "negative resistance," mentioned in Section 4. With

regard to energy exchanges, a negative resistance is equivalent to the

absorption of energy in contrast with positive resistance characterized by

energy dissipation.

If a nonlinear conductor is to exhibit an analogous property, the co-

efficient bx must be negative in the initial stage of the development of

oscillation when the amplitude increases and similarly b3 must be positive,

which corresponds to the ultimate limitation of amplitude by a positive

resistance.

If one makes this plausible assumption, the problem becomes more

definite and a number of possibilities which do not have any physical

meaning are eliminated. Under this assumption the stroboscopic d.e.

(6.14), taking into account the form (6.16), can be written as:

^ = -kP*[p* + (k^p - k3\a3\] = *(P) (6.17)

5 8 16

where k = â€” b3 > 0, kx = > 0, and k, = -=t- > 0.

64 bo3 5b3

If we consider the simplest and the most important case, the one in

which there is only one stationary oscillation, the polynomial in (6.17) has

only one positive root

* = -*r + y^T"+ k^ (618)

where at and a2 are given by (5.4). Since, however, for the self-excitation

from rest a2 must be negative, this means that in the expression for

at = bx + \5b3X*, bx < 0 must be sufficiently large in absolute value,

while b3 > 0 and X* should be relatively small.
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SYSTEMS WITH INERTIAL NONLINEARITIES 597

In order to complete the problem, it is necessary to show that we can

dispose of the parameters to produce a stable stationary amplitude p0, for

which we use the criterion

*>0) < 0 (6.19)

as we did in Chapter 22.

We have &(p) = -kp* â€” kk^tf2 + kk2\a2\p2 and, therefore, <Pp(p)

= â€”p(4kp2 â€” Zkk^ip + 2AA2|a2|). Taking into account that the poly-

nomial in (6.17) is zero for p = p0, we obtain the condition of stability in

the form

Po > ft*2 (6-20)

Hence, if ftx < 0, b3 > 0, and X are given, a2 and a4 are known and p0 can

be computed; if this value of pâ€ž happens to satisfy the inequality (6.20),

then it is stable. If, however, it is unstable, a simple decrease of X does

not settle the matter, since p depends also on X through the coefficients

a2 and a4.

It is seen thus that the problem, although sufficiently simple theoretically,

is rather complicated if one tries to obtain the condition of stability which

requires inevitably some kind of an approximation procedure by which the

stability criterion (6.20) can be computed.

There is yet another complication worthy of note. In analyzing the

stroboscopic system (5.10) and (5.12) we sought first the stability of the

phase (sin 2<p0 = 0; cos 2<p0 = +1) and established the existence and

stability of the singular point on this basis.

It is equally possible to formulate the existence of a singular point of

(5.10) and (5.12) by setting m2 = m0' = 0 from which, after substituting

values for m2 and m0', one can determine the stationary amplitude, although

the phase remains arbitrary; this means a certain parasitic oscillation with-

out any definite frequency. It is possible, however, that in view of the

stability of the phase for cos 2<p0 = +1, this parasitic oscillation will

ultimately transform itself into an oscillation with definite amplitude and

phase which we have investigated previously.

We merely mention these difficulties because, in contrast to those arising

from electron-tube oscillators in which the energy absorbing and dis-

sipating elements of characteristics are distinct, these various features are

to be derived from the same characteristic that leads to more complicated

conditions just mentioned.

It must be mentioned also that, in cases when the nonlinear resistance

is not a function of a thermal effect but merely depends on some (empirical)

function of the current, the treatment is simpler and follows the previously

studied cases when the coefficients of nonlinear polynomials are constant.
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PART IV

RELAXATION OSCILLATIONS

INTRODUCTION

In all quantitative methods of Part II the solution of a nonlinear d.e.

is sought in the form of power series arranged in ascending powers of a

certain parameter (or parameters, if there are several), and it is clear that

this parameter must be sufficiently small to guarantee the convergence of

such a series solution. In fact, only under this condition can the formal

solution yielded by these methods be the actual solution. This is why all

methods used in the theory of oscillations fall within the scope of the

generic term: methods of small parameters.

The van der Pol equation which initiated these studies has a parameter

associated with the first derivative term, and this was why the investigation

of this and similar d.e. resulted in remarkable advances in the theory of

oscillations once the contact with the theory of Poincare' had been estab-

lished; this was possible only by assuming that the parameter was small.

However, van der Pol, having discovered his d.e., attempted to discover

the nature of its solution for the larger values of /x by means of the graphical

procedure of isoclines; we have touched upon this question on several

occasions, particularly in Chapter 4, and it was shown that for fi = 10 the

trajectory departs considerably from that of the harmonic oscillator as

happens for small values of p. Indeed, for normal relaxation circuits the

values of the parameter are far greater than n = 10. In one of his early

publications van der Pol mentions that for a standard multivibrator circuit

this value is of the order 105. It is obvious that for such a large value of fi

the isocline procedure becomes impossible; however, a simple calculation

in polar coordinates shows that at this value of n even a very small rotation

of the radius vector (of the order of 1" of arc) in the neighborhood of the x

axis results in a change of direction of integral curve of nearly 90Â° and

599
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RELAXATION OSCILLATIONS

produces an incidental change in velocity of the representative point from

a high value to almost zero.

There are thus two points on the integral curve at which the analyticity

is practically lost and, for that reason, the power series solution becomes

impossible. The last circumstance is seen also directly from the fact that

the usual power series solution: x(t) = x0(t) + fix^t) + p2x2(t) + . . .,

which we used previously, is impossible here since it diverges.

In the above analysis of the integral curve, the fact that y = x suddenly

changes from a high value to almost zero is reminiscent of the condition of

a shock and, as we shall see later, this consideration gives rise to an idealiza-

tion leading to a purely discontinuous treatment of relaxation oscillations

(Chapters 26 and 29). These difficulties produced two different lines of

approach to the subject of relaxation oscillations: (a) the discontinuous

theory, and (b) the continuous theory, the first preceding the latter

chronologically.

Since the oscillation phenomenon exhibits some features of quasi-

discontinuities at certain points, it was natural that the effort of physicists

should be directed toward a purely discontinuous treatment inspired to

some extent by the analogous treatment of shocks in mechanics. This

effort resulted in two distinct theories (one outlined in Chapter 26 and the

other in Chapter 29); the starting points in these theories are somewhat

different but, beginning with a certain intermediate point in the argument,

both become almost identical. The theory outlined in Chapter 26 is

based on certain physical concepts, whereas that of Chapter 29 has a more

geometrical basis, although later on it, too, introduces a physical argument.

Both theories use certain idealizations approximating the quasi-dis-

continuous phenomena by mathematical discontinuities.

The second approach arose from a series of important papers by

Cartwright and Littlewood and concerns the van der Pol equation for

large values of parameter; most of this work relates to the nonhomogeneous

equation but there is one paper (by Cartwright) devoted to the homo-

geneous equation (Section 6, Chapter 30). We outline here only the latter

because the study of the nonhomogeneous case would be beyond the scope

of this Introduction.

The work of Cartwright-Littlewood has a somewhat limited objective,

namely, to justify analytically (zvithout involving any a priori idealizations)

the graphical solution obtained by van der Pol by the isocline method.

The fundamental idea of this approach (Chapter 30) is simple, although

the calculation process is not and is essentially as follows: the graphical

(or the experimental) curve representing the solution is split into a number

of the characteristic stretches, each of which has definite features; for

example, on some of them x is negligible, on some others x or x are
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negligible, etc. This permits using easily integrable abridged or "trun-

cated" d.e. for each stretch, the difficulty being in the analysis of the order

of magnitude of different quantities and in the ultimate "joining" of all

these solutions of "truncated" equations; calculations are somewhat

facilitated by the use of additional equations (the energy equation, the

integrated equation, etc.).

Summing up, there is no definite overall idealization as in the dis-

continuous theories, but there is a precise analysis of possible simplifications

in each characteristic stretch so that the problem is solved with a pre-

scribed approximation. It should be noted that the procedure hinges

on the existence of a graphical or experimental curve representing the

solution, and the analysis merely confirms it.

At a later date Dorodnitzin showed that these difficulties can be over-

come to some extent by the use of the so-called asymptotic expansions

which by their nature do not require analyticity (Chapter 30, Sections 4 and

5); the difficulty in this case is however much the same as in the Cartwright-

Littlewood (C.L.) theory (namely, the junctions of these expansions at

certain points); otherwise the basic idea is the same; that is, to proceed

from one region to the other.

In both these asymptotic methods it would be impossible to proceed

without a preliminary knowledge of the integral curve (obtained either

graphically or experimentally); in fact, as was mentioned, they merely

explain these curves analytically. These methods have a rather limited

objective, in contrast with the small parameter theory which deals uniformly

with a great variety of d.e. (provided they belong to the nearly linear class)

the shape of integral curves being immaterial.

There are certain advantages and disadvantages in the use of the dis-

continuous and asymptotic theories. The former are purely qualitative

while the latter are quantitative. In the former one uses extensively the

phase-plane representation, but this representation differs from the classical

phase plane with which we have been dealing so far.

Thus, for instance, a quasi-discontinuous (idealized by discontinuities)

motion of the representative point may describe a closed orbit containing

a saddle point in its interior, etc., which is absurd according to the classical

theory.

Although this and similar conclusions may appear to contradict what

has been learned in the analytical theory, it has to be expected that, by

dropping the essential points of that theory, its conclusions will not hold

either.

In spite of this, the discontinuous theory acquires a gradually increasing

importance due to the ease with which it handles the relaxation problems

even of complicated types; Very often even new phenomena are predicted
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RELAXATION OSCILLATIONS

on this basis. When a theory reaches such a state, it cannot be easily

discarded only because one is more accustomed to using analytical theories.

After all, the theory of shocks in mechanics is also a kind of local

"discontinuous extension" in an otherwise analytical science and the

advent of discontinuous theories in studies of relaxation oscillations is not

more surprising or "revolutionary" than the classical treatment of shocks.

It must be noted that difficulties exist also in the discontinuous theories

but they are of a somewhat different kind.

In the asymptotic theory the idea in itself is simple; the difficult part is

in applying the procedure as is shown in Section 5, Chapter 30. In the

discontinuous theory, on the contrary, the application of the procedure is

very simple and reduces generally to simple topological constructions in the

phase plane. The difficult part lies in the justification of the theory, and

it is useful to mention this briefly.

Suppose we have a d.e. of the form

fix + f(x,p)x + x = 0 (IV.l)

where /x is a small parameter and p is some finite parameter. Clearly if x

remains bounded for all t, one can neglect the term fix and deal with the

"abridged" d.e.

x = -xlf(x,p) (IV.2)

If f(x,p) # 0 for all t, one can integrate the preceding d.e. and obtain thus

(IV-3)

Should, however, f(x,p) vanish for t = t0, x and x become infinite, the use

of the abridged equation (IV.2) ceases to be legitimate since then the term

fix cannot be neglected.

Thus it is seen that the use of a simpler equation (IV.2) instead of a more

complicated equation (IV.l) is subject to certain limitations.

This raises a rather delicate question which the mathematicians designate

as singular perturbation theory and the physicists often call theory of

degeneration. The first designation is obvious if one writes (IV.l) as

x = [f(x,p)x + x]

in which case the right-hand term has a singularity for fi = 0; and the

second one is justified by the fact that, for fi â€”> 0, the d.e. (IV.l) degenerates

from the second to the first order. We shall use preferably the second

term as more accessible to an intuitive understanding of the asymptotic

process, the physical nature of which is simple.

In fact, it often happens in electricity and in mechanics that the coefficient

of the term with the second derivative is very small (negligible inductance,
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negligible mass, etc.). In such a case it is simpler to deal with the degenerate

equation of the first order; but this simplification involves some difficulties

as will be shown later (Section 2, Chapter 26), namely, it becomes necessary

to adopt an essentially discontinuous treatment.

In the discontinuous theory based on certain idealizations one assumes

px = 0 (in IV. 1) and deals with the degenerate d.e. of the first order which

leads to a procedure similar to that used in the theory of shocks in me-

chanics. In such a case one has to supplement the intentional ignoration of

what happens during a very short time (which one wishes to idealize by a

mathematical discontinuity) by certain additional information. In the

theory of shocks this "additional information" is supplied by the theorems

of momentum and kinetic energy; in problems of relaxation oscillations it

appears in the form of certain physical invariants which permit carrying

out a physical continuation of the solution at the points at which its analytical

continuation is impossible.

The idealized (discontinuous) treatment of relaxation oscillations is

more convenient for a qualitative appraisal of what may be expected in a

given problem. Moreover, it permits reducing the investigations of a

system amenable to two d.e. of the first order to a phase plane representa-

tion, whereas the same system on the basis of the asymptotic theory would

require the study of the differential system of the fourth order which would

be a very difficult problem. A simple symmetrical multivibrator scheme

is, however, a problem of this kind.

Hence, having in mind primarily applications, we prefer to begin the

exposition with an outline of discontinuous theories which are relatively

simple and lead to the establishment of qualitative conclusions in all known

cases of relaxation oscillations. The asymptotic theory is outlined briefly

in Chapter 30.

Besides these two principal approachesâ€”(1) the discontinuous and (2)

the asymptoticâ€”there is also a third one: (3) Chapter 31, in which one

replaces the actual nonlinear characteristic by pieces of straight lines (this

procedure is sometimes called the method of broken characteristics). As the

result, in the interval corresponding to each, such "piece" holds its own

(generally simple) d.e. and the problem of establishing the condition of

periodicity reduces to the investigation of conditions under which the

polygon of arcs of linear trajectories becomes closed.

As far as the physical side of these phenomena is concerned, methods

(1) and (2) are applicable to the relaxation oscillations, that is, oscillations

which exhibit widely different velocities of the representative point; the

idealization (1) merely assumes that when these velocities are very great,

they are considered infinitely great. The theory of degeneration (Chapter

26) aims precisely at this idealization.
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The idealization (3) does not deal necessarily with relaxation oscillations

and holds whenever there appears a loss of analyticity at some points of a

cycle. Thus, for example, a certain dynamical system (electrical or

mechanical) may acquire this feature if a relay closes or opens the circuit;

there appears thus a loss of analyticity in the process without any "relaxa-

tion features" however. The idealization (3) is often called piecewise

linear method in view of the above mentioned approximation by pieces of

linear trajectories.

Although the above classification may appear somewhat complicated, in

reality it merely corresponds to the existing situation. One may think that,

in contrast to the "method of small parameters," one could use here the

term of "large parameters"; this, however, seems to be meaningless, since

most of the relaxation phenomena are governed by the d.e. in which there

is no parameter and, besides, there are numerous cases in which the

relaxation features are not involved either, although the system is not

analytic. The only common feature between (2) and (3) is that in both

one cannot use the analytical argument over the whole cycle.

Referring more specifically to the various chapters of this Part IV,

Chapter 26 gives an outline of the discontinuous theory of Mandelstam-

Chaikin (M.C. for short) with a number of selected examples given in

Chapters 27 and 28. All this material can be found in greater detail in

Andronov and Chaikin's book.1 The approach to the theory of degenera-

tion is also taken from this work because a more detailed presentation of this

theory by Friedrichs, Wasow, and Levinson would involve a considerable

amount of mathematical development in the singular perturbation theory,

and is hardly needed in this elementary presentation.

Chapter 29 concerns an alternative discontinuous theory by Vogel.

Because this theory is probably less known than the M.C. theory, it was

thought useful to mention it also.

Both discontinuous theories were apparently inspired by the classical

theory of shocks, as we have just mentioned, and were eminently successful

not only in explaining all known experimental facts, but sometimes even

in predicting new phenomena.

In Chapter 30 we have attempted to give only a brief review of the

modern asymptotic theory, because a more or less complete survey of this

difficult field would require extensive mathematical material out of

keeping with the applied character of this text.

Chapter 31 gives an outline of what we have called the idealization (3)

in the above classification.

1 A. Andronov and S. Chaikin, Theory of Oscillations (original text in Russian),

Moscow, 1937.
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Chapter 26

DISCONTINUOUS THEORY OF

RELAXATION OSCILLATIONS

1. Piecewise analytic phenomena

Before attempting to outline the discontinuous theory it is useful to

explain certain idealizations on which it is based.

In the first place we consider the following theoretical example.1 A

perfectly elastic ball is rolling on a frictionless horizontal plane between

two equally elastic walls. It is assumed that the mass of the walls is

X

(a) (b) (c)

Figure 26.1

infinite and the direction of motion is at right angles to the walls as shown

on Fig. 26.1. The problem is considered from the standpoint of the

classical theory of shocks. The ball strikes the wall with the velocity + v0,

rebounds from it with an equal and opposite velocity â€” v0, then strikes

1 A. Andronov and S. Chaikin, Theory of Oscillations (original text in Russian),

Moscow, 1937; English translation by S. Lefschetz of A. Andronov and S. Chaikin,

Theory of Oscillations, Princeton University Press, Princeton, N.J., 1949; A.

Andronov, A. Witt, S. Chaikin, Theory of Oscillations (in Russian); this book is the

second edition (1959) of A. Andronov and S. Chaikin, Theory of Oscillations

(original text in Russian), Moscow, 1937.
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again the other wall and so on. There exists thus a periodic process

represented on Fig. 26.1b by a usual phase-plane diagram. On the

stretches AB and CD the motion of the representative point R occurs with

a finite velocity Â±v0 in accordance with a simple d.e. x = 0. The

stretches BC and DA are traversed by R with an infinite velocity since, in

accordance with the theory, the velocity changes discontinuously at a

constant value of the coordinate x. As on stretches AB and CD the d.e.

governs the motion of R, one may call these stretches as analytic trajectories

(in general these may be some analytic arcs), but on stretches BC and DA

the situation is different. On the basis of this theory the motion of R on

these stretches is not governed by the d.e. because what happens during

the short period of time when the ball is in contact with the wall is in-

tentionally ignored, which is merely another way of saying that the process

of the shock itself is not governed by the d.e. The shock is merely

specified by a relation between the conditions that exist immediately

before it and immediately after it; this, as is well known, results from the

existence of certain invariants (theorems of momentum and kinetic energy),

which are not directly related to the d.e.f One can say thus that, although

the d.e. governs the motion of R on the analytic arcs, it does not govern it

on the discontinuous stretches connecting these arcs; on these stretches the

discontinuous motion of R is determined by means of the invariants of

the problem (which may be regarded as a kind of an "additional informa-

tion" not contained in the d.e. directly) and not by the d.e. itself.

What is interesting is the fact that the motion is still periodic in the

sense that it is represented by a closed integral curve traversed in a finite

time in spite of the fact that the d.e. x = 0 has no periodic solution.

This simple model can be improved if one considers the motion of the ball

not on a plane but on a curved surface (Fig. 26.1c) with steep slopes toward

its limits Â±n.\ An equation of the form^*) = [sin (#/2)]2", where 2n is

sufficiently large, would answer this requirement. Neglecting the friction

the d.e. of motion will be

g d I x\** g I x\ 2"-2

* + 27^(sin27 =* + 7Tin2) sin* = 0

In this form the motion of the ball between two walls is described com-

pletely by the d.e. of the form: x + f(x) = 0 and there is no necessity for

considering the external reactions. Moreover, the simple equation x = 0

holds only for small intervals of x but the approach to x = Â± v introduces

the change in the d.e.

t By this we mean: not by the d.e. governing the motion of R on the analytic

arcs; it does not include, however, the presence of some other (unknown) d.e.

taking charge of the phenomenon during a very short time.

X This remark is by the late Professor B. van der Pol.
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We thus reach an intuitive definition of a piecetvise analytic periodic

phenomenon having some features of a relaxation oscillation. This piece-

wise analytic process does not however have the property of a limit process

in that the motion establishes itself directly on the cycle ABCD without-

approaching it gradually.

In the following example this limit property exists. The mechanism

of a clock gives a simple illustration. The clock consists of an essentially

damped oscillatory system (torsional pendulum) whose integral curve is a

logarithmic spiral converging to a stable focal point 0 as shown in Fig. 26.2.

In addition to this, there is provided an escapement mechanism which

releases substantially constant impulses applied to the pendulum at a

definite point of its cycle, thus compensating for the loss of energy caused

by dissipation. Therefore, while the dissipation of energy is a continuous

process, its replenishing is a quasi-discontinuous one (treated as dis-

continuous).

If one considers the motion im-

mediately after the impact delivered

by the escapement mechanism (point

A), the subsequent motion takes place

on the analytic arc of a logarithmic

spiral L representing the integral curve

in the phase plane. On L the point

R moves with a finite velocity in

accordance with a (substantially linear)

d.e. mx + kx + cx = 0. At the point

B of the cycle, the escapement delivers

an impulse increasing the velocity (at

zero coordinate) in a quasi-disconti-

nuous manner which transfers R also

in a same manner from B to A'. If

the point A' coincides with A (as

shown in Fig. 26.2), the piecewise analytic curve ALBA is closed and

the motion is periodic. If A' does not coincide with A, it is easy to

ascertain by a simple argument that the piecewise analytic trajectory

has a tendency to approach the condition for which A' coincides with

A. In fact, if A' is originally above A, L is larger and thexKssipation acts

for a longer time so that the trajectory has the tendericy to shrink more

before the next impact is delivered. Thus, inasmuch as larger arcs have a

tendency to shrink, and the smaller ones are less affected by the dissipation,

the motion, ultimately, will approach a trajectory for which the stretch AB

caused by the dissipation is just compensated for by the stretch BA caused

by the impulse, after which a periodic process is established. Here again

Figure 26.2
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the stretch BA is traversed by R with an infinite velocity (in reality, very

high but finite). Likewise, on the analytic arc it is the d.e. that governs the

phenomenon but not on the stretch BA. The phenomenon in this case

is not only piecewise analytic but also of a "discontinuous limit cvcle"

type. It is not, however, of a relaxation type because the system cannot

be considered as autonomous, if one considers the escapement mechanism

as being outside the system of the pendulum proper. If, however, one

considers the whole mechanism of the clock as a physical system, then

obviously the clock may be considered as a relaxation oscillation mechan-

ism- f

As the last example we consider the following phenomenon denned by

an alternate sequence of two linear d.e.

x + 2hx + w2x = 0 and x + 2hx + w2x = a>*a

(1.1)

the first of these two equations taking charge of the phenomenon when

x > 0, and the second, when x < 0. For the moment we consider the

mathematical part of the problem and

shall indicate later how such a scheme

can be produced experimentally.

If one sets x â€” a = xx, the second

d.e. (1.1) can be written as

*! + 2hxx + w2Xx = 0 (1.2)

so that it is sufficient to consider the

first d.e. (1.1) for x > 0 and (1.2) for

x < 0. The integral curves of these

d.e. are again the logarithmic spirals

but are referred to two different focal

points O and 01 as shown on Fig.

26.3. If one starts from some arbitrary

initial condition represented, say, by

the point A on the abscissa axis, the motion of R will take place on the arc

of the spiral AMB of the first d.e. having O as its focal point. At the

point B the velocity x changes its sign and ^? follows now the arc BM'A'

of the lower spiral representing the solution of the second d.e. having its

focal point at Ox. The point A' generally does not coincide with A but

by an argument similar to that used in connection with the clock, one can

show that, after a number of cycles, the motion approaches the periodic

motion for which the path is re-entrant at A. In fact, in polar coordinates

at the point A, one has: r1 = OA, <p â€” 0. After one half turn (when (1.1)

Af

//

M'

Figure 26.3

t This question is treated more fully in Section 5, Chapter 28.
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governs the motion) at point B we have r2 = OB = rx exp ( â€” nhlw).

After the change of the d.e. at B, R moves on the lower arc specified by the

radius r3 = f2 exp ( â€”7r/i/w), where f2 means the radius vector at B but

referred to the lower curve (with the focal point at Oj), so that f = r2 + a2

and, therefore, r3 = r2 exp ( â€” Inh\<xi) + a exp ( â€” nhloj) and fs = a + r3,

and so on.

For the general term (after n rotations):

râ€ž = a[exp ( â€” 7r/1/0>) + exp ( â€” 27r/z/a>)]

+ . . . + exp [-(n â€” 2)trA/a>] + rx exp [ â€” (n â€” l)7rA/oj]

râ€ž = a[l + exp (-ttA/a>)]

+ . . . + exp [ â€” (n â€” 2)7r/j/w] + rx exp [ â€” (w â€” 1)7rA/a>]

where n is even. Similar expressions are obtained for n odd. One finds

in this manner that, for n â€”> o0,

lim râ€ž = r0 = - exp ( â€” 7r/1/a>)] (1.3)

Thus, the ultimate closed curve to which such a motion approaches

consists of two identical arcs of logarithmic spirals joined at the points A

and B. The curve at the points of junction is not analytic.

The experimental arrangement for obtaining this particular operation

consists of an ordinary electron-tube circuit (for example, a simple

inductively coupled feedback system) if one provides a sufficiently high

voltage on the grid. It is clear that under this condition the electron tube

works practically as a switch between the blocked condition and the full

value of its saturation current. In such a case the oscillating circuit

receives periodically timed impulses in opposite directions and, between

them, the circuit behaves itself in accordance with the alternate sequence of

two linear d.e., as was just explained.

It is noted that in this example one does not have any discontinuous

stretches as in the first two examples. This is due to the fact that for this

choice of variables of the phase plane, these variables do not admit any

discontinuities. Hence, the phenomenon is analytic everywhere except at

two points A and B, but this is already sufficient to obtain a closed integral

curve (that is, a periodic solution) although the d.e., considered individually,

have no such solution.f

It is necessary now to ascertain which variables are capable of varying

discontinuously so as to produce a piecewise analytic representation.

t This subject will be studied more fully in Chapter 31.
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2. Degeneration theory and its physical significance

The discontinuous theory of relaxation oscillations is based on the use

of the so-called degenerate d.e. and it is important to ascertain the funda-

mental properties of these d.e. before attempting to outline this theory.

We note in passing that this theory has recently expanded considerably1

but for our immediate purpose we shall need only a few essential properties

of these degenerate equations.

We shall call a d.e. degenerescent when the coefficient of the highest order

derivative in the d.e. is small in comparison with the coefficients of other

terms in the d.e. In what follows we shall limit ourselves to the d.e. of

the second order with constant coefficients so that a degenerescent d.e. will

be

ax + bx + kx = 0 (2.1)

provided the coefficient a is much smaller than b and k.

We shall call a d.e. a degenerate one, if the problem is idealized by

assuming that the small coefficient a in (2.1) is zero, in which case (2.1)

becomes

bx + kx = 0 (2.2)

Physicists became interested in the problem of degeneration because

such idealizations occur frequently in physics. For example, in the case

of the so-called RC circuits, it is generally assumed that the inductance of

the circuit is so small that it is sufficient to deal with the d.e. of the first

order instead of the second order. A similar situation arises often in

mechanical problems when the mass (or the moment of inertia) is small as

compared with damping and spring constant.

The problem is, however, far from simple, inasmuch as neglecting a

term in the d.e. merely because its coefficient is small does not mean that

this simplification of the d.e. applies equally to its solution.

In order to investigate this important point we determine separately the

solutions of (2.1) and (2.2) under the assumption that the coefficient a in

(2.1) is very small.

For the degenerescent d.e. (2.1) the solution is

x(t) = *â€ž[Â«-*'/* - (aA/62)e-Â»'/Â«] + (ax0lb)[e->""> - *-*"<â– ] (2.3)

and for the degenerate d.e. (2.2) it is

x(t) = *0<r*'/* (2.4)

In this form the dependence on the constants of integration x0 and x0 is

obvious. In the case of (2.1), the solution depends on two constants of

1 See footnote 1, page 605.
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integration, whereas (2.4) depends only on one such constant. This

circumstance will be of fundamental importance for what follows.

If one forms the difference of (2.3) and (2.4), one gets

a(t) = *(r) - x(t) = -x0(aklb2)e-b"a + *0(a/6)(e-*,/4 - e-bÂ«Â°) (2.5)

and it is seen that a(r) approaches zero uniformly for all values of / > 0

when a â€”> 0.

As to d(r), the matter is different. In fact, in this case one has

d(r) = x(t) - 4(r) = *0(*/6)*-*'/a - xfJ<aklbi)e-ktlb + x^->W (2.6)

For a sufficiently large t, d(t) approaches zero uniformly, as does <x(r),

but, if t is small enough, one has d(r)t=:0 = kxjb + x0 and this expression,

being independent of a, is finite, except, possibly, for a very special choice

of initial conditions which, clearly, is of no interest for the general case.

This circumstance is of great importance in the discontinuous theory of

relaxation oscillations for the following reason: In any physical system of

the second order there are two arbitrary constants which appear as two

initial conditions. More specifically, the state of rest, for instance,

is specified by x0 = x0 = 0. If, however, one adopts a degenerate d.e.

for the description of the system, here there is only one constant.

There appears an obvious difficultyâ€”the state of rest is specified by two

arbitrary constants and the degenerate d.e. admits only one which raised the

question: What happens to the second constant when the state of rest is

suddenly disturbed by the appearance of an impulse on the right side of

The answer to this is that the variable x, whose convergence is not

uniform on the basis of the theory of degeneration, will suddenly jump to

its final value beginning with which the process is determined in terms of

one single constant of integration as it should be. Thus, the "conflict

between the constants of integration," so to speak, is removed, owing to the

discontinuity of the variable which can vary discontinuously on the basis

of the degeneration theory.

The following well known examples can illustrate what has just been

explained. Consider the d.e. of a simple circuit

which was originally "dead" and to which is suddenly applied a constant

e.m.f. E. We shall investigate the conditions that exist immediately before

and after the application of this e.m.f. It is more convenient to introduce

the d.e.?

(2.7)
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the charge x as the dependent variable, which amounts to replacing the

variable t by dxjdt. Immediately after the application of E, the d.e. can be

written in the form

LCx + RCx + x = EC (2.8)

Immediately before the application of E, when the circuit was "dead,"

the conditions were obviously x0 = x0 = 0. Since in the case of the

problem specified by the d.e. (2.8) of the second order the situation is well

known, we omit it here and pass directly to the degenerate case.

We consider first the RC degeneration, that is, when the inductance L

is so small that we use the degenerate d.e. of the first order

RCx + x = EC (2.9)

There is only one constant of integration here and it is determined by the

initial condition: for t = 0, A = â€” EC, where A is the integration

constant. The solution is then x = EC(1 â€” exp (â€” t/RC)). If one

differentiates this expression, one has x = (EjR) exp ( â€” t/RC); and for

t = 0, this gives x0 = EjR, whereas immediately before the application of

E this initial condition was obviously x0 = 0. This means that the variable

x0 has to change discontinuously if the degenerate d.e. is to be used to

represent a phenomenon whose state of rest is specified by two initial

conditions.

Another conclusion is noteworthy: we have just found that in the case

of the degenerate d.e., x = EC[\ - exp (-t/RC)] and x = (E/R)

exp ( â€” t/RC). The ratio xjx in this case is a definite function of / and is

not arbitrary as it is in the corresponding degenerescent equation. In

other words, instead of the two-dimensional representation (phase plane)

in the latter case, we now have a unidimensional representation, the phase

line, because there is only one arbitrary constant of integration instead

of two.

In the LR degeneration the situation can be analyzed similarly, but it is

more convenient here to operate directly with the variable i (the current)

instead of x (the charge) as previously. The d.e. here is

Ljt + Ri = E (2.10)

and, under the same assumed conditions, the solution is i = (EIR)(l â€” exp

(-RtIL)).

Differentiating this expression and setting t = 0, we find (dijdt)0

= â€”EjR, but at the instant immediately preceding the application of E

we had (dijdt) = 0; the conclusion is exactly the same as before: the
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second initial condition has to jump discontinuously if the physical

existence of two initial conditions just before the application of Â£ is to be

reconciled with the existence of only one initial condition imposed by the

degenerate d.e. of the first order, which admits only one constant of

integration.

Summing up, in both cases the situation remains the same, namely:

the variables in the d.e. (x, the charge, in the case of an RC degeneration,

and i, the current, in the case of a LR degeneration) cannot vary dis-

continuously and are determined directly by the degenerate d.e. of the

first order. However, the derivatives of these variables dxjdt = t (current

in the condenser circuit) and dijdt (or Ldijdt, the voltage across the in-

ductance) can and, in fact, must vary discontinuously in order to reconcile

the physical existence of two initial conditions before the application of E

with the requirement of one single constant of integration if the d.e. has

to be used in the degenerate form to describe the phenomenon after the

application of E.

It is clear that what has been said about a sudden application of the

external impulse E holds equally well when E is suddenly removed or,

generally, changed. The essential point is that the variables which appear

in the degenerate d.e. vary continuously in accordance with these equations,

but their derivatives jump discontinuously into the values which they must

have throughout the subsequent process.

Exactly similar considerations apply to degenerate mechanical systems,

the only difference being that, instead of the electrical parameters L, R,

and 1/C, one has to consider the analogous mechanical parameters m (the

mass or the moment of inertia), k (the coefficient of the velocity damping)

and c (the spring constant).

Thus, for instance, in a (k,c) degeneration (a system with negligible

inertia but with finite damping and spring constant) the argument develops

as for an electrical RC degenerate system. The vibrator system of an

ordinary string loop oscillograph is a mechanical system of this kind.

Because the velocity x can change discontinuously and the coordinate x

cannot, the system is adequate for following rapid changes of external

impulses with negligible inertial disturbance.

In the case of an (m,k) degeneration (a system with finite inertia and

damping but with a very small spring constant), the accleration x can

change discontinuously but not the velocity x. Ballistic instruments are

typical examples. In a ballistic galvanometer, for instance, a discontinuous

impulse of very short duration is corresponded to by an equally dis-

continuous (of course, in the idealized sense) acceleration which results in

a relatively slow building up of velocity and deflection after the disappear-

ance of acceleration surge.
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3. Conditions imposed by invariants

The use of degenerate d.e. in the discontinuous theory is supplemented

by another important condition which results from the introduction of

certain physical invariants and which completes the theory. This condi-

tion is commonly known as the condition of Mandelstam.

From the preceding examples illustrating the application of the theory

of degeneration we notice that the variables which cannot change dis-

continuously in response to discontinuous changes in forcing term are

those which enter into the expression of stored energy. For example, in

the case of the RC degeneration we saw that the charge x cannot change

discontinuously and, at the same time, we note that the stored energy in

this case is purely electrostatic E = \CV* = \xV, where x = CV. In

the case of the LR degeneration, the stored energy is E = \Li* and, again,

it was found that the variable i cannot

yior. j change discontinuously. On the other

L hand, dV/dt can change discontinuously

and, therefore, also ie = CdVjdt, where

ie is the current flowing in the con-

denser circuit. Likewise, dijdt can

change discontinuously, which means

that the voltage Ldijdt across the in-

ductance can also undergo discon-

ic (or vL) tinuous changes.

The fact that the variables entering

Figure 26.4 into the expression of stored energy

cannot change discontinuously, points

out that the stored energy is a certain invariant in the quasi-discontinuous

transitions assumed to be discontinuous in this idealization. This is

a very plausible conclusion having an obvious physical meaning. In

fact, in order to produce discontinuous changes in energy, an infinite

power is required, but this is ruled out on obvious physical grounds.

It is thus clear that, if one wishes to represent a piecewise analytic

phenomenon in the phase plane in the form of, say, two analytic arcs

joined by discontinuous stretches, the latter must correspond to variables

which can vary discontinuously. Thus, for instance, in the case of the

RC degeneration, if one takes the variable ie = CdVjdt on the abscissa axis

and V on the axis of ordinates, as shown in Fig. 26.4, the discontinuous

stretches are possible in this representation along lines parallel to the

abscissa axis, inasmuch as in this direction discontinuities are possible

because the current in the condenser circuit can changes discontinuously

and because the condition of Mandelstam regarding the invariant of the

stored energy is fulfilled.
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Similarly, in the case of the LR degeneration one can take on the

abscissa axis the variable VL = Ldijdt (the voltage across the inductance)

and on the axis of ordinates the current i through the inductance, and the

representation is the same as in the previous case.

Similar results can be obtained in degenerate problems in mechanics, as

one ascertains easily following this argument.

If one overlooks the appropriate choice of variables, the piecewise

analytic character of the problem, as denned in connection with the

preceding examples, may escape notice. In the following chapter dealing

with applications of the discontinuous theory this circumstance will be

more definitely specified.

It is seen thus that the degeneration theory supplemented by the condi-

tion of Mandelstam permits the discovery not only that certain discon-

tinuities are possible in certain variables, but also in which direction of the

phase plane the discontinuity takes place.

Summing up, the considerations just outlined represent nothing but a

further generalization of the classical theory of shocks in mechanics, the

invariant of Mandelstam playing the role of the theorems of momentum

and kinetic energy in the theory of shocks. In both cases certain "addi-

tional information" (not contained in the d.e. itself) permits connecting

what exists before and after the discontinuity, intentionally ignoring what

happens during the rapid transition period which is idealized by the mathe-

matical concept of a discontinuity.

4. Discontinuous theory of Mandelstam-Chaikin

On this basis the discontinuous theory of relaxation oscillations presents

itself in the following manner.

Assume that we have the d.e. of the form

dx\dt = X(x,y); dyjdt - Y(x,y) (4.1)

where the functions X and Y have the form

X(x,y) - P(x,y)/T(x,y); Y(x,y) = Q(x,y)/T(x,y) (4.2)

This form of functions X and Y has been ascertained also independently

by T. Vogel whose theory is outlined in Chapter 29.

It is interesting to note that in practically all schemes known so far, one

is led to the form (4.2) that will appear in a series of examples treated in the

following chapter, whereas the van der Pol equation with its subsequent

generalizations by Lienard, N. Levinson, and O. K. Smith does not enter

directly into this class. f

t This is due, naturally, not to the form of these d.e. but to the fact'that, in the

usual (analytic) theory, the question of degeneration does not arise.
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The essential point of the discontinuous theory in this particular

formulation is that the discontinuity occurs at a point xe, ye, for which

T(xe,ye) = 0. It is obvious that for such a point, which we shall call the

critical point, the system (4.1) becomes meaningless.

It is also noteworthy that the existence of a critical point is in no way

connected with any special values of the parameter because the latter is

not involved in this case; this emphasizes once more the fact that the d.e.

(4.1) have nothing to do with the van der Pol equation, once the theory of

degeneration is used.

In some problems, instead of isolated critical points, there are certain

critical lines. The description of the process in terms of the discontinuous

theory proceeds then in the following way. A certain analytic arc is

followed until it meets a critical line at some point. At this point the d.e.

ceases to govern the phenomenon and a discontinuous stretch begins,

being determined by the condition of Mandelstam. It ends at a point at

which another analytic arc is encountered. Beginning with this point

another analytic arc begins and the d.e. again takes charge of the phe-

nomenon until another critical point is reached which results in another

discontinuity which brings R to the first arc, etc. If this point is that at

which the process started, the periodic process establishes itself at once.

One has thus a piecewise analytic cycle which has no limit cycle feature.

If, however, the process approaches the ultimate piecewise analytic cycle

only after a series of rotations of the radius vector, one has a kind of a

piecewise analytic limit cycle.

The discontinuous theory of relaxation oscillations has been checked

experimentally, which adds a strong point in its favor. Once the ap-

propriate variables are chosen, it is a very simple matter to establish the

connections of a cathode ray oscilloscope so as to have the corresponding

phase-plane diagram directly on the screen of the oscilloscope.

The formation of the d.e. follows directly from the Kirchhoff laws of the

circuit used so that the property of the function T(x,y) can be ascertained

at once; if the function T(x,y) vanishes at certain points of the phase

plane, this gives always a reliable criterion for the existence of a piecewise

analytic phenomenon; if this function does not vanish, at least in a finite

domain of the phase plane, one is also certain that no piecewise analytic

phenomenon is to be expected. In some cases, by introducing a parameter

into the function T, it is possible either to produce the presence of its roots

or, on the contrary, to remove these roots so that this function does not

vanish anywhere in the phase plane. In such a case it is also possible to

pass continuously from the piecewise analytic phenomena to the continuous

oscillations owing to such continuous variation of parameter.

We mention in passing that in recent years it became a practice to use the
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term: piecewise linear idealization instead of: piecewise analytic idealization.

The underlying concept is, of course, the same although the two terms do

not relate to the same thing. The latter term relates to the integral curve

(or trajectory) and should be understood in a geometrical sense (a con-

tinuously differentiable curve). The former concerns the form of the d.e.

valid between the points at which the analyticity (in the above stated case)

is lost. In other words, the essence of a piecewise linear method is in

replacing an overall (generally complicated) d.e. by a number of simple

linear d.e., the solutions of which are fitted by continuity without attempting

to secure analyticity at the junction points.
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Chapter 27

APPLICATION OF THE DISCONTINUOUS

THEORY TO ELECTRICAL PROBLEMS

In this chapter we shall review a series of examples which the reader can

find in the Andronov and Chaikin book. Most of these examples were

worked out by Chaikin and Lochakov1 on the basis of the discontinuous

theory outlined in the preceding chapter. In this review these problems

are somewhat abridged with a view to establishing connections with the

discontinuous theory.

D

Figure 27.1

1. Degenerate RC oscillator2

Referring to Fig. 27.1, the electron tube V2 may be regarded, as usual,

as a nonlinear conductor of the circuit characterized by the equation

/a = 9>(e,) where Ia is the anode current and eg is the grid voltage. The

1 S. Chaikin and L. Lochakov, J. Tech. Phys. (USSR) 11, 1935.

1 E. Friedlander, Arch. f. Electrot. 17, 1926; 18, 1926; B. van der Pol, Phil.

Mag. (7) 2, 1926; Zeitschr.f. Hochfr. Tech. 28, 1927.
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DISCONTINUOUS THEORY: ELECTRICAL PROBLEMS 619

tube Vx appears here merely as a linear amplifier amplifying the potential

difference ri between the points B and D and applying the amplified

voltage eg = kri to the grid of V2, the factor of amplification (or "gain")

due to Vx being k. The circuit is idealized in a customary manner, that

is, the effects of the grid current and the anode reaction are neglected.

The fundamental assumption here is that the effect of the small induct-

ance is neglected. This means that from the very beginning one places

oneself under the conditions of the RC degenerations using the terminology

of the preceding chapter.

The equations of the circuit here are obviously

(R + r)i + V = R<p(kri); i = CdV/dt (1.1)

where the positive directions on the circuit, as well as the significance of

the various constants, seen from Fig. 27.1. The quantity V is the voltage

across the condenser.

The equations (1.1) reduce to one single d.e. of the first order

[krR<p'(kri) - (R + r)]dildt = i/C (1.2)

where <p' designates the derivative of the function <p with respect to i. The

quantity in the bracket is the function T of the preceding theory.

The critical point (if any) is given by the root of T = 0; that is,

T(iJ = [krR<P'ikriJ - (R + r)] = 0 (1.3)

The simplest way to determine this root is by a graphical procedure

shown in Fig. 27.2. Part (a) of this figure shows the plot of RIa for the

tube Vt assumed to be biased at its inflection point O taken as the origin of

coordinates. If one subtracts from the ordinates of this curve the corre-

sponding ordinates of the straight line (R + r)i, one has the curve V(i)

representing R<p(kri) â€” (R + r)i. The slope curve of the function

R<p(kri) multiplied by kr and referred to M'N' axis is shown in Fig. 27.2b.

If, finally, one subtracts from this slope curve the quantity [R + r)

(which amounts to referring this curve to MN axis), one obtains the function

T(i) and it is seen that, in view of symmetry, there are two roots i = ix and

i = â€” iv The points P and Q are thus the critical points.

Transferring these points to the (a) portion of the figure on the curve

V(i), one obtains the location of the critical points at B and D.

We note in passing that this graphical construction could be eliminated

if one uses the polynomial approximation and carries out the corresponding

calculations.

It is noted that the function T(i) is positive inside the interval (iv â€” ij)
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and negative outside this interval. From (1.2) it follows that the phe-

nomenon is unstable in this interval and is stable outside it. This is

indicated by the arrows on the curve V(i) (Fig. 27.2a).

The discussion follows now the familiar argument. If R follows the

analytic arc CD (from C to D), at D one has dijdt = ao, which indicates

the discontinuity at this point. The d.e. ceases to govern the motion of R
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DISCONTINUOUS THEORY: ELECTRICAL PROBLEMS 621

at this point and one has to use the condition of Mandelstam. Since the

stored energy is electrostatic in this case (we are dealing with a degenerate

problem neglecting the small inductance of the circuit), the jump occurs

parallel to the abscissa axis so as to leave V(i) invariant. At the point A

the discontinuous stretch meets the analytic arc and the motion of R is

governed again by the d.e. The analytic arc is followed up to the point

B which is again a critical point which results in another jump BC.

This determines the piecewise analytic cycle ABCD consisting of two

analytic arcs CD and AB joined by the discontinuous stretches BC and DA.

2. Oscillator with two degrees of freedom with degeneration in

each degree

If one replaces in Fig. 27.1 the resistor R by an inductance L, the

oscillatory properties of the circuit are entirely different. Figure 27.3

shows this circuit with positive directions and other notations which are

self-explanatory. The equations of the circuit in this case are

Ia = <p(kri) = I + i; L(dijdt) = -ri- (1/C) jidt (2.1)

In this case there are both forms of the stored energy, one in the in-

ductance L and the other in the capacity C, but here the relations are more

complicated because L and C do not belong to the same circuit.

The condition of Mandelstam holds, however, in both cases and this

permits to assert that the variables / and V cannot change discontinuously;

but dl/dt and i can undergo such changes, which suggests the choice of
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the discontinuous variables x = kri and y = dljdt. With these variables

the system (2.1) takes the form

dx/dt = >#(*); dyjdt = [x/krLC] + [(1/*L)vAK*)] (2-2)

where </<(.*) = <pX*) - I jkr; <p'(x) â€” (djdx)<p(x).

The critical point obviously exists here and is given by the root of

^(xx) = 0; this occurs when <p'(*i) = 1/kr. If the nonlinear characteristic

is approximated by a polynomial, one can continue the calculation analyti-

cally from this point but we shall follow the exposition of the original paper

which involves a graphical procedure. In fact, <p'(x) is the slope of the

characteristic and the condition for the existence of the critical point

merely means a point for which the slope of <p(x) has the value 1 jkr.

Since the slope of the characteristic of a triode is "maximum at its inflexion

point and decreases monotonically on both sides of this point with in-

creasing |*|, approaching zero for |*| â€”> oo, it is clear that <p'(x) is contained

in the interval (a.O), a being the maximum value of the slope (at the in-

flexion point). Hence, if the constant 1 jkr is in that interval, ip(x) has a

root and, therefore, the critical point exists. If it is outside this interval,

there is no critical point. In the first case the relaxation phenomenon

exists and, in the second, it does not.

We assume, therefore, that the constant l/&r is in the interval (a,0).

As soon as the critical point x = xx is reached, dx/dt and dyjdt are infinite,

which indicates the discontinuity. Since both x and y are discontinuous

variables, the jump can occur in any direction in the phase plane and not

necessarily in one direction only, as this was the case in the preceding

section where only one variable of the phase plane was discontinuous.

In order to determine the direction of the discontinuity one has to apply

the condition of Mandelstam to the variables which cannot vary dis-

continuously, that is, / and V. We have thus

where r0 is the instant at which ip(x) passes through its root. If one applies

the conditions (2.3) to (2.1), one has

where xx and x2 are the initial and the terminal points of the discontinuous

stretch and, likewise, yx and y2 are the corresponding ordinates of these

two points. Since one knows the initial point (x^yj which is the critical

point, the terminal point is determined by these two equations. In this

(2.3)

9>(*i) - xjkr = <p(x2) - xjkr; yx - yt = (Xx - xJ/kL

(2.4)
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DISCONTINUOUS THEORY: ELECTRICAL PROBLEMS 623

manner the condition of Mandelstam permits determining the point into

which R jumps, once it has reached the critical point.

The direction of the jump is obtained if one eliminates t between the

two d.e. (2.2) which gives the d.e. of the integral curves

dyldx = x<Hx)lkrLCy + 1/kL (2.5)

and it is seen that at the critical point x â€” xx

dyldx = 1/kL

(2.6)

which determines the direction of the jump, once R has reached the

critical point.

The fact that the constant l/kr is contained in the interval (a,0) suggests

a further simplification which is often called "the method of broken

characteristic"! In this case it

amounts to replacing the actual char-

acteristic of the electron tube (Fig.

27.2) by two straight lines with two

limiting slopes a and O. For the sake

of continuity one can join these

straight lines by a small curve, as

shown in Fig. 27.4, which thus deter-

mines a narrow shaded region around

each critical point (x = xx and * =

â€” Xj). The analysis is confined to the

inner interval limited by these shaded

strips and to the outside intervals.

Since in the shaded strips one does not Figure 27.4

attempt to determine what happens,

one can reduce their width as much as one wishes and the argument is

confined to the investigation of what happens in the inner and in the outer

intervals, respectively. Under this assumption, in the inner interval

ip(x) = a â€” 1 jkr, and in the outer intervals <p(x) = â€” 1 jkr. With this

artificial simplification of the problem the system (2.2) can easily be

discussed and one finds that, inasmuch as there is only one singular point

x = y = 0 in this case, it is a saddle point if x is in the inner interval, and

a stable singularity (either a focal or a nodal point according to the relative

values of the parameters) if x is in the outer intervals.

One is thus led to ascertain that the differential system (2.2) varies

continuously as far as its form is concerned as a function of its own dependent

variable x, but the method of the broken characteristic simplifies this

f This method can be developed along a different line as will be seen'in Chapter

31.
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situation by retaining out of the infinite number of possible forms only

two forms that correspond to the maximum and minimum values of the

function <P(x) and proceeds on this basis only.

It is to be noted that the" problem in this case is two-dimensional (that is,

capable of being represented in the phase plane), inasmuch as there exists

no relation between the two variables x and y, as was the case in the pre-

ceding section where the differential system was reducible to one d.e. of

the first order; this results in a possibility of a limit process.

We proceed now with the representation of the phenomenon in the

phase plane, with reference to Fig. 27.5. In the outside intervals the

Figure 27.5

integral curves are either logarithmic spirals (if the origin is a focal point)

or distorted parabolas, if it is a nodal point. We assume the first case, for

the sake of an example.

Assume that R follows a spiral trajectory and reaches a critical point A

on the critical line x = xv From this point it executes a jump specified

by (2.6) to the point B, which is determined by the condition of Mandel-

stam. At this point B the representative point R is again on the integral

curve which is followed until R reaches the point C on the critical line

x = â€” xr resulting in another jump CD, etc. It can be shown by a

detailed argument based on the analysis of the intercepts of the piecewise

analytic trajectory of this kind that, if one starts with a point A having a

sufficiently large value of the ordinate, the piecewise analytic curves
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shrink with the subsequent rotations of the radius vector. If, however,

one starts with A sufficiently near to the abscissa axis, the curves, on the

contrary, grow in size, which shows that there exists a unique closed

trajectory with a re-entrant path on which the ultimate stationary state is

established- f

The experiment corroborates these conclusions. In fact, if one connects

the deflecting plates of a cathode-ray oscilloscope so as to represent the

variables x and y, one observes two arcs of spirals with an empty interval

between them, as is seen from Fig. 27.6, which indicates that in this inner

interval the motion of the electron beam is so fast that the fluorescent

material of the screen has no time to respond to the passage of the beam.

It is interesting to note that, although the inner interval corresponds to the

existence of the saddle point in the

d.e., the hyperbolic trajectories of this

point have nothing to do with the

actual motion of R which is governed

in this region by the condition of

Mandelstam and not by the d.e.

Another remark is noteworthy: in

this case the system of two d.e. of the

first order is given directly by the Kirch-

hoff laws of the circuit and cannot be

reduced to the d.e. of the second

order. Figure 27.6

In the case of the van der Pol equa-

tion as well as its more recent generalizations by Lienard, Levinson-Smith

and others, the matter is different, inasmuch as the d.e. of the second order

is known and the equivalent system is obtained by the usual procedure by

setting x = y. Moreover, the passage from continuous oscillations to

relaxation oscillations is effected by varying the parameter in the d.e.,

whereas in the present case the existence of relaxation oscillations depends

on the existence of critical points (or lines) and these are related rather

to the form of the d.e. and do not depend on any parameter. This

circumstance arises from the use of the degeneration theory which reduces

a d.e. of the second order to that of the first order. Since in this case the

system has two degrees of freedom, there are two such equations. It is

clear that, without the degeneration procedure, the oscillatory system in

this case would be amenable to a differential system of the fourth order

and a representation in the phase plane would be impossible.

f The procedure outlined in connection with Fig. 27.5 is frequently called the

piecewise linear procedure. We shall enter more fully into this subject in Chapter

31 but without involving any discontinuous idealization.
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3. Connection between critical points and piecewise analytic

phenomena

In the preceding sections it was shown that the zeros of the function T

result in the appearance of what is called here "critical points," and the

latter, in turn, appear as a criterion for the existence of discontinuous

stretches in the piecewise analytic representation.

Conversely, it can be shown that if T(x,y) (in 4.2, Chapter 26), does not

go through zero, the piecewise analytic character of oscillation disappears.

An interesting experimental confirmation of this conclusion appears in the

so-called Heegner circuit3 which represents a slight modification of the RC

oscillator studied in Section 1. This

modification consists in shunting the

resistor R by an additional condenser

Cv As the rest of the circuit remains

the same, we indicate in Fig. 27.7

only the modified part of the circuit

to the right of ABD in Fig. 27.1. The

Kirchhoff laws for the circuit shown

give

Ia = I + 7x + i;

i = C dldt(RI - ri);

/j = CJtdljdt

Setting Ia = <p(kri) as previously and eliminating I, one has the following

system of the second order

Z CZ

B

y

Figure 27.7

di 1 . J_

dt~ rCt + rC1xi

dli _ 1 - rhp'jkri) . _ R + r - Rrhp'jkri)

dt ~ rC 'x RrCx x

(3.1)

and it is seen that this system has no critical points and, therefore, piece-

wise analytic oscillations are impossible, which is also corroborated

experimentally.

A slight modification of this circuit permits obtaining a critical threshold

at which an analytic periodic solution of the system (3.1) gives way to a

piecewise analytic one. It is sufficient for this purpose to connect the

circuit of the condenser Cx, instead of to point B, to a potentiometer across

the resistor r, as shown in the dotted line. If one writes Kirchhoff's laws

for this circuit, one finds that in the denominators of the coefficients of /j

* K. Heegner, Zeitschr. f. Hochfr. Tech. 29, 1927.
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and i appears the factor (1 â€” f}), where fi = r1/r, rx being the resistance

between B and E.

It is clear that, for Â£ = 0, one has the Heegner circuit whose solutions

are analytic; and for Â£ = 1, one has an ordinary RC multivibrator circuit

(Section 1) which has only piecewise analytic solutions. Hence, in the

interval (0,1) of fi there is a point at which one type of solutions gives way

to the other one. This is easily ascertained by a cathode-ray oscilloscope

which shows that the continuous closed curve begins to be interrupted by

a small discontinuity that gradually grows as /3 approaches the value 1.

4. Symmetrical multivibrator circuits

The classical circuit of this kind is the so-called Abraham-Bloch multi-

vibrator4 shown in Fig. 27.8. It consists of two identical RC multi-

vibrators cross-connected as shown. Kirchhoff's laws give here

Figure 27.8

(4.1)

and, as usual,

J02K2) = <K"'i)

* N. Abraham and E. Bloch, Ann. de Physique 12, 1919.
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From these circuit equations one obtains the following system of d.e.

(4.2)

(* + ')Â§ + tU + *V("*)Â§ = 0

(4.3)

/?V(â€ž-1)Â§ + iJ* + (* + r)Â§ = 0

which is reduced to the form

dix (R + r)ix â€” Rr<p'(ri2)i2 di2 (R + r)i2 â€” /?r9'(r/i)Â«i

dt = CMtJ^) ~(R + r)2]; ~dl = C[y(ivi2) - (R + r)2]

where

yft.ij) = i?2rV(n',V'(n'2)

The system (4.3) is again of the form

dijdt = P(ivi2)/T(ivi2); di2jdt = Q(hi2)\T(ixj2) (4.4)

The only singular point at a finite distance is the origin (i\ = i2 = 0).

Setting 9>'(ri'i) = <p'(ri2) = 5, one has y(0,0) = (/?rS)2, which gives two

possibilities: either (RrS)2 - (R + r)2 = A2 > 0, or (RrS)2 - (R + r)*

= â€” k2 < 0. In the first case the origin is a saddle point and, in the

second, it is a stable nodal point which is of no interest here. If we

consider, therefore, the case when RrS > R + r, both ix and i2 increase

initially, the position of equilibrium being unstable. Since for j\ = i2 = 0,

the function Y(h<h) nas a maximum and decreases monotonically there-

after, it is clear that a moment will be reached when y(i1,i2) = (R + r)2 to

which corresponds the zero of the function T(ivi2) and, therefore, a

critical point of the system (4.4).

From that moment the phenomenon acquires a piecewise analytic

character and can be investigated by the discontinuous method.

The locus of critical points i/, i2 is given by the equation

Fi(h',h') = yO'i'.Â«Y) - (R + r)2 = 0 (4.5)

Inasmuch as <p'(0)rR = SrR > R + r and <p\ri) decreases mono-

tonically with t increasing, the curve Fx is a closed curve symmetrical with

respect to the origin and containing it in its interior, as shown in Fig. 27.9.

The point (*/ ,?2 ) mto which the representative point R jumps once it

has reached the critical point (iY,t2')>1s determined again by the condition

of Mandelstam. As the only form of stored energy here is electrostatic,

the voltage V across condensers remains invariant during the jump, which

results in the relations

V, = E - R9(ri2) -(R + r>\; V2 = E- R^ri,) - (R + r)i2

(4.6)
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DISCONTINUOUS THEORY: ELECTRICAL PROBLEMS 629

The conditions of the invariance of V during the discontinuity are thus

R9(ri2') + (R + r>V = R9(ri{) + (R + r>\'

R^rij!) + (R + r)i2' = R<p(ri{) + (R + r)i2"

There exists thus a (1,1) correspondence between (tY,iY) before the

discontinuity and (*Y\*V) after it. This results in another locus -F2 of

points (*i*>*V) which is also symmetrical with respect to the origin.

The piecewise analytic phenomenon takes place then in the following

Figure 27.9

manner. From some point a on Fx, the point R jumps into the corre-

sponding point A on F2. From this point begins a continuous motion on

the stretch Ab. At b begins another jump which transfers R to the point

B on F2, from where begins another continuous stretch Be, and so on.

It can be shown that, after a series of jumps, the motion approaches the

bisector line MN so that ultimately the stationary state consists of a

continuous motion Mn followed by a jump nN followed again by a con-

tinuous motion Nm, etc.

The proof that the motion approaches ultimately the symmetrical

motion along the bisecting line MN is relatively complicated but, if one

assumes that, on account of the symmetry, one can expect that the motion
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should be symmetrical, the matter becomes very simple. In fact, it is

sufficient to set ix = â€” it and <p'(^ri) = â€”<p'(kr^) in the preceding equa-

tions, which results in one single d.e.

di _ (R + r) + rR<p'(ri)

dt [r2R2<p'*(ri) - (R + r)*]C K )

which has been investigated in Section 1.

Summing up, the degeneration theory permits in this case reducing a

physical system describable by two d.e. of the second order to that of two

d.e. of the first order. The condition of symmetry permits a further

reduction of the last mentioned system to one single d.e. of the first order.

The advantage of the use of the degenerate d.e. can be seen clearly at

this point. In fact, if one had to proceed along the line of the asymptotic

theory (outlined in Chapter 30) which does not use the simplification

afforded by the degeneration theory, one would have in this case a differen-

tial nonlinear system of the 4th order and the problem would be ex-

tremely complicated and impossible to be represented in the phase plane,

as we mentioned previously.

Another remark is noteworthy. If one follows this procedure, one

obtains directly the system (2.2) of two d.e. of the first order which becomes

meaningless for ip(x) = 0; with this point the degeneration theory asso-

ciates the appearance of a discontinuity.

If, however, one considers the d.e. (2.5) of the corresponding integral

curve, nothing whatever occurs for this critical point inasmuch as the value

of dyjdx remains finite at this point. In other words, in a system with two

degrees of freedom, such as the one considered here, discontinuities occur

in such a manner as to preserve not only the continuity of the integral

curve but even its analyticity; this is another consequence of the physical

postulate of Mandelstam supplying the "additional information" without

which the discontinuous theory would not be complete.

5. Concluding remarks

In this chapter we have reviewed a few typical examples of relaxation

problems treated on the basis of the discontinuous theory. It is useful

to analyze closer these results inasmuch as they may appear at variance

with what we have learned in Chapter 3 in connection with the topological

aspects of the analytical theory.

We recall briefly these aspects:

(1) In physical problems a closed integral curve (or trajectory) always

represents a periodic phenomenon.

(2) Singular points are identified with positions of equilibria.
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(3) A closed curve (in the phase plane) can be a trajectory only in the

case when the algebraic sum of indices of singular points situated in its

interior is +1.

These conclusions result from the analysis of d.e. of the second order

which yields a simple representation in the phase plane. The assertion

(2) was particularly valuable, for applied problems treated in Part I. As

regards (3), it gives a necessary condition for the existence of a periodic

motion. Thus, for instance, if one is able to show that the closed curve

contains in its interior only one singular point with index â€”1, one can

assert that such a closed curve cannot be a trajectory.

These topological conclusions cease to hold in the case of d.e. of the first

order because such d.e. have no singular points; moreover, a system of

such d.e. in general cannoi be reduced to a d.e. of a higher order, and one

has to deal directly with the system so that the question of singular points

does not arise. The assertion (3) then becomes meaningless.

In this manner the advantage of treating quasi-discontinuous phenomena

as discontinuous ones results in giving up the topological foundations of the

theory with which we became familiar in Chapter 3. Only the concept (1)

remains, as we have mentioned in connection with the piecewise analytic

cycles.

Thus, for instance, in the case of a ball striking two walls (Fig. 26.1),

the "closed trajectory" is a rectangle with two analytic sides (that is, the

trajectories of the d.e.: x = 0) closed by two discontinuous stretches. In

this case there is no singular point inside the rectangle and the motion is

still periodic. Here one can argue that this is not an example of an auto-

nomous system, since the reactions of the walls may be regarded as external

forces. However, in the case of an asymmetrical multivibrator (Section 1

of this chapter) the closed trajectory contains in its interior only a point of

an unstable equilibrium which is not a singular point, since in this case one

has only one d.e. of the first order.

In a system with two degrees of freedom with the degenerate d.e. in each

degree the situation is still more complicated if viewed from the standpoint

of the classical theory; here the origin behaves as a stable focus if x is large

enough, and as a saddle point if x is less than a certain critical threshold xv

All this does not mean that the discontinuous theory is "wrong" but

merely that the change in the fundamentals of the theory results in a series

of changes in its details.

On the other hand, if the criterion of validity of a physical theory is its

ability to explain the observed facts and even, in some cases, to predict the

new ones, then the discontinuous theory satisfies these requirements

practically in all cases and, from that point of view, it must be regarded as a

correct theory within its own scope.
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Chapter 28

APPLICATION OF THE DISCONTINUOUS

THEORY TO MECHANICAL PROBLEMS

1. Introductory remarks

The mechanical piecewise analytic phenomena are less explored at

present than the electrical ones and, moreover, have no practical applica-

tions.

Most of these effects are due to the various manifestations of friction

but, as the latter is still neither a predictable nor a controllable phe-

nomenon, the corresponding studies are limited to rather qualitative aspects

of mechanical relaxation oscillations.

The discontinuous theory is still a useful guide in these studies, and we

propose to give here a brief review of an interesting investigation by

Kaidanovsky1 reported also in Andronov and Chaikin's book.

The theory of degeneration plays again an essential role in these studies.

We have already touched this subject in Section 2, Chapter 26, where we

mentioned (k,c) and (m,k) degenerations analogous to RC and LR de-

generations in electrical problems. In these two forms of degeneration

the quantity k, the damping coefficient, appears generally in the form of a

nonlinear friction of some kind and it is generally in connection with this

term that the relaxation features appear.

There is another circumstance worth mentioning. In the outline of the

theory of degeneration we were primarily interested in specifying certain

variables which admit a discontinuous response to an equally discontinuous

stimulus. Here we are interested in a somewhat different aspect of the

same problem, namely: What kind of motions may be expected in a de-

generate mechanical system without any external action? This means

that the interest of this study lies chiefly in the exploration of a possibility

of relaxation oscillations of an essentially autonomous mechanical system.

1 N. L. Kaidanovsky and S. E. Chaikin, J. Tech. Phys. (USSR) 3, 1933.
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It will be shown that this possibility presents itself owing to the nonlinear

character of friction.

2. Mechanical relaxation oscillations

We consider a nonlinear d.e. of the form

mx + p.f(x) + cx = 0 (2.1)

and assume that the inertia term is small compared to the damping and the

restoring force terms. In order to bring the notations in accordance with

previous discussion of degenerate equations, we write the d.e. (2.1) in the

degenerate form as

F(x) + cx = 0 (2.2)

It is noted that the damping term is considered here as a certain function

of velocity x. Differentiating this equation and setting x = y, one has

y = dyldt = -cylFy(y) (2.3)

where Fy = dF/dy. If Fy < 0, y has the same sign as y (since c > 0) and

this shows that the motion is unstable, because both the velocity and

acceleration act in the same direction. For the same reason, if Fy > 0,

the motion is stable. If for some value y = yv F (yj = 0, dy/dt = oo,

which, according to the discontinuous theory, shows that y = yx is a

critical point; in the present case it is a point at which the acceleration is

infinite. To some extent the situation resembles that considered pre-

viously of an elastic ball striking an equally elastic wall. There is, however,

a difference between the two. In the case of the ball, the discontinuity in

acceleration is due to the contact with the wall, that is, to an external

impulsive action; whereas here it is obviously due to the loss of the dynami-

cal equilibrium inside the system.

Since in this case the energy is purely potential, (c # 0, m = 0), the

condition of Mandelstam indicates that the discontinuity can appear only

in such variables which do not enter into the expression of potential energy

E = \cx2. Thus, the coordinate x cannot change discontinuously,

although this restriction does not apply to the velocity x, which can

undergo a discontinuous change.

3. Relaxation oscillations of a Prony brake

The following experimental arrangement due to Chaikin and Kaid-

anovsky 1 illustrates the application of the discontinuous theory.

1 See footnote 1, page 632.
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A Prony brake a of a small mass (Fig. 28.1) engages frictionally a shaft K

rotating with a constant angular velocity Q. The brake is constrained by

the spring S; the proper amount of friction is secured by means of an

additional radial constraint not shown in Fig. 28.1.

Since the experimental arrangement is such that the mass of the brake

is negligible in comparison with damping and restoring force, the case in

question may be regarded as (k,c) degeneration according to our previous

terminology (Chapter 26), and the degenerate d.e. here is

rF(v) = c<p (3.1)

where rF(v) is the moment due to the frictional drag applied to the brake,

and c<p is the restoring moment due to the spring S and considered as a

simple proportional law with the angle <p through which the brake is

t F(v)

Figure 28.1 Figure 28.2

displaced by the friction drag. Since v = (Q â€” <p)r, the preceding

equation can be written as

rF[(Q - <p)r] = c<p (3.2)

and the question centers now on the form of the nonlinear function F(v).

According to Sommerfeld, the friction force in this case (the presence

of oil lubrication is assumed) passes through a minimum for a certain

value v = vx which can be expressed in terms of certain parameters, such

as thickness of the oil film, coefficient of viscosity, etc. The essential

point here is the existence of such a minimum which accounts for the form

of the function F(v) shown in Fig. 28.2.

Differentiating (3.2), one has

<p = -e<plF'(Q - <p)

(3-3)
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where F' designates the derivative of F with respect to <p, and the constant

e > 0 absorbs the factors r and c.

One has to ascertain first what kinds of motions are possible. It is

clear that two principal types of motion are of interest here:

(1) If v = 0, Q = <p. In this case the brake is displaced by the rotating

shaft; this is the phase of a static friction. During this phase the repre-

sentative point R moves along the F(v) axis (Fig. 28.2) and the spring S is

gradually stretched.

(2) If v = v0 = rQ, <p = 0. This corresponds to the standing still of

the brake. In this case the point v0 can be either to the right or to the left

of the point v = v1 corresponding to the minimum of the friction force

F(v). These two possibilities are shown by points Mx and Mt in Fig. 28.2.

one has rQ > r(Q â€” <p),

-01

Figure 28.3

Consider first the point Mv For v <

<p > 0. The motion of the brake a

in this case is in the same direction

as that of the shaft K. If v > v0x,

the brake moves in the direction

opposite to K. On the other hand,

since the point Mj is on the descend-

ing branch of the curve and taking

into account (3.3), it follows that <j> > 0.

Thus, in this case the motion of the

brake is unstable since both the velocity

and acceleration have the same sign.

The same argument for v < v0x shows

that again the velocity and acceleration

have the same sign, so that the motion

is unstable. For the point M2 on the ascending branch of F(v) the same

argument shows, on the contrary, that the motion is stable. We indicate

the conditions of stability by arrows on the curve F(v). It is recalled

that the curve F(v) is actually the integral curve since, the d.e. being of the

first order, there is a definite relation between the variable and its deri-

vative. In other words, the characteristic F(v) being the integral curve

at the same time, the phase-plane representation is not involved and we

have here a unidimensional representation by the phase-line (or phase-

curve) F(v).

In considering the production of relaxation oscillations, only the loca-

tion of M on the descending part of the curve is of interest, and in

considering their elimination, its location on the ascending part of the curve

is necessary.

Figure 28.3 shows what happens when M is on the descending branch.
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Assume that initially R is somewhere on the curve F(v) where v is large

(point A). Since v is large and positive, <p is negative and large.

From (3.3) it follows that (p > 0 so that |<ji>| decreases initially as well as

v which is indicated by the arrow 1. The point R follows the curve F in

view of the assumed degeneration. At the point B the acceleration is

infinite since F' is zero at this point. As R cannot follow the curve F(v)

in view of the opposite direction prescribed by the d.e. (arrow 2), it has to

jump under the condition of Mandelstam. The only form of stored energy

here is the potential energy of the stretched spring so that the jump occurs

horizontally from B to C since the axis of ordinates is also a part of the

characteristic corresponding to the static friction when the brake and the

shaft have no relative velocity.

Once R is on the axis F(v), the rotation of the shaft drags the brake with

it, thus stretching the spring. During

this static phase of the process, r

moves along the F(v) axis and the

spring is stretched. At the point D

the limit of the static friction is reached

and <p becomes again infinite. Since

the motion along the integral line (the

characteristic) is impossible (arrow 3),

'the system undergoes the discontinuity

Figure 28.4 and the condition of Mandelstam pre-

scribes again the horizontal direction

for the jump for the same reason as previously. At the point A the repre-

sentative point R finds itself again on the integral curve which thus

establishes a piecewise analytic cycle ABCD consisting of two analytic

arcs CD and AB joined by two discontinuous stretches DA and BC

on which v and, therefore, <j>, vary discontinuously.

The amplitude of these piecewise analytic oscillations is obtained from

the difference Fma â€” Fmin of the function F and is

<p0 = (rlcR)(Fmâ€ž - Fmin) (3.4)

The period is obtained by taking into account time for traversing the

analytic stretches since the discontinuous stretches are traversed in no time.

On the stretch CD one has <p = Q so that the time for traversing it is

Tx = <pJQ = (rlcRÂ£2)(Fma - Fmin)

The time for traversing the arc AB is obtained by integrating (3.3).

This gives

T2 = -(r*lc) \*\Fim

which can be calculated by a graphic integration.
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If one plots the piecewise analytic motion so obtained in the (t,<p) plane,

one obtains a sawtooth curve shown in Fig. 28.4. In reality, on account

of a finite mass of the brake, the actual curve is slightly different, as shown

in the broken line.

4. Analogy between mechanical and electrical relaxation oscilla-

tions

Although the preceding analysis renders the comparison between

mechanical and electrical oscillations quite clear, it is interesting to mention

a case of electrical oscillations in which the phenomenon is practically the

same as in the preceding section.

In the case of a simple circuit consisting of a neon tube N shunted by a

R

-/WV

â€¢Â± Â©

Figure 28.5

Figure

condenser C according to the scheme shown in Fig. 28.5, the d.e. are

i = C -rr\ Â°(* + 0 + V = E. These equations reduce to one single d.e.

dVjdt = (E - V - RI)/RC = [E - V - R<p(V)]IRC (4.1)

This d.e. exists only when the tube N conducts. During the time of its

extinction one has a simple d.e. of the charging condenser, viz.:

dVjdt = (E - V)/RC (4.2)

Since the oscillatory phenomenon is characterized by the alternate

sequence of "on" and "off" of the discharge, it is clear that it is governed

by the alternate sequence of the d.e. (4.1) and (4.2).

As the problem is a degenerate one (we neglect the effect of the residual

inductance), there is only one constant of integration so that there exists a

relation between the variables / = <p(V) and V, which means that the

characteristic is actually the integral curve as in all problems of this nature.

During the period of extinction (when (4.2) is in force), the integral curve

is the axis V itself, Fig. 28.6 (compare this with the period of static friction
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in the preceding section when R moves along the axis F(v)). When the

point D is reached, the discharge strikes and R jumps suddenly to the point

A so that the d.e. (4.1) is now in force.

The position of equilibrium in the circuit when the discharge is on is

obviously given by the intersection of the characteristic with the straight

line given by equation I = (E - V)/R. If this line intersects the

characteristic (Fig. 28.6) in its lower portion (point A/j), the equilibrium

may be unstable, whereas at a similar point M2 on the upper branch it is

always stable. In fact, if one sets V = V0 for the equilibrium point, the

variational equation of (4.1) yields

d-^- = + R9'(V0)W (4.3)

where 8 V means a small departure of V from its equilibrium value V0 and

<p'(V0) is the slope of the characteristic at the point V = V0. On the

upper branch of the curve <p'(^o) > 0 and from (4.3) it is seen that V0 is a

position of a stable equilibrium. On the lower part of the curve the

equilibrium may be unstable if |<p'(^o)l > 1/^-

Assume that R has been so chosen that the equilibrium point is on the

unstable branch which begins at B and which is indicated by arrows.

Since the point M2 is absent in this case, once R has reached the point

B, it cannot move along the characteristic since the d.e. prescribes on it an

opposite direction. At the same time B is not a position of equilibrium.

Hence, R has to jump downward in accordance with the condition of Man-

delstam since V is invariant during the jump. At the point C the repre-

sentative point R is again on the integral curve (the abscissa axis) of the

d.e. (4.2). The piecewise analytic cycle ABCDA consists thus of two

analytic branches on which either one of the d.e. takes charge alternatively,

"closed" by two discontinuities DA (flashing) and BC (extinction).

In this case the analogy with the mechanical relaxation phenomenon

investigated in the preceding section is complete. In fact, in both cases

there is a period during which the potential energy is being built up on the

stretch CD. In the mechanical case this corresponds to the period of static

friction and, in the electrical case, to the period of extinction of the dis-

charge. This static period is followed by a discontinuity (flashing in the

electrical case, discontinuity in velocity of the brake in the mechanical

case). After this begins again the analytic stretch during which the d.e.

governs again the phenomenon (when the discharge is "on" in the electrical

case and when the motion of the brake approaches the minimum friction

point, in the mechanical case). At the point B begins again the dis-

continuous stretch BC (extinction of the discharge; transition of the brake

to the static friction point).
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In both cases the possibility of a piecewise analytic cycle depends on the

existence of two critical points D and B, but their physical nature is

different. In the electrical case these points are characterized by flashing

and by extinction of the discharge; in the mechanical case they are char-

acterized by infinite accelerations. These two aspects of two different

phenomena characterize, however, the same thing: the loss of internal

equilibrium in the system.

In both cases the relaxation phenomenon disappears if the equilibrium

point is adjusted to be on the stable branch of the characteristic. As

oscillation of a neon-tube circuit is a desirable phenomenon and oscillation

of the brake is, on the contrary, an undesirable one, it is of advantage to fix

the equilibrium point on the unstable branch in the first case, and on the

stable branch in the second case.

Remaining conclusions regarding the form of the sawtooth curve are

identical in both cases.

5. Clocks

It was mentioned previously (Section 11, Chapter 3) that a clock tra-

jectory is a kind of a nonanalytic limit cycle. It is useful to return to this

question since we are now acquainted with the concept of piecewise analytic

trajectories which characterize relaxation oscillations.

There is an obvious difference between the two cases because a clock is

not a "phenomenon" but is a man-made mechanism; however, there is a

close analogy regarding the character of periodic motions in both cases.

In fact, in relaxation oscillations there is a point in the cycle at which a

quasi-discontinuous stretch begins; we have called this point the critical

point. A somewhat similar situation occurs in a clock at the instant when

the escapement mechanism delivers its impact and changes the momentum

of the oscillating system in a quasi-discontinuous manner. As the result,

the trajectory of a clock assumes a piecewise analytic character. If such a

piecewise analytic trajectory is closed, the motion becomes periodic. So

far as energy relations are concerned, a nonanalytic cycle of this kind is

characterized by a continuous dissipation of energy compensated for by a

quasi-discontinuous (idealized as discontinuous) energy input by impulse.

Andronov2 was apparently the first to call attention to this fact and

developed the theory of the clock on this basis. We shall follow here the

* A. Andronov and S. Chaikin, Theory of Oscillations (original text in Russian),

Moscow, 1937; English translation by S. Lefschetz, Princeton University Press,

Princeton, N.J., 1949; A. Andronov, A. Witt, S. Chaikin, Theory of Oscillations

(in Russian); this book is the second edition (1959) of A. Andronov and S. Chaikin,

Theory of Oscillations (original text in Russian), Moscow, 1937.
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presentation by Bulgakov3 who developed this subject further. This

theory assumes that the dissipation of energy is not of a linear type (that is,

proportional to velocity) but is of a Coulomb friction type. This is the

more correct assumption, because most of the dissipation of energy here

occurs in pivots where it is .likely to be of the static friction (Coulomb) type.

If one assumes that the spring of a clock follows Hook's law, the potential

energy is: V(q) = aq^/2, q being the coordinate and a a constant.

The resisting force is then either â€” aB (for p > 0) or + aB (for p < 0),

where p is momentum and B is a positive constant.

For a small displacement dq (not including the instant of impact) one has

obviously:

d(p*I2n + aq*j2) = + aBdq (5.1)

Integrating and rearranging the terms, one has

\a(q Â± BY + />2/2m = const (5.2)

One ascertains that for the initial condition q0 = a,p0 = 0, it is necessary

to have a > B; otherwise the static friction would block the motion,

which will be assumed. Equation (5.2) becomes

\a(q - B)* + p*j2m = Â£a(a - B)* (5.3)

where the right-hand term is a constant. From this equation one gets

p = -V<mt[(a - Bf - (q - B)*] (5.4)

One has to express also the condition that the torsional pendulum (part

A in terms of Section 11, Chapter 3) can reach the angular coordinate q = /

at which the energy replenishing impact is delivered; this imposes condition

a > /; a>2B-f (5.5)

Additional conditions (the quantity under the square root must be positive)

impose requirements that the first condition (5.5) should take place for

B < f and the second for B > f.

Assuming further that the impact AH is constant, for the quasi-dis-

continuous stretch one has the relation

pi'2 ~ pi = 2mdH

* B. V. Bulgakov, Oscillations (in Russian), Moscow, 1954; A. Andronovand S.

Chaikin, Theory of Oscillations (original text in Russian), Moscow, 1937; English

translation by S. Lefschetz of A. Andronov and S. Chaikin, Theory of Oscillations,

Princeton University Press, Princeton, N.J., 1949; A. Andronov, A. Witt, S.

Chaikin, Theory of Oscillations (in Russian); this book is the second edition (1959)

of A. Andronov and S. Chaikin, Theory of Oscillations (original text in Russian),

Moscow, 1937.
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where p{ and px are the values of momentum after and before the impact.

This gives

px' = - VpS + 2mAH = - VÂ°mfta - Bf - (J - BY + h] (5.6)

where h = lAH\a. After the impact a new motion begins and, by a

similar argument, one finds that p is

p = ~Vam[(a - Bf + h - (q - B)*] (5.7)

One can also calculate the time of oscillation between the instants when

q = / and q = â€” b from the formula

t = j~'(mlp)dq (5.8)

which leads to Airy's formula, but for our purpose here this is of no special

interest.

We limit our investigation to finding conditions under which the ampli-

tudes either grow or decrease.

The curve p = p(q) cuts the abscissa axis in two points; the abscissa of

the left point, say, A2 is

q = -b = B - V(a - BY + h (5.9)

Clearly it is necessary that

b = V(a - By + h - B > 0 (5.10)

Using the preceding equations one finds that amplitudes increase if

a < A and decrease if a > A. If a = b = A, one has obviously a

periodic motion.

The last step in this argument is to show that the limit for the decreasing

amplitudes is the same as for the increasing ones. This is done in calculat-

ing the difference bb-" â€” a by the above formulas and, as a and b approach

the same limit, b â€” a â€”> 0; that is, a -> A. This shows that the motion

with stationary amplitude is orbitally stable, that is, in all respects exhibits

the property of a limit cycle.

Inequalities (5.5) show that the amplitude a must be greater than a

certain limit value in order to start the clock going; this feature may be

considered as "hard" self-excitation. In ordinary watches this limit value

is very small so that the watch starts as soon as it is wound; one may call

this feature a "soft" self-excitation.

Equation (5.9) can be written as

(6 + BYlh - [a - BY/h = 1

(5.11)

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

8
 0

0
:5

6
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



642

RELAXATION OSCILLATIONS

In the (a,b) plane this is a hyperbola with center at the point (B, â€” B)

and asymptote b = a â€” 2B. A bisector line, a = b together with the

hyperbola, permits investigating the increase (decrease) of amplitudes as

they approach the stationary amplitude. The latter is given by the point

of the intersection of the hyperbola and the straight line: a = b.

This theory can be further generalized if one considers that the impact

is distributed over a finite time; likewise one can consider a more general

form of the potential energy V(q)\ moreover, the mass m which was

considered as constant, in reality is a certain function of q in view of

constructional details of a clock. Such generalizations introduce further

complications in calculations without, however, adding anything essentially

new.

Summing up, the aim of the method so far is to determine the amplitude

b if one knows the preceding amplitude a. This ultimately results in

relation

f(a,b) = 0 (5.12)

Since the amplitude to the right is generally equal to that to the left and,

for stationary state, a = b = A, the preceding relation becomes for the

stationary state:

f(A,A) = 0 (5.13)

It is noted that up to this point the procedure was elementary, namely,

from the knowledge of one amplitude, the next one was determined by

theoretical mechanics merely adding the condition of impact; the terminal

amplitude of the first half-cycle was used as the initial amplitude for the

next half-period, and so on.

Ultimately the problem consists in the investigation of what happens to

these "initial conditions" (amplitudes) in the long run; if they approach

the limit a = b = A, then the stationary state is reached (equation 5.13).

It is observed that this method has a certain analogy with the stroboscopic

method (Chapter 16). In the latter we were not interested in the motion

during the period 2tr (here we have only one half-period) but the attention

was focused on the isolated instants 0, 2n, 4n,. . . separated in time by 2n;

in this way the investigation was directed toward establishing the law of

variation of the initial conditions (in each period); if this sequence of

(discrete) initial conditions tends to a limit, this was sufficient for asserting

that in the long run the oscillation approaches the stationary state.

From this standpoint the situation here is similar. On the other hand,

as far as the details are concerned, the procedure here is more complicated

inasmuch as one is obliged to interpose on the continuous (analytic)

variation of the amplitude a quasi-discontinuous variation caused by

impulses. As the result of this, in order to determine the terminal
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DISCONTINUOUS THEORY: MECHANICAL PROBLEMS 643

amplitude b given the initial one a, both the analytic and nonanalytic

intervals are to be taken into account.

Once, however, the condition (5.13) of stationary state has been obtained,

one can apply the standard procedure for investigating stability since now

one has a situation similar to that which was encountered already in the

stroboscopic method, namely: to ascertain the approach of initial conditions

to the stationary state if the latter has been perturbed.

We assume, therefore, that the stationary amplitude A is perturbed by

perturbations 8a and 86 and we have

a = A + 8a; b = B + 86 (5.14)

Replacing these values into (5.12) and expanding this equation into

Taylor's series around the stationary point keeping only the terms of the

first order, one gets

f(A,A) + (8fl8a)Sa + (8fl8b)8b = 0 (5.15)

where the partial derivatives are taken, as usually, at the point (A,A). In

view of (5.13), one has

--[Â©/(Â»]" <s")

It is seen that the perturbation dies out if

(I/I) <'

If (5.17) is considered as a curve in the (a,b) plane, the stationary

amplitude is given by the coordinates of the point of intersection of this

curve with the bisector line: a = b. The condition (5.17) means then that

the slope of the tangent to the curve at the point of its intersection with

the bisector line must be in the interval (â€” 7r/4, + 7r/4).

We note in passing that this graphical condition of stability reminds us

of what was outlined in Section 2, Chapter 7, in connection with the geo-

metrical analysis of the bifurcation phenomena of limit cycles.

It is easy to show that, in view of what has been said previously, condition

(5.17) is fulfilled. In fact, we have/(a,6) = V(a - B)* + h - (6 + B);

A = hfiB, so that

dfl8a = (a - B)/V(a - B)* + h;

(8fl8a)A = (A- B)/(A + B); (8fj8b)A = -1

which gives

(I/I), = - B^A + (5-18)

In view of (5.5) this quantity is positive and less than one.
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The theory of clocks has been considerably extended by J. Haag* who

established conditions for a subharmonic as well as harmonic synchroniza-

tions; he showed that, in general, the synchronizing force depends not only

on time but also on the amplitude and velocity of the oscillating member

of the clock. The method is based also on the perturbation theory. In

fact, if the motion is periodic, Aa = 0 (a being the amplitude). The

variation of the amplitude per one half-period is given, as previously

explained, by a certain integral representing the work of driving and

resisting forces.

If the dissipation increases with velocity, the excessive initial amplitude

will decrease and vice versa. These intuitive considerations are not

sufficient, however, and Haag establishes a series of theorems based on the

properties of the variational equations which we cannot review here; we

mention only the conclusions: synchronization can be obtained by means

of a sinusoidal (harmonic) force; it can be produced also by quasi-dis-

continuous impacts; in all cases there exists a certain zone of synchroniza-

tion as in the analytic cases which we studied in Chapter 18; the problems

here are more complicated since in addition to the analytic components of

forces, the quasi-discontinuous forces due to impacts of the escapement

mechanism are to be taken into account also; moreover, the nonlinearity

in the restoring force accounts for a possibility of synchronization on

subharmonics.

We merely mention these various conclusions as their even superficial

review here would be outside the limit of this brief outline of the theory of

clocks.

6. Froude's pendulum

Another case of self-excited mechanical oscillations is the so-called

Froude pendulum; it consists essentially of the following arrangement: if

one mounts a pendulum on a rotating shaft with a certain amount of

friction, it is observed that the pendulum begins to oscillate under certain

conditions and the amplitude reaches a stationary state.

The origin of this phenomenon is due to the friction which acts as a

coupling between the shaft rotating with a constant angular velocity Q and

the pendulum. The conditions under which these self-excited oscillations

appear are very similar to those which we have investigated already in

Sections 2 and 3.

Here again all depends on the nature of friction but, as the latter is

Â«J. Haag, C. R. Ac. Sc. (Paris) 202, 1936; 204, 1937; 206, 1938; Aim. Ec.

Norm. Sup. Series, 3, 60, 1943; 3, 61, 1944.

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

8
 0

0
:5

9
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



DISCONTINUOUS THEORY: MECHANICAL PROBLEMS 645

erratic and uncontrollable, it is useful to formulate first the theoretical

conditions under which this phenomenon is bound to appear.

We start with the following d.e.

Ix + bx + kx* + cx = F(Q - x) (6.1)

where x is the angle of the pendulum, and /, b, k, and c are constant para-

meters which have the obvious meaning. We have added a nonlinear term

kx3 for reasons which will appear later. The right-hand term is the

moment transferred to the pendulum by the rotating shaft. This moment

is due to friction and is generally a certain nonlinear function of x. The

usual procedure is to develop the function F in Taylor's series, assuming

that x is small in comparison with the constant Q. This gives

F(Q - x) = F(Q) - xF(Q) + |F*(i2) - ... (6.2)

where F'(Q) = (djdt)F(Q), etc. Setting F(Q) = m; F'(Q) = n, etc., and

assuming that the series converges rapidly enough to justify the use of the

first two terms only, the insertion of (6.2) into (6.1) gives

Ix + (b + n)x + kx3 + cx - m = 0 (6.3)

The last constant term, m, can be obviously dropped; it merely means

that the oscillation occurs not around the position x = 0 but around some

other position owing to a constant frictional drag exerted by the rotating

shaft.

If the coefficient n is negative and such that |n| > b, after a division by /,

(6.3) becomes

x - ax + fix3 + w0*x = 0 (6.4)

where a' = (|n| - 6)//; /}' = *// and a>02 = c\l.

Introducing the new independent variable: t = <o0r, one obtains the d.e.

*-a* + 0#3 + Jc = O (6.5)

in which the differentiations are with respect to t but, since no confusion

is to be feared, we can still use the previous symbols: x and x . In this

equation o = a'/w0 and /3 = j3'<o0.

Equation (6.5) is the standard Rayleigh equation which is known to

possess a periodic solution. We reproduce briefly the calculation under

the assumption of a near-linearity, that is, when a and /3 are small.
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With the equivalent system: x = y \ y = ay â€” py* â€” x and with the

new variables: p = x2 + y2 and ip = arctan (y/x) the system becomes

^ = 2p(a sin2 ip â€” fip sin4 0)

L (6-6)

-j- = â€” 1 + o sin ^ cos ^ â€” Â£o cos ^ sin3 0

and we attempt to satisfy it by series solutions of the form

K')-Â«W + w>i(0 + ---; <K0 - MO + wMO + . . â–  (67)

where is a small parameter. For the first approximation we need only

two terms as written in (6.7).

As a and /3 are small, the zero-order solution, as usual, is:

Po(0 = Po\ MO - 9o ~' (6-8)

where p0 and 9>0 are the initial conditions. The d.e. for the first order

corrective terms are then:

^ = 2Po(A 8inÂ»0â€ž - Bp08inÂ»*0)

Â» (6-9)

= ^4 sin 0o cos 00 - Â£p0 cos ip0 sin8 00

where ^4 = ajp. and 2? = /3//x.

We can use now the stroboscopic procedure in which we evaluate the

differences P\(2tt) and 0i(277r) of ^(r) and 0j(rr ) for one period 27r. It is

noted that the integration of the second equation between 0 and 2n gives

identically 0i(27j-) = 0 so that we need to consider only the first equation

(6.9). It should be mentioned in passing that this circumstance is due to

the fact that the d.e. (6.5) has only a linear term in x; if we had also a

nonlinear term, say, y*3, the result would be different and the second

equation (6.9) would not be identically zero, as was explained in Section 7,

Chapter 22.

The integration yields: pi(2jt) = 2np0(A â€” %Bp0) and, therefore,

p(2n) = (2np)Po(A - }BPo)

Setting 2np. = At; p(2n) = Ap and passing to the limit: Ar-*dr\

Apâ€”*-dp one obtains the stroboscopic d.e.:

dpldr = p(A- %BP) = *(p) (6.10)

whence the stationary amplitude

4fj = 4[H-q

9 W 3 kw02 [p'xx)
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DISCONTINUOUS THEORY: MECHANICAL PROBLEMS 647

It is seen now why the term kx3 was necessary in (6.1); in fact, without it

it would be impossible to determine p*. The question of stability is

determined by the usual criterion:

*>*) < 0

One ascertains easily that this criterion is fulfilled.

Thus, under the assumptions made, the Froude phenomenon is quite

clear. These assumptions are, however, too special and we have to ex-

amine them. In fact, we assumed: (1) that F'(Q) is negative and that

is just slightly greater than b so that the difference b â€” \F\Q)\ is a

small quantity of the first order, as is the coefficient k in (6.3); and (2) that

the higher-order terms F"(Q), F-(Q), etc., in the expansion of F(Q â€” x)

are negligible.

It is clear that if the assumption (1) is not fulfilled, the oscillation will

either not appear at all or, if a is not small, we cannot use the nearly-linear

procedure and the calculations would be much more complicated since the

first-zero-order solution (6.8) would not hold then.

Still more difficult would be the case when the development of F(Â£2 â€” x)

would have an important second-order term: $F"(Â£2) = p. In such a case,

instead of (6.3), one would have the d.e.

(/ - p)x + (b + n)x + cx = 0 (6.13)

and it is seen that, if p > 0 happens to be of the same order as /, at least

in a certain interval of Q, one would have a degenerate problem (Section 2,

Chapter 26) with a possibility of a quasi-discontinuous variation of x, and

this brings the problem within the scope of relaxation oscillations.

All these uncertainties arise because the frictional coupling function

F(Q â€” x) is generally known only approximately and, except that occa-

sionally the friction may become "negative," practically nothing is known

about the quantitative end of the problem.

On the other hand, if, with a better technique, this experimental function

could be produced with a greater certainty and, better still, could be

modified at will in a predetermined manner, then an arrangement of

Froude's type could become an interesting tool in the exploration of these

complicated phenomena, particularly as regards transitions between the

analytic and piecewise analytic forms of these oscillations which is still an

entirely unknown field.

(6.12)
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Chapter 29

DISCONTINUOUS THEORY OF VOGEL

1. Introductory remarks

In this chapter we propose to give a brief outline of another discontinuous

theory developed independently by Vogel.1

If the M.C. theory (outlined in Chapter 26) may be regarded as a purely

physical theory, Vogel's approach appears to be of a somewhat postula-

tional nature based more on a geometrical ground. If one regards this

theory without any reference to applications, it appears as a somewhat

abstract essay along the line of concepts introduced by Whitney2 and

Birkhoff.*

If, however, this abstract (and to some extent heuristical) approach is

applied to dynamics, the familiar aspects of the M.C. theory appear; in

such a case both theories lead to the same conclusions although the argu-

ment is different.

As the purpose of this text is primarily an applied one, we shall limit the

theoretical part to a minimum, trying to follow Vogel's own exposition.

However, its connection with the analytical argument will be of a greater

interest as it will enable us to reach physical applications.

It is useful to introduce first the concept of regularity in connection

with trajectories filling the phase plane.

1 Th. Vogel, C. R. Ac. Sc. (Paris) 231, 1950, Ann. des Telecomm. 6, 1951; Bull.

Soc. Math. (France) 81,1953; Rend. Semin. Padova (22), 1953; Arm. des Telecomm.

8, 1953, Colloque Int. Porquerolles (France), 1951.

2 H. Whitney, Ann. of Math. 34, 1933.

3 G. D. Birkhoff, Dynamical Systems, Am. Math. Soc, 1927; A. Andronov,

A. Witt, S. Chaikin, Theory of Oscillations (in Russian); this book is the second

edition (1959) of A. Andronov and S. Chaikin, Theory of Oscillations (original text

in Russian), Moscow, 1937.
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DISCONTINUOUS THEORY OF VOGEL 649

We use the definition of Nemitzky.4

(1) We call the family F of curves regular if for any point p on a curve

C and for every arc pq of C, for every e > 0, one can find 8 > 0 such that,

from the condition p' <=C, where C is some curve of F, and p(p,p') < 8

(p being the "distance"), follows the existence of an 3xcp'q' on C such that

(a) p'q' c S(pq, e); p(q',q) < e, where S(pq,e) is the e-neighborhood

of pq. ^

(b) If r' and s' are points of the arc p'q' and p(r',s') < 8, then the dia-

meter of the arc connecting r' with s' is less than e.

The first property may be regarded as the geometric continuity, and the

second, as equal local connectedness.

In what follows the expression: the "arc of the curve C" will mean

a one-to-one image of either a segment or a simple closed line; we will

exclude singular points at first.

(2) We shall say that the family F is orientable if on all arcs it is possible

to establish the direction consistently, that is, for any arc pq from the

condition that the sequence p,q{ converges to pq it follows that, for a

sufficiently large i, p{q{ is positively oriented if pq is positively oriented.

With these definitions the basic theorem of Whitney 2 can be formulated

as follows:

If a family of curves covering (a certain region) R is regular and orientable,

it can act as a family of trajectories of some dynamical system.

For dynamical systems of the second order with which we are generally

concerned, the theorem of Whitney permits treating trajectories as a flow

of a planar irrotational "fluid of trajectories," a concept which has been

introduced intuitively in Chapter 3.

The theory of Vogel starts with this concept and considers what happens

when this "flow" is suddenly changed at a certain critical threshold, thus

giving rise to "reflections" or "refractions" of the "fluid of trajectories."

2. Fundamentals of the theory

Consider an autonomous differential system of the second order whose

representative point follows a certain trajectory of a regular family up to a

point where the law governing its motion changes suddenly in such a

manner that the further path of the point is along another regular trajectory;

* V. V. Nemitzky, Topological Problems, Am. Math. Soc. translation, 103, 1954.

2 See footnote 2, page 648.

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

8
 0

1
:0

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



650

RELAXATION OSCILLATIONS

such behavior is exemplified by a mechanical system in which a shock

occurs at some moment. If the trajectories corresponding to all possible

initial conditions are thus made up of portions belonging to two or more

regular and oriented families of curves, the systems will be said to possess

pieceuiise regularity. The motions of such systems can be nonperiodic

(as, for instance, the motions of a mass moving on a ground formed by two

levels separated by a cliff), or periodic (as in the case of the "sawtooth"

oscillator, where a condenser is being charged until the voltage at its

terminals is sufficient to produce a discharge).

Figure 29.1

With a view to a periodic case (which is obviously the more interesting

of the two) one can investigate the problem of an abstract system possessing

two regular oriented families of trajectories, say R and S, and a "boundary

curve" T on reaching which the representative point must switch over to

an S (or R) curve if it was moving along an R (or S) one. Looking at

the boundary from one side, every R or S curve is either inwardly

or outwardly bound (denoted respectively as Â© or O), unless it is tangential

to the limit curve. The limiting points L on T, where a trajectory of one

of the families does not cut the boundary T, divide it into regions, all

points of one region having the same character; we can thus have regions

OO, OÂ®, Â©Â©, or Â©O (Fig. 29.1).
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DISCONTINUOUS THEORY OF VOGEL 651

At a OO or Â©Â© point, such as A in Fig. 29.1, the path of the repre-

sentative point of the system will cross the boundary; making use of an

optical analogy, we may say that it has a "refractive" effect on the motion.

At a Â©O or OÂ© point, on the contrary (such as B in Fig. 29.1) there will

occur a "reflection." This case is obviously the more interesting of the

two, since the representative point turns back, and there may thus be a

chance that its path will be closed in the long run, which would mean that

the motion is periodic. Any closed path will be composed of a certain

number, n, of R arcs alternating with an equal number of 5 arcs; the

Figure 29.2

periodic motion along such a path is called "breaking oscillation" of the

nth kind.

The simplest case, of course, is n = 1; if there exists such a motion its

path is made up of one R arc and one S arc, which, meeting at a point P

of the boundary intersects again at P" which is also on the boundary

(Fig. 29.2). The motion is, symbolically, ...

Let us inquire into the necessary and sufficient condition for such a

situation: both families of trajectories form a net which can be thought of

as determining curvilinear coordinates R, S in the phase plane. If we

map that net onto a plane with cartesian coordinates R, S, each R curve

will appear as a straight line parallel to the S axis, and each 5 curve as a
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parallel to the R axis; a piecewise regular motion will be mapped as a

ladder with its steps parallel to the axes. The image of boundary T is a

curve T such that all points of T will be mapped 1:1 except for such points

as P, P", whose common image will be a double point P of T (Fig. 29.3).

Conversely, let there exist a double point P on T, at the intersection of arcs

NV and M'U': This means that on the original arcs NV and MU there

are two points P'P' having the same R, S-coordinates: that is, the situation

shown in Fig. 29.2. There exists then a periodic motion of the first kind.

The stability of such a solution is easily discussed by means of the above

Figure 29.3

transformation: P will be stable in the sense of Liapounov if all "ladders"

having their edges supported by T (whether on the left or on the right of

the double point), lead toward it. Inspection of Figs. 29.4 a, b, c, d shows

that such will be the case if, and only if, the branch of T which is Â© with

respect to R (or S) has at Pa greater slope than the 0 branch.

A periodic solution of the first kind is possible for the case shown in

Fig. 29.2 in which there are no singular points.

We shall not investigate oscillations of higher orders (n > 1) but will

merely mention the conditions for their occurrence.

Consider the oscillation of the second kind; the closed path /?151i?rS,
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DISCONTINUOUS THEORY OF VOGEL 653

(a)

(a)

Figure 29.4

RxSxR2 ... is made up of two R arcs and two S arcs and can be described

in the indicated order only if the direction of motion along the 7?x stretch

is opposite to that along the /?2 stretch and likewise for Sx and S2 (Fig. 29.5).

Figure 29.5
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This implies the presence of a saddle point or center of each family

inside the curve T. If such a saddle point exists, both periodic solutions,

one of the first kind (such as PP') and the other of the second kind (such as

MM'NN') may exist. However no higher order (n > 2) solutions are

possible; they become possible only when there are singularities of higher

order inside T.

One can also discuss the limit cases when singular points (either for one

or for both families) appear on the boundary T.

A particular interesting case arises when one of the families has a node

on T.

Assume that N is a node for the R family (Fig. 29.6) and R0 is the R

Figure 29.6

trajectory; this trajectory intersects T again at N'. The cycle RqN'SqN

is the periodic solution of the first kind. However, if N is Â© for R and C

for S, this solution will be unstable. In fact, if the representative point

p is initially at M (on Ri), it will move to M' (on T); after that it will

move along on 5 curve to M" (on T) and, finally, outward along the Rt

curve through M" since this point is O (because its other end at Ar is Â©).

Likewise the initial position Mx on Sx will bring p to M" and from there

outward.

On the contrary, if is O for R (and Â© for S) as in Fig. 29.7, one

obtains a stable behavior; an initial point at M (on R{) will lead to N and

from there it will move along the cycle S0R0.
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DISCONTINUOUS THEORY OF VOGEL 655

Likewise, an initial point Mx on will move to M' on the boundary T

and from there to N along the Rx stretch and again to the SqRq cycle.

Thus the periodic motion will be established at once and not after an

infinite number of successive steps as in the case of the oscillator illustrated

in Fig. 29.2. This will occur after meeting one discontinuity at N or, at

the most, two discontinuities (one at M' and the other at N). It will be

shown that this permits explaining the transient behavior of multivibrators.

Figure 29.7

3. Analytical formulation; a special case

An objection can be made that a node is reached after an infinite time

so that the above stated periodicity is not reached in a finite time. This

objection would be valid if the system were described by two d.e. of the

first order with the analytic right-hand sides.

It is necessary, therefore, to supplement the preceding theory by con-

sidering a system of d.e.

dxlX(x,y) = dylY(x,y) = dtlT(x,y) (3.1)

(compare to equation (4.2), Chapter 26) where X, Y, T are analytic func-

tions of x and y.

It is clear that this system breaks down at certain critical points x0, y0
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for which T(x0,y0) = 0 while everywhere else the solution of (3.1) is

analytic, that is, knowing the solution at t = tx it is known also for

t = rx + At.

It is noted that at this point the present theory becomes identical with

the M.C. theory outlined m Chapter 26, although the arguments leading

to this point are different in both theories.

We continue, however, the argument of Vogel; it is stated that, in spite

of the fact that for x = x0,y = y0 the system (3.1) breaks down, the

physical system "continues to exist" and that some other "continuation"

should exist, although there is no analytical continuation.

The theory does not specify the nature of this continuation but merely

postulates that it is represented by the equation:

S(x,y) = s (3.2)

while the regular one-parameter family (when x # x0, y # y0) is given by:

dxlX = dy/Y, for which

R(x,y) - r (3.3)

It is seen thus that the regular (3.3) and the "irregular" (3.2) situations

appear to some extent on equal basis without involving so far any physical

considerations as in the M.C. theory.

4. Physical interpretation

The particular features of the problem are in that the boundary points

on the curve T are reached with a finite velocity in accordance with the

d.e. (3.1) while the motion along the S arcs occurs with an infinite velocity

if we assume for S(x,y) the same condition as in the M.C. theory. More-

over motions along the R curves are reversed on the interior and the

exterior portions so that no crossings of the boundary are possible.

One can question: What is the meaning of the Â©Â© and O O boundary

points? In fact, the first can never be reached from the inside and the

second from the outside so that, ultimately, one has the same situation,

namely the point p arriving at the boundary from some definite side with

an infinite velocity is unable to proceed any further. This may be

interpreted as a breakdown of the physical system; this means, as we saw,

that p crosses T and no further breaking oscillation takes place (for ex-

ample, point M" in Fig. 29.6).

If, on the other hand, a boundary point M is reached for which one has

either Â©O or OÂ© there appears a jump governed by (3.2); in such a case

the next position of p is M' determined by the point of the intersection of
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DISCONTINUOUS THEORY OF VOGEL 657

T with the 5 curve through M; hence p will proceed along the Rx curve

through M.

As was said, the theory does not specify the principle from which (3.2)

is derived; this depends on the physical meaning of each problem. If

this problem involves the invariance of energy, then it becomes identical

to that investigated in the M.C. theory.

5. A numerical example

Assume that we have the system

dxly = dy\(2 - x) = A/[(x - 1)" + (y - l)2 - 1]; y/x = s (5.1)

The R curves are circles

(2 - *)2 + y* = r2 (5.2)

and the S curves are straight lines through the origin. Equation of the

curve T is:

(x - 1)2 + (y - l)2 - 1 = 0 (5.3)

so that its (r,s) transform T0 is

(r2 - 3)2(1 + s2) - 4(r2 - 3)(i2 - 1) + 4(s - l)2 = 0 (5.4)

The conditions for the existence of a double point P of T0 are:

(T0)f = (T), = 0 (5.5)

/

-T

1 /

0

0 1 z *

Figure 29.8
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that is, here

2(r2 - 3)(1 + i2) - 4(*2 - 1) = 0

(5.6)

4*(r2 - 3) - 8*(r2 - 3) + S(s - 1) = 0

It is seen that the piecewise periodic motion PS^P"R-^P (Fig. 29.8),

admits a unique solution: s = 1, r2 = 3. One verifies that this point of

intersection of the R and the 5 curves is actually on T0.

The interesting point is that the double point P of T0 corresponds to

two points PP" on T0; all other points of T0 have a unique image on T0

the relation between the x,y and the r,s coordinates being

* = (r2 - 3)/2(1 - ,); y = *(r2 - 3)/2(1 - s) (5.7)

These expressions become indeterminate (0/0) for r2 = 3, * = 1.

Moreover the points of T0 which are Â© have also Â© images on T0 but the

sequence of Â© and O points on the transform is different from that on the

original boundary. In particular, the branches of the transform through

the double point keep their Â© or O character when this point is crossed.

6. Multivibrator

As an example illustrating this theory, we consider a multivib -ator

scheme shown in Fig. 29.9. If one neglects the effects of the grid current

and of the anode reaction, the d.e. of the currents are

Figure 29.9
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DISCONTINUOUS THEORY OF VOGEL 659

where <p are the nonlinear characteristics of the tubes, and V are fixed

biasing voltages.

Introducing the variables Uj = Vj â€” v}-; j = 1,2, equations (6.1) and

(6.2) become

Â«i - Vx = a2(u2)u2 + igiii

(0.3;

m2 ~ V2 = 6ilig + ^(uOiij

where a>y) = CJ/?/^/(Â«y); A, = C/tf, + ry);> - 1, 2.

The d.e. (6.3) reduce to the system

m1 = [a2(Â«2)Â«2 - + ^1*1 ~ ^2(Â«2)]/7,o ^64j

Â«2 = [Â«x(Â«x)mx ~ *2Â«2 + ^2*2 ~ ^xÂ«x(Â«x)]/J',

where

T0 = a&MuJ - bj, (6.5)

The critical points appear for the value of ux and u2 for which T0 = 0

which is of the same type as the d.e. (4.1), Chapter 26.

It is noted that in the (k1(u2) plane, the integral curve dujdu2 behaves

normally since the discontinuity occurs in ux and u2 and not in the integral

curve itself. This result follows also from the form of the d.e. (4.1),

Chapter 26.

Inasmuch as the variables ux and u2 remain bounded, although the d.e.

(5.4) lose their meaning for the values ux = u10, u2 = u20 for which

T0 = 0 the analytic continuation is impossible (since tix = 00 and ii2 = o0),

the physical continuation of the solution is still possible, because jujdt,

j = 1, 2, remain continuous at the point (u10,u20). If '0 is tne instant

when ux = u10, u2 = u20, the condition of continuity is

tfi('o - 0) = t/x(r0 + 0); U2(t0 - 0) = U2(t0 + 0) (6.6)

where U = judt. In terms of the function S, this leads to the expressions

Uxito) f/^o Â± 0) Â«!(*â€ž) Â«!(r0 Â± 0)

^ 2C0) Ufa Â± 0) u2(rr0) Â«2(r0 Â± 0)

(6.7)

Approximating the characteristics of the electron tubes by straight lines

(Fig. 27.4), we can assume that the slope of this characteristic is Si in the

interval (0,V) of the grid voltage and zero outside that interval. In

such a case, the curve T0 of equation <Zi(ui)a2(u2) â€” bxb2 = 0 is a rectangle

u1 = (),Â«!= Vx, u2 = 0, u2 = V2 as shown in Fig. 29.10.

If T > 0, inside this rectangle, this reduces to the condition
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The multivibrator is capable of oscillating since a = CRr<p, b = C(R + r),

ip' being the slope of <p; the trajectories R (inside the rectangle) are then

given by equation:

- *2Â«2 + g2)dux = (fl2m2 - Mi + Â£x>*Â«2 (6-9)

where g{ = Vjbj â€” Vkak are constants.

It can be shown that these curves in the (VxV^ plane have the appear-

ance indicated in Fig. 29.10. Moreover, it is also shown that the ex-

pression TxX + TyY is positive for any point inside the rectangle T

except at the point A which is a node. Thus any point of T is a repulsive

point.

Figure 29.10

Inside the rectangle T the trajectories are given by equation (6.9).

These R curves are shown in Fig. 29.10. The establishment of the

piecewise analytic oscillation will depend on the slope of the initial

solution DA. If DA goes through O, the variables uj and u2 will grow

up simultaneously, so that the curves representing these variables will

have the same form up to a certain factor of proportionality. If DA

approaches the sides of the rectangle T0 (that is, the ratio ajat deviates

from unity), there will be an asymmetrical oscillation; one of the voltages

will increase rapidly and the other, on the contrary, will increase slowly.
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A great deal of experimental work was done to check these conclusions

but we refer to Vogel's publications1 for further details.

7. A further extension of the theory

The preceding discussion applies to systems that exhibit a piecewise

analytic operation interrupted by discontinuous stretches as is also the

case of the M.C. theory (Chapter 26).

It is possible, however, to generalize this theory also for cases when two

different laws of motion replace each other during one cycle without

involving any discontinuities like stretches S.

Since each law of motion requires its own system of d.e., we reach a

different formulation which is usually termed piecewise linear theory, as it

is customary to take for each of these laws the simplest possible form, for

instance, amenable to a simple linear d.e. We shall postpone the investiga-

tion of piecewise linear phenomena to Chapter 31, but will give a brief

outline of Vogel's approach to this question.

If one follows the preceding argument, it is clear that for such a repre-

sentation we shall need two systems of d.e. of the first order which will

alternatively replace each other when the representative point reaches the

boundary of the curve T. Since both systems are analytic, the trajectories

will be analytic throughout the cycle except at the points at which one

system of d.e. replaces the other.

We have thus a familiar situation, but in this theory the approach to this

question is more general as it also takes into account the so-called hereditary

actions with which we have been partially concerned in Chapter 21.

Consider a system of d.e. of the form

x = X(x,y) + U(x,y,H); y = Y(x,y) + V(x,y,H) (7.1)

where U and V are functions (we can assume them to be analytic) of the

present state [*(*)> y(t)] and also of the functional H of all the past states

[x(t'), y(t')]; 0 < t' < t where t begins to be counted from the moment

when the physical system begins to operate.

It is usually assumed that H is a linear functional appearing as a curvi-

linear integral taken along the trajectory C from t = 0 up to the present

moment /, that is,

(7.2)

1 See footnote 1, page 648.
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We need a similar formulation for this problem in which x and y,

respectively, are either Xx, Yx, or X2, F2 with the change of functions

each time the trajectory reaches the boundary T.

One has to represent the integral as the sum of discrete quantities;

every point not on the boundary does not contribute to the value of the

integral.

This is what is known as a Stieltjes integral and is written as J dm(x,y)

with zero "mass density" except on T. Moreover, the value of the

integral must alternate between two fixed numbers each time the boundary

is reached. This means that the mass densities must be of opposite signs

for the Â© points and for the O points. In such a case, in fact, we shall

have H = 0 for the start; for the first boundary point O we have H â€” +1,

and for the second boundary point Â© the value of H will be â€” 1, and so on.

Finally the values of X + U and Y + V must alternate between

Xv X2 and Yx, F2; this can be obtained by taking

X=Xi; F=Fx; U = (Xi-Xx)H; V = (Yi-Yx)H

(7.3)

An adequate set of integro-differential equations for such a system will

be of the form

+ (X, - XJ jdm(x,y)] = dyl[Yx + (F2 - FJ jdm(x,y)] = it

with the mass densities:

0 if (x,y) is not on the boundary

+1 if (x,y) is on the boundary and Â©

-1 if (x,y) is on the boundary and O

8. Concluding remarks

In the general form which has been outlined in Section 7 this theory has

not found yet any definite applications. In the more restricted form

explained in the beginning of this chapter, on the contrary, this theory gives

the same results as the M.C. theory (Chapter 26) as may be expected, of

course. There is, however, a definite advantage of Vogel's theory in that

the question of stability is reduced to a simple formulation owing to the

transformation (x,y) -> (r,s) by which the problem of stability is reduced

to the form used in the theory of analytic limit cycles (Chapter 7).

It is recalled that this criterion consists in comparing the slopes of the

characteristics at the point of their intersection.
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DISCONTINUOUS THEORY OF VOGEL 663

In Chapter 31 we shall outline a similar theory but based on the existence

of a fixed point of the point transformation theory.

In conclusion it may be worth mentioning that, although the generalized

theory (Section 7) has not found any applications so far, the principal

reason is likely to be that all existing experimental evidence relates to

electronic circuits in which hereditary actions are, practically, absent.

The situation might be different if one were to undertake the analysis of

oscillating discharges or similar plasma-phenomena where these actions

are likely to be felt.

On the other hand, the more elementary theory (Sections 2 and 3)

has been confirmed by numerous experiments by Vogel1 himself and

Sideriades.5 A formal justification of this theory is also discussed.6

1 See footnote ', page 648.

4 L. Sideriades, Methodes Topologiques appliquees a Velectronique, Ministbre de

I'Air, No. N.T. 84, Paris, 1959.

â€¢ A. D. Myshkis and A. J. Hochriakov, Mat. Sbornik (in Russian) 45, 1, 1958.
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Chapter 30

ASYMPTOTIC METHODS

1. Introductory remarks

As we mentioned in the Introduction to Part IV, in the asymptotic

methods no physical idealization is made and a degenerescent d.e. of the

second order is considered as such. The situation is thus much clearer to

begin with since no idealizations are needed.

The impossibility of using power solutions directed attention to other

methods. Lienard was probably the first to draw attention to the asymp-

totic procedure (Chapter 4). Later on Haag1 suggested the use of the

asymptotic expansions, but the procedure was not explained sufficiently

and the matter was more or less ignored by physicists until Flanders and

Stoker 2 presented this subject in a simple manner in connection with the

van der Pol equation. Their outline, however, touched on a purely

asymptotic case (ji -> oo).

Beginning in 1945 there appeared a series of papers by M. L. Cartwright

and J. E. Littlewood concerning the nonhomogeneous van der Pol equation

in which fi is large.

This is obviously the most general case since the simplifications resulting

from the asymptotic assumption (ji -> oo) are given up and, besides the

right-hand term (containing t explicitly) makes the analysis still more

general.

In what follows, we have restricted this outline only to the homogeneous

case investigated by Cartwright in one of her papers,3 omitting many

1 J. Haag, C. R. Ac. Sc. (Paris) 202, 1936; 204, 1937; 206, 1938; Arm. Ec. Norm.

Sup. Series 3, 60, 1943; 3, 61, 1944; L. Cesari, Asymptotic Behavior and Stability

Problems, Springer, Berlin, 1959.

1 D. A. Flanders and J. J. Stoker, Inst- of Math- and Mech., New York Uni-

versity, 1946.

* M. L. Cartwright, Contributions to the Theory of Nonlinear Oscillations, ed. by

S. Lefschetz, II, 1955.
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details and trying to present only the essence of the method (Section 4).

The great simplification of the problem is due to the use of the (t,x) plane

(instead of the conventional (x,x) plane) which permits simplifying the

procedure in the different regions of the curve supposed to be known. It is

to be noted that the procedure does not require any special mathematical

device and proceeds along the line of the standard theory of d.e. The

difficult point, as we mentioned in the Introduction, is not in the basic idea

of the procedure but in a rather delicate way of carrying it through. In

this connection it becomes necessary to use, in addition to the d.e. itself, the

corresponding integrated, differentiated and energy equations. We give

an abridged version of this method in Section 4.

Finally, still later, Dorodnitzin 4 took up this problem from the point of

view of the theory of asymptotic expansions (Sections 5 and 6), thus

completing the work of Haag.

As was mentioned previously, the asymptotic methods now constitute a

considerable advance in the theory by justifying the existence of the

solution (known either from a graphical procedure of isoclines or from the

experimental data).

It is obvious that their applications are less important. In fact from the

preceding survey of the relaxation problems (Chapters 27 and 28) it is

observed that most of them are not reducible to the d.e. of van der Pol

and, moreover, very often no parameter is involved.

However, as some of these problems have two or more degrees of free-

dom, they are amenable to differential systems of at least fourth order, and

these extensions are yet to be made.

It is recalled that one of the most frequently encountered circuits, the

multivibrator, belongs to the case which is beyond the reach of a simple

van der Pol equation, particularly in its asymmetrical form.

All this seems to indicate that there is still much work to be done on the

asymptotic methods before they can become a working tool in hands of

physicists and engineers. This, however, has nothing to do with the

intrinsic value of these methods but merely concerns their applications.

2. Asymptotic theory versus discontinuous theory

A particularly simple approach to this problem was indicated by

Flanders and Stoker * in connection with Rayleigh's d.e.

* + (iF(x) + x = 0 (2.1)

4 A. Dorodnitzin, Prikl. Math- i Meh (in Russian) 2, 1947; English translation

by Am. Math. Soc., No. 81, 1953.

1 See footnote *, page 664.
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Since this d.e. reduces to the van der Pol equation by a change of the

dependent variable, conclusions hold also for the latter equation, although

the discussion is simpler for the d.e. (2.1).

The equivalent system in this case is

* = y; y = -v^(y) - * (22)

Figure 30.1

and the d.e. of integral curves is

% = -0^(y) + *)ly (2.3)

Introducing the new variable f defined by the relation: x = these

equations become

t = yln\ y = iiF(y) + (] (2.4)
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We consider the asymptotic case when /* is a large number. Assuming

a "soft" characteristic, one has

F(y) = -y + W (2-6)

in which case (2.5) becomes

| = M2b - b-8 - fl = f^oO (2.7)

As ^ is assumed to be large, dyfdi; is very large, that is, the integral curve

y = y(0 xS practically vertical everywhere in the (Â£,y) plane except on the

curve G(Â£,y) = 0, where its direction is horizontal.

Figure 30.1 shows the curve G(Â£,y) = 0 consisting of three branches

separated by points A and B of coordinates (f,l) and (f, â€”1), respec-

tively; at these points the curve

G(fc,y) = 0 has vertical tangents.

The direction field is obtained by

investigating the sign of G(Â£,y) for the

points above and below the branches

1, 2, and 3 of the curve G(^,y) = 0.

This direction field is indicated by the

arrows in Fig. 30.1. It is seen that

near to the branches 1 and 3 the direc-

tion field is directed toward these

branches on both sides, while on 2 it

is, on the contrary, directed away

from that branch. This shows that Figure 30.2

the branches 1 and 3 are stable and the

branch 2 unstable, since any small deviation of the representative point R

moving on G is corrected on branches 1 and 3 so as to turn it back toward

the curve; on branch 2 any such deviation is still more emphasized by the

direction field. This statement needs, however, a more accurate formula-

tion. In fact, on the curve G(Â£,y) itself dyjdÂ£ - 0, so that R cannot follow

G curve being exactly on it. But, as we have assumed that fi is very large,

dy/dÂ£ ~ oo very near to the curve G on both sides, as is shown in Fig. 30.2.

This means that R can still follow the general direction of the curve G

being slightly above the branch 1 and slightly below the branch 3, as shown

in Fig. 30.1 in broken lines G'. These curves G' are the nearer to the

branches 1 and 3 the greater is the value of p. In order to determine the

direction of motion of the representative point R along the curve G', one

has to investigate, as usual, the sign of Â£ and y along the curve with the

assumed form (2.6) for F(y). One ascertains that these directions are

-
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those which are indicated by arrows along the curve G(Â£,y) = 0 (Fig. 30.1).

It is easy to see what happens if one assumes some arbitrary initial condi-

tion represented by a point A0. As at this point the direction field is

vertical downward, R will drop vertically downwards until it meets the

curve G (or, more correctly, a curve G' slightly below G as was just

explained) which it follows in the prescribed direction (from right to left)

until it reaches the point B. At this point a special situation arises: in fact,

B is not a position of equilibrium; moreover R cannot follow the branch 2

because the allowed direction on this branch is from 0 to B. Hence the

only (nonanalytical) issue is to follow the vertical direction (from B to C),

since it is available at point B. Arriving at point C on branch 1, the

representative point begins to follow again the analytic branch 1 (from left

to right) until it reaches point A, where the situation is exactly the same as

it was at point B. This results again in another downwardly directed

vertical jump from A to D.

This determines the motion on the piecewise analytic cycle ADBCA

consisting of two analytic branches CA and DB "closed" by discontinuous

stretches AD and BC.

The familiar concept of a piecewise analytic cycle is reached here in a

very simple manner by investigating the direction field, although there are

some tacit assumptions which must be taken into account.

In the first place, as R cannot follow exactly the curve G(Â£,y) = 0 as

long as fi is finite, as is assumed here, it follows a neighboring curve G',

which is a plausible assumption since, dy/dÂ£ being zero on G and, practi-

cally, infinite near to G, there is always an appropriate value of dyjdÂ£ in

the narrow band around the curve G(Â£,y) = 0 which permits following the

average direction closely enough to the G curve.

There is another resemblance between the two theories, namely: as long

as R is on the analytic branch (1 or 3) the motion is governed by the d.e.

but, on arriving either at A or at B, the representative point "has no other

issue" but to follow the vertical field. In the discontinuous theory we had

a similar conclusion owing to the introduction of the condition of Mandel-

stam; here we reach it owing to the availability of the vertical field which

permits the representative point to escape from a kind of an analytical dead-

lock just mentioned.

In the discontinuous theory these stretches AD and BC are traversed in

no time; here they are traversed with a large but finite velocity as long as p

is finite.

There is thus a close resemblance between the two theories but what is

"discontinuous" and happens "in no time" in the discontinuous theory

here, in the asymptotic theory is "quasi-discontinuous" and happens in a

very short time.
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ASYMPTOTIC METHODS 669

One can reach similar conclusions in a slightly different manner.

Suppose we have a d.e.

+ /(*>/>)* + x = 0 (2-8)

where n is a small parameter and p is a finite parameter. The term fix is

small if * is bounded; in such a case (2.8) can be replaced by the degenerate

d.e. of the first order

x = -xjf(x,p) (2.9)

and if f(x,p) / 0 for all t, this d.e. gives a good approximation.

To be more specific, assume that (2.8) has the form:

fiii + (p - x*)x + x = 0 (2.10)

If one neglects the term fix, it becomes

[(/>-**)/*]* = -1 (2.11)

and the integration yields

Thus

fx(l) (p \ J i x x* - xJ

whence

t = h(x) = X-â€”p--p\og^ (2.12)

i x0

Â£ = h'(x) = x-P- = (2.13)

ax xx

Assume that h'(x) = (dtjdx) < 0 for x < Vp. As (dt/ax) < 0, clearly

(dxjdt) < 0 so that, if *0 < Vp, * decreases and for all r one has * < yfp.

Likewise, if x0 > Vp, one has (dxjdt) > 0 so that * > Vp for all t. As

in this case x and x remain bounded, we can use the degenerate equation

(2.9) instead of the full equation (2.8).

Suppose now that the sign of the second term in (2.10) is changed.

If one proceeds as previously, one obtains

* = *(*)=/> log* -^i^L2 and

w r 6x0 2 dx x

If now *â€ž < Vp, (dtjdx) > 0 and, therefore, (dxjdt) > 0. When *

reaches the value Vp, one has x â€” oo and thus x = oo.

If one uses the (t,x) plane representation (Fig. 30.3), the fact that

x â€”> oo means that the trajectory approaches the verticality and X -> oo

means infinite curvature at this point (that is, an infinitely small radius of

f

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

8
 0

1
:2

6
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



670

RELAXATION OSCILLATIONS

curvature). In this case the trajectory will have the appearance shown in

Fig. 30.3. One could use a similar elementary argument in connection

with a(x,v) plane where v = x. Here again if x is bounded for all r, one

can neglect the term fix and one has simply v = x/(p â€” x2) which can be

discussed directly (Fig. 30.4) without integration. However, if x = Vp

or is close to this value, v = x becomes large as well as x and one has to use

the full equation (with fix) as the result of which, instead of the theoretical

curve v(x) for the degenerate equation having x = y/p as asymptote, the

real curve v(x) will have the appearance shown in broken line. This

shows that the effect of the term fix in this range limits the instantaneous

jump in v from + oo to â€” co to a finite change occurring rapidly but not

instantaneously.

These simple examples do not introduce anything essentially new but

merely show the difference between the results obtained on the basis of the

Figure 30.3 Figure 30.4

idealized theory and those yielded by the complete theory in which the

effect of the term fix is taken into account.

3. Asymptotic theory applied to an asymmetrical multivibrator

As a second example we consider the case of a multivibrator with one

degree of freedom which has been investigated in Section 1, Chapter 27,

by the discontinuous theory which resulted in a d.e. of the form

-<p(x)x + x = 0 (3.1)

Since in the asymptotic theory, the degeneration theory is not used, we

have to use the d.e. of the second order

fix â€” <p(x)x + x = 0 (3.2)

Where fi is a small number. In physical terms this means that we do not
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neglect the effect of a small inductance as we did in the discontinuous theory

dealing with the degenerate d.e. of the first order.

It is noted that this d.e. is not exactly of the van der Pol type since

dividing it by fi one obtains two large terms, one associated with x, as in the

van der Pol case, and the other x/n which is also large. The latter does not

correspond to the van der Pol equation. In view of this one may expect a

result different from that of the preceding section.

Written as an equivalent system, the d.e. (3.2) becomes

x = y\ y = *[<p(x)y - Â«]; A = X- (3.3)

and the d.e. of integral curves is

g = XMx) - xjy] (3.4)

If one assumes, for instance, <p(x) = 1 â€” x2, the preceding equation

becomes

g - A(1 - *Â« - xjy) = XG(x,y) (3.5)

where A is a large number.

The argument remains the same as in the preceding section, namely:

dyjdx is large everywhere in the (x,y) plane except on the curve

G(x,y) = 1 - x* - x\y = 0 (3.6)

where it is zero (this presupposes that A is large but not infinity). The

curve G(x,y) = 0 is shown in Fig. 30.5; it consists again of three branches;

the branches 1 and 3 are stable and 2 unstable which one ascertains by the

same argument as previously. Likewise, as on the curve G(x,y) = 0 the

direction field is horizontal, R cannot follow this curve but it can follow

curves G' slightly above the branch 3 and slightly below the branch 1 as

shown in broken lines.

As y increases, x also increases so that the line x = â€” 1 is crossed with a

high velocity from left to right. In the interval (â€”1, +1) this velocity

continues to increase until the line x = +1 is crossed, after which the

velocity begins to decrease; but this decrease is not discontinuous since the

d.e. is of the second order.

Once R reaches the branch 3, it follows G' toward the line x = +1 which

is crossed from right to left with an ever-increasing velocity in the interval

( + 1,-1). As soon as x = â€”1 is crossed, the velocity decreases and,

later, reverses, which brings R on some point of the curve G' on the branch

1 which continues the process.
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Figure 30.5

Everything happens as if the branches 1 and 3 were sending R toward the

unstable interval ( â€” 1, +1) through which R is conveyed with an ever-

increasing velocity and, on crossing the limits of this interval, the stable

branches (1 or 3) direct it again into the interval (â€” 1, +1) which maintains

the oscillation. It is noted that in this representation there are no dis-

continuous stretches since the d.e. is of the second order, but the actual

calculation of trajectories requires a step-by-step determination which

ultimately reduces to a tedious graphical construction.

In the remaining sections of this chapter we outline briefly the exact

asymptotic methods needed for these calculations.

4. Method of Cartwright-Littlewood

Since it is impossible to give here a full account of this work 5 we mention

briefly its scope and the conclusions in a particular case which interests us

here.

* M. L. Cartwright and J. E. Littlewood, J. London Math. Soc, 1945; Arm. of

Math. 1947; Proc. Cambridge Math. Soc, Vol. 45; J. E. Littlewood, Acta Math.

97 and 98; L. Cesari, Asymptotic Behavior and Stability Problems, Springer, Berlin,

1959.
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The d.e. is considered in the form

* - nf(x)-x + g(x) = bpp(t) (4.1)

where /, g and p are independent of fi; (i large. This d.e. has been

discussed in a number of papers5 but we shall confine our attention to the

autonomous case only (p = 0) which is given in one of the papers of M. L.

Cartwright.3 The investigation is conducted in the (t,x) plane.

t

Figure 30.6

The purpose of this analysis is to show that for /x large the d.e.

x + n(x2 - \)x + x = 0 (4.2)

has the solution: x(t) of the form obtained experimentally by van der Pol

and shown in Fig. 30.6.

In addition to (4.2) two other equivalent equations are used: the

integrated equation

(x3 x 3\ f'

*-y-*o + ^f-]-J *dt (4.3)

and the energy equation:

Ax2 = x* - V = 2fi f' (1 - x^xW - x2 + *02 (4.4)

J to

The use of the (t,x) plane is particularly convenient here as the analysis

Â» See footnote Â», page 672.

* See footnote *, page 664.

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

8
 0

1
:3

0
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



674

RELAXATION OSCILLATIONS

of the curve in its different regions gives directly information regarding the

relative order of magnitude of x, x, and ic. As the quantity x is measured

by the slope of the curve and x by its curvature, the possible simplifications

in equations (4.2), (4.3), and (4.4) become obvious. For instance, on the

stretch Aq the velocity x is high and nearly constant (so that i x 0); on the

contrary, in the region around H the acceleration x is large (since x varies

rapidly) but, on the other hand, x changes very little; on the stretch HE the

velocity is negative and not very large; besides this, it is also nearly con-

stant (so that x x 0 again), and so on. One can simplify the d.e. on this

basis proceeding from one region to the other. One integrates these

simplified d.e. and joins the integral curves by taking the terminal condi-

tions of one stretch as the initial conditions of the next one.

In fact this approach remains practically the same as that outlined in

Section 5 but the procedure does not require the use of asymptotic

expansipns. One can readily see that the estimate of the order of magni-

tude becomes very important here because the procedure hinges largely on

a judicious choice of what has to be retained and what can be neglected.

The first thing is to ascertain how rapidly a solution starting from

various points converges to the periodic solution. In what follows we

shall designate the solution f passing through the point H (Fig. 30.6) as

x = h; x = h and, likewise, for other points.

Clearly for H we have: x = h, x = 0; for C: x = 1, A = c; and for A:

x = 0, x = d, where h, c, and d may be any numbers except that, obviously

h > 1, d > 0, i < 0.

One establishes first a number of lemmas necessary for the proof of the

final theorems. We shall give only a short outline here and refer the reader

to Cartwright3 for details. In lemma 1, we use the energy equation for

the stretch HC; in lemma 7 the same equation is used for the stretch CA'.

A more detailed study shows that a similar procedure holds for other parts

of the curve, taking into account the corresponding orders of magnitude

of x, x, and x on each particular stretch. In addition to using the integrated

equation (4.3), one also uses the differentiated equation

x + /x(*2 - l)x + 2fixx2 + x = 0 (4.5)

All these expressions are strictly equivalent to the original equation (4.2)

and there is no point in using one in preference to another. The energy

equation (4.4) is particularly useful in showing that the energy p = x* +

decreases for *Â« > 1 and increases for x2 < 1. In a similar way one

proceeds to more detailed approximations. Use of the above criteria:

t The term "solution" used in this section is equivalent to the term "trajectory"

used previously.

* See footnote *, page 664.
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(1) one shows that on the stretch HE the last two terms: p.(x2 â€” 1)* + #

are the most important; (2) for the stretch EF the significant terms reduce

to x + x; (3) for the stretch FA' the first two terms (as the interval near

x = â€” 1 is very short in time); and so on. In all cases one is more in-

terested in x and x than in x. On the stretch HE the time is long and, as

fi is large, in the integrated equation the terms

"(I~') ~"(IT -*)-/.'â€¢*

are large compared with J0' xdt = e â€” h = e. On EF the term ii

(x2 â€” l)x2dt is small so that the change of energy is small provided E and

F are sufficiently near C. In addition to the form of integral curves in

different regions, the time intervals for crossing them can also be calculated;

this results in the calculation of the period.

The problem studied by Cartwright-Littlewood (/x large but finite)

occupies the intermediate position between the two asymptotic cases;

(1) n small, and (2) /xâ€”> oo in which conditions are simpler. We have

seen that for n small there is no necessity for using the additional equations

(4.3) and (4.4) since in this range the homogeneous van der Pol equation

can be integrated directly by approximations.

As to the other asymptotic case (ji â€”> oo), the discontinuous theory

(Chapter 26) gives also a simple qualitative approach in which, on the

contrary, the d.e. (at the points of discontinuities) gives way to the in-

variant (analogous to equation (4.3) and (4.4)) which governs the idealized

discontinuous transition. In the difficult intermediate range with which

the Cartwright-Littlewood theory is dealing, it becomes necessary to

make use of all three equations: the van der Pol equation as. well as equa-

tions: (4.3) and (4.4).

From this short survey it is noted that the difficult problem of van der

Pol's equation when /x is large is solved "piece by piece" by splitting the

integral curves into certain characteristic regions in each of which the

problem can be simplified to the extent that the integration becomes

possible. The remaining part of the work is merely to "fit the pieces"

together by imposing some plausible conditions.

The work of Dorodnitzin (Section 6) appeared after the first papers of

Cartwright-Littlewood were published; it introduced the use of asymptotic

expansions which are convenient. Both approaches lead ultimately to the

same result as one could expect from the "piecewise" analytic treatment

of the initial d.e.

It must be noted that in this and in the preceding sections it was possible

to explain by analysis the form of the integral curve obtained either graphi-

cally (by the method of isoclines) or experimentally; this analysis becomes
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possible if one splits the whole periodic process into "pieces" which can be

joined. Idealization of this nature is partly the same as that used in

Chapter 26, but merely arranged in a different manner: instead of treating

points of very bad analyticity as definitely nonanalytic (for example,

having two distinct tangents), the same situation here is treated by intro-

ducing a small "joining arc" with a very large curvature (a very small

radius of curvature) so that the local idealization proceeds, so to speak,

systematically through all regions without introducing any special "critical"

points or lines at which features suddenly appear that did not exist on

other points of otherwise analytic arcs (compare Chapter 26).

5. Asymptotic expansions

As was mentioned in the Introduction to Part III, the power series

solution cannot be used in connection with the van der Pol equations when

the parameter /x is not sufficiently small, because in this case the series

diverges and cannot be used.

There exists, however, a possibility of obtaining the desired result even

in this case if, instead of a power series, one uses a special asymptotic

expansion.

This question was known already to Euler, but the modern develop-

ments in this field began with the work of Poincare6 and it is useful to say

a few words about this series.

Consider the function

/(*) = J*" f^-'dt (5.1)

where x is real and positive and the integration is taken along the real axis.

By repeated integration by parts one gets

/(*) = x - *-2 + 2!x-3 + ... + (n- l^-l)-1*-"

r- (5-2)

+ n!(-l)n t-(n+Â»ex-tdt

We set

Â«_i = (Â»-1)!(-I)-1*-"

and

sn(x) = 2 u" = *_1 ~ *~* + 2!*~3 - . . . + (-l)nn!*-(fl+1) (5.3)

As Â«â€ž,/Â«â€ž_! = mx-x â€”> oo for m â€”> oo, the series diverges for all values of x.

* H. PoincarÂ£, Les mithodes nouvelles de la micanique celeste T.3, Gauthier-

Villars, Paris, 1892; E. Goursat, Cours d'Analyse T.2; Gauthier-Villars, Paris,

1918.
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In spite of this the series can be still used for the calculation of /(*). In

fact, suppose we fix the number n and calculate the value sn, which gives

/(*) - sâ€ž(x) = (-iy+\n + 1)! jâ„¢ r^e'-'dt

Since e*-' ^ 1, one has

\f(x) - Sn(x)\ = (n + 1)! jÂ°Â° t-(n+*)e*-dt < (n + 1)!

I

Â»! <5'4)

For a sufficiently large value of x the right-hand side of (5.4) is very

small and the function f(x) can be approximated sufficiently well by taking

the sum of sufficient number of terms.

Thus, for instance, for n = 5 and x = 10, one has |/(10) â€” 55(10)|

< 0.00012. This series is called the asymptotic expansion of the function

/(*). The following definition of an asymptotic expansion was given by

Poincare:

A series:

A0 + Axrx + A^-* + ... + A^r" + ... (5.5)

in which the sum of the first (n + 1) terms is Sn(z) is said to be an asymp-

totic expansion of a function f(z) (for a given argument of z) if the ex-

pression Rn(z) = zn\f(z) - Sâ€ž(z)\ fulfils the condition

lim Râ€ž(z) = 0; (n fixed but otherwise arbitrary) (5.6)

1*1-* Â«

This holds even if

lim \Râ€ž(z)\ = oo; (z fixed)

nâ€”'-<x>

In such a case one can always make

WW - Sn(z)]\ < e (5.7)

where e is arbitrarily small if |z| is sufficiently large.

The question whether a function f(z) possesses an asymptotic expansion

and what are the values of its coefficients is answered by expressing that the

successive limiting values for z â€”> oo along a radius must exist, namely:

f(z)-+ A0; f(z) -A0-> An /(*) - A0 - Axr* â€” M2...
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where the limit is taken either along the real axis or in a region of the

complex plane.

On the other hand, for

/(*) = *-Â«; -^<arg*<^

all AM are zero since are~* -> 0 for every integer m > 0, if * â€”> co in

â€” itj2 < arg z < n/2; this result shows that different functions may have

the same asymptotic expansion. Thus, if f(z) has an asymptotic expan-

sion for the above argument of z, f(z) + ac**; a > 0, b > 0 has the same

asymptotic expansion.

If one writes

f(z) = A0 + A^x + A^r* + ... + Ajr' + Wj(z)z-*

with WJ^z) â€”> 0 for z â€”> oo in some interval Bx < arg z < 62, the following

theorems can be proved:

(1) If fi(z) = f2(z), then An = Bn (uniqueness theorem)

(2) If F(z) = /j(*) x Uz) = C0 + Cxz-i + Cr1 +â– â– â–  + Cjr*

+ W^z)z-n, then

H

Câ€ž = 2 A A-i (the product theorem)

o

(3) If F(z) = h(z)M*) = C0 + Cxrx + C^rÂ» + ... + Cr-

+ Wâ€ž(z)z-n, then

^0^0 = -^o! ^i^"o + ^oCi = ^4iJ ^*^0 + jB^! + B0Ct â€” At

(the quotient theorem)

(4) If F (z) = A^2 + A&-* + ... + Aâ€žz-n + Wâ€ž(z)z->, then

JÂ°Â°F(z)dz = -^,2-^ - (^3/2K2 - . . .

+ [AJ(n - 1)]Â«-"+1 + en(z)z-"+1 (the integration theorem)

(5) If F(z) = Axz-* + A&-* + . . . + A^r" + W^r", then

F(z) = -Axz-2 - 1A&-* - ...

â€” nA^r"-x â€” Â£â€ž(*)*-"-1 (the differentiation theorem)
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In this case it is assumed that F'(z) can be developed asymptotically. We

shall limit ourselves to this short outline as this subject can be found easily

in textbooks.

In the following section we shall see the application of these expansions

to relaxation problems.

6. Method of Dorodnitzin

A "method of junctions" of asymptotic expansions was developed by

Dorodnitzin* in connection with the van der Pol equation with large

.jr

Figure 30.7

values of /x. We indicate this procedure following the exposition of

Bogoliubov and Mitropolsky.7 The idea of the method is to introduce

certain intermediate regions in the phase-plane (Fig. 30.7) in which the

asymptotic expansions representing the solution of the van der Pol

equation can be "joined"; this amounts to a special form of continuation.

The van der Pol equation can be written as

y%-M -*')y + * = o (6.i)

4 See footnote *, page 665.

7 N. Bogoliubov and J. Mitropolsky, Asymptotic Methods in the Theory of

Nonlinear Oscillations (in Russian), Moscow, 1958.
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In regions I and III of Fig. 30.6 this d.e. may be approximated by two

abridged d.e.f:

y%-^ (6.2)

-^1 - + * = 0 (6.3)

These two regions cannot be joined because it is impossible to determine

the integration constant of (6.2) so as to obtain the analytic continuation

into region III for which (6.3) is valid. In order to obtain a junction of

integral curves between these two regions, one introduces two joining

regions II and IV in which one constructs asymptotic expansion with a view

to joining them together, since in these regions II and IV the abridged

equations (6.2) and (6.3) do not hold.

In view of the symmetry with respect to the origin 0, it is sufficient to

carry out the argument for one half-cycle.

We construct first the solution for region I. If ax and a2 are two values

of x for which dyjdx = 0 (which in the case of a limit cycle is ax = a2 = a,

a being the amplitude of the oscillation), the region I is specified by

inequalities.

â€” l+e<*<a1â€” e; v > 0; e>0

(6.4)

â€” a2 + e < 1 â€” e; y < 0; e>0

The solution is sought in the form of a series

y = ^2 ^fâ€ž(x) (6.5)

where \s. is a variable increasing indefinitely.

If one substitutes this series in (6.2) and equates the coefficients of like

powers of fi, a system of equations is obtained from which the functions

f,-(x) can be determined recursively.

t The idea of approximating (6.1) by two abridged d.e. is due to van der Pol

who introduced two independent variables t and r' denned by relations (a) t = pr

and (b) t = r'/fi. This results in the two d.e. (after dropping terms with 1//**):

(**-i)| + * = o: Â£> + ^-Â»i? = 0

which can be both integrated. By this procedure one ascertains qualitatively

what happens around the "sharp corners" of the (x,t) integral curve but the problem

of "fitting" (which constitutes the essence of this section) has not been carried out

by van der Pol.
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For the first two functions the following expressions are obtained

/â€ž(*) = c + x - $x* (6.6)

ti\ *i r. /, *\ 1, (2x + xtf + Z(Xx* - 4)1

*Â»Â» - 2 / 3 T 2* + x, *, I

Hâ€”h r / â€”s 7 arctan =â€” â€” arctan

*i2 ~ 1 V V ~ 4 L V3(*i2 - 4) V3(V - 4)J

(6.7)

where is a real positive root of f0(x) = 0. It is assumed that c > f as

required for a limit cycle.

The procedure is the same as that which we encountered previously

only, instead of the power series, we use the asymptotic series (6.5).

The functions fi(x) and also the others have special features for x = xx

but the series (6.5) preserves its asymptotic character up to the value of *

satisfying the inequality

0(xx-x)>o(^y

In particular, the series is an asymptotic series for x = #x â€” 0(1 jix), in

which casey ~ O(1).

Region II corresponds to the neighborhood of the points; (y = 0,

x = ax) and (y = 0, x = â€” a2). Consider, for instance, the first point:

(y = 0, x = ax) and introduce a new variable z = â€”py. If one expresses

* as a function of z, (6.1) becomes

â€” = â€” z rfi K\

dz ix2 z(x2 - 1) - x K )

We look again for a solution of the form:

* = f 9>â€ž(*K2b (6-9)

n-0

Proceeding as previously, we determine recursively the functions <pn(z).

The first two functions have the form

<"<*) - ^=1 [Â«+7jb-x (' - aj^r*)\ (610)

t The logarithms below are Naperian logarithms.
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682 RELAXATION OSCILLATIONS

*â€¢<*) - K^-rr.^'Â» - H*+ Â«^T))

r . . , log [l - *Â»' - "1

The functions <pâ€ž(z) have again special features when z â€”> â€”j-iâ€”r and

when ar = â€” oo, but the series (6.9) maintains its asymptotic character for

all z satisfying the condition

"(^3 - â– ) > Â°fT)

For z < 0 the condition is: 0(Â«) < 0(/x2). The asymptotic convergence

of the series (6.9) occurs for z = â€” fi, that is, for^ = 1.

As the series (6.5) and (6.9) converge asymptotically for the same value

of #, they form a system. For this purpose it is necessary to determine

the constant ax from the given value of the constant c.

If one sets in both series (6.5) and (6.9) y = 1, one obtains two equations

with two unknowns: x* and av namely:

i - /* S wy-*; ** = 2 9n(-^~u (6-12)

From the first equation one finds x* and, from the second, ax, expressed in

terms of xx and c.

Region III is specified by the intervals:

a1-e>*>l + e; y < 0; e > 0

-a2 + e < x < -1 - e; y > 0; e>0 (6.13)

This region is important because as soon as * enters into this region,

oscillation acquires a stationary character.

We consider the region III fory < 0. Omitting a series of intermediate

calculations, the solution of (6.1) appears in the form of a series

y=~7L2 P*(*K2" (6.H)

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

8
 0

1
:4

0
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



ASYMPTOTIC METHODS 683

where Pâ€ž(x), as previously, are given by a recursive procedure, viz.:

The series (6.14) preserves the asymptotic character as long as

0(x - i) > oo*-2'8)

Near the limit of convergence^ = 0(/x-1/3).

Region IV is specified by the intervals

1â€” e<*<l+e; y < 0; s>0

-l-e<*<-l+e; y > 0; e>0 (6.16)

As, at the approach to region III, y -> Oijirx/3), it is useful to introduce a

change of the variables:

y = -ix-V3Q(u); u = fi2'\x - 1) (6.17)

With these variables (6.1) becomes

- 2uQ + 1 = r*\u*Q - u) (6.18)

We look for the solution of this d.e. again in the form of an asymptotic

series

= 2 QJtuy-*" (6.19)

n = 0

This gives a recursive determination of the functions Qn, viz.:

la 1 1 a

QM _.Â« + Â« + -- wt + + ...

e.w-mic + />)("*-Â£M; ^ - ~p(-JT

(6.20)

where a is the smallest root of the equation

â– MM2) + ^-i/8(iT3/2) = o

where Jx/3 and J_x/3 are Bessel functions of orders ^ and â€”J. For the

junction with the solution (5.14) of region III, it is necessary that /x~ 2/3Oi(u)

be bounded for u = 0(/x'). From the form of expressions 0â€ž(u), one

observes that the series (5.19) maintains its asymptotic character up to the

values of u satisfying the conditions Q(u) < Q(p~2/3), that is, for * satis-

fying the condition 0(x â€” 1) < 0(1). It follows that the regions in which

the solutions (6.19) and (6.14) hold, do actually overlap.
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It remains now to join the solutions of regions I and IV. For this

purpose it is necessary to join the solutions (6.5) and (6.19) taking into

account the new variables (6.17). For x = â€” 1, y > 0, the constant c

must be greater than f. Let e = f + y;y>0. As >>( â€” 1) = 0(/u.-1/*),

\xy is of the order \irx/3 and, thus, y = 0(jw~4/8).

It can be shown that (6.5) conserves its asymptotic character up to

values of * satisfying the condition 0(x + 1) > 0(/x-1/3). Thus the

regions in which solutions (6.19) and (6.5) hold, do overlap, the asymptotic

approximation being guaranteed for * = â€” 1 + /x-1/3.

One can then determine the constant c by equating the values of y from

(6.19) and (6.5) corresponding to x = â€” 1 + fi~x/3, viz.:

M-1/3 f M-2/3!?â€ž(-M-1/3) = M i 1 + M-1/3) (6.21)

n = 0 n = 0

From this relation one determines y with the accuracy 0(jpl~s/3) and hence

c = f + y. This permits determining xx as the root of f0(xi) = 0.

One obtains for the amplitude of oscillation the expression:

+ 3 M 27/x2

+ 1 (360 - 1 + 2 log 2 - 8 log 3)^-* + Ob*-*/*) (6.22)

As to the period, it is obtained from the expression

For the actual calculation the interval of integration is in five parts

according to the various regions, namely:

(1) From â€”a to â€” *2, region II where x2 is given by (6.9) with

z = (1 - ^-*/3)a/(a2 - 1)

(2) From -x2 to -(1 + n~x/3), region III.

(3) From -(1 + p-x/3) to -(-/i."1/3), region IV.

(4) From â€” (1 - /x_1/3) to **, region I, where x* is given by

x* = x - - 1 _ *i _ J_

1 V - 1 ^ (V - l)2 p*
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(5) From x* to a, region II.

The period T is given by

T = 2(7\ + Tt+T,+ Tt + Ts) (6.25)

If one carries out the integration with the numerical values of the co-

efficients, one finds

T ~ 1.613706^ + 7.01432/X-V3 - ??1oJL^ + 0.0087^-! + 0(^~*/3)

(6.26)

For a sufficiently large /x one can neglect all terms except the first one.

It is observed that for large values of fi the expansions become very

complicated. In fact for /x ^ 1 it was seen (Chapters 14 and 15) that the

series solutions are given in the form of power series. Here the series

solution contains fractional powers and logarithmic terms. The form of

the d.e. for large values of /x exerts a greater influence on the analytical

expression of the solution than happens in the other asymptotic case when

M-*0.

7. Concluding remarks

From the preceding review it appears that, in spite of the theoretical

simplicity of the asymptotic procedure, calculations are long and tedious.

If one considers that all this relates to the simplest possible case of an

autonomous one-degree-of-freedom system, one has to admit that there is

yet much to be done before these methods can be extended to the formula-

tion of numerous phenomena which were analyzed in Part III in connection

with nearly linear systems.

The difficulty seems to be inherent in the very nature of these phenomena

of a quasi-discontinuous type, when one tries to reduce their formulation

to terms of the analytic theory. On the other hand, the idealization of

these effects by mathematical discontinuities leads to much simpler results

as happened also in theoretical mechanics in connection with the theory of

shocks.

It is interesting to note that many years before the advent of modern

theories of relaxation oscillations, Boussinesq8 specified this general

subject in a very clear manner which we quote:

"Si la continuite simplifie les choses quand elle en relie plusieurs qui suivent la

meme loi, elle les complique au contraire, le plus souvent, lorsqu'elle etablit la

* Boussinesq, Applications des potentiels a Vetude d'equilibre, Gauthier-Villars,

Paris, 1885.
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transition entre deux categories d'objets ou de faits regis par deux lois simples

differentes et c'est alors une discontinuity fictive, un passage brusque de la

premiere categorie a la seconde qui rend les questions abordables."

In fact, in the above analysis of discontinuous theories there are two

distinct "categories of objects"â€”the analytic arcs and the discontinuous

stretches with a definite passage from one type of phenomena to the other;

the continuous (and even analytic) part is distinctly separated from the

quasi-discontinuous (idealized as discontinuous) part and, on this basis

the problem becomes simple.

On the other hand, if one does not wish to introduce this idealization

and prefers to proceed in the orthodox analytical manner, this also is

possible (Sections 5 and 6) but at the cost of a more complicated procedure.
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Chapter 31

PIECEWISE LINEAR IDEALIZATION

1. Introductory remarks

In Chapters 26 and 29 we outlined the salient points of the discontinuous

theory. This theory is based essentially on the theory of degeneration

which introduces certain discontinuities in the phase plane, namely: parts

of trajectories are traversed in no time, whereas on other parts of the closed

trajectory the motion of the representative point is continuous and takes

place, as usual, in accordance wth the d.e. of the process. There is

another way of idealizing the problem; namely: by means of the so-called

piecewise linear idealization. It consists in replacing the actual nonlinear

characteristic by "pieces" of straight lines. Thus, for instance, the usual

characteristic of an electron tube (plate current against grid voltage) may

be idealized by two straight lines: one corresponding to the "rectilinear

part" of it (which is generally used in applications) and the other, the

saturation part, being merely a straight line parallel to the abscissa axis

(Fig. 31.1).

The phenomenon represented by this idealization will differ slightly

from the actual phenomenon since it represents the performance by means

of two straight lines disregarding the curvilinear part between them (shown

in broken lines).

If one looks mainly for the qualitative behavior of an oscillator, such

idealized representation is, generally, sufficient and a slight quantitative

difference between the two modes of representation is justified by the gain

in simplicity inherent in the idealized "piecewise linear" representation.

This approach was given considerable attention in recent years owing to

the availability of the so-called point transformation method. This permits

using a graphical procedure resulting from certain transcendental equa-

tions. The condition of periodicity in this case reduces to that of the

existence of the fixed point under the repeated transformations. This

687
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Figure 31.1

method is related to some extent to the theory of successor functions

(Chapter 7).

2. Point transformation method

It is recalled that the theory of Poincare considers a "segment without

contact" in this field of spiral trajectories which determines two sequences

of points of intersection of the segment with trajectories: Av A2,. . .,

(outside) and Bv B2,. . ., Bâ€ž (inside). The existence of the limit cycle is

proved when these two sequences tend to a common limit for n â€”> oo (see

beginning of Chapter 16). In this manner every point of a limit cycle

may be regarded as a fixed point. The theory of Poincare presupposes the

analytic case. Here, on the contrary, we are interested, in a nonanalytic or,

more precisely, in a piecewise analytic (or, piecewise linear) case in the

sense which was denned in the preceding section. It is recalled also that

equations (1.1) characterize this approach. Each of these d.e. is linear and,

hence, has no periodic solution but one of them is replaced by the other

(and vice versa) when x = 0. Although each of these d.e. has no closed

trajectory, their alternative operation with a "change over" for x = 0, as

we saw, leads to a closed (although nonanalytic) trajectory. This may be

also regarded as a representation of a trajectory with two different phase

planes replacing each other discontinuously along the x axis with a dis-

placement OO'. Thus, the impossibility of obtaining a closed trajectory

for a linear d.e. in a fixed phase plane becomes a possibility if the same d.e.

refers to two different phase planes displaced discontinuously along the x

axis by the segment OO'.

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

8
 0

1
:4

6
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



PIECEWISE LINEAR IDEALIZATION 689

A closed trajectory of this kind ceases to be analytic at the points where

it cuts the x axis, and this loss of analyticity (at the two points on the

trajectory) irftroduces a change in the whole argument.

This particular case can be generalized if we consider it in relation to the

point transformation theory. We consider the phase plane yox (Fig. 31.2)

and three regions I, II, III with boundaries S, S3 and Sx, S2. Regions

I and III are limited on one side (either by S, S3 or Sv S2). Region II

is between S, S3 and Sx, S2. In each of the three regions governs a

simple linear d.e. Assume that the representative point starts from the

point s somewhat on 5 (in the following, small letters indicate the ordinates

on the ordinate axes shown by the capital letters). If we assume that the

Figure 31.2

point s is already in region II, the representative point will traverse the

arc ttv

As on this stretch (in region II) the d.e. is linear and we know the initial

conditions ( â€” xx, s), we can easily calculate the terminal conditions (*1', jx)

for this stretch. As we are now on the border of region III, the terminal

conditions of the preceding stretch become the initial conditions of the

following stretch s, s2 taking place in III. Arriving at s2 we continue the

argument for the following two stretches and s3s'. The important

point in the argument is the position of s' with respect to i: we cannot form

any conclusion after the first turn of the representative point through the

sequence of regions II â€”> III -> II -> I, but for the subsequent turns we

can see whether s' comes nearer to s or not. If s' approaches s and coalesces
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with it for the repeated transformations I â€”> II â€”> III â€”> I, etc., then we

obtain the fixed point of the transformation which leads to the following

obvious theorem: The existence of a fixed point of a piecewise linear trans-

formation is the criterion of periodicity of a piecewise linear phenomenon.

In this argument we deal with the transformations of a semi-line S into

another semi-line Sx\ of Sx into S2, etc.; these transformations are

continuous and (1:1), we designate them respectively by 2\, T2, T3 and Tt.

More precisely we have:

For 7\: *1 = ^(tJ; s = ^(tJ

For T2:s2 = <pa(tj); *i = ^(r^

For T3: s3 = <p3(r3); $t = ip3(r3)

For Tt: s' = <p4(r4); s3 = if>t(rj

where tv t2, t3, and t4 are the times of traversing the arcs in question. It

is clear that

*'-/(*) (2-2)

is the successor function (Chapter 7) but this time the question of analyticity

does not arise since all points of junction of arcs (on SS3 and S1S2) are

nonanalytic. As T â€” riZ,2r37,4, one can carry out the calculation of the

successor function (2.2). The principal difficulty lies in the necessity of

solving systems of transcendental equations which appear in this case,

namely

9i(Ti) = WTÂ«); Vsfjt) = &Â»(T8) ^

9>8(T8) = ^4(T0; 9i(ri) = ^i(Ti)

The stability of the fixed point and, hence, of the (nonanalytic) limit

cycle can be determined by noting that at a stable fixed point (bars above

t) one must have:

ds' _ giXfj) <p2'(r2) <p3'(f3) 9>/fa)

ds M*x)*2'(*2W(*Â«)M*4)

< 1 (2-4)

where ds is the perturbation of the initial conditions ("the cause") and ds'

is the corresponding perturbation of the terminal condition ("the effect")

after one turn of the radius vector.

3. Calculation of a piecewise linear limit cycle

As an example we shall investigate the stationary self-excited oscillation

of an electron-tube oscillator. As we have met this question previously

on several occasions, we simply indicate the d.e.

LCu + [RC - MG(u)]u + u = 0

(3.1)
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PIECEWISE LINEAR IDEALIZATION 691

where u is the grid voltage and G(u) is the mutual conductance. In general,

the nonlinear function is: ia = ia(u) (the anode current considered as a

nonlinear function of u), but we shall introduce the piecewise linear

idealization by approximating the nonlinear characteristic by a "broken"

one defined as follows (see Fig. 31.1):

'0 for u < â€” Â«0

ia = Â« G(u + u0) for \u\ < u0 (3.2)

2Gm0 for u > Â«0

The usual idealizations (negligible grid current, anode reaction, internal

.capacity of the electron tube, etc.) will be assumed. Changing the

Figure 31.3

variables: x = m/m0, r = a>0/' where <o0 = 1/VXCand taking into account

that

(G for 1*1 < 1

G(u) = \

[0 for |*| > 1

(3.1) results finally in the d.e.

* + 7hxx + x = 0 for |*| > 1

* â€” 2htfi + x = 0 for |*| < 1

where

= RCw0}2; h2 = (MG - RC)wJ2 (3.4)

Instead of one single phase plane, we consider now a phase plane separated

by straight lines S'S and into three regions: I, II, and III (Fig. 31.3).

(3.3)
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In each of these three regions its own linear d.e. is valid. In view of the

point transformation it is more convenient to consider the lines S'S and

as consisting each of two semi-lines S', S and Sx, respectively,

which is indicated by the arrows in Fig. 31.3. Since the d.e. do not

change when x and y are replaced by â€” x, â€” jy.the stationary trajectories in

I and III are symmetrical with respect to the origin, and a similar symmetry

exists for the upper and the lower parts of the middle region II. The

point of rest O may be either a focus or a node, stable if A2 < 0 (that is,

MG < RC) or unstable if h2 > 0. The case when h2 > 0 is more

interesting because it leads to the phenomenon of self-excitation studied

below.

The procedure is sufficiently clear but we will discuss a specific case in

detail. In different regions of the phase plane will be fitted "pieces" of

trajectories of simple d.e. One can expect that if the points M and Ar

must ultimately coincide and, if the stability condition is fulfilled, there

will be a piecewise linear cycle. The trajectory will be continuous but

not analytic at the points at which it cuts the lines x = +1 and x = â€” 1;

this cycle will be symmetrical with respect to the origin as just explained.

The overall point transformation T can be represented by the product

T = TiTtT^Ti where the component transformations transform one

semi-line into the following one; thus 7\ will transform the points of S'

into those of Sx, etc.

In view of the symmetry one has T3 = Tx and Tt = T2. Hence, the

transformation T transforming S' into Sx' will be: T = TxTt\ and

T = (7")2. In other words: the total (overall) transformation T is ob-

tained by applying twice the transformation T'. It will be sufficient,

therefore, to study only the transformation T', since everything is sym-

metrical with respect to the origin.

4. Successor function and the fixed point

The subsequent calculations are simple but long; we shall indicate the

salient points of the procedure referring to the cited reference for details.

One starts with the point: M(x0,y0) (Fig. 31.3) where x0 = â€” 1 ;y0 = â€” s;

s > 0, and write the solution of the d.e. corresponding to the region I; this

gives:

x = exp ( â€” &!*)(*â€ž cos ay^t + â€” + sin <oxr)

x = exp ( â€” h^^y0 cos wjt â€” â€” + sin a>xrj

(4.1)
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PIECEWISE LINEAR IDEALIZATION 693

where = Vl â€” hx2. One has to replace in these equations *â€ž and y0

by their values and then express the terminal condition, namely: the

representative point R following the trajectory (4.1) will reach the point

M' on the semi-line S'. This permits a gradual calculation of f and s',

etc. The successor function of the transformation 7\ is given by equations:

j = [exp (yxTx) - cos tx - yr sin tJ/Vl + yi2 sin tx

s' â€” [exp(-y1ri) â€” cost! + y^inrJ/Vl + yi2sinT

where tx is the parameter of the transformation. Thus the representative

point, having been initially on the semi-line 5', after t2 comes on the semi-

line Sx (point M") and this constitutes the transformation T2. If one

substitutes here f2 = t2/a>2 > 0; x = +1; y = sx > 0 and solves again

for s' and s, one obtains again the parametric equations

Â»j = [exp(y2r2) + cost2 + y2sinTj/Vl + y22sinT2

. (4-3)

s' -- [exp(-y2r2) + cost2 - yasinrj/vl + y22sinra

where y2 = A2/w2 = A2/Vl - h22.

At this point we omit some details of calculations concerning the general

appearance of functions in some special cases (for example, t2 â€”> +0, s'

and $x â€”> oo, etc.), which can be found in (1) and indicate only the argu-

ment leading to the establishment of the fixed point of the transformation:

T = 7,1712. If one builds the curves (4.2) and (4.3), their intersection Q

(Fig. 31.4) will be the fixed point of the transformation: T = ri712

transforming points of S into those of Sv In the case when 0 < Ax < 1

and 0 < h2 < 1 the existence of a fixed point is expressed by equations

exp (yjTi) - cos tx - yx sin rx _ exp (y2r2) + cos t2 + y2 sin t2

Vl + yi2 sin tx Vl + y22 sin t2

(4.4)

exp (-y^) - cost! + y1sinr1 _ exp (-y2r2) + cost2 - y2sinr2

Vl + yi2 sin tx Vl + y22 sin t2

which is obtained from (4.2) and (4.3) if one equates s' and sets fx = s.

It can be shown that there exists only one point of intersection of curves

(4.2) and (4.3); the argument is based on a detailed study of these curves

which we omit here and only indicate the form of the curves on Fig. 31.4.

It is recalled that the stability of the fixed point Q is determined by the

approach of the representative point R toward Q in case of a perturbation.

If one takes a phase trajectory other than the closed one (corresponding to
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the point Q), it is easy to ascertain the sequence of its intersections with

the semi-axis y = 0, * > 0; let this sequence be: xx, x2,. . .. In this

sequence each following point is determined by the preceding one by means

of the successor function. Thus, if one starts with a point Xj on the s' axis,

one obtains the point J^i on the curve D to which corresponds the ordinate

Xi ;if one puts on the abscissa axis the value */, to this value will correspond

a point Q2 on D, so that the points Q( approach the point Q from the left

as the procedure continues.

If the initial point xx were to the right from the point x (corresponding

Figure 31.4

to the fixed point Q), the same procedure would result in a gradual approach

of points Q{ to the fixed point Q from the right. In such a case the fixed

point and, therefore, the nonanalytic limit cycle is stable- f

It is easy to show that in the case when the slope of the curve D is

greater than that of Dv the fixed point Q is unstable (see Chapter 7). One

has thus a graphical criterion (sometimes called "the stairway of Lemeray")

for establishing the existence as well as stability of nonanalytic limit cycles.

t It is noted that this graphical procedure is the same as that encountered in

Chapters 7 and 29.
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PIECEWISE LINEAR IDEALIZATION 695

5. Successor function and the fixed point (hard self-excitation)

As the second example we consider the case when the plate current ia can

be approximated by relations

[I, for u. > 0

(5-1)

|0 for ug < 0

assuming that in the condition of equilibrium (ug = 0) the electron tube

does not conduct owing to a constant biasing voltage: â€” Eg. The d.e. of

the oscillator in this case is

dH di [I> for ut > 0

LC^ + RC% + i = \' (5.2)

* * [0 for ug < 0

where ug = â€” Eg â€” M(di/dt) and /, is the saturation current (that is, ia

in the region of the saturation). With the change of the variables

x = ill,; t' = a>0r; w0 = 1/VZC (5.3)

equation (5.2) is brought to the form

{1 for x >

0 for x <

b

x + 2hx + x = ^ m (5.4)

b

where the differentiations are with respect to t'; 2Ji = wqRC and b = EJ

a,0\M\I,.

The phase plane x, y (y = x) is divided by the line y = b into two

regions: / (shaded) for y > b and II (unshaded) for y < b (Fig. 31.5).

The nonanalytic junction of trajectories occurs on the line y = b. We

define on the line y = b two semi-lines: 5' (to the right of the y axis) and

S (to the left), and consider the segment â€” s > 2bh â€” 1 on the semi-line

S and the segment s' > â€” 2hb on the semi-line 5'. From the first seg-

ment trajectories move away into region I and from the second, they move

into II. From the segment y = b, â€” 2hb < x < 1 â€” 2hb belonging to

both semi-lines, trajectories move away into I fory = b + 0 or into II for

b â€” 0. This segment may be called the segment of repulsion. It can be

shown that the system (8.3) has the origin as its only singular point (that is,

position of equilibrium) which is a focus if h < 1 or a node if h > 1. As

in the latter case there are no limit cycles, oscillations are impossible. We

shall consider only the case when 0 < h < 1.

It is clear that if a (nonanalytic) limit cycle exists, it must pass through

both regions I and II so as to have the origin in its interior. Hence, the

trajectories must necessarily intersect the line: y = b. It will be sufficient,
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Figure 31.5

therefore, to study the point transformation T of the semi-line S into itself,

which it is convenient to split into two partial transformations: 7\ trans-

forming S into S', and T2 transforming S' into S; thus T = TxTt. One

obtains these transformations in a manner similar to that which we used in

the preceding section. We start from a point M (â€” s,b) on the semi-line 5

and investigate the trajectory starting from this point for f = 0. This

trajectory in I is given by the equations:

b - h(l + s)

x = 1 + exp ( â€”Ar)j^ â€”(1 + s) cos wt +

. . . \, I + s - hb . 1

( â€” ht)\b cos wt H sin <or

sin wt

y â€” exp (â€” M) I b cos wt +

where w = VI â€” h2

(5.5)

The representative point moving along this trajectory will reach after

some time tx the point N(s',b) on the semi-line S'. This point is given by

equations

s' = 1 + exp (â€” â€” (1 + s) cos wxt + ^ + - sin wf^j

b = exp (â€” htx) ^b cos wtx + - + â€” sin <of xJ

(5.6)
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Solving these equations for s and s' one obtains

5 = 6w[exp (yrj) â€” cos tx + y sin r J/sin tx â€” 1

S' = 6a>[exp ( â€” yrj â€” coStx â€” y sin t J/sin + 1

(5.7)

where y = h/w = A/Vl - h2\ rx = wtv Setting: u = j/iw; v = $7*w>

one obtains the successor function for the transformation 7\:

v = [exp ( â€”yrj â€” costj â€” y sin t J/sin tx + a

where a = 1/6<o = (a>0|M|/,)/Â£,\/nTP.

In a similar manner one obtains the successor function for the transfor-

mation T2 transforming the point N(bwv, b) of the semi-line S' into the

points M'( â€” bwui, b) of the semi-line S, namely:

where t2 = wt2 is the dimensionless time of travel of the representative

point in region II. The analysis of these successor functions is similar to

that indicated previously. We mentioned only the conclusion; for details,

see footnote 1. When the parameter of the transformation Tx varies in:

0 < tx < n, u increases monotonically from uâ€ž = 2y â€” a to + oo and v

varies from v0 = a â€” 2y also to +oo. Moreover (dujdv) > 0 and

(dhi/dv2) > 0 (we omit the explicit form of these derivatives). The curve

(u,v) has an asymptote (when tx â€”> n) given by equation: u = exp (yr)v

â€” a(1 + exp (yn)). This (together with some other details) permits

tracing the curves u = u(v) for (5.8).

A similar analysis of equations (5.9) shows that (dujdv) > 0 and

(dhijdv2) < 0 and that the asymptote for the (ux,v) curve is: ux =

exp ( â€” yrr)v. If we call the curves corresponding to equations (5.8) and

(5.9) C and Cv respectively, a more detailed analysis shows that, for

a < 2y, the curves C and do not intersect. Moreover, the curve Cx

does not depend on the parameter a, whereas C does; when this parameter

varies the curve C is displaced in the (u,v; ux,v) diagram of Fig. 31.6 and

occupies different positions: C, C, C" It follows that beginning

with a certain critical value a = a* of the parameter a, the intersection of

curves C with curve Cx becomes possible and, according to the general

theory, the points of intersection determine the fixed points of the trans-

formation and, hence, express the existence of closed trajectories (limit

cycles). In this case, in view of the difference of signs of the second

derivatives: (dhi/dv2) > 0 and (d'ujdv2) < 0 of the curves C and the

u = [exp (yrj) â€” cos rx + y sin rj/sin tx â€” a

(5.8)

ma = - [exp (-yr2) - cost2 - y sin t J/sin t2

v = â€” [exp (yr2) â€” cos t2 + y sin t J/sin t2

(5.9)
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Figure 31.6

curve Cv respectively, there are two points of intersection of Cx with the

family C so that there are two limit cycles, as we know already from Chapter

3. One can expect, therefore (Chapter 7), that we will come across the

two possible topological configurations: USU or SUS. We consider the

latter as corresponding to what is called the hard self-excitation. In this

case for the first fixed point (smaller u = m<1*, v = â‚¬v fx and larger ft)

one has

{du)vâ€žCx ~ {dv)v.Cx' {dvjv=B > 1 (5-1Â°)

and for the second (u = Â«(2) > u<x); v = v2 > â‚¬7x)

Â° < {dv)v=f>1 ~ {dv)v={>2' {dvjv=t>2 < 1 ^5"11^

that is, the first limit cycle is unstable and the second is stable, which is well

the configuration: SUS using the notations of Chapter 7. If there is only

one fixed point, it is always stable.

These considerations can be further amplified by constructing the regions

in which the trajectories have the same orientation (either approaching the

external cycle or the singular point) according to the position of the

intermediate unstable cycle.

For the graphical construction of these piecewise linear trajectories, see
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footnote 1. It is sufficient to mention that the points of nonanalyticity

of these closed trajectories are situated on the line: y = b which may be

expected, of course, from an offhand consideration. Summing up, this

direct study of nonanalytic trajectories permits obtaining qualitatively the

same results which we know already from the analytic theory (Chapters

3 and 7) but through a more complicated argument of the successor

functions and the resulting fixed point of the point transformation.

K

6. Topology of certain relay systems

In many problems of the theory of automatic regulation and control

involving relays, the splitting of the phase plane into certain regions in

the above specified sense becomes convenient.

A few words about the relay mechanism itself may be useful. A relay

is an electromechanical mechanism,

which, depending on the magnitude of

a signal Â£ releases the control action u

in one or the other direction. As

the control action (for example, the

current) is generally constant: u = u0,

a relay is merely an "on" or "off"

mechanism. In a polarized relay the -"o

"on" phase changes its sign with Â£ as ^

is shown in Fig. 31.7. There is an-

other peculiarity of the relay arising

from the hysteresis effect; this mani-

fests itself as follows: assume that the

positive signal (f > 0) is gradually applied from zero; the relay closes the

circuit only when Â£ = cr0; if the signal increases, nothing is changed in the

control action which remains u = u0. If, however, f begins to decrease,

the relay does not open the circuit when f = a0 but opens it only for

Â£ = ffj, where <r1 < a0; there is thus a hysteresis loop as indicated by

the arrows at the points Â£ = a0 and f = bx = Xa0; A < 1. For the

negative values of f everything is symmetrical.

The response of a relay to the signal manifests itself thus in the three

different ways, namely: u0, 0 and â€” u0 but the relation between these

values of the response and the signal f is not a single valued one as, in

addition to the direct dependence on f, it depends also (somewhat im-

plicitly) on Â£ at least in certain regions, as explained. By comparison with

the previously studied piecewise linear manifestations in which an explicit

dependence on x appears at certain thresholds (see equation (1.1), Chapter

Figure 31.7
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26), one may expect a relay mechanism to be capable of producing similar

manifestations in a system of which it is a component.

As an example we shall investigate the problem of a follow-up mechanism

which keeps two shafts in alignment with each other. If 6x is the angle of

the leading shaft (counted from an arbitrary origin of angles) and 0Â« the

angle of the control led shaft, the control action is derived from the error

function <p = 6x â€” 82. In the control scheme we assume the presence of

a relay which reverses a servomotor so as to maintain the alignment

between the two shafts. Assuming that the control action at the relay

input is of the form a = 9 + B<j>, I is the moment of inertia of the servo-

motor, k62 the counter e.m.f. in the rotor of the servomotor, Ai the moment

developed by the rotor, and R the ohmic resistance of the armature,

equations of motion can be written as

lSt = At; Ri= V - k62 (6.1)

or simply

a* + ir'*-Jiv (6-2)

To simplify the matter further we assume that 6x = const. In this case

we consider the follow action per se, disregarding the variation of the

angle 6x to be followed. In such a case one can write (6.2) in the form

Ah A

19 + ^9= -jV (6.3)

to this one has to add the law of the control

a = <p + B<p (6.4)

Equations (6.3) and (6.4) can be reduced to the form

x + x = -Â«(Â£); Â£ = x + fix (6.5)

where

(Ak*\ (Ak*\ V ....

and where the differentiations are performed with respect to the dimen-

sionless time t' defined by the formula

Ak

f =

IRV0

Finally, /J = (AkjIR)B is the dimensionless coefficient corresponding to

B. The system (6.5) is sufficiently general to warrant its further dis-

cussion; setting y = x, it can be written as equivalent system of the form

y = -y - Â«(fl; Â£ = (1 - % - /}Â«(Â£) (6-7)
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As we have two regions of nonsingle-valuedness of the relay characteristic:

u = u($), it is convenient to use a three-sheet phase plane shown in Fig. 31.8

containing three regions, region I (for |f| < e) corresponding to u = 0

(relay is open). On sheet I are superimposed (with certain overlappings)

two other sheets: II with Â£ > Ae, and III with Â£ < â€” Ae, to which corre-

spond the closed position of the relay (for II, one has u = +1, and for III,

Â«= -1).

The passage of the representative point from I either to II or to III

takes place only on its borderlines, that is, for Â£ = + e; whereas the inverse

passage (that is, from either II or III to the middle region I) occurs either

on Â£ = +Ae or on f = â€” Ae. This takes into account the hysteresis

action as previously explained. In any

case, all passages take place continu-

ously, which is essential for what

follows. It is noted that, resulting

from the symmetry of the relay ele-

ment, the trajectories are symmetrical

with respect to the origin. In region

I the relay remains open and (6.7) has

the form

x= -y, i - (1 - fiy (6.8)

which yields dy/dÂ£ = -1/(1 - 0).

This shows that all points of the

abscissa in region I (that is, |f| < e)

are positions of stable equilibria as the

representative point R moves in I on

the rectilinear trajectories: Â£ + (1 â€” /J)jy

= const toward the abscissa axis. To these positions of equilibria tend

also (t â€”> + oo) all trajectories for which

|t + (1 _ f))y\ < e

In region II the d.e. (6.7) become

y + y= -1; $ = (1 - p)y - p (6.9)

In this region there are no positions of equilibria and all trajectories

approach asymptotically the line: y = â€”1; Â£ = â€” r + const. Hence

once R enters into region II it is bound to return to I. The ultimate

analysis depends on whether j3 < 1 or j8 > 1.

7. Point transformation for P < 1

We leave out the case when |f + (1 â€” fi)y\ < e as it corresponds to

the state of rest with the relay open. As previously, we consider the

Figure 31.8
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transformation of the semi-line 5 into the semi-line S' (Fig. 31.8) as the

transformation is symmetrical. We have for the semi-line S (without

contact):

and for the semi-line S':

{ = + Ae; y < j-^j

Across these semi-lines trajectories pass from regions III or II to region I.

As there is a symmetry about the origin, trajectories passing through

symmetrical points are also symmetrical so that there is no necessity to

distinguish S and S'. In other words, one can use one single point

transformation s' = T(s) independently with whichever of the two semi-

lines (S or S') the trajectory in question intersects.

For the calculation of the successor function of this transformation we

consider an arbitrary trajectory passing from region III to region I at

some point s of the semi-line 5. Within region I this trajectory will be a

straight line

f+ (i-/0y= -Ae + (1-/}> (7.1)

Hence for | â€”As + (1 - P)s\ < Â£, that is, for

1 - A 1 + A

-T^Â£<fr^E (7-2)

the point R will approach the position of equilibrium without leaving

region I so that there will be no further successor points on 5 and S'. For

s > [(1 4- A)/(l â€” /3)]e the representative point will emergy from I through

its right-hand border at the point Â£ = e; y = y0 = s â€” [(1 + A)/(l â€” /3)]e

> 0 and will continue its motion in II in accordance with the d.e. (6.9)

with the initial conditions: f = + e, y = y0 along the trajectory

y = -1 + (1 + y0)exp(-t);

Â£ - e - t + (1 - ]8)(1 + ^0)(1 - exp (-/)) (7.3)

and will return to the frontier S' of this region.

Let t be the time of traversing region II. Then for t > 0, f = + Ae,

y = â€” s' one obtains the following expression for the successor function

_A

/3

/... . 1 + A\ f 1 + ..

^taking into account that s = y0 + ej ; for s > | e:

, 1 + A t - (1 - A)e

s = -1 + i ~n Â£ + V

1 -p (1 - 0)[1 -exp(-r)]

(7.4)

(1 -j8)[exp(t)- 1]
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PIECEWISE LINEAR IDEALIZATION 703

for s < -[(1 + A)/(1 - /3)]e (which is possible only for /3 > (1 - A)i),

the point R moving along the trajectory (7.1) will leave II from its left

borderline at the point: y0' = s + [(1 â€” A)/(l â€” /3)]e < 0 and will move

thereafter in region I; after a time t it will come back to the semi-line S.

It can be shown that the successor function in this case will be, for

-[(1-A)/(1-/3)]e,

1 - A t - (1 - A)e

*-+ l_^E (J-/B)[l-Â«p(-T)]

T-(1-A)E

(1-i8)[exp(T)- 1]

Formulas (7.4) and (7.5) determine the point transformation s' = T(s) of

the semi-lines S and S' into themselves.

From the coordinate s outside the interval (7.4) one determines the

parameter r of the transformation; the latter, in turn, determines the

coordinate of the subsequent point s'. The relations of r as functions of

s and s' are yielded by single valued continuous functions which we shall

designate as t = f(s) and s' = g(r).

8. Nonanalytic cycles and their stability

It is convenient to introduce auxiliary functions ^(t) and </^M defined

by the equations

= i -Tex~PUr Ur) = = Ut)exp (~T) (8-1)

Where we shall set a = (1 â€” A)e ^ 0; it is recalled that for a relay:

-1 < A < +1

The expression for the successor function can be written then

-1 + T^lÂ£ + Wt)/(1 - 0 i0TS ~ V=jiE

s = i (8.2)

+ 1 - 1^ E - HtW ~ P) tors < 1^ Â£

S' = 1 - UrW ~ P)

Setting t = t0 the value of t corresponding to j = [(1 + A)/(1 â€” /3)]e and
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s = - [(1 â€” A)/(1 â€” /J)]e, this value is determined from ^1(t0) = 1 - in a

single valued manner. An intermediate calculation (which we omit)

shows that

(*')~0 - 'a - 1 - exp (-r0) = [t0 - (1 - A)e]/(1 - j8)

It is noted that ipx is a monotonically increasing function of t while ^>2 go^

through a maximum (minimum). In view of this for the values s ^

[(1 + A)/(1 - 0)]e or for s < - [(1 - A)/(1 - j8)]e, the parameter t of the

transformation should be varied in the interval: t0 < r < +oo.

With these details the diagram is obtained by plotting the values of s and

s' against t; it is recalled that s is the preceding and s' is the following points

s,s' s

Figure 31.9

of intersection of the trajectories with the semi-lines S and S". It is clear

that, depending on different values of parameters A, e, and f}, one can have

different forms of diagrams. We refer to Andronov et a/.,1 for a more

detailed study of this question but mention only the cases corresponding to

*o' > [(1 + â€” P))e- 1Â° sucn a case ^e curvesT = f(s) and s' = g(r)

have a point of intersection, and the point transformation s' = T(s) has

only one stable fixed point j* > [(1 + A)/(1 â€”/3)]e to which corresponds a

symmetrical limit cycle (Fig. 31.9).

1 A. Andronov, A. Witt, S. Chaikin, Theory of Oscillations (in Russian); this

book is the second edition (1959) of A. Andronov and S. Chaikin, Theory of

Oscillations (original text in Russian), Moscow, 1937; N. A. Geleszov, J. Tech.

Phys. (USSR) 13, 1948; 20, 1950; Radio-Physics 2, 1958.
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PIECEWISE LINEAR IDEALIZATION 705

The value of the parameter t* corresponding to the fixed points s* is

given by equation s' = s, that is:

[TÂ» _ (i _ A)e] cotan^ = 2(1 - 0) - (1 + A)e

It is to be noted that the existence of the fixed point j* > [(1 + A)/(l â€” A)]e

results from the continuity of curves t = f(s) and s' = ^(t) and also from

the fact that the difference s' â€” s has different signs for t = t0 and for

if

<

A-

The appearance of

t â€”> + oo; the stability of ** depends on:

the limit cycle is shown in Fig. 31.10

in heavy line.

It is to be noted that for different

points of the parameter space condi-

tions may be entirely different; for

instance, there may be either no fixed

point of the transformation or the latter

may not be stable. Finally in order

to complete this study one has to split

the family of trajectories into sub-

families separated from each other by

separatrices. This determines the

strips of attraction of trajectories for

the ultimate nonanalytic cycle.

9. Remarks

In this approach we have outlined

only the principal points of the point

transformation theory as applied to Figure 31.10

these problems.

It is noted that the starting point is always somewhat arbitrary and

depends on the way in which a nonlinear characteristic is approximated by

"broken lines." However, as the parameter does not appear in the d.e.

and the procedure is ultimately graphical, there is no restriction concerning

small parameter values as in the analytical methods. Moreover, dis-

continuities are not involved in this idealization, as was the case of Chapters

26, 27, 28, and 29 dealing with discontinuous theories.

From this point of view the piecewise linear idealization appears to be

sufficiently general to be able to account for a considerable number of

phenomena encountered in the theory of oscillations.

G
e
n
e
ra

te
d
 o

n
 2

0
1

2
-0

7
-2

8
 0

2
:0

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

4
4

5
4

2
8

9
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



706

RELAXATION OSCILLATIONS

Unfortunately the complexity of calculations involved in the determina-

tion of successor functions, fixed points and their stability, is a serious

handicap to the practical use of the method in its present form. In fact,

at present it is possible to apply this method only to the d.e. of second order,

and even here the difficulties are considerable, particularly in solving

systems of transcendental equations and in the graphical construction of

the successor functions. In spite of these difficulties the method has been

successfully applied to the theory of nonlinear and nonanalytic mechanisms

of second order,2 particularly those involving relays.

Another difficulty which deserves mention is the somewhat critical

behavior of trajectories for a given combination of parameters A, e, j3 of a

relay system. In other words, although one can sometimes carry out cal-

culations and establish conditions of periodicity, it may happen that one

cannot do so for a somewhat different parametric point A, e, /3. The

topological considerations in this nonanalytic case are much less certain (to

guide the analysis) than in analytic cases. In other words a purely

analytical procedure (applied, for instance, to the investigation of an elec-

tron-tube oscillator) leads always to a definite result if one knows the

parameters of the problem. Here in nonanalytic cases this is less certain;

it is also well known from the practice of systems involving quasi-dis-

continuous elements, such as relays. As has been seen, relations here are

so complicated that it is impossible to be guided by any offhand con-

siderations, and very often a little can account for much if one happens to

be in the neighborhood of a critical threshold which it is difficult to foresee.

It is possible that with a more extended use of tables, calculating

machines, etc., these long and tedious calculations can be simplified and

the method can be made of greater practical use. At present, despite its

great theoretical interest, the method has not yet reached a stage when it can

be advantageously compared with the existing analytical and discontinuous

theories.

10. Concluding remarks

It is useful to summarize the different methods which we attempted to

outline in Part IV. In contrast to the first three parts, Part IV appears to

be more complicated and less definite. This reflects to some extent the

inherent difficulties of the subject, which have not been mastered com-

pletely so far.

We have considered three different approaches resulting from a very bad

analyticity of the solution at least at some points; besides this, these

* N. S. Gorskaya et al., Dynamics of Nonlinear Servomechanisms (in Russian),

Moscow, 1959.
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approaches do not have the same objective and so are not quite comparable.

We have classified these methods in three principal categories:

(1) Discontinuous methods (Chapters 26 and 29).

(2) Asymptotic methods (Chapter 30).

(3) Piecewise linear method (Chapter 31).

Approaches (1) and (3) use certain idealizations of a basic character,

whereas in (2) these idealizations are of rather minor importance (for

example, replacing the full d.e. by "truncated" equations on some stretches

of the integral curve) so that the method (2) may be regarded as the exact

method since the solution can be calculated with any prescribed accuracy.

The approach (1) splits into two different methods: (1a) the Mandelstam-

Chaikin theory (Chapter 26) and (1b) the Vogel theory (Chapter 29);

although the starting points in these theories are different, they merge into

one single theory when applied to relaxation oscillations. Both dis-

continuous theories (1) are based on the concept of degeneration (Chapter

26). Tflis concept has been elaborated by mathematicians' to a much

greater extent than is indicated in Chapter 26. However, for the ele-

mentary presentation, aiming mostly at applications, a simplified theory of

degeneration (Chapter 26) is probably sufficient.

The essential feature resulting from the degeneration theory is the

introduction of discontinuous variables and this, in turn, brings about a

typical aspect of these theories, namely: the cycle is composed of analytic

arcs on which the d.e. governs the motion of the representative point and

of the discontinuous stretches traversed in no time; on the latter stretches

the d.e. recedes, so to speak, into the background and the discontinuous

jump is governed by a certain physical invariant. One has a kind of a

"hybrid theory" to which both mathematics and physics contribute.

This theory had useful applications (Chapters 27 and 28), but it must be

recalled that it is a purely qualitative theory.

The asymptotic theory (2) (Chapter 30) pursues a purely analytic

approach in problems in which the analyticity is practically evanescent,

at least at some points of the cycle, and this results in considerable dif-

ficulties. Here again there are two possible methods: (2a) Cartwright-

Littlewood approach, Section 4 (Chapter 30) and (2b), Haag-Dorodnitzin

approach, Section 6 (Chapter 30).

The essential point of (2) is that one must know the integral curve in

advance in order to apply this analysis. There is a difference of a formal

nature between (2a) and (2b) as to what kind of analysis is to be used; in

â€¢ K. O. Friedrichs and W. Wasow, Duke Math. J. 13, 1946; N. Levinson, Acta

Math. 82, 1951.
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(2a) one proceeds by the general theory (taking into account local conditions

in different parts of the integral curve); in (2b) use is made of the asymptotic

expansions; this, however, is not a really important difference. The

important point is that in order to use these asymptotic theories in their

present form, one has to know the solution at least qualitatively which is

not always possible.

For one single van der Pol equation, this does not yet constitute any

difficulty. For more complicated systems (like those of multivibrators,

etc.) this prerequisite may be a serious handicap; it is precisely in this

connection that the discontinuous theories have a definite advantage since

they yield the solutions.

Summing up, the asymptotic methods (2), at least at present, appear

rather as existence theorems permitting us to justify analytically the existence

of a known solution, but they do not give the means for determining this

solution. However, if the solution is known, the asymptotic methods

permit its determination quantitatively with a prescribed accuracy. The

latter feature is outside the reach of the discontinuous theories which are

essentially qualitative.

Considering now the piecewise linear method (3), it must be said that it

is not concerned with relaxation oscillations proper, and hence should not

be included in Part IV. We have considered it here along with the

relaxation problems only because of the nonanalytical treatment which is

partly similar to the discontinuous theories (1). In fact, in both (1) and

(3) the classical theory does not apply; there are some "closed" (non-

analytic) trajectories not obeying the theorem of the index and some other

seemingly "absurd" situations if considered from the point of view of the

classical theory.

The idealization used in (3) is more drastic than that in (1); in fact, in

(1) one "simplifies" the d.e. by means of the theory of degeneration (if this

is possible). In the idealization (3) one replaces the actual nonlinear

characteristic by a polygon of straight lines. To this rectilinear polygon in

the characteristic corresponds a curvilinear polygon in the solution and the

principal aim of the problem is to determine the conditions under which

this polygon becomes closed, that is, when the piecewise linear idealization

leads to a periodic phenomenon.

Here, again, the procedure actually yields a solution but this solution is

continuous without being analytic at the point of the junctions of analytic

arcs. Contrary to (1) there are no discontinuous stretches. There is

however a feature common to (1) in that the theorem of the index does not

hold here either.

Summing up, there are two groups of different theories: the continuous

ones (1) and the asymptotic one (2); in each of these groups there are two
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subgroups: (1a) the Mandelstam-Chaikin theory and (1b) Vogel's theory;

(2a) Cartwright-Littlewood theory and (2b) Haag-Dorodnitzin theory.

To these two major groups is to be added also the piecewise linear approach

(3).

To these various approaches one has to add the most recent method

initiated by Pontriagin4 and Mishchenko 5 concerning d.e. of the form

n*=fi*,y) (io.i)

In this theory the relaxation oscillations are considered as systems

characterized by rapid motions (quasi-discontinuities) at some points of a

cycle and having also equilibrium positions resulting from stationary

solutions. Starting from this point, it can be shown that it is possible to

obtain a number of formulas for the determination of periods and similar

details without any necessity for the actual integration of the system

/** = f(*,y); y = g(*,y) (10-2)

In particular, Pontriagin also shows that it is possible to use this pro-

cedure in cases when there are no positions of equilibrium having an

asymptotic stability and when there are no isolated limit cycles.

This method can be used in two principal cases:

(1) When it is desired to ascertain whether the difference between the

exact solution and its asymptotic approximation can be made as small as

desired during a finite interval of time.

(2) To investigate the correspondence between the exact solution and

its asymptotic approximation during an unlimited time interval (III).

For instance, it is sometimes possible to obtain an invariant setf of a

toroidal type; in such a case the problem presents itself in the following

manner: it is desired to show that there exists an invariant set for the exact

equation which is in the neighborhood of corresponding sets of approxi-

mate equations; here it is necessary to supplement the investigation by

conditions of stability.

These generalizations are somewhat reminiscent of the theory of Poin-

care concerning the existence of a periodic solution of a local type (that is,

in the neighborhood of the generating solution). In this new approach

one tries to determine certain functions characterizing the integral set in

question.

4 L. Pontriagin, Bull. Acad. Sci. (USSR), Ser. math. 21, 1957.

* E. Mishchenko, ibid.

t An invariant set (or manifold) is a hypersurface E having the property that if

a point of the solution of the system of d.e. is on the hypersurface E, the whole

solution belongs to E.
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Another important point of this theory is that it permits determining

these integral sets without any additional hypotheses regarding the

structure of the right-hand term (that is, independently of whether the

right-hand term contains r explicitly or not).6 For the time being these

developments are not yet completed and connections with physical facts

are not yet completely established.

In general, in these new developments, the tendency is to avoid as much

as possible the somewhat artificial arguments like the "junction" of

solutions in different regions of the phase space, theory of degeneration,

etc., or the introduction of physical concepts of some nature. For the

time being this new theory has not yet reached the state of codification, and

connections with applied problems are not yet in sight. It is impossible,

therefore, to advance any opinion on this subject as far as applications are

concerned.

Summing up, all attempts outlined in Part IV, one has to admit that

there exists no general theory (similar to the theory of Poincare in the small

parameters domain) capable of yielding solutions with a prescribed accuracy

uniformly in all possible cases.

Aside the discontinuous methods which are able to yield only qualitative

results, the quantitative methods are either too cumbersome or in-

sufficiently developed; most of them concern theorems of existence which

are not yet sufficient as a working tool in hands of physicists or engineers.

â€¢ N. Bogoliubov and I. Mitropolsky, Intern. Congress, I.F.A.C., Moscow, 1960.
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Index

Abraham, 627

Abridged equations, 19

Aizerman, 147

Almost periodic functions, 283

Almost periodic solutions, 283

Amplitude, external force, 343, 444

of heteroperiodic oscillation, 224

modulation, 380, 458

Andronov, 23,48, 51,79, 82,95, 169,639

Andronov-Chaikin, 610

Andronov-Witt, 441

Appleton, 573

Approximation methods, 212

Asymptotic expansions, 676

methods, 329

Asynchronous excitation, 580

quenching, 576

Autonomous systems, 243

change of time scale, 247

translation, 244

Autoperiodic oscillations, 566

Averaging, 273

Beats, 438

Bellman, 516, 539

Bendixson, 82

Besicovich, 282

Bethenod, 490

Bifurcation theory, 31

applications, 173

diagrams, 182

value, 47

Birkhoff, 648

Blaquiere, 418

Bloch, 627

Bogoliubov-Mitropolsky, 103, 330, 356,

509, 679, 710

Bohr, 282

Boussinesq, 685

Brillouin, 488

Brouwer, 80

Brownell, 526

Bulgakov, 640

Canonical transformation, 19

Cartwright, 672

Cauchy, 4

Center, 32

Cesari, 3, 672

Chaikin, 633

Characteristic, equation, 20

exponents, 125

hard, 75

roots, 21

soft, 74

Characteristics (see integral curves)

Coddington, 78

Combination tones, 463

Configuration, polycyclic, 75

topological, 98

Conservation of energy, 41

Contact curves, 85

Conti, 103

Coulomb damping (see damping)

Critical points, 616

Cycle (see limit cycles)

Cylindrical phase space, 190

Damping, negative, 559

nonlinear, 338

positive, 559

Degeneration, 609

Denjoy, 191

Detuning, 449

Difference equations, 398

differential equations, 514

Differential equations, 4

Direction field, 667

Dissipative systems, 480

Dorodnitzin, 665

Duffing equation, 480
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INDEX

Energy criterion, 116

fluctuations, 219

integral, 41

Kquilibrium, indifferent, 133

stable, 118

unstable, 140

Equivalent damping, 350

linearization, 348

restoring force, 350

Excitation, asynchronous, 580

parametric, 488

self, 74

Favard, 285

Fixed point, existence of, 688

stability of, 411

Flanders, 665

Floquet theory, 127

Focus (spiral point), 13

weak, 38

Forced oscillation, 301

Free oscillation (see autoperiodic)

Frequency, autoperiodic, 438

correction, 244

heteroperiodic, 438

stability of, 421

transcendental, 522

Friedrichs, 215, 617, 707

Fundamental (set of solution), 125

Geleszov, 704

Generating solution, 233

Gliding flight, 207

Gomory, 412

Gorelik, 506

Gorskaya, et a/., 706

Goursat, 118, 163, 228

Graphical construction of Lienard's

curves, 103

Haag, 644, 665

Hamiltonian Principle, 53

Harmonic oscillator, 9

Hayashi, 448

Heegner, 626

Helmholtz, 462

Hill's equation, 503

Hill-Meissner equation, 503

Huygens, 438

Hysteresis, 379

nonlinear, 379

Index theorem, 77

of a closed curve, 77

Inertial nonlinearity, 587

Initial conditions, 74, 396

Integral curves, 6

invariant, 53

Invariant, physical, 614

Isolated cycles (see limit cycles)

Jacobian, 79, 238

Joukovsky, 207

Jump phenomenon, 375

Junctions, method of, 679

Kaden, 451

Kaidanovsky, 633

Kalechi, 438

Kobsarev, 573

Kolmogorov, 69

Krylov (Bogoliubov), 286, 580

Lagrangian equations, 54

La Salle, 84

Le Corbeiller, 109

Lefshetz, 81, 104

Letov, 154, 162

Levinson, 78, 103, 707

Liapounov, 118, 155,315

Lienard, 101, 108

Limit cycles, 71

definition, 71

existence, 3

nonanalytic, 96, 703

piecewise linear, 690

physical significance, 74

semistable, 73

stable, 72

unstable, 73

Lindstedt, 224

Linear oscillations, 10

Linear systems with constant coeffi-

cients, 124

with periodic coefficients, 127

Linearization, equivalent, 348

Lipshitz (see Cauchy)

Littlewood (see Cartwright), 672

Lochakov, 618

Lourj'e, 159
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Ludekc, 484

Malkin, 118, 216, 309

Mandelstam,461,464, 488

Mathieu oscillator, linear, 401

nonlinear, 404

Meissner (see Hill), 503

Minorsky, 390, 444, 496, 523, 534, 541,

566, 592

Mischenko, 709

Mitropolsky, 380, also see Bogoliubov-

Mitropolsky

Mono-rail car oscillations, 301

Motion in the large, 45

Myshkis, 516, 663

Nemitzky, 115, 649

Node (nodal point), 12, 15

Nonautonomous systems, 7, 234, 260,

356

Noncritical systems, 185

Nonlinear damping, 338

Nonstationary processes, 380

Nyquist criterion, extension of, 416

Orbital stability, 119

Ordinary point, 8

Oscillations, interaction of, 562

nonresonance, 234

resonance, 236

self-excited, 270

Oscillator, parametric, 489

several degrees of freedom, 270

Papalexi, 461, 464, 488

Parameter, bifurcation value, 47

variable, 47

Parametric excitation, 488

Period correction, 244

Periodic motion, 234

condition for, 234

solution, 234

Perturbation method, 219

Phase plane, 8

portrait, 545

Piecewise analyticity, 606

linearity, 625, 688

Pinney, 516

Poincare, 3, 41, 71, 163, 206, 228, 232,

461, 488

Poincar6-Bendixson theorem, 84

Point transformation method, 688

Poisson, 212

Pol (see van der Pol)

Pontriagin, 519, 709

Potential energy, 42

Power series method of approximation,

217, 228

Rayleigb, 438

Relaxation oscillations, 599

Resonance, nonlinear, 236

passage through zones of, 357

subharmonic, 464, 473

Restoring force, nonlinear, 42

Rocard, 495, 540

Sansone, 103

Schiffer, 216

Schmidt, 516

Secular terms, 212

Sekerska, 508

Separatrix, 45

Sideriades, 663

Singular points, 10, 45

classification, 10, 14

at infinity, 91

in plane (<p), 9

Slow time, 383

Smith, 103

Solution, perturbed, 122

unperturbed, 122

Spiral point (see focus)

Stable equilibrium, 137

Stability

asymptotic, 119

definition of, 137

critical cases, 150

in the large, 161

Liapounov's second method, 134

orbital, 119, 130

of periodic solutions, 313

Poincare's criterion of, 47

zones of, 319

Stationary oscillations (see limit cycles)

Stepanov, 113

Stoker, 87, 438, 664

Stroboscopic method, 390

differential equations, 395

plane, 391
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INDEX

Subharmonic resonance (see resonance)

Successor function, 165

Superposition principle, 562

Symmetry (principle of), 113

Synchronization, 438

equation, 440

mutual, 448

by stroboscopic method, 444

van der Pol theory, 439

Synchronous motor, asynchronous be-

havior, 197

oscillations of, 202

Theodorchik, 419, 586

Topographic system, 86

Topological configurations, 98

Topology of relay systems, 699

Toroidal phase space, 204

Trajectory, definition of, 99

Transformations, 390

Tricomi, 197

Undamped oscillations (see limit cycles^

Unstable, equilibrium, 11

Urabe, 413

Van der Pol equation, 219

relaxation oscillations, 599

solution, 219, 222

theory of interaction, 563

theory of synchronization, 439

topology of, 557

Variational equations, 118, 121, 124, 127

Vlasov, 202

Vogel, 649

Volterra, 65

Wasov, 617, 707

Whitney, 648

Witt (see Andronov)

Yorinaga, 413
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