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Preface

Ce qui nous rend ces solutions périodiques si précieuses,
c'est qu'elles sont, pour ainsi dire, la seule bréche par ou
nous puissions essayer de pénétrer dans une place jusqu’ici
reputée inabordable.

—Henri Poincaré

This book may be considered as a second edition of the D. Taylor
Model Basin Reports issued toward the end of World Wat II. The inter-
vening years have seen a widespread growth of interest in the theory of
oscillations which, during the thirties, attracted little attention except in
the USSR.

On major topics the theory of oscillations has gradually become gen-
eralized and assumed definitive form. However, new problems have raised
new questions and on these the subject is still in a state of evolution.

Considerable interest of mathematicians in the problems of nonlinear
oscillations has resulted in important advances in the theory of nonlinear
differential equations but, as is to be expected, some of these advances
have exceeded the immediate needs of the theory of oscillations and belong
rather to the theory of differential equations per se. On the other hand,
physicists and engineers continue to supply experimental material, the
analysis of which requires special mathematical tools, some of which are
not yet available. In view of this it is sometimes difficult to draw a hne
between what is known definitely and what is known only provisionally
and subject to later revisions.

The theory of oscillations has apparently reached the state of its final
codification in the domain of small parameters based on the fundamental
researches of H. Poincaré, both topological' and analytical?; here the theory

! H. Poincaré, J. des Math. (3) 7, 1881; also Oeuvres, T. 1, Gauthier-Villars, Paris, 1928.
2 H. Poincaré, Les methodes nouvelles de la mecanique céleste, Gauthier-Villars, Paris, 1882;
also E. Goursat, Cours d'Analyse, T. 2, Gauthier-Villars, Paris, 1892.
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vi PREFACE

and the experimental facts are well coordinated; if there are occasionally
some difficulties, they are not essential. The first two parts deal with this
important field: Part I is devoted to the qualitative (topological) methods,
and Part II concerns the quantitative approaches. Both parts follow the
aforementioned treatises of Poincaré, although in some of the later methods
in Part II appear modifications in details but not in essence, since in all of
them solutions are sought in the form of power series of certain small
parameters.

In Part III devoted to applications, the aforementioned nonuniformity
of our present understanding of problems posed by the experimental evi-
dence is noticeable. Thus, in Chapter 21 one finds oneself on the relatively
little explored field of nonlinear difference-differential equations where,
besides some existence theorems, the mathematical developments have
not progressed enough to offer a practical tool. Something similar appears
in Chapter 25 where one feels the presence of certain ‘‘hereditary actions”
(probably amenable to integro-differential equations) but, again, the
problems being nonlinear, practically nothing is available on the mathe-
matical end to enable one to account for the observed facts.

In Part IV dealing with relaxation oscillations, the situation is still
further removed from a state of crystallization. Here, moreover, appears
a real “parting of the ways” between the efforts of mathematicians on
one hand and those of physicists and engineers on the other, the former
giving rise to an asymptotic, the latter to a discontinuous, theory. To
these two theories has been added recently a third based on the so-called
“piecewise linear” idealization.

The difficulty here is that all these problems are characterized by such
poor analyticity that it often seems easier to drop entirely the concept of
analyticity and sometimes even that of continuity.

Part I of this edition underwent relatively small changes except for the
addition of chapters 5 and 6 on stability. The theory of stability has devel-
oped considerably in recent years (mostly in the USSR) on the basis of
Liapounov’s ideas. The so-called second (or direct) method of Liapounov,
in particular, appears now as a cornerstone for investigations of stability
in various problems like those arising in connection with nonlinear control
problems. Some changes appear in Chapter 7; they reappear later in
Chapter 22; these problems of “bifurcations” turned out to be more impor-
tant than one could think at the time of the first edition.

In Part II, which is devoted to a survey of the various methods of
approximations and constitutes the quantitative part of the theory of
oscillations, all chapters relate to recent developments except Chapter 9,
which deals with the classical perturbation theory. Chapters 10, 11, 12,
and 13 are based on the work of Malkin who has adapted the theory of
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Poincaré to problems of the theory of oscillations. Chapters 14 and 15
summarize the so-called asymptotic methods of Bogoliubov and Mitro-
polsky representing a further generalization of the earlier work of Krylov
and Bogoliubov; this asymptotic theory is perhaps the most general of
all quantitative methods. Chapter 16 concerns recent work carried out by
the author in collaboration with M. Schiffer on the so-called stroboscopic
method based on the transformation theory; a number of problems are
treated by this method in Part I11.

In Part III, concerning various nonlinear oscillatory phenomena, the
first three chapters follow closely the general theory; we indicate the
standard procedure (of Poincaré) as well as that resulting from the use of
the stroboscopic method. The subjects of Chapters 21 and 25 transcend
the theory of ordinary differential equations and belong to certain func-
tional equations; as this field has not yet been completely explored, some
preliminary conclusions are obtained in the first approximation.

Part IV deals with relaxation oscillations; in this field, as we have
already mentioned, there are two distinct theories: the discontinuous
theory and the asymptotic one; the first is outlined in the first four chap-
ters and the last in Chapter 30. The reason for this imbalance lies not in
any preference of the author but in the fact that the present text is intended
primarily for physicists and engineers whose interest in a theory lies
primarily in the ease with which it explains phenomena; unfortunately
developments in the asymptotic theory have not yet reached the stage
when the theory can be applied easily to various problems, as can be
observed from the last two sections of Chapter 30. Chapter 31 on piecewise
linear idealization has been added recently; these developments (in the
USSR) became known when this text had been completed. In fact, this
method does not belong to either analytical or discontinuous methods and
stands by itself because it involves certain idealizations in the differential
equations themselves.

In a work of this nature it has been necessary to limit the exposition
to certain topics, omitting others not because they are less interesting
or less important, but because they are not needed for the program we
have selected.

Moreover, we have given preference to the Russian literature as far as
recent results are concerned. To some extent this is due to the fact that
the Russian literature is likely to be less known to the western readers
and because, having established the initial advance in this field (up to
1940), the Russian scientists maintain their leadership and initiative char-
acterized by a remarkable coordination of efforts between the mathe-
matical and the experimental parts of these fundamental researches.

The author wishes to express his gratitude to Professor M. Schiffer of
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Stanford University for his many valuable contributions during the initial
stages of this work, particularly in connection with the development of
the stroboscopic method which turned out to be a useful tool for applied
problems treated in Part III. He also wishes to express his gratitude to
Professors G. Sansone and R. Conti of the University of Florence for
many valuable discussions and to Dr. O. Plaat for his editorial work in
Parts I and II. The author is also indebted to the late Dr. B. van der Pol
whose brilliant grasp of nonlinear phenomena, particularly those treated
in Part 1V, led to many interesting discussions.

This work was carried out under the auspices of the Office of Naval
Research; the author is grateful for the opportunity to undertake this
work as well as for the many facilities offered to him during its progress.
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Chapter 1

PHASE PLANE; SINGULAR POINTS

1. Introductory remarks

This chapter may be considered as an investigation of various types of
equilibria of a physical system with one degree of freedom on the basis of
the theory of Poincaré.!

The essential aim of this study is the identification of singular points of
a differential system with positions of equilibrium. Once this aim is
reached, the remaining analysis follows closely the Poincaré theory with
slight additions imposed by its physical interpretation. Thus Poincaré
stresses more the geometry of curves defined by a differential equation
(d.e.) in the neighborhood of singular points, whereas in the theory of

! H. Poincaré, J. des Math. (3), 7, 1881; also (Euvres T.1, Gauthier-Villars,
Paris, 1928.

This subject can also be found in any textbook on the theory of d.e. in the real
domain, for instance:

(a) L. Bieberbach, Differentialgleichungen, Springer, Berlin, 1923.

(b) L. Cesari, Asymptotic Behavior and Stability Problems, Springer, Berlin, 1959.

(c) E. A, Coddington and N. Levinson, Theory of Ordinary Differential Equa-
tions, New York, 1955.

(d) E. Kamke, Differentialgleichungen reeler Functionen, Leipzig, 1930.

(e) S. Lefschetz, Differential Equations (Geometric Theory), Interscience Pub-
lishers, New York, 1957.

(f) V. V. Nemitzky and V. V. Stepanov, Qualitative Theory of Differential
Eguations, original text in Russian, Moscow, 1949; English translation,
Princeton Mathematics Series, Princeton University Press, Princeton,
N.J., 1960.

(8) E. Picard, Traité d’ Analyse T.3, Gauthier-Villars, Paris, 1928.

(h) G. Sansone and R. Conti, Equazioni differenziali non lineari, Ed. Cremonese,
Roma, 1956.

(1) F. Tricomi, Equazioni differenziali, 2nd ed., Einaudi, Torino, 1953.
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4 QUALITATIVE METHODS

oscillations it is useful to take also into account the directional and time-
dependent element of motion of the ‘‘representative point” on these
curves, in which case they are considered as trajectories rather than as
purely geometrical curves. In this manner appear some refinements in
the original theory; thus, in addition to the definition of nodal and focal
points there appears the property of stability according to the direction of
motion of the representative point.

These extensions, however, do not change the intrinsic character of the
theory but concern rather its interpretation in applied problems.

In Section 2 the Cauchy-Lipschitz theorem is stated in its general form,
in which it asserts the existence of solutions of a system of differential
equations with prescribed initial conditions and brings it into relation
with the phase-plane representation which follows from the representation
of a d.e. of the second order by an equivalent system of two first-order
equations.

2. . Theorem of Cauchy-Lipschitz; generalities

The theorem of Cauchy regarding the existence and uniqueness of a
solution of a d.e. can be found in any textbook of differential equations
and, for that reason, we shall not be concerned with its proof here. Our
primary object will be to establish certain geometric consequences of this
theorem which will be useful in that which follows.

We first explain what is meant by a “Lipschitz condition.” Let f be a
function of the m variables: x,, x,,. . ., x,,. We say that f(x,, x,,. . ., x,,)
satisfies a Lipschitz condition if, given values x,° x,°,. .., x,% of these
variables, there are positive numbers k and 3 such that the relation

m
| f(x,0 x50, ., x,.0) = f(xq, x50 - o, xq)| <k Z |20 — x|

i=1

holds, provided |x,° — x| < 8;¢ =1,2,...,m. The number % depends
on x,% x,%. .., x,°% but not on x,, x,,. .., x,. If the partial derivatives
of |ox; exist and are continuous, it can be shown that f satisfies a Lipschitz
condition. Let the n functions f(t, x,, X5,. . ., X,); = 1, 2,.. ., n of the
n+1 variables: ¢, x,, x,,..., x, satisfy Lipschitz conditions, and let
to, % x,°,. . ., x,° be prescribed.

The theorem of Cauchy-Lipschitz then states that the system of the n
first-order d.e.

dx;

- = fdt, xy, X, . -, X,); i1=12,...,n (2.1)
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has a unique solution x; = x,(t); i = 1, 2,.. ., n defined in the neighbor-
hood of t = ¢, such that x,(¢;) = x,°,¢7 = 1,2,...,n. The theorem thus
guarantees not merely the existence of solutions with prescribed initial
conditions, but it asserts that the initial conditions determine the solution
uniquely. The d.e. we shall consider will be Lipschitzian, unless the
contrary is explicitly indicated. To apply this theorem to a single d.e. of
order n we solve the d.e. for the highest derivative and write it in the form

s = TE _ fle, 5,5, x0h) (2.2)

This d.e. is equivalent to the system of n first-order d.e.
Xy = Xy X = Xgi. .., XM = f(2, %y, Xgy . oy Xp_y) (2.3)

where we have written x; in place of x for the sake of uniformity. This
system is a special case of that covered by the Cauchy-Lipschitz theorem,
which now states that the solutions of (2.2) are uniquely determined by
the values prescribed for x and its first n— 1 derivatives at ¢ = ¢, provided
that the function f satisfies a Lipschitz condition.

For later reference we collect at this point a number of theorems con-
cerning the dependence of the solutions of a system of differential equa-
tions on the initial conditions and on parameters occurring in the functions
f.- To avoid confusing notation we denote the initial values of the x; by
¢, instead of by x,% and we write 7 instead of ¢,. Let us denote the (unique)
solution of (2.1) which at time ¢ = 7 has the value x; = §; by: x; = ¢, (¢, 7,
& €gye o, €,). Itfollows that (7, 7, €1, €5, . L, €)= € (E=1,2,.. ., n).
We state first:

If the functions f(t, x,,..., x,) satisfy Lipschitz conditions, then the
Sfunctions @ (t, 7, &,,. . ., €,) are continuous in 7, £, &,,. . ., €, We have
furthermore: If the partial derivatives of;/ox;; i,j = 1,...,n are
continuous, then likewise the functions @, have continuous partial derivatives
with respect tor and §,,. . ., &,.

More generally it is true that the solutions ¢, are as differentiable with
respecttor, &,,.. ., &, as the f; are with respect to ¢, x,,. . ., x,. 'Turning now
to analytic systems, let the f; be analytic at ¢ = ty, x; = x,°. The result
in this case is:

The functions o(t, 7, €,,. . ., £,) are analytic in all of their arguments in a
neighborhood of t = tg, 7 = t,, £; = x.°.

It is possible to make estimates concerning the domain of analyticity of the
@, given that of the f;, but we shall not need these.
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Finally we consider systems of the form (2.1) in which the right-hand
sides depend on a parameter u, thus a system of the form

.x.‘ = f‘(t, xl,. ..y x’l’ ’.‘-)
We have:

If the f; are continuous in their arguments and satisfy Lipschitz conditions
in t, x,,. .., x, uniformly in p in a neighborhood of p,, then the solutions
x; = ¢t 7, &,y - -, €, 1) are unique and continuous in all their arguments
Jor p in the same neighborhood of p.,.

The @, are as differentiable in their arguments as the f; are in theirs.

If the f; are analytic at t = t,, x; = x,9, p = p,, then the ¢, are analytic
in all their arguments in a neighborhood of t = ty, ™ = ty, &; = 2% p = p,.

The analyticity in the initial conditions and the parameter will be important
to us in Part II.

The results concerning a single parameter can be extended in the obvious
way to the case in which the f; depend on several parameters p,, po,. . ., 4.
If the functions f; occurring in (2.1) do not depend on the time, the system
is said to be autonomous, a term whose significance will be more readily
understood when we begin considering connections with physical problems.

In this chapter we shall be interested in systems of the form

#=Pxy);  ¥=0xy) (2:4)
that is, autonomous systems of two first-order equations. By the equiva-
lence mentioned above, these include the special case of one second-order
d.e. which is typical of physical systems with one degree of freedom. In
the case of (2.4) it is possible to eliminate dt between the equations and
write

dy _ Q(xy),

ix = Pry) P(x,y) # 0 (2.5)
which is a d.e. of integral curves. If P = 0, Q # 0, we may interchange
the roles of x and y and consider the d.e.: dx/dy = P/Q, in which case the
integral curves are given in the form x = «(y).

For the special case of a d.e. of the second order, ¥ + f(x,%) = 0, one
can reduce it to the system (2.4) of the two d.e. of the first order by setting
# = y, which gives the equivalent system:

X=y=Pxy); y=—-flxy)=0x=y) (2.4a)
and the d.e. (2.5) becomes

b f5)) _0®9. ps g 252

dx y Py
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It is to be noted that (2.4) and (2.5) are equivalent, that is, have the same
integral curves with that difference, however, that (2.5) gives a geometrical
curve without any reference to what happens in time, whereas (2.4), in
addition, tells how this curve is described in time and direction by the
representative point R = R[x(t),y(t)] specifying the instantaneous state
of the physical system.

This representation of the integral curve in the parametric form

x = x(t) = p(t — to, X0, Yo)5 y =y(t) = Pt — o, x0, o) (2.5b)

is called a trajectory, a term which will be used later. It is to be noted that
this applies only to autonomous systems like (2.5); that is, such systems in
which the independent variable ¢ does not enter explicitly. In fact, only
in this case it is possible in general to eliminate ¢ between equations (2.4).
Another remark is noteworthy. If one considers the quantities
to, Xo, ¥o fixed (that is, given initial conditions), clearly x(¢) and y(¢)
represent the solution of the d.e. having for ¢ = ¢, definite initial condi-
tions x,, ¥, wWhich determines the solution. But from the translation
property of autonomous d.e. it is known that if one replaces ¢ by ¢t + ¢,
where ¢ is an arbitrary constant (the phase), one has still the solution of the
same d.e. In physical language the solution x(2), y(¢) specifies a certain
motion; the fact that ¢ is replaced by ¢ + ¢, means clearly another motion
(with a different phase ¢,) and the just mentioned property of translation
of autonomous systems can be stated differently, namely:

To a given trajectory corresponds an infinity of motions (solutions) differing
Sfrom each other by the phase.

This property of autonomous systems is very convenient for the geo-
metric study of integral curves and this and the following three chapters are
devoted to the geometry (or topology) of integral curves defined by
autonomous d.e. which constitutes the fundamental contribution of
Poincaré.

In the case when a d.e. contains ¢ explicitly, this topological procedure
ceases to hold. Assume, for instance, that instead of (2.4) we have d.e. of
the form

% = P(txy); y=Qxy) (2.6)

It is clear that we cannot determine the integral curve as we did in the
autonomous case by a simple passage from (2.4) to (2.5). In the non-
autonomous case the direction field

dy _ Qtx,y)
dx ~ P(t,%,y) 27)
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varies in time and it is meaningless even to speak about integral curves in
the sense of ‘“‘trajectories,” etc. In fact, if one assumes as previously the
phase-plane representation (see next section), one encounters absurd
situations; for instance, trajectories may even intersect each other which
is contrary to the theorem of Cauchy-Lipschitz and so on. One can
obviate this difficulty if one introduces ¢ as a third dimension, but the ad-
vantage of a planar representation is lost and the procedure becomes
impracticable.

Only under very spegial conditions (which will be encountered later)
is it possible to use the phase-plane representation for nonautonomous
systems, but this is rather an exception than the rule. In view of this, one
has to bear in mind that Part I deals only with autonomous systems.

Summing up, we shall primarily be concerned with the d.e. in the form
(2.4) which gives a space-time representation of an oscillatory pheno-
menon; occasionally, when only the geometry of integral curves is of
interest, we shall use the d.e. (2.5). Hence, unless otherwise specified, we
shall always deal with the d.e. in the form (2.4), and in this regard the
following definitions are important.

Any point (x,,y,) for which the two functions P(x,,y,) and Q(x,,y,) do
not vanish simultaneously is called an ordinary point with respect to the d.e.
A point (xo* 9,*) for which P(x,* y,*) = O(xo*y,*) = 0 is called a
singular point.

3. Phase plane

The introduction of the variable y = x in (2.4a) suggests the investiga-
tion of integral curves in the plane of the variables (x,y), called the phase
plane. As an example of this representation, consider the d.e. of a har-
monic oscillator in its reduced form % + x = 0. Written as a system
(2.4a) it is:

$=9, = -« (3.1)

Multiplying the first equations by x and the second by y and adding the
two d.e. and then integrating, one has:

x? + y? = ry2 = const

which represents a circle in the phase plane. The direction of motion of
the point R on the integral curve is obtained from the system (3.1). Since
x and % are merely the cartesian coordinates in this representation, in the
first quadrant, for instance, one has x > 0, y > 0, and it is seen that
% > 0 and y < 0, which shows that the positive direction of the integral
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curve is clockwise as shown by the arrow in Fig. 1.1. Introducing the
polar angle ¢ of the radius vector 7, one has cos ¢ = x/r,, and differentiating
with respect to ¢, one obtains ¢ = —1. Thus the usual representation (in
the x,t plane) of the integral curve of the harmonic oscillator by a sinusoidal
curve with ¢ on the abcissa axis is replaced in the phase plane by a polar
representation by a circle described by the representative point with a
constant angular velocity ¢ = — 1, the minus sign merely showing that
the rotation takes place in the direction opposite to that in which the angles
are counted as positive—a fact which has been already noted directly from
the d.e. (3.1). _

The dependence of the solution on 't
two arbitrary constants of integration
also appears in the phase-plane repre-

sentation. One of these constants is 9
obviously 7,2 (or r,) since, if one

changes the initial conditions x4, y,, 4’\

then r, changes and one thus obtains a ) >

continuous family of circles depending
on the parameter r,. For a given r,
there is still another family of motions
depending on the initial phase ¢,.
One thus has a very simple and com-
pact representation of the totality of Ficure 1.1
solutions of the harmonic oscillator
expressed in terms of two constants of integration.

If one takes the d.e. of the harmonic oscillator in a nonreduced form:

%+ welx =0 (3.2)
the result is similar, as one easily verifies by means of a similar argument.

One can also obtain the same result by multiplying (3.2) by x and integrat-
ing, which gives the first integral:

X2 4+ w02x2 =2C

C being an arbitrary constant. If one divides by 2C and sets x = y;
2C = B?; 2C|wy? = a2, one obtains the equation of an ellipse with the
serni-axes a and B:

x2 g2

=t 7= 1 (3.3)
which represents the integral curves in the phase plane (Fig. 1.2). The
positive direction on this curve is obtained again from the representation of

(3.2) as a system:
=y, = -
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One has again a continuous family of ellipses corresponding to a con-
tinuous variation of the arbitrary constant C. There is still another
continuous family of possible motions corresponding to the same ellipse
but counted with different initial phase
angles. At any instant ¢ the projec-
tion of the radius vector r on the x
axis gives the coordinate x, and the

R projection on the y = % axis gives the
velocity x corresponding to thisinstant.
¢\ In this case, the angular velocity ¢ of

o > the radius vector does not remain con-
stant, as in the case of the reduced
equation % + x = 0, but fluctuates

between a maximum and a minimum
as the radius vector rotates between the
FiGure 1.2 semi-axes of the ellipse.

It is to be noted that the d.e. (3.2)
can always be reduced to the form # + x = 0 by a change of the in-
dependent variable 7 = wt, which transforms the elliptic integral curves
into circles.

4. Singular points; elementary singular points

The Cauchy-Lipschitz theorem applied to the autonomous system

= Pxy); y=0xy) (4.1)

has, as a consequence, that through every point of the plane there passes one
and only one integral curve. 'We may think of (4.1) as a “flow” in the phase
plane defined by the velocity-vector field. The direction of motion at
each point being specified by this vector, it follows that the integral curves
are tangent at every point to this vector and are, in fact, completely
determined by this requirement. If two distinct integral curves were to
have a point in common, they would then have to be tangent at this point,
a possibility ruled out by the fact that P and Q are Lipschitzian. Thus we
arrive at the conclusion that two distinct integral curves have no point in
common.

A singular point (x,,5,) is a stationary point of the flow, P(x,,y,)
= ((xo,%,) = 0 and the integral curve passing through it consists just of
the point itself. This fact can also be deduced directly from (4.1) by
noting that x(¢) = x4; y(¢) = y, is a solution of (4.1). Now, if x(¢), y(¢)
is an arbitrary solution passing through (x,,%,), that is, such that x(¢,)
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= x4; y(t,) = ¥, for some ¢, then the uniqueness part of the Cauchy-
Lipschitz theorem tells us that

x(t) = xo; ¥(t) =y,

If (4.1) is obtained from a second-order d.e. describing a dynamical
system via the substitution % = y, then a singular point (x(,1,) has a
simple interpretation in terms of that dynamical system. In this case
P(x,y) = y, so that y, = 0 and, since x is position and y velocity, the fact
that x(¢) = x4; ¥(t) = 0 is a solution tells us that x = x, is a position of
equilibrium of the dynamical system. We are thus led to identify singular
points with positions of equilibrium, and this is of fundamental importance
in what follows. In particular, the asymptotic behavior of the trajec-
tories in the neighborhood of a singular point determines the type of
equilibrium represented by the singular point.

A further consequence of the Cauchy-Lipschitz theorem follows. If a
trajectory passes through an ordinary point, it cannot approach a singular
point in finite time; more precisely, if x = x(¢); y = y(¢) is a nonconstant
solution and x(¢) — x4 and y(t) — y, as t — t,, where (x,,9,) is a singular
point, then t; = + 0. A singular point is said to be asymptotically
stable if all trajectories starting sufficiently near it tend to it asymptotically
as t — oo. If there is a trajectory which tends asymptotically to the singu-
lar point as ¢ — — o0, the singular point is said to be asymptotically
unstable. In the case of an harmonic oscillator the origin is a singular
point which is neither stable nor unstable as we have defined these terms,
since every trajectory forms a closed curve surrounding the origin (Fig. 1.1
or 1.2). Having in mind the asymptotic character of motion in the
neighborhood of a position of equilibrium, one can give a general classifica-
tion of singular poirts. We follow closely the basic work of Poincaré.
We start with a special case and consider the systems

X=2x; y=ay (4.2)

and
X = —ux y = —ay (4.3)
whose solutions are x = Cie'; ¥y = Cpe®* and x = Cie7t; y = Cpe 2,
respectively. The origin x = y = 0 is a singular point for both systems,

and the coordinate axes are integral curves. 'The integral curves on which
x # 0 satisfy the d.e.

dy ay
== (4.4)

which has the solution y = C|x|?; this relation can also be deduced
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directly from the solutions of either system. Thus both systems have the
same integral curves. The significance of the signs will appear presently.
The integral curves are parabolic if a > 0 and hyperbolic if a < 0.
These two cases give rise to different types of singular points. For
reasons of symmetry we may restrict the discussion of the integral curves
to positive values of x.

Node. We consider first thecasea > 0. Ifa > 1, as dy/dx = Cax*-},
then (dy/dx) — 0 for x — 0. Hence every integral curve with the ex-
ception of. the y axis approaches the singular point along the x axis, as is
shown in Fig. 1.3a. If a < 1, dy/dx = Ca(1/x'-°) and in this case every

x x
A A

(a) (b)
Ficure 1.3

integral curve with the exception of the x axis approaches the singular
point along the y axis (Fig. 1.3b). If a = 1, the integral curves are half-
lines converging to or radiating from the singular point (Fig. 1.4). Again,
every integral curve has a limiting direction at the singular point, and this
property is taken as the definition of a node, or nodal point. If, given any
direction, there is an integral curve having this limiting direction at the
node, as is the case in the example when @ = 1, the node is called a proper
node, or star. If every integral curve, or every integral curve but one (as
in the case a # 1), has the same limiting direction, the node is called an
improper node.

The significance of the signs in (4.2) and (4.3) appears in the solutions.
The trajectories of (4.3) actually approach the node (as ¢ — o0) while the
trajectories of (4.2) have the reverse direction. In the first case the node is
stable and in the second it is unstable.

We remind the reader that a given parabolic curve such as ANB in
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Fig. 1.3a consists, properly speaking, of three different trajectories: AN
and BN without N and a singular trajectory consisting of the single point
N. Alltrajectories converge to (or diverge from) the node, but never cross
it.
Saddle point. 1f a < 0, the integral curves other than those lying on the
coordinate axes are the hyperbolic curves: y|x|!¢l = C. For |a| = 1,
they are the ordinary hyperbolas shown in Fig. 1.5. The coordinate axes
are the asymptotes of the family. This singular point is called a saddle
point (in French, col). The directions indicated in Fig. 1.5 are those
corresponding to (4.2). Only four trajectories tend to the singular point:
AS and BS for t — o0 and DS and CS fort — —o0. For (4.3) the direc-
tions are opposite to those shown in Fig. 1.5. It is clear that a saddle
point is always an unstable singularity.

¥ rx
A A
N,
x D S C;x
8
Ficure 1.4 Ficure 1.5

Focus. To introduce the idea of a focal point we consider the system

dx dy
- = —ax + ¥; == -—-x—a 4.5
where a is a positive constant. It is convenient to conduct the discussion
in polar coordinates by setting x = rcos@; y = rsing; r = Va2 + y%;

@ = arctan (y/x). In the new variables the d.e. is 7 = —ar, ¢ = —1,
which has the solution
r = C,e ™, p=—-1t+C, (4.6)

The trajectories are thus logarithmic spirals approaching the singular
point F at the origin (Fig. 1.6). The rotation of the radius vector is
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clockwise with a constant angular velocity ¢ = —1. Every trajectory, in
this case, approaches the singular point, which is called a focal point (or
focus; also, spiral point; in French, foyer) without any definite direction as
the spiral rotates around the singular point an infinite number of turns as
it tends to it. If @ < 0 in (4.5), the preceding conclusions remain except

that the motion of R takes place in the
i opposite direction, so that instead of
approaching the singular point F, it
u departs from it. In this way, as in the
case of a nodal point, we have to dis-
tinguish between the stable focal points

(a > 0) and the unstable ones (a < 0).
N The whole family of spirals either con-

(s
Gi/ ¥ verges toward, or diverges from, F
\ according to the sign of a.
The nodes, foci, centers, and saddle

points constitute the elementary singu-
larities of a d.e. in the real domain.
We shall be concerned almost ex-
FiGure 1.6 clusively with these in what follows.
Besides these, one encounters, occa-
sionally, singularities of higher order, some of which arise from a
confluence of two or more simple singular points. In the applications,
such cases generally lead to somewhat special conditions of equilibrium as
will be mentioned later. Mathematical difficulties here are considerably
greater and connections with physical problems are less explored. We do
not propose to enter further into the question of these higher-order
singularities, and refer the reader to the existing publications.!

5. Examples of singular points of a linear d.e.

In the preceding section, we specified the properties of elementary
singular points in the cases of particularly simple forms (4.2) and (4.5) of
the d.e. Similar conclusions can be obtained for much more general d.e.
We shall see later that the nonlinearity of a d.e. generally does not affect
the elementary singular points, so that it is useful to consider first the
general case of a linear d.e. of the second order with constant coefficients:

4 2% + wilx =0 (5.1

which represents a damped harmonic motion. It is well known that,

1 See footnote ! page 3.
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according to whether 52 — wy% > 0 or 4% — w,® < 0, one has either an
aperiodic or an oscillatory damped motion. In the first case, the singular
point of (5.1) is a node; and in the second, a focus. Hence, nothing es-
pecially new is gained here as compared to what has already been outlined
in the preceding section. The only interest here lies in the manner in
which these more complicated cases are reduced to the simpler forms
investigated in the preceding section.

Consider first the aperiodically damped case (62 — wy® > 0), when the
solution of (5.1) is of the form:

x(t) = Ae "' + Be "2t (5.2)

A and B being the constants of integration and 7, and r, the negatives of
the roots of the characteristic equation, which are real. Since our purpose
is to investigate the behavior of integral curves in the phase plane, one has
to determine %(¢) = y(¢) from (5.2) and then to eliminate the time ¢ between
x(t)and y(¢). If one carries out this calculation, one obtains the trajectory
in the phase plane (or, simply the phase trajectory):

|rax + y|n = Clryxe + y|n (5.3)
Introducing new variables v = 7,2 + y and u = ryx + y, (5.3) becomes
v=Clul*;, a=ryr, (5.4

and this is already in the form that was used for the investigation of proper-
ties of the nodal point. 'The only point to be noted is the return from the
v,u variables to the original ones, x,y. This is a problem of analytic
geometry which we do not treat here, giving only the result. 'The parabolic
curves shown in Fig. 1.7a become oblique in the (x,y) plane (Fig. 1.7b).
However, the fundamental property of the nodal point N, viz.: tending of
trajectories toward N with a limiting direction, is invariant as is shown in
Fig. 1.7b. Likewise, the approach of parabolic curves to parallelism with
one of the axes of coordinates (Fig. 1.3), when the variable along the other
axis increases, is also preserved; but, in the “distorted image” of the v,u
plane, this parallelism takes place with respect to the “‘former axis” (Fig.
1.7b), so that nothing is changed in the invariant properties of trajectories in
the neighborhood of a nodal point.

If b2 — wy? < 0, the d.e. (5.1) has a solution of the form x = x,e~%
cos (w,t + «) where x, and o are two Integration constants and w, =
V/wy? — b?is the damped frequency. In order to represent this solution
in the phase plane, we consider, as usual, the equivalent system:

Xx=y; y= —2by — wyx (5.5)
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which shows that the origin is again a singular point. The elimination of
the parameter # results in the d.e.:

dy  2by + wy’x
&y o

This is a homogeneous d.e. amenable to separation of variables by intro-
ducing the auxiliary variable u defined by y = ux. Omitting this calcula-
tion ? we indicate the result:

¥ + 2bxy + wy?x? = Cexp [(2b/w,) arctan (y + bx)/w,x] (5.7)

Vali

-

- U

(a)
(b)

Ficure 1.7

The left-hand term here reduces to: (y + bx)? + w,%x®. Introducing
first the variables ¥ = wx; v = ¥ + bx, it becomes simply v* + u?® so that
(5.7) can be written as v% + u? = C exp [(2b/w,) arctan (v/u)].

Introducing now the polar coordinates u = r cos¢; v = rsiny, the
last equation becomes:

r = Cy exp [(B/w,)y] (5.8)

where C; = V/C. The phase trajectory is now a logarithmic spiral and we
recognize thus that this singular point is a focal point. This singular
point is stable if & > 0 and unstable if b < 0.

? E. Kamke, Differentialgleichungen reeler Functionen, Leipzig, 1930.

UNIVERSITY OF MICHIGAN
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In electrical engineering the concept of ‘“‘negative resistance” is fre-
quently used in connection with oscillatory phenomena which absord
energy instead of dissipating it. Hence, in such phenomena b < 0 and,
therefore, the focal point is unstable. The usual representation in such.a
case is shown in Fig. 1.8, whereas in the phase plane the integral curve (in
the u,v variables) is an ordinary logarithmic spiral traversed by R from the
focal point outward, as shown in Fig. 1.6, but with a changed direction on
integral curves. If, however, one considers the x,y variables related to the
variables u,v by a linear (affine) transformation, the spiral is distorted as
shown in Fig. 1.9 for dissipative damping (b > 0). Thus, the situation is
similar to that mentioned in connection with the aperiodic case (62 > wy?).
£ |
A / yex

o %“J‘J‘U ,

\
\
\
\

\
|

Ficure 1.8 ‘ Ficure 1.9

In this case, the spiral trajectory approaches the singular point F again
without any definite direction. The only difference between the form of
spirals in Figs. 1.6 and 1.9 is due to the fact that, in the former, one has the
logarithmic spiral directly (in u,v variables), whereas in the latter, this
spiral is distorted when one passes from the u,v variables back to the x,y
variables. In a similar way, the properties of trajectories in the neighbor-
hood of a saddle point can be obtained from the d.e. of the form

mi —cx =0 (5.9
where m and ¢ are some positive constants. This equation has a real
exponential solution of the form

x = Ae" + Be

where A and B are constants of integration and 7 = +4/¢/m. This shows
that a physical phenomenon represented by (5.9) is unstable. The (x,t)
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representation does not yield any further information but, if one translates
these relations into the phase-plane representation, some additional con-
clusions can be obtained as follows.

The equivalent system is:

=y, y=(c/max (5.10)

and the d.e. of the integral curves is
= == (5.11)

which shows that the origin x = y = 0 is a singular point. The integral
curves are obtained by integrating (5.11) and are

y? — (c/m)x? = C (5.12)

C being an integration constant. These curves are thus hyperbolic curves
forming a family depending on the
parameter C. The asymptotes are
obtained by setting C =0, as y =
+1/(c/m)x. The positive directions

on the curves of the family are obtained
// by investigating the signs of ¥ and y in
3

x
Rotory | motion

various quadrants, as we did previously.
>  This gives the family of phase trajec-
\)sc:llafory tories shown in Fig. 1.10. Some con-

Oscillatory
motion

28\

Rotary | motion
4

motion  clusions can be derived from this mode
of representation.

We consider the simplest possible
example of an unstable equilibrium
a pendulum in the neighborhood of

Ficure 1.10 its upper (unstable) position of equili-

brium. If one designates by x, and

, = %, the angle and the velocity of the pendulum counted from its lower
itable) position of equilibrium, the law of conservation of energy yields

.2+ Vix) = &

where V(x,) is the potential energy, 4y,? the kinetic energy (for m = 1),
and 4 the total energy, constant since the system is conservative.

In theoretical mechanics one investigates three cases according to
h— V(m) 2 0. Ifh — V(m) > 0, the pendulum rotates all the time in the
same direction; its velocity y, keeps the same sign but fluctuates in value;
its maximum occurs for x, = 0, 2. .., and minimum for x, = =, 3=,. ..
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We are interested here only in what happens near x; = = and have plotted in
Fig. 1.10 the trajectories near that point. This case corresponds to the quad-
rants 2 and 4 of Fig. 1.10; the velocity does not change its sign but oscillates
in magnitude, being minimum for x = w. The difference between the
quadrants 2 and 4 is only in the direction of the velocity. On the other
hand, if 2~ — V(7) < 0, the pendulum cannot reach the upper position
(x, = ) but turns back from some angle x, < = which is the greater, the
greater the total energy. This corresponds to the quadrants 1 and 3 of
Fig. 1.10. If, however A — V(w) = 0, one has the asymptotic case. If
the pendulum is projected (by an impulse, for instance) from its lower
(stable) position of equilibrium with a kinetic energy just equal to the
potential energy in the upper (unstable) position of equilibrium, it tends
asymptotically to that position.

6. Canonical transformation; abridged equations

We have given examples of singular points in connection with a few
special d.e. (Section 4) and supplemented this, in the preceding section,
by more general forms of the linear d.e. of the second order with constant
coefficients.

Consider now the general system

*=Plxy);,  y=0xy)
where P and Q are real analytic functions of x and y which vanish at the
origin. If we develop P and Q into a power series at this point we have

X=ax + by + Pyxy);  y=cx+dy+ Quxy) (6.1)

where P, and Q, are power series in x and y beginning with terms of
degree at least two. (Notice that we can always make a change of variable
that brings a singular point (x,,7,) to the origin, and thus gives the d.e. the
form (6.1) in the neighborhood of the singular point.) Since we are
interested in investigating what happens in the neighborhood of the
singular point, x and y may be regarded as small quantities of the first
order. In view of this, the terms contained in P, and Q, are at least of
the second order and, thus, in general can be neglected in the neighborhood
of the singular point.

This leads to an important simplification of the problem. In fact, if one
is interested only in establishing the nature of equilibrium in the neighbor-
hood of the singular point it is frequently sufficient to investigate the linear
system

dy

dx
E=ax+by, 3?=cx+dy (6.2)
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In a great majority of applied problems, the use of the “abridged system”
(6.2) instead of the complete system (6.1) is justified. It must be noted,
however, that in some special cases, this may not be so (for example, if
a=b=c=d=0). InSection 8 we shall investigate a case in which
the use of the abridged system does not permit determining the nature of
the singular point. Whenever one comes across a situation of this kind
the problem becomes more complicated and is to be studied directly.

We shall first investigate the simple abridged equations (6.2) and shall
mention later some special cases when the linear terms fail to yield the

b .

dl # 0, as otherwise the
origin is not an isolated singularity. The problem can then be formulated
as follows: We introduce a linear transformation of the variables

a
answer. In the first place we assume that ’c

f=ax+By; n=yx+d (6.3)
with the determinant l; g # 0 so as to reduce (6:2) to the canonical form:

f. = S 7 = Sgn (6'4)

where S, and S, are certain constants real or complex assumed distinct.
The d.e. of the integral curves in the new variables is

dn _ (Ss\ . Sy

This can be accomplished by differentiating (6.3) and substituting for %
and y their expressions (6.2), which gives the identities

Sy(ex + By).= olax + by) + P(ex + dy)
Sy(yx + 3y) = y(ax + by) + ¥(cx + dy)
Identifying the coefficients of x and y, one gets two sets of relations
a(a — S,) + Bc = 0; ya— Sg) +8=0
ab + B(d - S,) = 0; yb+ 8d — Sg) =0

There are thus two linear systems; one contains the unknowns « and 8 and
the other y and 8. Nontrivial solutions are possible only when S, and S,
are the roots of the quadratic equation

(6.6)

(6.7)

a-3S c
b d-S
which is called the characteristic equation of (6.2) and which will be of a

=St —(@+d)S+(ad—-b)=0  (6.8)
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fundamental importance in what follows. We choose S, and S, as the
two (distinct) roots of (6.8) and proceed with the determination of «, 8, y,
and 8. (The case of a double root is discussed in paragraph 5 below.)

a B a

Thus , 8 e d
roots S, and S, and eliminates the possibility of one of them being zero.

Under these restrictions .S, and S, are either real or complex and we
shall investigate these various possibilities.

1. If the roots S, and S, are real and of the same sign, m > 0 (from 6.5),
the singular point is a node, stable if .S, and S, are negative and un-
stable if they are positive. The condition for real unequal roots of the
same sign is clearly: 0 < ad — bc < [(a + d)/2]%.. For a stable node
a + d < 0 and for an unstable one, a + d > 0. As to the coefhicients
a, B, v, and &, they are determined by (6.7).

2. If S, and S, are real but of opposite signs, a similar reduction to the
canonical form results in the d.e. (6.5) in which m < 0; this, as we saw in
Section 4, results in a saddle point. In this case ad — bc < 0.

3. If S; and S, are conjugate complex, we put ¢ = re'?; n = re—i» which
gives a system

# 0 and # 0 ensures the existence of two unequal

F=r(Si+ S)2; ¢ = (8- Sy)/2 (6.9)
The integral curves are given by equations
r=Crexp [(S, + St2]; ¢ = [(Sy — So)(t + Cp))/2i

so that
r=Cexp [(S; + Sipl(S; — S))] (6.10)

where €, C,, and C are the integration constants, which shows that the
singular point is a focus provided Re (S), the real part of S, and S, is not
zero. The stability of the singular point is determined by Re(S). If
Re(S) < 0, the focus is stable; if it is positive, the focus is unstable. The
condition for a focus is 0 < (@ + d)? < 4(ad — bc).

4. If S, and S, are purely imaginary, S, + S, =a + d = 0. This
requires that ad — bc = —a? — bc > 0; thus —bc > a?; that is, b and ¢
are of opposite signs and, moreover, |bc| > |ad|. We are still in the
general situation discussed under 3 (two conjugate roots). Hence (6.10)
holds in this case also. Since S, + S, = 0, (6.10) reduces to r = C,
which shows that the integral curves are circles around the singular point.

In the case of the harmonic oscillator (3.1) we have precisely this situa-
tion since a =d =0, b =1, ¢c = —1. This special case of S; + S,
=a + d = 0 and —bc > a? characterizes a center. Geometrically it is
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distinguished by a continuous family of closed trajectories around the
singularity.

5. If the characteristic equation has a double root S = S, = §,, we
distinguish two cases. We note first that the condition for a double root
isa=d= Sand bc =0. If b =c =0, then (6.2) has the form

15*“\ :wv\*‘ 5"‘ . .

ntd  atcerrars X = ax, y=a
which we recognize as a proper node, stable or unstable according as

iy a< 0 ora>0. In the other case,

- that is, not both b and ¢ equal to zero,
let us suppose ¢ = 0, b # 0, so that
| (6.2) has the form

| x=ax+by; y=ay
We shall see that the singular point of
this system is a type of improper node
N not previously encountered. The
general solution is

x(t) = (Cy + Cibt)e*; 9(t) = Cie*

which is found by first integrating the
— second equation and substituting the
/ solution into the first, which may then

be integrated.
To describe the behavior of the tra-
jectories near the origin, suppose first
FiGure 1.11 that a < 0. Then x(¢)—0 and
y(t)—0 as t—->o00. If C, =0, we
obtain a trajectory on the x axis. If C; # 0, the slope of the trajectory is
given by

dy _y'(t) _ Cya 0
dx x'(t) a(Cy+ Cibt) + bC,

-1

ast —» oo

Hence all of the trajectories tend to the origin tangent to the x axis. Thus
this node is characterized by the property that all trajectories have the
same limiting direction at the singular point (see Fig. 1.11). If a > 0 the
above conclusions apply as ¢ — — 0, that is, the node is stable or unstable
according asa < Qora > 0.

Summing up, we see that the nature of the roots S, and S, determines
the character of the singular point.

(1) If S; and S, are real and of the same sign, the singular point is a
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node. The conditions for a node are: (ad — bc) > 0; (a + d) # 0. If
(a + d) < 0, the node is stable; if (a + d) > 0, it is unstable.

(2) If S, and S, are real but of opposite signs, the singular point is a
saddle point. In this case the conditions are: (ad — bc) < 0.

(3) If S, and S, are conjugate complex (not purely imaginary), the
singular point is a focus. The conditions here are: b and ¢ are of opposite
signsand (@ + d) # 0. If(a + d) < 0, the focusisstable;if (¢ + d) > 0,
it is unstable.

(4) If S, and S, are purely imaginary, one has a center with the condi-
tions: @ + d = 0 and |bc| > |ad]|.

Only the linear d.e. of the form (6.2) has been considered so far. Itis
now necessary to show how the theory is to be applied to the general case
of the d.e. (6.1). We shall suppose S, # S,.

One can apply the same linear transformation between (x,y) and (§,7)
given by (6.3). However, here it is necessary to express x and y in terms
of £ and 7 by the inverse transformation, which is possible near the origin

since we have assumed that 4 = Ia g # 0. Hence (6.3) can be solved
in the form
x= (- pn)d;  y= —(yE - on)/d (6.11)

We substitute these values of x and y into the d.e. (6.1). Observe that
Py(x,y) and Q,(x,y) are transformed into 7,(§,m) and «,(£,m) which are at
least of degree 2 in the new variables £ and 5. This gives (6.1) in the form

£= S+ mlém)s 1= San + o) (6.12)

Here S, and S, may be real numbers, in which case (6.12) is already in the
canonical form. If S, and S, are conjugate complex, we can also set
£ = u+ iv; 7 =u— iv. Comparing the real and the imaginary forms,
one has
% =au— by + py(u,v); S, =a, + 1b, (6.13)
0 = bu + a,v + g,(u,0); S, =a, — 1b,

where p, and g, are at least of the second degree in u and .

We have to show now that the presence of the nonlinear terms 7, and «,
does not change the general character of the singularity and that the pre-
ceding classification obtained on the basis of the linear terms remains valid.

1. We take first the case when S, and S, are real, unequal, and of the
same sign, which in the linear case corresponds to a node. It can be shown
that the general properties of the singular point remain substantially the
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same in the nonlinear case. We multiply the first equation (6.12) by £,
the second by 7 and add, which gives

% 7??(52 + %) = (8:6* + San®) + reléin) (6.14)

where the last term contains r = V€2 + 52 at least in the third power.
Hence, if S; and S, are, for instance, negative and r is small enough, the
quantity ¢2 + 5% = r2 = p decreases continuously, so that the point
R[&(t),m(2)] approaches the singular point at the origin O.

If it is possible to show that this approach to O occurs along a definite
direction, the singular point at O is clearly a node. To show this point,
we form the second combination

€ — & = (S; — Soén + r3%(£m) (6.15)

where rg* is, at least, of order three. With the variables 72 = £2 4 52
Y = arctan 5/¢ is defined modulo 27 by ¢ = r cos ¢, » = 7 sin ¢, and

‘;_‘_f - _ (SI+S=) sin 2 + O(r, ¥) (6.16)
Intro.ducing the function
h(t) = cos 2i(t) (6.17)
and in view of (6.16), we get
2 o~ (8,- 8)sin?2 + O, ¥) (6.18)

As cos2p =1 for =0 and
Y =mand cos2y = —1 for = =/2
and y = 3n/2, we consider the angular
regions X' defined by € < ¢ < (7/2) — ¢;
"2+ e<yp<m—¢; 7+ e<y
< (3n(2) — €&; B37[2)+ e< Y < 27 — &;
these regions are shown in white in
Fig. 1.12, while the remaining angular
regions are shown in shading.
Observe that, if e, there exists a
quantity 8 > 0 such that

— (S, — Sy sin?2p > 5 (6.19)

Ficure 1.12 assuming that S; > S,;. Inasmuchas

r—0 with t— 00, we can assume

that our trajectory is so near to O that |O(r)| < (8/2). Hence (dh/dt)
> 48 if Yel.
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Thus, if the point (r,y) traveling along a trajectory lies, say, in 2, it
will move into the angle || < &. Once it has arrived there, it cannot leave
this angle since at its boundary the trend of ¢ is to move inward into the
shaded area. Since £ can be supposed to be as small as we please and the
radial motion is inwardly directed, it is clear that the trajectory approaches
asymptotically the singular point along a definite direction, that is, O is a
node. 1f S, > §,, this approach takes place along the horizontal tangent;
if S; < Sy, it takes place along the vertical tangent (Fig. 1.3a and b).
We have thus demonstrated this property for the general case of the d.e.
(6.12).

In a similar case one can show that the properties of the star (equation
4.4, fora = 1) are preserved in the general case of equation (6.12) if
S, =3S8,=S5#0. Thed.e. (6.14) and (6.16) become, in this case,

dr dys

5 =S+ 00— =00) (6.20)
Thus
d O
dr — Sr+ O(r%) (6.21)
or
Z.‘_f = «(r, ) (6.22)

where «(r,b) is a continuous differentiable function of r and ¥ even for
r = 0. One can, therefore, integrate (6.22) with an arbitrary initial
condition (0) = ¢, which yields an infinity of curves y(r) passing
through the origin with definite tangents. For each i, there is a corre-
sponding trajectory so that we have ascertained the existence of a star as the
singular point at the origin.

Consider now the case when .S, and S, are real and of opposite signs,
say, S; < 0and S, > 0. We have then the equations

P o ISyt Surt4 ri(Em) (6.23)
d .
d—f = —%(IS,[-!—Sz) sin 2+ O(r) (6.24)

Observe that § tends again to limit values 0, #/2, 7, and 37/2 if r is small
enough. However, it is impossible to deduce from (6.23) that, if # — oo,
r will decrease indefinitely. In fact, in the angular space 5%/¢2 < |S,|/S,,
r decreases, where for n%/¢2 > |S,|/S,, 7 increases. In other words, depend-
ing on the sign of inequalities

(tan ¢)* 2 S,/|S,| (6.25)
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the point R will either approach, or recede from, the origin. Since the
time variation of ¢ (equation 6.24) tends to remove R from the 7 axis and
bring it nearer to the £ axis, R will end up in the angular space of increasing
r. Thus R will not converge into the origin (Fig. 1.13) but, on the con-
trary, will further depart from it after an initial approach. This shows
that the main characteristic of a saddle point is still preserved in the
neighborhood of the singularity. For a finer analysis of this case and of
the case of conjugate complex roots S, and S,, we refer to the mathematical
texts.!

It can be shown that the nonlinear terms do not modify in general the
form of trajectories defined by the abridged system (6.2). It is to be

P
P
SN
SF
S ° >q
UF
UN
Ficure 1.13 Ficure 1.14

mentioned that the previous statement does not hold in one special case
when the singular point is a center, as will be investigated in Section 8.

7. Distribution of singular points; parameter space

A convenient way of investigating the changes in the nature of singular
points when the parameters a, b, ¢, and d vary is to represent graphically
the various regions in which the roots S, and S, have the same form.3

1 See footnote !, page 3.
3 (a) A. Andronovand S. Chaikin, Theory of Oscillations (original text in Russian),
Moscow, 1937.
(b) English translation by S. Lefschetz of A. Andronov and S. Chaikin, Theory
of Oscillations, Princeton University Press, Princeton, N.J., 1949,
(c) A. Andronov, A. Witt, S. Chaikin, Theory of Oscillations (in Russian); this
book is the second edition (1959) of A. Andronov and S. Chaikin,
Theory of Oscillations (original text in Russian), Moscow, 1937.

LANK | ol W XN ,,i T ——
———
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One can, for instance, set p = — (a + d); ¢ = I: Z and write the

characteristic equation (6.8) as
S2+pS+¢=0 (7.1)

A parabola P of equation p2 — 4¢ = 0 traced in the plane of the variables
(p,9) (Fig. 1.14) and the coordinate axes determine five regions: SN, SF,
UF, UN, and S (stable nodal, stable focal, unstable focal, unstable nodal,
and saddle points, respectively).

The region of saddle points S is separated from those of other singu-

a

larities by the p axis for which . = 0 and which, as we saw, indicates

d
the presence of at least one zero root.

On the right side of the p axis, there are nodes and foci both stable and
unstable. For the former p > 0 (thatis, a + d < 0); for the latter p < 0.

It is noted that this applies only to the common frontier between the
regions SF and UF since the regions SN and UN have no common fron-
tier except at one point. The common frontier between the regions SN
and SF, on one hand, and between UF and UN, on the other hand, is the
parabola P; at this border line one has the relation (¢ — d)? = — 4bc
which is possible only if b and ¢ are of opposite signs.

The ¢ axis (p = 0) corresponds to the relation @ + d = 0, that is, to the
vanishing of the real parts of the roots. This, as we saw, characterizes a
degenerate focus when the spiral trajectory from converging becomes
diverging or vice versa. The positive ¢ axis is, therefore, a locus of
imaginary roots. We shall see later that the g axis plays an important role
in the theory of bifurcation (Chapter 7) when the topological configuration
(defined in Chapter 3) changes, passing from the SF region into the UF
region or vice versa. It is impossible, however, to pass from the SN
region to the UN region or vice versa, since these two regions have no
common border except at one point 0 at which a + d = 0 and ad = bc
simultaneously, the latter condition meaning that there appears one root
equal to zero which excludes the existence of a simple singularity at this
point. This representation is less convenient if the parameters a, b, ¢, and
d vary independently. The reason for this is the fact that this represen-
tation uses two combinations of the four parameters which permit reducing
artificially the four-space of parameters to a planar representation.

If, however, one wishes to investigate the stability of a system in terms
of its singular points when parameters vary independently, it is necessary
to study the problem in the ‘‘parameter space.” As in this case there are
four parameters, a four-space is required; but, in view of the impossibility
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to give a geometrical interpretation, one has to carry out this study for
different ““sections” of the four-dimensional space (a,b,c,d). If one takes
as ‘‘sections” the coordinate planes @ = 0, b = 0,.. ., to each of them
corresponds a three-dimensional space (b,c,d), (a,c,d),. ... One can also
take as sections of lower order those which correspond to a = 0, b = 0,
a = 0, ¢ = 0, in which case one obtains corresponding two-dimensional
sections (¢,d) (b,d). In this manner it is possible to investigate what
happens when some of the parameters are held fixed and the others vary.
Often some physical considerations permit reducing the number of “‘sec-
tions” in which the variation of parameters presents a special interest.

As an application of this procedure we consider?® the conditions of

R L
— —
7 /
el' c =" 4
v %
} | T { [P >
A\ 7
Ficure 1.15 Ficure 1.16

stability of an electric arc connected to the circuit of a constant voltage E,
as shown in Fig. 1.15. As is well known, the arc is a nonlinear conductor
of electricity. Its nonlinear characteristic (¢,V,) is shown in Fig. 1.16.
The voltage across the arc V, is thus a certain nonlinear function of the
current 1: ¥V, = y{z). Kirchhoff’s laws yield:

di dv

V=La—t+|//(:); E=RI+ V,; I='+CE (7.2)
If one eliminates I between these equations, one gets the d.e.
dV. E-V - Ri di _ V- 4G) (7.3)

a4 -~ RC ' &~ L

3 See footnote *, page 26.
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For the state of equilibrium (dV/dt = 0; di/dt = 0), one has, obviously,
Vo=E — Riy; Vo= (i) (7.4)

which may be regarded as points of intersection of a straight line IV = E —
Ri: with the characteristic of the arc V, = (1)

The problem consists in studying the conditions of stability of equili-
brium under the various circumstances or, which is the same, the nature of
the singular points of the system (7.3). 'The usual procedure is to examine
what happens if the position of equilibrium (V,i,) is disturbed by small
perturbations éw, & so that the disturbed values are now V = V + év;
it =1y + 6. As the only nonlinear element here is the characteristic
(1), we develop it in Taylor’s series around the point of equilibrium,
limiting the expansion only to the first-order term in &z, which yields

Ylio + 81) = ¢(io) + (7o) (7.3)

If one replaces V and i by V; + 8v and i, + &i and (7)) by (i, + 8¢) in
(7.3) and cancels out the equilibrium terms according to (7.4), one obtains
the so-called variational d.e.t of the form

ddv 1 .. ds (1 o\
T (me)+ (g T (g)e+ (-5 00

where p = '(i,). The characteristic equation is

L + RCp p+ R
2 7 — . —
S? + ( RCL )S + RCL 0 (7.7)
and its roots are
1 _
S,2= SRCL [-(L + RCp) + \/(RCp)2 + L% — 2LCR(p + 2R)] (7.8)

The problem of equilibrium depends thus on four parameters R, L, C,
and p, of which the first three are positive while p may either be positive or
negative, depending on the point of the curve (i) at which one wishes to
investigate the equilibrium of the circuit. It is seen that the parameter
space in this case is four-dimensional, but its “section’ corresponding to
p = Ois of no interest. In view of this, the only two-dimensional sections
of the four-space (R,C,L,p) which are of interest are (R,p), (L,p), and
(C,p)- In these sections we consider the indicated symbols as the variables
and the nonindicated ones as fixed parameters.

Consider, for instance, the “section” (R,p), that is, the plane of the
variables R and p in which the parameters L and C will be considered as

+ This subject is discussed more fully in Chapter 5.
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fixed numbers. The condition for the complex roots (for the existence of
focal points) is

(L — RCp)® — (2RVLC): < 0 (7.9)
This region is limited by the two curves :
(L - RCp) + 2RVLC =0; (L — RCp) — 2RVLC =0 (7.10)

In the (R,p) plane these two curves are hyperbolas having the p axis as a
common asymptote and the straight lines p, = 24/L/Cand p, = —2V/L|C
as other asymptotes, respectively. These curves are shown as 1 and 2 in
Fig. 1.17. Itis obvious that the hyperbola Rp = L/C lies between 1 and 2
since it has the axes R, p as asymptotes. For the points on this curve, the
condition (7.9) is fulfilled, which shows
that, in the region limited by the
curves 1 and 2, the singular points are
foci. Since the stable foci are separated
from the unstable ones by the locus of
points at which the real parts of the
roots vanish, this locus is clearly the
hyperbola

Rp = —-LJC (7.11)

indicated on Fig. 1.17 as curve 3 having
the positive axis R and the negative axis
p as asymptotes. The curves 2 and 3
Figure 1.17 limit a region of unstable foci. The
condition for the existence of saddle
pointsis p + R < 0; hence these singularities lie below the line |p| = R;
they are possible only for p < 0. Since R is the parameter through which
the energy is dissipated and p < 0is the parameter through which it is
introduced into the system, it is clear that the condition

p+R<0 (7.12)

means that the saddle points characterize an unstable condition of
the system for which it receives more energy than it can dissipate. In the
(R,p) plane the borderline p + £ = 0 of this region is a bisector of the
right angle formed by the positive R axis and the negative p axis; it is
indicated as line 4 in Fig. 1.17 and the saddle points are situated below this
line. The line 4 cuts the curve 3 of stability at a point M of coordinates
(+VL|C, —+vL|C). The wedge-shaped area between the curve 2 and
the line 4 is the region of unstable - ies; in fact, in this region the roots

UNIVERSITY OF MICHIGAN
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are real and of the same signs because they become of opposite signs only
below the line 4. The remaining regions are to the left of the point M and
limited by the curves 2, 3; and the p axis and the other above the curve 1
are the regions of stable nodes; they are both stable because they lie above
the curve 3 on the one hand, and they characterize real roots because they
are outside the zone (between curves 1 and 2) in which these roots are
complex.

The point M is thus a point of bifurcation (or a branch point), since five
different regions meet there. It is noted that if one surrounds the point
M by a small closed curve described clockwise, one encounters the different
regions in the same order as in Fig. 1.14, in which the choice of parameters
is different. The sequence of regions is not affected by the choice of para-
meters. The region of saddle points (absolute instability) is always sepa-
rated from the region of focal points (oscillatory process) by intermediate
regions of nodal points (aperiodic process). Thus, an oscillatory process
cannot degenerate into an unstable one without passing first through an
aperiodic form. These conclusions can be given the following physical
interpretation. In the regions of stability (stable focal and stable nodal
points) the arc exists without any oscillations. If it is disturbed, it returns
to its stable equilibrium with damped oscillation in the case of a stable focal
point and aperiodically in the case of a stable nodal point. In the case of
unstable focal or unstable nodal points, it leaves the position of equilibrium
either with gradually increasing oscillations (focal point) or aperiodically
(nodal point), but the study of singular points alone is not sufficient here.
For this purpose we shall need additional information regarding the exis-
tence of certain stationary oscillatory states which will be studied in Chap-
ter 3. In general, such stationary states exist when the singular point is
either an unstable nodal or focal point. No such stationary states exist