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SYNOPSIS 

Although parametric devices have been known for many 

years, very little attention had been paid to the possi- 

bilities of e.; )Ioiting the principles involved for low- 

frequency power conversion purposes, until tfie recent advent 

of the parametric transformer. The theory of this device 

is developed in the thesis, and the unusual performance 

characteristics are explained. Possible application areas 

are-discussed, for an assessment of the future potential of 

the device as a power-control element. 

The operation of the parametric transformer is consid- 

ered initially on the basis of the Mathieu-Hill equations. 

The stability chart for these equations is extensively used 

to permit graphical interpretation of'the behaviour and 

characteristics. As no complete theory exists for non-linear 

systems with time-varying parameters, other analytical methods 

are also considered, although since all of these regard the 

device as a parametric oscillator they throw little light an 

the inherent transformer action. 

By considering the parametric-transformer as a conven- 

tional saturable reactor with a capacitor connected across 

the load winding and the control winding driven from an 

alternating source, it can be placed within the perspective 

of non-linear magnetic devices already known. Many possible 

magnetic constructions with parallel and/or orthogonal flux 
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interactions are investigated, with special attention paid 

to the bridged magnetic core analogue of the two-C-core 

construction. The illustration of parametric coupling as 

a result of flux interaction in saturable reactor devices 

leads to a derivation of the overall equations directly from 

the physical system. 

The functions representing the magnetic structure of 

the parametric transformer are first evaluated graphically, 

ard using various analytical representations of the B/H 

curve their explicit expressions are then formulated for 

different magnetic configurations. The introduction into 

the study of the concept of a relative magnetisation curve 

is invaluable in explaining the current waveforms and many 

other aspects of the device. 

A mathematical model is established for the parametric 

transformer and the system equations are solved*numerically 

by a digital computer. The voltage and current waveforms and 

performance characteristics are demonstrated, and the correct- 

ness of the theory is ascertained by comparison with experi- 

mental results. 

Based on considerations of losses and efficiency, the 

advantages and disadvantages of parametric transformers are 

discussed. Possible applications in such areas as power 

supplies, inverters and converters are viewed and examples'are 

given. 
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CHAPTER I 

INTRODUCTION 

1.1 Historical Background 

The possibility of exciting a dynamic system by means 

of a periodic variation of one of the system parameters has 

been known for many years. The oscillations that are produced 

in the system are termed parametric osciZZations, and the 

process is generally referred to as parconetric excitation. 

The history of parametric excitation dates back to 

the last century, with the experiments of Faraday (1831) on 

the vibrations in the surface level of a fluid resting on a 

vertically vibrating support In other early experiments by 

Melde (1859), one end of a stretched string was attached to a 

prong of a tuning forK vibrating in the direction of the 

string, and transverse oscillations at a frequency one-half 
2 those of the forK vibrations were observed along the string 

In 1868, Mathieu investigated the vibrations of a stretched 
3 

membrane having an elliptical boundary , and in conducting the 

first analysis of the problem, he introduced the equation and 

-functions subsequently named after him. In 1886, Hill inves- 

4 
tigated the mean motion of the lunar perigee , using an exten- 

ded or generalised form of the Mathieu equation, later termed 

the Hill equation. In other important studies of parametric 

excitation, Lord Rayleigh (1887) investigated the classical 

Melde experiment and dealt also with the problem of wave propa- 
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5 
gation in stratified media . Amongst the names of those who 

later made important contributions to the theory of linear 

differential equations with periodic coefficients, required 
6 in a study of parametric Oscillations, are Floquet 

789 10 WhittaKer , Ince , Meisner and Strutt .A detailed history 

of the development of the theory of Mathieu-Hill type equations 
11 is given elsewhere 

In addition to the examples given above, Froude's 

12 13 
pendulum Bethenod's experiment ,a simple pendulum with 

14 
vertically vibrating support , and subharmonic oscillations 

in loudspeaker diaphragms 
15 

are often quoted as classical 

examples of parametric oscillations. 

The common principle which underlies all these experi-. 

ments is that the energy of an oscillating system can be 

increased, by changing the value of an energy storage parameter 

of the system at a frequency different from (generally twice) 

the resonance frequency of the system. When the parameter 

variations are at twice the resonant frequency, a parametric 

resonance occurs, and self-excited parametric oscillations 

build up. The commonest example. of this principle is a play- 

ground swing, where a child pwVs up the amplitude of oscilla- 

tions of the swing by changing the position of the centre of 

gravity at twice the oscillating frequency, lowering it on the 

down swing and raising it an the up swing. 
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In electrical circuits, the works of Brillouin 16 
and 

17 Poincare. followed basically similar lines to the mechanical 
18 19 

studies described above, while Kuhn , Zenneck Alexender- 

son 
20 

and Hartley 21 
were among the first contributors to the 

theory of parametric transducers. Since the chief interest 

was in the area of communications, parametric excitators found 

most application at radio frequencies, where the object was to 

modulate a continuous wave*transmitter by means of a non- 

linear inductance or saturable reactance. Although Alexender- 

son had shown that, under certain conditions, instability and 

generation of self-excited oscillations can exist, it was not 

until 1930 that Peterson managed to make use of these effects 
22 

in his negative resistance straight-through amplifier . In 

later years, the techniques of variable reactance amplifiers 

and modulators were developed, and with the advent of varactor 

diodes, the range of applications were extended to the micro- 

wave region. Today, there exists much literature about para- 

metric amplifiers, modulators and harmonic generators which 

operate at ultra high frequencies and employ such features as 

the variable capacitance of semiconductor diodes, the variable 

reactance of wave-guides, space-charged waves in an electron 

beam, ferromagnetic resonance and so on. A comprehensive list 

of references up to 1960 is available in the survey paper of 

23 Mumford 

Although considerable attention has'been paid to the 

development of parametric circuits, this has mainly been con- 

fined to the high frequency range and related to communication 
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engineering. The idea of using parametric excitation for 

energy conversion has attracted very little attention except 

during the 1930s, when a number of scientists were involved 

in proving the basic theory of parametric oscillations by 

experiments with electrical circuits. A systematic study of 

the phenomenon was initiated by the experiments of Heegner 24 

and Guenther-Winter 25 
on the excitement of electrical 

oscillations of acoustic frequencies by alternately magnet- 

ising the iron care of a self-induction winding. The experi- 

ments of Guenther-Winter 26 
and Y. Watanabe et al 

27 
were 

the first ones conducted on the excitation of electrical 

oscillations by mechanical periodic, variation of the self- 

inductance of an electric oscillating system. In 1934, a 
28 

report by Mandelstam, Papalexi et al described the extensive 

research on non-linear oscillations performed in various 

institutions of the USSR. A large section of the report is 

devoted to parametric excitation and parametric coupling, and 

a comprehensive bibliography on non-linear oscillations is 

given. Mandelstam and Papalexi correlated the phenomena of 

parametric excitation and parametric resonance With the theory 

of subharmonic resonance. Using different devices from those 

used by Guenther-Winter and Watanabe, they constructed ingenious 

parametric generators, capable of delivering a considerable power 

output, in which the self-inductance 
29 

or the capacitance 
30 

of 

an oscillatory circuit was varied periodically by mechanical means. 

to create the self-excited parametric oscillations. These 
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generators transformed the mechanical power absorbed in the 

process of a periodic variation of a system parameter CL or C) 

into the electrical energy of an alternating current at a 

certain frequency. Mandelstam and Papalexi also studied the 

effects of parametric coupling and indicated that, in contra- 

distinction to linearly coupled systems, a phenomenon of 

regeneration was produced due to parametric coupling in para- 
28 

metrically coupled non-linear systems . They dealt not only 

with energy conversion but also with power conversion by means 

of parametric oscillations, and reference 28 was the, 

first scientific paper in which the concept of parametric power 

conversion appeared using the term Parametric Transfýrmer. 

Quoting from page 131: "A. Tscharakhtschian studied the action 

of a sinusoidal force on two circuits in parametric coupZing 

forming a "Parametric Transformer". In this system, the 

variations of the current in the primary circuit causes the 

induction coiZ of the secondary circuit to vary by modifting 

the magnetisation of the iron core coiZa. This aZZows produc- 

tion of phenomena of parametric excitation. The retated pubZi- 
31 

cation is in preparation". In Tscharakhtschian's article , the 

theory of the parametric transformer was developed for the first 

time, on the basis of non-linear differential equations with 

time-varying parameters, although attention was concentrated on 

the frequency-changing mode of operation. However, the concept 

of creating the parameter variations, not by an external, inde- 

pendent force, but by parametric coupling in which the changes in 

the system also influence the force producing the parameter varia- 
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tions. was appropriately expressed. Most aspects of the 

theory TscharaKhtschian developed, such as modulation of the 

secondary inductance by the primary current, reaction between 

the primary and secondary circuits, stabilization of the 

amplitude of the self-excited oscillations by the non-linearity 

of the magnetisation characteristics etc., remain true also 

for the devices investigated in this study. He also pointed 

out the possibility of using parametric transformers for 

voltage regulation purposes. 

The wide interest on oscillatory systems with periodically 

varying parameters 
28,32 inevitably lessened during World War II 

and no further investigation on the parametric transformer seems 

to have been carried out until recently, although during the 

11,12 33,34 
1950s, McLachlan I, and Minorsky dealt with parametric 

excitation in various other physical systems. When interest 

was renewed, the main application in electrical circuits was 
35 36 37 

for parametric oscillators , but Neuman and Goto discovered 

independently in 1954 that parametric oscillations exhibited 

a phase ambiguity which could be utilized in logic circuits. 

The device, called the Parcoetron, made use of the phase, rel- 

ationship of the parametric oscillations which can be obtained 

in two opposite phases, each representing a binary digit. The 

parametron is exactly the same device as Tscharakhtschian's 

parametric transformer, operating as a frequency-divider. 

However, it was not intended for power conversion applications, 

although once used widely as a digital computing element 

especially in Japan 38 
. 
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During the 1960s, attention in the area of voltage 

stabilizing centred around constant voltage transformers 39 

employing the phenomenon of ferrO-resonance to produce 

operational characteristics somewhat similar to those of 

parametric transformers. However, the phenomenon involved 

is different from parametric resonance in respect of the 

energy introduction into the system. In ferro-resonance, 

the energy is introduced directly by the external source, 

while, in parametric resonance, the energy introduction is 

achieved indirectly, through a degree of freedom of the 

system, with the external source creating variations in an 

energy storage parameter of the system. 

The idea of using parametric oscillations for elec- 

trical power conversion came into practice with Paraformers40, 

41 first described in a patent by Wanlass . The device proposed 

was for voltage regulation, and employed the new types of 

magnetic core configurations suggested previously by the same 
42,43 

author . Currently, the Paraformer devices are manufac- 

tured by the Tele-Dynamics/Wanlass Company in the USA, and are 

commercially available in the UK through T. I. Supply Limited. 

The unique characteristics of the parametric transformer 

have attracted considerable interest, and its application in 

44 
rapid transit railroads has been seriously suggested . The 

fact that little was known on the operation principles prompted 

publication of several papers on the afialytical treatment of 
45 the device. Burian dealt mainly with a stability analysis, 
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but unfortunately his paper contains some serious errors. 

Fam and Verma 46 
gave an analysis on the basis of the 

Mathieu equation, just before the commencement of the study 

described in this thesis. The parametric transformer was 

cited as an example of parametric devices in a paper 
47 

summarizing physical principles of parametric oscillators. 
48 A paper was published by Smith and the author , which 

explained concisely the principles and mer. ts of the device. 

During the course of this project, other articles on the 

parametric transformer have been published, some of which 

overlap-in some respects with the investigations carried out 

independently by the author. MeiKsin 49-51 
considered both 

orthogonal and parallel flux devices but assumed wrongly, 

although implicitly, that the two-C-core parametric trans- 

former was an orthogonal flux system. In all the works men- 

tioned. attention was focused on the secondary circuit of the 

device, which was considered a parametric oscillator. The 

device was then represented by a singZe differential equation, 

non-linear with time-varying coefficients, to which the anal- 

ytical treatment was directed. The existence of parametric 

coupling between the primary and secondary circuits was gene- 
52 

rally completely overlooked. Although Fam and Bahl repre- 

sented the system by two simultaneous differential equations, 

and pointed out the correlation of the primary and secondary 

fluxes with the corresponding mmf's in the form. of two 2- 

variable functions, they were unable to relate the form of 

these functions with the physical structure of the deVice. 
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The interest shown to the parametric transformer in Japan 

was confined to experimental investigations, rather than 

to full analytical considerations. Bessho et al 
53 

discov- 

ered the equivalence between the two-C-core and the bridged 

core devices, by which time the author's analytical treat- 

ment based on this equivalence was already complete. 

However, Bessho et al did not attempt an analytical treatment 

but, based on an analogy between the two-C-core and the 

bridged core devices, they took a further step in experi- 

mentation by investigating firstly a bridge-connected 

reactor circuit 
53. 

and later a centre-tanped reactor circuit 
54 

Phasor diagrams were used to explain the operations of these 

circuits, and the authors concluded that their characteristics, 

when employed as power converters, were similar to those of 

the parametric transformer. Finally, Power 55 
applied the 

inverse Nyquist diagram technique to the secondary circuit 

equation of a parametric transformer and obtained results- 

similar to those produced by considering the device as a para- 

metric oscillator. 

1.2 Scope of the Project 

To date, it appears that a full analytical treatment 

has not yet been given to the parametric transformer, consid- 

ering the device as a whole and including both the primary and 

the secondary circuits and the parametric coupling between them. 

In most recent work, an explanation of the operation of the 
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device has used only the single differential equation of the 

secondary circuit, with the damping present at no load either 

intentionally assumed non-existent or wrongly taken as 

constant. Although the theory of Mathieu-Hill type equations 

has been applied to some extent, the situation is far from 

complete for many aspects of the device. Consideration. as 

a parametric oscillator has not allowed the inherent mechan- 

ism of energy. transfer from the primary to the secondary circuit, 

to be explained. Apart from no attention being paid to the 

primary circuit, no relation has been established between the. 

system equations and the physical structure of the device, 

and in none of the recent work is any mention made of the 

unusual waveforms of the primary and the secondary currents. 

System equations derived from the physical structure, in which 

non-linear flux interaction produces parametric coupling, have 

not yet been established and solved by computer, so as to form 

a simulation of the device. 

The project presented in this thesis aims at developing 

the theory of parametric transformers and explaining their 

unusual characteristics. For this purpose, experimental units 

with a two-C-core construction were designed, and their 

operational characteristics obtained. The basic differential 

equations of the transformer were established, and these formed 

the basis of. a computer simulation of the device characteristics, 

iahich yielded results generally in good agreement with those 

obtained experimentally. 
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To present the work in a logical sequence, the 

thesis is divided into eleven chapters, with the scope 

of each of these discussed below. 

Chapter I introduces the topic and traces the 

historical background of parametrical oscillations and 

related parametric devices. 

Chapter II introduces the parametric transformer and 

its operational characteristics and explains how the necessary 

variation of a circuit parameter is achieved. The use of 

reluctance, rather than inductance, for this parameter makes 

a straightforward derivation of the system equations possible. 

Modulation of the secondary reluctance at twice supply 

frequency serves as the basis for the work in Chapter III. 

In Chapter III, the theory of parametric oscillations 

is developed through the differential equation with periodic 

coefficients applying to the secondary circuit. Although this 

means the device is considered as a parametric oscillator, the 

mechanism of energy transfer through parametric coupling is 

also explained, to illustrate the operation as a transformer. 

Investigating the secondary circuit equation in linear and non- 

linear forms allows both the initiation of parametric oscill- 

ations and the steady state conditions to be studied separately, 

and effects such as damping, detuning and load are introduced in 

a gradual manner as the theory grows in complexity. If a mathe- 

matical analysis of the device will suffice, regardless of its 
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physical aspects, Chapter III, with Chapter II as bn intro- 

duction, can be read independently of the rest of the thesis. 

In Chapter IV, the parametric transformer is placed 

within the perspective of non-linear magnetic devices*already 

known, by investigating the parametric coupling resulting 

from flux interaction in conventional saturable reactors. 

Mathematical representations of various magnetic devices by 

two 2-variable functions are obtained directly from their 

physical structure. 

Chapter V describes the differential equations of the 

parametric transformer, independently on the form, of the 

magnetic structure. A mathematical model is obtained for 

the device and an analog computer simulation given. 

In Chapters IV and V, the magnetisation characteristic 

of the care material is given implicitly in the form H=f(B). 

Using a graphical representation of this characteristic, a 

mathematical model of the magnetic structure is evaluated 

graphically in Chapter VT. The same is achieved in Chapter VII 

by expressing the magnetisation characteristic analytically. 

A concept of a relative magnetisation curve is developed, to 

explain the primary and secondary current waveforms. 

In Chapter VII, various analytical approximations to the 

B/H curve are applied to obtain models representing different 

saturable reactor devices. With a power-series approximation 

applied to the two-C-core construction, explicit expressions 
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for these functions are simplified, so as to establish a 

bridge between the mathematical theory of Chapter III and 

the physical considerations of Chapters IV to VII. After an 

approximate curve is fitted to the magnetisation characteristic, 

the differential equations simulating the parametric trans- 

former are solved by digital computer, for different opera- 

tional conditions, with the results given in Chapter VIII. 

Chapter IX outlines the design of the experimental unit 

constructed, and gives the performance characteristics and the 

voltage and current waveforms recorded under different 

operational conditions. These are explained by reference to 

the theory developed in the previous chapters. 

The possible application areas for the parametric trans- 

former are discussed in Chapter X, and the advantages and dis- 

advantages are viewed to establish the future potential of the 

device. 

The final chapter of the thesis records the conclusions 

arising from the project and suggests how the work might be 

developed and extended in the future. 
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CHAPTER II 

SIMPLIFIED EXPLANATION OF THE OPERATION AND CHARACTERISTICS 

OF THE PARAMETRIC TRANSFORMER 

2.1 Operation of the Parametric Transformer 

The parametric transformer is a passive, static power 

conversion device, which utilises the principles of parametric 

excitation to produce output power. It consists essentially of 

a variable inductor and a capacitor, which together form an 

oscillatory circuit. The variable inductor corresponds to the 

secondary winding of the parametric transformer, the inductance 

of which is varied periodically in time by the alternating 

current in the primary winding. A load to which power is 

delivered is connected across the capacitor. 

The basic operation of the parametric transformer may be 

explained on the basis of the general principle of parametric 

resonance stated in the previous chapter. When the primary 

winding of the parametric transformer is-fed with alternating 

current of frequency f, the inductance of the secondary winding 

is varied at twice this frequency through the non-linear magnet- 

isation process in the iron core. Connecting a capacitor across 

the secondary winding to form a parallel resonant circuit at the 

frequency f, provides a parametric oscillator working at this 

frequency, and capable of delivering power to a load connected 

in parallel with the capacitor. Since the device is driven with 

the electrical energy required to vary U 'he care reluctance, and 

also delivers electrical energy to the load, it forms an electrical 
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power converter which is termed rightly a parametric trans- 

former. 

2.1.1 Modulation of the Secondary Reluctance at Twice 
Frequency 

Parametric transformers currently manufactured employ the 

two-C-core construction shown in Figure 2.1, where the capacitor 

is also shown connected across the secondary winding. The paths 

for the magnetic fluxes oroduced by each winding are completed 

through a portion of the magnetic circuit of the other winding, 

so that this portion is common to the two magnetic circuits. 

None of the flux produced by either winding links with the 

other winding, and there is no mutual coupling whatever the 

relative directions of the two fluxes. 

Suppose, initially, that only a primary flux exists in the 

magnetic core. As this passes through the part of the core also 

associated with the secondary magnetic circuit, it causes a 

change in the inductance of this winding, provided only that the 

flux density is sufficient to take advantage of the non-linearity 

in the magnetic characteristic of the core material. When there 

is no primary flux, the reluctance of the secondary magnetic 

circuit is a minimum. If sufficient primary flux is now intro- 

duced to saturate the common magnetic region, the secondary reluc- 

tance is Increased, irrespective of the relative direction of the 

primary flux, with the changes in secondary reluctance being in 

effect, a full-wave rectification of the primary flux variations. 

A sinusoidally varying primary flux with a frequency f will thus 
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produce periodic variation in the secondary reluctance at the 

double frequency 2f. A similar argument also applies if only 

secondary flux is assumed to exist in the core. 

The above process can be further discussed by reference 

to Figure 2.2. When hysteresis of a magnetic core is neglected, 

the flux is a single-valued and odd symmetrical function of the 

applied magnetomotive force, as shown in Figure 2.2(a). In 

Figure 2.2(b), the dependence of the secondary reluctance R 
M2 

onthe primary flux ý,, based on the foregoing discussion, is 

shown as an even symmetrical curve and the relationship may be 

termed a trans-reluctance characteristic. Figure 2.2b s. hows 

clearly the double frequency variation of the secondary reluc- 

tance, superimposed on an average value. This variation contains, 

in addition to the second harmonic component, a series of higher 

order even harmonics. 

Drawing R 
M2 

as a function of the primary current (or the 

mmf F, applied to the primary circuit) instead of the primary 

flux, results in Figure 2.3. With a magnetisation characteristic 

such as Figure 2.2(a), the reluctance of the iron core is constant 

before saturation and the current required to drive the core into 

saturation is small. Thus, the part of the curve, in Figure 2.3, 

where the reluctance is constant (minimum) is much shorter than 

that of Figure 2.2(b). However, it is not in practice zero, 

contrary to the assumption in the patents 
1 by Wanlass, of a trans- 

inductance curve shown in Figure 2.4, where the secondary induc- 

tance falls immediately to very small values with a non-zero 
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primary current. Although the current to drive the core 

into saturation, shown as iS inFigure 2.2(a), is small, the 

amplitude of the alternating voltage required to produce it 

is large (proportional to frequency, number of turns in the 

primary winding and the saturation flux level ýs). This is 

a quite important fact, and when consiýered together with 

the under-voltage protection property of the parametric 

transformers (threshold effect), leads to the conclusion 

that some of the applications proposed by Wanlass 2 
are in 

fact impossible to obtain in practice, as is explained later 

in Chapter X. 

With the simplifying assumptions given above, the 

reluctance of the secondary magnetic circuit with respect to 

the primary flux, may most simply be expressed as: 

R 
M2 

R 
M2min 

where R and r are constants. R is the minimum M2min M2min 

constant value of the secondary reluctance, given by the inverse 

slope of the secondary magnetisation curve (ý 
2 
/F 

2) before satu- 

ration, and r is a coefficient introducing the effect of the 

primary flux. 

It will be seen in Chapter VII that R 
M2min and r are given 

as: 

R 
m2min =R9+sI+r1 (2.2) 

r3r3..... (2.3) 
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where RsrI and r3 are coefficients directly related 

to the physical dimensions and the B/H characteristic of the 

care. R9 is defined by equation (4.41), Section 4.4.3, and 

the definitions of s,, r, and r3 first appear in Section 6.3.1, 

as given by equations (6.17). To have a physical meaning 

strictly related to the physical construction of the two-C-core 

parametric transformers in the work described in the following 

chapters, R 
m2min and r will be assumed, from the beginning, to 

be given by equations (2.2) and (2.3). and the dependence of 

the secondary reluctance on the primary flux to be expressed 

as: 

R 
M2 =R M2mi n '1* 

r 012 = (R 
9+S, + r, ) + 3r 3ý12... 

. 
(2.4) 

If the sinusoidally varying primary flux is of amplitude 

ýImv and is defined by 

ý, = ýlm sin wt ..... (2.5) 

introducing equation (2.51 into (2.4) gives the time-variation 

of the secondary reluctance as: 

3 e12 (R +s+r+ -i r. ) (-2 re2) cos 2wt (2.6) 
M2 m23 Im 

This variation contains an average component 
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R=R+s, + r, +2r3 012 
..... (2.7) 

M2 av 92m 

and a component varying sinusoidally at twice the frequency 

of the primary flux. The process may be seen as a modulation 

of the secondary reluctance by the primary flux, by writing 

32 
r3o, M 

M= -- ..... (2.8) 
R 

M2av 

When equation (2.6) becomes: 

R 
M2 -R M2aV 

(1 -m cos 2w t) ..... (2.9) 

where m is the modulation coefficient or modulation index. 

2.1.2 Parametrically Developed Voltage and Negative 
Resistance Property 

Having established a periodic variation in the reluctance 

(and therefore also the inductance) of the secondary circuit, 

the secondary circuit capacitance is adjusted to resonate at 

the frequency of the input voltage, with the mean value of the 

varying inductance.. As shown in the next chapter (Section 3.3), 

if the amplitude of the secondary reluctance variations is 

sufficiently large, i. e. the modulation is sufficiently deep, 

the oscillatory circuit is parametrically excited, and oscillates 

at a frequency equal to the input frequency. Once oscillations 
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start, their amplitude increases, until they reach a stationary 

level determined by the saturation level in the magnetic care. 

The flux in a magnetic circuit may be expressed as: 

= 

if- 
(2.10) 

where F, the magnetomotive force, is given in terms of the 

number of turns N and the current i. by 

N. i (2.11) 

Introducing equations (2.10) and (2.11) into the basic equation 

for the induced electromotive force 
I 

Nd0..... (2.12) dt 

gives 

N2 di 
+, 

d(. ýj) 
..... (2.13) 

R dt dt Rm 

The first term in equation (2.13) expresses the voltage due 

to changes in the exciting current 1. and it represents flux- 

coupling term involved in the conventional transformer operation. 

The second term expresses the parametric coupling due to variations 

in the reluctance parameter, and the operation and energy transfer 

in the parametric transformer are achieved as a result of this term. 
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Since there is no flux coupling between the primary and 

secondary of a parametric transformer, the first term in 

equation (2.13) may be. omitted, leaving 

d N2 
dt R 

m 
(2.14) 

On substituting R 
M2 

from equation (2.9) into equation (2.14) 

for R, the term to be differentiated becomes 

2N2 N2...... (2.15) 
T0R 

m M2aV Cl 
-m cos 2 wt) 

which, by using the binomial expansion and neglecting higher- 

order terms, may be written as, approximately: 

2 N2_ 

RL0C1+m cos 2 to t) 
M2 

where La. the mean value of the secondary inductance, is 

Lo0RN22..... 
m2aV 

Suppose now that a small initial current 

i=I Cos Cwt + a) (2.18) 



22 

is present in the secondary circuit, with a being the phase 

difference from the-primary flux. Introducing equations 

(2.16) and C2.181 into equation (2.14) gives the parametrically 

developed voltage as 

e=L0 Iw m (sin Cwt - a) + sin (3 wt + a)] 

The second term in equation (2.19) may be neglected since 

it is far from the resonant frequency of the secondary circuit. 

With only the fundamental frequency components considered, 

equations (2.18) and (2.19) may be written in the complex form 

as 

-f -19 
ja 

..... (2.20) 

I wm ja..... (2.21) 

respectively. The complex impedance offered to the initial current 

is, therefore 

ZmLwje -j2a 

=mL w(sin 2a+j cas 2a) .... (2.22) 

3Tr 
Clearly, for(x= or + the secondary circuit has the 4 

maximum negative resistance 
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-m L0w (2.23) 

and if small oscillations exist in the secondary circuit, 

these will grow by virtue of the negative resistance effect 

arising as a consequence of the time-varying part of the 

secondary inductance. As the amplitude of the oscillations 

builds up, their phase changes, so that a finally becomes 

7r 37r 
equal to either - -; T or + -T- , to obtain maximum negative 

resistance and to ensure maximum energy transfer. It is thus 

apparent that oscillations can-be obtained with two different 

a3 
phases 180 apart, as is also the case in parametrons . The 

energy transfer is a direct consequence of the variation of 

the secondary reluctance caused by the primary flux. 

The energy stored in a magnetic circuit is 

Em =-! F. ý = -1 R . ý2 (2.24) 22m 

where the mmf is given as 

F=Rm .0..... (2.25) 

Assume now that the reluctance of the magnetic circuit is 

instantaneously increased by a factor k, the flux (ideally) 

remaining constant. The new value of reluctance is k. R 
M 

and 

the corresponding energy stored 

EA=k. ( 1. R 02) = k. E ..... (2.26) m2mm 
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is increased by k times. Thus, if the secondary reluctance 

is increased at proper instants, energy is delivered para- 

metrically into the secondary circuit to maintain the 

oscillations. 

2.2 Characteristics of the Parametric Transformer 

Since the'secondary circuit of a parametric transformer 

operates as a parametric power oscillator, it offers very 

useful performance characteristics, such as line and load 

voltage regulation, over-voltage and over-load protection, 

filtering, phase-shift etc. not found in conventional trans- 

farmers. These characteristics are closely related to the 

inherent features of parametric oscillators. Although some 

similar characteristics are provided by such non-linear magnetic 

control devices as ferro-resonant transformers, the phenomena 

involved are entirely different from those of parametric 

excitation. They rely on the properties of non-linear reson- 

ance to maintain the output voltage at a relatively constant 

level, but the power transfer from input to output circuits is 

achieved on the basis of flux coupling or mutual inductance. 

2.2.1 Under- and Over-Voltage Protection and Voltage 
Regulation 

As mentioned earlier, parametric excitation of the secondary 

circuit requires the variations of the secondary reluctance to 

have a sufficiently large amplitude. This requires a certain 
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amplitude of the primary flux in equation (2.6), which, in 

turn, means that the parametric transformer will not operate 

until the magnitude of the primary voltage is adequate to 

create sufficiently large variations in the secondary reluc- 

tance by saturating the common region of the core at certain 

instants. The parametric transformer does not operate at 

small values of the input voltage, and thereby exhibits an 

inherent upder-voltage protection. 

Parametric oscillations in the secondary circuit cease 

at very large input voltages. If an excessively large primary 

flux exists in the magnetic core, the common region of the core 

is driven far into saturation at almost all times, and the 

limitation on the amplitude of the flux causes the relative 

reluctance changes to become very small, which leads to the 

cessation of the parametric oscillations. This inherent action 

automatically protects both the device and any connected cir- 

cuits from the effects of an excessive input voltage. 

The increasing. amplitude of the oscillations excited in 

the secondary circuit is limited by the saturation flux level 

of the magnetisation characteristic to a stationary value. 

At steady state operation, changes in the amplitude of the 

secondary flux are relatively small as long as the secondary 

operates in the saturation region of the magnetisation curve 

(above the knee of the curve), and this provides in the device 

an intrinsic voltage regulation characteristic. 

An ideal operational characteristic for the output voltage 

as a function of the input voltage is shown in Figure 2.5, where 

the under- and over-voltage protection and voltage regulation 
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properties are clearly seen. However, the characteristic of a 

practical device will be more like. that shown in Figure 2.6, 

since the device will exhibit the hysteresis or jump phenomenon 

encountered in all non-linear resonant circuits. 

2.2.2 Load Regulation and Over-Load Protection 

A load connected across the capacitor introduces both 

damping and detuning into the secondary oscillatory circuit. 

The power delivered to the load is only a portion of the total 

parametric power developed in the secondary . circuit. As will 

be seen in Chapter Iiithe amplitude of oscillations in the 

secondary circuit is determined mainly by saturation (i. e. the 

non-linearity of the magnetisation characteristic) and is much 

less affected by the damping present in the circuit. Therefore, 

the changes in the load do not basically affect the amplitude 

of. the secondary flux, and a good load regulation characteristic 

is obtained. However, there is a maximum value for the load at 

which the oscillations will cease, as is also the case In a 

conventional oscillator circuit which ceases to function if 

excessively loaded. The maximum load for the parametric trans- 

former is determined by the maximum value of negative resistance 

(equation (2.23)) introduced into the secondary circuit through 

parametric excitation. If the damping in the circuit becomes 

equal to or greater than this value, the circuit ceases to 

oscillate, and the immediate fall in the output voltage is 

accompanied by a large reduction in the primary excitation current. 
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The output voltage is influenced by the power factor 

of the load, rather than its value. A reactive load modifies 

the effective value of inductance or capacitance in the 

secondary circuit and changes the resonant frequency by 

introducing detuning into the circuit. 

The ideal and practical curves illustrating the load 

regulation and inherent over-load protection characteristics 

of the parametric transformer are shown in Figure 2.7. 

2.2.3 Sinusoidal Output Voltage and Bilateral Filtering 

Since the secondary circuit of a parametric transformer 

behaves like a tuned oscillator, the waveform of the oscill- 

ations is substantially independent of the input voltage wave- 

Torm. This is also due to the fact that energy is not t. rans- 

ferred by mutual flux coupling but by parametric excitation which 

is not directly dependent on the input waveform. 

When the input voltage is not purely sinusoidal. the 

primary flux will contain harmonic components. Even if the 

input voltage is sinusaidal, the primary flux is not sinusoidal 

due to the winding resistance and non-linearity of the primary 

magnetic circuit. Moreover, the dependence of the secondary 

reluctance on the primary flux is not as simple as in equation 

(2.1) and may include terms of higher powers. Consequently, the 

time-variation of the secondary reluctance is not-purely sinu- 

soidal, as in equation (2.61, but contains higher frequency terms. 
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Nevertheless, the essential term which causes parametric 

excitation at the frequency f is the one at the frequency 

2f. Although the other terms do not have a substantial effect 

on the parametric oscillations at the frequency f, they may 

excite the circuit if the resonant circuit is tuned to half 

the-frequency of the particular term. Thus, while the 

waveform of parametric oscillations does not depend an the 

input voltage waveform, there arises a possibility for 

employing the parametric transformer as a frequency multiplier. 

Apart from the filtering action introduced by the 

phenomenon itself, the secondary circuit is a tuned tank circuit 

which intrinsically exhibits a filtering ability by virtue of 

the Q-ý, factor of the circuit. The particular magnetic core 

arrangement also reduces the effects of higher harmonics in the 

primary circuit, by minimising the flux coupling and providing 

a good isolation between the primary and secondary circuits. 

Thus, even with a square wave Input voltage, the output voltage 

of a parametric transformer is quite sinusoidal. 

This filtering ability of the parametric transformer is 

bilateral; harmonics in the input voltage are suppressed and 

any disturbances at the loa. d sideate not transferred to the supply 

side. The latter is due to the unilateral mechanism of operation 

of the parametric transformer, (i. e. if input voltage is applied 

to the secondary, no output voltage is obtained in the primary 

circuit where no resonating capacitor is employed). Furthermore, 

high-voltage spikes of short duration 3re also suppressed, since 

the primary magnetic circuit is driven further into saturation 

and the reluctance does not vary. 
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2.2.4 Phase-Shift and Bistability of the Phase 

It is a characteristic feature of all parametric oscillators 

that there is a defined phase relationship between the output 

and the pump signals. To accomplish maximum energy transfer, 

the parameter variations must be properly timed in order that 

the parameter change increases the energy of the system. If 

this phase relationship is not satisfied, less energy is 

delivered and, for some phase difference values, energy may 

even be removed from the oscillating system. This is apparent 

in equation (2.22), where the resistive part of the impedance is 

positive for O<a< -H and Tr<a< 
ý7r 

, while it takes a maximum 22 

negative value at a and + 
21. 

Actually, the parametric 44 

oscillation adjusts itself, by changing its phase, so that the 

energy taken during each cycle of oscillation becomes a maximum. 

The parametric oscillation is thereby phase-locked with the 

variation of the parameter, and finally takes either of the phase 

7T 37r 
angles a=-W or + -Tý, depending upon the phase of the initial 

oscillation. This emphasises the bistability of the phase of the 

oscillations, which may be obtained at two opposite phases, each 

in a defined relationship with the input signal. 

The phase relationship between the input and output signals 

at steady state operation of the parametric transformer is that 

the output voltage is + 90 out of phase with the input voltage. 

As will be seen in Chapter III, the non-linearity in the secondary 

circuit not only sets a limit on the amplitude of the oscillations 

but also varies the phase of initial oscillations so that it is 

finally locked into one of these two values. It is apparent from 
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Figure 2.1 that in the different common regions of the magnetic 

core the resultant amplitude of the total flux which is the 

sum or the difference between the primary and secondary fluxes, 

is limited to the saturation flux level. When the primary 

flux is at its maximum, the secondary flux is forced to zero, 

and at the instant 90 a later, when the primary flux is zero, 

the whole region is free for the secondary flux to attain the 

saturation level. 
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CHAPTER III 

THEORY OF PARAMETRIC OSCILLATIONS AS APPLIED TO 

THE PARAMETRIC TRANSFORMER 

A study of the phenomenon of parametric excitation is 

obviously concerned with the solution of differential equations 

with periodically varying coefficients, a subject on which a 

coasiderable amount of literature exists. However, most of 

this deals with the stable solutions of these equations, in 

particular of the Mathieu and Hill type equations. Moreover, 

attention is directed mainly to the linear forms of these 

equations, in accordance with the emphasis towards considerations 

of linear systems. These linear forms are also encountered very 

frequently in investigating the stability of the periodic solutions 

of non-linear, second order oscillating systems, where the stability 

Of the system depends on the stability of a 'variational equation, 

which always leads to a Hill equation. 

In this chapter, the theory of the parametric transformer- 

is developed on the basis of the Mathieu-Hill type equations; the 

secondary circuit is considered first as a linear circuit having 

a periodically varying parameter, and the effects of the non- 

linearity and the load are subsequently investigated. 

3.1 Linear Case (Build-UP of Oscillations) 

Initially, the reluctance of the secondary magnetic circuit, 

as modulated by the primary flux, will be assumed to have the 

sinusoidal variation given by equation (2.9), and not to be a 
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function of the secondary flux. Furthermore, by neglecting 

both electrical and magnetical losses, the secondary circuit 

is assumed to be non-dissipative, although it is not conser- 

vative. On this basis, a simple equivalent circuit for the 

output side of the parametric transformer is shown in Figure 

3.1. From this figure, it follows that 

N 
ý2 

+ -1 
fi dt =0 (3.1) 

2 dt c2 

where the current i. is, from equations (2.10) and 12.11), 

M2 2 
N2 

(3.2) 

Substituting equation-(3.2) into equation (3.11 and differen- 

tiating gives 

d2 ý2 R 
M2 0 ..... (3.3) -+2 

dt2 CN2 

a differential equation describing the circuit in terms of the 

secondary flux. On introducing into equation (3.3) the assumed 

variation of the secondary reluctance from equation (2.9), we 

obtain 

'2 
+ 

m2av Cl 
-m cos 2 wt) ý "' 11 .. (3.4) 

dt2 CN22 
2 

d2 ý 
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which is a typical Mathieu equation. By putting 

wt ..... (3.5) 

R 
w2 

M2 aV ..... (3.6) 
0CN22 

2 

a 
WO ..... (3.7) 

w2 

m..... and q= -ýý a (3.8) 

equation (3.41 reduces to the standard form of the linear 

Mathieu equation: 

dz 2+ 
(a - 2q cos 2z) ý2ý0..... (3.9) 

The theory of this equation has been treated in detail 

elsewhere where the general solutions are shown to be quite 

complicated. However, for the present purposes, only the forms 

of these solutions and their stability will be considered, since 

the essence of parametric excitation lies in the instability of 

the solution. 

The particular form and stability of the solutions depend 

upon the values of the coefficients a and q. For some com- 

binations of a and q, the solution for 02 grows without bound 
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as z increases, and it is, therefore, unstable. With other 

combinations, the solution is stable and remains bounded, for 

all values of z. The combinations of a and q corresponding 

to stable and unstable solutions are indicated on the 'stability 

chart' 
1 for the Mathieu equation, shown in Figure 3.2. The 

Ca; q) plane is divided into stable and unstable regions, and 

according to the values of the coefficients, the parametric 

point Ca; q) may lie in either of these regions or on the boundary 

curves by which they. are separated. The corresponding solutions 

are stable, unstable, or neutral. 

The general theory of linear differential equations with 

periodic coefficients, developed by Flouqet, 2 
establishes that 

the general solution of the Mathieu equation is of the form 

A ellz ý (z) +B e-ýlz ip (z) , ..... (3.10) 

where A and B are arbitrary constants, ji. is a constant depending 

solely on a and q, and ý and ipare purely periodic functions 

of Z. 

Within an unstable region, the two linearly independent 

solutions in equation (3.10) take the non-periodic forms 

co 

0 
fn cos(nz + cc n 

v 

w 
e-'lz X cos(nz (3.12) 

2 r=O 
fn n 
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wheriR -p is a real and positive constant, and A and an are the 

I amplitude and phase of the nth harmonic component. ji, 
'p 

and C, 
n 

all depending on a and q. The harmonic order n is 2r or 

2r + 1, according as the parametric point lies , respectively 

within an even or odd numbered unstable region. 

As z -+ +oo, 0' -*:; (* and 0" -+0, because of the exponential 
22 

term. Thus, although the ý" solution is stable, the solution 
22 

and the complete solution 

=d+ 
"""" (3.13) 

are both unstable. 

Although most applications based on the phenomenon of 

parametric excitation, make use of one of the stable regions in 

Figure 3.2, the parametric transformer functions only when the 

parametric point exists in one of the unstable regions. 

Together with equation (2.17), equation (3.6) shows W0 to be 

the resonant frequency of the secondary circuit; thus, for 

normal parametric transformer operation, with the output frequency 

the same as the input frequency, Figure 3.2 indicates that the 

parametric-point must lie in the first unstable region. Hence 

the conditions for instability are 

a1 (3.14) 

and q> 0 ..... (3.15) 
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Once the capacitor is adjusted to the corresponding value 

of 

R 
m2av, 

2N2 
2 

""""" (3.16) 

the parametric point is driven into the first unstable region, 

since the modulation coefficient m is finite and q is, 

therefore, greater than zero. The solution of equation (3.9) 

is then unstable, and parametric oscillations are excited, with 

the amplitude of the secondary flux (and voltage) growing with 

time. 

By considering only r=O in equation (3.11), where now 

n=l(= 2r+l), a first-order approximation of the solution for ý2 

is obtained as 

8 
liz 

cos(z + a) 
2 

with the second linearly-independent solution ý" omitted as it 2 

vanishes with time. 

If q is small, the exponent jj and the phase ct in equation 

(3.17) may, approximately, be determined by using the 'variation 

of parameters' method. 
3 

With the coefficient values a=l, O<q<<I, 
d ý2 

and with the initial conditions 0, at t=O, the 
2 20' dt 

approximate solution of equation (3.9) is obtained by introducing 

a generating solution of*the form 
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02=? cos(z + a) " (3.18) 

into the equation, and expressing the average variations in 

and a, as 

0) R 
cas 2a 

dz 2 
av 

(92) 2: -1 qp ..... (3.20) dz 2 
av 

Equation (3.19) can be plotted in a kind of phase-plane diagram, 

as shown in Figure 3.3. Equilibrium points for a occur when it 

takes values that are odd multiples of E radians. The variable 4 

z increases as shown by the arrows in the figure, and stable 

values evidently exist for a=..., --I. * 
37r 

... while unstable 44' 

values are a 
37T 

+ . 
7r, Thus, as z increases. cc 4' 

will change from its initial value to one of the stable equilibrium 

7T 
values. The simplest equilibrium value is a T. and this has 

been taken in the calculation of equation (3.20). Integration of- 

equation (3.20) gives the change in the amplitude of the oscillation 

as 

I 
02 e 2qz ..... (3.21) 

and the approximate solution is 

02 '7 020 e 
Jqz 

coscz, -.! ) C3.22) 4 
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In this unstable solution, the exponential term shows 

that the rate of growth of the amplitude is proportional to m, 

and the larger the amplitude of the variations in the secondary 

reluctance, the more rapid is the growth of the amplitude of 

the parametric oscillations. 

3.1.1 General Solution of the Mathieu Equation in 
ihe First Unstable Region 

With q=O in equation (3.9), this becomes 

=0..... (3.23) -2 + ý2 

dz 

for which the solutions are + cos nz, + sin nz, where n al. 

When q/0, a and q must be interrelated for the periodic solution 

of equation (3.9) to have period 7r or 27r, so that a is necessarily 

a function of q. By writing 

a=n2 +ý- ci q+ C2 q2+c. q3 *1ý .... ... (3.24) 

the desired form a=n 2 is obtained when q=O, when the Mathieu 

equation reduces to equation (3.23). 

The periodic solutions of the Mathieu equation, termed- 

'neutral' in the previous section (i. e. when the parametric point 

lies an the boundaries of the stability chart) must, therefore, 

reduce to cos nz and sin nz when q-+O. These solutions, called 
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Mathieu functions, are sine-elliptic and cosine-elliptic 

functions, the Fourier series for which may be written in the 

form 4 

ce 
2n 

(z, q) A 
2r 

(q) cos 2rz 
r=O 

00 
ce 

2ri+I 
(z, q) -iA 2r+f 

(q) cas(2r+1)z 
r41 

(3.25) 

co 
se 

2n 
Cz, q) 16 

2r 
(q) sin 2r z 

co 

r=O 

se 
2n+l 

(z, q) =16 
2r+i 

(q) sin(2r+l)z 
r=O 

for positive and small values of q. 

All Mathieu functions reduce either to cos nz or sin nz for 

q-ý-O, because the coefficients A and B in the Fourier series are 

functions of q. For a given q, the value of a is definite 

for each Mathieu function, and is given with a function of q in 

the form of equation (3.24). 

The Mathieu functions associated with the first unstable 

region are ce 
I 

(z, q) and se 
I 
Cz, q) which are the solutions for 

5 
equation (3.9), when, respectively 
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a= ar +q q2 q3q4+ (3.36) 8 64 1536 

a=aq- .1 q2 I -L q3 ._1 q4 + (3.37) 
sl 8 64 1536 

The functions ce 
I 

Cz, q) and se 
I 

(z, q) are given by the series 
5 

ce (z, q) = cosz q cos 3z +1q2 C-cos 3z +-l cos 5z)- 1q3 
1 64 3 512 

(-! cos 3z -4 cos 5z +1 cos 7z) +I q4 39 18 4096 

(. 1-1 
cos 3z + 

1-cos 
5z - -L cos 7z +1 cos 9z] 96 12 180 

(3.28) 

se Cz, q) = sinz -Iq sin 3z +1q2 (sin 3z + -1 sin 5z)---L q3 18 64 3 512 

(-I sin 3z +± sin 5z + -L sin 7z) +lq4 39 18 4096 

(- 11 
sin 3z +-l sin 5z + -I- sin 7z +1 sin 9z) 96 12 180 

(3.29) 
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To provide these functions as solutions of the Mathieu 

equation, the coefficient a, called the characteristic number 

of the Mathieu equation, must respectively take the values a cl 
and as,, given by equations (3.26) and (3.27). Equation (3.26) 

and (3.27), when a is plotted as a function of q an the 

plane Ca; q), give the boundary curves of the first unstable 

region in the stability chart of Figure 3.2. When the para- 

metric point is on the curve a Cl , 
the periodic solution of the 

Mathieu equation is ce 1 
(z, q), and when the parametric point is 

an the curve a si , the solution is se I 
Cz, q). 

The solutions, given by equations (3.28) and (3.29), are 

of period 21T in z, and being neither stable nor unstable, they 

may be classed as neutral. However, as pointed out by WhittakerS, 

they are in fact degenerate cases of a quasi-periodic solution 'of 

the Mathieu equation, having the form 

ýe liz ý Cz, a) ..... (3.30) 

with 

Vz, a) = sin(z - (y) +c3 cos(3z - (Y) +s3 sin (3z - cr) +c cos(5z - a) 

S5 sin(5z - (Y) . ..... 0 .... (3.31) 
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where a is a new parameter taking a value between 0 and -I 2 
for the unstable solution. Hence, the Mathieu equations 

se, (z, q) and ce, (z, q) are simply particular cases of the 

7r solution, corresponding to a=0 and cy =-y, respectively. 

The unKnown coefficients C3# S3' ... in equation (3.31) are 

determined in terms of q and cr as follows 7 

3233 
-6-4 q sin 2a - -ý-- q sin 4cr + 3 12 

1123 
s=- ýT q+ -g-4 q cos 2a q C- Ll 

+5 cos 4CF) 
3 512 3 

c7q3 sin 2a + (3.32) 
2304 

q2 -1 q3 cos 2cr + 
s 19-2 1152 

and the characteristic exponent of the unstable solution is 7 

q sin 2cr + --L q3 sin 2or -3q4 sin 4a + 128 1024 

(3.33) 
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The characteristic number a now becomes7 

a=1-q cos 2cy + .1q2 (-l + -1 cos 4cr) +1q3 cos 2a + (3.34) 
42 64 

which gives a 
ci 

and a 
sl 

of equations (3.26) and (3.27) for 

7r 
--ýF and a=0, respectively. 

From these results, the characteristic exponent 11 is readily 

calculable, when the now parameter CT is known. In practice, 

however, when the Mathieu equation is to be solved, the parameters 

a and q are known, and it is difficult to find a from given 

values of a and q by solving equation (3.34). To avoid this 

situation, a and ji are first calculated from equations (3.33) 

and (3.34) by varying q and a, and the iso-11 and iso-a curves 

are then plotted 
8 in the Ca; q) plane. In Figure 3.4, these 

curves are shown for the unstable regions of the stability chart. 

The curves in the first unstable region are illustrated in more 

detail. in Figure 3A which covers the area indicated in Figure 3.2. 

When a Mathieu equation in the form of equation (3.9) is 

given, and the solution in the first unstable region is to be 

found, the iso-V and iso--(Icurves which intersect at the parametric 

point determined by the values of a and q give the values of 

ji and a in the unstable solution of equation (3.30). In the first- 

order approximation, by taking only the fundamental frequency 

component in ý(z, cr) of equation (3.31j, the unstable solution 

becomes 

=ýa 
liz 

sin(z - cF) ..... (3.35) 
20 
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whe re ý 
20 

arises from the initial condition. For the coefficients 

a=l and O<q<<l, it is clear from the iso-Ij and iso-a curves of 

Figure 3.5 that a 45 0, and Ilis proportional toq. 2 
Inserting these values in equation (3.35) gives the approximate 

solution as 

qz 1 

e2 sin(z e COSC Z_ 
7T (3.36) 

2 20 4 20 4 

the same as the solution found by the method of variation of 

parameters, and given in equation (3.22). 

3.1.2 Operation in the Second Unstable Region: Freque 
Multiplication 

In the first unstable region, the periodic function ýCz, a) 

has period 27T in z, indicating that parametric oscillations are 

obtained at the same frequency as the input frequency Cwhich is 

normal operation of the parametric transformer). However, the 

periodic solutions of the Mathieu equation for the second unstable 

region, ce 2 and S82 , have period 7r in z. Hence, if the para- 

metric point is in the second unstable region, parametric 

oscillations are obtained at twice the input frequency and, in 

this way, thq parametric transformer operates as a frequency 

multiplier. 
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The instability conditions are now 

(3.37) 

and q>O ..... (3.38) 

to drive the parametric point into the second unstable 

recrion. 

The first condition above corresponds to wo = 2w, and, physically 

to tuning the secondary resonant circuit to twice the frequency 

of the input. The capacitor is thus adjusted to the value 

R 
M2av 

4w2N2 
2 

(3.39) 

and parametric oscillations are excited with any positive value 

of q, since no damping is assumed present in the circuit. 

The general solution -for the second unstable region will'be 

outlined In a manner similar to that followed for the first unstable 

region. The unstable solution is again in the form of equation 

(3.30), where 11 and ýCz. cr) are now 
8 

11 =- -1 -6 q2 sin 2cr + ..... (3.40) ' 
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ýCzx) = sin(2z - a) *c4 cos(4z - a) +s4 sin(4z - a) 

c cos(6z - cr) +s sin(6z - a) + (3.41) 
66 

where the coefficients c4, s4,... are determined by q and 

cy. The characteristic number a. in terms of q and or, is 8 

a=4+Iq2 (ý - 
1-cos 2a) + (3.42) 

232 

which reduces to 

4+5q2+ C3.43) 
C2 12 

a4-1 q2 + (3.44) 
S2 12 

for'a 7r 
and a=0, respectively. 2 

Equations (3.43) and (3.44) give the boundarý curves of the 

second unstable region, shown as a 
C2 

and a 
S2 

in Figure 3.2. The 

unstable solution 00e liz O(Z, CF1, therefore, reduces to the 

Mathieu function se 
2 

Cz, q) or ce 
2 

Cz. q) depending an whether a=0 

7T 
or a=-y, respectively, i. e. whether the parametric point lies 
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on the boundary curve a S2 or a C2* 
The Mathieu functions 

associated with the second unstable region are given by the 

series 

ce Cz, q) = cos 2z - 
IqC-ý 

cas 4z - 2) + --L q2 cos 6z -1q3 283 384 512 

(I Cos 8z + ýL3 cos 4z + 
1-0 

+ (3.45) 45 27 3 

se (z, q) = sin 2z - -L q sin 4z +1q2 sin 6z -1q3 2 12 384 512 

(-I- sin 8z - -L sin 4z) + (3.46) 45 27 

The iso-p and iso-a curves in the second unstable region 

are shown in Figure 3.6, which covers the indicated part of 

Figure 3.2. When a and q are given, the V and CT of the unstable 

solution of the form 
2ýe 

liz OCz, cr) may immediately be evaluated 

bY using these curves. 

With the characteristic number a=4, and O<q<<I, cr is 

approximately - 
7r, as seen from Figure 3.6, and the characteristic 4 

exponent 11 is found from equation (3.40) as 

=1 q2 ..... (3.47) 1 -6 
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The first-order apprdximate solution in the second unstable 

region is, therefore 

1q2z1q2z 

=ýe 
16 

sin(2z +-K) =ýe1 
-6 

cos(2z - 
75 (3.48) 

2 20 4 20 4 

It should be noted that, for a given q(<l), p is much 

smaller in the second unstable region than in the first. This 

is clear from Figures 3.5 and 3.6, and also from a comparison of 

the characteristic exponents of equations (3.36) and (3.48). 

In general, the stability chart of Figure 3.2 indicates 

that parametric oscillations may be obtained at any multiple of 

the input frequency when a is made equal to 4,9.16, ..., n2, 

... etc. (by adjusting the resonant circuit such that w0= 2w, 

3w, 4w, 
..., nw, ..., respectively), and it follows that the para- 

metric transformer may be used as a frequency multiplier by 

operating in different unstable regions. 

Frequency multiplication by the parametric transformer can 

also arise due to the presence of harmonic components in the 

secondary reluctance variations. as mentioned in Section 2.2.3. 

Since the primary flux is non-sinusoidal, due to the resistance 

and non-linearity of the primary circuit, it may contain both 

even- and odd-harmonic components in its Fourier series expansion, 

co 
01 0ai sin iwt..... (3.49) 
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There are no cosine terms in'this expansion, since the time 

reference has been chosen to coincide with that of the primary 

f lux. 

Since the secondary reluctance is an even function of 

the primary flux, the trans-reluctance characteristic of 

Figure 2.2 may be expressed as a power series expansion in 

as 

Co 
Rire 2j 

M2 M2min jmi J1 

where R 
M2min 

*ý % ** s, +rI is the minimum constant value of 

R for 0, and r are constants. Now, substituting M2 i 

equation (3.49) into equation (3.50) gives the variation of the 

secondary reluctance 

Co 
R 

M2 =R m2av 
+1R 

2n 
cos 2n wt (3.51) 

n-1 

which is the Fourier series expansion of the secondary reluc- 

tance, and contains only even-order harmonics, whatever the 

harmonic content of the primary flux. The average value R 
M2aV 

is positive, but the coefficients RZ, R4P .... may be positive 

or negative, depending on the form of the trans-reluctance curve 

and the sign of ai in equation (3.49). 
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Introducing equation (3.51) into equation (3.3), the 

basic differential equation of the circuit leads to 

d2 ý2 co 

Z2 +-(e 0+210n 
cos 2n z)ý 2 

3* 0 

d n=l 

where z= wt. and 

R2 
m2av 0 

0w2CN2w2 

2 

R 
2n 

n2 
W2 CN2 

2 

n=1,2,3, ... 

(3.52) 

(3.53) 

(3.54) 

Equation (3.52) is known as the Hill equation, and is a 

general case of the Mathieu equation. The general solution of 

the Hill equation is more complicated than that of the Mathieu 

equation, but in the next section, a brief outline is given. 

At this point, it is sufficient to state that the instability of 

the Hill equation in the nth unstable region is a function not 

only of 0n but also of the other coefficients 0. 

To see the effect of higher harmonics in the secondary 

reluctance on the Instability within the second unstable region, 

consider only the fourth harmonic term in equation (3.51) and 

suppose that the secondary reluctance is given simply by 
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R 
M2 =R M2aV 

+R4 cos 4 wt ..... (3.55) 

Substituting this into equation (3.3) gives a Mathieu equation 

dz 2+ 
Ca + 2q' cos 4z) 020..... (3.56) 

W2R4 
with the coefficients a C-SI) , as before, and q' a. 

W M2av 

With the independent variable changed to T= 2z + equation 2 
(3.56) becomes 

d2 02 

+ (A - 2Q Cos 2T) 00..... (3.57) 
dT22 

which is the standard form of the Mathieu equation with the 

coefficients A=- '0 and Q= 9-ý. When A=1. equation (3.57) is 
IT 4 

unstable in the first unstable region of the (A; Q) plane (i. e. 

the stability chart for equation (3.57) ). This corresponds to 

1 
1,0), =i Zw 

which gives bi 0= 
2w, the same conditions as for instability of 

equation (3.9) in the second unstable region of the Cajq) plane. 

Therefore, the fourth harmonic in the secondary reluctance 
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variation may excite the circuit by itself when w0 Is adjusted 

to 2w, implying that the instability in the second unstable 

region is also a function of R4 of equation (3.51). In general, 

when the secondary reluctance is given by equation (3.51), the 

instability of the system in different unstable regions will 

depend on all the R terms of equation (3.51). 

3.1.3 The Hill Equation 

In the Mathieu equation (3.9), the primary flux was 

assumed purely sinusaidal, by neglecting the resistance of 

the primary circuit. When the resistance is negldcted, the 

primary flux is always sinusoidal, even with a highly non- 

linear magnetisation characteristic. On taking the resistance 

into account, the primary flux is given by a Fourier series as 

in equation (3.49). With the secondary circuit of the para- 

metric transformer still considered linear and nan-dissipative, 

the harmonic components in the primary flux and the-assumed form 

of equation (3-50) for the trans-reluctance characteristic. lead 

to the differential equation of the circuit in the form of the 

Hill equation, 

d2e en 

dz2,2 
+ (6 

0+2n6n 
Cos 2nz) e2 

The coefficients 0 of this equation are given In equations (3.53) 
00 

and (3.54), and it is assumed that X lonl converges. 
n=l 
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WhittaKer's "change of parameter" method has also 
a been applied to the Hill equation . By Flouqet's theory, 

a particular solution of equation (3.58) is given by 

e2ýe liz ý (Z) 
..... (3.59) 

Following Whittaker's method, the periodic function OU) 

is assumed to be 

ý (z, cr) = sin (z-cr) "01fI CZ, Cl) ,02 f2CZ. C') 

02g (Z, Cr) +02g 
22 

0g Cz, or)-ý. .. (3.60) 
12 12 

3h (z, cr) 

+S 

with the characteristic exponent 
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11 = ol ya) e22 (a) +0 IP (CO 

2C (Cr) +02C (Cr) 
122 

12 12 

3x (CF) 

+ 
..... 

where a is a new parameter to be determined. In the first 

unstable region, where the periodic function ýCz) has period 

27r, the new parameter a is determined by the expression 
a 

226203 
462 192 12 192 123 

cos 2a(O + .1e0+ -Le e- _Le 
3+5e 20 

2422 12 23 64 1 192 13 

cos 4a(-! 02+ _L 02 () , 
13 000 81 64 12 576 123 

Cos 6CT( 7o le - 
13 0s (3.62) 512 12 4096 1 

+. S 
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and the characteristic exponent is 8 

sin 2a(-! 0+100+ -Le 0-30 9+... )+ 
21812 24 23 128 1 

C_ 
1 

i. 2 
0 20 aa+ (3.63) sin 4cr 

28 12123 8+ 1152 

sin 6a( 50 30 
1024 22 

+ 

The periodic function ý(z, a) takes the form 8 

11211 VZX) = sin(z-cr) + dint3z-crlfý 0+ -ýT 01 cos 2cT +0102 (t - J2- Cos 2cr)+... ]+ 

sin (3z+crl Wl 0 +. '. ] + cos (3z-cr) f -10 
2 sin 2cr - -1 () 0 sin 4cr +. 82 64 1 32 12 

0e2660 
sin(5z-al +I--I sin 2cr + sin(5z+a) --I. + ['ý -42 192 -2T8- 82 24 

1 
+ cos (5z-cr) sin 2cr ++ sin(7z-a) + m8a 0 

f, 
288 12 

[-t8 0312 

sin(7z-a)[- + sinigz-cy) 0- 
0 

48 44 

(3.64) 
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7r As is seen from equation (3.63), p=0 for CF=O and T 
ýF , 

corresponding to neutral solutions of the Hill equation. The 

boundary curves of the first unstable region are thus obtained 

by putting (Y=O and a= - 
ir in equation (3.62), as in the f 

case of the Mathieu equation. 

The-solutions of equation (3.58) in the different unstable 

regions may be given in the same way, by determining the 

expressions for 0., 11 and ý(zx), although all these results 

are very complicated. * However, since the 0 coefficients are 

small, the periodic function ýCz, a) in the nth unstable region 

may be assumed, to a first approximation, to have the form 

ýCz, a) = sin(nz-cr) n=1,2,3.. (3.65) 

Substituting equation (3.59)'. with ý(z, a) from equation 

(3.65), into equation (3.58), and equating the coefficients of 

sin nz and cos nz separately to zero, leads to 

sin 2a ..... (3.66) 2n 

and 00 =n2+6 cos 2cr. - ( 
!n 

sin 2 2cr (3.67) 
n 2n 

respectively. Eliminating or between equations (3.66) and (3.67) 

gives p in terms of 0 as 

11 2. 
_(()O +n 

2) 
+ W2 00+ () 

n 
2)1 

. (3.68) 

*The expressions only for 0. and 11 in the second and third unstable 
regions are given by Hayashi-in reference (8). 
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From equations. (3.66) and (3.681, j and a may be determined 

for any given 00 and 0n, so that the solution 

ý2 ýe 
liz (Z'CO =e 

liz sin(nz-(Y) is completely determined. The 

second independent solution, obtained by replacing z by -z 

in equation (3.59), is not of much importance, as it is stable 

and vanishes with time. Since the characteristic exponent 11 

may be imaginary or real, according as the complete solution is 

stable or unstable, the condition for instability is 

>0i C3.69) 

which, by use of equation (3.68) becomes 

le 
n 

I'> 100- n 21 
..... (3.70) 

Since jj=O on the boundary between the stable and unstable 

regions, the boundary lines of the nth unstable region are given 

by 

2- 00 n+0n (3.71) 

which may also be derived directly by putting CF=O and Cr= -2 2 

in equation (3.67). 

In a more general case, the Hill equation may take the 

forTn 
8 

Go co 

Z2 
+ (00 +211a nc cos 2nz +2X0 

ns sin 2nz)ý 
2,0 

(3.72) 
d n= n=l 
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known as the extended form of the Hill equation. Proceeding 

in the same way as above, the characteristic exponent is 

obtained as 

11 
2= 

-(a 0+n 
23 + (4n 200+ () 

n 
2)1 (3.73) 

where now 02=e2+02 
n ns nc 

In the derivation of the above results, the coefficients 

0 of equation (3.581 are assumed to be small and only a first 

approximation is considered. The values of ji and a in equations 

(3.66) and (3.67) are, therefore, determined only by 0. and 0 
np 

and not by any other coefficients. For the first unstable region, 

neglecting all the terms which involve 0 20 *** 0 () 
n' *** (other 

than 01), and all powe rs of 0, in equations C3.62) and (3.63), 

gives the approximate equatiorB(3.66) and (3.67) with n=l. 

Since 11 is a, function of all the coefficients 6 in equation 

(3.58), the instability in the nth unstable region depends on all 

the harmonic components in the secondary reluctance variation, as 

mentioned in the explanation of frequency multiplication in the 

parametric transformer. 
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9,10 3.1.4 The Hill-Meisner Equation , and Parametric 
Generation and Absorption of Energy 

Equation (3.3) may be written in the general form 

d2ý 

dz 22+F 
(z) 

2ý0..... 
(3.74) 

where F(z) represents the time-varying parameter, which is a 

periodic function of z with period 7r. If F(z) follows a 

sinusoidal variation around an average value, equation (3.74), 

becomes a Mathieu equation. If the variation is not sinusoidal, 

F(z), may-be expanded as a Fourier series, when equation (3.74) 

becomes a Hill equation. A particular case of the Hill equation 

is the so-called Hill-Meisner equation in which the function F(z) 

is the rectangular ripple shown in Figure 3.7. The Fourier 

expansion in this case is 

F(z) =a +-! b (cos 2z --I cos 6z +1 cos 10z + (3.751 
7r 35 

With the Hill-Meisner equation, it is assumed that the 

variation of secondary reluctance between the maximum and the 

minimum values-is produced discontinuously at certain instants. 

For this reason, it is convenient to write equation (3.74) in 

the form 

-+ (a T 
ý2 

- b) 
..... (3.76) 

dz 22 
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which means that the two linear differential equations 

d2ý2+ 
(4 + b) ý0d2o2+ (a - b) ý0 

dz 22 dz 22 

should be considered, alternately, during each half period of 

the ripple, with the understanding that the solutions must be 

continuous, although not necessarily analytic at the points at 

which the change from (a + b) to (a - b), and vice versa, occurs. 

At these points, a> b, since the reluctance modulation is around 

an average value. If the secondary reluctance varies between 

the limits R 
m2max =R M2av 

+ AR and R 
m2min =R 

m2av - AR, as the 

rectangular ripple shown in Figure 3.8, the coefficients of 

equation (3.76) are 

R 
m2av b= 

AR 
..... 

(3.77) 

w2N2C'w2N2c 

If a certain flux OPP exists initially in the magnetic 

core, and the secondary circuit is closed. an undamped oscillation 
is established in this circuit, with energy oscillating between 

the electromagnetic forml Rý2 (since R=R when 2 M2m: Ln 20 M2 M2min 

there is no modulation), when the capacitor is discharged and the 

current is a maximum, and the electrostatic form -1 CV2, when the 20 

current is zero. 
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Now, assume the reluctance of the secondary winding is 

increased by + 2A R at the instant the energy is entirely 

electromagnetic (i. e. when ý is a maximum and V is 
2 dt 

zero, the point A at z in Figure 3.8), which requires an 

impulse of work to overcome the electromagnetic forces. This 

work is provided, as explained in the next section, by the 

primary flux which increases the secondary reluctance. Since 

the secondary circuit is assumed to be conservative, an equiv- 

alent increment AE of electrical energy is added to the initial 

energy content E. -1 R 02 of the circuit. This increment 
2 M2min 20 

is obtained as 

AE = 02 . 
AR ..... 

(3.78) 
20 

by differentiating equation (2.24) with respect to Rm and putting 

dRm =2 AR. After the sudden increase in the reluctance, the 

energy stored in the secondary winding is 

El =E2 (R 2 AR) 
02 20 M2min + 

A quarter of a period later, at the point B in Figure 3.8, the 

energy is purely electrostatic, with the flux zero and a maximum 

voltage across the capacitor. At this instant, we can re-establish 

the former value of the reluctance by a reduction of -2 AR, without 

doing any work, since the flux at this instant is zero. At the 

point C, when the energy is again purely electromagnetic, the 
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reluctance is Increased by +2 AR, so that it again takes the 

maximum value. This adds another increment of energy, and the 

new energy content is 

E+ AE = .1ý2 CR 4 AR) 212 20 m2min 
+ 

At the time z= 27T (i. e. the point 0 of Figure 3.8), we can 

again reduce the reluctance to its minimum value without doing 

any work, since the flux is again zero. Thus, increasing the 

reluctance at the instants z= 7r 37r (2n+13-1 f, 72 

adds. energy to the system, and after N periods the total energy 

becomes 

2 CR 4NA R) 20 mzmin + 

At the instants - z=O, 7r, 2Tr, ...., n7r . ..... the reluctance can 

be decreased, without requiring any impulsive work. Therefore, 

by correct timing of the discontinuous changes of reluctance, 

the energy stored in the system Is gradually increased as the 

result of the operation of the ripple 7 AR. 

As seen from Figure 3.8, a certain phase relationship 

exists between the secondary flux and the discontinuous reluc- 

tance changes; that is the reluctance is increased when the flux 

is a maximum so that the decrease in the reluctance occurs when 

the flux is zero. Maximum energy i. s developed parametrically when 

this phase relationship is satisfied. 
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. If the relative phase between the flux and the reluc- 

tance variation is as shown in Figure 3.9, the effect becomes 

reversed, with the ripple withdrawing, instead of adding, 

energy from the oscillation. Because the reluctance decreases 

by -2 AR when the flux is at its maximum, the energy increment 

given by equation (3.781 is negative, which means that energy is 

not added to but is withdrawn from the system. When the reluc- 

tance increases by +2 AR, no energy is added, since at these 

instants the flux is zero. 

In general, with the phase difference 0 between the 

secondary flux and the reluctance variations, as shown in 

Figure 3.10, the amount of energy added to the system by a 

Positive jump in the reluctance is ý;. AR, and the energy 

withdrawn by a negative jump is ý". AR. It is now clear that 
2 

for 0< 0- < the net increase in energy to the system within 4 

a half period is positive, since ý21 > and, for -H <ý< 242 

the energy content of the system decreases, as the energy with- 

drawn by a negative jump is greater than the energy added by a 

positive Jump. When 0. = 0, as in Figure 3.8, maximum energy is 

supplied by parametric excitation for ý2"=0. However, when 

$ =2, as in Figure 3.9, the reluctance variation works completely 2 

as an energy absorber, instead of exciting the system. For 

S =2 , the amount of energy added by a positive jump is equal 4 

to that absorbed by a negative jump. The net increase in energy 

Is, therefore, zero, and the undamped initial oscillation continues 

with a fixed amplitude. 
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In equation (3.76), a=l, since the capacitor in the 

secondary circuit is tuned to resonate with R 
M2av at the 

frequency w. Thus. the two alternate differential equations 

are in the form 

d2o2. 
+a0 ol 

d2 ý2+ 

(1 00 
dZ2 12 dz 222 

where a, = I+b, a2 = 1-b, replacing each other at the frequency 

of the ripple 7 AR. The solutions for each of these two 

differential equations can be represented in the phase plane 
dý 

i. e. the plane (; ý), by the families L,,, and L2 of concen- dz 2 

tric homotetic ellipses 
11 

shown in Figure 3.11, since a, and a2 

are not equal to unity. For b=O, and aI-a2 =1 , the phase traj- 

ectories of the equations form a continuous family of concentric 

circles. The family LI corresponds to R 
M2MaX' and the family L2 

to R 
M2min' since a>1 and a2 <1 . The motion of the representative 

point P an these phase trajectories gives the form of the solution 

for the Hill-Meisner equation. 
d02 

= Starting from the initial conditions 0 and - 0, 
2 20 dz 

corresponding to the point A in Fi gures 3.8 and 3.11, the 

representative point follows the are AS of the ellipse belonging 

to the familY LI, since the reluctance is R 
m2max- 

during this 

interval. A quarter of a period later, at the point 6, the 

reluctance is reduced to R 
M2min' and, the representative point 

passe's onto the elliptic trajectory belonging, to the family L2 

and passing through B, and continues to move along that trajectory 

until the next change to R 
mzmax occurs at the point C. At this 
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instant, the reluctance is again increased to R 
M2MaX' which 

transfers the representative point to the ellipse of the family 

LI passing through C up to the point 0, and so on. It is thus 

clear that the amplitude of the oscillation increases with time, 

with the radius vector r increasing continuously. As r2 

represents the total energy stored in the circuit, the energy 

of the system steadily increases, as a result of the variation 

in the reluctance. 

However, with the phase difference 0=2 between the 2 

oscillation and the reluctance variation, the phase trajectory 

starts from the point A in Figures 3.9 and 3.12, and the 

representative point moves on the arc AB' of the ellipse of the 

family L2, since the reluctance is R 
m2min 

during this interval. 

At the Point BI, when the reluctance is increased to R 
m2max* 

the 

representative point is transferred onto the ellipse belonging 

to the family LI, from when it follows the elliptic arc BIC', 

and so on. In this case, the phase trajectory shown in Figure 

3.12 is a convergent spiral, which means that the oscillation is 

rapidly damped by the reluctance variation withdrawing energy from 

the system. 

For the motion of the representative point is 
4 

on a closed trajectory 10 
, as shown in Figure 3.13, indicating 

that the amplitude of the oscillations will not grow with time 

and that the net energy increase over a period is zero. 

The cases explained above, for 0 and correspond 2 

to the stable and unstable equilibrium values of a. the phase of 

the approximate solution for the Mathieu equation determined by 
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Figure 3.3. It was also shown in Section 3.1.1 that the 

characteristic exponent 11 is a maximum, for a given q, when 

CY =-I. and it is zero when CY =0 or -I. These results 42 

my also be obtained by approaching the Mathieu equation 

through the Hill-Meisner equation. 

Thus, by choosing the time reference in Figure 3.8 at 
7T 
W and by replacing the rectangular ripple with the proper 

sinusoidal variation shown by the dotted curve, the variations 

of the flux and of the reluctance may be written, respectively, 

as 

0 COSCZ - 
1) 

..... (3.79) 
20 4 

R 
M2 =R miav - AR cos 2z I ..... (3.80) 

Equation (3.801 is in the same form as equation (2.91 which led 

to the-Mathieu equation, and equation (3.80) Is in phase with 

the unstable solution of the Mathieu equation. Therefore, 

0 corresponds to a=- -E , or to a 7r in the case of 44 

the Mathieu equation. 

By. taking z 
2E 

as the time reference in Figure 3.9, the 4 

reluctance variation is again expressed In the form of equation 

(3.80), but the flux is now 

00 Cos (z + 
1) 

* 20 4 
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7r 
which gives the unstable equilibrium value of a= -T as 

determined by equation (3.19). This case clearly corresponds 

to the reluctance variation completely withdrawing energy 

from the system. 

For =2 the same reluctance variation is obtained, 4 

by taking the time reference at z with the flux 2 

variation 

02ý0 
20 

Cos z ..... (3 
0 
. 821 

which corresponds to the case oý the Mathieu equation with 

a neutral solution, when a= --E and ji = 0. 2 

The relative positions of the flux and the sinusoidal 

reluctance variation for these three cases are shown in 

Figure 3.14 a, b, and c, respectively, which correspond to 

maximum energy release, zero energy release, and maximum energy 

absorption by the reluctance variation. 

If the Mathieu equation is written in the form 

2+a0 (2q cos 2z) 0 ..... (3.83) 
dz 222 

the right-hand side can be considered as a forcing function, 

although it depends an ý 
2* 

Taking only the first term of 

equation (3.31) and neglecting the increase in amplitude within 

a period, the solution of equation (3.831 may be assumed as 



73 

ý2 =ý 
20 

sinCz - a) ..... (3.84) 

to a first approximation. 

Multiplying equation (3.83) throughout by dý 
200;. 

dz 

(dots denote differentiation) and integrating over a period 

(0,2fl, gives the energy equation of the system 

27r 21T 27r 
f dz +a. 0; dz = 2q f 

2-f 
02 

Cos 2z dz 
0000; 

'ý2 

(3.85) 

where the left-hand side represents the energy consumed within 

a period, and the right-hand side represents the energy supplied 

to the system by the forcing function in the same period. Upon 

introducing ý2 from equation (3-84) into equation (3.85), the 

energy equation becomes 

27T 
2 02 f cos 2z. cos(z - a). sin(z dz (3.85) 

20 
0 

The left-hand side of equation (3.86) is equal to zero, since 

there is no firstberivative term in equation (3.83) and the 

other terms vanish on integration because of the orthogonality 

properties of circular functions. This result is obvious, because 

the secondary circuit is assumed to be non-dissipative, and thus 
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consumes zero energy. The energy supplied by the forcing 

function on the right-hand side of equation (3.83) is not 

identical to zero, and the circuit is, therefore, not conser- 

vative although it is non-dissipative. 

Carrying out the integration, the energy supplied 

within a period is found to be 

Eqý2 ir sin 2cr ..... (3.87) 
20 

It is clear from equation (3.87) that the energy supplied 

by the parameter variation is a maximum forcF= - 
7r 

, and is 4 

zero for c1=0 and Cr= These results agree with the 
2 

general theory of the Mathieu equation (and also with that of 

the Hill equation), where the characteristic exponent V is found 

7r 
as zero for a=O and a= and is a maximum, for a given q, 

when a= With cr= + the lenergy supplied takes a maximum 44 

negative value, which means that the energy is not supplied but 

is withdrawn from the system. 

These three cases, corresponding to cl= -. 
1 

Cr= and 4' 2 

have also been obtained before in this section by energy 4 

considerations of the Hill-Meisner equation with a rectangular 

ripple having a phase difference from the oscillation 0,, = 0, 

=-H, and =2 , respectively. These are illustrated in 
42 

Figures3.14a, b, and c. 
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3.1.5 Mechanism of Energy Transfer 

In practice, there is always some residual flux in the 

magnetic core, which is sufficient to establish a small 

initial oscillation in the secondary circuit. When the 

reluctance of the secondary circuit is modulated, as given 

by equation (2.9), these small oscillations increase as 

defined by equations (3.22) and (3.36), by virtue of the 

instability of equation C3.4). For a closer approximation to 

the increasing secondary flux, additional terms may be calcu- 

lated in equations (3.321 and (3.33) by putting a=- 'r 
4 

As shown by equation (3.19) and Figure 3.3, the secondary flux 

eventually takes a phase of (Y =-2, whatever the phase of 4 

the initial oscillations; the oscillations thus change in 

phase until the energy supplied to the system by the reluctance 

variations becomes a maximum (i. e. 11 becomes a maximum), as 

explained for the case of a=0 id the previous section. 

The energy is supplied by the variations in the secondary 

reluctance as explained for a particular case of a rectangular 

ripple in Section 3.1.4, and the -secondary reluctance is varied 

by the primary flux, and the primary flux supplies energy to the 

. secondary circuit. In what follows, the mechanism by which energy 

is transferred from the primary to the secondary circuit is, 

explained, so that the operation of the device as a transformer 

may be clearly understood. 

As is evident from Figure 2.1, a secondary flux existing 

in the magnetic care will also modulate the primary reluctance, 
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in a similar way to that explained in Section 2.1.1. As the 

symmetry of the core implies, the dependence of the primary 

reluctance on the secondary flux is assumed to have the same 

form as in equation (2.13, i. e. 

R 
mi =R mimin 

+rý22..... (3.88) 

where R 
mimin and r are assumed to be 

R 
mimin 0R+pI+rI..... (3.89) 

3r (3.90) 
3 

The correctness of the forms of equations (3.88) to (3.903 is 

ascertained in Chapter VII where the reluctance coefficients 

Pr and r are also defined from the physical dimensions and 
13 

the magnetic properties of the core. With these assumptions, 

the initial oscillation of the secondary flux, given by 

0 cos(z - 
7r ), modulates the primary reluctance as 

2 20 4 

R 
ml =R mlav 

+ AR 
I sin 2z 

32 
where R 

mlav 
R9+pI+rI +-f r3 

20 ..... (3.92) 

and AR =r02..... (3.93) 
123 20 
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The primary circuit, in which the primary flux of 

equation (2.5) exists, thus exhibits the time-varying reluc- 

tance of equation (3.91), and it is necessary to evaluate the 

relation between the primary flux and the reluctance variations 

on the basis of Section 3.1.4. The relative positions of the 

primary flux and the primary reluctance variation are shown in 

Figure 3.15a, from which it is seen that the disposition of 

the waveforms corresponds to the case, shown in Figure 3.14c, 

when the parameter variations completely withdraw energy from 

the oscillation. 

The initial oscillations in the secondary circuit create 

variations in the primary reluctance, the phase of these 

ensuring that maximum energy is drawn from the primary flux, 

and thus from the primary voltage supply, the energy being 

absorbed by the primary reluctance variations. As seen from 

Figure 3.15a, the primary reluctance decreases while the primary 

flux is around a maximum value, (i. e. energy is absorbed), and 

increases while the primary flux is around zero (i. e. no energy 

is added). Since the primary flux is inexorably fixed by the 

supply voltage, as given by equation (2.5), the primary reluc- 

tance variations increase as energy is absorbed from the supply; 

this, in turn, means that the initial oscillation in the secondary 

circuit will increase, as this creates the primary reluctance 

variation. 

The reluctances of the primary and secondary circuits 

increase with the absolute value of the secondary and primary 
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flux. respectively. In a half-period, as the primary flux 

increases from zero to its maximum value, the secondary 

reluctance is accordingly increased, and, since the secondary 

flux takes a maximum value during this interval, energy is 

added to the secondary flux variations by the increasing 

secondary reluctance. At the same time, as the secondary flux 

decreases from its maximum value to zero, the primary reluc- 

tance is accordingly decreased, and, since the primary flux is 

a maximum at this interval, energy is drawn from the primary 

flux variation by the decreasing primary reluctance. This 

process continues in each half cycle, and energy is trans- 

ferred from the primary to the secondary flux by the properly 

phased variations in the primary and secondary fluxes. 

As the secondary flux builds up from the initial 

oscillation, the amplitude of the variation in the primary 

reluctance, given in equation 13.93), increases, and more 

energy is drawn from the supply. The amplitude of the secon- 

dary flux thus increases more rapidly, in the form ý 
2M a0 

20 eýz, 

and so on. 

Energy-transfer from the primary to the secondary circuits 

of the parametric transformer is a consequence of the modulation 

of the primary reluctance by the secondary flux, which may be 

considered as a reaction from the output to the input, and the 

process may be considered as a kind of super-regeneration. In 

this way, the primary side of the parametric transformer operates 

as a parametric energy absorber, whose time-varying parameter 
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withdraws energy from the supply. Correspondingly, the 

secondary side operates as a parametric oscillator, oscillating 

as a result of the variation in its own parameter, and main- 

taining the energy absorption from the supply by modulation of 

the primary circuit parameter. 

The primary and secondary flux and reluctance variations 

are shown in Figure 3.15, where the intervals of energy 

absorption from the primary flux and energy delivery to the 

secondary flux by the reluctance variations are indicated by 

the shaded areas. 

If the primary circuit is assumed non-dissipative and 

the supply voltage is 

e=E cos wt 

the equations describing the circuit are 

Nw 
dýl 

=E cos z ..... (3.94) 
1 dz 

R 
Mi .01..... (3.95) 

and the primary flux is found from equation (3.94) as 

E 
sin z sin z ..... (3.96) 

Im 
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as given by equation (2.5). The power. drawn from the supply 

by the primary circuit is 

F, RM1.01 
e e. ..... (3.97) 

NI 

which, on substituting the expressions for e, R 
ml and 01, 

becomes 

E211 (R sin 2z + tAR - AR Cos 4z) 
2N2 bi 

mlav 221 
1 

where R=R+p, + r, + -2 rý2 and AR -2 ro2 
miav 923 2M 123 2M 

respectively, the average value and the amplitude of the 

variations of the primary reluctance. The average power of 

E AR ..... (3.98) 
av 4N21 

is proportional to the amplitude of the secondary flux (because 

of ARI), and is not zero. There is, therefore, always a non-zero 

average power drawn continuously from the supply, despite both 

the primary and secondary circuits being assumed non-dissipative. 

As the amplitude of the secondary flux increases, the average 

power drawn from the supply increases, until a limit is set on 

the secondary flux amplitude by the non-linearity of the \ secon- 
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dary circuit. The active power consumed in the primary circuit 

is, in fact, zero when there are no parametric oscillations, 

since the primary circuit is assumed non-dissipative. With 

the growth of the parametric oscillations, the active power 

drawn from the voltage supply increases, and the growth in 

the secondary flux and voltage is accompanied therefore, by 

a large increase in the primary current. 

3.2 Non-Linear Case 

As the arrplitude of the secondary flux increases, so 

too does the active power drawn from the supply. However, on 

physical grounds, this increase cannot continue Indefinitely, 

since a limit clearly exists on the amplitude of the secondary 

flux. Since the secondary flux is a non-linear function of 

the secondary current, this limit is set by the non-linearity 

of the secondary magnetisation characteristic. Before the 

secondary flux reaches the saturation flux level Oss the 

secondary magnetisation characteristic is linear. This assumption 

is valid for the initiation and growth of the parametric oscill- 

ations in the secondary circuit, and the considerations of 

Sections. 3.1 to 3.1.5 were based an this assumption. As the 

secondary flux reaches 0s, the effect of saturation in the 

magnetic core needs to be considered, as this has a very impor- 

tant influence on the steady-state operation. 

Neglecting hysteresis, the magnetisation characteristic 

of the secondary circuit may simply be expressed as 
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F2=R 
m2min 

02+A23..... (3.99) 

where R 
m2min 

is given by equation (2.2), and X is a positive 

constant introducing the non-linearity and is assumed <<R 
M2min* 

In Chapter VII, A is defined as 

X=s3+r3..... (3.100) 

in terms of the coefficients s3 and r3 which are directly 

related to physical construction of the core. With these 

assumptions, the secondary reluctance is now 

F 
2 (R +s+r+ (s +r M2 291332 

a function of the secondary flux. To express, in this case, 

the dependence of the secondary reluctance on the primary flux 

is rather a complex matter, and is attempted later in Chapter VII. 

For simplicity, it is assumed here that only the linear part of 

the secondary reluctance is modulated by the primary flux, in 

the manner described in Section 2.1.1. The modulated secondary 

reluctance is thus 

(R 4, rý 2) 2 

M2 M2min 12 

(3.102) 

[CR -- +s+r+3r 02] + (S + r. ) ý2 
913132 
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which, on substituting for ýI from equation (3.96) becomes 

R 
M2 =R M2av 

(I -m cos 2z) 4- Xý22 (3.1031 

where R 
m2av and m are as given by equations (2.7) and (2.8). 

It is seen from equation (3.103) that the part of R 
M2 

that is 

independent of the secondary flux becomes time-varying, with 

the rest remaining unaffected by 0,, although varying with ý2 

because of non-linearity. Substituting R 
M2 

from equation (3.103) 

into the basic differential equation for the secondary circuit, 

equation (3.3), gives 

2+ (a - 2q cos 2z) 0+gý3=0 (3.104) 
dz 222 

where a. q and z are as given by equations (3.51 to (3.8), 

and 

S3 + r3 
(3.105) 

2N22cw2 *N 
22c 

There is no first derivative term in equation (3.104), since 

the secondary circuit is still assumed non-dissipative, and 

again a=l, as normal operation with wo -w is concerned. 

Equation (3.104) may be written in the form 

dz 2+ 
((a +gý2 2) - 2q cos 2z] 02=0 (3.106) 
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where the non-linearity term may be considered as detuning, 

since it changes the value of a. When 02 is small, the term 

g022 In equation (3.106) is insignificant, since g<<l (A <<R 
M2av 

assumed). Neglecting this term, equation (3.106) becomes a 

Mathieu equation, which has, in the first unstable region, the 

first-order approximate solution given by equation (3.36). As 

the secondary flux increases, its amplitude approaches the 

saturation flux level, from whereon the non-linearity term 

becomes significant and the equation describing the secondary 

circuit is either (3.104) or (3.1061. The initial solution for 

this equation is, therefore, 

2ý 2M sin (z-a) .... 0 (3.107) 

where ý 
2m 20 e 

liz is the exponentially increasing amplitude 

of the secondary flux. Substituting this solution for 02 in 

the non-linearity term of equation (3.106), gives the linear 

equation 

ý2+f 

[a +gý2 sin 
2 (Z-Cr) 2q cos 2zjý 0 

dz 2 2M 2 

(3.108) 

or 

d2ý2 
2)_ 224 + (a (4q + 2q gý2 cas 2cr + + "I g 02M 

2M dz 224g 
ý2m 

cas(2z-y)] ýn0...... (3.109) 
2 
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102 
sin 2or 

where y= tan- 2 2M 
2q g02 cos 2(Y 

2 2M 

It is seen that the non-linearity can only limit the 

amplitude of the secondary flux, by changing a (the phase of 

the parametric oscillation) to a value at which the energy 

supplied to the oscillation by the reluctance variation 

decreases to zerp, as in the case of Figure 3.14b. Since there 

is no first derivative term in equation (3.106), the circuit is 

non-dissipative, -and the non-linearity cannot ensure the stability 

of the secondary flux amplitude by increasing the losses to be 

equal to the amount of energy supplied to the circuit. By 

multiplying equation C3.109) throughout by dý 
2 2M cos(z-cr). dz, 

and Integrating over a period, the corresponding energy, supplied 

to the secondary circuit is 

E 7r ý2 [4 q2 + 2q g02 cos 2cr + -1 g2ý 4]1. sin (Y -2a) 2 2M 2M 4 2M 

(3.110) 

For this to be zero, decreasing from the initial maximum value 

given by equation (3.87), where a and now, the 4 20 2M 

argument y-2or must tend to T 7r, giving 

1 tan" sin 2cr Z (3.111) 2 4q 
+ cus 2cr 

2 

gý2 2M 
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The value of a found from equation (3.111) gives the phase of 

the secondary flux when no energy is added by the reluctance 

variation. The required solution is clearly a and there 2 
is no increase in the amplitude of the secondary flux which 

continues with the constant amplitude determined when a takes one 

of these values. 

The stable solution of equation (3.106), with cr 2 
in equation (3.107), is 

2ý- 2M 
Cos z ..... 

(3.1121 

where is now the final value of the amplitude When a 7r 
2M Z* 

Substituting this solution into equation (3.106), and equating 

the coefficient of cos z to zero, gives the constant level of the 

secondary flux amplitude as 

24 

2m -ý-g (I +q- a) ..... (3.113) 

from which it follows that the amplitude of the secondary flux 

is limited by virtue of the factor 1. 
9 

When a. being changed by the non-linearity, finally takes 

the value a=-2, the characteristic exponent 11 of equation 0.33) 
2 

becomes zero, and the c coefficients of equations (3.32) all 

become Zero. Therefore, for a closer approximation than equation 

(3.112), the secondary flux may be written from equation (3.311 as 
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A cosz +6 cos 3z ..... (3.114) 
2 

since, in equation (3.31), s3/0, although c. = 0. In 

Appendix I, it is shown that 

A2_4 [1+q-a+(a-1) (2q+a-1) 
3g 3(2q-a-7 (3.115) 

which is the dominant term in determining the amplitude of the 

secondary flux in equation (3.114). Equation (3.115) gives 

the amplitude of the fundamental frequency component in the 

secondary flux, which is inversely proportional to the non- 

linearity coefficient g, illustrating the amplitude limiting 

effect of the non-linearity. 

Putting the value cr = -I into equation (3.108) yields 2 

d2 02+ 
[(a +1gý2 )- 2(q - -1 g02 )cos 2zlý 

dz 22 2m 4 2M 2 

(3.116) 

which is a Mathieu equation with the parametric point of 

.ý2 +2QqF 2 2M 4 2M 

Before the secondary flux reaches the non-linear part of the 

secondary magnetisation characteristic, equation (3.116) 

(neglecting the non-linearity term gý 2) provides the original 2m 
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Mathieu equation of the secondary -circuit, with the parametric 

point a=l, q>O, shown as P in Figure 3.16. As the secondary 

flux approaches the saturation flux level, the coefficient a 

is increased by .1g02, and q is decreased byl g02, and 2 2M 4 2M 
the parametric point moves along the PP' line in Figure 3.16. 

Therefore, it seems probable that the parametric point of 

equation (3.116) lies on the curve a Cl 
in the figure. If q<<2, 

the curye a Cl may be expressed as 

1+q ..... (3.1171 

when higher powers of q than the first in equation (3.26) are 

neglected. If the parametric point of equation (3.116) satisfies 

equation (3.117), it lies on the curve a ci . Putting A, Q values 

in equation (3.117) gives 

I+q - 72 9 
4 

As already seen, stabilization occurs when the amplitude of the 

secondary flux taKes the'value given by equation (3.113). 

Substituting this, value of into equation (3.118) shows 2M 

that equation (3.117) is satisfied. As the amplitude of the 

secondary flux increases, the parametric point of equation (3.114) 

moves along the line PPI in Figure 3.16, until it finally reaches 

the point PI an the curve a cl when the secondary flux amplitude, 

has the stable value ý 
2M 

of equation (3.113). Once the para- 

metric point reaches this point, the transient operation of the 
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parametric transformer is completed and it operates in the 

steady state. Since the distance between the points P and P' 

is proportional to ý 
2M , 

this is a measure of how far into 

saturation the secondary circuit is driven during steady state 

operation. 

The movement of the parametric point from P to PI 

indicates what happens to the parametric oscillations during 

the transient state. Initially, the oscillation starts from 

the amplitude of the residual flux, whatever the phase may 

be. As the amplitude of the initial oscillation increases, 

the phase changes so that maximum energy is supplied to the 

7T 37r 
oscillation, and it takes the value a _2T or 7, as 

determined by equation (3.19). The parametric point P corres- 

ponds to this case (cc 2), 
with a=! and q(>O) determined by 

4 

the primary flux. The parametric point stays at P during the 

stage of maximum energy supply to the secondary flux by the 

secondary reluctance variation, until the secondary flux grows 

sufficiently for saturation to become effective. As soon as 

the secondary flux reaches the non-linear region of the secon- 

dary magnetisation characteristic, the parametric point moves 

to the right along the line PPI in Figure 3.16. This is accom- 

panied by a change in phase of the secondary flux, and, 

correspondingly, the energy supplied to the secondary flux Is 

reduced, and the rate of increase of the secondary flux amplitude 

diminishes. 

89 
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This is easily seen by reference to the iso-, p and iso-a 

curves in Figure 3.5. As the parametric point moves along 

the line PPI, it intercepts these curves, so that crchanges 

IT 7r from - -; f to - -ýF , while the characteristic exponent 11 decreases 

from its initial (maximum) value to-zero on the curve a cl 

The increase in the secondary flux amplitude continues, but 

at a diminishing rate, until the parametric point reaches PI 

on the curve aclo where a and p=0. At this point, the 2 

secondary flux becomes 

2ý- 2M 
Cos z 

with the stable amplitude ý 
2M 

given by equation (3.113). The 

changes in p, a and 0 
2M 

with time are shown in Figure 3.17, where 

the arbitrary initial phase of the secondary flux is taken as 

7r 
Cr =--, 

4 

The energy drawn from the supply is determined as follows: 

on writing the secondary flux in equation (3.88) as sin(z-a), 2 2M 

the primary reluctance is obtained as 

R 
MI =R mlav - AR 

I cos 2(z-cr) ..... (3.1191 

which gives equation (3.91) for (T =- 14E 
- Substituting R in 

.4 MI 

equation (3.97) gives the power drawn from the supply by the. 

primary circuit as 
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E2 AR 
I 

ARI 
p2Nw[R 

mlav sin 2z -2 sin 2C2. z-a)- -7- sin 2cr 

(3.120) 

The average power 

E2 
p 

av 2. 
AR 

I 
sin 2cr (3.121) 

4N tO 
I 

decreases from the maximum value, given by equation (3.98), 

at (Y'= -I to zero at Cr = -- -H'. When the secondary flux 42 

takes the form of equation (3.112), no energy is added to 

Increase its amplitude (since V=O), and no energy is drawn 

front the supply, since the activa'POwer of equation (3.121) 

is zero. 

The positions of the primary and secondary fluxes, in 

this case relative to their reluctance variations, are super- 

imposed in Figure 3.18a and b, which both correspond to Figure 

3.14b, with zero energy release or absorption. 

The reluctances of the primary and secondary magnetic 

circuits of the parametric transformer are determined by the 

reluctance of the common magnetic region of the core, which is 

a function of the sum of the primary and secondary fluxes. In 

a simple form, the magnetisation characteristic of the common 

magnetic region is as shown-in Figure 3.19. In Figure 3.20, 

the saturation flux level 0s is represented by a circle of 

radius 0s (since 10 
1+0214ýs1. and the primary flux and the 
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small initial oscillation of the secondary flux (of amplitude 

20 
and arbitrary phase a] are shown by phasors. As the 

amplitude of the initial oscillation increases its phase 

immediately assumes the value a =a = -2, and the increase in 
4 

the amplitude of the secondary flux continues exponentially 

with this phase, until the amplitude of the total flux reaches 

% (the circle at the point CIL The amplitude of the total 

flux in the common region cannot increase beyond %il despite 

maximum energy being supplied to the secondary flux. To allow 

a further increase in the secondary fluxp requires a change 

in the phase so that the end-point of the total flux phasor 

-0. - moves on the circle, givinglo 
1 

. 1.0 
2 

1= ýs at all time. The 

secondary and primary reluctance variations are also shown as 

phasors, although it must be noted that these have an angular 

frequency of 2w and not w. The secondary reluctance R 
M2 

deter- 

mined by the primary flux is of fixed phase, but R 
mi 

changes in 

phase at a rate twice the change in the phase of the secondary 

flux. As the secondary flux*Increases along the line SC of 

Figure 3.20, maximum energy Is supplied by the secondary reluc- 

tance variation, because the phase difference between 0 and 
2 

R 
M2 

corresponds to that in Figure 3.14a. At the same time. the 

phase difference between 02 and R 
ml , determined by 0 

2" 
is such 

that, corresponding to Figure 3.14c, maximum energy is withdrawn 

by R 
mi 

from 0,. As the secondary flux. phasor moves on the curve 

CD, the phase difference between ý2 and R 
M2 

changes, and the energy 

supplied to ý decreases and becomes zero when 02 reaches the 

point D. During this interval, the phase difference between 

and R 
MI 

also changes, as R 
mi 

changes in phase in accordance with 
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2' 
and the energy drawn from ýI from R 

mi 
decreases and becomes 

zero when R 
mi 

takes its final position on the vertical axis. 

At this instant, the phase differences between 01 and R 
mi" 

and also ý2 and R 
M2 

both correspond to the case of Figure 3.14b, 

where no energy is released or absorbed by the reluctance 

variations. 

Transient operation of-thb parametric transformer thus 

starts from the initial oscillation, and continues with the 

secondary flux phasor moving on the path ABCD, and finishes 

when the secondary flux phasor is OD in Figure 3.20. During 

steady state operation, the secondary flux is in quadrature 

with the primary flux, and has an amplitude determined by the 

saturation flux level in the common magnetic region and by the 

primary flux, as is also given by equation (3.113). The secon- 

dary flux phasor cannot pass to the left of the vertical axis 

in Figure 3.20 at any time and has to remain on that axis where 

Cr Otherwise, since the phase of phasor R is inexorably 
2 M2 

-fixed by ý10 the phase relationship between ý2 and R 
M2 

becomes 

such that the secondary reluctance variations withdraw energy 

from the secondary-flux oscillations, and this would, in effect, 

force the secondary flux phasor back onto the vertical axis in 

Figure 3.20, which is a stable equilibrium state. 
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3.3 The Effect of Damping 

In the preceding sections, the secondary circuit was 

assumed non-dissipative, and the conditions for parametric 

excitation were found to be a=l and q>O, in normal parametric 

transformer operation. When damping exists, i. e. the secon- 

dary circuit is dissipative, the variation of the secondary 

reluctance needs to be sufficiently large in amplitude to 

excite-the circuit, that is q will have to be greater than 

a certain value, giving a threshold condition. In an actual 

device, even when there is no load connected across the 

output, damping always exists in the secondary circuit, due 

to the resistance of the secondary winding and to other losses 

present. In the case of parametric circuits, where capacitance 

or elastance variations are used to excite the circuit, the 

damping effect is simple and a utonomous (i. e. the independent 

variable z does not appear expli6itly in the damping term). 

However, ''if the time-varying parameter is an inductance or 

reluctance, as in the case of the parametric transformer, the 

damping is non-autonomous and more complicated, since the 

current in the circuit is also a function of the parameter 

variation. The effect of damping is represented by a series 

resistance, and the dissipation in this resistance will be non- 

autonomous, since it is determined by the current (or the mmf) 

in the secondary circuit. 

3.3.1 Linear Case 

If a series resistance is inserted in the circuit of 

Figure 3.1, the voltage equation (3.1) becomes 
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N 
ý2 

+Ri+ -1 
fi dt =0..... (3.122) 

2 dt 22c2 

where the current 12 is given by equation (3.2). since, 

during initiation of the parametric oscillations, the secon- 

dary circuit may be assumed linear. Substituting equation 

(3.2) Into equation (3.122), and differentiating gives 

+2d (R +I CR 0 (3.123) 
dt 2N2 dt M2 2CN2 M2 2 

22 

which becomes 

+Rd21+R2dR 
m2 2R 

--d- +(-R)ý0 
dt2 N2 

M2 tCN2 M2 
N2 dt 2 

222 

(3.124) 

for-a linear R independent of ý* 
M2 2 

The coefficient in the first derivative term in equation (3.124) 

is time-varying, because of Rmz& and the damping is, therefore, 

non-autonomous. Moreover, another term proportional to 02 appears, 

which must be considered since it changes the amplitude and phase 

of the variation in the coefficient of 02. On introducing R 
M2 

from equation (2.9) into equation (3.124), the equation des- 

cribing the dissipative secondary circuit is obtained as 



d? * ý2d ý2 

dz 2+ 
2k (1-- m cos 2z) 

dz + (a - 2q cos 2z +-4km sin 2z) ý2ý0 

(3.125) 

where m is the modulation index of equation (2.8), and 

R 
k2R..... (3.126) 

2wN2 M2av 
2 

and z, a and q are as given by equations (3.5) to (3.8). 

The first derivative term in equation (3.125) may be 

removed by using the transformation of the dependent variable 

IP 
2ý2 

exp [f K(l -m cos 2z)dz] (3.127) 

which. when applied to equation C3.125), gives 

+ Ce 
0+0 IQ 

cos 2z +ý 
Is 

sin 2z +0 
2c 

cas 4z)ý 
2 z 

(3.128) 

2 
2 

a C, , M- 
where 02 

0 

e ic 
= -2(q -mk 

2) 

(3.129) 

6 - 2 km 
is 

k2m2 

2C 2 

96 

- 
pwft 
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Equation (3.128) is an extended form of Hill's equation, 

having the form in equation (3.72), and has a solution 

lp 
2. eij 

tz 
.e 

(Z, 0) (3.130) 

in the form of equation (3.59). Once this solution is 

obtained, the solution of the basic equation, equation (3.125), 

is found by using the inverse transformation 

02ý2 exp [- f k(l -m cos 2z)dzl . (3.131) 

The characteristic exponent of the solution of equation 

(3.125) is-then 

k+ 12 sin 2z ..... (3.132) 
2 

The sinusoidal term in the characteristic exponent does not 

account for any increase in the amplitude of oscillations, 

since its average value is zero. The instability condition 

for equation (3.125) is, therefore 

11 =W->0 (3.133) 

To obtain the instability condition, 1P must be calculated 

in terms of the coefficients' 0 in equations (3.129), which 

depend an k and m, both of small magnitude. The modulation 
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index m(<11, given by equation (2.8) is small, since modulation 
N2 

around an average value is concerned. By putting L 
2av 

=R2 
M2av 

k is obtained as 

(3.134) 

where 

L 2aV w 
..... (3.135) 

R2 

is the quality factor of the secondary circuit. In an actual 

device. Q is of the order of 50, and. K is, therefore, small. 

In-the first instance, neglecting terms of the order of 

magnitude of K. m, or less, when compared with the other terms 

in equations (3.1291, equation (3.128) reduces to 

d2 IP 

dz 2+ 
(a - 2q cos 2z) 

2=0.... 
(3.1361 

which has the approximate SORItion 

I 
IP e 

jqz 
cos (2 with li' 

24 

The condition for the instability of equation (3.125) is, 

therefore 

p=Iq- k>0 ..... (3.137) 



99 

which, on substituting for K from equation (3.134) becomes 

q> 
1 

..... (3.138) 
Q 

For the given value of a=l, q= T by equation (3.8), and this 2 

threshold condition gives 

M> 
2 

..... (3.139) V 

which means that the amplitude of the secondary reluctance 

variation is required to reach a certain value before the 

parametric excitation starts and that the higher the quality 

factor of the secondary circuit, the easier it is to start 

parametric oscillations. 

Equation (3.136) has the same stability chart as shown 

in Figure 3.2. However, in the light of equation (3.133) and, 

neglecting terms of order K. m in equation (3.125), the stability 

chart for equation (3.125) is obtained from the stability chart 

for equation (3.136) as shown in Figure 3.21, where the boundary 

curves are now the iso-IP curves on which 111=k. The lines also 

m drawn in Figure 3.21 represent the relationship q =.: F. a for 

di . fferent values of m. With the given value of a-1, the para- 

metric point moves upwards on the dotted line AA', -as the 

modulation index increases. The condition for parametric exci- 

tatiDn is determined with the value of m when the parametric point 

is on the boundary curve. The slope of the line OM corresponding 
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to this situation is AP 
- AP (see Figure 3.21). As can be 
UAA 

seen from Figure 3.5, the minimum point of the boundary curve 

is, approximately, on the AA' line, at the level q- 2k. 

Therefore, TF = 2k, and the slope of the line OM isM = 2k. 2 

The condition for parametric excitation is thus obtained as 

m> 4k, which gives the same condition as (3.139) when k is 

substituted from equation (3.134). If R2 is increased, k 

increases proportionally, and the unstable region in Figure 

3.21 moves upwards, as it is determined by the iso-111 curve 

of lj'=k, and the slope of the q=Ea line necessary for the 
2 

parametric point to be on the boundary curve, will be greater. 

By putting the expressions for q and k into the condition 

of (3.137). the value of the primary-flux amplitude to initiate 

parametric oscillations in the secondary circuit (i. e. to 

switch-on the parametric transformer) is found as 

4RR1 
eom >[ M2min 2 

..... (3.140) 
1 3r (1 -. 2 R 

3 WC 2 

which gives the minimum primary voltage (the switch-on voltage) 

as 

VN4R M2min 
R2 

(volts rms) 
3r (12R 

3 
ZE -2 

(3.141) 
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Noting that r3 <<R 
m2min' Ir 

clearly has a considerable value, 

which explains the under-voltage protection feature of the 

parametric transformer. 

A better approximation than equation (3.141) for VI 

may be obtained by calculating Ill from equation (3.731, and 

substituting in the instability condition of equation (3.133). 

With a=l 

-[2-k2(l + ±ý)]+2[1 +k 2C. 1 
m2-1)+Cq - MK2 )2]1 

22 

(3.1423 

and the instabilitY condition p, 2 >k 2 gives 

(k 
2 M2 

- 2) +2 [1 + k2(. 1 
M2 _ 1) + (q - mk 2) 2> 

22 

(3.143) 

which. upon substituting for K, m and q, finally becomes 

9()ý4 
-2+2 

J1 +9 
3) 4c 

-5-2 - -j -2 -M 
w Im wN22wN 

2 3r 3R 
M2min 

+ -i r31m)[4 
t02 N2ce im 

'i ( 

tu ti 2)r3e1m, 

22 

2.1 
(R 

M2Min 
+-i r3e1 2)] 1 >-O 0.. @ (3.144) 



In equation (3.144), (j, N2# C, R (= R, +SI+rI) and M2min 9 

r are all constants; sI, r and r3, are defined in Chapter 

VII, as earlier mentioned in Section 2.1.1. To find the 

amplitude of the primary flux which will initiate parametric 

oscillations, equation (3.144) is solved for a tiven R 
2. 

Once this value of ý' is found, the ? switch-on"voltage of 
IM 

the parametric transformer is easily calculated from 

N 
(volts rms) (3.145) 

I vr-2- Im 

If the primary voltage exceeds VP , the instability condition 

(3.133) is satisfied, the characteristic exponent of equation 

(3.125) becomes positive and the amplitude of oscillations 

increases exponentiallyý, 

The approximate solution for equation (3.125) is 

2M 
gin Cz-cF) (3.1461 

(pl-k)z 
where ý 

2M 20 
e By multiplying equation (3.125) 

throughout 6y dý 
2 2M 

cos(z-cr)dz, and integrating over a 

period (0,2w), the energy equation of the system is found as 

2k 7v 2= 
-q .2 7r sin 2cr ...... 

(3.147) 
2m 2m 
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The left hahd side of equation C3.147) gives the energy consumed 

by R2 within a period, which is independent of a. The right 

hand side gives the energy supplied by the reluctance variation, 

which is a maximum for cr 
'T 

as before. As the oscillation 4' 

builds up, the energy dissipation in R2 -ircreases; however the 

energy supplied to the system also increases, ahd Cr rapidly 

changes from its initial value to cl -I 
'These 

changes 4' 
7r 

continue steadily until a begins to change from aT to 

7r 
-f by virtue of the non-linearity. 

3.3.2 Non-Linear Case 

When the amplitude of the secondary flux approaches the 

knee of the secondary magnetisation curve, the non-linearity 

becomes effective, and the secondary reluctance is given by 

equation (3.101). On introducing the secondary reluctance from 

equation (3.1031 into equation (3.123), the. differential equation 

of the non-linear, dissipative secondar .y circuit is obtained as 

d2ý 
2* + [2KC1-m cos 2z) +dý 2'] 

d 02 
+ (a-2q cos 2z +4 Km sin 2z)ý 

22 dz 2 dz 
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+gý3 C3.148) 
2 



3R3R 
where d22 (s +r..... (3.149) 

N2N233 
22 

and k, g are given by equations (3.126) and (3.105) respectively. 

The damping term is now both time-varying and non-linear, and it 

cannot be removed by any transformation, since equation (3.148) 

is non-linear. 

Equation (3.148) may be written in the alternative 

form 

2+ [2k(l-m cos 2z) +d0 
2] 

ý2 

+ [Cc3+g ý2) 
- 2q cas 2z 

22 dz 2 dz 

4 km sin 2z]ý2 =0 

(3.150) 

where the non-linearity may be considered as an increase in 

the damping terni, and 61so as a detuning, since it changes the 

value of a. When R=0, equation (3.150) gives equation (3.106), 
2 

and when d and g=0, it becomes the same as equation (3.125). 

As the non-linearity becomes effective after the secondary flux 

has reached a certain amplitude, the solution for equation (3.150) 

Is, initially, as given by equation (3.146). Substituting this 

initial solution for 0 in the coefficients of equation (3.150) 
2 

gives 

104 
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d7 ýdý 

2 4, [2(k+hl-2(km+h cos 2cr)cos 2z-2h sin 2cr sin 2z m2 
dz dz 

+[(a+' gý i-(2q+-! gý2 cos 2cr)cos 2z+(4km--i 9ý2 sin 2(j)sin 2z]o 0 2 2m 2 2M 2 2M 2 

..... (3.151) 

where hAý 2' 
2 2M 

By multiplying equation (3.151) throughout by dý ý cos(z-cF)dz, 
2 -2M 

and integrating over a period, the energy equation is obtained 

as 

2. Tr(2 k+h+km cos 2a +q sin 2a) =. 0 ..... - 
(3.152) 

2M 

When equation (3.152) is satisfied, the parametric transformer 

completes-the transition to the steady state, with the phase 

of the parametric oscillations being determined by the equation. 

For R2=0, equation (3.1521 gives . 

q sin 2a -0..... (3.153) 
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from where cy is found as T 1ý * as obtained by equation (3.111). 2 
IT When R2/0, cr is less than T to ensure that energy is still 

supplied by the reluctance variation to provide the energy 

dissipated in the secondary circuit resistance. Writing 

equation (3.152) as 

2. ?T (2k ,ýq02 -Ckm cos 2cr +q sin 2crl 0 2.7r 
2M 2 2m 2M 

(3.154) 

the left hand side represents the energy dissipated in R2, 

which is independent of Cr, but is a function of both and 

The right hand side gives the terms responsible for energy 

supply to the parametric oscillation, where the additional term 

km cos 2cY, which arises due to the non-autonomous damping, can 

be considered either as an extra effect or as a reaction from 

the primary to the secondary circuit of the parametric trans- 

former. 

The phase. of the secondary flux during the steady state 

is calculated from equation (3.152), as 

cr=O is also a possible solution of equation (3.153), but does 

not apply here. Since the non-linearity coefficient g is 

positive, the value of a Is increased (by . 
1.8 0 2). and the 2 2m 

parametric point approaches the curve a Cl 
in Figure 3.16, where 

Cr= -. 
H. If g was a negative constant, the value of a would 2 

be decreased, and the parametric point would move towards the 

curve a sl 
in the Figure, where a=O. 



107 

Cos-' 
2 K+h 

_)+ -1 tan" (3.155) 22 
M2. +q22 

Km 

Since both K and m are small, q>>Km, and if it is assumed 

that >> 2k+h (which is practically true since R2 <<) , Cr is 

approximately equal to --H , differing by only a very small 2 

amount since 2 k+h 
/k-2 -M2+ 

C12 

The initial solution of equation (3.150), given by 

equation (3.146), may be written as 

=A cos z+B sin z 
2 

where A=-ý 
2M 

sin cr and B=ý 
2M 

cos a. To find the final 

amplitude of the secondary flux, ý2 from equation (3.156)'is 

substituted into equation (3.150), and when the coefficients of 

cos z and sin z are equated to zero 

A [-I+a-q +3gý 
2] 

+ B[2 k+km+ d0 2] 
=0 4 2M 4 2M 

and A [-2k+km-A ý 21 
4 2M 

3 6[-I+a+q +g2 42 MZI 

(3.157) 

(3.158) 

with 02= A2 + 62. For A and B to be non-zero, we must have, 
2M 
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from the determinant of the coefficients in the system of 

equations (3.157) and (3.158) 

3gý2 ]2 
-q2_ [k 2 

M2 -(2K4 0 2)2] 
=0 (3.159) 

4 2M 4 2M 

or 

9'' 2+d2 
49 )+ ý23 g(a-l)+Kd] _q 

2+ 4K 2-K2 M24 (a-I )2 
2m 16 2m 

ýF 

(3.160) 

Solving equation (3.160) for ý 
2M* 

the square of the ultimate 

amplitude of the secondary flux is 

83 
g(l-a)-kd+f [3 g(a-l)+kd]2- (4 K2 -k 

2R+ (a-1 )2 -q 
2]1 

11 

2M 9 2+ d2 24 
'9 

(3.161) 

From equation (3.158), it follows that 

a-l+q 
ýg02 

A4 2M (3.1621 
B2 K-km4 ý2 

4 2M 
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and since 
A 

=-tan a, a follows from equation (3.162) as B 

a-l+q4l gý2 
cr tan-l(- 

4 2M (3.163) 
d2 

km-2K-W 
2M 

During steady-state operation of the parametric transformer, 

the amplitude and phase of the secondary flux are given by 

equations (3.161) and (3.163), respectively. For a higher 

accuracy than this first-order solution, higher frequency terms 

must be included in equation (3.156), when, by using the harmonic 

balance method, higher-order correction terms may be computed 

for the secondary flux. However, when R2=0, k and d become 

zero, and equation (3.161) gives equation (3.113), while' 

7T In practice, with no equation (3.163) gives cr as exactly + 

load connected to the output of the parametric transformer, R2 

consists only of the resistance of the secondary winding, and 

is very small. Therefore, at no load, the ultimate amplitude 

of the secondary flux is approximately given by equation (3.113). 

7T 
and the phase of the secondary flux is Cr + fI 

3.4 The Effect of Detuning 

On initiation of Parametric oscillations in the non- 

dissipative secondary circuit, the system is described by 

equation (3.9), and. a necessary condition is that the secondary 
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resonant circuit is tuned to the input frequency so that a=l. 

Instability then occurs in the first unstable region of the 

stability chart for the Mathieu equation. When a has the 

different values of 4.9,16 .... etc. the parametric trans- 

former operates as a frequency multiplier in different unstable 

regions of the chart. The coefficient a is a measure of the 

tuning (or detuning). 

To make a equal to 1, the capacitor is adjusted to 

the value given by equation C3.16). With no voltage applied 

to the primary circuit, the reluctance of the secondary circuit 

is R 
M2 =R M2min =R9+sI+rI (by putting ý, =0 in equation 

C2.4), and the resonant frequency of the secondary circuit is 

given by 

(w 13 
121..... (3.1641 

0N CL' 

TR- +s+r gI 

where L' is the linear inductance of the secondary winding. 

It will be noted that w01 given by this equation differs from 

the frequency to which the secondary circuit is adjusted for 

a=l. When a sinusoidal primary flux exists in the care, the 

average value of the inductance of the secondary winding is 

2-N22 
(3.165) 

-3 M2aV R9+s1+r, +ir3 
im 
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which is smaller than L'. It is also clear from Figure 2.2b 

that the average value of the secondary reluctance is greater 

than R 
M2min' 

Therefore, to satisfy the instability condition 

a=l. the capacitor must have a greater value than is necessary 

to resonate the secondary circuit with no primary flux. Normally, 

when ý, = 0, the value of the capacitor for a=l, is 

R+s+r 
Cm 911..... (3.1663 

w2N2 
2 

4 

which may be determined by measuring L' from the actual device. 

However, as the primary flux amplitude increases, the inductance 

of the secondary winding decreases, as given by equation (3.165), 

and to maintain a=l, the capacitor must be given the value 

R+s+r+ -2 re2 
71 112s im (3.167) 

2N22N2 
22 

for a certain amplitude of the primary flux. The importance 

of this will now be explained. On substituting for R 
M2aV' a 

and q are obtained from equations (3.73 and (3.83 as 

1 CR +3r02 (3.168) 
2N2r M2m n23. Im 

2 

and 
3rý2..... 

(3.169) 
w2N2c43 IM 

2 



respectively. If the capacitor has the value C' of equation 

(3.1661, the coefficient a becomes 

3re2p.... 
(3.170) 

w2N2 Co 
23 Im 

and a=l only when Om = 0. Eliminatingý 
Im 

between equations 

(3.169) and (3.170) gives 

1+ 2q ..... (3.1711 

which is shown by the line AA' in Figure 3.22. The parametric 

point (a, q) is the point A when 0, and moves along AA' 

as ý increases. Since this line lies completely within a Im 

stable region, parametric excitation does not occur. However, 

if the capacitor has the value given'by equation (3.167), which 

requires adjustment for each ý 
IM I the parametric point moves 

along AA"'in Figure 3.22, and is in the unstable region for a 

non-zero q (or ý 
IM 

). For any fixed value of C, the relqtion 

between a and, q is 

R 
m2min 

+ 2q ..... (3.172) 

W2 N2C 
2 
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which corresponds to the family of lines in Figure 3.23a. 

As C increases, the lines move to the left with constant 

slope, since the abcissa of the point of intersection with 

the a-axis is -R 
M2min 

. 
Solving for C from equation (3.169) 

W2N22C 
and substituting in equation (3.168) gives 

4R 
M2min am [2 + ]q 

..... 
(3.173) 

3 IM 

For different values of ý, equation (3.173) represents 
Im 

another family of radial lines, shown in Figure 3.23b, where 

the representative line of the family turns upwards starting 

from the line q=O (the a-axis), as 0 increases from zero. 
Im 

When 0 
Im 

4- , the line finally becomes a=2q, that is when the 

modulation index m becomes 100%. When C is fixed, the para- 

metric point is on the corresponding line in Figure 3.23a, and 

when ý 
IM 

is fixed, the parametric point is on the corresponding 

radial line. When both C and 0 
I'M 

are fixed, the parametric 

point is at the intersection of these two lines. 

With this representation, it is seen from Figure 3.24 that, 

for a given ýJma parametric excitation is possible for values 

of C between C and C3 CC 
3>CI), 

which means that parametric 

oscillations can*be excited despite a large detuning in the 

secondary circuit. With this value of 
Im, 

a=l only when the 

capacitor takes the value C2 determined in the figure. The ' 

boundary curves of the unstable region in Figure 3.24 are drawn 

as lines, since a sl a l-q and a cl = 1+q for q<<. The coordinates 

of the point A are found as 
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2+4R M2min 

3re2 
3 Im 

3+ M2min 

3re2 
3 IM 

4R 
m2min 

3re2 
3 Im 

(3.174) 

by the intersection of the lines a=l-q anda =( 2+)q. 

3 IM 

Putting the coordinates of A into the line of equation (3.172), 

the value C is 
a 

9r2 
c* = 

m2min +3 IM )=1 (R +-2 r 2) 

3w2N224R 
M2M nw2N22 

M2aV 4s Im 

(3.175) 

Proceeding in the same way, the coordinates of point C in the 

figure, which is the intersection point of the lines a=l+q and 

a1 =(2 +4R m2min )q, is substituted into equation (3.172), and 
3rý2 

3 IM 

the value C is obtained as 
I 

3r2 
g IM )m1 (R --3re 

2) 
2N2 -4 R 

M2min ü) 2N2 M2aV 4>3 Im 

22 

(3.176) 

For a specified amplitude of primary flux, the characteristic 

number a is equal to unity, only when the capacitance takes 

the value 
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C2222R22 M2aV 
wN m2min wN 22 

(3.177) 

which is the same as that given by equation (3.167). 

Therefore, if the parametric point is initially at point B 

in Figure 3.24, i. e. the capacitor is given the value of 

equation (3.177), parametric oscillations will still be 

excited although the capacitance in the secondary circuit 

is varied between the limits 

C- AC <C<C+ Ac 
22 

where 

AC =13re2..... (3.178) 
2N243 im 

It is clear from equations (3.175) to (3.177) that C must take 

a value greater than that given by equation (3.166). and, as 

IM 
is increased, the interval in which parametric excitation 

is possible, becomes wider. 

Since ýW. the periodic part of'the unstable solution 

of the Mathieu (or Hill) equation, given by equations (3.31) 

and (3.60), has period 27r in z in the entire first unstable 

region, the parametric oscillations in the secondary circuit 

are always at a frequency equal to the input frequency, despite 

the resonant frequency of the secondary circuit being changed 

within the band 



w2- &2 <W2< W2 + &W2 

3rý2 

where &02 = W2 
4R3 IM ..... 

(3.179) 

M2aV 

If damping exists in the secondary circuit, the boundary 

of the first unstable region is an iso-11 curve, an which 14' =k 

as explained by Figure 3.21. *For the parametric point to enter 

the unstable region, the line of the family in Figure 3.23b must, 

at least, be tangential to the boundary curve, as shown by the 

line OP in Figure 3.25. For this case, the value of C is deter- 

mined by. the line of the family in Figure 3.23a which passes 

through this tangential point, the point P inFigure 3.25. 

if ý 
Im 

is made greater than the value corresponding to the line 

OP. the parametric point, which is at the intersection of the 

two lines given by equations-(3.172) and (3.173), is in the 

unstable region, and the condition for parametric excitation 

is satisfied. With a value of ý 
IM 

satisfying this condition, 

parametric excitation*is possible when the capacitor takes-any 

value between those corresponding to the lines CIB and C"D in 

Figure 3.25. Since the analytical expressions-for the iso-11 

curves are not known, only the graphical solution of Figure 3.25 

may be made to find the interval of allowable detuning and the 

minimum amplitude of the primary flux to start oscillations. 

The lines of Figure 3.23b are exactly the same as the 

qma lines in Figure 3.21. The modulation coefficient m is 2 

always <1, and for the extreme case m-ý-I or equations 
IM 
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(3.8) and (3.173) both give the line a=2q, which cannot be 

reached practically. 

In practice, the secondary circuit capacitor is given 

a constant value, shown by the line CO in Figure 3.26, and the 

primary voltage or ý 
im 

is variable. As ý 
Im 

increases from 

zero, the parametric point moves on. the line CD, starting 

from the point C. As seen from the figure, ý must be 
Im 

increased until the line of equation (3.173) intersects the 

line CD at point P', that is the parametric point comes onto 

PI on the boundary before parametric oscillations start, giving 

the under-voltage protection feature of the parametric trans- 

former. If 0 
im 

is further increased, parametric excitation 

occurs so long as the parametric point is between points PI 

and P" As 0 
Im 

increases, the value of a increases, as 

given by-equation (3.168), and the detuning changes accordingly. 

The exact tuning condition* is a-l for q<<. When the parametric 

point is, for instance, at the point P in the figure, parametric 

oscillations grow exponentially in amplitude until non-linearity 

becomes effecti%e, when the parametric point moves on the PP 
I 
line. 

* With this, the value of a which will start parametric osci- 

llations for a minimum value of q (or ý 
im 

)Is meant, when 

the damping coefficient K (equal to 11') determines the 

boundary of the unstable region. As can be seen from Figure 

3.5, the minimum points of iso-11 curves are exactly on the 

iso-Cr curve of a 1; however, this curve can be taken as 4 

the line a=l when q<<I. 



Stabilization of the amplitude is accomplished when the para- 

metric point is P,, on the boundary curve where the energy 

equation (3.154) is satisfied. Thus, increasing ý 
im 

moves 

ýhe initial position of the parametric point on the line PIP" 

as the steady state. position of the parametric point moves on 

the boundary curve towards the point P" in Figure 3.26. The 

point P" is a critical case, as Is the point P1, since the 

parametric point leaves the unstable region if'ý 
Im 

exceeds 

the value corresponding to the line OP". As the steady state 

position of the parametric point moves towards P", the amplitude 

of parametric oscillations (or secondary flux) gradually 

decreases, since the distance between the initial and final 

positions of the parametric point is a measure of ý 
2M' 

At P" 

the secondary flux amplitude corresponds to a point on the 

linear part of the secondary magnetisation characteristic, 

and if ý 
Im 

exceeds the value corresponding to the line OP", the 

amplitude of the secondary flux falls to zero, since the para- 

metric point leaves the unstable region, and parametric oscillations 

immediately cease, providing the over-voltage protectiowinherent 

in the parametric transformer. 

Since a and q are as given by equations (3.168) and 

13.169). the parametric transformer still provides under- and 

over-voltage protection, even when no secondary circuit damping 

exists, if C is kept constant, as it is in practice. However, as 

mentioned earlier, the capacitor value must exceed that given by 

equation (3.166)j for such a value of C, the extreme values of 
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ýjm are-illustrated by lines OPI and OP" in Figure 3.27, where 

the boundary curves are the same as in Figure 3.24, since the 

secondary circuit is assumed to be non-dissipative and q<<. 

Carrying out analytical calculations to find the Inter- 

section points of the lines in Figure 3.27, the values of the 

primary flux amplitude that switches an and off the parametric 

transformer, when the secondary circuit is non-dissipative and 

C is fixed, are obtained as, 

I 
2N2C-R 

'2 m2min (3.180) 
3Er31 

2N2CR 

ýls 
3_ 2 M2min 

im xr3 

respectively, and the parametric transformer functions as long 

as ý 
Im 

is between these values, giving the inherent under-voltage 

and over-voltage protection feature of the device. 

Increasing 0 
Im 

to a value more than that corresponding to 

the OP" line in Figure 3.26 or 3.27, drives the parametric point 

into the stable region between the first and second unstable 

regions of the stability chart. If ý is then further increased 
IM 

so that the parametric point moves along the line CD and reaches 

the point P"I in Figure 3.28, there arises the possibility of 
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parametric excitation in the second unstable region, although 

the capacitor still has the value required for operation in the 

first unstable region. When 0 
IM 

exceeds the value corresponding 

to the line OP"' in Figure 3.28, the parametric transformer 

operates in the second unstable region, and gives an output 

at twice the input frequency. Normally, for frequency-doubler 

operation of the parametric transformer, C is given a value 

corresponding to the CID' line in Figure 3.28, and the values of 

IM 
necessary for the parametric point to be in the second 

unstable region are smaller than those when the value of the 

capacitor is given by the CO line. 

The capacitor value for operation in the second unstable 

region is more critical than that for the first unstable region, 

since the iso-p curves determining the boundaries of the unstable 

region moves more rapidly upwards with increasing damping 

coefficient. 

3.5 The Effect of the Load 

When a load is connected across the secondary capacitor, 

the output side of the parametric transformer becomes a two- 

loop circuit, as shown in Figure 3.29. With a load having a 

reactive component, this circuit can only be expressed by two 

simultaneous differential equations in terms of the two variables. 

12 and i L' and these two equations (one for each loop) have to be 

solved simultaneously to determine the loop currents. However, 



for a purely resistive load, the number of differential 

equations representing the secondary side can be reduced to 

one by combining the load resistance with the rest of the 

circuit, as the V/I relationship of a resistance does not 

involve integration or differentiation. The effect of the 

load then becomes decomposed into two different aspects: it 

alters the damping and also the detuning already existing in 

the circuit. 

With the voltage and current directions in Figure 3.29, 

the equations describing this circuit are 

c+iL 

..... (3.182) 
d. 4 

2 
Rifi dt = -(N 7- +Ri 

LLCc2 dE' 22 

By using equation (3.2). and eliminating iCjp iL and e2 from 

the equations above, the single differential equation repre- 

senting the loaded secondary circuit is obtained as 

d21dý22d 
M2 +-+- CR + (1 +0 

dz 2 (A) RLC dz 
wN2 dz M2 2w2N2CRL2 

22 

(3.183) 

where z= wt. 
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3.5.1 Linear Case 

During the initiation of oscillations, R 
M2 

is assumed 

to be linear (i. e. independent of ý2), though time-varying, 

and given by equation (2.9). For linear R 
M2 , equation (3.183) 

becomes 

2+2R2+2 M2 
++ 

dz 2 oi RLc 
(A3 N2 

M2 dz N2 dz RL 
22 

R 
M2_] 

.... (3.184) 
2N2c2 

2 

which, with RL= 00' directly gives equation (3.124)'for the 

unloaded secondary circuit where a time-varying damping is 

present. Thus, it is evident in equation (3.1841 that a 

resistive load increases the damping coefficient by 1 
wRLC 

and also introduces some extra detuning by the term 

R2 in the coefficient of ý- If the secondary winding is 
2 

RL 

assumed to be resistanceless, the effect of the load is confined 

only to an increase in the damping since, for R2=0. equation 

(3.184) becomes. 

d2 ý2 
+d02+R 

dz 2 dz 
(A)2 N2C M2 2 

2 

(3.185) 
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where the damping is now autonomous, the non-autonomous part 

due to R2 being absent. 

Substituting R 
M2 

from equation (2.9) into equation 

(3.184) gives 

d2ý2+ 
2[rj + M-m cos 2z)] 

d 02 
+ [a' - 2q' cas 2z +4 km sin 2z] ý00 

d2 
dz 2 z. 

C3.186) 

where 

1 
RLc 

(3.187) 

R 
acl R 

2) 

R 
ql = q(l +R 2) 

and k and m are the same as given before (a and q in 

equations (3.187) are also the same as before). Comparing 

equation (3.186) with (3.125) shows that the load increases the 

average value of the coefficient of the first derivative term by 

Tj and also-alters the values of a and q to a' and q'. 
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In order to determine the condition for the parametric 

transformer to switch on when loaded, the stability of 

equation (3.1863 must be investigated in the same way as 

followed for equation (3.125). Applying the transformation 

exp {-f[ T) + K(I-m cos 2z) ] dzl 

to remove the first derivative term in equation (3.186), 

results in the extended form of Hill equation 

d2 lp 
2+ [0 +6 cos 2z +0 sin 2z +0 cos 4z] ý' =0 

dz 20 Ic Is 2c 2 

C3.188) 

222 
where a' (I + 

El) 
-2k TI -n 

0z 

a= -2 (ql -kmk 
2M) 

ic 

(3.189) 

0=2 Km 
is 

K2 M2 
2C 2 
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Carrying the necessary steps forward, the instability 

condition for equation (3.186) is obtained as 

li =111 - fn+k)>O 

where jil is the characteristic exponent of equation (3.1881 

and is determined by the 0 coefficients in equations (3.189). 

In this case, the instability condition cannot be interpreted 

in such a simple way as that followed for equations (3.134) 

to (3.141), and the value of 11' has, therefore, to be calculated 

by means of equation (3.73). The instability condition then 

vives 

at + -1 Km+ [a K2+ZK 2M2 2 Kri - T12 + 4Cql - Km rl- K 2M2) > 22 

(3.1901 

where a' is now different from unity. For a given 0"K and m 
IM 

are definite, but T1, a' and qI are all functions of RC Following 

substitution for all these parameters, RL may be solved from 

equation (3.190) as R Lin' when the instability condition becomes 

RL>R ýmin 

which means that parametric oscillatiolls are not excited if the 
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load resistance is smaller than a given minimum value. There- 

fore, if the parametric transformer is loaded excessively, it 

will not switch on when the supply voltage is applied to the 

primary circuit. This is an important aspect of the intrinsic 

over-load protection ability of the device. 

Based on the simplified representation of Figure 3.21, 

the overload protection may be explained graphically, if terms 

involving both k and m are neglected in equation (3.186). 

When a=1 and q>O, the parametric point is at P in Figure 3.30a, 

with no load connected, and the small resistance of the secon- 

dary winding changing the shape of the boundary curve by only 

a small amount. As RL decreases from infinity, the boundary 

curve moves upwards, since it is the iso-11 curve on which 

k+ Y1, and the parametric point moves to the left along 

the line OA (corresponding to the fixed amplitude of the primary 

flux) since 00 and 6 
IC 

of equations (3.189) (corresponding to 

a and -2q respectively, when R2=0 and RL tend to decrease 

withincreasing TI. This is shown in Figure 3.30b. The critical 

case is when RL is so decreased that the parametric point is on 

the boundary curve of the unstable region, as shown in Figure 

3.30c. A further decrease in RL moves the parametric point out 

of the unstable region, and in this case, as shown in Figure 3.30d, 

the parametric transformer cannot start operating since the insta- 

bility condition is not satisfied. The parametric transformer 

therefore protects itself from any harmful effects of an excessive 

load, by not switching on'when the input voltage is applied. 

However, this is only one aspect of the over-load protection. 

Once parametric oscillations have been initiated and the parametric 
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transformer has achieved the steady-state operation, the load 

resistance may be gradually reduced, while still drawing power 

from the device. When RL becomes smaller than a minimum value 

(di . fferent from Rm), the parametric oscillations cease Lin 

and the device is automatically switched off with the output 

voltage falling immediatelY to zero. To explain this, the 

stability of the differential equation governing the loaded 

secondary circuit during steady-state must be investigated. 

3.5.2 Non-linear Case 

Substituting R 
M2 

from equation (3.103) into equation (3.184), 

gives the equation for a loaded, dissipative and non-linear 

secondary circuit, as 

d2ý2+ 
[2TI+ 2KCI-m cos 2z) 21 

d 02 
+ (a' - 2q' cos 2z +4 Km sin 2z)ý 

dz 22 dz 2 

(3.192) 

R 
where g, =g (I +R 23 

L 

and all the other parameters are as defined previously. Defining 

two intermediate parameters 

+K 
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and Mkm 
n+K 

in order to maKe equation (3.192) of the same form as 

equation (3.148), the results obtained in Section 3.3.2 can 

readily be adapted to the case of the loaded secondary circuit. 

(Note that K. M = K. m). The stable amplitude and phase of the 

secondary flux during steady state are found from equations 

(3.1611 and (3.163), but with a, q, k, m and g now replaced 

by a', q', K. M and g', respectively. In terms of the new 

parameters, equations (3.161) and (3.163) become very complicated 

to evaluate, and the case for R2=0 (a resistanceless secondary 

winding) is considered in order to obtain a clearer picture of 

the load characteristics of the parametric transformer. 

With R=0, k and d become zero, and K=n, a' = a, 

q' =q and g' = g. Equation (3.161) is then simplified to 

2-4a+ Cq 2-4 
T12 4. T12 M2 ..... (3.193) 

2M 59 

which illustrates the load regulation characteristic of the 

device. For RL'w, n=0. and equation (3.193) becomes equation 

(3.113). When 02 is platted from equation (3.193) as a function 
ý2Mý 2m 

of R 
(a measure of the load current), a curve in the shape of 

Figure 3.31 is obtained. However, at a certain value of the load 

resistance, the parametric transformer is switched off, and ý 
2M 
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falls to zero, as indicated by the broKen line in the figure. 

With a finite RL and R2=0, equation (3.163) becomes 

a-I+q+Ig02 
cr = tan" C- 

2TI '4 
2M) ..... (3.194) 

where ý2 must be substituted from equation (3.193) to obtain 
2M 

the dependence of cr on the load. As is evident from Figure 

3.31,0 2 is fairly constant within the operating range, and 
2M 

the constant value of 02 from equation (3.11.3) may therefore 
2M 

be used in equation (3.194) as a reasonable approximation. 

Thus, the phase angle of the secondary flux is approximately 

tan-'(-. g) 
= tan-'(- 2q wCR (3.1951 

T) L 

With no load connected CR 7T 
L0 00)' a=- ýF, but for a finite value 

of R (< <2 and the decrement from -. 
H is a function L22 

of RL. This decrement in cr is also a measure of the energy supplied 

to the load, as equation (3.154) now becomes 

ý2 7T (2 TI) 2 
7r q sin 2 cr) 

2M 2M 

in which the left hand side representE the energy dissipated 

in. R L' and the right hand side is'the parametrically supplied 

energy which is a positive value for -a <-H 2* 
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The approximate steady-state solution of equation (3.192) 

is then ý200 
2M 

sin(z-a), the amplitude and phase of which 

are given by equations (3.193) and (3.194). This is the' 

stable and periodic solution of the system. However, the 

stability of this periodic solution against any changes in 

the system parameters must be investigated, in order to deter- 

mine the condition for the parametric transformer to switch 

itself off when excessively loaded. 

The behaviour of a small disturbance C around the 

periodic solution determines the asymptotical stability of 

the periodic oscillations in the secondary circuit. If the 

secondary flux is assumed to be 

.1 

2ý 2M sin(z-a) (3.196) 

with a small variation ý from its stable value, then substituting 

equation (3.196) in equation (3.192) (in which the coefficient 

of the first derivative term is [2KCl-M cos 2z) +dý2 2] with the 

intermediate parametersK and M) gives the variational equation 

d2c2+Ig, 
02 -+ 2K(1-M cos 2z) dE 

+ [(a' +-2 g' 0 )-(2q' cos 2a)cos 2z 
dz 2 dz 2 2M 2 2M 

(4 km--2g' 02 sin 2cy)sin2z]&- 0 2 2M 

(3.197) 
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when terms in C of higher order than the first are neglected 

(since ý is assumed small). By using the transformation 

C= exp[ f K(1-M cos 2z)dz] 

equation C3.197) changes to the Hill equation 

Id2V 

-+ (o +0 cos 2z + E) sin 2z +0 cos 4z) v=a 
dz 20 Ic is 2C 

..... 
(3.198) 

+ .2g, ý2 2(l + 
mp) 

where 
0= 

a' 2 2M 
Kz 

-2q' 
I 

g, ý2 cos 2cr +2 K2M 2 2M 
Ic 

2 KM -1 g' ý2 sin 2a 
Is 2 2M 

K 2M2 

and o 
2C 2- 

Proceeding in a similar manner to that in Section 3.3.1, the 

instability condition for equation (3.197) - 
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is* 

V12 >K2= (K I TI)2 

where VI is the characteristic exponent of equation (3.198). 

With IV 2 calculated from equation (3.73), this instability 

condition gives 

3 
g, 02_ K2M 

+ 1)+ 2 [1 g' 02 Cl - kM sin 2cF + ql cos 2a - 2 2M 22 2M 

2 m2 

-KM cas 2cr) +'K 2 (K 2M2+. 
7 - 2q, M- 1) + a' +q p2] >0 

(3.199) 

If the condition (3.199) is satisfied, the solution* of equation 

(3.197) becomes unstable, that is C increases with time, and the 

solution of equation (3.192) diverts from the stable periodic 

solution ý2 
2M 

sin(z-cr). Since ý 
2M 

cannot increase to more than 

* For complete stability of equation (3.197), the instability 

of equation C3.198) must be considered in all unstable 

regions of'the stability chart corresponding to'equation (3.198). 

However, since the term of 2z is dominant in equation (3.195), 

it is sufficient to investigate its stability in only the first 

unstable region. Further information about generalized stability 

conditions of periodic oscillations in second-order systems may 

be obtained from reference 8. 
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the value determined by the saturation level of the magnetic 

core, the instability of C indicates that parametric oscillations 

will diminish in amplitude towards zero, as C increases CC is 

a periodic function of z having the same freqjoncy as the 

secondary flux, but with exponentially increasing amplitude). 

Equation (3.199) is, therefore, the condition for switch-off 

of the oscillations in the secondary circuit of the parametric 

transformer operating in the steady state. 

In condition (3.199), all the parameters are functions 

of the load resistance RC For R=0, the primed parameters 

cease to be so, and K= T1, M 0. However, ý and cr remain 
2M 

functions of RL. For a given 
im 

and R 
L' 

they are substituted 

in equation (3.199) from equations (3.193) and (3.194) respec- 

tively. The instability condition is then obtained in terms 

of RL and 
Im 

only (apart from the other system parameters w, 

N, C, Rs, rI, s3, r3 etc). The value of RL may now be 

solved for a specified 0 
IM 

from this condition, which gives the 

condition for switch-off as 

R< R" ..... (3.2001 
L Lmin 

where R" is smaller than R of condition (3.191). If 
Lmin 

ýmin 

condition (3.200) is satisfied, with RL decreased below a given 

minimum value, the voltage and current of the secondary circuit 

immediately-fall to zero, and no power is delivered to the load, 

until parametric oscillations are re-started. For re-starting the 
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parametric transformer, RL has to be increased to more than 

R ýmin' so that condition (3.191) can be satisfied. After 

oscillatJons are re-established, RL may take values between 

Rý 
min and Rýmin' In practice, this aspect of the over-load 

protection ability of the parametric transformer, expressed 

by condition (3.200). is more important than that considered 

by condition (3.191), as far as safety is concerned. 

Finally. although two simultaneous equations are 

required when the load has a reactive component, some rough 

considerations can be given to the secondary circuit in the 

following manner. Considering the loaded secondary circuit as 

a high-Q tank circuit, with only signals of frequency w existent, 

the impedance (in the frequency domain) seen at AAI of Figure 

3.29 is the parallel combination of Z(= R+jX) and CLL 

together with the series secondary winding resistance R. The 
2 

combined impedance Z, assumed to have been connected across the 

resistanceless secondary winding, is found as 

RR2+X (X -1) 
R+LLL WC 

CR )2 +tw CX- 1)2 wC[R2+ (X -1) 
2] 

LLLL WC 

which yields an equivalent series resistance of 

RI =R+L 22CRL2+ ((0 CXL- 1]2 

and an equivalent series capacitance of 



1-x 

(I + ZE L 

wCRL2+ oj CXL2xL 

-forming the equivalent circuit shown in Figure 3.32. It is 

-again evident that the effect of the load is decomposed into 

increases in both damping and detuning. Thus, considerations 

similar to those in Sections*3.3 and 3.4 may be applied to 

the circuit of Figure 3.32, using RI and C' to determine the 
2 

new system parameters. 

initiate'oscillations a 

be obtained similarly. 

giving R and C' shows 

in the effective series 

Minimum values for the load not to 

nd to cquse oscillations to cease may 

However, a study of the equations 

that, when XL is capacitive, the increase 

resistance is smaller and the increase in 

the effective capacitance is larger, than when XL is inductive. 

The increase in the effective capacitance affects the amplitude 

of the secondary flux more in a positive direction than it does 

In a negative direction. (Since the distance between P and PI in 

Figure 3.26 is a measure of the*secondary flux amplitude at 

steady state, an increase in the capacitance moves the parametric 

point P to the left on the 0 
Im = constant line, resulting in a 

longer distance. from PI, the point projected on the iso-Ij curve. 

A decrease in the capacitance results in a shorter distance between 

P and P13. From this discussion, it may be concluded that a better 

load regulation characteristic is obtained when the load has a 

capacitive reactance, and, conversely, that the load regulation 

characteristic with an inductive load is poorer than for a purely 

resistive load. Typical load regulation characteristics for the 
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loads of different power factors may therefore be anticipated 

as those shown in Figure 3.33. 

3.6 Complementary Remarks on the Characteristics of the 
Parametric Transformer 

The equations describing various aspects of the parametric 

transformer have been treated in Sections 3.1 to 3.5, and the 

behaviour and operation characteristics have been developed. 

In this section, some of these are collected together and 

summarised, and a few complementary remarks are added. 

3.6.1 Under- and Over-Voltage Protection, and Voltage 
Regulation 

In Section 3.3.1, it was demonstrated that a threshold 

condition exists for initiation of'oscillations in the secon- 

dary-circuit, due to the presence of damping. In obtaining 

those equations, the coefficient a was taken as unity and kept 

constant. However, as shown in Section 3.4, if the capacitor 

in the secondary circuit has a fixed value, the coefficient a 

is a function of ý, 
MR 

and the parametric transformer provides 

under-voltage protection (and also over-voltage protection), 

even when the secondary circuit is non-dissipative. Hence, the 

under-voltage protection feature, is not only due to the damping 

in the secondary circuit, but also to the primary flux amplitude 

changing the average value of the secondary reluctance, thus 

introducing detuning into the circuit. Secondly, as is clear 

from the discussion of Section 2.1.1 with regard to Figures 2.2, 
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2.3 and 2.4, the primary flux amplitude has to be increased 

to the knee region of the primary magnetisation characteristic, 

before any variations-in R 
M2 can occur and as a consequence, 

oscillations can be excited. 

The steady-state amplitude of the secondary flux is 

given, to a first approximation, by equation (3.1131, and to 

a closer approximation by equation (3.115), in the case of 

non-dissipative secondary circuit. The parameters in equation 

(3.113), are functions of ý 
Im 

CC fixed). When the expressions 

for a. q and g are substituted in equation (3.113), the relation- 

ship between the amplitudes of'the secondary and primary fluxes 

is as 

e2 [w2 N2 C- R]-3e2 (3.201) 
2M 3(s +r32 m2min s3+r3 im 

which gives a curve in the first quadrant of the 0 *_ 0 plane, 
2M Im 

as shown in Figure 3.34. Due to the existence of the threshold 

condition, this relationship becomes modified to that shown in 

Figure 3.35. This figure demonstrates clearly both the under- 

and over-voltage protection features of the parametric trans- 

former. with the over-voltage protection being provided when 

the primary flux reaches the value 

4 [W2 N2C-RI= (ý n)2 (3.202) 
3r2 M2min Im 
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Equation (3.113) was obtained by the harmonic balance 

method, and it agrees well with the considerations made from 

the simplified stability chart of Figure 3.27. The primary 

flux amplitude at switch off (ý" ) was obtained from this 
Im 

figure as given by equation (3.181) which is exactly the 

same as equation (3.202). Equation (3.2011 may be written 

in the form 

A2e2, e2= (e w)2 
..... 

(3.203) 
2m im im 

where 

s+r 
A2.33 and 

3 

given by equation (3.202). are constants. This form indicates 

that the curve in Figure 3. ý34 is a quarter section of a compressed 

circle in which the compression has been made in the direction of 

the ý 
2M 

axis by the f actor A. If A is assumed to equal unity, ' 

this relationship corresponds to the magnetisation characteristic 

of Figure 3.19 with Os =0 which resulted in a circular 
IM 

relationship between the amplitudes of the primary and the secon- 

dary flux phasors in Figure 3.20. Therefore, for an accurate 

representation of Figure 3.20, all the dimensions in the vertical 

direction must be divided by A, producing a vertical compression 

of the whale phasor diagram. (This point is brought up here, 

because the object of Figure 3.20 was to explain different steps 

in the growth of the secondary flux amplitude). Equation (3.203) 

also throws light on how the primary and the secondary fluxes are 
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limited in the common region of the magnetic core. 

When damping exists in the secondary circuit, the amplitude 

of the secondary flux is given, to a first-order approximation, 

by equation (3.1611 from which the ý 
2M 

/ý 
Im 

characteristic may 

be derived with a load connected at the output, the form of the 

equation invo'ved becomes even more complicated, and the 

secondary winding resistance is, therefore, neglected in obtain- 

ing equation (3.193). For a given RL (or n), a0 
2M 

/0 
IM 

charac- 

teristic can be obtained from equation (3.193), although it will 

not be as simple as equation (3.201). Nevertheless, the similarity 

between the forms of equations (3.193) and (3.113) implies that 

the 0 
2M 

/0 
Im 

characteristic is obtained in a similar shape to that 

of Figure 3.34. 

Once the parametric transformer is operating in the steady- 

state, parametric oscillations are sustained in the secondary 

circuit even when ý is decreased below ý" the primary flux 
IM Im 

amplitude corresponding to the threshold condition. The reason 

for this is that the secondary flux also modulates the primary 

reluctance, and energy transfer still continues, in the way 

explained in Section 3.1.5, until ý 
IM 

is so decreased that the 

energy transferred to the secondary circuit is insufficient to 

overcome the secondary circuit damping. The ý 
2M 

/ý 
Im 

characteristic 

therefore exhibits the operational hysteresis indicated in Figure 

3.36. The minimum value of ý 
Im 

to switch off the parametric trans- 

former is obtained from the instability condition (3.199). For a 

fixed value of the load resistance satisfying the condition R >R" L Lmin' 



Im 
may be solved from equation (3.199), though this is 

difficult since ý 
2M 

and CT are also dependent on ý 
Im, 

and the 

condition for switch-off takes the form 

e< es@$ ..... (3.204) 
Im Im - 

where 0"' is smaller than 0, I the threshold condition. 
IM IM 

The switch-off condition (3.204) means that oscillations 

immediately cease if the primary flux amplitude is decreased 

below and that'the secondary flux amplitude falls 
IM 

instantaneously to zero, just as in the case of over-load 

protection. 

It is apparent from Figure 3.36 that, for a good voltage 

regulation, the parametric transformer must operate between the 

points A and B. As explained in the next section, the output 

voltage becomes distorted in the region between B and C, as-well 

as having poor regulation with variations in ý, 
M. 

The necessity 

for the operating point to lie within the region AB introduces 

some impracticalities, since the parametric oscillations are self- 

starting only when the primary flux amplitude is between ý 
IM 

and 

ý" , i. e. the region BC. If the operating point is chosen within 
IM 

the region AB, parametric oscillations are not restored even when 

the excessive load that has already switched off the parametric 

transformer is removed. To restore secondary oscillations, the 

primary flux amplitude needs to be increased temporarily to satisfy 

the threshold condition ý 
IM 

> 0; 
M. 

Since the operating point is 
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determined by the input or supply voltage, and the supply 

voltage is constant, a special starter circuit is therefore 

required to drive the operating point into the region BC of 

Figure 3.36, for a short time interval sufficient for 

oscillations to build up, and then to let it return to the 

normal operating location. It is necessary, therefore, to 

use this starter circuit whenever the parametric transformer 

provides over-load or-under-voltage protection, and switches 

itself off. However, when the parametric transformer provides 

an over-voltage protection, the secondary flux (and therefore 

the output voltage) gradually decrease in amplitude in the BC 

region of Figure 3.36, and finally becomes zero for > 
im . Im 

but the oscillations are not switched off; If the primary 

flux (or the input voltage) amplitude is decreased below the 

point C, the secondary flux is again restored and the parametric 

transformer continues operating. 

If equation (3.1041 is written in the form 

2+a0+gý3= (2q cos 2z) 0 
dz 2222 

it resembles a standard Duffing's equation 
39, 

when the left- 

hand side is regarded as an independent driving force. Duffing's 

equation has been used to explain the phenomenon of ferroresonance 

in non-linear resonant circuits driven by an external source. 

In such systems, discontinuous jumps occur in the amplitude of 

oscillation when the frequency of the external driving function is 

varied, with its amplitude kept constant. This unexpected result 



is-due to the shape of the non-linear resonance curve, and 

a similar phenomenon of discontinuous jumps also occurs if 

the driving frequency is held constant but the amplitude of 

the driving force is varied. In the case of Duffing's 

equation, it is not difficult to derive the relationship 

between the amplitudes of the oscillation and the driving 

force, which explains these discontinuous jumps. But, the 

left-hand side of the equation above is not independent of 

the system as it involves ý2 . The primary flux amplitude 0 
IM 

entors into the equation through the parameter q, and the 

amplitude of the left-hand side cannot be varied independently. 

However, by analogy with such externally driven non-linear 
40 

resonance circuits , the existence of different values of 
1m 

to switch on and off the oscillations suggests that the relation- 

ship between ý and ý is as shown in Figure 3.37. This curve 
2M IM 

explains the discontinuous jumps, i. e. the operational hysteresis 

in the under-voltage protection feature of the parametric trans- 

former, since the part of the curve between A and 0 is unstable 

and cannot be observed in the experiments. 

3.6.2 Filtering Ability and Sinusoidal Output Voltage 

In general. the secondary circuit of a parametric transformer 

is described by a non-linear equation, for which it is quite 

difficult to obtain an analytical solution. The existence of 

damping makes this even more difficult, by introducing a first 
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derivative term with time-varying coefficients. However, 

when the secondary circuit resistance is neglected, the effect 

of non-linearity may be considered as a change in the parameter 

cr in the solution for the linear Hill equation; which at steady- 

state becomes equal to -I and causes the characteristic 2 

exponent to be zero (the limiting action of the non-linearity 

on the amplitude of the secondary flux variations). The 

effect of. damping is taKen into account by the ultimate value 

of a, given approximately by equation (3.163), which'is now 

smaller than 900, so that parametric energy still develops to 

overcome the dissipation. Under these considerations, the out- 

put waveform of the parametric transformer may be investigated 

by examining kz, cr), the stable part of the solution for the 

linear Hill equation. 

The periodic function ýCz, cr) is given by equation (3-64), 

and*its harmonic content depends upon the coefficients 0 in the 

Hill equation, equation (3.58). These coefficients arise directly 

from the Fourier series expansion of the secondary reluctance 

variation, as given by equations (3.53) and (3.54). The wave- 

form of this-variation, as explained through equations (3.49) 

to (3.51), Is determined both by the amplitude and the waveform 

of the primary flux, and by the shape of the transreluctance 

curve. 

The shape of the transreluctance curve, shown in Figure 2.2b. 

is the most important factor in deterTnining the waveform of the 

secondary reluctance variation. As can be seen from Figure 2.2, 

143 



144 

when the amplitude of the primary flux is smaller than ýsp 

the amplitude of the secondary reluctance variation is small, 

and when the primary flux amplitude is around ýs, the secon- 

dary reluctance variation may be considered sinusoidal. 

However, if the primary flux amplitude exceeds ý.. the secon- 

dary flux variation becomes distorted with high peaks, and 

contains a large number of harmonic components in its Fourier 

expansion. Consequently, the 0 coefficients of the higher 

frequency terms in the Hill equation are not negligible. 

In the power-series expansion, of the transraluctance 

characteristic, equation (3.50), R 
M2min 

(= R9+sI+r is a 

small quantity, because of the high permeability of the magnetic 

core, and the coefficients r are even smaller than this, due to 

the shape of the transreluctance curve. If the amplitude of 

the primary flux is not much greater than ý.. it is sufficient 

to neglect the r10 2j terms in equation (3.50), for J>l, and 

to take the transreluctance characteristic as 

R+r (R ->0, r> 0) (3.205) 
M2 m2min M2min I 

Equation (3.205) leads to the Mathieu equation, the solution of 

which Tor steady-state operation of the parametric transformer 

2), is the function ce (z, q), given by equation (3.28). 
21 

Since, in this case, jr 21<<R 
m2min" and therefore q<<a (a= 1), 

equation (3.28) Indicates that the higher frequency components in 

the secondary flux are of very small amplitude, and thus that the 

secondary flux has a substantially sinusaidal waveform. 
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As long as the amplitude of the primary flux is not 

greatly in excess of ýSll the secondary flux variation is not 

much influenced by the primary flux waveform, since the 

transreluctance curve is almost horizontal below ýS. If the 

primary flux is non-sinusoidal, but the fundamental frequency 

component is dominant, the coefficients in the corresponding 

Hi3l equation with the comparatively greater magnitudes are 

e0 and 01. and with no damping in the secondary circuit 

(a =- 
11, ýCz, cr) of equation (3.64) becomes 2 

cos z+ cos 3z C10+.! 0- _Le2 +_Lee) 8182 64 1 96 12 

00o211 
cos 5z (--I + -A +1+ co3 7z C- 0+003 

24 24 182 48 3 288 12 

(3.206) 

when the terms with magnitudes smaller than 10,. 0 
21 

are neglected. * 

The f act that 10 
11>>10 2 

1>>Ie 
31 

etc. and 10 
11<<10 01 

CO 
0=1, 

from 

the tuning of the secondary resonant circuit) indicates that the 

higher harmonic components in OW are of very small amplitudes, 

12' 

The fact that 10,1>>10 
2 

1>>Ie 
31 

etc. and 1011<<10.1 (00= I, from 

the tuning of the secondary resonant circuit) indicates that the 

and that the secondary flux is almost purely. sinusoidal, giving- 

If the terms other than those involving only 01 are omitted, 

ýCz) gives the cosine-elliptic function ce 
I 

Cz, e 
I 

). 



a sinusoidal output voltage waveform. Therefore, unless the 

amplitude of the primary voltage is so large as to saturate 

the common magnetic region of the core, the secondary voltage 

is independent of the input voltage waveform, providing the 

inherent filtering ability of the parametric transformer. 

If the. amplitude of the primary flux exceeds ýss the higher 

power terms in the power series expansion of the transreluctance 

characteristic need to be taken into account. With the trans- 

reluctance characteristic given by 

R 
M2 

R 
M2min 

r11r21r3 

(R 
m2min' 

r1r2r3> 0) (3.207) 

a sinusoidal primary flux 
IM 

sin z. leads to the equation of 

the linear, non-dissipative secondary circuit as 

d2ý 

dz 2+ 
(0 

0+ 
20 

1 
cas 2z + 20 

2 cos 4z + 20 
3 

cos 6z) e2" 1) 

(3.208) 
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where 

0=1rý2, .2rý4+ _ý_ rý6 
0 W2 N2c m2min 

+21 
Im 82 Im 16 3 IM3 

ýý' () 

2 

c- r24r 
mm 'ý2 12 W2 N2C11213 Im 

61- c-I r43ro 6) 

.2 2W2 N2c82 Im 16 3 Im 
2 

and 0=I (- 1rý 1) 
32 11)2 N2C 32 3 im 

(3.209) 

Since, now, ý>ý and r02, r04, r06 are not negligible, 
Im sI im 2 IM 3 Im 

the higher frequency components in ýCz) become significant. 

Using the e coefficients from equations (3.209), the periodic 

function ýCz) takes the form 

ýCz) - cos z-A cos 3z +A cos 5z -A cos 7z + 
123 

(Als A21, A3> 0) ..... (3.210) 

which gives a rather square shaped waveform to the secondary 

flux, as shown In Figure 3.38a, with the secondary voltage 

taking the waveform shown in Figure 3.38b. Even when the 
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primary flux is sinusoidal (with sinusoidal input voltage 

and the resistance of the primary winding neglected), but 

of sufficient amplitude to drive the common magnetic region 

far into saturation, the waveforms of the secondary flux and 

the output voltage become distorted as their amplitude 

decreases due to the shape of the ý 
2M 

/ý 
IM 

characteristic shown 

in Figure 3.35. 

On initiation of parametric oscillations, the amplitude 

of the primary flux needs to be increased beyond ý (in Figure 
5 

2.2b), to obtain a sufficiently large variation in the secon- 

dary reluctance to satisfy the threshold condition. However, 

if the primary flux is maintained at this level, corresponding 

to some point in the region BC of Figure 3.3B, the voltage 

regulation is poor and the output voltage has the waveform shown 

by Figure 3.38b. Therefore, the operational point in the input 

voltage/output voltage characteristic is chosen to be in the 

region AB of Figure 3.35, as mentioned in the previous section. 

To sum up, the waveform of the output voltage depends on 

the maximum value of the primary flux (or input voltage) and 

is essentially independent of'the input waveform. Irregularities 

in the primary flux waveform can only affect the secondary reluc- 

tance variation if they occur between the instants tI and t2 in 

Figure 2.2b. Since, in normal operat 
. 
ion, ý 

Im 
is not greatly in 

excess of OSS for the reasons explained above, this interval is 

short, and the secondary flux, being a good sinusoid, does not 

reflect these irregularities. It is important that the para- 

metric transformer provides this filtering ability against any 

disturbances In the primary flux, because the primary flux is 
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always non-sinusoidal due to the non-linearity and the 

resistance of the primary circuit. Furthermore, as shown 

later in Chapter VI, the primary current is quite non-sinu- 

soidal because of both the magnetic non-linearity and the 

reaction from the secondary to the primary circuit. 

The filtering property of the parametric transformer 

arises since the primary flux has no direct effect on the 

secondary flux'. The effect of the primary flux on the secon- 

dary flux waveform is only through the 0 coefficients, which, 

apart from 0 are quite small, and even the effect of the 0 

coefficients on the harmonic content of ý(z) is insignificant, 

because of the form of ý(z) given by equation (3.206). 

For instance, with a square-wave input voltage, and primary 

resistance neglected, the primary flux has the triangular 

waveform shown in Figure 3.39, which, in the Fourier series 

expansion. takes the form 

-L(sinz +-! sin 3z + 
.1 

sin5z + .... 
) (3.211) 

I IM Tr 29 25 

It is shown in Appendix II that, for such a primary flux and 

IM 
< the ratio of the amplitudes of the third harmonic to 

the fundamental frequency term in the secondary flux is of the 

order of 1.25%. Therefore, even with a square wave input voltage, 

a quite good sinusoidal output voltage is obtained. 

With this inherent filtering property, the parametric 

transforTner is able to suppress not only harmonic distortion 



but also such disturbances in the mains voltage as super- 

imposed high-frequency fluctuations, distortion due to 

large cyclic load variations, transients or high-voltage 

spikes that may be caused by the switching action of 

thyristors, mercury arc rectifiers, etc. The filtering 

property is strictly related to the mechanism by which energy 

is transferred from the input to the output. There is no 

direct relation between the input and output waveforms as the 

energy transfer is not achieved on the basis of mutual flux 

coupling, and, in the'actual device, mutual flux coupling is 

completely eliminatea. In conventional transformers, high- 

voltage short duration spikes on the input voltage cause dis- 

continuous jumps in the primary flux (flux is the integral of 

voltage, and the integral of an impulse function is a step 

function) and. since the whole primary flux links the secondary 

winding Cfull mutual coupling), these spikes are reproduced'in 

the output voltage on the derivation of secondary flux, 

dý 
e =i -N 

2. the discontinuous jumps in the flux result 
2,2 dt 

again in spikes on the output voltage. However, in the para- 

metric transformer, a primary flux with discontinuous jumps does 

not basically affect the secondary reluctance variation, as can be 

deduced from Figure 2.2, Chapter 2. Furthermore, as already seen, 

the waveform of the secondary flux (and consequently, of the out- 

put voltage) is essentially independent of the 0 coefficients or 

the harmonic content of the secondary flux variation. The pqra- 

metric transformer can. therefore, easily suppress high-voltage 

spikes on the input voltage of the order of kilovolts, subject 

to the strength of insulation. This filtering ability acts in 

iso 
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bilateral manner, and any disturbances caused by the load 

at the secondary side are not transferred to the supply 

side because of the absence of mutual flux coupling between 

the primary and secondary circuits. 

The influence of the load on the output waveform may 

be summarized in the following manner. At no load, 

neglecting the secondary winding resistance, a is taken as 

exactly and equation C3.206) is obtained for the output 2 

waveform, and the output waveform remains a good sinusaidal 

as long as ý 
Im 

is kept below ý.. When the secondary circuit 

is loaded, Cr decreases in magnitude from 900 as the load resis- 

tance decreases from infinity. Nevertheless, this decrease! 

in or is small for large load resistances, as evident from 

equation (3.1953. Rearranging the terms, ýCz, a) of equation 

(3.64) may be written as 

ýIzx) = sin(z-cr) 

Cos 3z 0- . 
10 

+102_-700 Isina 
182 32 1 192 12 

12 
+e sin 3 CF - -L ee sin 5 a] 

64 1 64 12 

sin 3z [(.! 0 .10+102+100 )Cosa+ 
aI-82 32 2- 

-192 
12 

2 Icc3s 3cr +100 cos Scr3 32 12- 64 1 64 12 
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00e2060e 
COS 5Z [(_ 2_3_I+12 

Isina +12 sin 3cr 24 24 192 576 576 

60 
12 CCOS a- cos 3CF) 

576 

6ee200a0 
sin 5z [( 2--3+I+1 2) Cos cr 17 cos 3a- 

24 24 192 576 576 

12 (sin + sin 3al 
576 

(3.212) 

which still gives equation C3.206) forcr= For a finite 
2 

load resistance, the parameter a of equation (3.194) is smaller 

4 
than 900 by a small amount, and the coefficients of sin 3z. 

sin 5z, sin 7z, etc. in equation'(3.212) do not become equal to 

zero. Thus, both sine and cosine terms exist in the Fourier 

expansion of the secondary flux. The simultaneous existence 

of sine and cosine terms indicates that the secondary flux wave- 

form is asymmetrical within a half-period with respect to the 

vertical axis passing through the maximum point in this half- 

period, as shown in Figure 3.40. A load connected at the output. 

therefore, not only changes the phase difference between the 

input and output voltages but also distorts the waveforms of 

the secondary flux and output voltage. The phase difference 

between the primary and secondary fluxes is closely equal to 
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a*, and the change in a is small when RL >>R 
Lmin . 

The output 

waveform remains as a good sinusoid for large load resistances. 

As the load resistance is decreased towards the minimum value 

where oscillations cease as a result of the built-in over-load 

protection, the amplitudes of the sine terms in equation (3.212) 

increase, and the distortion in the output waveform becomes 

more apparent. 

From the considerations at the end of Section 3.5 con- 

cerning the changes of R21 and C' with loads of different power 

factors, it may be deduced that the output waveform distortion 

due to loading is less when the load is capacitive, and that 

an inductive load causes more distortion than a purely resistive 

one. Nevertheless, this distortion only becomes significant 

during operation with large load currents near to i Lmax in 

Figure 3.33, and the nominal load current is chosen at a fraction 

of i Lmax where the load regulation characteristic is good. 

The phase difference here, means the time interval 

between the zero-crossing instants of the primary and 

secondary fluxes, since the secondary flux is now non- 

sinusoidal although the primary flux is sinusoidal. 

Taking only the fundamental component in the secondary 

flux, this phase difference is exactly cr. 
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3.6.3 Sistability of the'Phase 

It has been shown by Figure 3.3 that the solution of the 

Mathieu equation has different stable and unstable phase 

values and that the phase of the solution eventually takes 

one of the stable equilibrium values where the characteristic 

exponent becomes maximum and positive. The stable phase value 

a=-. H. has been taken in equations(3.20) to (3.22). however, 4 

a=+ 
21 is also a stable equilibrium value which gives 4 

lqz -Z + 
3Tr) 

2ý 20 
e3 co sC4 

as another unstable solution of the Mathieu equation. 

Parametric oscillations may, therefore, build up in two 

-e phases. In which of these the oscill- distinct and opposit 

ations grow up, is determined by the amplitude and the phase 

of the initial oscillation. It is mainly the initial phase of 

the small oscillation before parametric excitation, which -Fixes 

the phase of oscillations growing in amplitude with parametric 

excitation. As seen from Figure P. 3, if the phase of initial 

oscillations is in the range - 
211 

<a < 2, parametric oscillations 44 

take the stable Phase a= -2 as they build up, and if the initial 4 

phase is between-H and 
ýZr, 

oscillations'grow with the stable 44 

phase a -L7r (until the non-linearity becomes effective). 4 

In a general equation of the form of equation (3.74), the 

independent variable z can be replaced by z+7r with no change. 

If ý; W and ý; Cz) are the linearly indepedent solutions, then 



ý'U+70 and ý"(z+fl are also solutions. With Floquet's 
22 

theory, a constant factor e, depending on the initial conditions, 

can be found such that the relationship betweený 
2 
(z) and 

Cz+7r) becomes 
12 

2 

(z+Tr) =cý (Z) 

In the case of the Mathieu equation, the boundaries between 

the stable and unstable solutions occur for jCj=l (reference 13) 

and for a periodic solution with period 27r (stable solution on 

the boundary curve a ci corresponding to the steady state 

operation of the parametric transformer), c = -1 (reference 13), 

which indicates bistability of the phase at the steady-state. 

This situation arises since the time-varying coefficient has a 

period of ir radians whereas the solution is periodic with 27r 

radians. 

It is also evident in Section 3.1.5 that the relative 

positions of the secondary flux and the secondary reluctance 

variations remain unchanged if the secondary flux is shifted in 

phase by T7r radians. The same amount of energy is supplied to 

or removed from the secondary flux both when it changes as 

sinCz-a) or -sin(z-a) Maximum energy is supplied when 4' 

and parametric oscillations may build up in one of. the following 

two forms 

0ýe 
liz 

sin (z + 1T) 
2 20 4 

00e liz 
sin Cz + 

7r 
2 20 4 
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Since the effect of non-linearity is considered as the 

change in the value of Cr from -E to - 
H, the secondary flux, 42 

depending on which of these two forms it has taKen, finally 

becomes at steady-state either 

Cos z 

2 2M 

or ý -ý= Cos z 

differing in phase by + .1 radians from the primary flux. 
2 

Equation (3.111) also gives the phase of the solution at the 

steady-stat e as cr 
2 for when no energy added to the secon- 2 

7r dary flux. For both of these values Ccr + -3), the charac- 

teristic exponent 11 of equation (3.33) becomes zero, while the 

characteristic number a of equation (3.34) remains the same. 

3.6.4 Frequency Multiplying/Dividing Operation 

The main concern in this Chapter has been the normal 

operation of the parametric transformer, i. e. output frequency 

equal to input frequency, except for Section 3.1.2 where 

attention was drawn to the possibility of employing the device 

as a frequency multiplier. In fact, most of the worK in the 

later sections of this Chapter can be applied to the second 

unstable region (even the third etcJ of the stability chart in 

a similar manner. By using the concepts of the parametric point 
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moving on the chart due to non-linearity, and boundary curves 

moving upwards with increasing dissipation, and with the aid 

of the iso-jj and iso-a curves of Figure 3.6, the operation 

in the second unstable region can be fully explained and the 

operation characteristics derived. It may be shown that the 

device still provides, while worKing as a frequency multiplier, 

the characteristics of under-voltage and over-voltage protec- 

tion, overload protection etc. However; instead of repeating 

the whole worK for the second unstable region, drawing con- 

clusions similar to those for the first unstable region is 

considered sufficient. The most important difference is that 

the iso-V curves in the second unstable region move upwards 

with increasing dissipation*much more rapidly than in the 

first unstable region. This means that the parametric oscill- 

ations of twice the input frequency are both more difficult to 

start and more sensitive to the load changes. The first property 

necessitates greater depth of modulation in the secondary reluc- 

tance. requiring higher primary flux amplitude and higher input 

currents, while the latter indicates that the maximum load which 

can be connected before the oscillations are automatically 

switched off, is much smaller than in normal operation. Both 

these arguments lead to the conclusion that the device has far 

less power efficiency when operating as a frequency doubler in 

comparison with its normai transformer operation. 

The possibility of obtaining parametric oscillations at the 

sub-multiples of the input frequency should also be mentioned. 

The secondary reluctance variations can be made to have a 

I 
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fundamental frequency equal to (not twice) the input frequency 

by supplying into the magnetic circuit an additional d. c. bias 

current of a sufficiently large and constant amplitude, which 

results in operating at only one side of the transreluctance 

curve. Then, the reluctance variation in the form 

RR-R cos wt 
M2 M2aV 0 

where w is the input frequency, leads to a similar Mathieu 

equation 

2+ (a - 2q cos z) ý () 
dZ22 

W2R. a 
with a 0) and q0 The transformation of the 

W 

independent variable T -1 z, results in the standard form of 2 

the Mathieu equation 

d2ý2 

+ (A - 2Q cos 20 
d T2 2 

with the coefficients A=4. a and Q=4. q. The conditions for the 

initiation of the oscillations with the frequency are 2 

A=I and Q>0 
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The first one gives 

(2 

4C--) =1 or u (a) o 

Thus, if w. the resonant frequency of the secondary circuit, 
0 

is adjusted to half the input frequency, parametric oscillations 

are excited with this frequency when the threshold condition is 

satisfied. 

The arguments made above for frequency multiplying 

operation also apply to frequency dividing operation of the 

parametric transformer. The difference in the physical set-ups 

is that, in the latter, proper adjustment of the secondary 

circuit capacitor alone is not sufficient to excite the sub- 

harmonic oscillations, and a high unidirectional biasing mmf 

must be injected into the magnetic circuit to obtain the required 

frequency of the secondary reluctance variation. 

3.7 Other Methods'of Mathematical Analysis 

In this Chapter, attention was mainly centred around the 

secoridary circuit of the parametric transformer, and the device 

is represented as a system, by a second-order, non-linear 

differential equation with time-varying parameters. The primary 

circuit is assumed resistanceless and to be driven by an alter- 

nating voltage source. The explanation of the process of reluctance 
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modulation was restricted only to the argument associated with 

transreluctance curve of Figure 2.2. Chapter 2, and attention 

was only paid to the waveform of the reluctance variation, not 

to how this variation is physically achieved. The primary circuit 

was only concerned in Section 3.1.5 for an explanation of the energy 

transfer mechanism, and the primary-reluctance was assumed to be 

modulated through the same process characterized by a similar 

transreluctance curve. By what physical means the variation in 

the primary reluctance is achieved, is also left unclarified. 

Disregarding how the variation in the secondary reluctance 

is created (which might well be by an external, independent 

electrical or mechanical driving force) means that the systemis 

considered as a parametric generator, like a simple pendulum with 

vertically moving support, which results in a single differential 

equation (second-order, non-linear, with periodic coefficients). 

The oscillations of the pendulum does not cause any reaction on 

the external periodic force moving the support vertically. 

However, in Bethenod's experiment 
14 

, the oscillations of the 

pendulum reacts an the electromagnetic force of the electromagnet 

coil placed under the pendulum, by varying the reluctance of its 

magnetic circuit. Such a system has, therefore, to be represented 

by two simultaneous differential equations both having porlodio 

coefficients. However, it is to be noted that both the pendulum 

with a vertically moving support and the Bethenod's pendulum have 

only one degree of freedom, although the number of differential 

equations required is different, as in the latter the external 

electrical source driving the electromagnet enters into the right- 
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hand side of one of the differential equations. In the case 
15 of an elastic pendulum or the experiment of Gorelik and Witt 

the system has two degrees of'freedom as no external source 

exists, and it is represented by two simultaneous second-order 

differential equations with zero right hand sides. * The common 

property of the systems o-r Bethenod and GoreliK is that the 

two variables of the system enter into both the differential 

equations, and therefore, a parametric coupling exists between- 

these two variables. With this angle of view, the parametric 

transformer as a mathematical system corresponds to the Bethenod's 

pendulum, and has to be given by two simultaneous non-linear 

differential equations, in each of which both the system variables 

should exist, though one of them might be implicit. 

When the secondary circuit only is considered as a para- 

metric oscillator, the resulting differential equation most 

generally is equation-0.192), given for the loaded, dissipative 

and non-linear parametric resonant circuit. This equation can be 

treated using various analytical methods of the theory of differential 

equations, such as perturbation method, methods of averaging, equi- 

valent linearization. 16 All of these attempts to find an approximate 

By analogy. Bethenod's system might*be made to have two degrees 

of freeom, if the external source of electrical energy is 

replaced by an initially charged capacitor which resonates 

with the inductance of the electromagnet. 
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solution based on the assumption that the degree of non-linearity 

is not too large. As the equation considered, apart from being 

non-linear, does have periodic coefficients, a second necessary 

assumption follows so that the magnitudes of the time-varying 

coefficients are only permitted to small values. Furthermore, 

none of these methods can give all the information that may be 

desired about the problem. For instance, the perturbation 

method may be used to obtain information about the steady-state 

operation of oscillatory systems, but is of little use in 

determining how the oscillation builds up to the steady-state. 

Various averaging methods allow the growth period to be studied 

but gives steady-state information only to the first order 

approximation.. 

The method used in this Chapter has been a step-by-step 

approach on the basis of the classical theory of Mathieu-Hill 

type equations, starting from the standard Mathieu equation and 

growing in complexity up to equation (3.192). This approach has 

been preferred, because it gives more information on different 

aspects of the behaviour of the system, and non-linearity, damping, 

detuning and loading can be independently studied as well as being 

interrelated between themselves and also with the changes in the 

amplitude and phase of the oscillation. In this way, more physical 

insight is obtained, the phase relationships between the primary 

and secondary flux and reluctance variations are more readily 

understood and the operation characteristics of the device are 

obtained with comparatively less complexity. Yet, the study. is 
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mainly confined to the fundamental frequency term in the 

output (i. e. a first-order approximation) and the two pre- 

requisite assumptions, that non-linearity is small (i. e. g<<) 

and that the time-varying coefficients are of small magnitudes 

(i. e. m<<, k<<. q<<, etc), are made anywhere necessary. One 

essential advantage of this method is that it permits extensive 

use of the boundary curves, and iso-ji and iso-a curves on 

the stability chart of Mathieu equation. By this, direct 

graphical interpretation of the characteristics of the para- 

metric transformer has been possible to a certain extent. 

However, to obtain an overall view of the build-up of 

oscillations in the secondary circuit, the best is to apply 

one of the averaging methods (slowly varying parameters, or 

variation of parameters methods) to the most general equation 

of the secondary, equation (3.192). There are two basic averaging 

methods: the Van der Pal approximation method 
17,20 

and the 

asymp totic method of Krylov-Sogoliubov-Mitropolsky. 
18-20 In the 

first metho. d, a first-order approximate solution is assumed to 

be of the form 

O(z) = X(z) cos z+ Y(z) sin z ..... (3.213) 

where z= wt, and the functions X(z) and YCz) are assumed to be 

slowly varying (i. e. variation within a period of 27r is assumed 

to be small). Substituting this solution into the differential 

equation and averaging by the assumption that X and Y are constant 

within an Interval of 27r, an approximate set of differential equations 

163 
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may be derived in the form 

dX 
6- Myl 

z z 
11 f 

(3.214) 

dY 
-a -z f MY) 

where ji is a small and positive constant. In this way, the 

difficult problem of seeKing a general solution for a non- 

autonomous system such as equation (3.1923 may be reduced to the 

much easier one of the analysis of an autonomous system. Thus, 

the behaviour of the system may be described in terms of a 

phase-portrait, and the steady-state periodic solutions may be 

identified as the sirgular points of equations (3.214). The 

stability of these periodic solutions may then be determined in 

terms of the stability of the associated singular point. 

The 'stroboscopic method' of MinorskY 21 is of the same 

basic form as the Van der Pol method, although the resulting 

autonomous set of equations are expressed in terms ofp - r2 = X2 y2 

and tan-'(Y). 
X 

The asymptotic method of Bogoliubov and Mitropolsky assumes 

the solution in the form 

O(Z) = R(z) cos [z + ýCzl] 
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to a first approximation, where R and ý are aZowZy varying 

amplitude and phase of the oscillation. The averaged differ- 

ential equationa are 

dR 
jz-- zuR. 

dt 
= ll. u dz 

to which the same'techniques of geometric and graphical analysis 

may be applied. This method has been carried further by 

Bogoliubov and Mitropolsky to higher approximations than the 

first, and for the first-order approximation, it is, in effect, 

the polar coordinate equivalent of the Van der Pol method. The 

two methods of approximation actually complement one another, for 

the former is most convenient in the autonomous case, while the 

latter is particularly well suited to the study of non-autonomous 

systems. 

Since equation (3.1921 is both non-linear and non-autonomous. 

the Van der Pal approximation method has been preferred to the 

asYmptatic method, and it has been applied in its basic form to 

equation (3.192). In order to obtain more information on the 

amplitude and phase of oscillations, the stroboscopic method of 

Minorsky has also been applied to equation (3.1921, as a version 

of the Van der Pal method. The sets of averaged differential 

equations have been obtained in the form of equations (3.214). 

but with such complex fI and f2 functions that no further evaluation 
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of the analysis has been practicable. The complexity of the 

fi. nctions fI and f2 in terms of X and Y and other system 

parameters has not permitted the obtaining of the singular 

points from the equations 

f U. Y) 
1 

f MY) 
2 

and the drawing of the phase-portrait (X-Y plane) of the 

system, which would give information on the bistability of 

oscillations and the final values of their amplitude and phase. 

The complexity of these functions arises mainly because 

the coefficient of the first derivative term in equation (3.1921 

is both non-linear and time-varying. The dependence of a', qI 
R 

and g' on 0 and R by the factor (I + --& ) makes derivation of 
2LRL 

analytical relationships in terms of actual physical quantities 

even more complicated and tedious than ever. Although the 

dissipative term in equation (3.192) is created by both the load 

resistance and the resistance of the secondary winding, it is to 

be noted that only R 
2' 

the secondary winding resistance is respon- 

sible for it being non-linear and time-varying. When energy 

dissipation in the secondary winding is neglected by assuming 

R2ý0. not only do k and d become zero but also al=a, ql=q 

and gl=g. Equation (3.192) then reduces to 
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d 

dz 2+2 
Tj dz + (a - 2q cos 2z)ý 

2+ 
gý 

23 
(3.215) 

with the first derivative term now having a constant cobfficient, 

and the additional sin 2z term having vanished from the coefficient 

of ý. 
2 

In the literature, averaging methods have been applied to. 

the differential equations of the exact form of equation (3.215), 

and the results thereby obtained will be directly adopted here. 

Although E. Goto 22 
gives a similar treatment to this kind of 

equation and obtains the phase-portrait of a bistable parametron, 

T. Stern 23 
applies the Van der Pol approximation method to obtain 

the singular points and the phase-portrait of bistable para- 

metron, as shown in Figure 3.41. There are three singular points: 

one unstable saddle point at the origin, and two stable nodal or 

spiral points symmetrically located on the X-Y plane. These two 

symmetrical points are asymptotically stable, giving the desired 

pair of stable phase of oscillation. The global stability of the 

system has been investigated by Willoughby 24 byýusing the direct 

method of Lyapunov and later presented by Stern 23 in the form of 

the seperatrix shown in Figure 3.41j all the solutions in the 

shaded area approach the upper singular point, and all those in 

the unshaded area approach the lower singular point. The location 

of the nodal singular points on the X-Y plane determines the 

steady-state amplitude and phase of the oscillations. 

The differential equation studied by Go t022 for the case of 

the parametron in which the non-dissipative inductance is assumed 
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to be varying as L(t) =L0 (1 +2r sin 2T -0 12), is 24 

d 21 
+6!! 

1 
+ (1 + a)( 1-2r sin 2T +a 2) 1=0 (3.216) 

d, r2 
dT 

03 21 

where T= wt, w -(L COm a =(--L) -1.6 =- and I= -L i (see 
00w wCR L 

0 

Figure 3.42). 

The square of the steady-state atnplitude of oscillations is 

found 24 
to be 

u2= 
4r 

a+ b) ..... (3.2171 
030 

where a F(l 
6+ 

a) and b=- rci 
a+ 

(1) . Comparing, equations 

(3.2151 and (3.216), one may note the correspondence between the 

parameters of the two equations, with the transformation z =T +2 4 

which does not change the nature of the differential equation. 

The parameters of-equation (3.215) may be expressed in terms of 

those of equation (3.216) as 

2TI =6 

I+ a 
..... (3.218) 

rcl + a) 

and g=0 (1 + a) 



When these are substituted into equation (3.217), this takes 

the form 

r, 2 24 -F-- 
ua+ 

/q 
- 4n2 

..... (3.2191 

and comparing equation (3.219) with equation (3.193) shows 

that the result obtained by the averaging method is almost 

exactly the same as that obtained In Section 3.5. The final 

24 
phase of the steady-state oscillations, 00, is found to be 

given by 

V11- sin 20 a2 
0 

and cos 20= -a 0 

where a. ru + a) 
By making use of equations (3.218), the 

steady-state phase is obtained in terms of the parameters of 

equations (3.215) as 

tan 20=- -L - A4 T_j 2 
..... (3.220) /q2 

0 2TI 

It follows from equation (3.219) that výý 4 T, 2. . 
2. 

gu2+a 40 

and when this is substituted in equation (3.220), the steady-state 

phase is given by 
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170 

a, 
39 

U2 
20 

0= 
tan" (- 

2 Tj 
4o 

which is almost the same as equation (3.194). In fact, the 

results obtained in Section 3.5 are rmre accurate than those 

C3.221) 

obtained by the averaging method, as equations (3.193) and (3.194) 

contain additional terms which are absent in equations (3.219) 

and (3.221). 

For no load, 71 = 0, and the steady-state phase from 

equation (3.221) is 6= -2. This is almost evident in the 
04 

phase-portrait of Figure 3.41. However, cr of equation (3.194) 

is equal to 0+I because of the transformation of the inde- 
0 4' 

IT 
pendent variable, Z=T+W, made to have equations-(3.215) and 

(3.2161 appearing similar. Since 0 a-E, a of equation (3.1941 
04 

is approximately equal to 20 of equation (3.221). 
0 

Minorsky 21 
studies the differential equation 

d 2X 

+ b-ýx + (I +a cos 2z)x +C X3 =0 
dZ2 dz 

by his stroboscopic method, and gives results similar to those 

already obtained. The square of the stationary amplitude Is 

/A' 4 E32 

and the steady-state phase is 

2B 
sin 20 and cos 20 

PO 

002A 
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where A=a, BC =R and V is the small, positive VP 

constant of equations (3.214). The results Minorsky obtained 

do not allow detuning to be considered, since in all the Mathieu 

type equations he studied the characteristic number (the con- 

stant part of the coefficient of x) is taken as unity. However, 

he also gives the results of the asymptotic method (Krylov- 

25 
Bogoliubov-Mitropolskyl applied to the differential equation 

d2x+2 
-6 

ý-x 
+ W2 (1 -h cos Vt)x +y X3 =0 (3.222) 

dt 2 dt 

which assumes the first-order approximate solution of the 

orm 

a cos 
vt+ 61 f 

The square of the amplitude is found to be 

2=4 (ýjj 
2- 

wz -1-2 -W4V2 
62 ] a Wy 2+ ýF 

/h 
-4. (3.223) 

With the transformation vt = 2z, and 
ý! 

=w (the frequency of 2 

ascillation), the parameters of equation (3.222) are expressed in 

terms of those of equation 13.215) as 



W-)lW 
0 

the resonant frequency 

TI 

_L_ =a 

(3.224) 

w2 
0h= 2q 

w2 

Y= 

w2 

which make equation (3.2221 exactly the same as equation (3.215). 

When parameter conversions of equations (3.224) are entered into 

equation (3.223). this becomes exactly the same as equation (3.219). 

Thus, the asymptotic method of Krylov-Bogaliubov-Mitropolsky also 

gives the same value for the steady-state amplitude of oscillations. 

A frequency domain approach based on the method of equivalent 

linearization 16 
may be considered to be of interest, as it enables 

valuable tools of the linear system theory to be used. This kind 

of approach also permits use of the well-known frequency-power 

relations formulated by Manley and Rowe, 26-28 
and later generalized 

by Penfield. 29 Instead of representing the system under investigation 

by a differential equation, a linear matrix equation of the form 

V=Z. I is used, where Z is the conversion impedance matrix. 

172 



173 

This method is rather suitable for frequency converting 

networks, parametric amplifiers, modulators etc. where signals 

are present at several different frequencies and network 

equations are generally of higher order. A considerable amount 

of literature exists on this subject, especially on the devices 

operating at very high frequencies. However, an application of 

this linearization method to the parametron and to magnetic 

amplifiers has also been given in a paper by Oshima et al. 
30 

Since the output waveform of the parametric transformer is almost 

sinusoidal, e. nd the non-lineari ty present is quite large, 

linearization techniques in the frequency domain are not treated 

here. They are found to be not particularly suitable for the 

case of the parametric transformer, as they give very little 

insight to the modes of operation and to the physical behaviour 

of the device. 

All the analytical methods reviewed in this section, and 

also the classical method used throughout this Chapter, require 

the system under consideration to be nearly-linear, that is the 

non-linearity present in the system is assumed small. Neverthe- 

less, a new method which has recently been developed by Samoilo 31-33 

does not impose such restrictions on the degree of non-linearity 

and the amplitude of the parameter variations. The method, 

terTned the phase-pulse method3l, is basically an averaging method 

in which the averaged set of (autonomous) equations is in the 

form 
35 

2dR 
dT 

2= H(R, q, ) 

I 

/ 
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where. R and ý are the amplitude and phase of the oscillation, 

but the independent variable T is not ordinary time. T is 

called non-linear time, and the relationship between the non- 

linear time T and the ordinary time t is given by 34 

dt 
0 =. B +B COS T+B COS 2T+ (3.2251 dT 01 

where 8 are constants, t=wt and w= -'= , the resonant 1000 7=C 

frequency of the circuit with the values L and C when there 

are no oscillations in the circuit. 

This method has been very successfully applied to free 

and forced oscillations in oscillatory circuits using non-linear 

capacitance or non-linear inductance 34,36,37 
, and the behaviour 

of oscillations and the resonance characteristics are obtained. 

Application of the method to parametric circuits-employing non- 

linear capacitance or non-linear inductance has also been made 
35,37.38 

and the threshold condition for parametric excitation, the amplitude/ 

frequency characteristic of the parametric resonance, and the phase 

characteristics of the parametric oscillato r are derived compar- 

atively simply and with higher accuracy. 

It is thought that it may prove quite interesting and well 

worth the effort to apply the phase-pulse method to equation (3.192), 

where the concept of reluctance rather than inductance is'used. The 

complexity and difficulty in the analysis arising due to the non- 

linear and time-varying dissipation in R2 may well be counteracted 

by the non-linear coordinate. transformation of equation (3.225), 
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together with the fewer imposed restrictions on the magnitude 

of coefficients and on the degree of non-linearity. 
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Figure 3.13 Phase Trajectory for 0= IT/4 
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CHAPTER IV 

PARAMETRIC TRANSFORMER AS A NONLINEAR MAGNETIC DEVICE 

When the inductance (or capacitance) of a parametric 

resonant circuit is varied at twice the resonance frequency, 

by using energy other than electrical energy, the system 

becomes a parametric energy converter, just as in the case of 
I the parametric 'generators of Mandelstam and Papalexi . which 

converted mechanical energy into electrical energy. For para- 

metric transformer action, the inductance has to be varied 

electrically so that, instead of energy conversion, the system 

accomplishes electrical power conversion and becomes a static, 

passive power converter, with the electrical input power required 

to vary the inductance of the resonant circuit and the output 

power obtained by parametric excitation in this circuit. So, 

the problem of constructing a parametric transformer Is simply 

that of obtaining an electrically-varied inductance and connecting 

it in parallel with a capacitor to form a resonant circuit. 

For an electrically-varied inductance, any Practical form of 

dc-controlled saturable reactor may be used. However, since the 

inductance is now required to vary periodically (at twice the 

resonant frequency), it has to be controlled by alternating current 

instead of the direct current normally used, when the aim is to. 

regulate the inductance in a gradual manner. The variation in the 

inductance of the load winding of a dc-controlled saturable reactor 

is independent of the direction of the direct control current, and 
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therefore, if the control current is alternating at a frequency 

f, the inductance of the load winding is varied at the frequency 

2-F. -as required for parametric transformer operation. The control 

winding of the saturable reactor, used now as an ac-controlled 

variable inductor, needs to be modified to accept alternating 

current, and clearly, the number of turns needs to be different 

from that for a dc-control current, to create a sufficiently 

large control-mmf in the magnetic core. 

Approaching the parametric transformer concept by replacing 

the time-varying inductance in a parametric resonant circuit by 

an electrically-varied inductance, makes possible the general- 

ization of this concept, and is also of importance when inves- 

tigating possible practical realizations of parametric transformers. 

Using this approach, a parametric transformer may be considered 

as comprising a saturable reactor, the control winding of which 

is driven by an alternating source, together with a capacitor 

connected across the load winding and tuned to resonate at a 

frequency equal to that of the control source. This is illustrated 

diagrammatically in Figure 4.1. It is now clear that the input or 

primary winding of a parametric transformer corresponds to the 

control winding of a saturable reactor, modified so as to accept 

an alternating voltage source, with the output or secondary winding 

corresponding to the load winding of the saturable reactor. 

As the relation of saturable reactor devices to parametric 

transformers becomes evident, a closer looK at such devices 

seems appropriate. 
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4.1 Saturable Reactors Used as Variable Inductors 

Throughout this study, the term saturable reactor is used 

in the same sense as the commonly used term ordinary saturable 
23 

reactor or the German-originated term transductor , referring 

to the simplest form of magnetic amplifier 
4 

with no external 

components (diodes, resistors, capacitors etc) and no feedbacK 

arra. ngements. Thus, a saturable reactor is a magnetic device 

having two windings (the control and load windings) with the 

undesired transformer action between them eliminated by some 

arrangement. 

I 
It is also important to discriminate saturable reactors 

from saturating reactors (or ac-saturated nonlinear inductors 5 ). 

in which saturation of the magnetic core is produced without dc 

magnetisation, solely by applying a sufficiently high alternating 

voltage to the excitation winding. In contradistinction to such 

saturating reactors, the various types of saturable reactor 

generally use an alternating excitation voltage of moderate 

amplitude (not causing saturation by itself) applied to the load 

winding in series with the load, together with a dc magnetisation 

produced in the control winding, which causes saturation phenomena 

in the core material. Operation of a great number of magnetic 

voltage or current stabilizing devices, such as ferro-resonant 

transformers, is based on the characteristics of such saturating 

reactors, and those devices are essentially different from para- 

metric transformers making use of saturabZe reactors in their 

magnetic construction. 
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The history of dc-controlled saturable reactors begins 

with the early work of Burgess and Frankenfield 6,7 
who were 

responsible for the first practical applications of the long- 

known principle of regulating the self-inductance of iron- 

cored coils through the non-linearity in the magnetisation 

characteristic of the core material. Their disclosures carry 

the significance that they included almost all the practical 

forms of saturable reactors used today. 

4.1.1 The Classification of Saturable Reactor Devices 

In several textbooks covering magnetic amplifiers8_10, 

ordinary saturable reactor devices are classified with regard 

to their magnetic-core structure (2-core devices, 3-legged core 

devices, etc), their output-circuit configuration (series - or 

parallel-connected output windings) and their mode of operation 

In respect of even harmonics (natural or forced magnetisation 

conditions). However, another kind of classification will be 

attempted here, which is useful in evaluating the new magnetic- 

core con*figurations proposed by Wanlass", forming the basis of 

parametric transformers described by the same author In a later 

patent. 
12 

The classification of saturable reactor devices is here 

based on: 

a) How the undesired transformer action or the effects of 

the mutual coupling between the control and load windings 

are eliminated. 
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b) The relative positions of the control flux (dc-magnetisation) 

and the load flux Cac-magnetisation) in the magnetic-core. 

In most types of practical saturable reactors, undesired 

transformer action is eliminated by means of three different 

methods: 

FORCED SUPPRESSION of the alternating current in the 

control winding induced by the mutual flux coupling 

existing between the control and load windings. 

2. CANCELLATION of the effects of the mutual flux coupling, 

either by; 

a) summing the two equal portions of the same ftux, which 

link either of the windings in opposite directions 

or b) summing the two equal but antiphase voftages which are 

induced in the two separate halves of the same winding. 

3. ELIMINATION of magnetic coupling between the control and 

load windings by special configurations of the windings 

and the magnetic core 

a) using a magnetic short circuit to reduce the coupling, 

or b) having two separate magnetic paths for the control and 

the load circuits, with the whole or a part of the core 

common to these two magnetic circuits. 

With regard to the second kind of classification. ordinary 

saturable reactor devices may be divided into two main groups: 

1. PARALLEL-FLUX saturable reactors, in which superimposition 

of the control and load fluxes takes place in the whole or 

Ia part of the core, with the two fluxes being parallel to 

each other. 
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2. ORTHOGONAL-FLUX saturable reactors, in which superimposition 

of the control and load fluxes takes place in the whole or 

a part of the core, with the two fluxes being at right angles. 

In afiy particular construction of the saturable reactor, 

more than one of the above means of elimination may be present 

in the device, and parallel- and orthogonal-flux interaction may 

co-exist in the same magnetic core. Thus, a particular saturable 

reactor device may belong simultaneously to a number of the above 

groups. However, in these cases the dominant factor will be 

emphasized as the practical forms of the saturable reactors 

are reviewed in the next section from the viewpoint of the 

classification made here. 

4.1.2 Various Forms of Saturable Reactors 

The simplest-way of realizing a saturable reactor13 is 

thown in Figure 4.2, which illustrates the forced suppression of 

the effects of mutual flux coupling. The control and load 

windings have full mutual coupling. and a large alternating 

voltage is Induced across the load winding. For this not to 

produce excessively large currents in the low-impedance control 

circuit loop, a high impedance choke coil is connected in series 

with the control winding. In respect of the second kind of 

classification, it is obvious that paraZUZ-flux interaction occurs 

in the whole of the magnetic core. This elementary form of satu- 

rable reactor is not used widely, except for the simple dc-instrument 

201 
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transformers in which the bus-bar forms a single-turn control 

winding. 

Traditional saturable reactor devices use mostly the second 

method of eliminating transformer action, based on the canceZZation 

effect . Figure 4.3 shows such a device built on a single, three- 

legged, laminated transformer core (the centre leg having twice 

the cross-sectional area of the outer legs) with one dc control 

winding an the centre leg and two equal half-sections of the ac 

load winding on the outer legs. Again, full mutual flux coupling 

exists between the control winding. and each section of the load 

winding. However, when both sections of the load winding are 

energized the alterating flux components created flow effectively 

through the centre leg in opposite directions, cancelling pach 

other and producing no alternating voltage across the control 

winding. Since only unidirectional (dc) flux flows through the 

centre leg, unwantedhysteresis effects may arise, and to avoid 

this, the centre leg is split lengthwise, with a narrow gap 

provided between the two parts of the core to prevent the 

alternating flux from following the circumference path (Figure 

4.4). The cancellation of the ac flux components can more readily 

be seen in this configuration. Both the devices in Figures 4.3 

and 4.4 are parallel-flux systems; parallel interaction of the do 

and ac fluxes occurs in a. part (the circumference path) of the care 

in the first one, and in the whole core of the latter. 

The other method (2(b) in the previous section) of cancelling 

the effect of mutual flux coupling in a saturable reactor employs 
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two separate and equally-rated units, as shown in Figure 4.5. 

The two load windings are connected in a series-aiding sense, 

whereas the two control windings are connected in series- 

opposing sense, or vice versa. This ensures the voltage 

across the full control winding is zero, as it is the sum of 

the two anti-phased components induced in the individual control 

windings. It is apparent that, in this method, cancellation of 

voltages rather than cancellation of fluxes takes place, and 

also that parallel flux interaction occurs in the whole of each 

of the cores. It is worth noting that, if the functions of the 

windings of the devices in Figures 4.3 and 4.4 are reversed, as 

shown in Figure 4.6, the method employed becomes canceZZation of 

VoZtages rather than fluxes, as across each control winding now 

appears a large induced ac voltage. 

The effects of mutual flux coupling can be reduced to a 

negligible level by either flux or voltage cancellation in a 

properly designed device, although this will only apply at the 

fundamental frequency of the alternating voltage supply.. Because 

of the non-linear and hysteretic magnetisation (zharacteristic, the 

voltages induced in the control winding from the two load windings 

will contain a large number of harmonics, and these will not 

necessarily cancel out at all harmonic-frequ2ncies. This is, in turn, 

due to the fact that full mutual coupling exists, between the 

control and load windings and its effects are cancelled rather 

than its presence being removed. 
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The last method of eliminating undesired transformer 

action (3 in Section 4.1.1) aims at removing the mutual flux 

coupling between the control and load windings, which can be 

partly achieved by a magnetic short circuit, as shown 
14 in 

Figure 4.7a. The control and load windings are now placed on 

the outer legs of a three-legged core, with the centre leg 

acting as a magnetic short circuit to prevent a significant 

portion of the alternating flux from linking the control 

winding. The portion of this flux which links the control 

winding is proportional to the ratio of the reluctance of the 

centre leg (magnetic path AD in the figure) to that of the 

outer leg (magnetic path ABCO), and this ratio can be reduced 

by using the magnetic core 
14 

shown in Figure 4.7b or by 

inserting a narrow air gap into the magnetic circuit of the 

control winding as shown in Figure 4.7c. The form of the 

saturable device in the last figure has been employed in a kind 

of parametric transformer named SW Transformer by its manufacturer 
15,16 

If the flux interaction occurring in the outer legs of the device in 

Figure 4.7a is neglected, the centre leg may be considered as a 

region, common to the principal magnetic paths of the control and 

load circuits, *in which parallel interaction of the fluxes takes 

place. 

Many magnetic control devices used in areas such as computer 

magnetics, magnetic modulators, magnetic frequency changers etc. 

rely on method 31b), to eliminate directly the existence (not the 

effects) of mutual flux coupling, while using a magnetic core 
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configuration having a region common to both flux paths. 

Because of the special configurations of the core, orthogonal 

flux interaction is often used in these devices, giving rise 

to mutti-apertured cores, the earliest example 
17 

of which is 

shown in Figure 4.8a. The interaction of the unidirectional 

and alternating fluxes taKes place around the apertures and, 

as is evident in Figure 4.8b, parallel flux interaction is 

predominant. although some orthogonal interaction occurs in 

the marKed regions. No alternating flux linKs the dc control 

windings and mutual flux coupling is eliminated but only uni- 

laterally. The same magnetic configuration is employed in 

18 19 
saturation-controlled transformers . magnetic modulators 

20 21 
and many other devices of computer magnetics . Three- 

aperture transfluxors 
22 have basically the same magnetic circuit 

structure, although most devices used in computer magnetics use 

the hysteresis property of square-loop ferrite materials. 

Orthogonal flux interaction occurring in the whole of the 

core is best illustrated by means of a hollow toroidal core. 

One winding is placed within the annular hollow, and the second 

is wound on the care, as shown in Figure 4.9a. The two separate 

and closed flux paths associated with the windings are mutually 

perpendicular everywhere in the core (R>>r is assumed in Figure 

4.9b), and no mutual coupling exists between the windings. The 

whole core acts as a region common to these flux paths. Although 

this configuration was first proposed 
7 for saturable reactor power 

control applications its practical construction is only possible 
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with ferrite core materials 
23 

, because of the lack of practical 

laminations effective in two perpendicular directions and the 

otherwise excessive eddy-current losses. The arrangement is, 

23,24 therefore, employed in magnetic modulators magnetic 

memories 
25 

and other devices 26 
. 

Operation of a different but large family of magnetic 

memory devices 27-30 is based upon orthogonal flux interactions 

within massive ferrite bodies of high-retentivity, having 

perpendicular apertures through which passes a single conductor, 

as shown in Figure 4.10a. The theory of magnetisation processes 
31 in such structures is given elsewhere . The significance of 

these devices is that they have undergone the transfiguration 

illustrated by Figures 4.10a, b and c, with many devices 32-35 

having the form of Figure 4.10b appearing before the magnetic 

configuration in Figure 4.10c were used in magnetic devices for 

37,38 
computers 

A clear example of this method (3(b) in Section 4.1.1) is 

provided by the device in Figure 4.11, which has two separate 

magnetic circuits with a common region where orthogonal flux 

interaction occurs. No flux produced by either coil can link 

the other, and mutual flux coupling is completely absent. 

However, the unidirectional control flux changes the level of 

saturation in the common region, varying the reluctance of the 

magnetic circuit associated with the load. The only part of the 

core where flux interaction takes place is where the two core 

loops are common. This type of construction was first proposed 
39,40 
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with the two coils superimposed at right angle and wound on 

the cross-shaped common region, as shown in Figure 4.12. Since 

a portion of the flux created by each coil links each core loop, 

the parallel flux interaction in the core loops predominates over 

the orthogonal flux interaction taking place where the loops are 

common. However, unlike the arrangement in Figure 4.11, the whole 

core acts as a region common to both flux paths. The particular 

orientation of the windings, however, practically eliminates 

mutual coupling and this device was considered as one basic form 

39-41 
of magnetic cross valve 

Magnetic cross valves 
39-50 have the structure shown in 

Figure 4.13, and are constructed as in Figure 4.14. No mutual 

coupling exists between the orthogonal windings, and in the 

central region of the core (marked by a square in Figure 4.151 

the fluxes undergo orthogonal interaction. However, in the 

remainder of the core, parallel flux interaction occurs as can 

be seen from the figure. Under ideal conditions (no winding 

resistances, and ideal voltage sources) and with complete symmetry, 

the not flux in each branch of the core is shown in Figure 4.16, 

where the fluxes and ý are established in the coils I and 2 
2 

respectively. Only at the centre point do the two fluxes cross 

orthogonally, in the directions indicated in the figure. The flux 

components in the directions of the inner branches of the care are 

additive or subtractive, and flux interaction takes place only in 

the inner, cross-shaped branches of the care, including the central 

region where interaction is orthogonal. 



208 

Magnetic cross valves, although extensively developed by Mc 

39-50 51 Creary , were proposed much earlier . with the winding 

arrangement shown in Figure 4.17. Under the foregoing consid- 

erations, the flux in the branches of the core is given in 

Figure 4.18, where it will be noted that the direction of the 

orthogonal interaction in the central region is different from 

that in the previous arrangement. As distinct from that arrange- 

ment, flux interaction takes place in a parallel manner In the 

circumferential branches of the core, and in an orthogonal manner 

in the central region. When the volume where parallel flux inter- 

action occurs is compared with that where fluxes interact ortho- 

gonally, it is seen that parallel flux interaction predominates 

overall in both devices in Figures 4.13 and 4.17. The elimination 

of mutual flux coupling in the latter is achieved by the flux 

cancellation method, as the flux from one set of windings tends 

not to flow through the branches of the core where the other 

windings are situated. This is better understood if the core 

is temporarily imagined to be as in Figure 4.19. 

The significance of magnetic cross-valve devices to the 

subject of parameter transformers is not only that they have 

been employed In similar areas, but also that they have a magnetic 

circuit structure very similar to that of two-C-core constructed 

parametric transformers, as will be clear shortly. 



4.2 Analogous Electric Circuits with Elimination of Mutual 
Flux Coupling 

In some cases where the magnetic circuit configuration 

permits an interpretation, it is useful to derive an electrical 

circuit analog to the magnetic circuit, using the magnetic 

equivalent of Ohm's Law: 

4, = (4.1) 

whare F=N. i is the magnetomotive force, R, = Z/pA is the 

reluctance and ý is the flux. Analogous circuits for the sim- 

plest magnetic circuit driven by an ideal voltage or current 

source are shown in Figure 4.20. Although the equivalent 

reluctances of parallel or series branches of a magnetic core 

can be calculated, just as can series or parallel connected 

resistors in electrical circuits, it must always be borne in 

mind that, unlike resistors, these do not form linear elements, 

and further that they are functions of the corresponding fluxes. 

An analogous circuit for the saturable reactor in Figure 4.3, 

with the windings on the outer legs driven by an acv source (see 

list of symbols) is shown in Figure 4.21. Although the reluctances 

RI, R" and R are flux dependent, RI and R" are always equal 
II'. 211 

because of the symmetry in the Magnetic circuit, and the alter- 

nating voltage source can be represented by two equal sources of 

flux. Considerations of the symmetry show that no flux flows 

through R2 and hence, physically, that no voltage is induced 

across the corresponding winding. 

209 
I 
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A similar analogous circuit for the device in Figure 4.17 

is given in Figure 4.22, when only one of the windings is driven 

by an acv source and the orthogonal flux interaction in the 

central region is neglected. The symmetry of the magnetic 

circuit leads to four equal reluctances CR ) in the circum- 
2 

ferential branches, and to two equal reluctances CR in the 

branches where the winding is driven by an acv source. Without 

any further analysis, application of Kirchhoffs current taw to 

the point 01 in Figure 4.22b shows that no flux flows between 

the points 01 and 0", and hence that the connection between these 

two points may be disregarded. This immediately results in equal 

values for R and R, as the fluxes through them are the same. 34 

Furthermore, the bridge circuit consisting of four R re'luctances 

is balanced, and no flux will therefore flow through R3 and R 

showing that mutual coupling is absent. Although the reluctances 

are flux dependent, the balance condition always exists, for the 

values of each of the R though varying, are always the same, 

since equal fluxes flow in each. If the winding Were driven by 

an acc source (see list of symbols) rather than an acv source, 

the flux sources in Figure 4.22a would be replaced by mmf sources 

of NAW. The previous results, i. e. that the bridge is always' 

balanced, that no flux flows through R3 and R4, and that the 

connection between 01 and 011 may be disregarded, can be obtained, 

though not at a glance, by applying a circuit analysis technique 

such as the mesh current method. 
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All the considerations so far given to the elimination of 

mutual flux coupling are valid only when one of the windings 

of a saturable reactor is solely driven by an alternating source, 

and the other winding is observed as to whether or not a voltage 

at supply frequency is induced. During normal saturable reactor 

operation, when both windings are driven, the situation is totally 

different, as the superimposition of ac and dc magnetisation is 

always associated with the generation of even-harmonic flux 

components. This should not be confused with the harmonic com- 

ponents which do not cancel in the devices, such as those in 

Figures 4.3 and 4.5. With the two sources existing in the system 

at the same time, the net flux in various branches of the core 

will be different, causing different reluctance values for 

symmetrical branches of the core, and hence distorting the 

symmetry and the balance in the analogous electric circuit. 

If this cirbuit was linear, the total solution would be found 

as the superposition of the two solutions corresponding to the 

cases when either of the sources existed independently. It would, 

therefore, be anticipated that a component of voltage at supply 

frequency would appear across the dc control winding, and that the 

dc bias current would contain an ac component at the same frequency. 

However, linear superposition is not valid and consequently, 

mutual flux coupling cannot account for the generation of even- 

harmonic flux components in the core. Generation of a double- 

frequency alternating component in the dc control winding, despite 

the absence of mutual flux coupling, indicates therefore that 

another kind of coupling - namely parametric coupling - exists 

between the windings. 
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4.3 Mutual Parametric Coupling and Representation of Saturable 
-ýeactors 

Mutual flux coupling is accounted for by the concept of 

Mutual Inductance, which is defined as the common property of 

two associated electric circuits which determines, for a given 

rate-of-change of current in one of the circuits, the emf induced 

in the other. In the linear system of Figure 4.23, this is 

formulated as 

di di 
el dt 

M 
dt 

(4.21 

di di 
M1+L2 

dt 2 dt 

where LI and L2 are the self inductances and M the corresponding 

mutual inductance. 

Regarding the windings I and 2 of-Figure 4.23 as the control 

and load windings of a saturable reactor, elimination of the 

effects of mutual flux coupling in the device of Figure 4.5 is 

accomplished in such a way that M1 and M2 in 

di di di 
LI+M2_M -& ..... 1 (4.3) 

i dt i dt 2 dt 

are made equal. The same result is achieved in the saturable 

reactor of Figure 4.4 by equating MI and M2 in 
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L 
di 

+d cm i-mi..... (4.4) 
i dt dt 1222 

where Mi and Mi show the flux components created by eacý 
1222 

half of the ac load winding and linking the control winding in 

opposite directions. Equations 4.3 and 4.4 summarize. the methods 

2(a) and 2(b) in Section 4.1.1. All the saturable reactor 

devices seen under the method 3 aim at making the mutual induc- 

tance M directly equal to zero by special magnetic arrangements. 

With M equal to zero, the system of equations (4.2) reduces to 

di 
Li dt 

l 
..... (4.5) 

di 
L2..... (4.6) 

2 dt 

regardless of the method employed to eliminate mutual coupling. 

When the control winding is driven by a dcc source (see list of 

symbols), i. e. 11= constant, no voltage will appear across the 

winding, in accordance with equation (4.5). Since a double- 

frequency voltage is observed across the control winding with the 

application of an alternating current 12 to the load winding, the 

only element in equation (4.5) to account for this is the self- 

inductance L and L should not therefore be constant but rather 

a function of time. If so, equation (4.5) can only be written in 

the form 

d 
el = -t [L W. I ..... (4.7) 
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where LI (t) is týme-varying and II is constant, and only this 

equation can explain that eI=eI M/ 0 when 12-12 (t) is 

present. The inductance L, is, therefore, a function of 12. 

Furthermore, it is an even function of 1 2' so that when 12 Is 

of a sinusoidal form, el (t) does contain even-harmonic components. 

It is clear that a circuit variable (i ) in one of the two 
2 

associated electric circuits causes a circuit parameter CL to 

vary in the other. This is defined as the parametric coupling 

from the first circuit to the second. The same is also true for 

the load circuit whose inductance (L 1 is a function of I, the 

dc control current, as evident from the normal operation of 

saturable reactors. This indicates the parametric coupling from 

the second circuit to the first. Parametric coupling in saturable 

reactors, exists therefore in both directions between the load and 

control circuits. In this way, a saturable reactor can be repre- 

sented by the two equations 

(4.81 

Td-- fL [i MIA M} ..... (4.9) dt 212 

Only during operation with the even-harmonics in the control 

current suppressed (forced magnetisation conditions), can the 

current iI be assumed constant. The equations then become 
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a-t fL (i (t) (4.10) dt 12 

L (I ) IL i (t) 
21 dt 2 

still showing parametric coupling between the two circuits. 

With free Cunsuppressed) harmonic components in the control 

current Cnatural magnatisation), iI is a function of time and 

the equations have therefore to be written in the form of 

equations (4.8) and (4.9). 

In general, parametric coupling, represented by-the func- 

tions LIR2) and L2 (1 
11 

in equatibns (4.8) and (4.9), may be 

symmetrical or asymmetrical, and linear or non-linear. If these 

two functions are of the same form, the parametric coupling 

existing between the two circuits is symmetrical, and if they are 

non-linear with respect to their own Independent variables, para- 

metric coupling is non-linear, as generally. encountered in practical 

cases. However, this non-linearity of parametric coupling, although 

parametric coupling is a result of non-linear media, should not be 

confused with the non-linearity of the system itself. The equations 

d 
t e =. ..... (4.12) t 

[L 
1 

(1 
2)111 

d [L 
2 

Ci 12 (4.131 

represent two parametrically coupled linear inductances, the 

coupling between which is generally non-linear. As, in fact, the 
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self-inductances are also functions of the currents in the 

windings, a saturable reactor has to be represented by the 

equations 

d 
t 

[L (i i ). i ..... (4.14) 
I1021 

ed [L (i i ). i I 
2 dt 21 

indicating non-linear parametric coupling between two non-linear 

inductors. The variables 12 in the first equation and i in 

the second are implicit variables, since they enter into the 

equations as explicit functions of time. The inductances L and 
I 

L2 are, therefore, both non-linear and time-varying. It is worth 

emphasizing that, in the system -represented finally by the set of 

equations (4.14) and (4.15), the parametric coupling between the 

two'inductances is mutual, i. e. it exists in both directions 

between the control and the load circuits. 

4.3.1 Parametric Coupling as a Rosult of'Interaction 
in Non-Linear Medium 

For parametric coupling to exist between two inductors, 

regardless of'their linearity or otherwise, the magnetic fields 

created by each should interact in a non-linear medium. Flux 

interaction in various saturable reactor devices has already been 

seen in Section 4.1.2 in connection with. the classification made* 
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in Section 4.1.1. Parametric coupling arises due to the fact 

that linear superposition does not apply in the non-linear 

medium where the fluxes interact. This is true regardless of 

whether the flux interaction is parallel or orthogonal. 

4.3.1a Orthogonal Interaction 

Let the core material of Figure 4.11 be isotropic, with 

a non-linear characteristic of B= f(H), and let the resistance- 

less windings be driven by ideal current sources, with initially 

one of the windings, and then the other, and then finally both 

windings driven. At any particular point in the common region 

of the magnetic core, when only one of the windings is driven, 

the flux densities 61 and B2, created separately by the magnetic 

4.4. 
= field intensities H and H 

2' 
are B, =f (H and 6f (H 

Figure 4.24. When both the current sources are simultaneously 

4. 
present, the total magnetic field intensity is 

I+H 2" 
which 

creates a resultant flux density in this direction, given by 

4- 
= _*) = f(_Hlý + As the function B= f(H) is of the non- B f(H 

linear form of Figure 4.24, the resultant flux density 8 is not 

equal to the vector sum BI+6 
2" 

but is smaller in magnitude than 

this. The flux density 6 can be resolved into two components B*' 

and BI` - in the direction of the magnetic field intensities H 
22 

and2, as shown in Figure 4.24, and clearly < I-B", I and 

4. -E'3" < I-B" 1. Introduction of _H7 when only H is originally present 2221 

thus causes a reduction in to -B" indicating that the two 

circuits are coupled. As is clear in the figure, the vectors 

4. _+ _), HI+H2 and 61+62 do not satisfy the magnetisatibn curve, neither 

in respect of their-magnitudes nor their different directions. 

I 
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Let one of the sources creating the sinusoidal magnetic 

field intensity H2 in Figure 4.25a be an acc source while a 

dcc source creates the constant field intensity HI. As a 

result of orthogonal interaction between the magnetic fields, 

the flux density 61 varies between the values BI when H2=0 

and 61 when H is a maximum. Since the interaction is 
12 

symmetrical during the time H2 is negative, 61 Ovarips 

with a double frequency between these two values, as shown in 

Figure 4.25b. Hence, an even-harmonic voltage is induced in 

the dc winding when an alternating source is applied to the 

other winding, although the current through the first winding is 

constant and uni-directional. Induction of a double frequency 

voltage in the dc control winding, despite the absence of mutual 

coupling. thus clearly illustrates the parametric coupling between 

the two windings of the saturable reactor in Figure 4.11. 

A similar conclusion may be drawn by representing the mag- 

netisation characteristic in the form of H= f(B), if the windings 

are driven by ideal voltage sources rather than current sources. 

It maybe-shown that, although the control winding is driven by a 

dcv source, the current through this winding when an acv'source is 

applied to the load winding, will have a double-frequency variation. 

4.3.1b Parallel Interaction 

Parametric coupling occurs not only as a result of ortho- 

gonal interaction but also due to parallel interaction of magnetic 

fi elds, as in the device of Figure 4.5 redrawn in Figure 4.26. 



Let the magnetisation characteristic of the core material be 

given by 6=f (H) and the cores a and b be identical, with 

equal cross-sectional area A and equal mean flux-path length Z. 

Two resistanceless windings with NI and N2 turns are wound on 

both cores and connected as shown in the figure. The control 

winding, consisting of the two windings with N, turns, is 

driven by a dcc source, whereas the load winding is driven by 

an acv source. The flux densities in the cores a and b are 

given by 

B= fCH +Hf (H (4.16) 
a2112 

and Bt3 = fCH 
2-HIf2 

(H 
21..... 

C4.171 

respectivelý, where 

HN 

NA 
and H22 

2 

HI is constant and completely determined by the dcc source, H 
2. 

is alternating and to be determined. With a constant HI-, equations 

(4.16) and (4.17) show that the curves illustrating the dependence 

of Ba and 8b on H have the same shape as the original magnetisation 

curve, but are shifted to the right and left along the axis of the 

abcissae by +H as shown in Figure 4.27a. The alternating voltage 

applied to the load winding is equal to the sum of the self-induced 

emf's in the two halves of the winding: 

219 
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dBd Bb d (B +Bb 
V2N2A 

dt 
N2AN2A 

dt (4.20) 

i. e. Ba+Bb is determined by the alternating voltage V2 and 

should vary sinusoidally as in Figure 4.27b. In Figure 4.27c, 

the curve 6a+8býF CH ) is constructed from the two curves 

in Figure 4.27a. By taking definite instants of time (e. g. t=t'), 

it is possible to carry over the values of Ba+Bb to thp curve 

of Figure 4.27c Cfrom point I to point 2 1. and then H2 is 

obtained as in Figure 4.27d. H2 abd consequently 12 contain no 

even harmonics, as the curve of 8a+Bb in Figure 4.27c is add- 

symmetrical. 

In a similar manner, the voltage induced in the control 

winding is found as 

d (B 
b-Ba NIA dt 

meaning that the waveform of the voltage VI is determined by 

Bb-B. The curve Bb-6a=F (H 
2) 

is also constructed from 

the curves in Figure 4.27a and drawn in Figure 4.27c. It is 

important to emphasize that this curve is even-symmetrical about 

the vertical axis. Since the variation of H with time is now 2 

known (Figure 4.27d), the variation of Bb-6a in time is deter- 

mined by this curve, and is given in Figure 4.27e (point 4 is 

found from point 3, and from there point 5 is obtained). 

As seen from Figure 4.27a, Bb-Ba and, consequently, the voltage 

Induced in the control winding vary with twice the frequency of 

the alternating voltage supply. Induction of a double frequency 



voltage in the control winding, despite the fact that mutual 

flux coupling is cancelled by the symmetry of the system, simply 

verifies the existence of parametric coupling for the case of 

parallel interaction of magnetic fields. In the absence of 

bias U, = 0. and H, = 0), the curves Ba and 6b in Figure 4.27a 

coin. cide, their differences vanish, and accordingly the emf 

induced in the control winding becomes equal to zero (no mutual 

coupling). Parametric coupling therefore comes into action 

only when both the control and load magnetisations exist simul- 

taneously in the core. This is also true for orthogonal inter- 

action of magnetic fields. 

If the sources are not ideal and the winding resistances 

are not neglected in the examples above, the situation is much 

more complex, as all the flux densities and field intensities 

are variable. They will therefore influence each other, due to 

the existence of parametric coupling in both directions between 

the load and control circuits, as well as to the non-linearity 

in each individual circuit. Such a system can only be represented 

by two simultaneous non-linear differential equations if the 

magnetisation characteristic is given by an analytical expression 

in the form of B= f(H) or H= MY. 

4.3.2 Mathematical Representation of'Saturable Reactors 

In common practice, a saturable reactor used as a control 
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device to control the ac power delivered to a load is considered 
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rather like a current-controlled inductance, which changes in 

value with the dc control current or, in other words, with the 

dc control mmf. This is shown in Figure 4.28, as the electrical 

circuit with no winding resistances and the generation of even 

harmonics in the control circuit neglected. The control winding 

acts as a short circuit to the dcc control source and the induc- 

tance of the load winding is a function of both iI (controller 

effect) and 12 (non-linearity effect). As far as the controlling 

action of a saturable reactor is concerned, only the influence of 

the control circuit on the load circuit is considered. In mag- 

netic terms, such a saturable reactor, with no winding and load 

resistances and with the control winding driven by a dcc source 

and the loading winding by an acv source, may be represented by 

a mmf-dependent mmf source, which is also a function of the flux 

passing through it, as shown in Figure 4.29a. The alternative 

representation in Figure 4.29b takes the input variable as the 

flux, rather than the mmf in the control circuit, which is 

readily calculable from the B/H curve once the mmf (or current) 

is known. The form of the function, F2 Cý 
12) 

mainly depends on 

three facts: the shape and size of the magnetic core, the way the 

control flux 
I affects the load circuit, and finally the B/H 

characteristic of the magnetic material. 

However, as already seen, parametric coupling exists mutually 

between the control and load circuits of a saturable reactor, and 

a saturable reactor can therefore be fully represented only by 

two flux-dependent mmf sources as shown in Figure 4.30a. This 

representation is convenient when both the windings are driven by 



223 

voltage sources. If the windings are driven by current sources, 

the alternative representation will have two mm-F-dependent flux 

sources, as in Figure 4.30b. Depending on the types of the 

sources which actually drive the windings, two of the four 

magnetic variables Fl. F 
20 1 

and ý2 are dependent on the other 

two. So, with voltage sources driving both the windings, the 

representation of a saturable reactor as a magnetic system is 

given by the two functions 

1ý10 02) 

(4.21) 

F2=F2 (ýIv 02) 

The form of these functions depends on the configuration and 

physical dimensions of the magnetic core, an the magnetisation 

characteristic of the care material, and on the manner in which 

fluxes interact in the core. 

Simply integrating both sides of equations 4.14 and 4.15, 

which together form an electrical representation of a saturable 

reactor, and taking the number of turns of the windings into account 

by the transformations NIAI=FI and N2A2=F2 shows that it is 

possible to obtain the magnetic representation in the form 

ý, =ý1F2) 

(4.221 

2 
(Fli. F2) 

which corresponds to Figure 4.30b. 
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4.4 Magnetic Structure of the Parametric Transformer 

The new magnetic-core configurations proposed by Wanlass 11 

for variable inductor devices may now be investigated in the 

light of the general review in the previous sections. Although 

the commercially available parametric-transformers (Paraformer 

employ the saturable reactor constructed from two C-cores, 

Figure 4.31a, saturable reactors with the same magnetic structure 

may be realized with the magnetic-core configurations 
11 illus- 

trated in Figures 4.31b and c. The common property of all those 

configurations is that the two main portions of the core are 

joined together by portions comprising four spaced zones (legs 

in the last figure) which are common to the magnetic circuits 

of both windings. Hence, the spaced zones (legs) act as the 

common regions where the fluxes produced by each winding undergo 

an interaction. 

Although an exact View of three-dimensional flux distribution 

in such a magnetic core as Figure 4.31a is difficult to obtain, 

the basic form of flux distribution when only one of the windings 

is driven, may be illustrated as in Figure 4.32. The basic flux- 

path is then as in Figure 4.33. When the other winding is indepen- 

dently driven, the flux generated has a distribution symmetrical to 

that in Figure 4.32, which is characterized by the flux-path of 

Figure 4.34. It is now clear that the flux of one winding does 

not link the other, and that the flux density in the core is highest 

at the plane where the two halves of the core are in contact with 
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each other. These two points are also true for the other 

configurations of Figure 4.31: the highest flux density occurring 

within the four spaced zones (the four legs in the case of Figure 

4.31c), and the basic flux-path of one winding not linking the 

other winding. The method used to eliminate mutual flux coupling 

is, therefore, the method 3(b) explained in Section 4.1.1. 

However. when one winding, for example winding 2 of Figure 

4.32, is driven by a source of sufficiently large amplitude, a 

portion of the flux created may follow the alternative path shown 

in Figure 4.35, in addition to the portion following the basic 

flux-path in Figure 4.34. The flux following the path in Figure 

4.35 links winding 1 by two separate paths, with directions such 

that the net flux through winding I is zero. Mutual coupling 

for this portion of flux is cancelled through method 2(a) in Section 

4.1.1. The linking path of Figure 4.35 is longer and flux will 

normally prefer to flow through the shorter and lower-reluctance 

path in Figure 4.34. However, the C cares are ordinary transformer 

cores and the core material is anisotropic. In cold-rolled, 

silicon-iron transformer laminations, the flux pathd of Figure 

4.35 follow the directions of relatively easy magnetisation when 

compared with that of Figure 4.34. Therefore, if the flux density 

in the core is high, the portion of the flux which links winding I 

m, y not be negligible. Nevertheless, no effects of mutual coupling 

are observed as the net flux through this winding is zero. Finally, 

although it is not a necessary condition to prevent mutual coupling, 

orthogonal positioning of the windings (i. e. with their axes trans- 

verse) aids to eliminate the coupling through leakage flux by 

minimising pick-up of stray flux. 



When both windings are driven simultaneously, the control 

and load fluxes following the basic flux-paths in Figures 4.33 

and 4.34 respectively interact in the core both in parallel and 

in orthogonal manners. The zones where parallel or orthogonal 

flux interaction taKes place is shown in Figure 4.36. For flux 

interaction to occur at any point in the core, the flux density 

at that particular point should be so high as to saturate the 

core material therein. As the highest flux density occurs 

where the two C-cores join, this is where the parallel inter- 

action of fluxes taKes place, and parallel interaction is pre- 

dominant over orthogonal interaction. This is also true for all 

the other devices in Figure 4.31. Orthogonal flux interaction is 

negligible, because the total flux density at a poi nt where the 

control and load fluxes cross at right angles, is much lower than 

that in the spaced zones (or legs), due to both the larger volume 

(or cross-sectional area) and to the vector summation of fluxes. 

This flux density cannot be increased to the saturation level, as 

the flux density in the zones where parallel interaction occurs will 

attain the saturation level much earlier. It may, therefore, be 

considered as orthogonal intersection, rather than interaction of 

fluxes, and its effect is negligible compared with the parallel flux 

interaction in the core. Parametric coupling is then achieved only 

through the parallel interaction of fluxes in the corresponding 
52 

zones shown in Figure 4.36. Contrary to the thoughts of some authors 

who have evaluated the parametric transformers as orthogonal flux 

systems, it is now seen clearly that orthogonal interaction is not 
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essentialto the operation of the devices in Figure 4.31, and 

that they are all basically parallel-flux systems. This was 

also the case for the magnetic cross-valve devices in Figures 

4.13 and 4.17. Although it may appear confusing at first 

sight, orthogonal positioning of the C-cores and the windings 

Ooes not contribute significantly to the operation as a satu- 

rable reactor, apart from being a particular means of eliminating 

mutual coupling. 

In Figure 4.37, a cross-sectional view at the plane where 

the two C-cores contact each other is shown. With the flux 

directions in Figures 4.33 and 4.34, for both windings driven, 

the control and load (or the primary and secondary) fluxes, 

and ý 
2' 

cut this plane in the directions shown in Figure 4.37. 

It is seen that the fluxes are additive in two of the four 

interaction zones and subtractive in the other two. This remains 

true if either one or both fluxes change their direction. If, 

for example, ýI is reversed (Figure 4.37), the fluxes are additive 

in zones 2 and 3 and subtractive in zones I and 4. If the direc- 

tions of both fluxes are changed, one diagonal pair of zones (I 

and 4) will still have additive fluxes and the other diagonal pair 

(2 and 3) subtractive fluxes. When the windings are driven by dcc 

sources of moderate magnitude, the first pair of zones is driven 

into saturation, whereas the latter remains far from saturation. 

If one of the sources is an acc source, the pair of zones in 

saturation will alternately be on the diagonals 1-4 and 2-3. 

Alternation of the saturated zones twice within a period of the 
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acc source immediately suggests the double-frequency modulation 

of the reluctances of the associated magnetic circuits, This is 

obvious because, when both windings are driven, flux interaction 

occurs and the fluxes are no longer independent of each other. 

Although one of the windings is driven by a dcc source, the flux 

created by this source, though unidirectional, is no longer 

constant but has a double frequency component as a result of 

parametric coupling. This is not due to the particular config- 

uration of the device but is inherent in flux interaction and 

parametric coupling. 

53 
In a later and more comprehensive patent by Wanlass 

operation of the devices in Figure 4.31 as saturable reactors 

is explained on the basis of what is termed cross-over flux 

phenomena. -Cross-over flux is simply the portion of the alter- 

nating load flux which follows the path in Figure 4.35, and which 

links the control winding. In the case of no dc bias applied to 

the control winding, no voltage appears across the control winding 

as the linking fluxes balance out. When a direct current is applied 

to the control winding, creating a flux in the direction shown in 

Figure 4.33, zones 1 and 4 in Figure 4.35 are driven into saturation, 

resulting in a distortion of the balance condition for the linking 

flux portions . The net flux linking the control winding will no 

longer be zero, and a net alternating voltage will be induced in 

this winding. During the next half period of the alternating load 

current the load flux changes to the opposite direction, the satu- 

rated pair of zones will switch from 1-4 to 2-3. and a net alter- 

nating flux will link the control winding in the direction opposite 
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to that of the net flux which linked the control winding in the 

previous half period. Consequently, a double-frequency voltage 

will appear across the dc-fed control winding. This is called 

in the patent the frequency-doubZing operation mode of the 

variabZe transformer the output from which is taken across an 

additional winding coupled to the control winding, as shown in 

Figure 4.38. It is said to be a VariabZe transformer because 

the amplitude of the generated double-frequency component varies 

with the level of dc-bias in the core. 

This is a rather mechanical explanation of the phenomenon 

of the generation of even harmonic components, which gives the 

wrong impression that this generation is due to the particular 

configuration of, the core. In fact, as explainod earlier, gene- 

ration of even harmonic components can only be attributed to the 

parametric coupling occurring through flux interaction in non- 

linear medium. This explanation by Wanlass falls short, because 

the even harmonics are observed as soon as both windings are 

driven simultaneously, even with a small alternating source which 

does not cause the load flux to fringe out from the normal path 

in Figure 4.34 and to link the control winding with the paths in 

Figure 4.35. Furthermore, cross-over flux in the sense used by 

Wanlass means direct mutual flux coupling between the load and 

control windings, and this is what a saturable reactor is intended 

to avoid. In this study, the behaviour_of the device, will, there- 

fore, be explained on the basis of the normal flux distribution in 

the core, characterized by the flux-paths in Figures 4.33 and 4.34, 

and th a flux portions which may follow the path in Figure 4.35 

will be completely neglected. 
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4.4.1 Equivalent Magnetic'Structure and Analogous Electric 
'Circuit 

Two basic assumptions have so far been made on the magnetic 

structure of the two C-core parametric transformer: Firstly, 

it-is essentially a parallel-flux system and secondly the normal 

flux distribution in the core is characterized by tha pair of 

flux-paths shown in Figures 4.33 and 4.34. When orthogonal flux 

interaction and flux linkages which may link the other winding 

in opposite directions are neglected, a magnetic core structure 

equivalent to all those in Figure 4.31 is given in Figure 4.39, 

without reference to the exact physical dimensions of any of 

the cores in Figure 4.31. The equivalence can be more readily 

understood if this structure is compared with the normal flux- 

paths in Figures 4.33 and 4.34, for a two C-core device. Almost 

the same structure is obtained by cutting the marked sections 

out of the core of the device in Figure 4.31c, as shown in ' 

Figure 4.40. This equivalent structure establishes' the magnetic 

model for the two C-core parametric transformers, a model on 

which whole analyses in this study are based. 

From the magnetic model in Figure 4.39, it. can be seen 

directly that no flux produced by one winding can link the other 

when only one of the windings is energized, and therefore that 

mutual flux coupling is absent. When both windings are energized, 

the fluxes created by them undergo parallel interaction in the 

branches which connect the main branches where the windings are 

placed. 
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The whole question of this magnetic model being exactly 

equivalent to any of those cores in Figure 4.31 lies simply 

in choosing proper values for Z,, A, # 
k2, A2, z and A0, the 

lengths and cross-sectional areas of the core branches, shown 

in Figure 4.39, by considering the flux distribution in the 

particular core concerned. 

An analogous electrical circuit for the magnetic model of 

Figure 4.39 is given in Figure 4.41, when both the resistance- 

less windings are driven by voltage sources. The values of the 

reluctances in each branch depend on the total flux flowing 

through the corresponding branch of the magnetic model (i. e. the 

bridged magnetic care). When the secondary winding is unexcited 

0), all four reluctances in the bridge become equal 

I= R"(ý )], and the bridge is balanced, and none of the 

flux flows through R 
2* 

However, when both flux sources exist simultaneously, the 

bridge is not balanced, as in different branches of the bridge 

different total flux values are present [R'(ý 
I-2)/ 

R"Cý + 

The value of the flux in one main branch is completely determined 

by the flux source in that branch, i. e. in one main branch only 

the flux created by the source of that branch can be present. 

This requirement arises since no mutual flux coupling exists 

between the windings of the bridged magnetic care. However, on 

introduction of the flux source 02, the mmf difference between the 

points A and B departs from zero. If the flux 01 is created by a 

dcv source and the flux 02 by an acv source of frequency f,, a non- 

zero mmf difference will exist between A and B (or C and D) at the 

frequency f, if the circuit is linear. In fact, since the bridge 
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becomes out of balance twice in a period, due to the f lux 

interaction in the non-linear reluctances RI and RI, the mmf 

across AB Cor CO) has also an alternating component of the 

frequency. 2f. 

The analogy between the bridged care and the magnetic 

cross-valve of Figure 4.17 is obvious, and if the connection 

between the points 01 and 01' in Figure 4.22 is removed, the two 

circuits become identical. Disconnecting 01 from 0" corresponds 

to neglecting orthogonal flux interaction in the central region 

of the device in Figure 4.17, and results in the assumption that 

the device it a completely parallel-flux system, just as the 

assumption already made when deriving the bridged magnetic core 

as a magnetic model for the devices in Figure 4.31. Analyses 

developed an the bridged magnetic core therefore , apply also to 

the magnetic cross-valve utilising the winding arrangement in 

Figure 4.17. The equivalence of the magnetic cross-valve with 

orthogonally placed windings, Figure 4.13, to the magnetic model 

of the bridged care may also be obtained by using a different 

winding arrangement in Figure 4.39. Instead of being on the main 

magnetic branches, the windings may be placed on the branches of 

the bridge, in two equal halves of each winding, as indicated in 

Figure 4.42. Parallel interaction of the fluxes then takes place 

only in the main branches of the core, as is also evident from 

Figures 4.15 and 4.16. The magnetic cross-valves have a magnetic 

'ure basically equivalent to that of the core configurations struct 

in Figure 4.31. Actually, the frequency changing devices of Mb,. 

Creary 41-47, 
employing magnetic cross-valves of this type are 

essentially parametric transformers, operating as frequency mult- 
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ipliers or dividers. The unuduaZ characteristics of magnetic 

cross-valve devices 39,40 
such as the voltage regulation, load 

regulation, over-load protection, energy transfer without 

mutual inductance, etc., are only inherent in the phenomenon 

of parametric excitation and resonance. 

4.4.2 Mathematical Representation of the Bridged Magnetic 
Core 

When the bridged magnetic core device of Figure 4.39 is 

considered as a saturable reactor, it should be represented 

by a set of two functions in the form of either equation (4.21) 

or (4.221. These'functions will now be derived directly from the 

structure of the bridged magnetic core, and will then be used in 

the analysis of parametric transformers, as this core provides 

the assumed magnetic model. 

In nqrmal parametric transformer operation, the primary 

winding is driven by an acv source. Since the output voltage 

obtained is of constant amplitude and constant frequency, and 

is also a good sinusoid, the secondary winding may be considered 

to be also driven by an acv source, with the secondary capacitor 

replaced by an equivalent acv source. In this case, the functions 

representing the magnetic system are more conveniently written as 

(4.231 

F2 (Olp 02) 
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and to obtain the required form of these functions, the 

magnetisation characteristic of the core material must be 

given in the form 

H= f(B) ..... (4.24) 

Since the cores of the two-C-core parametric transformer are 

made of the same magnetic material, the function (4.24) relates 

the field intensity to the flux density at any particular point 

in the bridged magnetic core. 

The electrical analogue of the magnetic model is redrawn 

in Figure 4.43, where the mmf drops across each reluctance, and 

the fluxes flowing in each branch in terms of the three mesh 

fluxes and are shown. Application of Kirchhoff's 

second law to each closed loop indicated in the figure gives the 

circuit equations 

Fa+F8+F 

FýFb+Fd-F..... (4.25) 

Fc+Fd-Fe- Ff =0 

where the mmf drops Fa to Ff are defined by 
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FR .4 aa1 

R4 

Fc=Rc40 

..... (4.26) 

Fd=R d' 
(ý 

2+ýa) 

Rp. (ý --ý) 102 

Ff = 

The reluctances R to Rf are functions of flux, and their 

magnetic circuits have the cross-sectional areas and flux-path 

lengths: A and k for R; A and Z for R; 'and A andl Z 
IIa22b020 

for Rc to Rfm as shown in Figure 4.39. By using the general 

relationships 

H. Z 

f(B) ..... (4.27) 

and E3 =ý A 

the mmf drops Fa to Ff can be expressed as 
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F=£ 
a1 A1 

e 
Fb 

2» 
f( 

A 

1 lo FcA 

..... (4.28) 

Ff d0A0 

A0 

A0 

When these are substituted in equations (4.25), the circuit 

equations become: 

[f C+V (4.29) 

e21 
[f( 0) 

- f( 

e1-e0-e 
2)1 f(-Ä-) A 

(4.30) 

0 

Cýo 
+ 

fI+V fc-l 0 2) - fc 1 0) =0 (4.31) 
AAAA 

0000 

In order to obtain the functions (4.23), the variable 0 must be 

eliminated in equations (4.29) to (4.31). However, these equations 

are nonlinear because of the nonlinear function H- f(B). and the 

magnetisation characteristic H= f(B) must be given analytically 

to enable ý to be eliminated. Neglecting hysteresis and the 
0 
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curvature around the origin, the magnetisation characteristic 

of the core material can be represented by the power series 

H= f(B) =c6+cB3+c 65 . ... ..... (4.32) 
135 

where the c terms are constants. Using this form of the 

function f(B) in equation (4.311, results in the condition 

c 
--i [ý 

c 33 

0 
4. (ý 

0+ý22 
)3 

0+ 
(o 

0+ý2 
)s 

2 
)s 

0 
)51+ 

0 

(4.33) 

For this to be equal to zero, each term within the square brackets 

must simultaneously be zero. In fact, if the linear term equals 

to zero, all the other terms immediately become equal to zero 

because of the identity 

n+bn+ cn +d n) -E (a +b+c 

valid for all n=integer. Equating the linear term to zero, 0., 

the non-zero flux circulating around the bridge is found as 
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=I- 

so that the fluxes in each branch of the bridge in Figure 4.43, 

are 

4 +4 12 
2 

22..... 
(4.34) 

4i 
=12 

022 

=01-02 00 
2 

and the two circuit equations (4.291 and (4.30)bebome 

2A 
2) + -F( 1 

2A 
2) ] (4.35) 

100 

21+2)] 
F2F2 (ý 

10 22 -F(T-3 +0 [f( 
2A 

2) 
- fc 

2A 
(4.36) 

20 

The functions (4.35) and (4.36) together constitute the exact 

mathematical representation of the bridged magnetic core and of 

the two-C-core device when A, 9, ,A, Z, A and k are properly 
112200 

chosen. Corresponding to the representation in Figure 4.30a, these 
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twofunctions relate ýI and ý2 to F and F2, and express the 

parametric coupling between the primary and secondary'circuits 

(as each of F and F is a function of both ý and ý ). Their 

forms depend on U) the form of the magnetisation characteristic 

whose nonlinearity, without any restriction on its degree, can 

now be fully expressed, (ii) the configuration and the dimensions 

of the magnetic core, (iii) the manner of flux interaction in 

the care. The parallel interaction of the fluxes ýI and ý2 

is demonstrated by equations (4.34) and by the fact that, in 
ý+ý0-0 

r ___L) equations (4.35) and (4.36), f(WI 2) j f( + f( 2 

2A 2A ýA- 
000 

Another point on the forms of the function (4.35) and (4.36) 

is that, when the bridged magnetic core is symmetrical, i. e. 

2 
and AI=A2, there is interchangeability between 

and 
2 

in order to obtain FI from equation (4.36) and F from 

equation (4.35). With kI=Z2 and AI=A2, interchanging ýI and 

2 
in equation (4.351 produces equation (4.36), and similarly, 

interchanging ý2 and ý2 in equation 14.36) resUlts in equation 

(4.351. This is clearly because, in addition to the physical 

symmetry of the care, the magnetisation characteristic H= f(B) 

is add symmetrical, and f(- 
2A -f( 2A 

00 

once the magnetisation characteristic is known, the functions 

F (ý 
#ý) and F (ý 

*ýI completely explain the behaviour of the 
112212 

device when the resistanceless primary and secondary windings are 

driven by ideal voltage sources. If resistances exist in the 

system, the equations describing the system, both electrically and 
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magnetically, will become differential equations. 

4.4.3 Inclusion of Air-Gap 

In the two-C-core device, an air-gap, however small, is 

inevitably present where the two C cores join, although 

special care is taken to minimise this by matching two cores 

with properly machined faces. Since even a small air-gap 

results in large changes in the total reluctance or inductance 

values, the presence of an air-gap must also be included in 

the magnetic model of the two-C-core device. 

Air-gaps in the two-C-core device exist an the four 

rectangular areas shown by heavy lines in Figure 4.37 (the 

contacting portions of the faces of the C cores). Since these 

unintentional gaps are very small, it is firstly assumed that 

no fringing occurs and that the area of the gaps is equal to A0 

the cross-sectional area of the bridged-branches of the magnetic 

model. Secondly, all of the four air-gaps are assumed to have 

equal lengths. Jt g, as well as equal areas A .* 

These assumptions are made in order to simPlif Ythe way the 

air-gap reluctance enter into the equations. The air is a linear 

medium for magnetism and no flux interaction occurs in the air-gap, 

but. because of the core configuration with four air-gaps through 

which both ý and ý pass, four completely different gaps result 

in an effect somewhat similar to flux interaction. In that case. 

the condition (4.42), is not satisfied, and consequently, non- 

autonomous terms having Z9 appear in tho primary and secondary reluctances. 
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This results in four equal air-gap reluctances in the bridge- 

branches of Figure 4.44, where the same variables (as in Figure 

4.43) are assigned. From this figure, the loop equations are 

F+F+F+F+F..... (4.37) 

F+F-F+F-F..... (4.38) 

(F +F-F-F)+ (F +F-F-F) ;-0 (4.39) 

1234 

where Fa to Ff are the same as those given by equations (4.26) 

and 

F9 Rg. 

F=R 
9* ..... 

(4.40) 
2 

F93=Rg . 
(ý 

I- 

F94= Rg-(ý 
1- 

00) 

The linear (constant) reluctance of one air-gap is given by 

R8 9 

aA0 
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Substituting for Fc to F9 in equation (4.39) and proceeding 

in the same manner as be*fore, using the magnetisation charac- 

teristic given by equation (4.32). the condition to eliminate 

becomes 

c 
+ 

0 

c 

c 
I (ý 5 )SI 0 

(4.42) 

Evidently, this condition is satisfied when ý, =-I (ý -ý). and 212 

the branch fluxes are as given by equations (4.34). Substituting 

equations (4.34) into (4.40), and the result obtained into (4.37) 

and (4.38) gives* 

Although equations (4.43) and (4.44) are obtained on the 

assumption that all the air-gaps are equal, it is noticeable 

that with four different air-gap reluctances, the simplification 

made therein does not apply, and hence F and F will have extra 12 

non-autonomous terms which are functions of the air-gaps. 
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F+F+F+R . -! (ý -ý)+R -1 (ý +ý)=F+F+F+R 
aefg212 g*2 12aef9 

(4.43) 

F+FF+R+RF+F bdeg22g212bd-Fe+R9 

(4.44) 

and finally, the two functions representing the bridged magnetic 

care with equal air-gaps are obtained as 

FF (ý 
,ý)=R. ý+Z f( +1. Z rf( 

++fI 

112gIIA20 2A 2A 

(4.45) 

+k 

!2+ 

-1.1 
ff C)-V 

g22A20 2A 2A 

(4.46) 

Obviously, all the remarks made for the functions (4.35) and (4-36) 

are valid also for the functions (4.45) and (4.46). In addition, 

it is understood that the necessary condition to obtain the 

analytic representation of the bridged care magnetic model (as 

given by equations (4.45) and (4.46) or by (4.35) and (4-36))is 

that the bridge-branches of the care in Figure 4.39 have equal 
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linear reluctances, that is, each bridge-branch has the same 
z 

cross-sectional area A0, and the same flux-path length 20 

and that the air-gaps present are also of the same lengthj 
9' 

(The care is assumed to be made of the same magnetic material 

uniformly throughout its structure). Without this symmetry, 

it is not possible to obtain a mathematical representation 

with only the two -functions, F (011V 03 and F (0 
1' 

0 ), but 

there will be at least a third variable and a third constraint 

equation similar to equation (4.31). 

However, this gives rise to the possibility of exercising 

an external influence on the flux interaction in the core, as 

the differences between the linear reluctances of the bridge- 

branches changes the form of the relationships between FI, F2 

and ý,, ý 
2' 

By introducing intentional air-gaps into one or 

more of the four rectangular areas, in Figure 4.37. the FI (ý 
10 

02 

and F (0 ,0) functions of a two-C-core device can be altered 

to a certain extent, and this may prove useful in obtaining 

improvements in some of the operational characteristics of para- 

metric transformers. 

For the purpose of tailoring the operational characteristics 

of the two-C-core parametric transformers, changing the 

proportion of AI, A2 and A0 may also be considered, since the 

forms of the functions (4.45) and (4.461 depend significantly on 

their values. 



4.4.4 The Primary and Secondary Inductances 

With ý 0, equation (4.45), gives 2 

FFR+k f( +z f( 13*, - (4.47) 
91A0 2A 

For values of the primary flux density far below the' saturation 

level. the magnetisation characteristic may be expressed by 

the linear function 

f(B) B (4.48) 

where 11 = 110.11 
r 

is the absolute permeability, and the relative 

permeability' ji r 
has a maximum and constant value. (The curvature 

near the origin is neglected). Using equation (4.48) in (4.47), 

the primary mmf is found as 

Z. Z 
+0e 

1191 11 A1 li 2A 

and the minimum constant value of the primary reluctance is 

RR+I+0=9+I+0 (4.49) 
mimin 9 li A 11 2A 11 A 11 A 2A 

Ia000 
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I 

The primary inductance is then calculated from 



N2N2 
LiI..... (4.50) 

imax R 
mimin 9+kI+0 

AA 2A 

which is a maximum for ýý0 and ý << ýS. 

Similarly, the minimum and constant value of the secondary 

reluctance is obtained from equation (4.46) for 0 and 

<< ý50 as 

ik 
RR+2+0 (4.51) 

m2min 9pAp 2A 

and the maximum value of the secondary inductance is 

N2N2 
L22..... (4.52) 

2max R 
M2min 9+2+0 

11 AA 2A 

These are the values of the primary and secondary inductances 

which would be measured when no biasing flux existed in the core 

with a 8/ý characteristic not exhibiting a curvature near the origin. 

4.5 Mathematical Representation of Other Saturable Reactors 

As a parametric transformer may be constructed by using any 

form of saturable reactorthe exact mathematical representations 

for two other forms of saturable reactors with parallel and 
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I 

orthogonal flux interaction, will be given in order to complete 



the general treatment of saturable reactors. These representations 

are in the form of equations (4.21) corresponding to Figure 4.30a. 

However, the representation in the form of equations (4.22) can 

be obtained in a similar way by using the magnetisation charac- 

teristic in the form B= f(H) and by considering that the 

(resistanceless) primary and secondary windings are driven by 

(ideal) current sources. 

4.5.1 A Parallel-Flux Saturable Reactor 

The device in Figure 4.5 is redrawn in Figure 4.45, with 

the assumption that the primary and the secondary windings are 

resistanceless and driven by ideal voltage sources. Half the 

number of turns of each winding are on each core, with the 

relative directions shown. Both cores have the same cross- 

sectional area A, and the same mean flux-path length t. The 

voltage equations for the two cores are 

NdaNdb 
v+v= --L -+ --L .N (4.53) 

al bi 2 dt 2 dt I dt 2 

NdaN2dýb= 
v=v+v=-. & 

---NC (4.54) 
2 a2 b2 2 dt 2 dt 2 dt 2 

where 0a and 0b are the total fluxes created in t. he cores a and 

b, respectively, with the directions shown. Because of the two 

separate cores and two separate-halves for each winding, a single 

247 
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primary or secondary flux is not distinctly identifiable directly 

from the magnetic structure of Figure 4.45. However, a primary 

flux may be defined as 

. 
ýa b 

..... (4.55) ol 2 

giving a primary voltage of 

d 01 

dt 

from equation (4.53). Similarly, a secondary flux, defined as 

Ob 

..... (4.56) 

gives a secondary voltage, from equation (4.54) as 

dý2 

2 dt 

The primary and secondary mmf's are, by definition, 

iI 

=NA 222 

and the total mmf's creating the flux ýa in core a, and flux ýb in 

core b are, respectively 

F, F2 
Fa+ (4.57) 

F 
F, 

2 
..... (4.58) 

b7- -T, 



249 

as is evident from the figure. FI and F are obtained from 

equations (4.571 and (4.58) as 

Fa+F 

Fa- 

and Fa and Fb are related to ýa and ýb through the general 

relationships (4.271 as 

9,. f 

Fb= iLf(-; -) 

Hence, 

[f 
!a+V %) 

1 (4.59) 

and F ff(La) _ f(ob)] (4.60) 
2AA 

Solving equations (4.55) and (4.56) for ýa and 0 
b' gives 

%=I 

% z- '01-0 
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and when these are substituted into equations (4.59) and (4.60), 

the resulting -functions are 

el 

+ ft 
e, 

-e 2)1. 
... 11 

ýj 
+2 f( 12 (4.62) 
AA 

which constitute an exact representation of the device. Most 

of the remarks made for equations (4.35) and (4.36) are also 

valid for equations (4.61) and (4.62). There is a striking 

similarity between the forms of both sets of equations, which 

is natural since both the bridged magnetic core and the device 

of Figure 4.5 are parallel-flux saturable reactors in which para- 

metric coupling is achieved through parallel flux interaction. 

The parametric coupling term resulting from flux interaction is 

the second term in equations (4.35) and (4.36), where the first 

term is non-parametric, and there is no such non-parametric term 

in equations (4.61) and (4.62), where the whole function is a 

consequence of flux interaction. This is obviously because parallel 

flux interaction takes place only In a part of the bridged magnetic 

core (the bridge-branches), whereas the whole volume of the cares 

in Figure 4.5 is available for flux interaction. 

4.5.2 An Orthogonal-Flux Saturable Reactor 

The cross-sectional view of a hollow toroidal core is shown 

in Figure 4.46. The primary winding of NI turns is an the outside 

of the toroidal core, artJ the N2 turns of the secondary winding 



are within the annular hollow. The mean flux-path lengths for 

the primary and the secondary magnetic'circuits are 

2 7r R 

R+R 
and k2 Tr C12 2) = 7r CR +R 

respectively. Although ýI and ý2 are orthogonal everywhere 

in-the core, the flux distribution is such that the primary flux 

is uniformly distributed within the area 

(R 2 

but the secondary flux is not so distributed, as the area 

orthogonal to the closed flux-path of ý is not constant along 

this flux-path with mean length k. The area associated with 

varies along its closed flux-path in the form 

A (a) =2 7r R (R -R)- Tr (R 2-R 2)COS C, C4.63) 

where a is the angle shown in Figure 4.46a, and takes the maximum 

and minimum values 

AI= 27rR (R -R+ Tr (R 2-R 2) 
22121 

All, = 27rR (R -R)-. iT(R 2-R 2) 
22121 

251 
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for a= 1800 and 00, respectively, The mean value of A, for 
2 

a= 900, is 

All =27rR(R -R) 221 

The secondary flux created by the voltage source v2 is fixed, 

but, since 

A (a) 
2 

the secondary flux density B is not constant everywhere in the 
2 

core. - Hence, the interaction between and is also a function 

of the angle a. Since the functions F1 (010 02) and F2 (ýIs ý2) 

are obtained through flux interaction, the dependence of the flux 

interaction on the coordinates of the point where interaction occurs, 

makes deriving F and F2 as functions of both ýI and ý2 so complex 

that it is not practicable. It is shown In Appendix III that, even 

when only the secondary flux exists in the core, the function 

F2 (ý 
2) 

has a quite complex -form, because of the dependence of A 

on ab Therefore, to neglect this effect resulting from the shape 

of the toroid core, and to ass6me a large slice of the toroidal 

core to be a straight cylinder, R is considered as much greater 

than RI and R2. Consequently, A2 is the same everywhere along 

the secondary magnetic path, with the constant (mean) value 

A A" = 27rR (R -R 2221 
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and then the secondary flux density is constant everywhere in 

the core resulting in a uniform distribution of ý 
2' 

When only the secondary winding is driven by a voltage 

source, the secondary flux density B" 
2 

creates a field strength 

H', and driving only the primary winding by a voltage source 2 

results in BI which creates H as shown in Figure 4.47. When 

both windings are driven simultaneously, the total flux density 

at any point in the care is B=61+B2 which produces a total 

field strength H as shown in the figure, (magnetic permeability 

of the core material is assumed isotropic and not tensoral). 

Clearly, H/ HI and I-H"I > J-Hý*'. J, because of the nonlinearity of 

the medium. The components of the magnetic field strength 
A in 

the directionsof B and 6 are 
12 

I -H" 
II= 

I'HI cos Y 

11= 1ý1 sin 

rB 

where Cos y. I 
IB"l 

and sin y=2, as apparent from Figure 4.47. TB I 

B 
Hence, H121 

2- 
H 

..... (4.63) 

2 

6 
H2H..... (4.64) 

2 (B 2+B 2)1 
22 



The resultant field strength H is inexorably fixed by B=BI+B2 

and is given by the magnetisation characteristic as 

f(B)= f[(B 
12+B 

2)j 1 

Then, equations (4.63) and (4.64) become 

281 2)1 
f [(B 

12+62 
231 

..... (4.65) 
B+B 

22 

21I. f ((B 2+B 2)'l (4.66) 
2 (B 2+B 2)2 2 

1- 2 

Since the primary flux distribution'is uniform, and the secondary 

flux distribution is assumed uniform, 

B =-- 

1A 

and FH 

=HZ 

Consequently, the two functions representing the hallow toraid 

core saturable reactor (when both windings are driven by voltage 

254 
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sources) are 

f12+22 

2 
..... (4.67) F1 = FJCýjs ý2)= 

A"I* 
(ý Ix 

02 
T-2 + -A 

12 

f (c 1+ 21 

22..... (4.68) FF (ýJm ýI= -L 0. Cw 222A22cI+2 
r 

2 

Again, there is only one term in equations (4.67) and (4.68) 

which results from flux interaction, because orthogonal flux 

interaction occurs in the whole of the core. With such a 

device as in Figure 4.11, where orthogonal flux interaction 

takes place only in a part of the core, additional non-parametric 

terms would appear in the functions F 
I' 

and F2 (ýI* 

to account for mmf drops across the reluctances of branches where 

only one of the fluxes exists. The rematks made for the functions 

(4.35) and (4.36) are also valid for the functions (4.67) and 

(4.68), except that the. manner of flux interaction is now orth6- 

gonal. 
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Figure 4.1 Parametric transformer comprising a saturable reactor 
and a capacitor 
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Figure 4.2 Suppression of effects of mutual coupling by a choke 
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Figure 4.3 Saturable reactor with flux cancellation 
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Figure 4.4 Another form of the device in Figure 4.3 

a 

Figure 4.5 Saturable reactor with voltage cancellation 
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aa 

Figure 4.6 Saturable reactor of Figure 4.3, with functions of windings 
reversed 
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Figure 4.7 Part elimination of flux coupling by a magnetic short 
circuit 
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Figure 4.8 A multi-apertured saturable reactor. 
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Figure 4.9 Orthogonal flux interaction saturable reactor 
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Figure 4.10 Development of orthogonal flux devices 
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10 

Figure 4.12 Another basic form of 
magnetic cross valve 

Figure 4.11 One basic form of mSgnetic 
cross valve 



Figure 4.13 Magnetic Cross-Valve 
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Figure 4.14 Construction of Magnetic Cross-Valves 
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Figure 4.15 Flux distribution in the device of Figure 4.13 
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Figure 4.16 Pertaining to Figure 4.17 Matnetic 'X-valve with differ- 
Figure 4.15 ent winding arrangement 
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Figure 4.18 Pertaining to 
Figure 4.17 

Figure 4.19 Flux cancellations for 
magnetic X-valve 
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Figure 4.20 Derivation of analogous electric circuits 

ID, (p, 
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Figure 4,24 Orthogonal flux interaction 
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Figure 4.26 Saturable reactor of Figure 4.5 
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Figure 4.27 Parallel flux interaction 
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Figure 4.28 Saturable reactor as current-controlled, non-linear 
inductance. (electrical representation) 
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Figure 4.29 Anal og magnetic representation of a saturable-reactor as 
current-controlled, non7linear inductance 
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Figurr 4.30 Analog magnetic representation of two parametrically-coupled, 
non-linear inductors 
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Figure 4.31 Magnetic core configurations proposed by Wanlass 
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Figure 4.32 Flux distribution in the two-C-core device 
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Figure 4.33 Basic primary flux-path 

Figure 4.34. Basic secondary flux-path 
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Figure 4.35 The linking flux-path 
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Figure 4.36 Zones of parallel and orthogonal interaction 
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Figure 4.37 Flux positions in the common region 
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Figure 4.39 Equivalent magnetic model for the cores in Figure 4.31 
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Figure 4.40 Derivation of equivalent structure from Figure 4.31c 
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Figure 4.41 Analogous circuit for bridged magnetic core 
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Figure 4.42 Analogous circuit for magnetic X-valve of Figure 4.13 
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Figure 4.43 Analogous circuit for bridged magnetic core 
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Figure 4.44 Analogous circuit for bridged magnetic core with four 

equal air-gaps 
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Figure 4.45 Pertaining to Section 4.5.1 
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Figure 4.46 Cross-sectional views of hollow toroidal core 
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Figure 4.47 Orthogonal flux interaction, -B" and -B" fixed by 
voltage sources 12 
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CHAPTER V 

THE MATHEMATICAL MODEL OF THE PARAMETRIC TRANSFORMER 

-5.1 The F (ý ,ý) and F (ý *ý) functions and Departures 
I. 12212 

from the Ideal 

The functions F (0 
#0) and F (0 

00) constitute, in 
112212 

general, the mathematical representation of a two-port electro- 

magnetic device in which both parametric coupling and flux 

coupling may exist. Depending on the manner in which and 

are related to F and F, these functions will also reflect 212 

the kinds of coupling existing between the two sides. Generally, 

in the explicit expressions of these functions, the terms 

containing the product of the variables 01 and ý2 result from 

the parametric coupling, whereas the flux coupling gives rise 

to the terms independent of in the function F 
I' 

), and 

in the function F (0 
Is 

01 to the terms which are function s of 

only 01. However, in the devices concerned, flux coupling is 

deliberately eliminated. 

The relationships between the magnetic quantities F, F 
12 

and the electrical quantities i, i, e, e at the ports 
21212 

of the two-port device shown in Figure 5.1, are defined by 

F=N .1 1 11 

=Ni 
22 

. 0. "I (5.1) 

dt 

dt 
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where N and N are the number of turns in the windings if 
12 

the device comprises two windings directly connected at the 

ports. If it is a multi-winding device such as shown in 

Figure 4.45, the way the windings are connected (e. g. series 

or parallel) will be accounted for by the parameters N and 

N2 in equations (5.1). 

In fact, the functions F CO 
1" 

0) and F CO 
18 

01 have 

been obtained in a way that takes the definitions of equations 

(5.1) as axiomatic. The variables FI, F 
2# 

01 and 0 may not 

therefore necessarily correspond to actual physical quantities 

in the device represented. For example, in the device of 

Figure 4.45, the actual physical quantities are ýa# % and FaaF 
b' 

although 
2* 

FI and F2 are defined in Section 4.5.1 to 

comply with equations (5.13. 

The last two equations above, together with the way the 

variables ý and 0 are used in the functions F and F, indicate 

that the entire flux created by one of the voltage sources 

Ce or eI is assumed to be confined within the iron core. 
12 

Actually, a small portion of the flux created by either of the 

voltage sources completes its magnetic circuit through the air 

and is termed as leakage flux. Therefore, these equations are 

more correctly written 

I 
dt 

itotal 
ý ýl +0 

IL 

(5.2) 

1 
W- e2 dt 

2total 2+ý 2L 
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where ý 
iL 

and ý 
2L 

are the primary and the secondary leakage 

fluxes. However, in the functions F (ýIj 0) and F (0 
1" 

0 ), 

only portions of the total fluxes, i. e. ý and ý2, are taken 

into account. Apart from leakage fluxes, no such physical 

phenomena as hysteresis, eddy currents, winding resistances, 

winding capacitances etc. actually existing in the physical 

device have been included in these functions. For a more 

complete modelling of a saturable reactor device, these 

phenomena must also be considered. 

The physical imperfections mentioned may be divided into 

two groups: (1) those of an electrical nature: winding 

resistances, winding capacitances; C2) those of a magnetic 

nature: leakage fluxes, hysteresis, eddy currents. The 

effect of the air-gaps have already been accounted by the 

functions F (ý 
I" 

) and F (ý 
1" 2 

). The distributed capa- 

citances of the windings are negligible in the frequency range 

used (50 Hz) and will not therefore be considered. The distri- 

buted resistances of the windings can be simulated by lumped 

resistive components in an equivalent circuit, distinct from the 

magnetic model. Since the electrical equations of the system 

are derived from such an equivalent circuit, it becomes 

significant when the windings are connected to their associated 

circuits. 

Since they correspond to the magnetic model of the device 

represented, the FI (ý 
1' 2) 

and F2 (ý 
12) 

functions must embody 

the magnetic imperfections. However, not only are the phenomena 

involved very complicated to describe mathematically, but the 
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complexity of deriving the magnetic model from the core 

structure and the assumptions made therewith prevent the 

magnetic imperfections being included in the functions 

FI (ý 
2) 

and F2 (ý 
I" 

). The magnetic imperfections are, 

therefore, treated as external imperfections and are repre- 

sented by lumped electrical components in the equivalent 

circuit, separate from the magnetic aspects of the device. 

This is also the common practice in the theory of conven- 

tional transformers. 

In the case of conventional transformers, departures from 

the ideal are considered at two different levels of abstraction: 

(a) ideal transformer, (b) perfect transformer. The ideal trans- 

former, which has infinitely high winding inductances, is defined 

by the equations: 

ne 

n 

(5.3) 

and draws no current from the primary voltage source at no-load 

operation. The perfect transformer has finite values of 

winding inductances and is defined by 

didi 
1 . 1. M 

dt dt 

didi 
M 

dt 
L2 

dt 

(5.4) 

where the mutual inductance M satisfies the condition. 
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M2 =LL..... (5.5) 
12 

-for complete coupling. The imperfection of flux coupling 

due to the existence of leakage flux is accounted for by 

the coefficient 

m (5.6) 

V/C-. -L 
12 

which is smaller than unity for an actual (imperfect) trans- 

former. 

It is obvious from Sections 4.2 and 4.3 that the F (ý ) 

and F2 (ý ) functions or in other words, the magnetic model 

of two parametrically coupled windings, correspond to the 

second level of abstraction, where magnetisation current 

(reactive) drawn by the windings flows in their finite induc- 

tances. Nevertheless, no such definition, as perfect parametric 

coupling can be made in the same sense as for mutual flux coupling. 

The leakage fluxes in equations (5.2) are defined to conform with 

the idea that each winding has a certain degree of coupting with 

Ox, core itseZf. None of 0 
itota 

or 0 
2total 

links the other 

windings as mutual flux coupling is eliminated in the devices 

concerned. However, only 01 and ý2 undergo flux interaction in 

the iron core, and no flux interaction of any kind occurs between 

0 
IL 

and 0 
2L , as they complete their magnetic circuits through the 

linear magnetic medium of air. The property of perfect parametric 

coupling depends on the care structure and the manner of the flux 

interaction. In this respect, the following qualitative remarks 
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may be made: 

In general, all ý and all ý experiences flux interaction 

in the core. However, if the whole core experiences flux 

interaction, the parametric coupling between the two 

windings may be assumed perfect. 

2. Flux interaction depends on the relative directions of 

I 
and ý2 in the care. As already seen, parallel flux 

interaction is more efficient than orthogonal flux'inter- 

action. Hance, the parametric coupling may be assumed 

perfect if the type of flux interaction is parallel. 

3. The magnetic material of the cores used generally exhibits 

magnetic unisotropy. Hence, if flux interaction takes 

place in the direction of easy magnetisation, the para- 

metric coupling may be assumed perfect. Note that both 

and ý should lie in the direction of easy magnetisation 

for perfect parametric coupling, that is the flux inter- 

action must be of the parallel type. 

The functions F CO 
10 2) 

and F2 (0 
1" 21 

already account for 

the facts in 1 and 2 above, but the magnetic material used has 

been assumed to be isotropic for the saKe of simplicity. If 

the material is unisatropic, it will be quite difficult, although 

possible, to obtain these functions by using different B/H curves 

for different parts of the core, where the fluxes taKe specific 

directions. It is much more difficult to do this in the case of 

orthogonal flux interaction. 
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The ideal transformer defined by equations (5.31 is an 

impedance multiplying device. This property is used in the 

theory of conventional transformers to represent actual 

(imperfect) transformers by equivalent electrical circuits. 

The common practice is to represent the perfect transformer 

'by the equivalent circuit, employing an ideal transformer 

whose impedance changing ratio is L /L , as shown in Figure 
12 

5.2. If K<l, the leaKage fluxes can be accounted for by two 

separate series linear inductances, Lp and Ls, as shown in 

Figure 5.3. Common practice is to represent the transformer 

with finite inductances and imperfect coupling in Figure 5.3a 

by the equivalent circuit of Figure 5.3b, employing an ideal 

transformer to refer the impedances on the secondary side to 

the primary side, or vice versa. Assigning impedances to one 

side only of the equivalent circuits is a very convenient tool, 

and maKes possible the production of-phasor diagrams for practical 

transformers. 

Hysteresis and eddy-current losses are considered together 

as the total core loss, represented in the equivalent circuit 

of Figure 5.4. by a resistor in parallel with the primary 

inductance. The equivalent circuit In this figure also includes 

the winding resistances RI and R2. The secondary leakage induc- 

tance and winding resistance can both be referred to the primary 

side, through the impedance conversion ratio of the ideal trans- 

former. However, before doing this, it is common practice to 

take R0 and LI in front of RI and Lp as shown in Figure S. S. with 
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the argument that R and Lp << R0 and L. L and R, are then 

referred to the primary side, and the equivalent circuit of 

a practical transformer becomes as simple as that shown in 

Figure 5.6. With this equivalent circuit. it is now quite 

easy to determine the referred values of the various elements 

by no-load and short-circuit tests. 

Theabove arguments of the theory of conventional trans- 

formers are not valid for the case of two parametrically- 

coupled windings, and since mutual flux coupling is completely 

eliminated, the concept of referring impedances is not 

appropriate. Furthermore, since parametric coupling is a non 

linear phenomenon, the principles of linear circuit theory as 

applied to the conventional transformers cannot be exploited 

in the case of two parametrically-coupled windings. In contra- 

distinction to conventional transformers, open- or short-circuiting 

one of these two windings has no influence an the other winding, 

and it is not possible to measure referred values of leakage 

inductances and core loss by no-load or short-circuit tests. 

Neither is it possible to separate the hysteresis and eddy- 

current components of-the total care loss from a no-load test, 

although by viewing the device as two independent windings, each 

winding may be associated with its own iron losses. The imper- 

fections must therefore be considered for each winding separately. 

The equivalent circuit for two parametrically-coupled 

windings with winding resistances, leakage inductances and core 

loss is shown in Figure 5.7, where the imperfections are repre- 

sented by lumped elements in the circuits of the individual 
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windings. The FI (ý 
12) 

and F2 (ý 
10 2) 

functions represent 

only the boxed part of the equivalent circuit, and once this 

Is obtained the corresponding equivalent circuit may be 

established, simply by connecting terminals C and D (Figure 

5.7) to a resonating capacitor in parallel with the load, 

and the input terminals A and B to the alternating voltage 

source. The differential equations constituting the mathematical 

model of the parametric transformer can then be derived, 

although their forms are quite complex. Hence, imperfections 

will be introduced one at a time. 

5.2 The General Differential Equations with Winding Resistances 
and Resistive Load 

The winding resistances are easy to determine. They can 

either be calculated from the characteristics of the wire used, 

or be directly measured from the actual device. Since the 

operating frequency is low, do measurement will be of sufficient 

accuracy. 

In Figure 5.8, the equivalent circuit for the parametric 

transformer is shown with the winding resistances R and R and 
12 

the resistive load RL connected across the output. The resis- 

tance R might include the internal resistance, if any, of the 
I 

alternating voltage source driving the primary winding, and the 

leakage resistance of the capacitor C might be included in R 
L' 

The equations for the secondary circuit are 
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- 

i=ic+iL (5.7) 

Rifi dt Nd 
02 

-Ri CLc2 dt 22 

which, upon elimination of iCP iL and e. , result in the 

differential equation 

d 2o d0R2d1 

-a- F+- 
2wRC -Z WN2Z22 W-7-W-77 dz L22 

(1 FZ(ýja ý2)=o (5.8) 

where z=w. t. This equation. is exactly the same as equation 

(3.183). The differential equation for the primary circuit can 

be similarly derived as 

1+1F le ,e)=1=1 cos (Z + ir) (5.9) 
dz wN2112NN 

which needs to be solved simultaneously with equation (5.8) to 

determine and 0 
2* 

Because of the form of the F, [O, o 02) and 

F (010 0 functions. each of the above equations contains both 

variables and 0 
2" 

and this establishes the parametric coupling 



285 

between the primary and the secondary circuits. However, if 

R 0, the second term in equation (5.9) disappears, leaving 

dEI 
=- COS (Z+7r) 

..... (5.10) 
dz wN 

from which the primary flux is found as 

E 
1 sin z sin z 

I L) N Im I 

This does not mean that the parametric coupling from the 

secondary circuit to the primary circuit disappears when R 0. 

The primary circuit is still determined by the function 

F (ý 
,0) and hence, is non-sinusoidal. The second term in 

112 

equation (5.9) represents both the autonomous and the non- 

autonomous losses in the primary circuit. The non-autonomous 

losses can be considered as an extra effect, a (parametric) reaction 

from the secondary to the primary circuit. A similar but reci- 

procal reaction can also be said for the third term in equation 

(5.8). 

As the third term in equation (5.8) dictates, the function 

F2(ýIv ý) must be differentiable to the first order. (Differen- 

tiation is with respect to z, but 01 and 02 are both functions 

of z). This, in turn, requires the function H= f(B) to be 

continuously differentiable and, therefore, to be analytic. 

This is an important factor when the mathematical representation 
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of the magnetisation curve of the core material is concerned. 

Full differentiation of the function F (0 p0) gives 212 

dF2 (ý 
12F (ý sý)dýI+F (o aý). 

dý2 

dz 212 dz 212 dz 
2 

(5.12) 

As can be deduced from the forms of F in Sections 
DF 

(4.4) and (4.5), the partial derivations 2ý 
and 

2 
30 

1 
Do 

2 

are obtainable if the function H= f(B) is analytic and 

continuously differentiable. On substituting equation (5.12) 

21DF 
(4.4) and (4.5), the partial derivations 2ý and 2 

30 
1 

Do 
2 

are obtainable if the function H= f(B) is analytic and 

and denoting 

3F 

f2 
2 

wN 

R 

OJ N 

R 

R 

-N2 
2 

C5.13) 
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and 2) 

w2N2CRL 
2 

equations(5.81 and (5.9) become 

d0 

dz +aFI (ýIv 02e cos (2 + TO 

+bdý2+C [f (ýJj 03dý2+f (ý 0)dýI] 
dz2 dz 12 dz 2 18 2 dz 

gF2 (0 
1,02)=0 

With the transformation 

I=yI 

y2. (5.15) 

dz 
y 

Equations (5.14) take the form 

e cos (z + 70 -aF (Y Y 
112 

vi = V3 (5.16) 

Yl = -b Y- c[f (Y Y )-Y 4f Cy y ). Y']-g. F (Y 
0y 331232121212 
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where dots denote differentiation with respect to z. The 

term with Y' in the third equation above is a part of the 

(parametric) reaction from the primary to the secondary 

circuit. In order for these equations to be written with 

the normal representation 
1 

f (Z. Y) 

where Y', Y and f are column vectors, Y must be eliminated 

from the third equation. The three first-order differential 

equations defining the behaviour of the system in Figure 5.8 

then become 

e cos (z + TO -aF (Y YI 
112 

VI -V 12 - *3 (5.17) 

c ff (Y 
PY 

) 
. -y + f2(Y, 

PY 
)Je cos (Z + 70 - 123 

-y )]I -gF 
CY 

a 

which are the system equations for the mathematical model 

established by the equivalent circuit in Figure 5.8, where the 

two parametrically-coupled inductors are represented by the 

F Cý 
11 

) and F (ý 
1" 

0) functions. These two functions 

(equations (4.45) and (4.46) 1 were obtained by simulating the 
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two-C-core device by the bridged magnetic core, and the 

system in Figure 5.8 or equations (5.17) is, only an approx- 

imate mathematical model of the real device. Neither is it 

complete, since, apart from the winding resistances and the 

resistive load, other magnetic imperfections such as leakage 

inductances and core losses have not yet been included. 

However, even in this case, the complexity arising from both 

non-linearity and parametric coupling is evident from equations 

(5.17). Although the variable z appears explicitly only 

because of the driving function (acv source), it will be noted 

that both Y and Y* everywhere in the equations are functions of 
2 

time. 

5.3 Inclusion of Leakage Inductances into the Mathematical Model 

In general, leakage inductances depend on (a) size of cores 

and coils, M shape of cares and coils, CO number of turns in 

coils, W disposition of windings etc. There is no exact way 

for calculating leakage inductances for a given magnetic device, 

although an estimate can be made based on practical experience 

and with some simplifying assumptions when certain care-winding 

arrangements are considered. In conventional transformers, the 

(referred) values of leakage inductances can be measured by 

short-circuit tests, but such measurements are not possible for 

devices in which mutual flux coupling is non-existent. 
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The following qualitative remarks may be made in respect 

of leakage fluxes when the two-C-core device or the bridged- 

core device investigated in Section 4.4, is compared with 

conventional transformers. In the two-C-core device: 

I. the flux-path followed by the primary or the secondary 

flux is uneven with sharp changes of direction; 

2. the effective cross-sectional area of the core changes 

suddenly at the Joint of the two halves of the core, 

where an air-gap is likely to exist; 

3. the flux density is not the same everywhere in the core, 

but is highest where the two cores join, that is where 

the maximum possibility for flux leakage occurs; . .1 

4. the primary or the secondary winding is not encircled by 

an even, closed magnetic medium of high permeability (iron 

core) unlike the modern designs of conventional transformers. 

. 
Because of these factors, flux leakage from the primary and the. 

secondary magnetic circuits of the two-C-core parametric trans- 

former is higher than in conventional transformers. No inter- 

action occurs between the primary and the secondary leakage 

fluxes even though they intersect each other mostly around the 

joining faces of the two-C-cores. This is accounted for by the 

fact that the leakage fluxes can be represented by two separate, 

linear inductances in the equivalent circuit. 

The equivalent circuit for the parametric transformer with 

winding resistances, resistive load and with leakage inductances 
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of Lp and LS is shown in Figure 5.9. from which the system 

equations are obtained as: 

+R1Lpde1 
(Z) 

2F2 Uz- F (e ,e)= dz wNwNZ112wN 

d22d2 (1 +R2 /R L 
z +F 

dz 2wRLcz 
tJ 

2N2c22 
2 

CR C+L /R 
2 

(A) N 2C 

dF CO ý)Ld2F 
2 

---1-* 
2s2 

dz N2 dz 
2 

(5.16) 

Comparing these with equations (5.8) and (5.91 it is seen that 

the leakage inductances give rise to additional terms which 

require 
1- F 2L F (0 03 and -q-ý F (0 

1p0). dz dZ 2 1" 2 dz 222 

Recalling from equations (4.453 and (4.46), the complexity of 

the dependence of FI and F2 an ýI and 02, it is not difficult 

to realise how much extra complexity these terms will add to the 

set of already very complex differential equations. This is 

Justified at least by the fact that 
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d 2' 
F (ý 0ý). =af2 

(ý 
10 2cd01)2+f (ý 0)d2ýI 

dz 2212d dz 2 Is 2d Z2 

af2dý 
2) 

2+fd22 

dz 212 dz 2 

where the functions f (ý 
1' 2) 

and f2 (ý 
I) 

are as given 

by the first two equations in equations (5.13). However if 

the effects of leaKage fluxes are neglected (by assuming ý 
iL 

and ý 
2L 

in equations (5.2) to be zero. equations (5.181 reduce 

directly to equations (5.8) and(5.9) for Lp and Ls=0. 

5.4 Hysteresis and Eddy Current Losses 

Although considerable research has been devoted to inves- 

tigating the hysteresis and eddy-current properties of iron- 

cored devices, these properties have yet not been formulated 

in a unique and general way which covers all their aspects and 

applies in all cases. Various methods are used to explore 

different aspects of the hysteresis and eddy-current effects 

which are generally accounted for by approximate empirical 

formulae. 

Under cyclic magnetic conditions, energy is expended as 

the hysteresis loss, and the area of the hysteresis loop shown 

in Figure 5.10 is a measure of the energy expended per cycle. 

For the static hysteresis loop. the hysteresis loss per unit 

volume is empirically given by2 - 
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phýk 
h' 

f. B 
mx 

W/M 3 
...... (5.20) 

where kh is a constant, f is the frequency and x is the 

Steinmetz index between 1.6 and 1.8 for common magnetic 

materials. If the loop is obtained dynamicaZZy, eddy-current 

losses are added and the loop area is increased, as shown in 

Figure 5.10. 

Eddy currents are induced in the iron mass due to rapid 

flux changes. The flux produced by these currents are in 

opposition with the main magnetic flux and tends to reduce it. 

The energy loss due to the eddy-currents causes heating and is 

not recoverable. As an accurate calculation of eddy-current 

losses is difficult, an elementary appreciation is generally 

given by the formula 2 

P=K f2 62 W/M3 

where k8 is a constant. Since the eddy-current loss is 

proportional to the square of the frequency, the area of the 

dynamic hysteresis loop expands with an increase in the 

frequency. 

A general trend is to represent the effects of eddy- 

currents by an imaginary equivalent circuit, consisting of a 

transformer with a short circuited secondary 
?, 4 This concept has 

been used by Hindmarsh 3 in the case of the field winding of a 
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machine, and by Bean et al . for the eddy currents induced 

in the solid parts of transformers. The eddy-current losses 

are represented by a single short-circuited loop coupled to 

the transformer winding, which leadstothe conclusion that the 

affect of the eddy current is to increase the effective 

resistance but to decrease the effective reactance of the 

transformer. 

A well-known concept used for representing the hysteresis 

losses, is to regard permeability as a complex or vector 

quantity of the form 

11 = P, -i P" 

or 11 = 11 a -jo 
(5.22) 

where the imaginary part of the complex permeability accounts 

for the hysteresis losses. * The real and imaginary components 

(or the modulus and the argument) of the complex permeability 

can be calculated with the aid of elliptical loops on the B/H 

plane, with areas equal to those of the actual hysteresis loops. 5 

The negative signs in equations (5.22) are due to the fact 

that magnetic hysteresis always causes the fundamental 

component of B to lag behind that of H. 
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This complex notation method is convenient, as it enables 

permeability and loss to be expressed on an equal footing and 

represented in mathematical analyses by a single symbol. 

However, its application is restricted to the cases where B 

and H can be regarded as complex vectors when worKing in the 

frequency domain. As well as this, most of the other methods 

are concerned only with the steady-state performance, and 

cannot bring out information applicable to the transient 

operation. 

As mentioned earlier, it is common practice to regard 

hysteresis and eddy current effects together as the total 

core loss. Notwithstanding this, their effects are not confined 

only to introducing damping into the associated circuits, since 

they also change the reactive parameters of the circuits by 

introducing phase shifts between voltages and currents. Most 

important of all, they týause the B-H relationship to become a 

multi-valued function and bring ýistortion into the voltage and 

current waveforms. In conventional transformers, it is relatively 

easy to determine the waveform distortion due to hysteresis 

when the time-variation of either 8 or H is completely known, 

but this waveform distortion is considered separate from other 

aspects of the hysteresis and is generally neglected. It has 

yet not been possible to express numerically or analytically 

the magnetisation curves of magnetic materials, with multi- 

valued functions giving simultaneous representation of both non- 

linearity and hysteresis property. 
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Since the construction of the F2 Colo 02) and F2 (0 
1j, 

021 

functions in Chapter IV was based on the assumption that the 

magnetisation characteristic is a single-valued function, we 

are restricted to the use of the equivalent circuit in Figure 

5.7 where the total core loss is represented by the resistive 

elements R 
Ol 

and R 
02 . 

This means that only one aspect - the 

loss - of the hysteresis and eddy current effects is concerned. 

The nquivalent circuit for the parametric transformer is then 

shown"in Figure 5.11, from which the differential equations 

are to be derived. However, before these equations can be 

written, the values of R 
01 

and R 
02 

must be calculated by using 

equations (5.20) and (5.21). Firstly, as the flux density is 

not constant everywhere in the two-C-care parametric transformer, 

different losses will occur at different parts of the magnetic 

circuit. Secondly, these empirical formulas require the maximum 

value of 6 to be known in order to calculate the losses. If 

only one of the windings is driven by a voltage source, it may 

be possible to, find Bm in the core. But, if the two windings 

are driven simultaneously (or after the onset of parametric 

oscillations), 6M cannot be known before the differential 

equations are solved. Additionally, Bm will be changing during 

the transient state, until it settles down to a permanent value. 

Thirdly, with kh and ke known in equations (5.20) and (5.21), 

they are only valid for a sinusoidal waveform of flux density. 

It is therefore virtually impossible to determine the exact 

values of R 
01 

and R 
02 

in Figure 5.11. 
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As both ýI and ý2 exist in the care during parametric 

transformer operation, the core losses and therefore R 
01 

and R 
02 

are functions of both ýI and ý 
2" 

so that the resistive 

elements R and R are not simple linear resistors, but are 
01 02 

non-linear and time-varying elements. Due to the complication 

of parametric coupling, it is not practically possible to 

express R 
01 

and R 
02 as functions of ýI and ý2. If the core 

losses could be obtained in the form of the two functions 

R 
01 

(ý, S ý2) and R 
02 

(ý 
Is 2 

), the effects of hysteresis and 

eddy current losses on the parametric transformer operation 

would be more accurately represented in the system equations. 

However, disregarding the dependence of the total care losses 

on parametric coupling (or flux interaction) and simply 

assuming that R 
01 

and R 
02 

are linear, constant resistors enables 

the system equations to be written from Figure 5.11. 

Unlike conventional transformer practice, R and R 
01 02 

cannot be taken from their existing places to the terminals AB 

and CD in the equivalent circuit of Figure 5.11. Even with no 

load at the output of the parametric transformer. a high current 

flows in the secondary circuit after the parametric oscillations 

have built up, and a high primary current is drawn from the 

supply. The voltage drops across the series elements R, Lp and 

R 
2" 

LS have an important influence on no-load operation and are 

not negligible. 
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With the assumption that the values of the linear, 

constant resistors R and R are known, the differential 
01 02 

equations then derived from Figure 5.11 will be mom complex 

than equations (5.18). But, if the leakage inductances Lp and 

Ls are neglected, the equivalent circuit becomes simpler and 

yields the differential equation for the primary circuit 

1+1 01 1F (e ,e)- 
01 

-. 
1 (5.23) * dz 

RRN2112R+RN 
1 01 1 

and for the secondary circuit 

R 
1+ --L dR 

2++ RL_ 
-2+ 

dF 

dz 2wCR (I +R+R 
TZ 

(i N21+ 
dZ 212 

LR -2 LR 02 2 
02 02 

+R2 /R 
LF 

CN2 02 
222 

2 

(5.24) 

Apart from the appropriate changes in the coefficient of each 

term in these equations, their form is basically the same as 

equations (5.8) and (5.9). In fact, when the core losses are 

neglected by taking R 
01' 

R 
02ý 

-, equations (5.23) and (5.24) 

directly reduce to equations (5.8) and (5.9). 
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As is-evident from Sections 5.2 to 5.4, the equations 

constituting the mathematical model of the parametric trans- 

former are quite complex, even when magnetic imperfections 

such as leakage fluxes and core losses are neglected. For 

this reason, investigations on the operation of the parametric 

transformer will be based on the equivalent circuit of 

Figure 5.8. or equations (5.8) and (. 5.9), and leakage fluxes 

and core losses will not be included in the system equations, 

even though they are comparatively higher than in conventional 

transformers. As can be seen from the coefficients of equations 

(5.23) and (5.24), the core losses increase damping and also 

introduce detuning into the system. Therefore, the effects of 

the core loss can be studied under the general guidelines of 

Sections 3.3 and 3.4, Chapter III. 

5.5 The General Equations with Reactive Loads 

_ 
As mentioned in Section 3.5, a single second-order 

differential equations is not sufficient to describe the 

secondary circuit if the power factor of the load is different 

from unity. Because the load current iL cannot be eliminated 

amongst equations (5.7) when the load is reactive, it remains 

as another system variable to be determined in addition to 

and 2 

The load to be connected across the output may in general, 

contain all resistance, capacitance and inductance components. 
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If such a load is given in impedance dimensions, it may be 

represented by a series RLC circuit as shown in Figure 5.12. 

The equation for the primary circuit remains unchanged as 

equation (5.9), while from this figure the secondary circuit 

equations are 

dt 

fi dt c 

..... (5.25) 

e2 =Ri+fi dt +Ld 
iL 

LL CL LL dt 

i-=i 
2c 

which finally lead to the two second-order differential 

equations 

d2ý2+R2dF2 (ý 
1" 2+F2 

(ý 
12)-I1 11 

dz 2wN2 dz 
w2N22C W2 NCL 

(5.26) 

C RL d iL 
+1 (1 

F2Cý102) 
LC -S-) :i-0 L 

dz 2w dz 
w2cLL2N 

(5.27) 
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where z= wt. The system variables are and i L' and 

these are to be solved from the three simultaneous differ- 

ential equations given by equations (5.91, (5.26) and (5.27). 

I I, inductive and capacitive components are not simul- 

taneously present in the load, then a load with a negative 

power factor can be represented by a series RC circuit, and 

a load with a positive power factor by a series RL circuit. 

Both types of load are shown in Figures 5.13 and 5.14 at 

the output of the parametric transformer. 

The first two of the three system equations for Figure 

5.13 are found to be the same as equations (5.9) and (5.26), 

and the third equation is obtained as 

d iL 1 t. 1 
+I)i-F2 

(ý 
10 2' 0 (5.28) 

dz wRLccLLwNRc 

For-Figure 5.14, the set of three system equations is 

given by equations (5.9), (5.26) and the third equation is 

21L+L+21 
2'_ 

.0 C5.29) 
dz 2wLL dz w' LLCL2LLCN 

Equation (5.29) may be obtained from equation (5.27), by sub- 

stituting the hypothetic value CL representing a short 

circuit in place of C L' Similarly, for LL-0, equation (5.27) 

reduces to equation (5.28). 



302 

If the load with the general RLC form is given in 

admittance dimensions it may be represented by the parallel 

RLC circuit shown at the output in Figure 5.15. With such a 

load in the secondary circuit, it can immediately be said that 

C and CL can be combined, yielding the total capacitance in 

the secondary as CTýC+CC The equation for the primary 

circuit of Figure 5.15 is fttill unchanged and is given by 

equation (5.93. The secondary circuit equations are 

F da e 2 C ++ 
N dt RL LL 

d 
e N R 1 

2 2 dt 2 2 

de 

2 
dt +CL dt 

2 (5.30) 

which lead to the single but third-order differential equation 

d3e2+1d2e2+1de 2- +R2d2F2, 
2C dz3 dz wTLL dz 

wN2 dz 2 
2 

R 
C, +R 2) 

dFR 
L2+2-F', 

= 0 (5.311 
2cTN2 dz 

w3L LcTN22 

where CTýc+CL. If, for a parallel RC-type load, the value 

LL' co is substituted in equation (5.31) and the resulting 

equation is integrated wiih. respect to z, the equation finally 

obtained becomes the same as equation (5.83, but with C replaced 
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by C T* Hence, a parallel RC-type load does not change the 

basic nature of the resistively loaded secondary circuit, 

apart from increasing the total value of the secondary 

circuit capacitance. But, in the case of a parallel RL-type 

load, the secondary circuit equation remains the same as 

equation (5.31), where CT now equals C only. Like equations 

(5.18), this equation involves also the first and the second 

derivatives of the function F (ý *0), and the statement made 212 

in Section 5.3 on the overall complexity of the equations can 

also be repeated here. 

As can be noticed from the form of the differential 
I 

equations for different loads, an inductive load causes the 

secondary circuit differential equation to be more complex in 

form than does a capacitive load. This is'also an indication 

of the poorer behaviour of the parametric transformer on induc- 

tive. loads than on capacitive loads. 

The equations obtained for the reactively loaded parametric 

transformer may also be represented in the normal form by a set 

of first-order differential equationz. This is relatively easy 

for series RLC, RL and RC tyPe loads, where the total number of 

equations is five, resulting from the five system variables, 

Y=ý&YY=2Yi and Y--= L. In the 
112 2" 3 dz '4L 5" dz 

case of the series RC-type load, this number is four as the 

fifth variable is not needed. 
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The parametric transformer loaded with parallel RLC or 

RL type loads (equations (5.9) and (5.31) together) may be 

represented by a set of four first-order differential equations 
d 

with the system variables Y, = ý1# Y2 
20 

Y3 dz 2 ahd 

Y= 
d2 ý 

2. However, the last equation in the set, 4 -7z-r- 
Y4= f(Z' YI, Y2, Y3, Y4), will be quite lengthy and complicated 

because of the involvement of the first and the second derivatives 

of the function F (ý 
#ý), as given by equations (5.12) and 

212 

(5.19). In the case of a parallel RC-type load. the number of 

equations in the normal form is only three, since equation 

(5.31) reduces to a second-order differential equation. 

To avoid the extra complexity and the increased number of 

equations arising because of reactive loading, an approach 

similar to that followed in relation to Figure 3.32 at the end 

of Section 3.5 may also be considered, although this will not 

-fully reflect the effects of the reactive load, especially on 

the voltage and current waveforms. Assuming signals exist only 

at the single frequency w in the secondary circuit, the parallel 

combination of the resonating capacitor C and a general type 

load ZL may be converted to an equivalent circuit consisting of 

C' and R as shown in Figure 5.16, by using the concept of 

complex impedance. When this equivalent circuit is connected 

at the output terminals, the equivalent circuit for the para- 

metric becomes as in Figure 5.8. Thus, equations (5.8) and 

(5.9) but with the new effective values C' and R may be some- 

what used to investigate the operation with reactive loads. 
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5.6 Simulation by Analogue Computer 

Taking the equivalent circuit in Figure 5.8, together with 

equations (5.8) and (5.9), as the basic mathematical model of 

the parametricr transformer, a block diagram for analogue 

simulation purposes may be obtained as in Figure 5.18.. In 

this diagram, the differential equations of the primary and 

the secondary circuits, equations (5.8) and (5.9), are 

simulated by the computing elements whose symbols are defined 

ifi Figure 5.17. Normally, an analogue computer solution of 

ordinary differential equations does not require a differen- 

tiator unit, as differentiation may be eliminated from the 

equations, and integrator units suffice to establish the 

simulation. However, the term with 
1- 

F (ý ,ý) in equation dz 212 

(5.8) cannot be eliminated through integration or any other 

process, and the differentiator device remains necessary for 

the analogue simulation of the parametric transformer. If 

leakage inductances or some forms of reactive loads were also 

considered, more than one differentiator would be needed. Such 

a diagram as in Figure 5.18 is very troublesome to establish on 

an analogue computer, because of the difficulties arising from 

the use of a differentiating network. 
6 The need for a 

differentiator may be avoided only if the explicit analytical 

expression of F2 (ýI# ý2) in terms of ýI and ý2 is known, so that 

the differentiation in equation (5.12) can be done manually. 

Extra function generators are then needed to produce the functions 

f (ý 0ý) and f (ý 
Is 

), which are the partial derivatives of 

F2 (ýIffl ý2) defined in eqOations (5.13). 
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The two-input, two-output block in the centre of the 

diagram designates the mathematical model of the magnetic 

structure of the parametric transformer, and is where the 

functions FI (ý 
12) 

and F2 (ý 
1" 2) 

are produced. The upper 

and lower parts of the diagram correspond to the primary and 

secondary circuit equations. Since these are simultaneous, 

the corresponding parts of the diagram have to be inter- 

connected, and this takes place within the square block 

which represents two parametrically coupled windings. For 

different core-winding arrangements, such as the two-C-core, 

the hollow toroidal core, etc. employed to construct a para- 

metric transformer, different diagrams generating the 

functions F 
I" 

and F2(ý,, are inserted In this 

block. 

For the model of the two-C-core device simulated by the 

bridged core, equations (4.45) and (4.46) are simulated by 

the diagram in Figure 5.19, where four function generators 

projducing the function H= f(B) are required. When the diagram 

in this figure is inserted in the square block in Figure 5.18, 

the complete simulation diagram for the two-C-core parametric 

transformer is obtained. Equations (4.61) and (4.62) for the 

saturable reactor of Figure 4.45, are simulated by the similar 

but simpler diagram of Figure 5.20. In the case of orthogonal 

flux interaction, simulation of the F 
10 

and F 
10 

functions requires square-root and division circuits, which also 

introduce many practical difficulties into the realization of the 

simulation on a computer. 
7 Nevertheless, equations (4.67) and 
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(4.68) representing the hollow toroidal core device may be 

simulated by the diagram in Figure 5.21, where quarter squares 22 

nuZtipZiers 
8 

are employed to obtain 
2+ -2 2 AA 

12 

Various methods -my be applied to realize the function 

generators which simulate the magnetisation characteristic 

H= f(B). The use of general purpose diode function generators 

on the basis of piecewise linear approximation to the magnet- 

isation curve may not be permissible, as the derivative of 

F (ýIJV ý) is required and this will contoin discontinuities 

due to differentiation at the junctions of straight line 

segments in the approximated function. 
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Figure 5.3 Transformer with Finite Inductances and Imperfect 
Coupling 
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Figure 5.4 Equivalent Circuit for a Practical Transformer having 
Finite Inductances, Imperfect Coupling, Winding Resis- 
tances, and core loss. 
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Figure 5.5 Equivalent Circuit as Figure 5.4 but with R0 and LI 
Connected at the Sup'ply Terminals 
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Figure 5.6 Equivalent Circuit as Figure 5.5 but with Ls and R 
referred to the Primary Side. 
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Figure 5.8 Equivalent Circuit for the Parametric Transformer with 
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Figure 5.9 Equivalent Circuit for the Parametric Transformer with 
Winding Resistances, Leakage Inductances and Resistive 
Load 
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Figure 5.12 The Parametric Transformer with Series RLC-type 
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Figure 5.15 The Parametric Transformer with Parallel RLC-type 
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Figure 5.16 Combination of the Secondary Capacitor with 
a General Type Load, using the Concept of 
Complex Impedance 
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Figure 5.17 Symbols for the Computing Elements used in Analogue 
Simulation 
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Figure 5.19 Analogue Simulation of the Magnetic Model for 
the Bridged Core Device or two-C-core Device 
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Figure 5.20 Simulation of the Magnetic Model for the Oevice of 
Figure 4.45. 
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0 

Figure 5.21 Simulation of the Magnetic Model for the Hollow 
Toroidal Core Device 
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CHAPTER VI 

THE RELATIVE MAGNETISATION CURVES AND THE CURRENT WAVEFORMS 

6.1 The Graphical Form of the F (ý 
p0) and F (0 ,ýI functions 

112212 

When obtaining the functions F) and F (0 ,0) in 
2212 

Chapter IV, the only assumption made an the form of the magnet- 

isation. characteristic was that hysteresis could be neglected, 

so that H= f(B) could be taken as a single-valued function. 

No restriction whatsoever was put on the degree of the non- 

linearity possessed by the magnetisation characteristic. It 

is therefore possible. once the magnetisation curve CH = f(B) I 

is given, as in Figure 6.1, graphically to construct the functions 

given by equations (4.45) and C4.463, for the bridgedmagnetic core 

including an air-gap. 

The first two terms in equation (4.46) representing the 

secondary magnetic circuit are autonomous (non-parametric) and 

can be obtained by a simple linear scale conversion of the H/B 

curve. The linear term R 
9' 

is a straight line in the F2 /0 
2 

k 

plane, with a slope R. g To obtain the term 
0A0 

kfC 
L2 

), the scale on the horizontal axis of Figure 6.1 is 
2A 

2 

multiplied by the-factor A and the scale on the vertical axiE 
2 

by the factor k. The curve resulting from 
2 

FFR+EfC! 2) 
..... (6.1) 

222922A2 

9 -2 22 
k 

plane, with a slope R. g To obtain the term 
0A0 

kfC 
L2 

). the scale on the horizontal axis of Figure 6.1 is 
2A 

2 

multiplied by the-factor A, and the scale on the vertical axis 
2 

by the factor k. The curve resulting from 
2 

is shown in Figure 6.2a, where the linear term R92 is shown by 
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the brQkert line. 

The non-autonomous (parametric) term in equation (4.46) 

is the sum of two terms 

2+1)+1Zf(t_ 
21 

) (6.2) 2A02A02o2A02A0 

The curve forl ko. f 2) may be obtained from Figure 6.1 in 2 Ao 

the same way as that outlined above, with multiplication factors 

for the horizontal and vertical axes of 2A and-! Z re I spec- 02o 

tively. However, the function fC2, I) requires. that. 2A2A 
00 

for a given this curve, while retaining its shape, is shifted 

to the left by in the F"/ý plane. The curve representing 
122 

the first term of equation (6.2) is thus given as the curve a 

in Figure 6.2b. Similarly the curve for the second term of 

equation (6.2) is given by the curve b in Figure 6.2b, shifted 

to the right by ýI. The curve for the whole expression in equation 

(6.2) is then the sum of these two curves, that is the curve c 

in the same figure. 

The curve of F /0 
2' 

for a given 0 for the secondary magnetic 

circuit of the bridged core is obtained by summing the curve in 

Figure 6.2a with, the curve c in Figure 6.2b, i. e. at each point 

on the abcissae the corresponding ordinates are summed (e. g. 

TBY + iff in the figure). The resulting curve shown in Figure 6.2c 

is the graphical illustration of the function 
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F' + F" z: R, +Z f( 
t) 

222A 

102+012-0 1)] 
2A+V2A 

00 

(6.3) 

and demonstrates how F varies with for a given constant 

value of 01. 

It is evident from Figure 6.2 that the parametric term in 

equation (6.31, illustrated by the curve c in Figure 6.2b, is 

overwhelmingly dominant over the non-parametric terms in deterý- 

mini ng the level of saturation (i. e. the value of ý in 

Figure 6.2c for very rapidly increasing F ). Around the origin, 
2 

the slope of the linear portion of the F2 /ý 
2 

curve is not affected 

significantly by the variations in a small value of However, 

if the given value of is large, as is the case in the figure, 

the slope around the origin of the curve in Figure 6.2c, is much 

larger than when 0. It is also noticeable that if the given 

value of changes sign, the shifting curves a and b in 

Figure 6.2b interchange their places, although the resultant 

curve in Figure 6.2c remains the same. 

By giving different but constant values to ýI .a family of 

F curves can be obtained for the secondary magnetic circuit 

of the bridged core. Deriving such a family of curves establishes 

the graphical illustration, in the F22 plane, of the two- 
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variable function F Cý Aý). in which is considered a 221 

parameter rather than a variable. The family of curves obtained 

for different positive values of with equal incrcments is 

shown in Figure 6.3. where equal increments in ý are used to 

illustrate more precisely how the variation of F dopends on 

A change in the sign but not the magnitude of ý result in the 

'same family of curves, because the change in the sign does not 

alter the nature of Figure 6.2b. It can, therefore, be stated 

that F is an odd function of but an even function of 

ý1. 

Through the same graphical procedure outlined above, the 

primary magnetic circuit of the bridged core can be represented 

by equation (4.45). namely 

Fj(ýJv ý)=R+ it -f (! -I) + .1k[f()+V 291A1202A02A0 

1 (6.4) 

and a family of curves similar to that in Figure 6.3 may be 

obtained in the FII plane when ý2 is considered a parameter. - 

The graphical illustration of this two-variable function is given 

in Figure 6.4. In contrast to F2 42J. 02), it is clear that 

F1 (028 02) is an odd function of 01 but an even function of 02. 

An exact analytical representation of the bridged magnetic 

core as a saturable reactor is complete only when both Figures 6.3 

and 6.4 are considered simultaneously, tAnce the mathematical model 
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for. a saturable reactor consists of a set of two simultaneous 

functions of two variables, as explained in Section 4.3.2. 

It is clear from the figures that the primary flux changes 

the characteristics of the secondary magnetic circuit, as well 

as the secondary flux affecting the primary magnetic circuit in 

a corresponding manner. Parametric coupling between the primary 

and secondary magnetic circuits therefore exists mutually, 

explaining both the even-harmonic generation and the controller 

action of the device. 

The parallel-flux saturable reactor investigated in 

Section 4.5.1 may also be represented by two families of curves 

similar in form to Figures 6.3 and 6.4. As there are no, auto- 

nomous terms in equations (4.61) and (4.62), and the whole of the 

expressions are parametric, the influence of ý1 on the F2 /ý 
2 

characteristic, or of 0 on the F /0 characteristic, is more 

direct thanýin the bridged magnetic core. In this way, the para- 

metric coupling in the device of Figure 4.45 may be considered 

more effective than that in the bridged magnetic core. 

A similar kind of graphical representation, although with 

only one family of curves, is used in the literature 1,2 to 

obtain the control characteristic of the dc-controlled saturable 

reactor, where the primary winding is assumed to be driven by a 

direct current source. These curves are shown In the first quadrant 

only in Figure 6.5a, with the derived F2 /F 
I 

(control) characteristic 

in Figure 6.5b. Obviously, the function of interest is FF 
22 

where F the control ampere-turns, is taken as a parameter. No 

interest is shown to the function 01 (F 
12) 

(or (F 
I' 

F which 
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would represent the magnetic circuit associated with the control 

winding of a saturable reactor. However, in the case of the 

-parametric transformer, the form of equation (4.23) must be 

used. and it is necessary to consider both of the families of 

curves in Figures 6.3 and 6.4. 

6.1.1 Reluctance Modulation at Twice Frequency 

When no primary flux exists in the bridged magnetic core, 

the secondary magnetisation is given by the outmost curve of 

Figure 6.3. From the slope of the linear portion of this curve 

around the origin, the minimum (initial) value of the secondary 

reluctance can be calculated, as given by equation (4.51). With 

the introduction of primary flux into the core, the initial 

reluctance of the secondary magnetic circuit increases. This 

is clearly illustrated in Figure 6.6a, where the initial portions 

of each curve of Figure 6.3 are shown by straight lines, the 

gradients of which give the secondary reluctance values for 

different values of 01. By carrying the corresponding values of 

R 
M2 

and 01 into a new R 
M2 -01 plane, the variation of R 

M2 with 

I 
may be obtained from this figure, as in Figure 6.6b. The 

curve here is precisely the trans-reluctance characteristic of 

Figure 2.2. Chapter II, which was assumed on the basis of the 

qualitative discussions in Section 2.1.1. However, this charac- 

teristic has now been derived directly from the exact mathematical 

representation of the bridged magnetic core. 

Since the gradients of the straight lines in Figure 6.6a, 

are proportional with the absolute value of the primary flux, the 
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other half of the trans-reluctance characteristic for <0 

is even symmetrical with that in Figure 6.6b. This leads 

immediately to the conclusion of Section 2.1.1, that if 

varies sinusoidally with a frequency f, the variation in R 
M2 

is of twice this frequency, or 2f. 

The fact that the secondary flux 02 also modulates the 

primary reluctance R 
MI 

is evident from Figure 6.4, where the 

gradient of the portion of each curve near the origin is 

dependent on 0 
2' 

Following the same procedure as above, a 

trans-reluctance characteristic exhibiting how R varies with . mi 

2 
may be obtained in the R 

mi 2 
plane, as shown in Figure 6.7. 

Like the curve in Figure 6.6b, this trans-reluctance curve is 

even symmetrical, justifying the assumption of a double-frequency 

modulation of the primary reluctance by a sinusoidally-varying 

secondary flux, made in Section 3.1.5. 

The trans-reluctance characteristics of Figures 6.6b and 

6.7 are only valid when 01 and 02 are zero or of small magnitude-, 

since R 
ml and R 

M2 are functions of both 01 and 0 
2* 

A complete 

graphical illustration of the functions R Colo 0) and R' Colo 03 
ml 2 M2 2 

must. therefore, be given by the families of curves shown in 

Figures 6.8 and 6.9, respectively. From these figures, it can be 

stated that both R 
ml 

Co 
12) 

and R 
M2 

Colo 02) are even -functions of 

both 01 and 02, and further that the values R 
m1min 

and R 
M2min 

used 

in Chapters III and IV are the (minimum) values of the primary 

and the secondary reactances when both 01 and o2 equal zero. 

The variations of R 
ml 

(0 
1,02) 

and R 
M2 

(010 02) can be precisely 

derived, though laboriously, from Figures 6.3 and 6.4, which 

together provide the exact representation of the bridged- 

magnetic-core saturc-ble reactor device. 
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6.2 The Relative Magnetisation Curve 

Since they provide an exact representation, Figures 6.3 

and 6.4 can fully explain the operation of the bridged magnetic 

core device as a saturable reactor. For the sake of convenience, 

only the first quadrants of these figures are re-drawn in 

Figures 6.10 and 6.11, where the variables of the vertical and 

horizontal axes are interchanged. Suppose, initially, that the 

resistanceless secondary winding is driven by an alternating 

Voltage source, creating the alternating flux shown in Figure 6.11. 

If the primary winding is not energized, ý, = 0, and the magnet- 

isation characteristic for the secondary magnetic circuit is the 

outmost curve in the figure. The current flowing through the 

secondary winding is thus that shown by the intermittent curve. 

Suppose now that a constant level of primary flux is somehow, 

introduced into the core, so that the reZative magnetisation 

characteristic of the secondary magnetic circuit becomes the 

thick curve, shown amongst the family of curves, corresponding to 

this constant value of the primary flux. On introduction of the 

primary. flux, the secondary current immediately switches to the 

saturated waveform shown in the figure, showing that the amplitude 

of the alternating current in the secondary winding is controlled 

by the level of the primary flux in the core. 

It is not physically practicable to generate a constant 

flux in a magnetic core by a voltage source, and therefore the 

control winding of a saturable reactor is generally driven by a 

direct current source, producing a constant level of mmf in the 



325 

core. The portions of the curves in Figure 6.10 near the 

origin are redrawn in Figure 6.12, where the constant level of 

primary flux created by the direct current source when 0 
2 

is shown by the broken line. As the sinusoidally varying 

secondary flux increases from zero to its maximum value, the 

magnetisation characteristic of the primary circuit moves from 

the left most line to the right most line. During the next 

quarter period of 0 
2' 

the primary magnetisation characteristic 

moves back to its original position, where it arrives when 02 

becomes zero. In accordance with this movement, of the primary, 

magnetisation characteristic, the primary flux level in the core 

varies as shown in the figure. It is clear, therefore, that a 

twice-frequency alternating voltage appears across the primary 

winding when the secondary winding is driven by an alternating 

source, despite the fact that the primary winding is fed by a 

direct current source. 

In many magnetic amplifier arrangements, a portion of the 

alternating load current, after full rectification, is fed bacK 

to the control circuit, in order to aid the direct control current. 

The feedbacK current has to be rectified to create an mmf in the 

same direction as the direct control current. Most magnetic 

amplifiers employing feedbacK techniques in thissense are based 

on the saturable reactor device of Figure 4.45, in which all the 

windings on one core are completely coupled. However, for a 

saturable reactor device such as the bridged magnetic care, in 

which mutual flux coupling is eliminated by method 3b of Section 

4.1.2, there is also the possibility of Using unrectified alter- 
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nating current as part of or the whole of the control current. 

In power control applications, it is inefficient to use an 

alternating source on the control circuit, because of the high 

alternating power required to achieve the same controlling action. 

Nevertheless, it is possible for saturable reactors with complete 

elimination of mutual flux coupling to have the control winding 

driven by an alternating supply of the same (synchronous) 

frequency as that used for the load circuit. 

It is therefore interesting to investigate the use of 

alternating current in the primary winding of the two-C-core 

saturable reactor device to achieve control of the alternating 

current in the secondary winding, although this achievement is 

at the expense of high power consumption in the primary circuit. 

6.2.1 Relative Magnetisation Characteristics with Both 
Windings Driven by Synchronous Sources 

Suppose that the resistanceless windings on the core of 

the bridged magnetic device are driven by synchronous alternating 

voltage sources of moderate amplitudes. When only the secondary 

winding is driven, the magnetisation characteristic for the 

secondary magnetic circuit is the curve numbered I in Figure 6.13, 

where the half cycle of the secondary flux created by the voltage 

source is also shown. To find the alternating current in the 

secondary winding, each point on the secondary flux waveform is 

projected onto this curve (e. g. from point 0. point 01 is found), 

and the corresponding mmf values are transferred onto the F- time 
7 

plane (e. g. point 0" is obtained from point 0'). The secondary 
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current waveform is thus obtained as shown by the dotted curve 

in the figure. Clearly, the secondary current is of small 

amplitude, since ý 
2M 

is below the saturation level. 

However, when a sinusoidally varying primary flux is also 

present in the core, the secondary magnetisation characteristic 

moves so that each time it takes one of the curves among the 

family, depending an the value of the primary flux present at 

that particular instant. Suppose, that, at the instants z, z2 

and z3 (when the secondary flux has the values at the points A 

B and C), the primary flux takes values such that the function 

F (ý, * ý) is expressed by the curves numbered 2,3 and 4, res- 

pectively. (The corresponding primary flux values are shown by 

points E, F and G in Figure 6.14; the appearance of ý and 
2M 

as equal in Figures 6.13 and 6.14 is just coincidental). 
IM 

At z=1, ý and also 0, =0 since the voltage sources 22 2M Im 

driving the primary and the secondary windings are synchronous. 

At this instant, the secondary magnetisation characteristic becomes 

the curve numbered 5, and it can move no further down from this 

final position. Because of this movement of the secondary magnet- 

isation characteristic, point A on the secondary flux waveform 

has to be projected onto curve number 2, point B onto curve number 

3. point C onto curve number 4. and finally point D onto curve 

number 5. The corresponding mmf values at points a, b, c and d 

are then carried over to the F-z plane, and the secondary 
2 

current waveform is obtained as shown in the figure. From z 2 

to z= 7r, when both ý and ý are decreasing, the secondary 

magnetisation characteristic moves upwards, taking curves numbered 
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N 

5,4.3.2 and 1, in reverse order, with the projected point 

again passing through the same points d, c, b, a and 0. During 

the next (negative) half cycle of the secondary flux, the same 

process is repeated, but in the third quadrant of the 0 
2- 

F 

plane. Evidently, the secondary current is now very high and 

distorted because of the saturation effect brought into action 

by the primary Flux. 

At these operational conditions for a given ý 
Im 

and ý 
2M 

the magnetic performance of the secondary circuit is determined 

completely by the imaginary curve passing through the points 

0, a, b, c and d in Figure 6.13. This curve is defined as the 

reZatiVe magnetisation characteristic of the secondary circuit, 

and is unique for given amplitudes of the primary and secondary 

fluxes. For each set of ý 
Im 

and ý 
2M' 

a different relative 

magnetisation characteristic is obtained, whence the magnetic 

performance of the secondary circuit can be fully determined and 

the secondary current waveform immediately and easily established. 

The analytic equivalent of the concept of relative magnet- 

isation characteristic is as follows. The primary and secondary 

fluxes, as determined by the voltage sources, are given by'the 

time functions 

ei =e (z) = elm. sin z (6.5) 

0 sin z ..... (6.6) 



and the family of secondary magnetisation curves, when drawn 

in the manner of Figures 6.11 and. 6.13, is expressed by the 

function 

e2e2 (F 
2"e1) 

(6.7) 

When equation (6.5) is substituted for in the function above, 

this becomes 

22 11, 
ý (F 

' 
(6.8) 

Now, the variable z can be eliminated between equations (6.6) 

and (6.8), leaving 

e2e2 (F 
29 

e 
IM" 

e 
2M 

) 

I 

(6.9) 

For given constant values of ý 
Im 

and ý 
2M' 

equation (6.9) reduces 

to the function of one variable- 9 

e2e (F 
2) 

(6.10) 

which gives a direct relationship between the secondary flux and 

the secondary mmf. This function, although valid only for a given 

set of values of ý 
IM 

and ý 
2M' 

is useful as it gives a direct 

insight into the magnetic operation of the system, which is other- 

wise quite complex to investigate because of the time-varying 

property of all the fluxes, mmf's and reluctances in the system. 

329 
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When der-. -, ted graphically, the function represents what has 

been defined previously as the retatWe magnetisation charac- 

teristic of the secondary circuit. 

Following the same procedure, through the movement of 

the primary magnetisation characteristics in accordance with 

the variation of the secondary flux, the relative magnetisation 

characteristic for the primary circuit can be obtained as shown 

in'Figure 6.14. The primary relative magnetisation characteristic 

is the curve passing through the points 0, e, f, g and h, and 

it is only valid for the given values of the primary and secondary 

flux amplitudes. The waveforms of the primary current when ý2 

is non-existent and when an alternating ý exists in the core 

are also derived in the same manner and shown in the figure. 

The relative magnetisation characteristic is given now by the 

function (F obtainable in the same way as followed from 

equation (6.5) to (6.10). Once this relative characteristic is 

drawn, it is very easy to produce the primary current waveform 

from the given primary flux variation. 

6.3 The Relative Magnetisation Characteristics and the Current 
Waveforms of the Parametric Transformer 

With resistanceless windings and at no-load operation, the 

primary and secondary fluxes of the parametric transformer, are 

given by 

sin z (6.111 
I IM 

2=ý 2M 
Cos z (B. 121 
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when the primary winding is driven by an alternating voltage 

source of e, =-E Cos z. The variation of 
2 

is phase-locked 

with ýI at the same frequency, and the phase difference between 

and ý is exactly-E. Furthermore, ý is considered a very 
1222 

good sinusaidal, as explained in Section 3.6.2. The relation- 

ship between ý 
IM 

and ý 
2m 

is given approximately by Figure 3.34 

or by equation (3.203), I. e. by 

e2=1 (e2 _e 
2) 

2m A2s im 

where ýs is the same as ý11 given by equation (3.202), and 
s+r Im 

233 A 
s 

3 

Under these conditions, operation of the parameteric trans- I 

former may be simulated by the bridged magnetic core device whose 

primary winding is driven by the same voltage source eI=-EI Cos z 

but with the secondary winding connected, instead of to a 
dý 

2) capacitor, to an alternating voltage source e2E2 sin z (= N2 
dz 

where E2 is such that the secondary flux amplitude 
2M 

created 

by it always complies with equation (6.13). 

Since ý 
2M 

is a function of ý 
Im 

in parametric transformer 

operation, the relative magnetisation characteristic of the secon- 

dary circuit, as given by equation (6.9), needs only 0 
Im 

to be 

specified. Therefore, for each value of the primary voltage 

amplitude E, there is a unique relative magnetisation characteristic 
2 

for the secondary circuit. 
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The relative magnatisation curve of the secondary circuit 

can be obtained by the same procedure as followed for Figure 

6.13. However, the 1 
phase difference between and 0 22 

brings about a substantial change in the shape of the resulting 

relative magnetisation curve. At z=0,0 
2 

4,0 
2M 

but 0, = 0, 

as shown in Figures 6.15 and 6.16. Therefore point A on the 

secondary flux waveform in Figure 6.15 has to be projected onto 

the curve number 1, corresponding to 0, = 0. As 0 increases 

from zero, points B, C and D on the secondary flux waveform are 

in turn projected onto the magnetisation curves 2,3 and 4. 

-respectively, yielding the points b, c and d. At z 
21 
2' 

2=0, 
but 

IM , 
and the corresponding magnetisation curve 

is curve number 5. which determines the point 0. The curve passing 

through the points a, b, c. d and 0 in Figure 6.15 is thus the 

secondary relative magnetisation characteristic corresponding 

to the present values of ý 
im 

and ý 
2M 

(or rather of ý 
im 

only, as 

2M 
is determined by ý 

im 
). During the next quarter period. from 

z=E to z= 7r, in accordance with the variations of 0 and 0. 
22 

the other half of the secondary relative magnetisation characteristic, 

which is odd symmetrical to that shown in the figure, is traced 

similarly in the third quadrant of the 0 IF 
2 

plane. 

The resulting mmf waveform is also shown in Figure 6.15. 

Because of the unusual, convex shape of the relative magnetisa. tion 

characteristic, the secondary current has a distorted waveform 

containing a large harmonic content. 



The primary relative magnetisation characteristic is 

derived similarly in Figure 6.16, where it should be noted 

that ý 
Im 

is greater than ý 
2M' 

Mainly because of this, and 

through the corresponding movement of the magnetisation curve 

within the family of curves, the primary relative magnetisation 

characteristic takes the shape shown. The primary current 

waveform is also determined in the figure. 

If the primary and secondary fluxes are in the same phase, 

it can be deduced that, with the large amplitudes ý* and ý' 
IM 2M 

in Figures 6.15-and 6.16, the resulting primary and secondary 

currents become almost infinitely high. 

In conclusion, a unique pair of relative magnetisation 

characteristics (primary and secondary), valid only for one 

given value of (or the input voltage amplitude), determines 
im 

the primary and secondary current waveforms under that operating 

condition. If the amplitude of the input voltage is altered, 

the shapes of the primary and secondary relative magnetisation 

characteristics change accordingly, and the waveforms of the 

primary and secondary currents also change, taking different forms 

at different values of E 

As can be noted from Figure 6.15, the secondary relative 

magnetisation characteristic starts from point 0 and ends at a 

point on the magnetisation curve number I which corresponds to 

0 and is fixed at all times. This is also true for the 

primary relative magnetisation characteristic, one of the end 

333 
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points of which is the origin of the FI plane while the 

other lies on the fixed magnetisation curve corresponding to 

2ý0. 

Equation (6.13) and Figure 3.34 show that if is 
IM 

increas6d, the amplitude of the parametrically excit -ed and 

maintained secondary flux oscillations decrs-ases. Taking this 

relationship between ý and ý into account, different shapes 
Im 2m 

of the secondary and the primary relative magnetisation charac- 

teristics are shown in Figures 6.17a and 6.17b, respectively, 

for different values of ý. (The curves with the same number 
Im 

correspond to the same value of From the curves in Figure 
Im 

6.17, the primary and secondary current waveforms during operation 

with any given amplitude of input voltage can be determined. As 

IM 
is increased, the pair of relative magnetisation characteristics. 

undergoes a change in shape, becoming successively the pair of 

curves numbered 1,2,3,4 and 5. At a certain value of the 
Im . 

primary relative magnetisation characteristic becomes an almost 

straight line (curve number 4 in Figure 6.17b), when the primary 

and secondary current waveforms are as shown in Figure 6.18a. 

At a smaller value of ý (which yields a higher 0 ), the secon- 
IM 2M 

dary relative magnetisation characteristic becomes almost linear 

(curve number 2 in Figure 6.17a), when the corresponding current 

waveforms are as shown in Figure 6.18b. 

'The concept of a relative magnetisation characteristic is 

very helpful in explaining the magnetic operation and in deter- 

mining the current waveforms of the device, although in practice, 

the situation is more complex than has been indicated. Firstly, 
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the second_ary flux is created intrinsically by parometric 

excitation within the secondary circuit itself, and is not 

produced by an external voltage source. With the simulation 

of the secondary voltage of the parametric transformer by an 

external voltage source, only the amplitude of the secondary 

flux, was assumed to be dependent on ý 
im . 

In fact, the wave- 

form of the secondary flux also varies with the changes in 

the primary flux amplitude, and especially near the extremes 

of the operating range, the non-sinusoidal waveform of the 

secondary flux directly affects the shape of the relative 

magnetisation characteristics of both the primary and the 

secondary circuits. Secondly, the B/H characteristic of the 

core material was assumed to be a single-valued function. In 

fact, because of the existence of hysteresis, different branches 

of the B/H loops are followed, depending on whether the flux 

density is increasing or decreasing. Apart from influencing the 

shape of the relative magnetisation characteristics, hysteresis 

means that these are not unique at all times, (i. e. the variable 

z cannot be eliminated between equations 16.6) and (6.8) 

6.3.1 The Primary and the Secondary Current Waveforms 

The variations of the primary and the secondary current 

waveforms can be derived from the F (ýI# and F (ýI* 

functions, if the secondary voltage is simulated by the correct 

external voltage source (i. e. the secondary flux is assumed always 

sinusoidal but with an amplitude dependent on 0 
IM 

). 
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The secondary mmf, as given by equation (4.46), is 

Rý+tV 
!2+s! 

( fc 
ýj 

+ 2) + f( 
12922A222Aa2A0 

The B/H curve can be most simply expressed by 

..... (6.14) 

f(B) =c6cB3 (6.15) 

and using this function in equation (6.141 gives 

r- 
++I [(ý + 22 M2min f12212 

+sý 

where R 
M2min ýR9+sI+r 

z 

0 c1 (2 A0 

k 
sc2 

33A3 
2 

k 

and rc0 
33 (2 A0 )3 

(6.1.6) 

(6.17) 
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Fro*m equations (6.11) and (6.12), it follows that 

1 
2)5 

cos (Z - Ot) 
12 im 2M 

(6.18) 

e- el = (e 2, e 2)1 
cos (Z + CO 

2 lm 2M 

where a= tan-' 
ýjm 

2M 

Before substituting equations (6.18) into equation (6.16), 

it should be noted that s <<r Cs n! -1 r. since A ce 2. (2 A 
3338320 

in the bridged magnetic care equivalent of the two-C-core device). 

Although at the expense of a slight error, s323 in equation (6.16) 

ma y therefore be neglected in comparison ýo the second term of that 

equation. * Since s3 <<r 
3, 

A in equation (6.13) can be taken as unity 

This corresponds to neglecting the autonomous saturation 

effects in the branch of the bridged magnetic core where 

only 0 is present. Actually, the bridge-branches of the 
2 

equivalent magnetic structure are driven into saturation 

much earlier than the main branches. In the saturable 

reactor of Figure 4.45, whose F (0 
10 

) function consists 

only of a single non-autonomous term, no problem of this 

kind arises. This is because flux interaction takes place 

in the whole of the cores in the latter device, but in a 

part of the core in the first'. 
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which results in the circular relationship between ý and ý 
Im 2M 

2 
2+e2 (elos )=e2 

im 2m s 

where ý (=ý ") is a constant as given by equation (3.202). 
s 'IM 

This unity value of A maKes the ý 
2M 

/ý 
IM 

characteristic of Figure 3. ý 

a quarter circle as shown in Figure 6.19, and thereby simplifies 

the relationship between ý 
Im 

and ý 
2M' 

* 

The relationship in equation (6.20) may now be used in 

equations (6.18), and when those are substituted in equation (6.16), 

Zý 'Im 

This unity value of A maKes the ý 
2m 

/ý 
IM 

characteristic of Figure 3.34 

a quarter circle as shown in Figure 6.19, and thereby simplifies 

the relationship between ý 
Im 

and ý 
2M' 

* 

the secondary mm-F is obtained as a function of time Cz = wt) and a. 

The variable ot is a measure of ý since 
IM 

cc *= tan- 1 Im 
--- (6.21) 

_0 
2)2 

s Im 

is the saturation flux level, if F/ý curve is assumed 

to be of the form in Figure 3.19. With A'= 1, no vertical 

scale compression as mentioned in Section 3.6.1 is needed 

in Figura 3.20. Furthermore, for the device of Figure 4.45, 

equation (6.420) is exactly valid without any approximation, 

and the ý 
2M 

/ý 
IM 

characteristic of this device is always a 

circle. This is for the same reason stated in the footnote 

to the previous page. 
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where ýs is constant, and its effect to determine the operational 

point on the ý 
2M 

/ý 
IM 

curve (i. e. a determines ý 
2M 

for a given ý 
IM 

is shown in Figure 6.19. The secondary mmf is then obtained as 

F (ýJm ý)=F Cz, cc) = cos a (R +1rý 3) cos z 
222 M2min s43S 

cos 3 cc (. 
1 

rý 3) cos 3z..... (6.22) 
43S 

As a is changed by the amplitude of the input voltage, the amplitudes 

of the fundamental and the third harmonic in the secondary current 

also change. The secondary current waveform is thus dependent on 

the position of the operational point P on the 0 
2M 

/0 
im 

characteristic 

of Figure 6.19, and the amplitudes of the fundamental and the third 

harmonic are shown in Figure 6.20 as a function of a. It is evident 

from this figure that, for aa, F2 takes the waveform shown in 

Figure 6.18a, and for a=a that shown in Figure 6.18b. The point 

where a=a in Figure 6.19, therefore, corresponds to the value of 
I 

im 
for which the secondary relative magnetisation characteristic 

is (almost] linear, as the curve 2 in Figure 6.17a. 

Since the B/H characteristic of the magnetic material is, 

in fact, not so simple as given by equation (6.15), F2 contains a 

number of odd harmonics higher than the third. If only the third 

harmonic is assumed present, Ctl =E and- a= 
1E. However, with a 623 

number of higher harmonics, aI and a2 are difficult to determine 

exactly, as the amplitude of the sum of all harmonic components is 
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to be expressed as a-function of a, which would obviously be more 

complex. Nevertheless, the same conclusion on how the waveform 

of F varies with a, would still be reached. 2 

The waveform of the primary current may be investigated 

in the same manner. The primary mmf up to the fifth harmonic 

is finally found as 

3=F (z, a) = sin a IR 0+ -2 ro3+5r0 5) sin z 
mimin s43S85s 

sin 3a (I rý3+ -L rý 5) sin 3z 
43S 16 Ss 

sin 5 a(-L r0 ') sin 5z .... (6.23) 16 5s 
I 

where R 
mimlin 

Rg+pI+rI 

p ..... (6.241 

0 
(2 A )5 

where c is the coefficient of the additional fifth power term 
5 

in the B/H curve. In equation (6.23), the terms coming from 

Z 
c3A 

PS 
5A5 

1 
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have been neglected to make use of the circular 0 
2m 

/0 
Im 

charac- 

-teristic., From the expression in equation (6.23), the variation 

in the amplitudes of the higher harmonic components in FI with a 

can be evaluated, together with the changes in the primary current 

waveform depending on the position of the operational point on the 

-ý /ý characteristic. 
-2M AM 

6.4 Prediction of the Best Condition for Parametric Transformer 
Operation 

The secondary circuit of the parametric transformer operates 

as a parametrically pumped oscillator. The inherently generated 

secondary flux depends on the characteristics of the oscillatory 

circuit, as well as of the pumping action, and both of these 

features, are combined in the relative magnetisation characteristic. 

It is not therefore erroneous to say that the shape of the relative 

magnetisation characteristic depends on the secondary flux, as 

well as the waveform of the secondary flux depending on the shape 

of the relative magnetisation characteristic. 

In general, most physical oscillators produce the best 

waveform of the oscillation when the oscillatory system is linear. 

Accordingly, it may be predicted that the secondary flux will have 

the most sinusaidal waveform when the relative magnetisation charac- 

teristic of the oscillating secondary circuit is linear. As 

already seen, the secondary current is then also sinusoidal. The 

value of ý 
Im 

Car the location of the operational point P on the 

2M 
/ý 

im 
characteristic of Figure 6.21), which makes the secondary 



342 

relative magnetisation characteristic almost linear is thus 

defined as the best condition of parametric transformer 

operation. With this value of ý 
IM 

(or with the corresponding 

amplitude of the input voltage), the secondary circuit operates 

like an apparently (almost) linear oscillatory circuit, although 

magnetic saturation is exercised within the Iron core. As shown 

by point P in Figure 6.21, this value of ý 
im 

(corresponding to 

the curve 2 in Figure 6.17a) is, in practice, smaller than ý, - M IM 
the value necessary to start the oscillations in the secondary. 

This is because, even with an unloaded secondary circuit, a 

small winding resistance will require larger variations in the 

secondary reluctance to be produced by a higher ý 
Im* 

Therefore, 

is at first increased beyond 011 , in order to initiate the 
Im mI 

oscillations, but then, is decreased below 021m to a point where 

the secondary flux has the best waveform. 

As mentioned in Section 3.6.1. the voltage regulation is 

poor if the operational point is chosen somewhere between the 

points B and C in Figure 6.21. The constraint that ý must be 
Im 

between the values O, Im and 01"' for good voltage regulation is 
m 

also satisfied by the best condition of operation, the point P 

in the figure. 

The moving end of the secondary relative magnetisation 

characteristic in Figure 6.17a is always on the intermittent 

curve (corresponding to 01 = 0). The variations in 0 
Im 

shift 

this end-point to the right or to the left on the intermittent 

curve. If 0 
IM 

is chosen such that the secondary relative magnet- 

isation characteristic is curve 2, the variations in ý 
Im 

will be 
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only very slightly reflected onto ý" because of the almost 2M 

horizontal slope at this portion of the intermittent curve. 

Furthermore, since is determined by the intermittent curve, 
2m 

the almost horizontal slope at beyond-the-knee portion of this 

curve means that ý 
2M 

is quite constant within this range of 

operation. However, if the secondary-relative magnetisation 

characteristic is, for instance, curve 5, the variations in 
IM 

are fully reflected onto ý 
2m** 

resulting in poor voltage 

regulation. 

The relation between the secondary flux waveform and the 

shape of the secondary relative magnetisation characteristic may 

be deduced as follows. If is near where the voltage 
Im m 

regulation is still very good, the relative magnetisation charac- 

teristic has a shape like curve I in Figure 6.17a. With this kind 

of non-linearity on the /F plane, the secondary flux, has the 

rather triangular-shaped waveform shown in Figure 6.22a, and the 

resulting output voltage becomes rather square-shaped, as in 

Figure 6.22b. The best condition of operation is, therefore, 

nearer to ý; than to ýI". However, when ý, 
m 

< ýjm < ý1' 
m, 

the 

secondary relative magnetisation characteristic exhibits a convex 

curvature similar to that of curve 5 in Figure 6.17a. (Note that 

curve 5 was obtained for a secondary flux of purely sinusoidal 

waveform). This kind of non-linearity on the ý2 /F 
2 

plane results 

in the generation of the secondary flux. in the waveform shown in 

Figure 3.38a, Chapter 1. The reason for this has also been justified 

by equation'[3.210), Section 3.6.2. 
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Figure 6.2 Graphical construction of the function F 

Figure 6.1 The Magnetisation Characteristic 
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Figure 6.3 Family of secondary magnatisation curves representing 
F (ý 

.ý) 212 
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Figure 6.4 Famil y of primary magnetisation curves representing 
F (01,0 ) 2 
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Figure 6.5 Family of curves used to obtain control characteristics 
of magnetic amplifiers 

0- 

(a) (b) 

Figure 6.6 Construction of the secondary trans-reluctance characteristic 

Figure 6.7 Primary trans-reluctance characteristic 
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i 

Figure 6.8 Family of curves representing the function Rm 
1 

(0 
12) 

r% I- 

12 

Figure 6.9 Family of curves representing the func . tion Rm 
2(ý12) 

increasing 

I 

Figure 6.10 Primary magnetisation curves 
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Figure 6.11 Secondary relative magnetisation curve when given ý, = constant I 
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Figure 6.12 Generation of twice 
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frequency voltage dCC SOLrCC 
across the dcc fed 
primary winding 
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CHAPTER VII 

APPLICATION OF ANALYTICAL APPROXIMATIONS OF THE B/H CURVE TO 

OBTAIN EXPLICIT EXPRESSIONS FOR THE F (olm 0 AND 

F2 Colo 02) FUNCTIONS 

7.1 Analytical Representation of the B/H Curve 

7.1.1 Requirements on the Form of Representation 

A considerable amount of research has been devoted to 

finding the most suitable form of expression to represent the 

B/H curves of magnetic materials, and the use of digital 

computers has emphasized the need for a simple equation to 

represent magnetisation curves. The requirements are twofold. 

First, the form oT representation should be usable in conjunc- 

tion with other system equations to obtain an analytical solution 

for a particular problem. Secondly, and particularly for 

repetitive calculations in computers, the magnetisation curve 

should be accurately represented over the whole useful range 

by a single equation. Although the first requirement is a 

stringent one, the accuracy of representation is no less 

important. 

In accordance with the needs of a particular problem, the 

magnetisation curve may be represented in two different forms, 

either as H= f(B) or as 6= f(H). although the considerations 

here will be confined to only the first form since this is used 

in obtaining the functions F (ý o0) and F CO 00) in Chapters 
112212 

IV and V. There has been many suggestions of approximate 
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representations, some of which can be used for either form 

of representation, but some of which can represent the 

magnetisation curve only for one direction of reading, i. e. 

B to be obtained from given values of H. 

As the application of the function H= f(B) in previous 

Chapters manifests, the requirements on the form of the 

representation to be used mean that the representation must 

be: 

1. analytical (not numerical). 

2. continuously differentiable. 

3. a single expression (not different expressions for different 

subsections of the B scale). 

4. valid for the entire range, i. e. -<B<+-, --co <H<+- 

5. odd-symmetrical in the first and the third quadrants 

of the H-B plane, and additionally, 

6. must be an accurate approximation so that the errors 

are as small as possible. 

The first two requirements were made clear in Section 6.1, 

where the functions FI CO 
I, 

02) and F2 CO 
10 

02) were obtained 

as analytical expressions, so that their-derivative could be 

calculated. This condition, which is particularly important 

in many cases of finite element analysis of devices involving 

1 
magnetic saturation , prohibits the use of numerical methods to 

represent the B/H curve, such-as those due to Trutt, Erdelyi and 

Hopkins. 2 
Although numerical methods based on linear inter- 

polation represent the magnetisation curve most accurately, and 



356 

are very efficient for computer applications, they require a 

great number of data points to be stored in the memory, and 

this may be a disadvantage in some cases. 
3 

However, in our 

case, a numerical method can only be used if the derivatives 

of the functions F CO 
is 

0) and F CO 
1" 

0) are not required, 

i. e. the mathematical model of the parametric transformer 

contains no winding resistances, no leakage inductances and 

no reactive loads. 

The third requirement follows since the derivative of the 

function H= f(B) must be continuous. It follows therefore 

that piece-wise linear methods, linear interpolation, 2, 

approximations by straight lines 4 
etc., all of which require 

the magnetisation curve to be subdivided into a few or much 

more sections and each section to be approximated by a single 

straight line, cannot be used. Even if each subsection of the 

magnetisation curve is approximated by a polynomial or an 

exponential curve (as suggested in references 5 and 6). dis- 

continuiti es will still occur in the derivatives of the F Cý111 1 

and F CO A0) functions, and representation by different 
212 

, expressions for different subsections of the B scale is not 

applicable. Hence. our choice is restricted to a single function 

whose derivative is continuous over all the S range. This require- 

ment is studied in detail elsewhere. 
7 

It is not impossible to achieve continuity in the first 

derivative of the magnetisation curve, even when approximating 

with different functions to different subsections of the curve. 
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if these functions are carefully selected to satisfy boundary 

conditions. However, in the present situation, the repre- 

sentation must still be by a single expression valid for the 

entire range. When the 6 scale is subdivided into sections, 

each with a different approximate function, a process of 

decision-making is involved to find into which section the 

present value of B falls before the corresponding value of H 

can be calculated, and this requires 6 to be known at each 

instant. In the case of the parametric transformer, where 

oscillations are self-excited, the flux density in the core 

can only be known after the differential equations of the 

system are solved. In fact, the solution of these equations 

requires the H= f(B) function to be given beforehand. The 

representation should therefore not involve such a decision- 

making process, and must be accomplished by a single expression. 

Since the values of B and H cannot be known before the 

differential equations of the system are solved, it is not 

possible to put a limit beforehand an what maximum value they will 

6chieve in either the positive or negative direction. The single 

equation to be used to represent the magnetisation curve should 

therefore be valid for the entire range -- <B <+ - and 

<H <o% and it should yield a curve odd-symmetrical in the 

first and the third quadrant of the B-H plane. 

The last requirement an the accuracy of the representation 

will be dealt with in Chapter VIII, when curve fitting by 

computer is undertaKen. 
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7.1.2 Some Forms of Analvtical Representation by 
. Single Explicit Expressions 

From the foregoing discussion, it can immediately be 

2 
seen that the inverse of the well-known Froelich's equation 

i. 

ci6 

CB 
2 

which gives an hyperbolic approximation, cannot be used since 

it does not satisfy either of the requirements 4 or 5. Using 

absolute values of B and H to make the approximation symmetrical 

about the origin is not allowable, as this would contradict 

the first requirement that the representation should be 

analytical. 

By considering any given interval of the magnetisation 

curve to be part of a periodic curve subject to harmonic analysis, 
2 

an approximation in the form of a Fourier series can be obtained 

The magnetic intensity can be expressed by 

n Ic sin na..... (7.2) 
n=l 

where a=a. 1 
and 8 is the maximum attainable value of 62S 

s 
B. However, a Fourier analysis approximation will not satisfy 

the fourth of the above requirements, and although it yields 

high levels of accuracy. it is not suitable for the purposes 

of this study. 
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Trigonometric functions may be used satisfactorily to 

represent magnetisation curves, particularly in the form 

B= fCH). In the inverse form H= f(B), the function 

C tan CC 6) ..... (7.3) 
22 

with C= 7r 1. 
satisfies all the requirements except for 

r a 
22B 

the B range being restricted to -B s< 
B< Bs. However, the valid 

range for H is --< H< +- as lim H+-, and it can therefore 
&*+ B 

s 

be used so long as IBI< E3s. 

Several suggestions have been made for representing the 

magnetisation curve by transcendental functions, with varying 

degrees of accuracy over the whole range. These are extremely 

suitable, as many comply with all the requirements stated. 

However, some using exponentials, such as the simple function 
2 

CA 
H=Ce..... (7.4) 

8 
or representation by a sum of exponentials , are not odd- 

symmerical and not valid for the entire range. The expression 

(C 8+C3 )B ...... (7.51 

apart from conforming to all the requirements, appears to be 

quite easily fitted to the actual curve. 
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To achieve odd symmetry, absolute values of B cannot be 

used, because of the reason mentioned earlier, but with 

exponentials, various forms of hyperbolic functions may be 

utilized to yield a single expression valid for the entire 

range. Such an expression is 
I 

H=C Binh CC B) ..... 
(7.6) 

12-, 

which does not provide a very precise fit either in t -he 

knee region or in the saturated region. It is found that 

a better fit can be achieved by using the function 

H=C sinh CC B) +CB..... (7.7) 
123 

where the fiist term approximates the knee and the saturated 

region, and the second term the linear region. Another hyper- 

bolic function which may be used is 

I 
H. = C tanh-1 (C B, ..... [7.8) 

although the B range is here restricted to :; Bso as in the 

case of equation (7.3). 

A different approach to the approximate representation of 

the magnetisation curve is to simulate the reluctivity function 

C 

by an analytical expression, which is then sub3tituted in 
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f(B) = -- 
1B- 

r[B) B ..... (7.9) 
JITBT 

The function r(S) should satisfy all the first -lour require- 

ments, but for the fifth. it must be even-symmetrical in the 

r(B)/B plane. This approach is followed in equation (7.5) 

where the reluctivity function r(B) is 

C2 B2 

Ce+C 
1 

Similarly, the expression 

cosh (C B). B 
2 

may be used instead of equation (7.5). The rational -fraction 

3 
approximation of Widger , which approximates the magnetisation 

curve by the equation 

C0+CIB+C2B2++CnBn (7.11) 
HB 

I+bB+b62++bBn 
12n 

is a result of the sama thought. However, if this equation is 

to be valid for both positive and negative E3, special care must 

be taken to ensure that the ratio of the two polynomials yields 
I 

an even-symmetrical curve. If only C0 and bI are non-zero, 

Widger's approximation reduces to the Froelich equation of 

equation (7.1). 
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The most straightforward approximation to the magnet- 

isation curve'is a power series in the general form 

CC) 2i+l 
H=IC 

21+l 
B ..... 

(7.12) 
i=D 

offering a representation that is most directly related to 

the harmonic response of saturating devices. Only odd powers 

of B are taken in the series, to secure an odd-symmetrical 

curve. Although, theoretically, an infinite number of terms 

existsin the series, in practice, only a finite number of 

terms is necessary for a sufficiently accurate representation. 

A power series approximation is more convenient to use in the 

form H= f(B) rather than a= f(H), since all the requirements 

are satisfied provided that CI and C 
2n+i are positive constants. 

For the second form, powers smaller than one have to be used to 

provide a saturating characteristic, such as 

8=CIH 

where n<l. Alternatively, the correct saturating characteristic 

of the approximate curve may be obtained by properly choosing 

the signs of the coefficients Cis such as 

CIH-C 
2n+i 

B 2n+i 

where n is integral and CI and C 
2n+I are positive constants. 

However, none of these expressions will'be valid for the 

entire range. 
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An often-used and simpler form of power series approx- 

imation is the polynomial with two terms 

CIB+C 
2n+i 

B 2n+i (7.13) 

in which any desired number of terms may be included to 

achieve the required accuracy. The choice of the parameter 

n depends on the curvature of the knee portion of the curve, 

and the C coefficients are easily determined by curve-fitting 

methods. 

7.2 Application of Power Series Approximation to Two-C-Core 
Device 

It is shown in Appendix IV that, when equation (7.12) is 

used as H =f(B) function in equations (4.45) and (4.46), the 

FI (ýIp ý) and F2 CO 
10 

) functions for the two-C-care device 

are obtained in the form 

C" 

R9p 
21+l 

21+l 

i=o 

Co Co jje 21+1 r( 
2(i+J)+1) e 2j 

jýO 1 2(i+J)+l 21+1 2. 

0a C7.14) 
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Co 
F2 (e 

19 
e2R9e2+1s 

2i+l 
e2 2J+l 

i=O 

Co Co 11e 21+ 1r1 2(i+J)+1) 2j 

JL-o J=o 2 2(i+J)+l 2J+l 

... (7.15) 

where 
c 

21+l 
p21+lý 

(A 2i+l 

sIc 
21+l 

21+l 2 (A )21+l 

..... (7.16) 

r= jt 

c 
214'1 

21+l 0 C2A )21+l 
0 

Obviously, from the coefficients in equations, (7.16), only 

those corresponding to 1 0, (i. e. p,, sI and rI) have 

reluctance dimension CI is the magnetic permeability in 

the linear region of the B/H curve). When a finite number of 

terms C=n) is given in the power-series approximation of the 

B/H curve (equation C7.12) 3. the uppe37 limits of the double 

summation in equations (7.14) and MIS) are interrelated so 

that 2(i+jl+l< n all the time. 

During initiation of oscillations, the secondary circuit 

is considered linear, i. e. F (ýIv is a linear function of 

This is accomplished by setting i=o in equation (7.15) which 
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then becomes 

CK) 2j +i 
F2 (ei» e2R9e2+s1e2+e210r 

2J+l 
2j 

j- 

(7.17) 

The secondary reluctance is found in this case as 

F2 (ýIjl ý21, 

. 

co 

r1 
2J+13 ý 2j R+s+r+11 

M2 109111 
=1 

2j+l 

(7.17) 

which is the explicit. 'expression for the trans-reluctance curve 

shown in Figure 2.2, Chapter II. With J=I (bnly) in equation 

(7.17), the simplest expression for the dependence of the 

secondary reluctance on the primary flux is obtained as 

M2 

which is the same as equation (2.4). Chapter II. In Chapter II, 

the trans-reluctance curve and equation (2.4) were assumed on 

qualitative grounds, and most of the work in Chapter III, 

except where non-linearity was considered, was based on these 

assumptions. When equations (7.17) and (7.18) are obtained from 

the general expression for F2 (ý 
10 2 

), these assumptions are 

fully justified, and the bridge between the theory of Chapter III 

and the physical considerations of ChaptersIV to VII Is established. 
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In order to refer to the work in Chapter III, it may 

be pointed out that equation (3.50). Section 3.1.2. which 

gave rise to the Hill equation, is the same as equation (7.17). 

The assumption made in equations (3.88) to (3.90) can be 

Justified by considering only i=O and J=Ojl in equation (7.14). 

which then gives 

+r+3r ý2)ý 17.19) 
1321 

and the primary reluctance R 
MI =FI /ý 

I' 
is obtained in the 

form of equation (3.88). To account for non-linearity in the 

secondary circuit, with only the terms corresponding to i=O, l 

and J=O being considered in equation (7.15). the secondary 

mmf is obtained as 

F= CR +s+r42+ (s +r )ý 3 (7.20) 

which is the same as equation (3.99) under the assumption of 

equation (3.100). The influence of the primary flux on the mmf 

of the non-linear secondary circuit may be most simply expressed 

by taking i=O, 1 and J=O, 1 in equation (7.15) yielding 

I F2 Clio 123= CR 
9+s+r+3r2 

2) 12+ cs 
3+r3+ 

10 r511 2w 
23 

(7.21) 
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When the term involving 10 r12 in equation (7.21) is 

neglected, in accordance with the simplifying assumption in 

Section 3.2 that only the linear part of the secondary 

reluctance is modulated by the primary flux, equation (7.21) 

leads to the expression for the secondary reluctance given 

by'equation (3.102). Finally, equation (3.205) is the same 

as equation (7.18), and equation (3.207) is a simpler form 

of equation (7.17). where J=0,1,2 and 3 only is considered. 

The explicit expressions of the FI 1ý110 ý2) and F2 (ý 
10 2 

functions for the saturable reactor of Figure 4.45 can be 

obtained in the same way as that followed in Appendix 4. They 

will then consist of only the third terms (double summation) 

in equations (7.141 and (7.15) but with r 21, +l computed by 
I 

2 9, - 

c 
2i+l 

..... 
(7.22) 

21+l A 21+l 

where 2. and A are the mean flux-path length and the cross- 

sectional area of the cores. 

7.2.1 Differentiation of the Fundtion F (0 ) 

The differential equation of the secondary circuit, 

equation (5.8) requires the first-order time derivative of 

the F2 (ý 
Is' 2) 

function to be given in the form of equation 

(5.12). This can be achieved by determining the functions 

fI (ý, 
* ý2) and f2 Cý20 ý2) defined in equations (5.13). For 

the expression in equation (7.15), these two functions (both 

partial derivatives of F2 (ý 
Is 2)I 

are 
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.. 
DF2 te 

1, -e2) Co 
f-(4 e)- -- =R (21+1) se 21 

,, 2ae9 21+1 2 

Co 00 2(i+j ) +i 
e 2j e 21 j1 (21+1) r 2(i+J)+l 

( 
21+l 2 i-o J=o 

(7.23) 

DF2 te 
1fe2)= 

Co (X) 2(i+J)+l 
2J-1 e 21+1 f2 (eill e2)=ae11 (2j) r 

2(: L+J)+l 
t 

21+1 2 
1 i=O J-0 

(7.24) 

Throughout this work, reluctance has always been defined 

by 

F 
R 

M2 
2 

..... (7.25) 
2 

which may be termed a non-incremental reluctance. This is 

because, in all the circuit equations, the mmf is needed in 

the form 

M2 
02 
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In the literature, magnetic properties of materials are 

defined in various forms, due to the complications arising 

from non-linearity and hysteresis. The non-incremental 

permeability, or simply the permeability, is defined as 
10 

which is characterized by the slope of the line OA in Figure 

7.1. The differential permeability at any point an the E3/H 

curve is defined as 
11 

dB 
dH 

which is the sloPe of the tangent drawn to the curve at 

point A, as shown in Figure 7.1. The incremental permeability 

is used when the material is subjected to the excitation of 

superimposed dc and ac magnetic fields, and is defined as 
11 

AH 

with the aid of minor hysteresis loops. The incremental 

permeability at point B in Figure 7.1 is given by the slope 

of the line CC'. Goral 12 defines an instantaneous permeability 

for use in parametrically excited circuits. 
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In abcordance with these concepts, the quantity 

R9F2 10 2f. (ý 
0ý) M2dif 

2112 constant ý, constant 

2ý constant 
2= 

constant 

(7.26) 

can be defined as the differential reluctance of the secondary 

magnetic circuit which is different from the non-incremental 

reluctance 

RF20ý2) 
M2 

2 constant 

2= 
constant ..... 

(7.27) 

However, when both and ý2 are equal to zero, the differential 

and non-incremental values of reluctance become exactly the 

same, and equations (7.17) and 17.23) both give the minimum 

value of the secondary reluctance as 

R 
M2min 

R9s1rI 

which is the same as equation C4.51). 

The function, obtained by taking constant in 
2 

equation (7.24). 
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(ý )=f (ý Iý)=3F2Cý12 21212 

2ý constant 2= 
constant 

(7.28) 

indicates how effectively the primary flux influences the 

secondary magnetic circuit, and is a measure of the generation 

of even harmonics in the secondary circuit when ý2ý constant 

and ýI is alternating. Note that, when ý2ý constant = 0, 

equation (7.28) or (7.24) has the value of zero, since the 

function f (ý 
1" 

1 exist only when both ý and are 

simultaneously present in the magnetic core. 

dý 
With 

dz 
1 eliminated and the terms rearranged, the 

second of equations (5.14) becomes 

d2d 

dz 2 
[b cf12 )1 

dz 
[c f22)e (z) acf2 

I 
CýIffl 02)+dF2 (0 

1' 
02 )l = 

(7.29) 

Substituting fI (ý, # ý2) from equation (7.231 and separating 

the terms corresponding to j=0, the first derivative term 

in equation (7.29) which is responsible for losses, is obtained 
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as 



Co 
)e 21. ] 1de2 ib c [R 

94*1 
(21+1) (S 

21+1 
+r 

21+1 2 dz i=O 

Co Co 2(i+J)+1) 
e 2j e 21, 

de2 
c( i1 (21+1) r 

2(i+J)+l 
112 

dz 
: L=o J=l 21+1 

(7.30) 

The first term above expresses the autonomous losses caused 

by R L' R and the saturation non-linearity, while the second 

term gives the non-autonomous losses caused by the parametric 

interaction. In Section 3.3.1, only the terms from expression 

(7.30) corresponding to i=o and J=1 are taken into account, 

and in Section 3.3.2, only the terms corresponding to i=o, l 

and J=1 are implicitly included in equation (3.148). 

The extra reaction from the primary to the secondary 

circuit, represented by the terms involving f22) in 

equation (7.29), plays an important role In the parametric 

generation of energy in the secondary circuit, as mentioned 

in relation to equations (3.152) to (3.154) in Section 3.3.2. 

This reaction also affects the steady-state value of a (the 

phase difference between the primary and the secondary fluxes) 

of equation (3.155), Section 3.3.2, by virtue of the additional 

term involving Km. However, in Chapter III, the primary flux 

was assumed to be sinusaidal by neglecting the resistance of 

the primary winding. The term with a minus sign in equation 

372 



373 

(7.29) did not enter into any differential equation in Chapter 

III, because the constant a defined in equations (5.13), 

becomes zero with R 0. In arder'. to see the form of this 

reaction explicitly, the expressions for f2 

F (do 
#ý) and F (ý 

00), given by equations (7.24). (7.14), 
112212 

and 17.15) respectively, must be substituted into the third 

terin in equation (7.29). 

7.3 Application of Other Approximations of B/H Curve to the 
. Two-C-Core Device 

7.3.1 Hyperbolic Sine Function 

When the approximation given by equation (7.6) is applied 

to equations (4.45) and (4.46), the primary and the secondary 

mmf in the two-C-core device are obtained as 

F Co *0R0+p sin h Cp ý)+r cos h (r 0) sin h (r ý) 
1129112112221 

(7.31) 

Cýlp ý)=+s sin h (s )+r cos h (r 0) sin h Cr ) 

(7.32) 
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where pi = CIA 
I 

C2 /A 
I 

10 
(7.33) 

=C /2A 
20 

S=C . 2. 
-1 12 

=C /A 
222 

and C and C are the coefficients of equation (7.6). 
12 

The partial derivatives of the F function takes the 

form 

3F 
f 2- R+ss cash Is 3+rr cos h (r cos h (r 

2 

(7.34) 

F 

22=rr sin h Cr sin'h Cr (7.35) 

1 

The minimum (constant) value of the secondary reluctance is 

calculated by 

-3F2F2 

Cýis ý2R+ss+rr,, 

M2m: Ln 91212 

2= 
0 ý2= 0 

1 
(7.36) 
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Substituting for sI, s2, rI and r2 in equation (7.36), and 

noting that the product C,. C 
2 

gives the initial reluctivity 

of the B/H curve, i. e. 

cl. c 

the minimum value of the secondary reluctance is obtained 

exactly as given by equation (4.51). 

7.3.2 Tangent Function 

Although the approximation in equation (7.3) does not 

satisfy all the requirements of Section 7.1.1, the form the 

FI 1ý18 ý2) and F2 (ý 
I' 

) functions take when this approx- 

imation is employed gives an indication of the relationship 

between the physical structure of the core and the phase 

difference between the primary and secondary fluxes. The mmf 

functions are found to be 

)=Rý+p tan (p ýI+r 
(1 + tan 2 (r 

22 
)]tan(iý 

2 
29112111- 

tan 2 (r Man 2 Cr 

(7.37) 
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F (ý 
,ý)=Rý+s tan (s ý)+r 

[I + tan 2 Cr 
21 

)] tan Cr 
2_ 21 

2129212211- tan 2 Cr ). tan 2 (r ) 

(7.38) 

where pl, p 
2* 

rI, r2. sI and s2 are given in the same form 

as in equations (7.33), but where CI and C2 are now the 

coefficients of equation (7.3). In fact, CI and C2 are given 

by 

Cl &BS 
7r s 

(7.39) 

7r 1 
25s 

where Bs is the saturation flux density and S is the initial 

slope of the magnetisation curve, as shown in Figure 7.2. 

Since the flux density can never exceed BS anywhere in the 

core, the following condition holds in the common magnetic 

region of the two-Cý-core device 

I+02 

<B 
2 Ao s 

This results in the condition that the denominator of equations 
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(7.37) and (7.381 should always be positive to ensure 

positive values of primary and secondary reluctances at'all 

times, i. e. 

Itan (r 
7- 1 

). tan (r 
22 

Assuming 

=ý sin z 01 
im 

2ý 2m sin(z - U) 

the condition (7.40) becomes 

(7.40) 

B 7r 
B 

2M tan [! ý 
-1m sin-z ] tan[ sinCz - CO] I<1 for all z 

2 E63 26s 

(7.41) 

where a- im and B= 2m 
im fA- 2m 2A 

00 

In order for the condition (7.41) to hold for all z and for 

any given B 
Im 

and 8 
2M 

(each< BS1. it follows that 

- 7r 

which means that, during steady-state operation of the parametric 
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transformer, the phase difference between the primary and 

0 secondary fluxes is forced to be 90 . This situation has 

been qualitatively explained at the end of Section 3.2 in 

relation to Figures 3.19 and 3.20. 

Some other analytical approximations for the B/H curve, 

such as equation (7.51, have also been applied and the explicit 

forms of the F (ý 
I' 

) and F (ý 
I' 

) functions obtained. 

However, they are not given here, since their forms have been 

found not to reveal any further information about the devices 

investigated, and since these functions, when evaluated 

numerically, will yield the same values whatever the form of 

the approximate-expression for the B/H curve. 

7.4 Application of Power-Series Approximation to Hollow 

- Toroidal Core 

In order to illustrate orthogonal flux interaction, the 

explicit expressions of the mmf functions for the hollow toroid 

core device will be given. Following a procedure similar to 
I 

that of Appendix IV. and with the approximation of equation (7.12) 

applied to equations (4.67) and (4.68), the mmf functions are 

obtained in the form 

Co Co 
F (elt e)=iipt 

J+j 0e 2j 2J+l 
12 i=O J=o 2(i+J)+l -j 2 

(7.42) 
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00 Co 
F te e)=jjs( 

J+j 2J e 21+1 

212 i=C) J=o 2(i+J)+l j2 

(7.43) 

A2 
where I 

A2 
2 

pc 
21+l 

-- . ...... (7.44) 
2i+l 2i+l A 

kc 214*l 

21+l 2A 21+l 

2 

and 
J+j (i+J)., (the binomial coefficients) ij. i., 

Comparing the form of equations 17.42) and (7.43) with the form 

of the third term in equations (7.14) and (7.15), it is seen 

that both parallel and orthogonal flux interaction result in 

similar mmf -functions. However, a comparison of the coefficients 

of the product ý 2j. ý 21+1 in equation (7.43) with tho se in 

equation (7.15) shows that parametric coupling is achieved 

more effectively in the case of parallel rather than orthogonal 

interaction of primary and secondary fluxes. 
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1A 

Figure 7.1 Illustrating definitions of non-incremental, differential 

and incremehtal permeability 

N 

D 

Figure 7.2 Tangent approximation, H =-ý B S. tan (2 -2-) Tf s2B 5 

0 14 

BS 
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CHAPTER VIII 

OIGITAL COMPUTER SIMULATION 

8.1 Curve Fitting to the Magnetisation Characteristic of 
ihe Core Material 

When an approximate curve is fitted to the magnetisation 

characteristic of the core mý4terial, the overall accuracy of 

the approximation may be considered as satisfactory when the 

greatest error between the actual characteristic and the 

approximated characteristic is either: 

a) below the accuracy of the metering with which the 

magnetisation characteristic is measured, 

or 

b) less than the variations that occur between samples of 

the same material. 

In practice, it is not unusual to find that the magnetising 

force required to produce a given flux density varies by as 

much as 15% between samples of the same magnetic material. 

Because of this, (b) is the more stringent criterion for fitting 

an approximate equation to the magnetisation characteristic of 

the care material. 

The material used in the C-cores of the parametric trans- 

former is cold-rolled, grain-oriented silicon steel, with the 

data points for the magnetisation characteristic of such material 

obtained from reference 1, where the dc magnetisation curve and 

the hysteresis loops for ac excitation are given separately. 
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Since, in the-oarametric transformer, the cores are always 

ac excited, the magnetisation characteristic was taken as 

the curve passing through the tips of the hysteresis loops. 

When compared with the dc magnetisation curve, this provided 

slightly higher permeabilities below the knee of the curve 

and lower H values above the knee. The curvature around the 

origin was completely neglected, as none of the approximate 

equations to be used could take this into account. 

Since the magnatisation characteristic is required 

in the form H=f(B), errors between the given data curve and 

the approximate curve are evaluated in the H sense, i. e. if 

for a given B, the magnetic field intensity is given as H by 

the data curve and as H' by the approximate curve, the 

absolute error is 

c= HI -H 

as shown for two different points in Figure 8.1. Clearly, 

this absolute error may be quite large above the knee of the 

curve. although it is small for low values of B. If an 

approximate curve of the form of B=f(H) is fitted to the mag- 

netisation characteristic, the absolute error in the B sense, 

(i. e. C= BI - B) would not vary so much, and the curve fitting 

process would be easier. 

In order to judge the quality of the approximation, a 

criterion has to be established. The two most often used are: 
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The vertical distance between the data curve and the 

appro; kimate curve must be as small as possible at all 

points. 

2) The net area between the two curves'should be as small 

as possible. 

For the second criterion, a merit figure 2 is defined as the 

ratio of the area between the two curves to the area under 

the data curve, and this merit figure is minimized to obtain 

a good approximation. For the first criterion three different 

definitions can be made: 

a) The sum of the magnitudes of the errors between points 

of the data curve and corresponding points calculated by 

the approximate equation is minimised, i. e. 

n X JH; - H, j is a minimum. 
i=l 

b) The sum of the squares of the magnitudes of the same 

errors is minimised, i. e. 

n 

iII 
CH, ' -H1 )'2 is a minimum. 

C) The maximum error is minimised, i. e. 

MAX (HI - Hi) is a minimum. 
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Of the three definitions (b) is chosen, because it Is 

both the easiest to handle mathematically and provides a 

good compromise between (a) and (c). With this choice, the 

well-known least squares method 
3-5 

can be easily applied 

to the curve fitting problem. The error function to be 

minimised is 

n 
cl, c., ..., c 

where -FIB, c, cc) is the approximate function 
12P 

with -its coefficients as variables, and Mi. Hi) are the 

coordinates of the ith data point. The minimum value of c 

of equation (8.1) is found by equating the differentials 

ac . ..... De 
to zero, and solving the resulting ac ac 

2p 

p equations for the p parameters c 
I' 

C2# ... ' Cp . However, 

the equations obtained are non-linear, and are therefore not 

easily solved analytically. Numerical techniques such as the 

least squares method, are therefore applied to find the solution 

of a set of non-linear equations with variables cI, C2cp 

Although the first-order derivatives of c are normally required 

for the minimization process, numerical methods such as 

67 Peckham's and Powell's " have been developed to find a least 

squares solution of a set of non-linear equations, without 

calculating the gradients. 



8.1.1 The Method and Computer Program 

For computer fitting of the magnetisation characteristic, 

Peckham's method was used to calculate the parameters of the 

approximate functions reviewed in Section 7.1.2. The power 

series approximation of equation (7.12), the hyperbolic sine 

approximation of equation C7.7), and the tangent approximation 

of equation (7.3), (although this has a valid range for B 

restricted to ý6), were taken as suitable forms for the 
s 

analytical representation of the B/H curve. The NAG (Numeric 

Algorithms Group) Library subroutine E04FAF, based on Peckham's 

method, was used to determine the parameters c, by non-linear 

regression starting from an externally supplied initial 

estimate of the minimum point. 

E04FAF forms an approximation to a minimum of the sum of 

the squares of m residuals 

F (X) =iR (X) 
i=11- 

where X= (x,, x 2j' ***" xn3T and m >n, by approximating the 

residuals RCX) (underlining denotes vectors) at the point X 

by a linear form R=h+JX. where h is a constant vector and 

J is the Jacobian matrix JD R-'/D XI calculated at X. ig 19 

Thus, an estimate of the, minimum of the sum of squares was 

given by Y. the solution of the equation 

385 

0 

iTjy=_ jT h ..... C8.2) 
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From the initial estimate of the minimum point, a set of 

at least n+1 points, Xi was generated -, id the corresponding 

residuals Ri were calculated. Considering the sum of the 

squares of the difference between the linear approximation 

and the actual residual values, formulae estimating the 

coefficients. ofthe linear approximation (i. e. J and h in 

equation (8.2) ) were obtained in terms of Riand Xi. These 

formulae were used in the matrix equation (8.2) to provide a 

set of functions Y, in terms of the known quantities Xi and 

Ri , which were then solved using orthogonal transformations. 

One iteration consisted of replacing that point of the current 

point set which had the largest sum of squares by the estimated 

solution of the previous iteration, and solving the set of 

equations derived from this new set to obtain a new estimate 

of the solution. 

If X contained the best point obtained for one iteration 

and Y contained the best point for the following iteration, 

then the routine terminated with the current best point as the 

solution; that is the convergence criterion 

In - jil <a 

where a is a real scalar set initially for a required: accuracys 

was satisfied for two successive iterations. 

From the final least squares estimate of the parameters 

X, the valuesýof the approximate function HI 
.- 

f(Bi, X) and of 

the residuals Ri = f(B,, X) - H. were calculated at each data 

poi-nt. 
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The block diagram of the computing process is shown in 

Figure 8.2, and the listing of the program to fit the hyper- 

bolic sine approximation to the magnetisation curve is given 

in Appendix V. The fitted curves of different approximations 

are platted, together with the magnetisation characteristic 

of the core material, in Figures 8.3 to 8.10, where the 

explicit expressions and the values of the coefficients are 

also given. In all these figures, curves 1 are the actual 

magnetisation characteristic and curves 2 are the fitted 

curves produced by the approximate expression used. 

8.1.2 Discussion of Results 

The flexibility of the expression used to represent a 

given graphical form is an important factor in the curve- 

fitting process, since the range for which the approximation 

must be valid is -- <H< Apart from the overall 

accuracy of the approximation, a main concern is the accurate 

representation of the characteristic features of the magnet- 

isation curve, such as the initial slope around the origin, 

the saturation flux level etc. For this purpose, it is 

necessary to use the least squares method although this results 

in higher levels of absolute error at the data points above the 

knee of the curve. This is due both to the specific form of 

the magnetisation curve and to the ability of the approximate 

expression to represent this graphical form. Minimizing the 

maximum error, (definition C in Section 8.1) would yield a 
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better overall accuracy, but the characteristic features 

of the actual curve would not be preserved in the approximate 

curve fitted. 

Minimizing the sum of the squares of the absolute 

errors, at each point, results in a better fit above the 

Knee, since the errors here are much larger than those in 

the linear portion below the Knee. Using, for the minimisation 

process, the relative error CH) at each point, rather 

than the absolute errors, yields a better accuracy at the 

linear portion but poor accuracy above the Knee of the curve. 

This is obvious since the relative errors tend to increase 

as H1 -*0. For these reasons, the weighted errors 

W(B i 

where W(B i) is the weighting function, are used to bring 

additional flexibility to the curve-fitting process. To 

accomplish this, a weighting factor which multiplies the 

absolute error at a particular data point, is assigned to each 

such point and the sum of the squares of the weighted errors 

is minimised. 

To obtain a good overall fit and to be able to alter the 

weighting factors as required by the flexibility of the 

approximate expression used, the curve-fitting program had 

to be re-run several times for each expression, with the final 

estimates of the parameters obtained in one trial run taken as 
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the initial estimates in the following run. The final 

approximation attained therefore also depended on the choice 

of the weighting factors. Rather than obtaining the best 

approximation (i. e. the one with a minimum sum of the squares 

of the errors), these were chosen to provide an approximate 

curve which best displayed the specific features of the 

actual magnetisation characteristic, such as the initial slope 

and the saturation flux density. 

The influence of the weighting factors on the shape oF 

the approximate curve is illustrated in Figures 8.3 to 8.5, 

for the tangent approximation. Without any weighting factors, 

the process yields an approximate curve which fits precisely 

at the saturated region, but not at týe linear region, as shown 

in Figure 8.3. Increasing the weighting for small values of B 

results in the curve shown in Figure 8.4, where the precise 

fit is now in the linear region. With a suitable choice of 

the weighting factors, the curve obtained after a few runs of 

the program and shown in Figure 8.5 established a good 

compromise between the previous curves. 

It was also found that the hyperbolic-sine approximation 

of the form of equation (7.6) did not give a precise fit, if 

the actual characteristic had to be represented reasonably well 

in the linear region. Therefore, the expression in equation 

(7.7) was used, and the approximate curve obtained is shown 

in Figure 8.6.. 
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With a limited number of terms in the power-series 

approximation, the problem was considered as fitting a 

polynomial to a given set of data points. For this purpose, 

numerical methods using orthogonal polynomials such as 
8 Forsythe's method , were developed, and the subroutines 

E02ABF, E02ACF, E02ADF etc. based on these methods are 

available in the NAG Library. However, they did not permit 

external control. on the form of the polynomial to be fitted. 

Only the degree of the polynomial can be specified externally, 

and the polynomial contains both even and odd power terms. 

The magnetisation curve was approximated by using these 

algorithms, but the results were not suitable for accurate 

representation of the specific features of the curve, and 

the approximate curves were obtained in the form shown in 

Figure 8.11. This was due to the nature of the methods 
4 

using 

orthogonal polynomials such as Legendre polynomials, Chebyshev 

polynomials etc. which resulted in an oscillation property in 

the error function, similar to that encountered in the minimax 
3 type approximation. Therefore, the least squares method 

employed in the subroutine E04FAF had to be used also for the 

power series approximation. 

A polynomial including odd power terms only up to the 

15th was first considered. It was found possible for the 

process to result in negative values of C and C in 
1 15 

CB+C 83 ++C BI5 ..... (8.3) 
13 15 
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although the error function was still a minimum. Such an 

approximation is valid only within the interval in which 

the minimisation process is applied, and it therefore contra- 

dicts requirement 4 of Section 7.1.1. This led to the 

transforma-tion of variables 

11 

.0 (8.4) 

CX )2 
is 15 

and instead of C .... C, X to X were taken as the 
I is 1 15 

parameters to be determined by the minimisation process. 

The result is shown in Figure 8.7 which displays a precise 

Dverall fit between the twu curves. 

The repetitive use of a polynomial containing all the 

(odd) power terms up to a specified number would be too time- 

consuming when solving the system equations by computer, and 

a compromise has to be made between accuracy and computational 

time. Simple polynomials with only two or three terms were 

given consideration, but investigation was necessary to find 

which particular terms need to be included for a sufficiently 

accurate representation (especially of the curvature at the 

knee). The subroutine E04FAF was found to be unable to fit the 

polynomial 

CB+CBn.... (8.5) 
12 
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when the power n was also taken as a parameter, since the 

set of non-linear equations first linearized and then solved 

by the algorithm became exponential, when the method became 

unapplicable. Consequently, the process was repeated with 

different (integer) values of n, and it was found that the 

approximate expression yielded the best representation for 

n= 11. The result is given in Figure 8.8. Greater values 

of n produced curves with a sharper knee, as shown for 

n= 15 in Figure 8.9. Another good approximation was obtained 

with the polynomial containing three terms, 

6+C B3 +C B9 
39 

and the result is given in Figure 8.10. 

Since solving the differential equations of the parametric 

transformer required the evaluation of the B/H curve many 

times for only a single step, the best yet the simplest 

approximation was required. The obvious choice was the poly- 

nomial 

CB+C Bli .... (8.7) 
1 11 

with the parameter values as given in Figure 8.8, and this 

expression was used in the rest of the computer simulation work, 

Aon was applied. wherever the power-series approximat 
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8.2 Numerical Computation o-F Various System Functions 

Since the analytical expression of the function H- f(B) 

is now known, numerical evaluation of the F2 and 

F (0 a 
0) functions is possible if the values of A 

A2, zA0 and k are given. As will be seen in the next 

Chapter, an experimental parametric trans-Former was designed 

and constructed, on the basis of the bridged core being 

equivalent to the two-C-core construction. The physical 

dimensions and other data for the equivalent bridged core 

are given in Appendix VI. 

With the analYtical expression of the B/H curve given 

by equation (8.7), the explicit expressions for ths F2 

and F (0 
,0) functions are 

1r 11) ý+ 165 :ýýIýI (R +p+r 
11 21 11 21 

462 r65+ 330 r47., 55 r 

+r 
11 

)ý1 11 (8.6) 
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F (R +s+r+ 10 + 165 r8 

462 r6ý5+ 330 r4ý7+ 55 r 

cs +r 21 
..... (8.9) 

where cA /A 

AI /A 
1 

11 

122 

s, cZA ll 
11 11 2 

rc. k 12A 
100 

and rcj /(2A 
11 00 

All the coefficients above are readily calculable from the 

data in Appendix VI, although the air-gap reluctance 

R9 (= 2,9 /PO A0) in equations (8.8) and (8.9) is not yet known. 

Since the air gaps are unintentional and very small, the air-gap 

length k9 cannot be measured from the physical device, although 
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an estimate can be made. Initially, the ratio of the air-gap 

length to the total length of the closed flux-path of the 42 

secondary magnetic circuit (or the primary magnetic circuit 

since kI= Jt 2 
because of týe symmetry), i. e. 

t +& 
20 

was estimated as approximately 0.02%. * The air-gap length 

was then calculated as k=5.10-5m. 
9 

In order to checK the accuracy of this estimation, the 

experimental and the theoretical V/I characteristics of the 

secondary circuit Cor the primary circu. it because of complete 

symmetry) were compared. With the primary winding open- 

circuited the experimental V/I characteristic of the secondary 

winding was obtained as given by curve 1 in Figure 8.12. The 

theoretical characteristic was calculated by neglecting the 

winding resistance, when the acv source of effective value 

v creates a secondary flux 
2rms 

2 2M sin wt 

This ratio can normally be taken as Cr. 01% when air-gaps 

are avoided. However. twice this value was taken because 

of the use of unmatched C cores, and their axes being 

Jn right angle. 
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where 

v 2rms 
2m N2w 

with 0, = 0, the function F (ýIlv 0) becomes 

F=F (ý ) ..... (8.13) 

It must be noted that equation (8.13) provides the relationship 

between the instantaneous values of the secondary flux and mmf. 

By increasing z= wt in equation (8.11) at equal increments 

from 0 to ir (since a half period is sufficient to calculate 

the rms values), instantaneous valucs of F and i=FA are 
2222 

calculated at each instant. Then, using numerical integration 

based on the rectangle rule, the rms value of the resulting 

secondary current waveform can be found. The computer program 

for this is given in Appendix VII, where Subroutine TEZ 

calculates the instantaneous values of the primary and the 

secondary mmf's, FI and F2, for given values of the primary and 

the secondary fluxes CZCI) and Z(2) in the program). 

When determining the theoretical characteristic, leakage 

flux as well as winding resistance was neglected. Although the 

effects of the leakage flux could be accounted for in practice 

by some reduction in N and N from their actual values an the 
12 

experimental unit, this has not been done, since the way N and N2 
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enter into the system equations is far less simple than in 

a conventional transforM3r. 

It is seen from Figure 8.12 that the theoretical V/I 

characteristic gives higher values of the secondary current 

in the linear region but lower values in the saturated region. 

To fit the linear portions of the theoretical and experimental 

characteristics, the value of k was re-chosen 'as Z=3.10-sm 
99 

which resulted in the precise fit shown in Figure 8.13. The 

differences between the two curves in the saturated region arise 

from the approximate B/H characteristic used in the calculations, 

since the magnetisation data of the core material was taken 

from reference 1 (as explained in Section 8.1) and was not 

actually measured from the experimental unit. To remove this 

difference, the value of the coefficient c 
21 

in equation (8.7) 

was adjusted, and, when 

c=0.590113 (8.14) 

the theoretical and the experimental V/I characteristics 

fitted precisely in the rangeusedas shown in Figure 8.14. 

Numerical values of all the constants in equations (8.8) 

and (8.9) are now known, and F and F can be calculated for 
22 

given values of and ý 
2' 

Using Subroutine TEZ in a simple 

computer program, the function F (ý 
1' 2) 

was plotted in 

Figure 8.15, where ý" taken as a parameter, was incremented by 
2 

Aý2 = 0.25.10-3 Wb to illustrate the dependence of FI on ý 
2' 
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In this fi 
. 
gure, curve 1 represents the function FI Colo 02) 10 

20 
OR 

curve 2 the function 

.FI 

(ý 
I, 

02) 10 

20 
AO 

20 
**"'p curve 9 the 

function FI (ýIffl and so on. Similarly, the function 

F2 (ý 
1" 2) 

was plotted with the same increments of ý,., and is 

given in Figure 8.16. These two figures are the exact 

numerical versions of Figures 6.3 and 6.4, but only in the 

first quadrant. Figure 8.17 shows in more detail the portions 

of the curves for F (ý 
I' 

) near the origin, and covers the 

area indicated in Figure 8.16. Corresponding to Figure 6.6a, 

this figure illustrates how the initial slope is affected by 

It is clear that must attain a value as high as 

1.5 10-3 Wb for curve 7, before variations can occur in the 

initial slope. 

Considering the non-incremental reluctance functions 

MI 

F 
and R22 

M2 10 2 

as defined in Section 7.2.1., their graphical representations 

are given by Figures 8.18 and 8.19 respectively. The increments 

given to ý or ý2 when considered as a parameter were 0.25 10-3 Wb, 

as before, i. e. curve 1 in Figure 8.18 corresponds to ý 0, 
2 



399 

curve 2 to ý 0.25 10-3 Wb etc. The families of curves in 
2 

these figures were first derived qualitatively in Section 

6.1.1. 

The trans-reluctance characteristic for the secondary 

circuit 

M2 
(ý 

I 
2 

2 

is obtained from equation (8.9)as 

M2 
41) 

t 

and is plotted in Figure 8.20 together with the primary trans-. 

reluctance characteristic 

R 
mi 2R9+p+rI+ 

11 r 
11 2 

10 

These two curves, assumed qualitatively in sections 2.1.1 and 

3.1.5. play an important role in explaining paremetric trans- 

former operation, especially with their constant part resulting 

in the under-voltage protection property. 

The secondary inductance is calculated from 

N2 

-2 
M2 
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and when equation (8.16) is substituted for R 
M2 , 

the secondary 

inductance is obtained as a function of the primary flux 

L2=L2 (ý 
I)0 

Since the primary current can be calculated from 

F "(4 �4 k2 a =12 
N 

1 

for given values of 0,1, changing the independent variable in 

equation (8.19) accordingly results in 

= (i ..... (8.20) 
21 

which gives the trans-inductance characteristic of ihe secondary 

circuit, in the sense used by Wanlass Csee Section 2.1.1 and 

Figure 2.4). The function in equation (8.20) was plotted by 

computer as in Figure 8.21, where a constant portion is clearly 

seen before the secondary inductance falls to small valucs with 

increasing primary current. 

To dermnstrate the double-frequency variation in the 

secondary reluctance and to investigate the best sinusoidal 

waveform of this variation, the curves of Figure 8.22 were 

plotted. This f4 gure corresponds to Figure 2.2 explaining the 

reluctance modulation. The supply voltage creates the primary 
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f lux 

v Vr2- 
Irms sin wt 
N 

and when equation (8.21) is substituted in equation (8.16), 

the waveform of the secondary reluctance variation can be 

obtained by varying z= wt from 0 to 27T as in Figure 8.22, 

wI here curve I corresponds to V 
Irms = 160 V, curve 2 to 

V= 180 V, curve 3 to V= 200 V and so on. Evidently, 
irms Irms 

no Variations occur in the secondary reluctance before the 

supply voltage reaches a certain amplitude. Figure 8.23 shows 

the variations in the secondary circuit inductance for the 

same values of V 
Irmis' 

and is obtained by calculating the 

inductance values at each instant from R 
M2 and equation (8.18). 

Finally, the relative magnetisation characteristics of 

the primary. and secondary circuits were plotted as in Figures 

8.24 and 8.25. The curve numbered 1 in Figure 8.24 is the 

same as curve 1 in Figure 8.15, and is the locus of the end- 

points of the primary relative magnetisation characteristics. 

The same is also true for curve 1 in Figure 8.25, which corres- 

ponds to curve I in Figure 8.16. 

When deriving the relative magnetisation characteristics, 

the value of the primary flux at each instant was calculated 

from equation (8.21) for different values of V 
irms . The corres- 

ponding secondary flux value was found from equations (6.121 and 
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(6.13). Using Subroutine TEZ, the primary and the secondary 

mmf's were then determined-for given instantaneous values of 

the primary and the secondary fluxes, by varying z from 0 to 

Tr/2. The same numbered curves in Figures 8.24 and 8.25 

constitute pairs, corresponding to the same value of V 
irms 

so 

that the pair of curves numbered 2 are for V 
irms = 50 V, the 

pair numbered 3 for V 
Irms 

= 100 V, and so on up to the pair 

numbered 7 which are for V 300 V. It is noticeable from 
Irms 

Figure 8.25 that the secondary relative magnetisation charac- 

teristic may be considered almost linear, when V 
Irms 

is such 

that this characteristic is near curve 3 in the figure. It may 

also be deduced from Figure 8.24 that, for an almost linear 

primary relative magnetisation characteristic, the value of 

V 
Irms 

must exceed that corresponding to curve 7 in the figure. 

When calculating the secondary flux amplitude from equation 

(6.13). the saturation flux levelo 
s 

was determined in the 

following manner: it was assumed that, in the bridge branches 

of the magnetic model (where the highest flux density occurs), 

the core material is fully saturated for a flux density of 

B 
omax = 2.5 T. The maximum flux level in either of the magnetic 

circuits is then 

Os =2A0B Omax ..... (8.22) 
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Since there is no cubic term in equation (8.7), the 

F2 CO 
1" 

02) function in equation (8 . 9) does not contain the 

terms in s3 and r3. which were defined first by equations 

s+r 
(6.17). However, A2 (= 3s3) in equation (6.13) can 

3 

still be calculated, as the coefficient c3 from the power- 

series expansion of the B/H curve cancels out when the 

expressions for s3 and r3 are entered. 

The relative magnetisation characteristics of 

Figures 8.24 and 8.25, although plotted by computer cal- 

culating exact numerical values, must be regarded in a 

qualitative basis for the reasons stated at the end of 

Section 6.3. 
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8.3 Numerical Solution of the Differential Equations 

8.3.1 The Equations to be Solved 

The explicit expressions of the differential equations 

to be solved by computer are obtained when equations (8.8). 

and (8.9) are substituted in equations (5.8) and (5.9). As 

required by the differential equation of the secondary 

circuit, the function in equation 18.9) is differentiated 

with respect to z, and the functions f (ý 
10 

) and f 

as defined by equations (5.13), are obtained as 

3F 
2= (R +s+r+ 11 rý 10) +3e2 (165 re 8) 

91 

5ý4 (462 r0 61 +7ý5 (330 r 4) +90a (55 r 

+ 11 e' (8.23) 

3F 
Cýlm 2= 10 9 (11 r+87 (165 r 3) +6 

I 

(462 r 5) +403 (330 r1 7) +2ý (55 r 
11 

09) 

(8.24) 
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The differential equations may then be written in the normal 

form given by equation (5.17) and derived from the equivalent 

circuit of Figure 5.8, with leakage fluxes and care loss 

neglected and a load power factor of unity. 

8.3.2 Review of Basic Numerical Methods 

The purpose of a numerical method is to obtain an 

approximate solution of a differential equation. If a system 

of differential equations is given by 

i=ý (x, y (x). y (X), ..., y (x) ) (8.25) 
dx Yi ý '1 

12n 

(1 = 1,2 .... n) 

with the initial conditions 

Yi (x 
0)=y io 

(8.26) 

a numerical solution gives the values 

Yi (X 
0+ 

h) 

where h is an arbitrary but usually small increment of the 

Independent variable x. 
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Many numerical methods start by replacing the differ- 

ential system by an approximate algebraic system. At a given 

step, a truncation error is introduced in the numerical 

integration process, usually by the replacement of an infinite 

process by an approximate series expansion with only a finite 

number of terms. This is known as the per-step truncation 

error. The cumulative error of the small per-step truncation 

errors and their magnification in calculating subsequent steps 

may lead to serious total errors in the final solution. The 

per-step truncation error is a function of the step size h, 

and obviously the only means of reducing this and its 

associated error is by reducing h. 

Round off error or the error which results from replacing 

a number having more than n digits by a number of only n digits, 

arises because of the limited digital capacity of computers when 

fractions are transformed to non-terminating decimals. The per- 

step round off error is therefore independent of the step size, 

and when only a small number of equations are solved, the round 

off error is small and does not usually substantially affect 

the accuracy of the result. However, if many equations are 

solved simultaneously, the cumulative effect of round off errors 

my introduce relatively large errors. At the same time, when 

the method used is unstable and the integration therefore 

involves a large number of steps, the cumulative effect of 

round off errors and their magnification in calculating sub- 

sequent steps leads to serious total errors. Hence, a large 
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step length is desirable to minimise round oýf errors. 

Stability of a numerical method is associated with the 

way in which the total errors introduced per step are 

propagated in later steps. A numerical solution is unstable 

when, *as the computation progresses, the numerical values 

deviate more and more from the true solution. The instability 

of the numerical method is different from the instability of 

the differential system which produces unstable solutions 

growing in magnitude as a result of the nature of the system. 

The latter is called inherent instability and is analogous to 

ill-conditioning of the problem. Although the differential 

system may be quite well-behaved, the particular numerical 

method in use may be unstable and the devi6tion itself from 

the true solution becomes large. This is called absotute 

instability and. if the ratio of the deviation to the true 

solution becomes large, the numerical method is then said to 

be relativeZy unstable. 

The differential equations may sometimes introduce spurious 

solutions, which although normally decreasing and tending to 

vanish as h-jý-O, can, under some circumstances, increase faster 

than any solution of the differential equation. This is called 

strong instability and implies lack of convergence as well as 

lack of instability. If the solution converges but the 

asymptotic behaviour of the spurious solutions upsets the true 

solution, and causes instability, the phenomenon is called weak 

Instability. These instabilities may be introduced at any step 

length and cannot*be controlled by reducing the step length. ', 
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In some cases, the numerical method is stable only below 

some limiting value of step size. This is called partiaZ 

instability and applies only for a particular combination 

of numerical method, differential equation and step-size. 

Numerical methods to generate a unique solution over a 

range of x for a differential equation may be categorized 

into three groups: 

Methods which use derivatives 

The Taylor's series expansion of the function y(x) about 

a point x=xi provides a fundamental method of this type. 

The solution at the next point x i+l is then given by 

+ 
112 

y (X +' h) =y+hy'_ yl, + (8.27) 
i12' 

and using the initial value yi at x= xJ, the solution and 

its relevant derivatives at the next point x i+1 =xi+h are 

calculated. Taking this point as a new origin, the process 

is repeated until the whole range is covered. 

Although this method is self-starting and, when enough 

deriVatives are calculated, avoids truncation errors, itis-of 

little practical value since the computation of higher deri- 

vatives is generally very difficult. 
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ii) Finite difference methods. 

These basically use Adams-Bashforth predictor-corrector 

equations, with the solution effectively obtained by an 

iterative process. At the beginning of the computation, 

several early values are calculated by a Taylor series, 

since there are no differences available. Again, although 

this method attempts to avoid any truncation error, the 

necessity for extrapolation and subsequent correction, and 

also for differencing many values and the examination of these 

differences, make its practical use tather difficult. 

iii) Lagrangian methods. 

These are essentially variations of truncated versions 

of derivative and finite difference methods. Basically, they 

may be divided into two groups: 

a) Runge-Kutta Methods (Euler, fourth order Runge-Kutta, 

etc). 

These are called one-step methods, as they use 

information only from the ith point to calculate 

the new values at the Ci-ýl)tfi point. 

b), Predictor-corrector methods (Milne, Hammings etc). 

These are called multi-step methods, as they use 

information from the ith, Ci-l)th and (i-2)th points 

to calculate the new values at the (i+l)th point. 
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The advantaRes and disadvantages of each method may be 

summarized as follows: 

Runge-Kutta Methods: 

Advantages a) Since they do not use information from 

previously calculated points, they are 

self-starting. 

b) Being self-starting, they permit easy 

change of step-length. 

Disadvantages a) They require several evaluations of the 

system functions during each step, and 

are therefore slow and time consuming. 

b) Generally, they provide no information 

about the local truncation error (although 

the Runge-Kutta-Merson method does). 

Predictor-Corrector Methods: 

Advantages a) As theyýrequira fewer evaluations of the 

system functions per step, they are 

significantly faster. 

b) The estimate of truncation error is obtained 

as a by product of the calculation. 

Disadvantages a) They are not self-starting and therefore 

require a starting method. 

b) Changing the step-length is difficult and 

involves restarting using Runge-Kutta 

formula. 
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8.3.3 The Choice of Method 

In order to choose the best method to solve the system 

of differential equations defined in Section 8.3.1, a number 

of factors have to be considered, including: (a) the accuracy 

required, (b) the ease with which the error at each step may 

be estimated, (c) the ease of starting the computation, (d) the 

ease of changing the interval between steps, (a) the speed 

with which the computation is performed. 

Much consideration must be given to the stability of 

the method to be used, since the system of differential 

equations to be solved exhibits inherent instability due to 

the nature of the self-excited parametric oscillations. Any 

kind of instability due to the. numerical method must be avoided, 

since it is not possible to predict the stability of the 

physical system without actually solving the differential 

equations. Obviously, it is absolutely necessary to know 

what causes any instability in the solution,, in order to dis- 

criminate any inherent instability from those associated with 

error propagation, spurious solutions, partial instability etc. 

For Runge-Kutta methods, it has been demonstrated that 

Instability due to spurious solutions is not present. Apart 

from the inherent instability, the instability in these methods 

is due mainly to partial indtability, which can be controlled 

by stepý-length variation. On the other hand, the predictor- 

corrector methods show strong instabilities through the intro- 

duction of spurious solutions. Considering all the factors 



n 

involved,. it was decided that as a method of analysing the 

transient response of a system whose nature (i. e. the 

initial conditions, the values of parameters, the existence 

of self-excited oscillations etc) may be changing frequently, 

a Runge-Kutta method, although relatively slow, is the most 

suitable. 

The fourth-order Runge-Kutta method is a popular one, 

and it has a truncation error proportional to hS. Although 

the calculation of truncation error in this method is very 

difficult, formulae produced by Merson give an estimate of 

the local truncation error. The choice of step-size is also 

important to enable the method to be stable and to achieve 

high accuracy. Because of the relationship between the local 

round off and truncation errors and the step-size, the total 

error can be Kept to a minimum only by maintaining the per- 

step truncation error within some appropriate bounds. The 

Runge-Kutta-Merson method achieves this by reducing the step- 

length if partial instability occurs and the accuracy 

departs from the defined limit. 

8.3.4 The Computer Program 

A computer subprogram (NAG Library subroutine D02ABF) which 

advanced the solution of a set of ordinary differential equations, 

equation (8.25), from x to x+h, using a number of steps of Merson's 

form of the Runge-Kutta method was used to solve the differential 

412 
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equations describý? d in Section 8.3.1. These equations were 

defined in the program by a subroutine "DERIV" which evaluated 

the derivatives G in terms of X (= wt), Z(l) C= ), Z(2) 

and Z(3) d Z(2) ). The functions F (ý #ý) MMFl), dX 112 

F 
10 

MMF2), f 
10 

FNl) and f 
I' 

FN2) 

were calculated for a given set of Z and X in the same sub- 

routine, rather than in a different segment of the program, to 

minimise the execution time. Since this subroutine was called 

at least five times by the subroutine 002ABF, during each 

individual step of integration, the calculations in it were 

simplified as much as possible. The subroutine 002ABF obtained 

an estimate of the local truncation error at each step, and 

varied the step-size automaticallj to keep this estimate below 

an error bound specified earlier in the program. If the step 

length became less than 10- 4x (initial step length specified), 

the subroutine set an error marker and returned to the main program. 

The main program then printed out the instant at which partial 

Instability had occurred, and the process was stopped. 

The listing of the program for solving the differential 

equations defined in Section 8.3.1 is given in Appendix VIII, 

with a block diaggram for the computing process shown in Figure 

8.26. Having found the initial values Twhen 0= 0) of the 
.2 

secondary reluctance and inductance, and of the corresponding 

resonating capacitance, the program proceeded to calculate the 

average-value of the secondary reluctance, which normally required 

a numerical integration process. When expressions other than 
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polynomials were used for the H= f(B) function, this average 

value had to be calculated numericallV bv a NAG Library 

subroutine, such as D01ABF, which necessitated the variation 

of the secondary reluctance being defined by a separate 

function segment in the program. However, With polynomials, 

it was possible to calculate the averaize value of the second- 

dary reluctance analytically. 

The trans-reluctance characteristic for the secondary 

circuit is given by equation (8.16). If the primary flux is 

assumed sinusoidal, substitution of equation (8.21) into 

equation (8.16) and averaging over the interval O< z< 7r gives 

7r 
10 1 

RR+s+r+ 11 r- (sin z)lodz 
m2av 911 11 Im Tr 

I 
0 

(8.28) 

where the integral can be calculated analytically as 63/256-. 

When the sinusoidal primary flux is substituted in the 

F2 (ýIv ý) function and this function is expanded as 

Ffý 
2* z), = (R 

M2av + periodic terms)ý 
2+(3ý2 

3+.... 

the constant part of the coefficient of ý2 in the fourth term 

of. equation (5.8) becomes 

+R 2). R 
2N2CRLm: eav 

2 
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which corresponds to the characteristic number a of the 

Mathieu-Hill equation of Chapter III. Since a=I is the 

instability condition defining the parametric resonance, 

the value of the capacitor to tune the loaded secondary 

circuit to the input frequency is 

RR 
M2av (I + --L) ..... (8.29) 

w2N2RL 
2 

which gives equation (3.1671 for RL= ca. This value of the 

secondary cap6citance was also calculated in the program, for 

comparison with the actual capacitor connected, and to see how 

much detuning was introduced into the secondary circuit. 

The initial value of zero for the primary flux ZQ) in 

the program, assumed that no magnetic flux or electric charge 

existed in the primary circuit before the Input voltage was 

applied. Since the total series resistance was very low, this 

could lead to high in-rush currents in the primary circuit, 

depending on the phase angle of the input voltage at X =, O. 

Because of the way the primary voltage is defined, in the program, 

low in-rush currents are obtbined with phase angles near 7T 
f* 

The initial conditions in the secondary circuit may be 

defined in two different ways. When only a remanent flux 

exists in the secondary magnetic circuit the initial conditions 

are -2(3) =0 and Z(2) = 115 10-7 Wb, calculated by assuming a 

remanent flux-density of 5.10-3 T, in the secondary cross- 

sectional area of A2= 23.10-4M2 . Although the remanent flux 

density in the iron core could in practice be preserved at higher 
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levels, *depending on the past history of the secondary circuit, 

it was intentionally kept small to observe the parametric 

oscillations building up from very small amplitudes. 

Alternatively, a small initial oscillation could be assumed 

to exist in the secondary circuit, in which case both Z(2) and 

Z(3) take non-zero values. The amplitude of this initial 

oscillation was taken as corresponding to 5.10-3 T of initial 

flux density, and its phase at x=0 could be varied, although 

in the program listing (see Appendix VIII) it is taken as 1 
4 

It might be noted in advance that defining the initial 

conditions in the secondary circuit in these two different 

ways did not introduce any essential changes in the build-up 

process of the parametric oscillations. 

In the program, the error bounds for the system variables 

were specified as 0.5 10-5. The same program was run with 

smaller error bounds, but this resulted in almost the same- 

numerical values Cup to the fifth decimal place) of the out- 

put variables EIE and 12. With the error bound of 

0.5 10-5 the solution obtained by the Runge-Kutta-Morson method 

was therefore assumed to be the true solution, within an acceptable 

error. 

Unless the step-length was reduced by the subroutine 002ABF 

when the error limits were exceeded, the integration of the 

differential equations was carried out by this subroutine. in 

two equal steps of 0.057r over the range of 0.17r, between the 

two points for which numerical results were printed. At its 
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output, the subroutine produced the new values of FF 
12 

and from which the instantaneous values ei and 

were calculated. 
2 

As previously explained, the starting operation of the 

parametric transformer needed the input voltage amplitude to 

be increased over a threshold, then to be reduced to a level 

where the best condition of operation was achieved. In order 

for an abrupt change in the primary voltage not to cause 

transient effects, V 
ieff 

was reduced by a small amount at 

each increment of time between two pre-determined instants. 

Since the instantaneous numerical values of e, e, i and 
121 

12 had already been calculated in the program, their effective 

values were found by numerical integration, using the 

rectangle rule over an interval of five cycles of the 

oscillation. The rectangle rule was considered to be of 

sufficient accuracy as the integration step was small. However, 

when the variations of e, iI and 12 were quasi-periodic, or 

when they exhibited amplitude modulation, the effective values 

found were not reliable, since it was then necessary to perform 

the integration over much longer intervals. 

The program was used to find the transient response of the 

parametric transformer under different conditions but over an 

interval of 50 periods (= 1 second), which, in most cases, was 

sufficient -for the system to attain steady-state operation. 

The aim was to keep the job run time reasonably small, which 

otherwise would need to be increased in proportion to the inter- 

val of the investigation. For this reason, the gradual changes 
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of variables such as input voltage amplitude or load resis- 

tance (i. e. simulation of turning the knob of a variac or 

a rheostat in the physical system) had to be accomplished 

quite rapidly, in order to establish their effects in the 

rest of the interval. Since the time constants of the 

primary a9d the unloaded secondary circuits were quite 

large (because of high inductances but low resistances of 

. the windings), the transient effects resulting from such 

changes sometimes took long time to settle. 

The job time changed only slightly between the cases 

when normal oscillations were excited and when no oscillations 

occurred at all, but increased significantly when quasi- 

periodic oscillations were produced, because of the auto- 

matical reduction of the step length to maintain the required 

accuracy. 

The waveforms of the input and output voltages and currents, 

resulting under various different operating conditions wcre 

plotted by computer and given in Figures 8.27 to 8.52. 
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8.4 Discussion of Results 

The results obtained from the computer solution 

demonstrated all the characteristic features of parametric 

transformer operation. The secondary voltage amplitude 

reached values around 400 V as the oscillations built-up 

from very small values, as shown in Figure 8.27. As 

explained previously, the secondary voltage can attain its 

full amplitude at steady state, only after the primary 

voltage is reduced to levels corresponding to points between 

A and B in Figure 6.21. This is illustrated in Figure 8.28a, 

where the primary voltage was reduced in 1.2 Vsteps from 

240 V at 0.11T intervals between wt = 407r and 507T. It is 

seen for wt <407r that the secondary voltage reaches the steady 

state at a primary voltage between points B and C in Figure 

6.21. The low secondary voltage exhibits a deep amplitude 

modulation. As the primary voltage is reduced when 407r< wt < 507t 

. 
the secondary voltage increases accordingly and the amplitude 

modulation diminishes, with E eventually reaching an almost 
2 

constant amplitude. For wt> 507r, the depth of the modulation 

gradually decreases with time, as it is associated with the trans- 

ient effects caused by the rapid reduction of V 
Irms, 

However, 

if the primary voltage was maintained at its original amplitude, 

the secondary voltage would-continue exhibiting the deep 

amplitude modulation. Briefly, the four different stages 

observed in the variation of E in Figure 8.28a are: 
2 
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1) 0< wt < 20w; initiation and growth of oscillations, 

ii) 207r < wt < 407r: steady-state operation corresponding to 

v 
Irms = 240 V, (iii) 407r < wt < 507r: changes of V 

Irms and 

v 
2rms satisfying the operational characteristic of Figure 

6.21 or 3.36 or 2.6, (iv) wt > 50w: steady-state operation 

corresponding to V 
irms = 120 V. The primary and the secon- 

dary current waveforms in this condition are given in Figure 

8.28b. Figures 8.29a and b show the primary and secondary 

voltage and currents for V 
Irms 

= 260 V which is then reduced 

by 120 V to 140 V. Figure 8.30a and b show the same 

quantities with V 
Irms 

initially 280 V and then reduced to 

160 V.. Comparing the secondary voltage waveforms in these 

figures it is seen that as V 
irms 

is increased from 120 V to 

160 V during the steady-state operation (wt > 5070, the 

secondary voltage amplitude starts to display a modulation 

similar to that occurring when 207T < Wt < 407T, with a depth 

increasing with V 
irms . In general, when working in region BC 

of Figure 6.21, the secondary voltage amplitude is modulated 

in addition to the waveform distortion explained in Section 

3.6.2 with reference to Figure 3.38. (The distortion of the 

secondary voltage is best displayed in Figure 8.45, where the 

secondary voltage has a triangular waveform similar to Figure 

3.38b). This phenomenon may be explained by the classical theory 

of the Mathieu-Hill equations, which demonstrates that the 

characteristic exponent p, being a positive, real constant in 

an unstable region and zero on the boundary curves, can be 

considered as a complex constant in a stable region of the 

stability chart. When V 
irms 

is high, the parametric Point at 
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the stoady state, PI in Figure 3.16, rests higher on the 

boundary curve a cl , from where it can easily be driven into 

the stable region between a cl and a 
S2 . 

With V having a small 

but imaginary value, the amplitude of the oscillations is then 

modulated accordingly. V 
irms must therefore be kept below the 

value corresponding to 0,. so that the secondary voltage 
IM 

amplitude is determined only by the saturation flux level 

in the core. 

It As now clear that the voltage regulation property of 

the parametric transformer exists because the peaKs of the 

secondary voltage variation are limited by saturation. As 

long as V 
Irms 

is within a certain range, the secondary voltage 

amplitude is always constant, although its rms value changes 

due to waveform distortion at different operational conditions. 

The voltage regulation property is demonstrated in Figure 8.31, 

where V 
Irms 

is initially 240 V and it reduced by 180 V when 

407r < wt < 507!, and for wt > 507T, is multiplied by (I + 0.2 sin (0.1 wt) 

The secondary voltage amplJtude, having reached steady state by 

Wt = 507r, is not substantially affected by the variations in V 
Irms' 

(The slight variation in the secondary voltage amplitude is 

caused by the transient effects of the rapid reduction in V 
irms 

Furthermore, the secondary voltage amplitude here is almost the 

same as in Figures 8.28a and 8.29a, illustrating another aspect 

of the voltage regulation property. Figure 8.32 shows the same 

waveforms obtained with V initially taken as 300 V. The 
Irms 

variations in the secondary voltage amplitude for wt >507r, 
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similar to those in Figures 8.30a, are independent of the 

variations of V 
Irmso 

since the first is caused by operation 

in region BC of Figure 6.21, as the mean value of V 
Irms 

is 

now sufficiently high. 

The under- and over-voltage protection properties of the 

device were also established by the computer simulation. 

When V 
Irms 

was given values below 200 V, the small initial 

oscillation in the secondary circuit was not excited and 

eventually died away, as shown in Figure 8.33. The other 

aspect of the under-voltage proptection property explained by 

equation (3.204) is illustrated in Figure 8.34, where V 
irms 

is 

reduced from 260 V to 110 V in the interval 307r < wt < 407r, 

when the secondary valtage reaches the steady state with a 

constant amplitude. However, a further reduction of 70 V in 

V 
irms' accomplished when 607r < wt < 707r, causes condition 

(3.204) to be satisfied, and the oscillations are no longer- 

sustained but have an exponentially decaying amplitude. Since 

the secondary circuit is unloaded, it has a quite large time 

constant and the decrease occurs very slowly. However, if the 

under-voltage protection is exercised with a loaded secondary, 

the secondary voltage falls rapidly to zero, similar to that shown 

for over-load protection in Figure 8.50. Nev6rtheless, the large 

time constant of the secondary circuit ensures that the output 

voltage is unaffected by such irregularities in the primary 

voltage as an interruption lasting for a few cycles. 
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The over-voltage protection property is demonstrated in 

Figure 8.35, where V 
irms 

is reduced from 260 V to 80 V 

during 207r < wt < 407r, and kept constant for 407r < wt < 507r 

to ensure that the secondary voltage reaches its full, constant 

amplitude. From wt = 507r onwards, V 
irms 

is increased by 0.7 V 

at each step, reaching 360 V at wt = 907r. It is seen that 

the secondary voltage amplitude decreases as V 
Irms 

is gradually 

increased, and finally becomes almost zero. From the relation-' 

ship between the amplitudes of the primary and secondary voltages 

in-this figure, the form of the characteristic in Figure 6.21 

(or 3.36 or 2.6) can be readily deduced. The over-voltage 

protection feature is a result of the forced suppression of 

the secondary flux amplitude by the primary flux reaching high 

levels in the core. Since this suppression is achieved very 

rapidly in the computer simulation, some quasi-periodic 

oscillations are observed after V 
2rms 

has become practically 

zero. This is due to the nature of the system and is true also 

for the physical device. In Figure 8.36, V 
irms 

is increased 

more rapidly, starting from 80 V at wt = 507r and reaching 380 V 

at wt = 807r. The secondary voltage amplitude becomes very small 

just after the instant wt = 707T. when the over-voltage protection 

is achieved. However, with V 
Irms 

already increasing further, 

the small oscillations after this instant are excited. and quasi- 

periodic oscillations of very high amplitudes and of mainly twice 

the frequency of the normal oscillations are obtained, as seen 

from the figure. These oscillations are not in a defined phase 

relationship with the primary voltage, but if V 
irms 

is subsequently 
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decreased, it is possible that they may become phase-locked 

with the primary voltage, in which case double frequency 

oscillations of very high amplitudes are obtained, as shown 

in Figure 8.37. This phenomenon has been explained in Section 

3.4, with reference to Figure 3.28. Since the secondary 

circuit capacitance still has the value necessary for 50 Hz 

operation, the primary and secondary currents reach amplitudes 

in excess of 10A. which may be harmful for the actual device. 

This phenomenon is quite different from the normal frequency- 

doubling operation of the parametric transformer when the 

currents are of moderate amplitudes. 

If the secondary capacitor is adjusted so that the 

condition a=1 is always satisfied by equation (8.29), the 

secondary oscillations are excited and maintained with V 
irms 

higher than in operation with a constant capacitor. In Figures 

8'. 38 and 8.39, the secondary capacitor is given such values, 

and V 
Irms 

is reduced by 100 V from the initial, value of 280 V 

in the first figure and 300 V in the second. Although these 

values of V 
Irms 

are higher than in Figures 8.28a and 8.29a, 

the secondary voltage variation is Just as good as in these 

figures. 

It was found that the steady-state phase of the secondary 

voltage with respect to the primary voltage is determined by 

the Instant when the process of build-up Starts, rather than by 

the initial conditions specified in the program. This instant 

cannot be pre-determined as it depends an factors such as the 

initial phase of the primary voltage, the values of V 
irms" 

C, RL 
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etc. as well as the initial conditions. Initiation of 

oscillations in the secondary circuit under different 

conditions is shown in Figures 8.40 to 8.46. In Figure 

8.40, the phase of the primary voltage ALFA = 0.57r and the 

initial conditions are defined by assuming an initial 

oscillation in the secondary circuit of the form 

-6 7r 11.5 10 sin Cwt + ; ý), when the final steady-state 
2 

secondary voltage is qbtained lagging in phase on the primary 

voltage by 900. Keeping the initial conditions in the secon- 

dary the same but changing ALFA to I. SiT to seek the second 

stable phase (900 leading) of the secondary voltage did not 

change the phase relationship between the primary and secondary 

voltages, as seen from Figure 8.41. In Figure 8.42, the same 

phase relationship CV lagging vI by 900) was obtained with a 

different value for the phase of the initial oscillation. As 

can be seen from Figures 8.43 to 8.45 for different'values of 

V 
irms 

and C, the secondary voltage leads the primary voltage 

by 900 at steady-state, proving the bistability of the phase. 

It was found equally likely for the secondary voltage to take 

dither of the two stable phases, although which one will actually 

be taken cannot be predicted, since this depends in a very 

complex manner on all the system parameters and the circuit 

variables. However, one most important factor was found to be 

the phase of the in-rush currents occurring when the primary 

voltage was applied. Figure 8.46 shows the initial oscillation 

corresponding to an initial flux density of 2.5 10- 2T in the 

secondary circuit when the primary voltage is switched on with 
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ALFA slightly greater than 0.57r. It can also be observed in 

Figures 8.40 to 8.45 thatduring build-up, the phase of the 

growing oscillations changes so that the phase difference 

between the primary and the secondary volteges becomes + ir/2 

at steady-state. This change of phase is shown in more 

detail in Figure 8.47. 

In Figure 8.48, the secondary voltage has already 

attained the steady-state corresponding to V 
Irms ý 180 V, 

with the capacitor given the value of equation (8.29). when a 

load resistance of I KQ is introduced into the system at 

Wt = 607r. Since this value of RL proved to be below the 

maximum acceptable load under these operating conditions, the 

secondary voltage fell to zero, illustrating the over-load 

protection property of the device. The same process is 

repeated in Figure 8.49, where the steady state is reached 

with V= 200 V. Introduction of the load resistance does 
Irms 

not now switch off the secondary voltage, since the maximum 

acceptable load under these operating conditions is not exceeded. 

However, it is seen that the load resistance introduces a kind 

of ballast action, removing the modulation of the secondary 

voltage which existed previously. Figure 8.50 shows the same 

operation as Figure 8.48, but at wt = 607r a load resistance of 

2 k9l is introduced and this is subsequently decreased by 611 at 

each step of integration until wt = 857r. It is seen that the 

secondary voltage amplitude is quite constant in the interval 

607r < a)t < 807r, although the load resistance is monotonously 

decreasing, and this establishes the load regulating property of 
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the device. Just before wt = 80Tr. when RL is decreased to 

below 1 W, the over-load protection property comes into 

action and the secondary voltage starts to diminish. 

As already observed in all the computer plotted figures, 

the secondary voltage is a very good sinusoid, although 

operation under many different conditions was considered. 

The waveforms of the primary and secondary currents for three 

different operation condit ions are given in Figures 8.28b, 

8.29b and 8.30b. It can be noticed from these that, when the 

primary voltage is high and the secondary voltage corres- 

pondingly low, the currents have waveforms similar to those in 

Figure 6.18a, and conversely that when the primary voltage is 

low but the secondary voltage is high, the current waveforms 

are similar to those in Figure 6.18b. 

Apart from the secondary voltage being a good sinusoid, 

the filtering ability of the device Is demonstrated by Figure 

8.51, where the square waveform of the primary voltage is 

approximated by a Fourier series containing harmonics up to the 

15th. The maximum value of the square wave is reduced from 380V 

to 140 V within the interval 207r < wt < 307r. Since the primary 

voltage is quite high before Wt = 207r, harmonic oscillations 

similar to those in Figure 8.3B are also observed. However, 

after the amplitude of the square-wave input voltage is reduced, 

it is clear that the secondary voltage has a quite good sinusoid 

waveform. As can be noticed from the diminishing depth of 

modulation in Figure 8.51, the variations in the secondary 
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voltage amplitude results from the rapid reduction of the input 

voltage in the interval 207T < wt < 307r. 

With the secondary capacitor given values to resonate 

the secondary circuit at 100 Hz, oscillations at twice the 

input frequency were obtained, as shown in Figure 8.52. 

Operation of the device as a frequency doubler was found to be 

much more sensitive to changes in the system variables and 

parameters than normal operation. It proved difficult to start 

the oscillations, and the amplitude of the initial oscillation 

in the secondary circuit was therefore taken as 10 times that 

for normal operation. The range of V 
irms 

for which the 

oscillations could be started and sustained was narrower in 

comparison with normal operation, as well as any slight changes 

in the circuit parameters C, RL etc affecting the oscillations 

more critically. 

As pointed out earlier, none of the approximate 

expressions used allows the reproduction of the curvature near 

the origin of the actual magnetisation characteristic. The 

initial (maximum) inductance of the secondary winding is cal- 

culated from equation (4.52) as 6.8H (see Figures 8.21 and 8.23). 

However. when this inductance was measured for the actual device 

by an impedance bridge type instrument, it was found to be about 

0.6H. The value of the capacitor connected in the physical set- 

up is calculated from this measured value of the secondary induc- 

tance and it is therefore about 10 times higher than the value 

used in the computer simulation. The reason for the difference 
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between the two values of the secondary inductance (or of 

the primary-inductance because of complete symmetry) is 

mainly because the slope of the B/H curve near the origin 

is assumed as high as in the linear region. which is untrue, 

although the experimental and theoretical V/I characteristics 

fit very precisely. Furthermore, the most important conse- 

quence of the increased capacitor value in the computer 

simulation was that the computer program yielded primary 

and secondary currents much lower than those measured during 

steady-state operation. The growth of. oscillations in prac- 

tice is accompanied by a large increase in the amplitude of 

the primary and secondary currents, and this was not demon- 

strated by the computer simulation, as can be seen from 

Figures 8.28b, 8.29b and 8.30b. The computer simulation 

produced secondary voltage amplitudes during steady-state 

which agreed well with the practical values, because the main 

factor determining this amplitude is the saturation flux level. 

In the actual device, the maximum electrostatic energy stored 

in the capacitor in the secondary tank circuit (I C V2 ) is 
2M 

more than in the computer simulation, because of the higher 

value of the capacitor. A quarter period later, when this 

energy is totally converted to electromagnetic energy, the value 

of the secondary current in the simulation is therefore much 

lower than in the actual device. To account for these differ- 

ences and to have a capacitor value in the simulation equal to 

the practical value, required the initial secondary inductance 
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to be made equal to the value measured for the actual 

device. 

In the computer simulation, the difference between'the 

calculated and measured secondary inductances could be removed 

simply by increasing the length of the air-gap. Howevcr, this 

would affect not only the portion near the origin but also 

the complete linear portion of the theoretical V/I charac- 

teristic in Figure 8.14. The precise fit seen in this figure 

would be totally upset resulting in the calculated secondary 

currents being much higher than those experimentally observed 

when no parametric oscillations occur. It was therefore 

necessary to take the curvature near the origin of the B/H 

curve into account. Having considered many possible solutions, 

it was found that the addition of a third term, so that equation 

(8.7) becomes 

H=CB+C B" +k tanh (k B) (8.30) 

was the most suitable. With this expression taken as the 

H=f(B) function, the F and F CO functions were 

found to have the additional terms 

F (ýJp ý) = terms of equation (8-8) +u tanh Cu ý) 
12121 

.1q 
ftanh (q Co +ý )] + tanh [q 

21212 

(8.31) 
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F2 clip 123= terms of equation (8.9) +vI tanh (v 
202) 

+-! q ftanh [q Cý +ý )] - tanh [q (ý -0 )11 
21212212 

(8.32) 

and the partial derivatives of F2 (0 
1" 2) 

f1 10 
is 

0)= tems of equation (8.23) +vv2 sech 2 (V 
2) 

12 {sech 2 (q (ý +'ý )l + sech 2 [q (ý -ý ID 
221 '2 212 

(8.33) 

f2 -(ý, * ý)= terms of equation (8.24) 

122 {scch 2 [q +0 sech 2 [q 

431 

(8.34) 
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where kk 

=k /A 
221 

Z 

(8.353 

=k /A 
22 

q=K . 2.. 
110 

k MA 
20 

The transreluctance characteristic of the secondary is now 

f (ý ý )I =R+s+r+ 11 r M2 29 

2 

+qIq2 (1 
- tanh 2 Cq 

2 
)l 

C8.36) 
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The minimum constant value of the secondary reluctance is 
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R 
m2min 

f 
11 2 

2ý0 

=o 

=9sI+rI+vIv2+qIq2 

(8.37) 

from which the initial value of the secondary inductance 

is calculated as 

N2N2 
22 

21n R 
M2min 

+ 1--L +0 )Cc +kk AA 2A 112 

(8.38) 

The values of k and k were determined by equating the above 
12 

expression (with all the other parameters unchanged) to the 

experimentally measured Wilue of the secondary inductance. 

In order not to affect the precise fitting between the thea- 

retical and experimental V/I characteristics, K was assumed 

to be small and the corresponding value of k2 was calculated. 

With kI= 10 and k2= 304.6 the secondary inductance became 

0.6H and the value of C for the computer simulation was increased 

to near the values employed in the physical set-up, without the 

calculated V/I characteristic being substantially affected. 
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The computer program to solve the differential equations 

of the system was run many times for different operatibnal 

conditions, with the new FI Colo 02), F2 Colo 02), fI to 
10 

02 

and f (0 
,o) functions, and many different combinations of 212 

parameter values were tried. However, all the attempts 

failed and no parametric oscillations in the secondary 

circuit could be achieved. With the magnetisation charac- 

teristic of equation (8.30) and the trans-reluctance'charac- 

teristic of equation (8.36), Figure 2.2 becomos as Figure 

8.53, where high peaks in the secondary reluctance variation 

are observed at the zero-crossing instants of the primary flux. 

During the growth of oscillations, the phase relationship 

between the primary and secondary fluxes is as in Figure 3.15. 

The relative positions of the initial oscillations and the 

high peaks of the reluctance variation are shown in Figure 3.54. 

Comparing this With Figure 3.10, in the light of Section 3.1.4, 

it can be concluded that the high peaks of reluctance withdraws 

rather than delivers energy to the secondary flux variation 

(since the value of the secondary flux at the instant of a 

negative-going edge of a peak is higher than that at a positive- 

going edge). The initial oscillation in the secondary circuit 

therefore diminishes rapidly by virtue of the parametric absorp- 

tion of energy and no oscillations can be sustained. 

Since the magnetisation curve is assumed a single-valued 

function, an operational point tracing this curve passes the 

sharp inflection near the origin once in each half cycle, 
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resulting in high peaks in the secondary reluctance variation. 

However, the practical situation is completely different and 

no such peaks occur, because of thR existence of hysteresis. 

Although the do magnetisation characteristic shows a curvature 

near the origin, the shape of the hysteresis loops under ac 

magnetisation conditions are not affected by-this curvature. 

The phenomenon may be better understood by reference to 

Figure 8.55, where the portions of the B/H curve near the 

origin are shown for three different amplitudes of initial 

oscillation. Since the gradient of the axis of the hysterusis 

loops gradually increases as the amplitude of the initial 

oscillation grows, the secondary reluctance variation does not 

contain high peaks but exhibits a gradual decrease. The 

phenomenon of high peaks of secondary reluctance variation 

absorbing energy from the initial oscillation does not therefore 

occur in practice, and parametric excitation continues, although 

some detuning is introduced during the growth of oscillations by 

the fixed value of the capacitor corresponding to the low initial 

secondary inductances Cline 1 of Figure 8.56). However, this 

detuning decreases as the steady-state operation is reached, 

when the effective secondary inductance decreases from that 

corresponding to line 2 to that corresponding to line 3 in 

Figure 8.55. Since parametric excitation is possible despite 

large detuning, and steady-state operation is reached within a 

few cycles, the practical device continues operating success- 

fully although with a large increase in both the secondary and 

primary currents. 
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Finally, computer simulations were attempted of other 

approximations to the H=f(B) function, such as those In 

Section 7.3. Unfortunately, the transcendental forms of 

these expressions resulted in the execution time of the 

program to produce 50 cycles of oscillations provIng too long 

for the LUT Computer Centre, -and the facilities of the 

Regional Computer Centre at the University of Manchester 

were used. However, because of very long turn-round times, 

these attempts were later abandoned. 
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CHAPTER IX 

EXPERIMENTAL INVESTIGATION 

9.1 Design 

Construction of a two-C-core parametric transformer 

requires C cores of equal width and depth, because of the 

orthogonal positioning necessary. Although standard sizes 

of commercially available C cores provide only a limited 

choice, two parametric transformers using such cores were 

constructed. The first employed a single loop of HWR40/24 

I. type C cores , while for the second, a construction with 

equal width and depth was produced by stacking three 

HWRI10/20 type pores 
1. In both devices, the cores were of 

a 0.01311 thickness strip, corresponding to an operational 

frequency of 50 Hz. The data on the physical dimensions of 

these cores, as' obtained from reference 1, is given in 

Figure 9.1. 

The main question in designing a two-C-core parametric 

tran sformer lies in deriving the dimensions of its bridged- 

core magnetic equivalent, and this was achieved in the fall- 

owing manner. The cross-sectional areas of the main branches 

of the bridged core, AI and A 
29 

were taken equal to the nett 

cross-sectional area (excluding inter-lamination insulation) 

Of the C coresi and A was taken as the nett area of one of 

the four portions of the core face in contact. The gross area 

2 for one such portion is E, where L is the dimension shown in 
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Figure 9.1. The nett area is K. E , where k, the stacking 

factor, is a constant (0.95 for 0.013" lamination thickness) 

which introduces the effect of the area of the inter- 

lamination insulation. However, A was calculated as k2E2 
0 

since the laminations of one core are perpendicular to those 

of the other at the faces in contact, and the effective nett 

area is therefore further reduced. Dimensions I and Z 
12 

were each taken as one-half of the mean flux path length for 

a loop of two C cores, and Z was calculated as A-E. The 
0 

dimensions A and E are shown in Figure 9.1. 

The turn/volt ratio for the transformer is calculated 

from 

N 42- 
V0m 

where w ='21rf and f= 50 Hz, and ýM is the maximum flux level 

in the core. The optimum condition of operation determined 

by point P in Figure 6.21 corresponds to an operational point 

slightly above the knee of the transreluctance characteristics 

of Figure 8.20, or in other words, to a maximum flux density 

level in the common region [or the bridge branches of the 

equivalent structure) slightly above the knee of the B/H 

curve. With the maximum flux density BM in the bridge branches 

assumed as 1.7T, the maximum flux in the core is 

ým ýB .2A..... (9.2) 
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and the turn per volt ratio from equation (9.1) is 

2.282 ..... (9.3) 

for the experimental unit employing 3x HWRI10/20 cores. 

For a nominal input voltage of 220V, the number of turns in 

the primary winding is 

NI=n. V 
I= 

502.2 turns ..... (9.4) 

To allow for leakage flux and to obtain a number suitable for 

subdividing the winding for Scott-T connection, NI was 

increased by about 8% and the primary winding was wound with 

540 turns. For complete symmetry, the secondary windings was 

given the same number of turns. Enamel insulated, SWG13 gauge 

wire was used for both windings. 

Orthogonal positioning of the two halves of the cores 

presents difficulties in assembly, as standard clamping frames 

and bobbin carcasses cannot be used. Special care needs to be 

taken when the two cores are wrapped by banding with a metal 

strip, to prevent this acting as a short-circuited single-turn 

winding. The cores must be firmly in contact to avoid the 

introduction of large air-gaps, and cores with properly 

machined faces matching each other when orthogonally positioned 

should ideally be used. The effect of these unintentional air-gaps 

is quite different from those in conventional transformers, since 
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variation of their length causes a kind of reluctance 

modulation and affects the F (ý 
10 

) and F (ý 
I" 

) func- 

tions, as explained in Section 4.4.3. A mechanical force 

is produced at double the supply frequency across the small 

air-gaps and since this may be quite high during parametric 

transformer operation, secure fixing is necessary to prevent 

the introduction of unwanted effects. Securing of the cores 

was achieved by a special clamp in the experimental device, 

a photograph of which is shown in Figure 9.2. 

The inductance of the secondary winding was measured by 

a universal bridge as 0.588H, and the capacitance corres- 

ponding to this initial secondary inductance (when the primary 

circuit is non-energized) is 

C=I= 17.23 IjF 
w2L 

2 

However, during parametric transformer operation, the secondary 

inductance is modulated and its average value is lower, and 

the capacitor needs to be given a somewhat higher value. The 

nominal value for the secondary capacitor was therefore taKen 

as about 20 pF. The data for the experimental unit constructed 

with three HWRI10/20 cores is given in Appendix VI. 

In conventional transformer design. when operation 

frequency, primary and secondary voltages, and power rating 

are specified as initial requirements, the first step is to 

determine the size of cores suitable for the power rating 
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required. There are a number of factors involved in the 

determination of the size of a transformer other than the 

VA rating, such as (a) the permissible temperature rise, 

(b) the permissible voltage regulation, CO the number of 

separate windings, (d) the individual winding voltages etc. 

Nevertheless, once the core size has been selected, the 

rest of the design is straightforward and presents little 

difficulty. However, the first condition to be met in 

selecting cores for a two-C-core parametric transformer, is 

that of equal depths and widths. Since standard cores were 

used, this determined their size and the design procedure 

thereafter became the reverse of that normally encountered 

with conventional transformers. A particularly important step 

in the design is the determination of the physical dimensions 

of the bridged core equivalent. The use of standard cores 

introduces the requirement of utilizing the whole available 

window area for a maximum power rating/core weight ratio. 

Since the number of turns in the windings is fixed by- the nett 

cross-sectional area of the cores, the whole window area can 

be filled by conductor of lower gauge than necessary for 

nominal winding currents. This results in lower winding resis- 

tances and a consequent lower damping in the secondary resonant 

circuit, meaning that higher loads can be connected before over- 

load protection occurs. Briefly, maximum power rating for the 

given cores is obtained when the available window area is fully 

used. 
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9.2 Operational Characteristics 

The device was first tested as a saturable reactor. 

With mains voltage applied to the primary, the secondary 

voltage is only a few volts, and good isolation exists 

between the two windings due to absence of mutual flux 

coupling. With the primary driven by an alternating voltage 

source (instead of a dc source), the secondary voltage/ 

current characteristics are shown in Figure 9.3, for diff- 

erent values of the alternating control voltage. These 

establish the controlling action explained by means of the 

relative magnetisation curves in Section 6.2.1. 

With a capacitor of 19 11F connected across the secon- 

dary winding, the input voltage was varied from zero to over 

400V and then reduced to zero, with the resulting input 

voltage/output voltage characteristic at no load, shown in 

Figure 9.4', clearly exhibiting over-voltage and under-voltage 

protection features. The different input voltages for 

switching-on and switching-off the oscillations, V' and VIII 

and the input voltage when the oscillations are suppressed by 

the over-voltage protection property, V", are indicated in the 

figure. The changes in the primary and secondary currients as 

the input voltage is varied are shown in Figure 9.5, where the 

sudden increase and decrease in the currents on the initiation 

and cessation of oscillation is apparent. After over-voltage 

protection has occurred, the secondary current falls to a small 
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value, while the primary current continues increasing in 

accordance with the primary V/I characteristic The slight 

peak in the secondary current variation in Figure 9.5 occurs 

when this current has the best sinusoidal waveform, i. e. 

the best condition of operation is achieved when VI is 

around 220V. The part of the curve between A and 8 in 

Figure 9.4 is not as constant as would be expected from a 

device' exhibiting a very good voltage regulation, since 

this characteristic is derived from the effective values of 

the voltages, and the output voltage waveform and its rms 

value therefore changes with V although its amplitude is 

quite constant. 

Tp measure the effective values of voltages and currents, 

instruments indicating true rms values are required, since 

the waveforms of the output voltage and (especially] the 

primary and secondary currents are quite non-sinusoidal under 

different operational conditions. The qurrents were therefore 

measured with moving-iron ammeters with a frequency range 50- 

500 Hz, which was considered sufficient for a true rms indi- 

cation as it included harmonics up to the IQth. Although 

moving-iron voltmeters were available with a frequency range 

50-100 Hz, the effective values of the secondary voltage were 

measured using a Datron true rms converter. The results differed 

only slightly from those provided by moving-iron instruments, as 

the departure from sinusoidal is comparatively small and does 

not change much over the whole range. 
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Figure 9.6 shows V 
2. 

/V 
1 

characteristics of the unloaded 

device obtained in the same way, with different capacitors 

connected across the secondary winding. Within the region 

in which parametric excitation is possible, the output 

voltage is obtained at the fixed frequency 50 Hz, although 

the capacitor value is almost doubled between the two 

extremes. As seen from the figure, higher capacitor values 

result in higher output voltages. Since the output voltage 

is phase-locked with the input voltage and its frequency is 

therefore fixed, the higher capacitance causes higher secon- 

dary currents to flow, as the maximum energy oscillating in 

the secondary circuit is now higher. 

When a variable resistive load was connected across the 

capacitor, the load regulation characteristic obtained was 

as shown in Figure 9. '7, for V 220V and C= 19 pF. The 

load regulation property of the device is evident, as the 

output voltage initially changes only slightly with increasing 

load current. When the load resistance is decreased beyond a 

certain value the output voltage decreases more rapidly, and 

then suddently falls to zero, together with the load current, 

when over-load protection occurs. The load regulation charac- 

teristic for different input voltages and secondary capacitor 

values are shown in Figures 9.8 to 9.11. From these, it follows 

that the higher the input voltage the lower is the output voltage, 

but that a higher maximum load current is obtainable. In Figure 

9.12, characteristics are drawn for a fixed input voltage but 

different capacitor values, and a similar conclusion may be drawn 
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from this figure for the effect of the capacitor value on 

the load characteristic. Although the device was designed 

for nominal values of V 220V and C= 20 VF, it is evident 

that higher load currents can be supplied if V and C are 
I 

increased, but at the expense of higher secondary currents 

and consequently, higher currents from the mains supply. 

9.3 Voltage and Current Waveforms 

The voltage and current waveforms at different oper- 

ational conditions as recorded by an UV recorder are given 

in Figures 9.13 to 9.46. The good sinusoidal output voltage 

waveform at no-load operation with VI= 220V and C= 21 PF 

is apparent in Figure 9.13, where it'is also seen that V 
2 

leads VI by 900. The other stable phase, with V2 lagging 

V by 900, is shown in Figure 9.15, obtained for the same 

operational conditions, and Figures 9.14 and 9.16 show the 

primary and secondary current waveforms corresponding respec- 

tively to Figures 9.13 and 9.15. Since the input voltage is 

at the best operational condition, the secondary current I 
2 

is almost sinusoidal but the primary current II is quite distor- 

ted. These waveforms are the same as those given previously in 

Figure 6.18b, justifying the concept of relative magnetisation 

characteristics developed in Chapter VI. Using the sign conven- 

tion of Figure 5.8, the relative phases of V#V81 and I are 
1212 

shown in Figure 9.17 for the two different stable conditions, 
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with the phasor II determined from the zero-crossing instants 

of the primary current. The current waveforms in Figures 

9.14 and 9.16 are repeated in Figures 9.18 and 9.19, from 

which the phase relationship in Figure 9.17 can be more 

readily deduced. Similarly, the relative phases of V and 
I 

I, and V and I can be seen in Figures 9.20 and 9.21. The 
122 

primary current always lags the input voltage by 900, as 

inductive energy is drawn from the supply. The secondary 

current always leads the output voltage by 900, independently 

of the phase relationship between V 
I. 

and V2. 

With the same capacitor value and no secondary load, 

the waveforms obtained for VI and II at the reduced input 

voltage of IOOV are shown in Figure 9.22. The corresponding 

secondary voltage and current waveforms are given in Figure 

9.23, from which it is seen that the waveform of the secondary 

voltage is now somewhat flattened (the slight fluctuations an 

the peaks in Figure 9.23 are due to the transient response of 

the galvanometer in the UV recorder). This rather square- 

sýaped waveform was predicted previously in Figure 6.22 by the 

relative magnetisation characteristics. Comparing Figure 9.22 

with 9.20, shows that the height of one of the two peaks within 

a half period of the primary current is now smaller. Reducing 

V to nearer VIII results in a diminution of the smaller of 

these peaks until finally, when V, =. VIIII = 80V and Just before 

under-voltage protection occurs, the primary current waveform 

becomes as in Figure 9.24. (The variation of the primary current 

waveform as VI is reduced can be better seen in Figure 9.32). 



If the secondary voltage had taken the other stable phase 

(V 
2 

lagging VI by 9003, the currents appearing in opposite 

phase in Figure 9.24 would be in the same phase. The voltage 

VI". satisfying condition (3.204) or (3.199), is determined 

by the level at which the shrinking peak in the primary 

current completely disappears, and no more real power 

can be drawn from the mains supply. 

Figure 9.25'shows the input and output voltage waveforms 

at no-load operation, with the capacitor unchanged but with 

V 380V. Corresponding to operation with VI< V< V", the 

output voltage waveform is now rather triangular in shape, as 

explained in Section 3.6.2 and shown in Figure 3.38. The 

primary and secondary current waveforms in Figure 9.26, are 

the same as in Figure 6.18a, for operation with the primary 

and secondary relative magnetisation curves as given by the pair 

numbered 4 in Figure 6.17. Similarly, the current waveforms in 

Figure 9.14 or 9.16 correspond to the pair of relative magnet- 

isation characteristics numbered 2 in this figure. The variation 

of the primary and secondary current waveforms between these two 

cases as VI is increased can be better seen in Figure 9.34. 

The secondary voltage and current taKe the waveforms in 

Figure 9.27, when operating with VI= 220V and C= 21 pF, and 

a load current ILý 450 mA is drawn by a resistive load connected 

across the capacitor. The corresponding primary voltage and 

current waveforms are in Figure 9.28. The peaKs of the secon- 

dary voltage are slightly affected by loading, but otherwise it 
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may still be considered a good sinusaid. The effect of the 

load on the secondary voltage waveform becomes more apparent 

in Figure 9.29, for which the load current is ILý 700 mA, 

an effect explained in Section 3.6.2 by reference to Figure 

3.40. The primary voltage and current waveforms for operation 

at a load current ILý 700 mA, just below the value at which 

over-load protection occurs, are shown in Figure 9.30. The 

primary current waveform of Figure 9.28 and 9.30 are similar 

to those of Figures 9.22 and 9.24, respectively. The effect 

of the increasing load on the primary current waveform thus 

resembles the effect of reducing the input voltage during no- 

load operation. Just before oscillations are switched off, 

due to over-load protection at IL0 705 mA, the shrinKing peaK 

of the primary current completely flattens, as in the case of 

under-voltage protection (see II in Figure 9.32). 

With loads of lagging power factor, the behaviour of the 

transformer was inferior to that for unity power factor load, 

in respect of waveform distortion of the output voltage, load 

regulation, and load power. However, for leading power factor 

loads a better load regulation characteristic and a higher 

maximum load power were achieved. Such a load increases the 

effective capacitance in the secondary circuit. and its affect 

on the load regulation characteristic may be deduced from 

Figure 9.12. 
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In Figure 9.31, the primary and secondary voltages are 

recorded for no-load operation, with C= 21 pF and VI grad- 

ually decreased from 220V. The corresponding current wave- 

forms are in Figure 9.32, where*their variations with VI can 

be clearly observed. When the input voltage falls below a 

certain level [around 85V), the output voltage drops suddenly 

to zero, as under-voltage protection occurs. Above this level 

the amplitude of V can be seen to remain constant, although 2 

VI is changing considerably, thereby establishing the voltage 

regulation property of the device. However, the rms value of 

V is not constant but varies slightly, in accordance with the 
2 

operational characteristics of Figure 9,6, due to the waveform 

variation noticeable in Figure 9.31. ýfter under-voltage 

protection causes the parametric excitation to cease, the 

oscillations die away exponentially, with the secondary voltage 

no longer phase-locKed with the primary voltage. The period 

of the decaying oscillations becomes greater than that of the 

supply frequency, since, with the high capacitor value used, 

the resonant frequency of the secondary-is less than this 

frequency. 

The over-voltage protection feature of the transformer 

is exhibited in Figure 9.33, obtained by gradually increasing 

the input voltage from 220V to over 40OV. The amplitude of V2 

remains constant, until V is sufficient for relationship (3.201) 
1 

to become effective and the amplitude of V2 decreases accordingly. 

After the secondary voltage amplitude is suppressed by the over- 

whelming input voltage, oscillations in the secondary continue 



508 

at very small amplitude: in contradistinction to under-voltage 

protection (or over-load protection), the oscillations are now 

not switched off but only suppressed. If the input voltage is 

decreased to normal amplitude, the secondary voltage is 

restored to its full amplitude. The variation of the secondary 

voltage waveform as VI is increased is noticeable In Figure 

9.33. At high input voltage levels, but before over-voltage 

protection occurs, the secondary voltage waveform becomes 

distorted to a triangular shape, and its rms value therefore 

decreases more rapidly than its amplitude, as given by the 

operational characteristics of Figure 9.6. The corresponding 

current waveforms are shown in Figure 9.34, in which the trans- 

formation of the waveforms from those in Figure 6.18b to those 

in Figure 6.18a can be readily observed. 

Figure 9.35 shows the output voltage and the load current, 

with IL varied from 400 mA up to 710 mA, and the load regulation 

property is shown by the amplitude of V2 remaining'constant 

throughout. When the load resistance becomes lower than a 

certain value, both the output voltage and the load current 

fall immediately to zero, establishing the over-load protection 

feature of the device. Since V is not greater than VI, oscill- 

ations are now switched off and the output voltage will not be 

restored after removal of the excessive load. 

The oscillations in the secondary are self-excited only 

when V<V< V'*. The initiation of the oscillations may be seen 
III 

in Figuro*9.36, where V1 is initially 28OV, slightly less than 
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VI in no-load operation with C= 21 pF (see Figure 9.6). 

The small oscillations existing prior to the start of 

parametric excitation arise through some very small mutual 

flux coupling through stray leaKage flux. With a slight 

increase of V so that V>V the secondary voltage 

amplitude builds up rapidly, as the threshold condition 

(3.144) is satisfied. However, the secondary voltage now 

exhibits a deep amplitude modulation, the depth of which 

reduces as VI is decreased towards its nominal value, just 

as in the case of the computer plotted figures provided by 

the computer simulation in the previous Chapter. This 

amplitude modulation is accompanied by a waveform distor- 

tion similar to that in Figure 9.25, since VI is higher than 

the best condition of operation. When V is decreased to 
I 

near 220V, the secondary voltage waveform becomes a good 

sinusoid, as well as maintaining a constant amplitude. 

For input voltages below the threshold VI, the oscill- 

ations in the secondary can still be started by instantaneous 

application of the input voltage to the primary winding. 

Depending on the instant at which the input voltage is applied, 

high in-rush currents occur in the primary winding, and these 

create an mmf sufficient for the threshold condition to be 

momentarily satisfied. The build-up of the secondary voltage 

under such circumstances is shown in-Figures 9.37 and 9.38 

for two different instances. In the first of these, the secon- 

dary voltage, after an interval of aperiodic oscillations, 
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finally settles to the steady state, with its phase leading 

VI by 900. Modulation of the amplitude, similar to that in 

Figure 9.36, is also present. In the latter, a rather larger 

interval of aperiodic oscillations exists before the secondary 

voltage settles in the steady state, with its phase lagging V 

by 900. As can be seen from the variations of'V , which of 
2 

the two stable phases is actually taken by the secondary voltage 

cannot be predetermined until the steady state is reached. 

The primary and secondary current waveforms when the input 

voltage is instantaneously switched on at another instant 

are shown in Figure 9.39, where the high primary in-rush curr- 

ents and the build-up of the secondary current can be observed. 

It was found in practice that it was riot equally likely 

for the secondary voltage to take either of the two stable 

phases, and that the secondary voltage more often took the phase 

leading VI by 900. This is due to the reaction occurring 

between the primary and secondary circuits because of the 

existence of winding resistances, with the second term in the 

third of equations (5.17) being responsible for the losses in 

the secondary winding resistance. These losses take slightly 

dIfferent values depending on whether V2 is leading or lagging 

V and the losses are less and the initiation of oscillations 

becomes easier if the secondary voltage takes the stable phase 

900 ahead of the primary voltage. Furthermore, the maximum 

power delivered to the load under this condition is slightly 

higher than that when the secondary voltage takes the-lagging 

phase. 
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Operation of the device as a frequency doubler was 

also investigated. The primary and secondary voltage 

waveforms, obtained with a8 pF capacitor connected across 

the secondary and 275V applied at the primary winding, are 

shown in Figure 9.40. The secondary voltage, phase-locked 

with the primary voltage,, is at twice supply frequency and 

has a good sinusoidal waveform, and the primary and secondary 

current waveforms corresponding to this operation are in 

Figure 9.41. Frequency-doubler operation exhibited the 

same characteristic features, i. e. under- and over-voltage 

protection, over-load protection etc., as in the normal 

operation. However, the range of the input voltage and 

capacitor values for which oscillations could be started and 

maintained was narrower. The maximum load current that could 

be drawn under this condition was I" 150 mA, when the 100 Hz L 

output voltage was about 650V. 

When an input voltage exceeding 40OV, i. e. V> V" 

was suddenly switched on, with a secondary capacitor corres- 

ponding to normal operation (21 pF), another mods of oscill- 

ations was produced in the unloaded secondary circuit. These 

oscillations were either quasi-periodic or sometimes of double 

frequency, but they were always of very large amplitude. Since 

the ensuing primary and secondary currents are far greater than 

IOA, they could not be permitted to flow for more than a very 

short time and no UV recordings could be obtained. This phen- 

omenon was predicted by the computer simulation, and an 

explanation was given in Section 3.4, with reference to Figure 

3.28. 
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9.4 Single-to-Three Phase Conversion 

During normal operation, the transformer output voltage 

is in quadrature with the input voltage, and this property 

makes it possible to convert from a single phase input to 

a polyphase output, or vice versa, merely by a suitable 

winding combination. Scott-T type connection 
2 is a well- 

known method of obtaining a 3-phase supply from a *2-phase 

one. Considering the input and output voltages of a para- 

metric transformer as together forming a 2-phase supply, the 

necessary connection is achieved by the winding arrangement 

shown in Figure 9.42. With NN2= 540, the number of turns 

for various sections of the windings are calculated as 

N LK 0 -L N 312 
r3 

r3 
N 468 .... (9.6) NRS 

2- 

N 156 
nS RS 

The windings of the experimental device were wound in sections 

of 2x (72 + 84 + 114) turns, to permit the required combin- 

ation above to be realised. 
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With a single-phase input of 110V applied at terminals 

LK, and a capacitor of 19 11F connected as shown in Figure 

9.42, the voltages at terminals R, 6 and Y with respect to 

the neutral point n were simultaneously recorded, as in 

Figure 9.43. These voltage and capacitor values selected 

give phase voltages of equal amplitude and w1th the most sinu- 

soidal waveforms. *In regard to the operational characteristics, 

such as under- and over-voltage protection, over-load protection 

etc. the behaviour of the device in phase converter operation 

differs from that in normal parametric transformer operation, 

because-the phase voltages VR, VB and VY are obtained by com- 

bining portions of the input and output voltages. Before 

parametric oscillations are excited, voltages are induced at 

terminals R, B and Y, with respect to the neutral point n, 

due to mutual flux coupling between the relevant winding 

sections, and Figure 9.44 shows the phase voltages under these 

conditions when V= 9OV. If the input voltage is decreased 

after parametric excitation has begun and the waveforms in 

Figure 9.43 have been achieved, the waveforms of the phase 

voltages become distorted with flattened peaKs and their phase 

relationship changes. The waveforms of the phase voltages at 

V= 40V, just before the under-voltage protection occurs and 
I 

parametric oscillations cease, are shown in Figure 9.45, and 

with the cessation of parametric oscillations, the phase volt- 

ages resume the waveforms of Figure 9.44 at a corresponding 

amplitude. Increasing the input voltage to a higher level, 

when the device is already cperating as in Figure 9.43, causes 
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over-voltage protection and the parametric oscillations are 

suppressed. However, only one of the phase voltages is 

suppressed in amplitude and the other two remain at a high 

amplitude. Figure 9.46 shows the phase voltage when V is 

increased to 260V and the over-voltage protection level of 

the device has already been reached, and the phase relation- 

ship between the phase voltages is now similar to that in 

Figure 9.44. 

Although the phase differences between each voltage in 

Figure 9.43 are not exactly 1200, they may be considered 

practically to constitute a symmetrical 3-phase system. 

This is valid only for a specific input voltage VI, because 

with different values of V the phase symmetry between the 

voltages V 
R' 

VB and VY is lost, as well as their amplitudes 

becoming different. In conventional transformers converting 

a 2-phase to a 3-phase supply, ' the phases of the 2-phase 

supply are independent in respect of amplitude, waveform and 

phase variation, but with a parametric transformer this prop- 

erty is lost and the waveform and the rms value of V2 changes 

with V If a parametric transformer is designed for use as 

-a phase converter; the level of VI at which the phase voltages 

form the best symmetrical 3-phase system must therefore be a 

major consideration in the, design procedure. 
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9.5 Power. and Efficiency Considerations 

'The efficiency of a power conversion device is defined 

as 

E= the power delivered to the load (9.7) 
the power drawn from the supply 

which is normally a constant expressed in percentage. In 

practice, as much as possible of the power drawn from the 

supply should be delivered to the load, when the losses are 

small and the efficiency approaches 100%. Furthermore, when 

no load is connectedthe power drawn from the supply must 

be as small as possible. 

In the case of the parametric transformer the situation is 

different, since the device draws a high apparent power from 

the supply even during no-load operation. Before parametric 

oscillations start, the device acts as a single iron-cored 

inductor, when the apparent power drawn from the supply with 

VI<VI is therefore almost wholly reactive. The real power 

drawn at this stage is very small, since both the primary 

current and the total losses are correspondingly small. In 

the experimental device, the real power amounted to about 

7-8W, before initiation of parametric oscillations for V< V1. 

However, with the initiation'of parametric excitation, the rms 

value of the primary and the secondary currents jumps to about 

2A, as seen In Figure 9.5. when the power drawn from the supply 

suddenly increases, as determined by the increased primary 
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current with the waveform and phase shown in Figure 9.20. 

The primary current always lags the input voltage by about 

900 during parametric transformer operation, and the input 

power is always inductive. The complex power drawn from the 

supply at this no-load operation with C= 21 11F is PI-V 
irms' 

I 
irms a 220x2.1 = 462 VA. Since the primary and the secondary 

currents are now high, the losses in the transformer are high 

and 85W is drawn from the supply. This quantity remains 

almost constant for different val ues of VI, so long as 

parametric oscillations exist. With a resistive load 

connected across the secondary capacitor, the real input 

power was measured for different load currents. The relation- 

ship between the load power PL and the real input power P 
Ir 

is shown in Figure 9.47, where the intermittent line corres- 

ponds to a power efficiency of 100%. The distance between the 

two lines in this figure is almost constant, and is equal to 

the total losses at no-load operation. At point A. the 

maximum achievable power of 251W is delivered to the load, 

when ILý 652 mA and the output voltage V2ý 368V. The load 

power'cannot be further increased as over-load protection 

immediately occurs and both V2 and IL become zero. The effi- 

ciency in the real power sense is 

-pLpL p 
ir 0 
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where P0 is the real power drawn from the supply at no-load 

operation and is constant (= 85W). The efficiency defined 

by equation (9.8) is not a constant but is a function of PL 

and therefore varies with the load current, i. e. maximum 

efficiency occurs only when maximum power is delivered to 

the load. The maximum real power efficiency at this oper- 

ation is thus calculated at point A of Figure 9.47 as 

251(W) E 
max 322M 78% (9.9) 

When operating with different values of V and C, the 

characteristic in Figure 9.47 remains basically the same, 

although its length varies as the maximum load current is 

different at different operational conditions. For example, 

with V 20OV, the maximum load current is ILý 572 mA, 

when V2 379V and the real Input power is 302W. The maximum 

efficiency is then found as 72%. 

The efficiency considered above is based on real power 

considerations. However, in parametric transformer operation, 

a high apparent power (462 VA) is drawn from the supply even on 

no load, and a useful conceptual efficiency is defined as the 

ratio of the load power to the total apparent input power. 

With 251W delivered to the load, the primary rms current was 

11 =2.5 2A, and the total complex input power 220 x 2.52 - 554 VA. 

On this new definition, the overall maximum efficiency is there- 

fo re 



sia 

Ep Lmax 
= _251(W) 46% (9.10) 

max 554(VA) 
I 

The efficiency defined this way will vary with the load power, 

with the maximum occurring when maximum power is delivered to 

the load since, as the load is decreased, the complex input 

power falls from 554 VA to 462-VA at no load. 

With the transformer operating with increased values 

of VI and C, higher maximum load currents can be supplied, 

but it was found that the maximum efficiency did not change 

substantially and remained withiý 43 - 47%. It should be 

noted that this efficiency was achieved by the experimental 

device in which the window area available for the secondary 

winding was not fully used. Since the condition for over- 

load protection, equation (3.199). determines the maximum 

load current, and this depends on the damping in the secondary 

circuit, the maximum achievable load power and the power 

efficiency can therefore be increased by minimising the secon- 

dary damping. Apart from minimisation of the iron losses, 

this requiresthe secondary capacitor to have a very small 

internal leakage conductance and the secondary winding a mini- 

mum winding resistance. The latter is accomplishe d by filling 

the whole window area with the secondary winding, unlike the 

experimental device which used only about 65% of this area. 

Under this condition, the maximum load power that could be 

supplied by the experimental device might be expected to in. -t 

crease by 30%, with the corresponding efficiency becoming raised 
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to about 60%. For the commercially available parametric 

transformers, a power efficiencyý of 65% is typically 

3 
claimed. 

Since the parametric transformer draws lagging reactive 

power from the supply at a low power factor, power factor 

correction may be necessary by a suitably chosen capacitor 

connected across the primary winding. The non-sinusoidal 

primary current, and the change in the waveform with load, 

present difficulties in resolving the apparent input power 

into its real and reactive components, and the apparent 

power factor therefore varies with load.. The capacitance 

value necessary for a 100% correction of the input power 

factor may be determined rather more satisfactorily by 

experimentation under the normal operational conditions. 

The size of the resonating capacitor connected across 

the secondary winding of the parametric transformer is deter- 

mined mainly by the necessary VA rating. With the output 

voltage between 375 - 40OV, the capacitor has to carry about 

2.5A during parametric transformer-operation, so that its VA 

rating must be at least 1000 VA. Since the maximum power that 

could be delivered to the load, is 250 VA, the ratio of the 

capacitor VA rating to the transformer VA rating is clearly an 

important factor when the weight of the total device is con- 

sidered. 

Excluding the capacitor, most of the weight of the device 

arises from the iron core. The weight of a single loop of 

HWRJIO/20 size C cores Is 2.29 kg, as given in Figure 9.1, with 

a VA rating when used in a conventional transformer 1 
of*350 VA. 
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The maximum power output expected from the experimental 

parametric transformer using three of these loops and with 

the full window area used is --. bout 325 VA, so that 250 VA 

may be taken as the nominal power rating. Taking the weight 

of the copper into account, it is then found that the para- 

metric transformer is some 2.8 times heavier than a con- 

ventional 2-winding transformer of the same VA rating. 

Inclusion of the weight of the capacitor will obviously 

worsen this ratio. 

The maximum power rating of the experimental unit 

operating as a frequency-doubler was about 100 VA. or 2.5 

times less than in normal operation. Furthermore, the 

efficiency (the load power to apparent input power) was 

also very much less, since the apparent input power was 

about three times that in normal operation and was in fact 

about 10%. Although an improved design could improve this 

figure slightly, it is doubtful if any major increase could 

be achieved. 

9.6 Relation Between Relative Magnetisation Characteristics, 
Current Waveforms and Real Input Power 

A close relationship exists between the primary current 

waveform, the primary relative magnetisation characteristic 

and the real power drawn from the supply. With nominal input 

voltage, the primary and the secondary relative magnetisation 

characteristics are as given by the pair of curves numbered 2 
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in Figure 6.17 and the current waveforms by Figure 6.18b. 

In obtaining these, losses are neglected and the primary 

current, despite its unusual waveform, is therefore fully 

reactive, as can be seen in Figure 9.20. However, the 

current waveform obtained in practice differs from that in 

Figure 6.18b, in particular with respect to the different 

heights of the two-peaks within a half cycle. If the 

variation of the apparent power input is obtained from 

Figure 9.20, by calculating the product vI11 at each 

instant and integrating this over a supply period, it is 

seen that an average (real] power exists due to the diffe- 

rence between the peak heights of the primary current. This 

average power drawn from the supply provides the losses 

existing in the device at no-load operation. 

From the observation above, it may'be concluded that 

the primary relative magnetisation characteristic is not 

the unique curve of Figure 6.17, but is as shown in Figure 

9.48a. The two different sections of the curve in this 

figure are traced as indicated, within a half cycle of the 

primary flux variation. The section of the curve traced as 

increases from zero to its maximum is different from that 

traced when decreases from the maximum to zero, and this 

results in the difference between the heights of the peaks 

in Figure '9.20. The area indicated in Figure 9.48a corres- 

ponds to the energy supplied within a half period, to counter- 

act the existing losses. In other words, with a flux/mmf 
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characteristic as in this figure, the primary winding as an 

inductor becomes a non-conservative element 
4 

absorbing energy 

from the supply. 

It is now evident that the primary winding acts as a 

parametric energy absorber. However, it should be noted 

that if the'closed path of the relative magnetisation charac- 

teristic in Figure 9.48a was followed in an anti-clockwise 

direction, the situation would be reversed, with the induc- 

tive element becoming a parametric generator, which is the 

case for the secondary. Note also that, in this case, the 

first peak within the half period of the current waveform 

becomes lower than the second (see 12 in Figure 9.341, with the 

difference being a measure of the energy produced in a half 

cycle. 

When the input voltage on no load is decreased towards 

V111 , the multi-valued primary relative magnetisation charac- 
I 

teristic in Figure 9.48a undergoes the change In shape illus- 

trated, so that the area between the two curve sections remains 

almost constant. This is clearly because the real power drawn 

from the supply at no-load (measured as 85W in the experimental 

device with C 21 pF) does not change substantially when 

V'11< V< V1 The change In the shape of the curve sectioh 

traced when is decreasing fully explains the variation of 

the primary current waveform in Figure 9.32, with one of its 

peaks decreasing ab V is decreased. This change of shape 

cont inues, until when the curve section traced as is decreasing 

falls on the intermittent curve in Figure 9.48d , and the 
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decreasing peaK thus completely disappears. Figure 9.48d 

therefore illustrates the condition for under-voltage 

protection. Because the shaded area in this figure 

representing the energy drawn from the supply in a half 

cycle is equal to the total energy losses and a further 

decrease in VI makes this area smaller than the total loss, 

the oscillations in the secondary can no longer be sustained. 

The effect of the load on the current waveforms can 

be demonstrated in a similar manner. The area encircled by 

the primary magnetisation characteristic in Figure 9.49a 

is equal to the total no load loss. With a fixed Input 

voltage, a moderate secondary load causes this characteristic 

to change to that in Figure 9.49b, from which the primary 

current waveform in Figure 9.28 can be readily obtained. 

The area encircled is now larger as more energy is drawn from 

the supply. In terms of power, the shaded portion of this area 

corresponds to the real power delivered to the load, while the 

unshaded portion corresponding to the losses remains almost 

constant, in accordance with Figure 9.47. The load can be 

increased until the changing curve section fully coincides 

with the intermittent curve, as shown in Figure 9.49c. when the 

primary current takes the waveform in Figure 9.30, and the de- 

creasing peak completely disappears. The unshaded area corres- 

ponding to the losses is unchanged but the area corresponding to 

the real power delivered to the load is now a maximum, and the 

figure determines the condition for over-load protection. For 

a fixed VI and C. the total area encircled by the primary relative 
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magnetisatiDn characteristic cannot be increased further 

than that in Figure 9.49c. If an attempt is made to further increase 

the load, the maximum real power that can be drawn is unsuff- 

icient to supply both the losses and the required load power. 

The parametric oscillations can no longer be sustained and 

over-load protection occurs. The shaded area in Figure 9.49c 

therefore determines the maximum power that can be delivered 

to the load, under the existing operational conditions. 

Finally, it should be noted that the considerations of 

an increased efficiency of the experimental device were based 

on minimising the unshaded area in Figure 9.49c so that the 

maximum achievable load power (the shaded area) iq increased. 
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=j- 4 1 3 1 21 -517 -534 6-96 -990 1-023 Z37 10 1 (; Z3 -- 1 W8 

5014 1 3 2j -402 -416 8-12 -898 . 927 Z 371027 Z 
. 
171041 

50/18 17 i 3 1 2 -517 -534 8.12 1.151 1-192 Z 371029 zI !I0, )g 
50/24 1 31 1 2j -690 -712 1-12 1-5.19 1-590 Z 37! ON z 
ý, U. /Jz I 3j 2 2j -920 -950 i2 2-058 2 120 Z 371017 z 

-171011 

70/12 2j 41 1 9 11 3 -431 -445 1000 1.187 1-223 " I- , 110-12 
70i 18 23, 41 1 3 -647 -068 loot) 1.778 1-834 z 371012 
70 i'24 23 44 1j 1 3 -862 -891 10-00 2-415 2-446 Z 371013 
70ý32 2j 41 2 11 3 1.150 1.187 10-00 3.159 3-261 Z 371014 

90 , /16 2j 5 1 11 3j ý 690 -712 11-90 2-162 2-334 Z 371043 
90 1 124 24 5 1j Ij 3j 1-035 1-069 11-90 3-383 3-495 Z 3710]. S 
903 2 27 a 5 2 4 1j 3A 1-380 1.425 11 -90 4-514 4 657 Z 371010 
90, A 4 27 g 5 21 3 

4 
1j 3 1-897 1.959 11-90 6-196 6 399 Z 371017 

31 61 11 1 11 411 1.150 1.187 15-42 " 89f ý OS14 z 3110-t-I 
3,3 6j 2 1 1 '1 1-840 1-900 15-42 7.8-16 8 101 Z 3710-45 

Limits of Tolerance and Basis for Weight Calculation 

Dimensions For -013', -004' and -002' ribbon 
OnchcO 

I 

Dimensions in inches 

Aý 0+ -614 

B -, 0+ , if B-<2-j 
B 0+ if), > 2ý iind I 
13 0+ if B>2. j and E> 41 

F 0+ 

F and G Not less than nonimal 
D 0+ ý2 if D ýý 2 
D 0+ ý. if 1) >2 
R for Types I INVR 37 inclusive 

for Types IIWR 10 30 jnclusi%c 
for Types 11WR 40 and up 

Wcigh1=(DxEx Lx Kx 0-275) Lbs. 
Where: I, --- Mean Length of Flux Path Ins. 
For -002" stj ip K -- 0- 88 
For . 004' strip K -- 0-92 
For -013' strip K -0-95 

Chapelhall Airdrie Lanarkshire Scotlan d 

Figure 9.1 Data on the Cores Used 
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Figure 9.2 Experimental constructed with 'ý x HWR 11(1/21) Corc5 
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CHAPTER X 

APPLICATIONS OF THE PARAMETRIC TRANSFORMER 

10.1 Applications as a Saturable Reactor 

The two-C-core structure employed in commercially avail- 

able parametric transformers, or any of the other equivalent 

structures shown in Figure 4.31, may be used for saturable 

reactors, wherever such applications arise. These range from 

simple ac power controllers to magnetic modulators and magnetic 

amplifiers 
1, 

and although the progress in semiconductor tech- 

nology has reduced the importance of magnetic devices in many 

areas of control engineering, application still exists when 

reliability, robustness and maintenance-free operation are of 

prime importance. 

Although the devices of Figure 4.31 are simply saturable 

reactors, they have a major advantage over conventional saturable 

reactors (e. g. Figures 4.3 and 4.5) in that good isolation exists 

between the load and control circuits. Rather'than cancelling 

the effects of flux coupling, its existence is removed (through 

method 3b of Section 4.1.1). and large alternating voltages are 

not induced in the control winding, even when the functions of the 

windings are reversed. This is clearly valuable in many appli- 

cations, but since flux interaction is restricted to only part of 

the core, these devices are bulkier than conventional reactors for 

the same range of control. 
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Although a number of applications have been proposed 
2,3 

for the twd-C-core saturable reactor, possibly the most 

important one is for voltage regulation. 
4A blocK diagram 

of this application is shown in Figure 10.1. After comparing 

the line voltage with a reference voltage, the resulting error 

signal is amplified and fed to the control winding of the 

saturable reactor, the load winding of which is in series with 

the line. If the amplitude of the line voltage varies, the 

amplified error signal changes accordingly, so that voltage 

regulation is provided by the varying impedance offered'to the 

supply. In a practical device, the dc error signal is not 

directly amplified, but is used to pulse-width modulate the out- 

put of a generator producing one pulse per supply half cycle. 

The pulses are amplified and fed to the control winding. uf the 

saturable reactor, where they are integrated by the high winding 

inductance to result in a dc voltage with an average. value 

proportional to the marK/space ratio of the pulses. If the 

error signal changes, the marK/space ratio and consequently the 

dc control voltage change to provide the necessary regulating 

action. 

When saturable reactors are viewed-as variable inductors, 

it should always be borne in mind that parametric coupling 

exists mutually between the load and control windings. Since the 

parametric coupling is mutual, even harmonic voltages are induced 

in the dc control circuit from the alternating source energising 

the load winding. Figure 4.28 or 4.29, which assumes parametric 
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coupling to exist in one direction only (i. e. from the control 

to the load winding), may therefore be misleading in some 

cases. For instance, in the two-C-core saturable roactor 

proposed in reference 2 for amplification purposes, and shown 

in Figure 10.2, it is claimed that the alternating input signal 

'Varies the dc flux already linking the load winding and 

established by a direct voltage source. The corresponding 

variations in the load winding inductance then induce an alter- 

nating voltage in the load winding, with the result that the 

voltage across the resistor is an amplified version of the 

input signal. However, this is unfortunately not true, since: 

1. If the input signal is from a vol"tage source of frequency 

f, the load winding inductance is varied at 2f, and 

even harmonic currents circulate in the load winding. 

The voltage across the resistor has the same waveform 

as the current in the load winding, and is similar to 

that shown in Figure 4.25a or Figure 4.27e. The output 

voltage waveform, apart from being at twice the input 

frequoncy, does not therefore bear a direct relationship 

to the waveform of the input signal, and in this mode of 

operation the device cannot be considered as an amplifier. 

2. Since the alternating flux and mmf in the core must be 

sufficiently high to taKe advantage of the non-linearity 

of the magnetisation characteristic, the input power 

necessary to create variations in the load winding induc- 

tance is also quite high. The device cannot therefore be 
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considered as a power or even a voltage amplifier, since 

the voltage across the resistor is much lower than the 

- that alternating input voltage which must be about 

corresponding to ý5 in Figure 2.2b. 

Both points are true, regardless of the form of saturable 

reactor employed and the manner of flux interaction in the core. 

The fallacy arises because Wanlass2 assumes a trans-inductance 

characteristic of the form of Figure 2.4, although the actual 

shape of this curve is as Figure 8.21. 

10.2 Applications of the Parametric Transformer 

The operational characteristics of the parametric trans- 

former are very suitable for many power conversion and con- 

ditioning applications. In fact, each of these characteristics 

can be exploited separately in different applications, with the 

other characteristics remaining as extra advantages. In the 

following sections, possible epplications are viewed according 

to which characteristic is primarily utilized in obtaining the 

required function. 

10.2.1 Power Conditioning (Voltage Regulator-Filters) 

The need for regulating and filtering mains voltage to 

provide a transient-free, constant-amplitude, sinusoidal alter- 

nating voltage, especially for electronic equipment employing 
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integrated circuitry, is obvious. With its inherent voltage 

regulating and filtering properties, the parametric transformer 

can provide an optimum solution, providing also under- and 

over-voltag3 and overload protection. As the output voltage 

waveform of the parametric transformer is determined solely by 

the position of the operational'point on the V2 /V 
I 

characteristic, 

a correct positioning provides both good voltage regulation and 

a good sinusoidal output waveform, although necessitating a 

restarting action whenever oscillations are switched off. The 

almost total isolation between the primary and secondary cir- 

cuits prevents any disturbances in the mains voltage from being 

transferred to the load, and any load voltage irregularities 

from being reflected back to the mains supply. A noise attenua- 

tion factor of 50 dB is claimed commercially for parametric 

4,5 transformers , and for voltage regulation, a regulation factor 

within + 0.5% and + 1%. However the finding of an extremely 

good regulation of the rms voltages 
6 

conflicts with the findings 

of this project that, although the amplitude is extremely well 

regulated, the rms value is not, because of the' change in the 

output waveform. 

Although in this project, the parametric transformer was 

investigated with a load connected across the secondary capacitor, 

it is more practical to have the load supplied by another winding 

coupled to the main winding, as shown in Figure 10.3, and this 

allows the lqvel of the output voltage to be chosen more 

freely. The essential advantage of this arrangement is that 
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the secondary resonant circuit can be wound with a large 

number of fine turns, to obtain a high inductance and so keep 

small the required value of the resonating capacitor. A high 

voltage is developed across the capacitor and a small current 

flows in the resonant circuit, conditions under which a 

capacitor operates more efficiently. 

10.2.2 Power Conversion Applications 

10.2.2.1 AC to OC Inverters (DC Power Supplies) 

With the parametric transformer used as a mains regulator- 

filter, its noise-free output voltage may'be rectified to 

provide a regulated dc power supply, as shown in Figure 10.4. 

Although the regulation property is provided by the parametric 

transformer, filtering of the ripples on the dc output is 

achieved by the filter shown in the figure. The principal 

advantages of this arrangement obviously include again mains 

over and under voltage protection, intrinsic overload protec- 

tion and high noise immunity to mains voltage irregularities. 

Since the parametric transformer regulates the amplitude of the 

mains voltage, good regulation after filtering can be achieved, 

although the ac ripple in the output will cbviously depend on 

the effectiveness of the filter employed. 

10.2.2.2 OC to AC Inverters 

The remarkable filtering ability of the parametric trans- 

former is particularly well-suited to this type of application. 

Even with a square-wave input, the parametric transformer produces 
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a good sinusoidal output and this makes it particularly useful 

for switching mode power supplies. In conventional techniques 

(Figure 10.5a), the dc source is first commutated to obtain an 

alternating square-wave voltage, which is then filtered to 

remove unwanted harmonic frequencies and noise spikes introduced 

by-the thyristors in the commutation process. However the 

parametric transformer can successfully replace the filter, as 

in Figure 10.5b, simply by tuning the output resonant circuit 

to the frequency of the square-wave voltage. In addition to 

providing an inherent overload protection, the employmaht of 

the parametric transformer ensures that the regulated output 

is always sinusoidal and spike-free. With the isolation between 

the output and the chopping circuits, the output voltage level 

can be transformed and multiple outputs provided. 

The frequency of the chopper and that to which the output 

resonant circuit is tuned must be high (e. g. 20 XHz), to reduce 

the size of the care and the number of turns of the windings. 

At these frequencies, switching-transistors can*be used for the 

commutation process more effectively than thyristors. 

The parametric transformer in Figure 10.5b replaces only 

the filter of Figure 10.5a, and chopping of the dc input voltage 

is performed by a separate circuit generally using both elec- 

trical and magnetic components. However, if the primary winding 

of the parametric transformer is used appropriateiy in the chopper 

circuit, the n6ed for coupling the chopper to the parametric trans- 

former. is eliminated, as well as one extra step in the conversion 

process. This type of application. illustrated in Figure 10.5c, 
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has been investigated 8 
with a chopper circuit due to Royer 9 

The dc to ac converter circuit is shown in Figure 10.6, where 

the sections of '. hc primary winding of the parametric trans- 

former are used in the chopper circuit with two alternately 

operating transistors. In the original circuit, the magnetic 

coupling between the bases and collectors of the transistors 

9 
was achieved by windings on a toroidal magnetic core , but 

this is now replaced by the (primary) magnetic circuit of one 

of the two C-cores of the parametric transformer. 

10.2.2.3 DC to DC Converters 

With the filtering ability of the parametric transformer 

used beneficially in do to ac inverters to supply a stopped- 

up ao output voltage, it is apparent that the parametric trans- 

former can also be used in do to do conversion while retaining 

the extra advantages mentioned above. The conventional do to do 

conversion process is shown in Figure 10.7a, and with the filter 

and the step-up transformer replaced by the parametric trans- 

former, the arrangement becomes modified as in Figure 10.7b. 

Prior to the final stage of rectification and filtering at the 

output of this figure, the process is the same as in Figure 10.5, 

and the parametric transformer may also be employed here with 

the configuration of Figure 10.5c. A high chopping frequency 

for_both the chopper and the parametric transformer is again 

desirable to reduce the overall size. 
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The variation of the output voltage of the parametric 

transformer with the resonant frequency of the secondary cir- 

cuit has already been demonstrated (see Figures 9.6 and 9.12). 

The same effect can also be created by varying the input fre- 

quency, when the secondary resonant frequency is fixed. In 

this way, it is possible to adjust or to regulate the output 

voltage of the parametric transformer, although the output 

voltage, being phase-locked with the input, will also have the 

same varying frequency. However in dc to dc conversion, this 

7 
does not introduce any problems, and its use has been proposed 

for a regulated dc power supply. As shown in Figure 10.8, the 

forward path required is the same as in Figure 10.7b, with the 

addition of a rectifier filter at the input. The dc output 

voltage is co mpared with a reference voltage in the sensing 

circuit, with the error signal being used to vary the frequency 

of a voltage-controlled oscillator so that the chopping frequency 

is varied in response to variations in the dc output voltage. 

As the input frequency to the parametric transformer is altered, 

its output voltage changes to provide a voltage regulation 

additional to that inherent in the parametric transformer. How- 

ever, the circuitry required in the feedback path in Figure 10.8 

is quite complicated 
7, 

and the application may therefore be imprac- 

tical. Nevertheless, using the configuration of Figure 10.6 for 

the forward path of Figure 10.8 may well prove valuable, since the 

frequency of this circuit is easily controllable as. it is propor- 

tional to the dc level of the input to be chopped. 
9 
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10.2.2.4 Frequency Converters 

The use of the parametric transformer in dc to ac power 

conversion maKes possible conversion of the frequency of an 

alternating source. A block diagram for this is shown in 

Figure 10.9, where the alternating input voltage of fI is 

first rectified and filtered before being chopped to an 

independent frequency f 
2' 

The parametric transformer oper- 

ating at frequency f2 conv erts the alternating square-wave 

input to a good sinusoidal output. In this mode of operation, 

any desired frequency conversion ratio can be achieved, since 

the chopper frequency can be independently chosen and the 

secondary tanK circuit of the parametric transformer is easily 

tuned to this frequency. 

10.2.3 Frequency Multiplier/Dividers 

The frequency multiplying/dividing property of the para- 

metric transformer can be utilized in many applications requiring 

static frequency changing. As distinct from the previous section, 

the output voltage in this application can be obtained only at 

multiples or submultiples of the input frequency, and the fre- 

quency conversion is achieved by inherent parametric transformer 

operation in the second Cor third, etc) unstable region. 

Early interest was shown in static frequency changing by 

10 
non-linear magnetic devices , and many such devices developed 

early in the century were in fact a form of parametric transformer. 

Although these devices are now of little importance, there may still 



be *a need in special applications such as the generation of a 

low frequency ringing current in telecommunication equipment. 

The essential drawback of the frequency-changing operation of 

the parametric transformer is its low power efficiency, which 

makes the device unsuitable for power level applications. 

However, it may still be of value where power efficiency is not 

of prime importance, since the frequency changing is achieved 

quite simply without the need for complex circuitry. 

10.2.4 Parametric Filters 

The excellent filtering ability of the parametric trans- 

former has led to a, proposal 
12 for its use in analysing the 

frequency spectrum of complex waveforms. The proposal requires 

a number of parametric transformers, each tuned to a different 

frequency and with their primary windings connected in parallel 

(see Figure 10.10) to form the input to the frequency analyzer. 

Each different frequency component of the input will drive a 

separate transformer, tuned to a different harmonic frequency to 

operate in the first unstable region. A voltage is thus para- 

metrically produced at the output of each transformer for which 

a component is present in the input, and the main advantage of 

the proposal is claimed as the need for only a single input 

amplifier. 

Although the filtering network of Figure 10.10 may be con- 

sidered theoretically as operational, it is not possible to 

realize it practically. since 

584 
i 
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The parametric transformer exhibits under-voltage protection 

even if the damping is practically zero (Section 3.6.1), 

2. The input voltage to create the necessary reluctance 

variations is high (Section 2.1.1. ), 

3. The harmonic amplitudes in a complex waveform are usually 

;,, much smaller than that of the fundamental. 

It is clear therefore that the threshold effect in the 

parametric transformer will not permit its use as a conventional 

filter. Furthermore, if the input frequency varies, the output 

frequency also varies, and parametric excitation is possible 

within a quite wide frequency band (see equation (3.179)). Like 

all non-linear resonant circuits the output'voltage/input 

frequency characteristic exhibits hysteresis, which aliso makes it 

different from a conventional linear and passive filter. 

10.2.5 Phase Conversion 

The phase quadrature between th3 input and output voltage of 

a parametric transformer may be used for single-to-three phase 

conversion, as explained in Section 9.4. Applications have been 

suggested in rapid transit railroads 
13, but the 3-phase output which 

can be obtained may be found unsatisfactory, since the changing 

phase symmetry and relative amplitude of each pha3e with the input 

voltage may not meet the stringent requirements involved. However, 

conversion from a single phase to a 3-phase supply by a simple 

device is an outstanding feature, and parametric transformers 

carefully designed for this purpose may offer major advantages in 
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some applications. Their employment for 3-phase to single phase 

conversion-is also a possibility, which can be of valuo when a 

single-phase load is to be fed from a 3-phase supply without 

introducing any phase imbalance. 

With a parametric transformer as in Figure 4.11, the quad- 

rature phase between the primary and secondary fluxes gives rise 

to another application of the basic concept. During steady- 

state operation, the common region where the two core loops 

join is subjected to a rotating magnetic fleld, arising from 

the 900 phase difference between two orthogonally-spaced fluxes. 

By placing a rotor'in this common region, a parametric 2-phase 

motor driven by a single phase supply is obtained, 
14 

which may 

provide better performance characteristics than a single-phase 

induction motor. Obviously, the resulting performance will be 

influenced by the type of the rotor used in the motor, e. g. 

squirrel-cage, hysteresis, reluctance type etc. 

10.3 Advantages'and Disadvantages of the Parametric Transformer 

In the light of the experimental and theoretical invest- 

igation described, the main advantages and disadvantages of a 

parametric transformer may be summarized as: 

Advantages 

Operational characteristics: Each of the inherent properties 

of the parametric transformer Cfiltering ability, voltage 
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regulation, 900 phase difference etc) can be used to special 

advantage in different situations. 

2. Simultaneous furnishment of all'characteristics: The para- 

metric transformer in its normal mode of operation exhibits 

all the basic characteristics. Thus, while one of the 

characteristics (e. g. voltage regulation) is used in a 

particular application, the others (e. g. filtering, over- 

load protection etc) remain as extra advantages. 

3. Simplicity: All the beneficial properties are provided 

in a simple device, without the need for any additional 

circuitry. That will be quite complex even if at least one 

of the 
operational characteristics inherent in the parametric 

transformer is to be otherwise achieved. 

4. Reliability: This common feature of all magnetic control 

devices is shared by the parametric transformer. ComPonents 

sensitive to changes in environmental conditions or with a 

short life-time are not employed, and operation of the para- 

metric transformer is essentially maintenance-free. The 

inherent overload and over-voltage protection also serve to 

enhance the reliability, and the robust construction is an 

advantage where mechanical stresses are likely. 

Disadvantages 

Low power efficiency: The low efficiencyof 60-65% is the 

greatest drawback of the parametric transformer, restricting 

its potential use for power conversion and conditioning 
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applications, although the parametric transformer offers 

uniqud characteristics, valuable in such areas of 

application. 

2. Large size and weight: As a result of the low power 

efficiency and a construction in which the core is not 

efficiently used, the parametric transformer is about 3 

times heavier and more costly than a conventional trans- 

former of the same power rating. The need for a large 

highly-rated capacitor further increases the overall size, 

weight and cost, and restricts its use in portable eqLljp- 

ments where limited space is available. However, these 

increases will be counterbalanced in some applications by 

the beneficial utilization of the operational character- 

istics. 

3. DifficultY in constructing large power units: As the size 

and weight of a parametric transformer increase, the 

realization-of the device becomes more and more impractical. 

Although saturable reactors to control hundreds of kilo- 

watts are constructed, the maximum power output in parametric 

transformer operation is much less than this. Another limiting 

factor at high power levels is obviously the much higher power 

rating required by the capacitor. The largest commercially 

available parametric transformer has a power rating of 2.5 KVA, 

with-outputs of 5 KVA obtained by parallel connection 
4 

4. Low input power factor: Since the input current drawn from 

the supply is largely reactive, a capacitor may be necessary 
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to correct the corresponding low input power factor, and 

this will yet further increase the overall size, weight 

and cost. If this is not done, the parametric trans- 

former may adversely affect the output of the driving 

circuits, and difficulties of coupling may arise. 

5. Poor behaviour on lagging power factor loads: In industry, 

lagging power factor loads are the most frequently encountered, 

and the poor behaviour of the parametric transformer under 

these conditions is somewhat of a disadvantage. 

6. Need for manual re-start: Whenever the parametric transformer 

provides, overload or under-voltage protection, oscillations 

are switched off and a manual re-start is necessary. In 

commercial devices, a push-button switch is used for 

injecting a small voltage to initiate oscillations in the 

secondary winding after normal conditions are restored. 

However, this clearly presents a problem in remote or un- 

attended locations. 
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CHAPTER XI 

CONCLUSIONS 

The conclusions arising from the project, together with 

suggestions for future extension of the work, may be summarised 

as 

tical analy3is of the secondary Difficulties in the mathemat 

circuit of the parametric transformer arise, since no 

complete theory exists for non-linear systems with time- 

varying parameters. The method employed in Chapter III 

tted to a limited extent the derivation of relation- permit 

ships between the operational characteristics and the 

differential equation of the secondary circuit. However, 

alternative analytical techniques, such as the phase-pulse 

method, may prove useful, by providing additional knowledge 

for the establishing of these relationships, and to obtain 

better means of manipulation leading to improvements in the 

operational characteristics of the device. 

2. The theory developed using mmf functions in the circuit 

differential equations is applicable to any parametric trans- 

former, employing any form of saturable reactor in its 

magnetic construction. The overall complexity of the system 

equations, which can be solved only by a computer, still 

requires simplifying assumptions during their derivation from 

the physical system. However, it is believed that this is the 

first appropriate mathematical representation of the problem, 



595 

making possible the direct use of computer evaluation of a 

particular physical construction. Since this is a real- 

time analysis providing instantaneous values of the system 

variables, the derivation of the performance characteristics 

is only possible by repetitive solution of the sy, &, tem 

equations. 

3. The results produced by the computer simulation of the two- 

C-core parametric transformer agreed well with the exper- 

imental observations in most respects, except for the necessary 

value for the secondary capacitor and, consequently, the 

amplitudes of the secondary and primary currents. The 

assumption of a single-valued B/H curve did not allow 

introduction of initial curvature near the origin into 

the computer simulation., since such a B/H curve produces 

not a gradual increase in the average reluctance but high peaKs 

in its time variation. Because of this assumption, neither can 

the computer show the effect of hysteresis and eddy current 

losses in distorting the waveforms of the circuit variables. 

No possible solution has yet been found for the complete and 

simultaneous representation of all the properties of an actual 

magnetisation characteristic. 

4. Since the parametric transformer offers characteristics very 

advantageous in many applications, future studies must 

concentrate on eliminating the disadvantages viewed in Section 

10.3, most importantly on increasing the power efficiency and 

reducing the size of the device. 
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5. It may be concluded, both from the experimental and computer 

investigation in this thesis, that an important factor 

creating many disadvantages is the need for a high resonating 

capacitor to initiate parametric oscillation. Theoretically, 

with a material not exhibiting the magnetisation charac- 

teristic phenomenon of Figure 8.55, the value of the capacitor 

employed becomes small, resulting in smaller currents in'both 

the secondary and the primary windings. The consequences of 

smaller currents would include: 

a] higher efficiencyin the real power sense, since the 

total losses (mostly the iron losses) at no load would 

significantly decrease, 

b) higher input power factor, since the reactive component 

of the primary current would be much smaller, 

C) higher overall efficiency (load power/apparent, input power) 

since the apparent power drawn from the supply would be 

greatly reduced, 

and d) smaller size and weight, since the power rating of the 

capacitor and gauge of wire in the transformer could be 

much smaller. 

Howev er, all magnetic materials used for transformer cores 

normally possess an initial curvature in their B/H charac- 

teristics, and the high circulating currents and low efficiency 

are therefore inevitable. 
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6. The irivestigation of flux interaction and parametric coupling 

in various saturable reactors shows that in an ideal saturable 

reactor device 

a) mutual flux coupling must be eliminated (not cancelled) 

by a proper magnetic configuration, with two separate 

magnetic paths for the primary and the secondary fluxes, 

b) flux interaction must take place in the whole core and 

not merely in a part of this, 

c) flux interaction must occur in a parallel manner. 

The power efficiency and size of a parametric transformer 

mainly depend on how effectively parametric coupling is 

achieved between the windings. Investigations on increasing 

the power efficiency and the power rating/wei. aht or the 

power rating/volume ratio of parametric transformers must 

therefore be directed towards the physical realization of a 

saturable reactor device possessing all these three properties 

simultaneously. 

7. For a given magnetic structure, improvements can be obtained 

in the power efficiency and weight of a parametric transformer 

by keeping the total losses as small as possible, and by 

modifying the magnetic construction appropriately. For example, 

a parametric transformer can be constructed on a magnetic 

arrangement formed by the 900 rotation of one half of a con- 

ventional transforner using two-C-core loops with a square 

cross-section overall. This will obviously reduce the leakage 

fluxes and increase the volume in which flux interaction occurs. 
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However, the possibility of unintentional air gaps and the 

difficulty in securing the assembly are clearly increased. 

Furthermore, in two-C-core parametric transformers, the 

flux density in a large portion of one of the C cores is 

quite low, indicating ineffective utilization of the core 

material. It appears therefore that a configuration with a 

smaller A /A 
0 

ratio (of the equivalent bridge'd core) is more 

desirable. 

8. Further experimental worK oil multi-valued relative magnet- 

isation characterietics may lead to a criterion to be used 

for minimising the total losses and increasing the power 

efficiency, by observing the effects of various system para- 

meters on the shape-of these characteristics. 

9. Together výith efforts to reduce the disadvantages of the 

parametric transformers, further theoretical and experimental 

Igations must be performed in various areas of application. invest. L 

Applications requiring switched mode operation in conjunction 

with semiconductor devices deserve special interest. Finally, 

the possibility of obtaining characteristics similar to those 

of parametric transformers maKes bridge-connected reactor circuits 

an area to which special attention should be devoted. 
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APPENDIX I 

THE AMPLITUDE OF THE FUNDAMENTAL FREQUýENCY COMPONENT 

Using, the method of harmonic balance, a solution assumed 

as 

0 cos z+B cos 3z (1) 

is introduced into, the differential equation 

lj2 
ý2+ 

(a - 2q cos 2 z) ý+gý'=0 (2) 
dz 222 

When only the fundamental and the third harmonic are considered, 

and the coefficients of cosz and cos 3z are equated to zero, 

the equations obtained are 

A(a -1- q) - Bq +-K (3A3 + 3A 2E3 + 6B 2) .. 0 (3) 
4 

and (a - 9) B- Aq +R (A 3+ CA 2E3 + 3B3) (4) 
4 

which may be solved for A and B. 

Firstly, assuming B= 0 and neglecting therefore terms in 

B in equation (3) yields 

Ma q) +1g As 4 

giving a zero-order approximation for the amplitude of the 

secondary flux as 



cis 

A2 4a+ 
q) 3g (6) 

which is the same as equation (3.113) in Chapter III, evaluated 

only for the fundamental term. To obtain a better approximation, 

although with B still considered small, terms of the order of-E A 

are not neglected, although 121 < 1. On neglecting B2 term in A 

equation (3), and dividing both sides by A, it follows that 

B32 
q+TgA (I + 

BI 
A 

from which A2 is obtained as 

a 
+B A 

By expanding the rational fraction 1 into a power series and 
146 K- 

neglecting all but the first two terms, 

B1- (9) 

-On substituting equation (9) into equation (8), and neglecting the 

E32 term in -, equation (8) takes the form 
A2 

3+q-a+ (a - 1) R] 
-4-9 A 
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Neglecting L33 term in equation (4) and dividing both sides 

by A3, it follows that 

-1 - -1 +R (1 +6 
2) 

A3A24A 

To calculate 
R from this equation, the zero-order approximation A 

for A2 in equation (6) is substituted into equation (11), giving 

B 2q +a-1 (12) "T 3(2q -a- -7-T 

Substituting from equation (12) fcr-ý in equation (10) gives A 

the amplitude of the fundamental frequency component in the 

secondary flux as 

+qa+ (a 2q a-I 
3g 3(2q a- 7) 

. which is a better approximation then equation (6). 

1. See section 7.230 in reference 12 cited for Chapter I. 
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APPENDIX II 

HARMONIC DISTORTION IN THE SECONDARY FLUX 
WITH A SQUARE-WAVE INPUT VOLTAGE 

When the resistance of the primary circuit is neglected, 

a square-wave input voltage results in a triangular waveform of 

primary flux, which may be expressed in a Fourier series as 
I 

-L Csinz +-! sin 3z +-Lsin 5z 
IM 7T 29 25 

Since, normally, ý 
Im 

<ýs (saturation flux level), it is sufficient 

to taKe the trans-reluctance characteristicýaz 

R 
M2 

R 
M2min 

r1 

which leads to a Hill equation, in which the 0 coefficients are 

0=-1 [R + 
ý11 r 

ýjm 
)21 

02N2c m2min 81 1 IT 2 
2 

22N2c 
18 

2 

(3) 

r LM 
22 032 N2c92 IT 2 

2 

and 0= .-I. I-rc 
32 W2 N2C 

162 1 IT 2 
2 

when only first two terms in equation Cl) are taken into account. 

I 
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The amplitudo of the third harmonic in equation (3.206) 

may be taken as, approximately, 

A .. (0 + 0) (4) 

since 0<1 and 0<1. On subs". "ituting for 6 and 1212 

equation (4) becomes 

32 
w2 N2 c 1 

im 

Tr 2 
)2 

2 

If 0 Is equated to unity, by proper adjustment of the secondary 
0 

resonant circuit, the ratio of the amplitude of the fundamental 

to that of the third hannonic in the seccndary flux is 

R+ 41 r(8 
olm 

)2 R 
0 M2min ýTfl 12 Tr m2min 

. 71 + 16 TA7 TA7 a (b 22r, ý2 
rcI Im 

22 IT 

(6) 

R 
M2min The ratio - is a measure of the modulation depth in the 

rý2 
I Im 

secondary reluctance variations, as the modulation index from 

equation (2.8) (Chapter 21 is 

rl 
e2 

m= ---- 
--7 

- 
im 

0 + 
EI 

e2 

M2min Z- im 
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In normal operation, ý 
IM 

<ýs and m is small. However, even 

with a modulation depth value of 25%, equation (6) gives 

79 

or, inversely, the ratio of the amplitudes of the third harmonic 

to the fundamental is of the order of -L = 1.25%, which 80 

establishes the filtering ability of the parametric transformer. 

Obviously, the greater the modulation depth becomes as ý 
IM 

is 

Increased, the more distorted becomes the output waveform, 

indicating that this is dependent on the primary flux amplitude 

rather than the waveform of the primary flux. 
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APPENDIX III 

NON-UNIFORM FLUX DISTRIBUTION IN THE HOLLOW TOROID CORE 

When the secondary winding only is driven by a voltage 

source, the secondary flux created is distributed in the 

toroidal core of Figure 4.46, with the flux density varying 

as 

B(a) = ACa) (1) 

where A (a) j-a-b cosa (2) 

and a= 27rR (R 
2-RI) 

7T (R 2-R 2) 
21 

as given in equation (4.63). If the magnetisation characteristic 

of the core material is given by 

f (8) =cB+cB+c 

then, HH (a) =f(2 _) =C2-+02 3+ 
22A (a) I (a -b cos a) 3 (a -b cos a) 

2 

b cos Us+ 

0 

Applying the circuital law of magnetism to the secondary magnetic 

circuit, the secondary mmf is 
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F r* ýH dt 

27r 2ir 

=fH (a) rd a=rfH (a) da (6) 
00 

R+R 
by the change of variable dk=rda, where r=222 

Substituting for H2 (a), the integral becomes 

R+Ri 27r da 27r dot 
2 

[cl. ý2fa-b 
cos OL «" 

3 
t3 f 

(a -b cos 
00 

5 11T da 
s a)5 2 (a -b co 

0 

Upon integration, a vanishes from the expression, and the 

function F (ý ) 16 obtained in the form 

F (ý 
2)=S124S30+ 

where the coefficients S, SS are functions of both 
135 

the physical dimensions R, R2RI and the coefficients of the 

magnetisation characteristic. The dependence of the S an R 

RI and R2 is quite complex and very tedious to derive, as would 

be expected from the form of the integral. Even the simplest 

integral in equation (7), in its indefinite form, gives* 

See page 78, "Mathematical HandbooK, ' by M. R. Spiegel, 

. 
Schaum's Outline Series, McGraw Hill, 
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tan 2+ 
i/(b - a)/Ca-+---bT da 211. ) 

a-b cos a 
vrb-z'----a-7 tan -a - vl(b - a)/(a + b) 2 

where a and b are functions of R, R and R0 as given by 
22 

equations (3) and (4). This illustrates the complexity of the 

form of the function F (ý ) which is even much more difficult 

to obtain in the form F22) when' is also present and 

orthogonal flux interaction occurs. 

If it is assumed that R>> RI and R2, b may be taken as 

zero, and the constant (mean) value of A2 Is A2=a. Equation 

(7) then becomes 

R+RC 27r c3 7r c 2M 

2 -a dce +-1 da +-f dot 
0 as 0 

cc 
73 

2cA2+7ý2As 
222 

where k2= Tr(R 
2+RI) 

is the mean flux-path length, and A is 

the mean orthogonal area for the secondary flux. 
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APPENDIX IV 

APPLICATION OF POWER SERIES APPROXIMATION TO TWO-C-CORE DEVICE 

The power series approximation of the B/H characteristic 

is 

n 21+l 
f(B) =Ic 21+l B 

i=o , 

as given by equation C7.123. The FI (ý, # 02) and F2 

functions for the two-C-core device are 

FI(Ol., ý)=R+tII+ý 2_) + f( L-02 

2911. 
f+0 [f( 

2AO 2A 

(2) 

ý+k021 F2R922f (T-) + -f k0 rf C 
2A 

V 
2A 

200 

(3) 

,a 
as given by equations (4.45) and (4.46). Introducing equation 

(1) into equation (2) gives 

)Rý+npo 21+l 

2911 21+l I i=o 

n+ý 
)21+l+ 

n 21+l IrIr 
2i+l 

(ý ý11 

i=o 
2J. 1 

Cýl 
2 i=O I-2 

(4) 
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where pc 
21+l 

2i*l (A )21 

rkc 21+l 
21+l 0 (2A 

2i+l 

0 

Denoting the third term in equation (4) as Fa, its expansion 

gives 

+r (ý +ý )3 +r (o +ý )5 . ..... r (o +ý) 
2n+i, 

+ 
2312512 2n+i 12 

[r (ý ý)+r (ý ý )3 +r (ý ý )s . ..... r (ý ý) 2n+i 

112312312 2n+i 12 

(7) 

Using the binomial formula to expand each term in equation (7) 

and maKing all possible cancellations, Fa becomes 

ý 2+ 04ý72ý 4+1 Fa (r + 3r 5r+7r+.... ) + 3(r + Io r +35 r 

Cr + 21 r0 2+ 
.... ) +ý7 (r 

(8) 

With a careful examination of Pascal's triangle shown on the next 

page, it is seen that Fa includes only those terms which correspond 
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2022232425 

/1 

2 -3 lz 

-6- 10-15-----21 

10-35- 

4 -1-5-15-35- 

-1 6 211 

5 (21 r 
72 

6 
-1-7 

Pascal's Triangle 
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to those locations in the triangle where three different lines 

simultaneously intersect. (To illustrate this, one particular 

term corresponding to the location indicated is also shown). 

Equation (8) can thus be written in the form 

nr( 
21+l 21 +e3nr (' 21+l 21 2 

a1 il 
2J+l 121 iýII 2J+l 3 

n 
21*l) o 21-4, + 7 21+l) ý2j-6 Xr 

2i+l 521r 2j+1 7 
i=2 i=3 

(9) 

where the binomial coefficients are given by 

I- 
(Ps) = 

P. (10) 
: (Ic - 

- each sum starts from imo, Changing i in equation (9) so that 

we obtain 

n 21+l 21 3 n-i 2J+S 21 
FaIr 21+l 

(121r 
2J. + 3(3 

3ý2 

i=C) i=D 

n2rc 
21+S 21+ 07n3r 

2J+7 
)ý 21 + 

i=D 21+5 522 i=() 
2J+7 72 

(11) 
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which can be written as 

n n-j 2(i+j)+I) 21 Iý 2j+l 
r( (12) 

J=O i=o 2j+l 

The whole function giving the primary mmf in terms of ýI 

and ý' is 

ný 
214*1 

n n-i 
o 21+l 

2(i+j)+l 
)ý 2j FRý+IP, +Ixr 21+l 1291 i=O 

i+l 1 1-0 J-0 1 2(1+j)+l 2 

C 13) 

Through the same procedure, -the explicit expression for the 

secondary mmf is obtained as 

no 21+l n n-i 21+l 2(i+j)+l 2j R+Is 21+l 2+IIý2r 2(i+j)+) 
( 

21+l 21292 i=D i=o J=o 

C 14) 

where s, 0zc 
2i+l 

21+l 2 (A )21+l 
2 
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APPENDIX V: PROGRAM LISTING, CURVE-fITTING 

IIASTER IIAIN 
c 
c CURVE FITTING PROGRAM TO CALCULA7E THE CONSTANTS X(l) AND X(2) 
c OF THE EQUATION 
c li=X(2)*SINH(X(1)*B) 
c 

LOGICAL SINGLIll 
EXTERNAL FUNCT, 110NIT 
DIMENSION R(15), 11(15), B(15)#C(15)tX(2)tkf(2),, U(800)tF(15)*RES(IS)f 

LJT(15) 
COMION fi#B,, T 

DATA PUINTS TAKEN FROM REFERENCE 1#CHAPTER VIII 

RP-AD(1#10)B, C 
10 FORMAT(30GO. 0) 

C 
c CONVERSION OF FIELD INTENSITY UNIT rROM OERSTED TO A*TURN/M 
C 

DO 20 1 =1 11-1 

20 CONTINUr 
C 
C SPECIFYING VARIOUS PARAMETERS 

11=2 
11=1 5 
T Pzil+3+11/3 
I 1)=2*1-1+4*1J+M*lj+ ( 1-4*N+14 /2+ 1 P* M*2+2*N 
PI=4. *ATAN(l. ) 
I FA I L: -l 
YPRINT22 
EPS=l UE-8 
ALF=l VE-5 
MAXIT=309 

c 
c -INITIAL VALUES OF PARAMETERS 
c 

X(1)=5,7276454 
X (2) =U, 01 41Q3963 
v(I)=210 
v(2)=I. O 
tJRITE(1#50)X 

50 FoRilAT(////32H0INITIAL ESTIMATES OF PARAMETERSt5X# 
1511X(l )=# C-1 2.6s 1 OXP 51IX (2) =f El 29 6/) 

WRITE(Z, 60)V 
60 FURliAT(/16HOVALUES OF V ARE//2Fi5tl/) 

c 
c WEIGHTING FACTORS 
c 
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T(1)#T(2)tT(3)tT(4)'P'T(5)#T(e))#T(7)=I*O 
T(8)IT(O)iT(10)#T(11)#T(12)#T(13): -'10.0 
T (14) #T (1 5)=2.0 

C 
C CALL SURROUT114E FOR CURVE FITTING 
C 

CA LL EU4FAF(II#N, XoR#S, EPSPALFiV, "WIIW'#'FUNCT*VONIT'#IPRINT# 
111AXIT#IFAIL) 

C 
C FINAL ESTIMATES OF PARAMETERS 
C 

WRITE(1,70) 
70 r-ORIIAT(4311OFTIJAL LEAST SQUARE ESTIMATES OF PARAMETERS) 

IJRITE(ef8O)X 
80 FORIIAT(/5Xt5HX(I)=fEl4.8,5X, 5HX(2)=#FI4.8//) 

IJRITE(4,90)IFAIL 
90 FORIIAT(C! IiOIFAIL = 11) 

ORITE(eplOO)EPS 
100 FORIIAT(7HOEPS = ; F4.0///) 

c 
C DETER1,111JING APPROXIIIATE CURVE AND COMPARING IT WITH ACTUAL CURVF, 
C 

WRITE(e, 200) 
200 FORIIAT(/8Xtltlt)#9X, 111C, 12X#lHHF12Xf3liFIT#12X, 3HRES/) 

DO 1 1: --1 it'l 
F( I )=X(2)*. '2ItJli(X (1 )*13( 1)) 
RES(pýrci)-H(p 

300 FORllAT(5XrF6,2,5XtF6,3,3Fl5.5) 
STOP 
rND 

SUBIZOUTINE FUNCT(If#f4tXiR) 
DIMENSION X(N)#R(I, ), H(15), 13(15)#T(15) 
C0111ION 11 1-BiT 
DO 10 1=111-1 
R(I)=X(2)*SIIIH(X(1)*B(I))-H(l) 
R(I)=R(I)*T(l) 

10 CONT114UE 
RETURN 
END 

SUBPOUTINE liOt4lT(MitýoXiStITERCiSING'4r*LIM) 
LOGICAL SING'§'LIl-l 
DIMENSION X(N) 
WRITEU#10)ITERC 

10 FORMAT(11110', TERATION #13) 
14RITE(Z, 20)S 

20 FORHAT(i6H SUll OF SQUARES2iEl4iO 
WRITE(1,30)X 

30 FoRIIAT(20HVALUES OF PARAMETERSi5Xi2EJ6.6) 
IF(SING)WRITE(2,40) 

40 FORMAT(c, 'Ji SINGULAR) 
IF(LI1011RITF(2,50) 

50 FORMAT(clil LIMITED) 
RETUR14 
EHD 
FINISH 
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APPENDIX VI 

DATA ON THE EXPERIMENTAL DEVICE 

The physical dimensions of the bridged core equivalent 

(see Figure 4.39) of the parametric transformer constructed 

with three HVJR110/20 cores were derived from the data in 

Figure 9.1 as 

Primary main branch Secondary min branch Bridge branchos 

A=0.0023 m2A=0.0023 M2 A 0.00058 m2 
20 

= 0.196 mk=0.196 m 0.07 m 
120 

The number of turns in each winding are: 

N 540 N= 540 
2 

of SWG 13 gauge wire. 

The inductance and resistance of each winding was 

measured as 

L=0.588H 

R=2.85il 

The nominal value of the secondary capacitor is 

C= 20 IiF 
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and the nominal input and output voltages are 

V 220V V= 3'10V 
2 

The power rating of the device is 250 VA. 
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APPENDIX VII: PROGRAM LISTING, VOLTAGE/CURRENT CHARACTERISTIC 

MASTERMAIN 
C 
C PROGRAM To DFTERMINE THEORETICAL VOLTAGE/ CURRENT CHARACTERISTIC 
c OF SECUPDARY WINDING 
C 

REAL LI, L? PLOttll, t42,111-IFlotitIF2,, ýiUOLG'12,12RI-jS 
DIMENSION Z(2)oXl2RtlS(35)#XV2EFF(35): EXP12(35) 
COI-111014 AloLl7NIA2, L2, N2,, AO,, L("tCl$ClioRG 

C 
C PEAD PHYSICAL QUANTITIES AND EXPFRIMENTAL DATA 
C 

Rr-Atý(ltlýA1, L'iotjl,, A2oL2'o"N2, AOiý0'#Ci, 'Cll#LG, rXP12 
FORIIAT(46GO. 0) 

C 
C APPROXIMATE EXPRESSION FOR THE MONETISATION CHARACTERISTIC IS 
C HM=cl*B+Cll*B**ll 
C 
C WRITE ALL PARAMETERS 
C 
100 PRITEU, 10) 

10 FC)RitAT(//! //5X#351-ICOEFFICIENTS OF THE FUNCTION H=F(tl)//) 
OR I TE Us 20) Cl , Cl 1 

20 F ORNAT (/ // 5X', *3 HC1 [14,9 t 5X ,4 HC II El 4. '9 
QRITFU#11) 

11 F0RlfAT(///5X'j23H0THER SYSTEM PAPAPIETERS/M 
URITE(idr3)Alf'LI, Nl, RlPA2tL2', N27R2#AO; LO 

3F ORMAl (SX , 811AI (SQf0 z: ,F 10 .4,5X i 6H Ll (1-1) El 0,4o5X #71 OHNI TURNS 
r 10 .4, 

I 5X t 914ý 1 (0111: S El 0.4/ 5X j, bi A2 C SOM ) =', 'E 10 . 
4, ýX , 6H L2 00 #E 109' 4 5X 

11 OH112(TURNS)c , F1 0.4,5X, 9HR2 (OHMS) ýýiEl 0.4///5Xt8HA0(SQM)=s El 0.4#5X# 
16HL0(b)=jEl0.4///) 

66 WR I Tr (le f2 5) LG - 25 FORIIATM/5WHAIR' GAP=, E8,7,414 (M)/0 
C 
C AIR GAP RELUCTANCE 
c 

PI=4. *ATAN(l. ) 
w= 10 01*pI 
hU0=4, *pI*J. 0E-07 
PG=LG/(IIUO*AO) 

c 
C DETERMINATION OF THEORETICAL V/1 CIIARAC'p"ERISTIC AND PLOTTING 
C 

CALL UTpop 

2.7 
. FoRIIAT(//////SX, "12HV2EFF(VOLTS)'o*IOX'o'ilHl2RMSCAMPS)ilOXt 
Il? Hri0l*. AX(TESl. A)/) 

CALL UTP4A(0.0,10-010.0#350,0,8#016. o; l2HT2RplS (AMPS)72,131MR. mS (V 
COLTS)te) 

V2[FF=10-. 
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300 

28 

200 

c 
c 
c 
c 
c 

DO 200 l=lp35 
F2fl=V2EFF*SQRT(C-. )/(N2*W) 
B0flAXý: 2F2m/(. )-. *AO) 
S UII , X=V .0 DO 300 J=lr20 
2 (2) =Feil*. S I ti (X) 
CALL TE7(ZtIWFl #MlIF2) 
12ý11-fll`ie/N2 
SQ12=li? *i2 
SUHý-SUM*S012 
X=X+PI/20, 
CONTINUr 
12RIISýSQRT(0.05*SUM) 
WRITEE (lei 28)V2EFF'; 12RMSsB0f-lAX 
FORMAT (AX F FT. Ir1 2XP El 2,6# 1 2X f El 2.6) 
XIMIS(0=12Rms 
XV2ErfM: --V2EFF 
V2UFýVUFF+10. 
CONTIbVE 
CALL VTP4H(EkPl2; XV2EFF'*35,0) 
CALL VTP4b(Xl2RtlS, XV2EFF, 35,0) 
CALL UTPCL 
STOP 
E 14 D 

SUOP, C, VTI, IJE TEZ(ZsMMFIoMhF4) 

THIS SUBROUTINE CALCULATES PRIMARY AND SECONDARY Ml4F'SoM? 4Fl AND 
1411F, l, rROM GIVEN VALUES OF PRIMARY AND SECONDARY FLUXESoZ(I) AND 
Z(2) 

REAL LltL2#LO, Nl'oN2#MrIFloMMF2 
DIMENSION Z(2) 
C01-11ION Ali Li '; N1 , A2 # L2 & K'2 #A 01 LO# CI Cl I# RG 
F(B)=CI*B+Cll*B**ll 
Hl=F(Z(I)/Al) 
112=F(Z(2)/A2) 
RA=F((Z(J)+Z(2))/(2. *AO)) 
HB=F((Z(1)-Z(2))1(2. *AO)) 
fitlFl=Hl*Ll+(HA+IiC)*LO/2. +RG*Z(I) 
MfIF2=H-'*L2+ ( VA-HS) *LO/2. +RG *Z (2) 
RETURN 
END 
FINISH 
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APPENDIX VIII: PROGRAM LISTING, SOLUTION OF DIFFERENTIAL 
EQUATIONS OF PARAMETRIC TRANSFORMER 

c 
c 
c 
c 

c 
c 
c 

10 

20 

25 

3 

c 
c 
c 

40 

MASTER IIAIN 

PROGRAM TO SOLVE DIFFERENTIAL EQUATIONS SIMULATING PARAMETRIC 
TRANSFURHER 

EXTERNAL DERIV 
REAL LloL2oLO, Nl', N2'o, 'titlFlollMF2tlltl2'#LGillUOPIND21N#IND2AV 
REAL IlRf)SrI2RMS 
61MENS 1014 ZM tG(3) YO(3) i E(3) A (3)7B (3) C(3) PD(3) 

I XTO ()')0) tXEl (1000) tXE2 0 000) )(110 000) XM 1000) 
DIMENSION XEISQ(lfJOO), XE2SQ(IOUO)#XTISQ(iOoo)#XI? SQ(1000) 
C0ý111()N F-JIF1 AA vBB #CC, DD; f*lF1 PM14F2t RE Ll IN, RE L2 I N't DO# Dl tD2PD3, D4, D5 f 

IJD61 D7# 0,3-', *D9 , Dl 0, Dl 1 'Dl 2, D13, Dl 4, V1 5', D 16 

READ AND WRITE P14YSICAL DATA 

READ(lrl) Cl#ClloLGiAl'o'LltNltRl'pA2'f*L2,1,., 2tR2#AO'I'LOtF'O'CAI)#VIEFFIRL 
F0RllAT(16G0.0#E0. ()) 
WRITE(4olO) 

CIENTS OF THE FUNCTION lfzF(B)//) F0RllAT(/////5X#35HCOEFFIlV 
WRITE(e, 2O)Cl, Cll 
FORIIAT(///5X, 3HC1=, EI2,6p5X, 4H'%'ollý#El2.6/) 
UR I 7; E (e, 25) LG 
FC)R! IAT(///5X'88HAIR GAP=, E8.20*4H 
UkITEU, 11) 
FURllAT(/j/5X't7231JOTHER SYSTEM PARAMETERS///) 

V1EFF WRITE(ee3)Al; Llof, 'l, RloA2, L'r-1, N2#q2rAO; LO#RLPCAP#F't 

FORIIAT(lXogHA1(Sot-1)=IEIO. 4t5X#6! IL1(11)ýeElO. 4#5X'PIOHNI(T(JRNS)ý--I 
1E10.4, 
15X, 9HR1(OtiýIS)=, ElO. 4///5Xs8liA2(S(ýM)=. EIO. 4, SX, 6HL2(M)--OEIO. -4o"5X, 
11011142(TIIRNS)=, E'10.4,5Xo9HR2(01IM3)=, EiO. 4///5Xt84AO(SQM)=, ElO. 4i5X, 
1611LO(ti):: #EIO. 4///5X*, F'9HRL(OHMS)2; ElO. 4,5X'o9HCAP(FRD)=', 'EJO. 4,5X, 
1611F (HZ)?: 4El 0.4o5X, 13HV1 EFF (VOLTS) r-o El 0.4///) 

RELUCTANCE AND OTHER COEFFICIENTS 

PI=4. *ATAf4(l. ) 
0=2. *PI*F 
tiUO=4, *PI*I. OE-07 
RG---LG/ (IlUO*AO) 
A LFA=O, ') 
WRITE(e, 40)ALFA 
FORIIAT(/5Xr39HPRIflARY 

Usti (PI M 
ALFA=ALFA*Pl 
sl= - 

Cl*L2/A2 
Pl=Cl*LI/Al 
RRI=Cl*LO/(2. *AO) 
Sll=Cll*L2/(A2**Jl) 
Pll=Cll*Ll/(Al**11) 

VOLTAGE SqITCH-ON PHASE ALFAW4.2; 
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PR11---Cll*L0M2. *A0)**Jj) 
D0=1 1, *lZRl I 
Dl =1 65 , *r? K II 
D2=462, *RRIJ 
D3=330, *RRIl 
D4=55, *RRIl 
D5ýP11*RR11 
D6ýS11*RR11 
D7ý3, *Dj 
b8=5, *D2 
D9 = 7, D. -) 
0 10 =9*D4 
DI 1 =1 1 *D5 
D 12 =1U, *D0 
D1 3=8. *Pi 
D 14 =6, *n2 
Dl 5=4, *D3 
Dl 6=2, *D4 

C INITIAL VALUES OF SECONDARY RELUCTANCE, INDUCTANCE AND CAPACITANCE 
C 
103 RE L2114=RG+Sl +RR1 

RFLI I NýPG4r' o+kR1 
IND2iN=N2*N2/1? FL2IN 
IM IT E kiýP26) RE L21N,, I IJD2114 

26 FORMATM5Xv19HINITIAL RELUCTANCE=#EJ2.6#12H (A*T/WEGER)#l0Xt 
U19HINITIAL ItJI)UCTANCE=, EI2.6, bH (HE14RY)///) 

CAPIN =1 . 0/ (1 ND21 N*14*0 
WRIT F(e, 21 ) CAP IN 

21. F0RllAT(15Xr36flCAPACITANCE ZT) RESONATE WITH IND21N=iEI2,6# 
U811 (FARADM 

C 
C CALCULATIUN OF AVERAGE SECONDARy RELUCTANCE ASSUMING SECONDARY 
C FLUX SINUSOIDAL. 
C 

FI II=Vl EFF*SQR M2. )/ (f4l *tj) 
REL2AV=I)EL2114+(252. /1024. )*11. *RR11*Fll4**10/PI 
OR I TE Cie, 27) RE L? AV 

27 FORIIAT(! //5X'*7liREL2AV=, El2.6,12H (A*T/WEBER)/) 
--IND2AVýfj2*N2/REL2AV 

UR IT f (4,29) 1 ND2AV 
29 FORIIAT(//5X, 7HItID2AV=#EI2.6,8H (IJENRY)//) 

CAPR=1v0/(lND2AV*W*W) 
WPITE(1,28)CAPR 

28 FUR1lAT(//5x, 36HCAPAClTAfJCE TO RESONATE UITH IND2AV21'112.6i 
U811 (FARADM 

CAP=kEL2AV*(I. +R2/RL)/(Lj**2*N2**2) 
WRITEUtO)CAP 

60 FORIIATMU, 40HRESONANCE CAPACITANCE IN LOADED CIRCUIT=oEI2.6i 
0811 (FARAD)/) 



636 

WRITE(4sWCAP 
66 FORllAT(//5X,? 0HCONNECTED CAPACIToR="El6.7) 

C 
c CONSTANTS IN DIFFFRENTIAL EQUATIONS AND TUNING 

AA--RI / (W*t4l **2) 
Bb=l, /(tl*RL*CAP) 
CC=R? /(I]*N2**2) 
DD=(lt"'C', 2/RL)/(Ij**2*N2**2*CAP) 
(JRITE(e, 80) 

80 FoRIIAT(////5X, 38HCOEFFICIENTS IN DIFFERENTIAL EQUATIONS) 

WRITE(e#70)AA#Rb, CC, DD 
70 FURMAT (//5X, 4E I A. 7////) 

TI=SQKT(kEL2A\I*DD) 
FO=TI*wi(2. *Pl) 
(JR IT[ (, d 101 )TI, FO 

101 FORIIAT(//5X, 7HTUNING=tF5.3tiOX't'20HRESONANCE FREQUENCv=#F8,5r 
U13H (HER"I'21'j) 

C 
C INITIALI2E THE VARIABLEs X AND Z 
c 

X=0.0 
1 2(1 )=O, o 

C INITIAL VALUE OF Z(2) CORRESPONDS TO INITIAL SECONDARY FLUX 
C DENSITY OF 5,. OE-03 148 
C 1111TIAL OSCILLATION IN THE FORM Z(2)=0.0000jj5*SIN(X+PI/4. J 

Z(2)=0,0000115*SIN(+PI14. ) 
Z(3)cO, 0000115*COS(+PI/4. ) 

C 
c ERROR BOL114DS 
C 

G(1)'r'G(2)rG(3)=0. O0O005 
STEP=0,05*Pl 
iT=1 
110=3 
11 RR 
PANGE=Q. I*Pl 

C 
C INITIAL VALUES OF INPUT AND OUTPUT VOLTAGES AND CURRENTS 
C 

EJ=VIEFF*SoRT(2. )*SIN(X+ALFA) 
Ell F1=E1/ 041 *W) 

T=X/PI 
XT(1) =T 
xE1 (i )ýEl 
XE2(1)tXI1(1), XI2(1)=0. O 
WRITE (1,4) 

4 FORIIAT(5Xi4liTlýIE, ^8X'; 15HPRIMARY VoLTAGE#rjXo17HSECONDARY VOLTAGE# 
IBX#15HPRIIIARY CURRENTo8X07HSECoOARY CIJRRENT//5X#411(PI), 12X# 
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17H(VOLTe, JP17X#7ii(VOLTS)', 1*17Xe6H(j, 'MPS), 18Xo6H(AMPS)) 
tMIT[(e, 5)T, El, E2#lltI2 

5 FORMAT (3X# F7,2,3X# Fl 5.6'tgXr Fl 7v 6# 8X'o'F I 5.6t8X, F17-ý 6) 
Cw-w---------------w------------- 
c CALL SUBROUTINE TO INTEGRATE EQUATIONS OVER THE RANGE 
C 

7 CALL Do2ABF(X#Z, G#IT#NO'OIERR'ýRANGL, STEP, DERIVeYOtEpArBiCfD3 
T=X/Pl 
IF(IERR. GT. O)GO TO 6 
11 =11fiFl /Nl 
I 2=111i F 411,,, 2 
E2=-f12*t; *Z(3)-R2*I2 

C 
c DECREASIIIG VIEFFF GRADUALLYsTO ATTAIN NORMAL STEADY-STATE 
c OPERATIOU 
C 

IF(T. GT. 70. )C, O TO 701 
IF(T. GT. 30. )VIEFF=VlEFF-0.35 

201 El=VIEFF*SQRT(2. )*SIN(X+ALFA) 
FlJF1 =0 / (Nl *W) 
I=II+2 
XT(I)=T 
XEI (I ): ̀ ýF I 
RE2 ( 1) 2ýE2 
xil (1)=11 
X12(11 )=12 
t-JRITF(er5)TrEl, E2, I1#I2 
II=II+1 
IF (I I. LE. 998) GO TO 7 

c 
c 

; 
11-S 

-VA-LU-ES-F; 
UND B; NUIIERICAL 

c BETWEEN 896 AND 995 

SUfll, SU112#SUM3, SUM4=0.0 
DO 106 1=896'#995 
XElSQ(0=XCl(l)**2 
XE2SQ(I)=XE2(1)**2 
xilsQ(I)=Xll(l)**2 
XI2-31O(1)=Xl2(I)**2 
SUfll =Sull I +X[- ISO( I) 
SUl-12=SVl12+XE2SQ(I) 
sUf43=Su1f3+X II SQ (I) 
9Uf14=SU114+XI2SQ(I) 

106 C014T I 140E 
VlRllSý5QRT(0.0I0*SUlll) 
V2Rl'. S=S0RT(0.0I0*SUl-12) 
I1RllSýSQR"(0.0I0*SU113) 
12RjjS=SnRT(0.010*SUtl4) 
WRITE(,. ', 107) 

107 FURllAT(/////5X, 35HRflS VALUES 

"W---------w---M-- 

INTEGRATIom USING RECTANGULAR RULE 

OF VOLTAGES AND CURRENIS//) 
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WlitTE(-'o, l(j8)VlRlis,, V2RýIS', "11RMS*12RMS 
108 FORHAT (/5X, 6HVl RM5m, FQ, 4p5X#6HV2PMS='#'F9.4# 5X, 6H II RMS=, F9 . 4t 5Xo 

16HI2RllS=eF9.4/) 
c 
c PLOTTING VARIATIONS OF INPUT AND OUTPUT VOLTAGES AND CURRENTS 
c 

CALL UTPOP 
x1l I 114=0 00 
XI, IAX=l ()0 .0 
YliAX=4Uo. O 
Yll I N=-YM AX 
XINS=ZQ. 
yI t4S=6,0 
CALL UTP4A(XýllNoXMAXtYMIN#YMAX'#'XINS"fYINS, 

U21HANGULAR TIME (PI*RAD)#3#16HEI AND E2 (VOLT),, 4) 
CALL UTP2(0.0#0.5*YINSfi) 
CALL UTP2(XINSiO. 5*YINS; 2) 
CALL UTP40(XT#XEI#1000,2) 
CALL UTP4B(XT#XE2rlOOOo2) 
VIEFF=VlEFF+160. 
WRITE(Z, 10R)VlEFF 

102 FORI: AT(////////////5X#22HPRIMARY VOLTAGE VlEFF='**F5tlo8H (V()LTS)/) 
lF(Vl1FF. LE. Z61'. ')GO TO 103 
CALL UTPCL 
STOP 

6 WRITEQ, 8) T 
ý8 FORIIAT(27H INTEGRATIO14 FAILED AT T= oF8.4) 

STOP 
END 

sUBROUTINE DERIV(G#Z, X) 
c 
C THIS SUBROUTINE CALCULATES MMF1 AND MMF2 FROM GIVEN Z(i) AND Z(2) 
C AND DEFINES DIFFERENTIAL EQUATIONS SIMULATING PARAMETRIC 
c TRA14SFURMER 
c 

REAL flMFl illf-IF2 
DIMENSION G(3), z(3) 
COMION EMFl AA Bil, CC, DD"Mf-lFl #MMF2# RELI IN REL21N-, DO# DI # D2, D3. D4; Ds , 

UD6#D7#D8'jD9, Dl;, Dlj', "Dl2# . Dl3oDl4'oDl5, DI6 
FIE2=Z(1)*Z(l ) 
Flr-3=FlE2*7(1) 
FIE4=FIF3*Z(i 
Fl E-5=Fl E-4*Z(l 
FlE6=FlE5*Z(l) 
Fl E7=Fl E6*Z 0 
F1E8aF1F7*Z(I 
Fl E9=Fl F8*Z 0 
Fl E-1 O=Fl E9*2 (1 
FlEll=FIE10*Z(I) 
F2E2nZ(? )*Z(2) 
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F2E. 1=Fe[-2*Z(2) 
F? E4= F c! E 3* Z. (2 ) 
F2E5=Fi! F4*Z(2) 
F2E6=FeF5*Z(2) 
FU7=Fýr6*Z(2) 
F2E8=FZF7*Z(2) 
F2EQ=FeF8*Z(2) 
F2FlO=F2E9*Z(2) 
F2Ell=F2ElO*Z(2) 
litlFJ=Z(1)*(REL11N+DO*F2EIG)+FlE3*DI*F2EP)+FIE5*D2*F2E6+FlE7*D3*F2E4 

U+FlE9*D4*F2E2+FlEA"1*D5 
MlIF2=Z (2) *(RE L2 I t4+D(j%*Fl El 0)+F2E3*Di *Fl E8+F2E5*D2*Fl E6+F2E7*D3*F I E4 

U+F2E9*D4*FlE2+F2Ell*D6 
FN1=FEL2li4+DO*FlElO+F2E2*D? *FIE8+F2E4*DB*FIE6+F2E6*D9*FlE4+ 

UF2E8*010*FlE2+F2ElO*Dll 
FN2=ZM*Dl 2*Fl E9+F2E3*DI 3*Fl [? +Fi! E5*DI 4*Fl F54, F2F7*Di 5*Fl E34- 

Ur2E9*Dl6*Z(l) 
G (I )=EMFl-AA*MMF I 
G(2)=Z(3) 
G(3)=-Or3*ZM -CC*( FUl *Z (3)+FN2* (EMr'l"AA*MMFl ) )-DD*MMF2 
RETURN 
E 14 D 
F IN I Sli 


