Deriving Newton’s Gravitational Law
from a Le Sage Mechanism

Barry Mingst™ and Paul Stowe'

In this paper we derive Newton’s law of gravity from a general Le Sage model.
By performing a general derivation without a specific interaction process model,
we can identify generic requirements of, and boundaries for, possible Le Sagian
gravitational process models. We compare the form of the interaction found to
the “excess” energy of the gas giants and find good agreement.

Introduction

In the eighteenth century, Georges-Louis Le Sage proposed that a universal
field of ultra-mundane corpuscles interacting with matter gives rise to a
shadowing effect. This shadowing in turn causes matter bodies to be pushed
together, resulting in our observation of a gravitational force. Since Le Sage’s
time similar derivations have been performed by many others (e.g.,
Shneiderov, 1943, 1961; Radzievskii and Kagalnikova, 1960). For the most
part, however, the Le Sage approach has fallen from favor and general
knowledge, largely due to the popular belief that phenomenological arguments
make the entire idea untenable.

The authors’ present purpose is twofold. First, we wish to determine
general requirements for any such theory to replicate the Newtonian
gravitational formula, in some limit. Secondly, we wish to determine
phenomena that result from such a theory, and examine these against
experimental limitations. This first paper focuses on the static properties of
Le Sagian models. Static properties are those that do not depend on the speed
of propagation of gravitational effects. The latter effects are addressed in the
companion paper in this volume by Stowe [1].

Derivation of Newtonian Gravitation

If one begins with the postulate that there exists a fluidic medium (aether)
composed of some particulate or corpuscular nature, one may be able to make
use of many of the known fluid dynamic equations in later derivations. The
postulate is therefore made that a fluidic medium is, as Le Sage proposed,
comprised of “energetic corpuscles” pervading all of known space. We also
take as a basic postulate that these corpuscles are in free motion with respect to
each other and make no claims as to the substance or composition of these cor-
puscles. Let us further postulate that the collisions between corpuscles are fully
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elastic. These corpuscles are not necessarily required to be matter (particles) or
mass in the standard sense. What is of interest at this point is not the corpuscles
themselves, but the effect of the corpuscles on matter.

We do not, at this point, claim any knowledge about the corpuscles.
Likewise we do not claim knowledge of the innate structure of matter or the
microscopic interactions that would take place between aether “corpuscles”
and matter “particles.” Instead, our approach is the reverse.

The purpose of any theory of gravitation is to produce, at a minimum, the
Newtonian gravitational equation in its entirety. Most Le Sagian models man-
age the inverse square portion of Newton’s equation without trouble. Many
then go wide of the mark on the strict mass dependence of the resulting equa-
tions. Others appear to get into trouble as a result of discrepancies with calcu-
lated absorptive heat fluxes [17].

We begin our development therefore with a single premise of the form of
the interaction with some physical flux, and then see if Newton’s law can be
derived at all. From Newton’s law, we can then determine the specific type of
flux that the interaction is required to affect. In this paper, we will not attempt
to justify how that interaction might arise. The result will be a generic require-
ment that a Le Sagian model may meet, in order to produce Newton’s law.

Our primary assumption is based upon standard exponential removal
equations. We first define a flux per unit area to be represented by ®@. We pre-
sume that, on average, each interaction of the flux with a differential unit vol-
ume removes the same fraction of the incident flux, ®y. The change in flux due
to interaction with matter is generally given in a differential distance by:

d® =—pu,ddx,

where gy is the linear flux attenuation (loss) coefficient (in units of inverse
length) and x is the thickness of the shield.

One-Body Problem:
We next determine the effect of a stationary, spherical matter body of uniform
density on the corpuscular field. Figure 1 identifies the geometric relationships.

The flux at point P along the line T will be affected by the interaction of
the corpuscles with the sphere. This interaction may be a removal of corpus-
cles, a scattering of corpuscles, a removal of corpuscle energy/momentum
(without scattering), or some combination of the three. It is not yet necessary to
know what the mechanism of interaction will be. The flux will change regard-
less of the type of interaction taking place. Later, we will determine the type of
flux needed to give Newton’s law.

The interactions change the flux, @, in a given unit volume. This general
interaction is then similar to standard ionizing-radiation interactions. It gives
rise to a standard thin-shield reduction equation of:

D =" (1)

]

where @; is the flux after interaction and @, is the initial flux.
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Figure 1

Because we still have the possibility of multiple scattering (multiple
interactions in shields of sufficient size and thickness), the thin-shield equation
is expanded using a general “buildup” term, B(wx). This buildup term will cor-
rect the equation for multiple scattering events (if any) by corpuscles that are
not initially traveling along the line T. The buildup term will depend on the
relative importance of each of the three possible interaction modes (removal,
scattering, and slowing) in the body, the shape of the body, the size of the
body, and the distance of the body from point P. The corrected general removal
equation is:

O, =0 Be 2)

In an otherwise isotropic fluid medium, the flux from all directions is
identical except where the fluxes traverse the matter body. These interacted
fluxes are reduced according to the flux attenuation equation. In Figure 1, the
net flux at point P is given as the sum (integral) of the all flux from the left and
from the right of point P. The net contribution of fluxes outside angle a is
therefore zero. The contribution of fluxes within angle a can be determined by
rotating the figure around the line RP. The rotation angle 6 coupled with the
plane angle a gives the solid angle Q. The difference between the fluxes from
the right (@) and the fluxes from the left () is:

AD = (B - D, )0 = (g -, | & | 7, 3)
R R
The sum of all fluxes on possible lines T is then given by the integral:
1
[vda=[—(0g-;)rdrdo, )
R2
which yields:
2m®, | .
= RZOJ‘[I—B(Mx)e "’]rdr. (5)

0
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The relationship between x, 7, and 7 is given by geometry as:

(5 =Gentn-n=(e 1), ®

Noting that x may be replaced by 2(r;” - )2, the general solution for the cur-
rent (net flux) at a point is provided by:

O = —27;;)0 I[l - B(2/,t,,/r12 -7’ )e_z”’ it }rdr ) (7)
0
The Weak Solution:

The weak solution to equation 7 is given when 24 (> — )"? is much less than
1. This is the case when only a small fraction of the flux is removed to or re-
moved by the body. In this case the buildup term is essentially 1 (there is no
significant scattering), and the exponential term may be replaced by the first
two terms of the power series approximation. The weak solution simplifies to:

Aru®,
D :—ﬂZ’z O.l‘,lrlz—rzrdr. ®)
0
Integrating the above equation gives:

CD() (477:"13j‘u]‘ (9)

net = F 3

The term in brackets is the volume of the sphere. The linear attenuation coeffi-
cient is generally a function of the density of the material. A more general pa-
rameter is the mass attenuation coefficient, p. It is defined as p;= p/p, where
p is the material density. Noting that the mass of our uniform sphere is given
by M = pV, the above equation becomes:

@, (M |
0 [—]yl o, By (10)

net — ? R>
The weak solution to the one-body problem quantifies the creation of cur-
rents (differential flux) in the corpuscular aether fluid that would result from
placing a uniform matter sphere in the fluid. The strength of the current is pro-
portional to the mass of the sphere. The direction of the current is foward the
center of the sphere.

The Strong Solution:

The strong solution to the one-body equation (7) is given when
20 (r” — rz)” ?is much greater than 1. This is the case for very strong interac-
tions (of any kind) or when the body is very large. In the strong solution case,
essentially all of the flux is removed to or by the body. In this case, the buildup
term is inconsequential because essentially all of the flux will be absorbed. The
exponential term goes to zero. This strong solution simplifies to:
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T
2nd()
® e =0 [ rar (11
R 2
0
This equation may be integrated and rearranged to give (where r; < R):
o 0 2
chet :F(nrl ) (12)

This is the maximum current that can be created, the strength of which is inde-
pendent of the mass of the sphere.

Two-Body Problem (weak limit):

The equations determined above provide a description of the effect of a single
body on the surrounding field. If a second body is placed in the vicinity of the
first, it will be affected by the field’s vector potential created by the first body.
Suppose a second spherical body (body 2) is placed at the same point P in
Fig. 1, where r, <<r; << R. Under these conditions the flux lines that transit
both body 1 and body 2 are essentially parallel. Sphere 2 will then see a current
(net vector flux) flowing toward the center of the first sphere.

Up to this point, we have been working in very general terms of flux. In
order to convert to the observed Newtonian gravitational force equation, we
must identify the appropriate type of flux. Newton’s second law requires a spe-
cific form of flux change:

7o) seoa, (13)
dt
where A4 is the effective cross-sectional area of the body and where the bars in-
dicate vector quantities. The flux must therefore be a vector momentum flux
having units of kg/m-sec?.

Because the average path distance through sphere 2 is 4/3r,, and the
cross-sectional area of sphere 2 is 77,°, we can combine equations 9 and 13.
The weak solution then becomes:

4r. 4rr}
FZ(DIW)‘(IUU szn-r; =(Dnet [sz/”‘m’ (14)

where py;and pyp are the linear absorption coefficients for spheres 1 and 2
respectively. Substituting for @, (equation 9) then gives the net interaction as:

_CD() 47”13:“11 47”'23#12 15
TR 3 3 (13)

and, using equation 10:

[}
F:R_S(Mhusl)(leusz)' (16)

For ordinary matter we may write ug = iy = L. We therefore obtain:




188 Barry Mingst and Paul Stowe

2
((DolusR)szle . (17)

Since the term in brackets is a constant, this is the same form as the standard
Newtonian gravitational force equation. The experimentally derived constant G
would be:

F=

G=d,u’. (18)
This is both unsurprising and yet unusual. It is unsurprising because Newton’s
second law is based on momentum as F = d(mv)/dt. Since the basic gravita-
tional formulations are based on relationships of force between matter bodies,
momentum is the quantity of prime concern in this derivation of apparent
forces. It is unusual, because as students we are used to dealing with fluxes of
scalar quantities such as mass, particles, or energy. The requirement of expo-
nential interaction of vecfor momentum flux gives rise to some deviations from
the “standard” renditions of Le Sage theory—which are based on the absorp-
tion of fluxes of scalars (particles, mass, or energy).

The weak solution to the basic interaction with matter has derived the
standard Newtonian gravitational formula for stationary bodies (under condi-
tions where the Newtonian applies). The formulation also provides a /imit for
the effectiveness of the Newtonian formula for stationary bodies. This limit is
the limit of the weak solution: 24 (1 — *)"* << 1 or 2, (> — %) << p. This
also gives an upper limit to the force, based on the strong solution:

F=®o(u3M2)[’;’fj- (19)

One can see from the above equations that the weak, stationary (non-
relativistic) solution reproduces the Newtonian gravitational force equation. G
is seen as proportional to the product of the momentum flux and the square of
the total mass interaction coefficient, p. If this formula is correct, we know
that the interaction is very weak. There are no obvious deviations from propor-
tionality (departure from the weak solution) for masses from sizes from dust
particles to stellar bodies. In validating these derivations against observation,
one must keep in mind that all current mass estimates of planetary and stellar
bodies are all based on strict use of the Newtonian (and Einsteinian) formula-
tions, and might have to be adjusted according to the Le Sagian formulae.

If we examine equation 16, our momentum flux postulate gives a more
physical explanation of the Newtonian empirical formulation:

F =0 (M) (M), (20)

Here we explicitly see the momentum current set up at any point around a sin-
gle body as the first two terms. A second matter body (represented by the third
term) feels a force from this momentum current as a product of its interaction
coefficient and its mass—mnot as a result of its mass alone. The empirical con-
stant, G, has historically “hidden” portions of the matter interaction. We can
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therefore distinguish between the standard Newtonian gravitational field of
body M, (I = F/M;) and the Le Sagian “field”:

F )

Mo :R—;’(Ml/,ts). 21
The Newtonian “field” is purely an empirical mathematical concept. The
Le Sagian field is a physical measure of the local momentum current imposed
by body 1. It is not mass alone, but the mass interaction coefficient of matter
that gives rise to the force of gravity. This derivation also includes an implicit
derivation of the material-independence of the gravitational force, otherwise
known as the relativistic equivalence principle (as confirmed by Edtvos-class
experiments).

Energy Deposition

As mentioned in the introduction and illustrated in the derivation above, the Le
Sage process involves the interaction of a proposed external field within mate-
rial bodies. This situation should result in energy deposition. This is a unique
prediction of Le Sagian models and has been pointed out by many in the past,
including Lorentz and Poincaré. Indeed, it has been argued that if all of the flux
is absorbed, a large gravitating body could vaporize [17]. In general, attenua-
tion processes can include pure absorption, pure specular scattering, pure dissi-
pative scattering, or any combination thereof. In the generic approach derived
above, we cannot know a priori what the ratio of any or all of these are since
the actual distribution of the underlying mechanistic processes are not identi-
fied or defined. However, we do know that any energy deposition must be pro-
portional to the incident flux @, and the actual mass attenuation coefficient gi.
In this model, at the weak static limit, the gravitational interaction is governed
by equation 17, and as shown, is proportional to ®op,”. The gravitational con-
stant (G) becomes @y’ in this evaluation. Since we cannot determine the in-
dividual values of @y or u, from G alone, we cannot directly derive what the
heat deposition is from this Newtonian force equation. However, we do know
that any power dissipation must result from the mass exponential-removal pos-
tulate we made at the very beginning.

We can now look at known astrophysical phenomena to quantify any ex-
cess energy emissions that are observed coming from planetary bodies. The
earlier derivation of the Newtonian force equation required a weak solution.
That is, 2y (r]2 - rz)”2 << 1. Under these conditions, we can treat an entire
planetary body as a single lump for energy deposition.

Incident sunlight heats a planetary body through combinations of reflec-
tion and absorption of the incident sunlight and the reemission of thermal en-
ergy. If there is an energy deposition from the interaction of Le Sage-type field,
then there should exist an “excess” heat that cannot be readily accounted for by
present theory. Regardless of what theory of formation is used, planets should
eventually come into equilibrium with the input of solar energy. If we therefore
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select planetary bodies with relatively small metallic cores and either small size
or good thermal mixing, we can quantify this “excess” heat output. The Jovian
planets and the Earth’s moon all fit these requirements. As it turns out, these
bodies all exhibit an emission of “excess” heat. Figure 7 on page 121 of [10]
clearly shows an effect consistent with an internal heat source for both Jupiter
and Saturn.

If we integrate the absorbed solar heat flux on Jupiter over its surface
area, we get a planetary average excess emitted heat flux of 6.6 W/m’. Now we
need to develop a mathematical relationship to quantify the effect.

Up to this point we have focused solely on the transfer of momentum
from the field’s flux into material bodies. Now we need to look at the energy
flux. For this we must look in more detail at the hypothesized particulate nature
of the impinging field. We make the assumption that the constituent corpuscles
are of a single mass and irrotational to simplify the analysis. This may not be
generally true, but it is sufficient to get an estimate of the magnitude of the
heating effect. We further assume that the corpuscles follow Newton’s laws of
motion under their own interactions—even though they are not necessarily
matter in the usual sense. We infer that the average corpuscle speed is the
square root of 3 times the wave speed in this corpuscular medium, as is true of
standard gases of irrotational particles. Finally, we assume that the wave speed
of this medium is equal to the speed of light. This last is a reasonable assump-
tion, as general relativity postulates the speed of gravitational waves to be
equal to the speed of light. One can expect the corpuscular fluid wave speeds to
be of that order of magnitude.

As we saw in the one-body problem above, any single body imposes a net
velocity vector or current potential at every point in the flux field that sur-
rounds it. The current at a particular point arises from the removal of momen-
tum flux by the body. The current increases in strength as the distance from the
body diminishes. Mathematically, we may therefore treat the currents as arising
from an equivalent average acceleration of free corpuscles towards the body. A
second matter body would respond to the corpuscular momentum current pro-
duced by the first body. The apparent acceleration of the corpuscles that de-
fines this momentum current should be the same order as the acceleration im-
parted to matter bodies.

We assume that the rate of energy deposition in a body is equal to the in-
creased energy flux associated with the accelerated corpuscles meeting the
body. The increase in kinetic energy of corpuscles that have ‘fallen’ from an
infinite distance to the surface of the body, relative to their initial energy, is
then given simply by the change in their gravitational potential energy. We
would then have:

AE, ANV 2GM

= ; (22)
Ek C2 7'0
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where E} is the kinetic energy and m is the corpuscle mass. If the energy flux in
free space is Wy (= @yc), then the equilibrium rate of energy deposition in the
body per unit of its spherical surface area, ¥, is:

2GM

]"06'2

\Pabs ~ \PO

(23)

The last unknown in the resulting equation is the power flux term ¥y, and
as such must be normalized to a known quantity. Jupiter was selected for this
purpose, since its excess heat flux is the best known of the gas giants. The rele-
vant information is taken from reference 10 (p. 121-Fig. 7). The average excess
heat flow from Jupiter is 6.6 W/m”. Setting W, equal to this value, and with
M =197 x 10*" kg and r, =7 x 10" m, the predicted total spherical power flux
of the Le Sagian field is then:

¥ . rc?
\I] — absO 24
0= (24)
¥, =1.6x10°W/m? . 25)

Since this is a calculated value based upon an assumption that Jupiter’s
excess thermal power is coming from this source, validation can only be con-
firmed by now using this calculated value to attempt to predict the excess from
other planetary candidates. We can combine the constants 2¥,G/c” into a sin-
gle term kz, which has the value of 2.4 x 107" m/sec’. This results in the simple
equation for equilibrium power emission of

M
Waps =k, —. (26)
o

Utilizing this equation, we obtain the results for the “excess heats” for
specified bodies (Table 1). The values for Uranus and Neptune were back cal-
culated from gross temperatures and albedo estimates and so are less reliable
than for Jupiter, Saturn and the Moon.

Table 1
Predicted Measured
Earth’s Moon 10 mW/m? 10 mW/m?
Saturn 2.4 Wim? 2.7 Wim?
Uranus 0.83 W/m? 0.4 W/m?
Neptune 1.0 W/m? 0.7 Wim?

These results are of the proper order of magnitude, and within the limits of
measurement uncertainties.

We can also do a similar evaluation of the power balance of the Sun.
Equation 23 assumed a uniform density throughout the planet. Expected inter-
nal variations in the densities of gas giants are under two orders of magnitude.
But density variations in the Sun are more than four orders of magnitude
(Bahcall, 1989, figure 4.1). If we solve equation 23 for the Sun, then multiply
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the result by the surface area of the Sun, we get a result of 3.8 x 10 W, or
0.1% of the total solar photon flux of 3.9 x 10*° W (Bahcall 1987, Table 4.1).

At first glance, this would be a very minor correction to standard solar
models. The basic result of this correction would be to lower the apparent core
temperature of the Sun. This lowering of the core solar temperature comes
about from the need to match the boundary condition of measured solar energy
flux. If the solar output is unchanged when this new energy term is added to the
model, then the amount of energy required from hydrogen fusion to maintain
hydrostatic equilibrium in the Sun will be reduced by 0.1%. The core tempera-
ture would then be lower than currently expected.

The current solar neutrino “problem” arises from the difference between
the measured neutrino flux and the theoretical neutrino flux from the Sun. The
neutrino measurements evaluated by the authors included chlorine, water, and
gallium detectors. The chlorine and water detectors find between 20 to 50% of
“expected” neutrinos. The gallium detectors see a flux that is a “little low”
(Bahcall, 1987). Each type of detector looks at slightly different neutrino en-
ergy spectrums. The water and chlorine detectors look primarily at the *B neu-
trinos, due to their relatively high energy. According to Bahcall, there is a 37%
theoretical uncertainty in the results for these neutrinos. The bulk of this uncer-
tainty is the extremely strong temperature dependence of the *B-neutrino reac-
tion (T**). If the solar core energy is reduced by 0.1%, the core temperature
would be reduced by 0.1% to the one-quarter power . The apparent reduction
in ®B neutrino reaction rates would then be 1.01°**, or 22%. The gravitational
heat contribution would reduce the theoretical *B neutrino fluxes approxi-
mately to the level measured. However, an analysis of this kind really needs to
be run through a standard solar model simulation, due to the extreme density
variations and temperature dependencies.

Unfortunately, the combination of our momentum derivation and our en-
ergy correlation do not allow us to solve uniquely for @y, ¥, or u; because of
the radial dependence of our correlation of @

Shielding Effects

If models of this nature are used, the effect of gravitational shielding will arise
when dealing with three or more matter bodies. This effect arises because a
third body will shadow some of the momentum flux passing between two bod-
ies on opposite sides of itself. The available flux is therefore lowered by a frac-
tion that depends on the degree of removal by the third body.

A cursory review of the literature shows it is generally accepted that there
is no gravitational shielding effect. Although experiments do exist that show a
shielding effect, other experiments apparently show no such effect. Modanese
(1995) states flatly that “...experiments, starting from the classical measure-
ments of Q. Majorana, have shown that the gravitational force is not influenced

" By the Stephan-Boltzmann law, E = oT*
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by any medium”. Although commonly repeated, this statement is not correct.
Majorana (1920) reported very definite positive effects.

The authors note that there is a significant difference in the type of ex-
periment and analysis performed between the interpretations. Direct measure-
ment experiments have found positive effects (e.g., Majorana, 1920; Podklet-
nov, 1995). Indirect measurement experiments have not found positive effects
(e.g., Eckhardt, 1990). There are also theoretical “proofs” that the positive di-
rect measurements “cannot” be valid (e.g., Russell, 1921; Modanese, 1995).

If there are shielding effects, precise measurements of the constant, G,
would not be consistent. This would result from unaccounted variations in the
positions of the Sun, moon and nearby environmental massive objects during
the experiments. A review of the literature shows that unexplained variations in
precise measurements of G do exist. Gillies (1987) summarizes the most pre-
cise claims (see Table 2) and notes: ... that all these values exclude each other
within the limits of the errors quoted. If we weight each of these three results
equally, then it is clear that we do not know the value of G with an uncertainty
of 107 as is otherwise suggested by the individual measurements.”

Table 2
Authors Year Technique Result (x 107" m*kg sec?)
Facy, Pontikia 1972 resonant pendulum 6.6714 + .0006
Sagitov et al. 1979 torsion pendulum 6.6745 + .0008
Luther, Towler 1982 torsion pendulum 6.6726 + .0005
CODATA 1986 N/A 6.67259 + .00085

Precise measurements of the value of G in underground chambers show a
greater value for G than those made on the surface of the Earth (Stacey et al.,
1987), but the values are not accepted to be consistent with any shielding ef-
fect. A good test would be measurements of the value of G during a total solar
eclipse. We can use the results we obtained for estimating the planetary energy
deposition to get an estimate of the shielding that would be expected from the
Moon during a total solar eclipse. Equation 23 gives an estimate of the reduc-
tion. W, ,/VYo= 2GMIr=6.4x 107" per lunar passage. The authors would
therefore expect an apparent diminution of the solar gravitational force on the
order of 107" G during a solar eclipse.

As of yet NASA has not released the results of their efforts of August 11,
1999. De Sabbata (1987, p. 202) states that to date “(t)he most carefully done
of the dozen or so such experiments appears to be that of Slichter, Caputo and
Hager. They used a LaCoste-Romberg gravimeter to search for gravity varia-
tions before, during and after the total solar eclipse of February 15, 1961.
Power spectrum analyses of their data indicate that A~ is less than
8.3 x 107'® cm*/gm.” This is four orders of magnitude below Majorana’s ex-

" Ais given in the weak solution (De Sabbata, 1987, p. 200) as: ¢ = go {4 p x}. In this equation, g is
the intensity of a gravitational “ray.” A is therefore equivalent to our mass interaction coefficient, z,, if
the “ray” is momentum flux.
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perimental results. De Sabbata does note, however, that “Majorana was known
to be a very careful and competent experimentalist”. The authors also note that
Slichter et al. used an indirect measurement and had to build some unstated as-
sumptions into their “power spectrum analyses” of the raw data.

Although the evidence is suggestive, it is not consistent and there is sig-
nificant disagreement on the interpretation of results. Resolution of the appar-
ent discrepancies in the observational status of gravitational shielding effects is
beyond the scope of this paper.

Conclusions

This general approach to the Le Sagian mechanism has resulted in three areas
that must be addressed in any physical Le Sage-type model. The Newtonian
force law can be derived for a weak solution case. The model will require some
internal heating of matter bodies. And gravitational shielding effects must oc-
cur. The derivation of the Newtonian force law is a strength of this approach.
“Excess” planetary and solar heat is highly suggestive, but not conclusive.
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Dynamic Effects in Le Sage Models

Paul Stowe

In this article, we will explore and quantify specific dynamical processes related
to the interaction of material bodies with an energetic medium, such as that pro-
posed by Le Sage. Specifically quantified herein are the effects of increased di-
rectional attenuation due to inertial motion (Drag), finite propagation speed on
the orbital processes (Gravitational Aberration), and field coupling effects due to
rotating bodies (Frame Dragging).

Introduction

From its inception, Le Sage’s postulate has inherently contained all the ele-
ments that are now known to exist as part of the gravitational process. It also
has other features that are not currently recognized in modern theories of grav-
ity. One of these is the Le Sage field’s power dissipation (induction heating)
[1]. In addition, there are various dynamical aspects of the model, such as lin-
ear drag and aberrational fling. Historically, it has been argued that these spe-
cific elements appear to be in direct conflict with known observations. It is
these dynamical elements of Le Sage’s theory and their quantification that are
the focus of this paper. We will show that, contrary to the historical arguments,
these elements need not be in conflict with astronomical observations.

The basic concepts and terms that will be used were discussed in the
companion paper in this volume by the author and Barry Mingst. First and
foremost is Le Sage’s idea of a sea of energetic corpuscles interacting with
matter. A key concept associated with this is a term called flux (@), which is
simply a count of the number of ‘events’ which, from any direction, will inter-
cept a specified unit surface area in a unit of time. We can define this for many
different physical properties, such as mass, momentum, energy, power, etc.
The term ‘current’ defines any net or resultant when the vector components of
flux are evaluated and summed through a solid 4r angle. The flux is considered
isotropic if, at the point of evaluation, the resulting current is zero.

The other key parameter needed to define the Le Sage process is the mass
attenuation coefficient p [2]. This term, commonly used in ionizing radiation
transport, characterizes field particle interactions with matter on a per unit area
basis.
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Drag from Inertial Motion

Consider an arbitrary slab of matter situated in a one-dimensional corpuscular
fluid. Half the momentum flux is impinging from the left and half from the
right. Therefore, the resulting current is defined by the simple relationship:
(DO (DO

=T 0. )
Here @, is the momentum flux in free space well away from masses, with units
of kg/m-sec’. Therefore, when the slab is at rest with respect to the field, the
impinging flux is isotropic, and ®,., = 0. However, if the slab is set in motion,
say towards the right, the result is a non-zero current @,,,. The magnitude of
this is defined by the equation:

CDnet :lq)o |:(1_Kj_(l+lji|:_q)01’ (2)
2 Y 14 Y

and, as indicated by the negative sign, opposes the motion.

At this point, we need to extend our one-dimensional case to three dimen-
sions. In a manner analogous to the one-dimensional case, we obtain the factor
of the square root of three in the three dimensional case [12]:

q)net = _\/gcb() K (3)
14

For a weakly attenuating body [1], the resulting deceleration is defined as:

a,=-®,,u, )
By inspection of equation 3, we see that as corpuscular speed goes to infinity
the current vanishes. Thus, equation 4 will also go to zero, clearly demonstrat-
ing that the process of field attenuation resulting from very high corpuscle
speed results in drag free inertial motion.
Given that G = ®gu,” per equation 18 of Ref. [1], we therefore have
@G = (Pou;)*. Combining equations 3 and 4, we then obtain:

a, = \30,G f (5)

Note that, like normal gravitational acceleration, this term is mass independent,
and the resulting deceleration is dependent only upon the speed of the body
through the field.

A field power flux W, of 1.6 x 10° W/m® was derived from equation 24
and given as 25 of Ref. [1]. If we use this value to obtain the related momen-
tum flux, we get @y o« Wo/c or @y = kV¥o/c. The constant & is a geometry factor
and could be unity if the geometry of our evaluation were spherical, as was the
case for the original derivation of W,. However, in the current linear situation
we find that £ needs to be 47. We then have ®y=47%¥y/c or 6.7 kg/m-secz.
Given the assumption y = V3¢, where the value V3 relates the bulk transverse
wave speed ¢ to the mean speed of the particles (see Section 5, Chapter 11, Fig.
11-8 Ref. [8]), from equation 5 we obtain:
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As an example we may use the anomalous acceleration of the Pioneer 10
spacecraft [3]. Using @ = 6.7 kg/m sec” (for the case k=4x) and given Pio-
neer 10’s velocity of 12,000 m/sec, the computed result from equation 6 is
8.5 x 107" m/sec”. This would be a perfect match with the observed drag on
the Pioneer spacecraft.

Gravitational Aberration (Propagation Delay)

The classic Newtonian force equation F=GMm/R” and its gravitic potential
a = GMIR * are expressions that define the instantaneous force and acceleration
generated by the interaction of mass M with any other mass m at the given dis-
tance R. As this is explicitly a static solution, no attempt is made to account for
any motion of M or m. However, orbiting masses are not a static problem. The
above equations are therefore not strictly applicable for any such system if the
speed at which the force is transmitted or communicated between the masses is
not instantaneous. This is a well-known condition of the interaction of fields
with finite propagation velocity. Feynman provides a very good discussion of
this for the electric field interaction in Vol. II, Chapter 21 of Ref. [4] and Grif-
fiths provides the full derivation in section 9.2.2 of Ref. [11]. In the case of
gravity, the situation is similar: mass M will always see mass m where it was
R/y seconds ago and vice versa. In the literature, this is known by the term re-
tarded potential.

As an illustration, consider two equal masses m and M orbiting each other
around a common center. Let the line of sight path from M to m be R’ and the
actual distance be R. Note that different circular orbits are described by R’ for
each body. These are offset from each other by Rv/y. As y goes to infinity these
converge to a single circular orbit (the traditional Newtonian orbit). Because
the projected orbits are offset by Rv/y at every position of the Newtonian pro-
jection, it has been argued [10] that there should be an outward radial compo-
nent of acceleration on each body of the order of v’/yR. This would result in
both bodies spiraling outward until they leave the influence of each other.

However, as Feynman points out in his discussion, this effect is canceled
by the dynamical effects manifested in the first and second derivatives that re-
sult from the field’s potential. In other words, the classical electrostatics poten-
tial equation,

e
dre,R*’

also does not account for any motion or finite propagation. The modern Max-
wellian formulation is

O

0A
E=-V.V-—. 8
o ®)
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It is this formulation that is key to the lack of observed aberration. Feynman
puts it nicely (Vol. I, 28-1 Ref. [4]) when he says:
The whole thing is much more complicated. There are several more terms.
The next term is as though nature were trying to allow for the fact that the
effect is retarded, if we might put it very crudely. It suggests that we should
calculate the delayed coulomb field and add a correction to it, which is its
rate of change times the time delay that we use. Nature seems to be attempt-
ing to guess what the field at the present time is going to be, by taking the
rate of change and multiplying by the time that is delayed. But we are not
yet through. There is a third term—the second derivative, with respect to ¢,
of the unit vector in the direction of the charge. Now the formula is finished,
and that is all there is to the electric field from an arbitrarily moving
charge....
The resulting potential created in the Le Sagian momentum field has an analo-

gous formulation:
g
a=-V-K-—", )
where K = GM/R and g is the equivalent vector potential for the gravitic field.
Like electrostatics, the second term vanishes under static conditions resolving
equation 10 to a = GM/R*.

Re-writing Feynman’s equation 1-28.3 [ref 4] in the equivalent gravita-

tional form we get:
’ ' ’ 2.1
a, =GM{“—,2+££(L,ZJ+L25—I;}, (10)
R y Ot\ R y© Ot
where u’ is the vector pointing to R’

This should not be unexpected. If an instability due to aberration actually
existed, it would be as problematic for the General Theory of Relativity (GR),
which includes the Newtonian for the weak slow speed limit, as it would be for
any Le Sagian model. Carlip recently addressed this specifically for GR [6] and
concluded, like Feynman did for EM, that aberration due to finite propagation
is almost exactly canceled. The slight residual imbalance remaining for GR re-
sults in orbital decay.

Rotational Coupling of Gravitating Bodies

This feature of Le Sage’s process is probably one of its most interesting and
unique attributes. Since the Le Sage process centers around the interaction of
matter with a particulate field, if the matter rotates and the Le Sagian corpus-
cles have a finite speed, that rotational signature is impressed on, and will be
manifested in, the resulting field’s potential. As a result, other material objects
subject to this will experience torsional field forces.

While standard Newtonian theory has no capacity for such effects (since it
is centered solely around the single mathematical formula of the Le Sage weak
static solution), the mathematics of the General Theory of Relativity does [5].
This is termed Inertial, or Reference Frame Dragging. However, within its
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conceptual framework, there is no physical basis for it— it is simply a result of
the mathematical formulation. As noted by many, the mathematics of GR is in-
herently based on a hydrodynamic premise [5, 8, 9]; however, any literal inter-
pretation of this as relating to any actual physical media is expressly denied. In
the Le Sage concept, it is explicitly a result of inherent hydrodynamic proc-
esses.

To understand the basic effect let us consider what happens to a freely
floating, centrally located material compass within a rotating hollow sphere or
ring. As the outer body rotates, the field interacting with this body is slightly
deflected, or twisted. This deflection in turn imparts a rotation or torque on the
detached material compass located at the center of the body [7]. The result is
that the central compass will slowly acquire the rotational speed of the outer
ring. Similarly, a rotating planet or star imparts a torque or drag upon any
physical bodies under the influence of its field potential.

The magnitude of this slight effect is related to the potential created by the
rotating body (GM) and the maximum rotational velocity (wr), such that the
torsional acceleration «, is of the order of

GM or* GMawr’
at = 2 = 3
R Ry Ry
where 7 is the radius of the mass M and R is the distance from the center of
mass M to the point of interest. For example, the above equation gives a maxi-

mum acceleration on a GPS satellite in earth orbit at 12,500 miles of
3.67 x 107 m/sec” or 3.44 nano-g’s.

; an

Summary

As one can see from these components, orbital dynamics in Le Sagian theories
encompasses many subtle elements. There is the potential from aberration to
fling masses apart; for orbital decay due to linear drag; as well as for either
fling or drag (depending upon the direction of orbital motion) resulting from
rotational coupling. One would think that under such conditions a Le Sage
model with finite propagation speed would make dynamical stability of orbits
rare or impossible. The key to orbital stability, however, lies in fact that in
these models aberration is the predominant factor. Thus the controlling equa-
tion results from equation 10. As long as the retarded potential from this aber-
ration exceeds the combined effects of all the others (linear drag, rotational
coupling), the field will adjust its potential to compensate, maintaining an orbit.
In his paper [6], Carlip asked the question “Is Cancellation a Miracle?”. The
answer of course is no, it is an intrinsic property of the field to seek and estab-
lish within itself a stable zero net energy configuration. This is also known as
Noether’s Theorem. In particular, the effect of drag due to linear motion would
only be manifested when a body is not in an orbit, as is the case for the
aforementioned Pioneer spacecraft.



200 Paul Stowe

Le Sage models have subtle differences from the current standard mathe-
matical representations of gravity, which can have major consequences for
large-scale cosmological processes. Looking into these in detail should prove
an interesting endeavor.

References

1. B. Mingst, “Deriving Newton’s Gravitational Law from a Le Sage Mechanism”, Pushing Gravity,
Apeiron, Montreal, 2002.

A. B. Chilton et al., Principles of Radiation Shielding, Prentice-Hall, 1984.

Pioneer Spacecraft Deceleration, Attp://www.aps.org/meet/CENT99/BAPS/abs/S5310002. html
R. Feynman et al., The Feynman Lectures on Physics, California Institute of Technology, 1964.
J. Islam, Rotating Fields in General Relativity, Cambridge University Press, 1985.

S. Carlip, “Aberration and the speed of gravity”, Phys Lett A 267, pp. 81-87, 2000.

E. Harrison, Cosmology, The Science of the Universe, Cambridge University Press, 1981.

E. Condon and H. Odishaw, The Handbook of Physics, McGraw-Hill, Second Edition, 1967. For
GR see Section 2, Chapter 6, pp. 2-50.

9. Schutz, 4 First Course in General Relativity, Cambridge University Press, 1990.

10. Lightman et al., Problem Book in Relativity and Gravitation, Princeton University Press, 1975.
12. D. Griffiths, Introduction to Electrodynamics, Section 9.2.2, Prentice-Hall, 1989.

13. Bueche, Introduction to Physics for Scientists and Engineers, McGraw-Hill, 1969, p. 269.

X NNk WD



