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ABSTRACT  
 
An algorithm is described that uses the carrier-phase 
measurements to propagate the position and clock states 
forward in time with a minimum of computational 
burden. The algorithm uses the change in the carrier-
phase measurement over the propagation interval in a 
unique way. Specifically, rather than treat the change in 
the phase measurements as range difference 
measurements, they are treated as range error 

measurements. This allows the same gain values that are 
computed in the low-rate position and clock computations 
to be used in the high-speed position and clock updates. 
The change in the phase measurements is corrected by the 
change in satellite position and may, if one wishes, also 
be corrected by the change in satellite clock and the 
expected change in user position and clock. The technique 
is highly accurate and can be used in all navigation 
modes, including stand-alone GPS, DGPS and RTK 
implementations.  

NavCom has developed two variations of the technique. 
In one variation, the “maximum availability” mode, the 
change in the L1 carrier-phase measurements is used and 
the elevation angle threshold is lowered to a few degrees. 
(If available the L2 carrier-phase measurements are used 
as well, simply to reduce the effect of the measurement 
noise.) This allows the navigation to be maintained with 
good accuracy when the navigation might otherwise be 
aborted due to too few satellites at good elevation angles 
or due to loss of L1 or L2 carrier-phase measurements 
from signal blockage. Over short intervals all the slowly 
changing factors can be ignored in the computation. This 
includes effects from the ionosphere, troposphere, satellite 
clock, DGPS or RTK corrections. Thus, the computation 
is very simple and efficient. 
 
In the second variation of the technique, the “maximum 
accuracy” mode, all of the above effects are included in 
an attempt to make the position propagation as accurate as 
possible. The intent is to allow the technique to be used 
for extended intervals. Such an approach allows the 
primary full-computation to be run at a lower rate, which 
reduces the computational load without sacrificing any 
significant accuracy. 
 
INTRODUCTION  
 
GPS navigation and positioning in all its forms relies 
increasingly upon the carrier-phase measurements. 
Almost all GPS receivers will, at a minimum, smooth the 
code measurements with the carrier-phase measurements, 



particularly if the carrier-phase measurements are not 
separately incorporated into the position solution process.  
In the very first GPS receivers, the changes in the carrier-
phase measurements were measured directly and used in 
the measurement processing to improve the velocity 
accuracy.  The pseudorange code measurements were the 
primary measurements. Today the situation is 
dramatically different. To obtain the highest GPS 
accuracy, the carrier-phase measurements are used almost 
exclusively. RTK (Real Time Kinematic) differential 
carrier-phase GPS provides centimeter accuracy and 
typically uses the code measurements, if at all, only to 
assist in the resolution of the whole-cycle phase 
ambiguities. 
 
Given the high-accuracy that GPS now provides, 
applications that require high-rate position information 
have become increasingly common.  (Papers presented in 
this conference session describe 50 and 100 Hz raw data 
output rates.) The desire for high-rate position 
information, together with increasing demands for 
associated processing within the GPS receivers, has put 
increasing demands upon the internal processing 
capabilities of the receivers. Even with rapidly increasing 
computational capabilities within the receivers, this has 
put a premium on efficient algorithms for the position and 
velocity solution. Described below is a very efficient 
carrier-phase processing technique, which can be used to 
compute the position and velocity at high rates with 
minimal computational requirements. 
 
BACKGROUND 
 
The algorithm developed below describes the use of the 
change in carrier-phase measurements to propagate the 
receiver position and clock states forward in time at a 
high-rate with a minimum of computational burden. By 
treating the change in the phase measurements as range 
difference measurements, they can be processed using the 
same gain values that are computed in the associated low-
rate process.  
 
The algorithm described assumes the use of a least-
squares processing technique at the major, i.e. low rate, 
epochs. This is not essential. The algorithm could be 
easily modified to use weighted-least-squares or even a 
Kalman filter approach to the position solution.  
 
The propagation algorithm can be used in virtually any 
mode of GPS navigation, from the lowest accuracy stand-
alone mode to the highest accuracy RTK mode of 
operation. The change in the carrier-phase measurements, 
when treated as a range measurement error, allow a direct 
computation of the change in receiver position (and 
clock). Because of the high accuracy of the phase 
measurements, the RTK accuracy is not compromised; 
and in any other mode of operation the change in position 

accuracy will exceed the accuracy of the low-rate position 
solution.  
 
The algorithm depends upon values which are computed 
as part of the low-rate major epochs to minimize the high-
rate computation at the minor epochs. A simple classical 
least-squares algorithm is used to illustrate the 
computation required at the low-rate major epochs. 
 
LOW-RATE LEAST-SQUARES PROCESSING 
 
At the low-rate, the least squares solution is used to 
compute the major epoch position updates. For each 
satellite, the measurements equation for all modes is of 
the form: 
 
                                     η+= hxz                               (1) 

 
Where: x is the state correction vector (change in position 
and clock) value to be comp uted; h is the measurement 
sensitivity vector, which characterizes the effect of any 
errors in the state vector upon the measurement; η is the 
measurement noise; and z is the measurement 
innovations, i.e. the difference between the measurement 
and the expected value of the measurement given the 
current estimate of the state vector (position and time). 
 
The only difference between modes is the specific 
measurements used in computing the measurement 
innovations (also referred to as the pre-fix residuals). 
When differential code measurements are used, the 
measurements are first corrected by the differential 
corrections from the reference site. When the RTK mode 
is used, the carrier-phase measurements are used after 
first being corrected by the carrier-phase corrections from 
the reference site and then modified by the appropriate 
whole-cycle ambiguity value. 
 
Equation (1), when expanded into matrix form to 
represent the set of equations from all tracked satellites, 
becomes: 
 
                                   nHxz +=                                (2) 

 
The least-squares solution to equation (2), which 
minimizes the effect of the noise vector, n, is given by: 
 

                            zHHHx TT 1)( −=                          (3) 
 
Where the superscript, T, represents the transpose, and the 
superscript, -1, represents the inverse. 
 
The matrix operations can be performed to give simpler 
forms of equation (3): 
  

                                  zAHx T=                              (4) 



or 
 
                                     Bzx =                                      (5) 
 
Where: A = (HTH)-1 and B = AHT. 
 
The matrix B  has four rows, corresponding to the three 
position coordinates and the clock. It has as many 
columns as there are satellite measurements available. It 
is stored for subsequent use in the high-rate propagation 
computation. 
 
It is also useful, as will become apparent, to be able to 
compute the post-fix residuals directly from the 
innovations or pre-fix residuals.  Given the correction to 
the state vector, x, the post-fix residuals, r, are given by: 
 
                                   Hxzr −=                                (6) 

 
But using equation (5) to replace the state update, x, in 
equation (6) gives: 
 
                                  HBzzr −=                               (7) 

 
This  in turn can be simplified to: 
 
                                       Szr =                                     (8) 
 
Where: S = (I – HB). 
 
The matrix, S, maps the pre-fix residuals into the post-fix 
residuals. S is square and the number of rows and 
columns are equal to the number of satellite 
measurements.  It is also stored for use in the high-rate 
propagation computation. 
 
The high-rate computation uses the change in the carrier-
phase measurements to compute the change in position 
(and clock) over the high-rate epoch intervals. Two 
modes of operation are described below: a “maximum 
availability” mode and a “maximum accuracy” mode. 
 
HIGH-RATE “MAXIMUM AVAILABILITY” 
PROPAGATION OF POSITION 
 
Having stored the B matrix used in equation (5) above, 
the change in carrier phase over the high-rate epoch can 
be used to propagate the position forward in time with 
high accuracy and with minimal computations. The high 
accuracy is a result of the low noise in the carrier-phase 
measurements. The first computation required is to 
compute the innovations (pre-fix residuals), z for use in 
equation (5).  The change in the measured carrier-phase 
(delta phase) for each satellite is a major component of 
the innovations. Generally, only one correction to the 
delta-phase measurements is required to make the 
innovations accurate enough to maintain centimeter 

accuracy over major epoch intervals of one second. 
Specifically, one must subtract from the delta phase the 
change in the radial distance to the satellite over the high-
rate epoch interval. The specific equation to compute the 
innovations for each satellite is:  
 

)()( 11 −− −−−= iiiiiz ρφρφ                 (9) 

 
Where the φ represents the phase measurement scaled by 
the wavelength and the ρ represents the range to the 
satellite. The subscript i represents the current epoch and 
i-1 the prior epoch.  
 
The difference between the current phase measurement 
and the range to the satellite can be stored for use in the 
subsequent epoch. The satellite position computation 
should be optimized for this high-rate computation. There 
are a number of methods described in the literature to 
optimize this computation.  
 
Most of the normal corrections to the innovations that are 
required at the low-rate major epochs are not required for 
the innovations at the high-rate.  This is because they 
generally change by less than the centimeter level over 
the one-second interval between the major epochs.  This 
generally includes: 1) the satellite clock error; (2) the 
ionospheric and tropospheric refraction; and 3) the 
differential corrections from the base station(s). Of these 
factors, the largest may well be the satellite clock errors. 
They can contribute an error which can approach one 
centimeter over a one-second major epoch interval. But it 
is quite easy to incorporate the satellite clock correction if 
desired. It is simply the clock frequency offset times the 
high-rate epoch interval. 
 
In the “maximum availability” mode of operation, the 
reliability can be improved and the noise can be decreased 
by using measurements which might not be included in 
the major epoch computations.  For example, the change 
in carrier-phase may be quite accurate even from satellites 
that have too low an elevation angle to be included in the 
major epoch computation. They may be excluded from 
the slow-rate major epoch because the multipath is too 
large. But the multipath changes slowly, and it will 
generally not adversely affect the change in carrier-phase 
over a one-second major epoch.  Similarly, while the 
major epoch may remove ionospheric effects by using 
both L1 and L2 measurements to refraction correct the 
measurements, the high-rate epoch can reduce the noise 
by averaging the L1 and L2 change in carrier phase or by 
only using the L1 measurement when the L2 is 
unavailable.  Of course, the B matrix, computed at the 
low rate and stored for use at the high rate, must include 
all the satellites to be used in the high-rate computation. 
 
Several options are available, in terms of adjusting the 
high-rate innovations for receiver motion and receiver 



clock frequency.  Generally, the clock rate can be 
ignored; and the B matrix row used to compute the 
receiver clock error can be deleted. However, it may be 
desirable to remove the major effect of receiver clock 
error to avoid numerical problems. This can by 
accomplished by subtracting from each innovation value 
the average across all innovation values. The receiver 
position change across the high-rate epoch interval can be 
estimated from the velocity and removed from the 
innovations if desired, but it is not required.  The 
equation: 
 
                                     t∆= /xv                               (10) 

 
can be used in alternate ways depending on whether or 
not the innovations were adjusted for the receiver motion 
using the velocity.  If the innovations were adjusted for 
the receiver velocity, equation (10) will yield the  
correction to the velocity vector. If the innovations did not 
include an adjustment, equation (10) will yield the entire 
velocity vector.  In either case the velocity computed will 
be very noisy if the computation represented by equation 
(10) is done at a high rate. Thus, the velocity so computed 
should be smoothed or put into a position-locked loop to 
yield a smoothed velocity output. 
 
One other significant problem remains to be addressed. 
What does one do during the high-rate computation if a 
new satellite arises, or if one of the satellites being 
tracked sets, or if measurements are lost?  It is highly 
desirable to avoid the computational burden required to 
compute a revised B matrix. 
 
If a new satellite arises and its measurements become 
available for processing at the high-rate, one can simply 
ignore the measurements until the next low-rate epoch. 
This has very little penalty and is a very simple solution.  
 
Loss of measurements, whether due to obstruction or a 
setting satellite is not so simple. If the measurements drop 
below four (three with altitude hold), all one can do is to 
extrapolate the position based upon velocity. However, if 
four or more measurements remain, either the B matrix 
must be reconstructed or the missing measurement must 
be synthesized in some manner.  A method of 
synthesizing the measurements is described, which is 
equivalent to recomputing the B matrix. However, it is a 
much simpler computation. 
 
The S matrix, used above in equation (8) to map the 
innovations into post-fix residuals, has many useful 
properties. In a prior paper [1], a simple but effective 
RAIM was developed using the S matrix. The same 
matrix can be used here to synthesize one or more pre-fix 
residuals (innovations) for any satellites whose signal has 
been lost. For each satellite whose measurement has been 
lost, the post-fix residual is set to zero. Equation (8) can 

then be used to solve for the pre-fix residual(s) that would 
give those null post-fix residual(s). Because the post-fix 
residuals are zero for the missing measurements, they 
clearly will have no effect upon the computed solution. 
For example, if only one measurement has been lost, the 
specific post-fix residual for that satellite is set to zero and 
the row in equation (8) associated with that satellite can 
be used to solve for the required innovation value. 
Specifically, for satellite i whose measurement has been 
lost: 
 

                              ∑==
j

jiji zsr 0                          (11) 

 
Where the subscript i designates the row of the S matrix 
and the subscript j designates the specific elements of that 
row. Equation (11) can be solved for the innovation value, 
zi associated with the missing measurement. 
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z
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≠−=                           (12) 

 
When two measurements are missing, two equations of 
the form of equation (11) result and there are two 
unknown innovations that need to be determined. 
Similarly, three missing measurements would result in 
three equations with three unknowns.  If more than three 
measurements are missing (and there are still at least four 
available), it may be more efficient to recompute the B 
matrix or to simply ext rapolate on the velocity. 
 
“MAXIMUM ACCURACY” PROPAGATION OF 
POSITION 
 
The “maximum accuracy” mode is similar to the 
“maximum availability” mode except that an attempt is 
made to correct for even the minor effects which 
cumulate slowly with time. This mode is used to provide 
centimeter accuracies over time intervals from 10 to 30 
seconds. For example, it can be used as an intermediate 
mode between a 10 second low-rate computation and a 
high-rate maximum availability mode at a 1/10th second 
interval. Thus, it could provide significant computation 
relief from the normal one second process. 
 
 In order to correct for ionospheric effects, the only 
satellites included are those where both L1 and L2 carrier-
phase measurements are available. To avoid excessive 
cumulation of multipath and tropospheric effects, the 
minimum elevation angle of the satellite is set to at least 
10 degrees. 
 
Like the maximum availability mode, the innovations are 
corrected for the satellite motion; and the receiver motion 
may or may not be estimated. If it is estimated, equation 



(10) is used to correct the velocity, or else it is used to 
estimate the entire velocity. Unlike the maximum 
availability mode, the innovations are corrected for all the 
known small effects. These include: (1) the ionospheric 
effects which are corrected using both the L1 and L2 
measurements;  (2) the satellite clock frequency which is 
available from the satellite message; (3) the change in any 
measurement corrections being supplied by a reference 
station or a network of reference stations, including any 
implied geometry change in those corrections; (4) the 
change in any tropospheric refraction being modeled at 
either the reference (if not already included in the 
received correction value) or at the user receiver. 
 
Ignoring the satellite clock frequency offset which 
contributes to a change in phase over the time interval can 
create as much as one centimeter error each second. The 
change in the corrections from the reference site or site 
networks can also contribute a small error. Generally, 
these changes are small but they can cumulate over 
several seconds into a significant error.  Usually, they  are 
easy to correct, but subtle effects can sometimes arise 
depending on the mode of operation. For example, 
corrections from NavCom’s StarFire Global DGPS 
network are given in Cartesian coordinates of the satellite. 
These corrections need to be mapped into line of site 
corrections to the range before forming the difference to 
avoid losing the effect of the changing geometry.  
 
Van Grass and Lee [2] described similar high-accuracy 
carrier-phase algorithms. However, they transmit the 
measurement data from the reference site, which increases 
the computational load on the user receiver and 
complicates the correction for the changing geometry. 
 
SAMPLE RESULTS FOR A DROPPED SATELLITE 

The use of equation 12 is compared to the recomputation 
of the B matrix for a specific numerical example.  The 
particular data set used to make the comparison is the 
same set that was used to generate sample results in the 
RAIM paper [1] presented at last year’s conference. 

In Table 1 the innovations for 10 satellites are listed as 
they were computed for a specific 0.1 second interval in a 
stationary receiver. The last column has subtracted off the 
average as a first estimate of the clock offset. This 
improves the numerical resolution of the solution. This 
column of innovations is multiplied by the B matrix to 
obtain the state update.  As given in the prior paper, the B 
matrix and state updates are given in Table 2 and  Table 3 
respectively. The frequency row (before transpose) has 
been deleted since the frequency offset of the receiver is 
not generally used. (The value is retained in Table 3.) 
 

   -0.143565506   0.221103528 -0.292642275 
-0.147379499 0.31698798  0.127526791 
  0.158511159  -0.127927715 -0.518258574 
  0.169278373    0.175486107  0.361331686 
 -0.342541775 -0.07931904  0.667336355 
 0.30093104   -0.032684788  0.240712086 

  -0.001723545   -0.202855377 0.04796674 
   0.206546896   -0.202765339 -0.090291622 
  -0.213114646   -0.089507034    0.101673489 
   0.012983064    0.021404563   -0.645251705 

 
Table 2: B Matrix (Transpose) sans the Frequency Row 

 
 
 
 
 
 

Table 3:  Solution to the Innovations in Table 1 

This answer can be compared to the result obtained when 
one satellite’s measurement is assumed to be lost. 
Satellites 7 and 8 have innovations of about the same 
magnitude but of opposite sign and are about midway 
between the largest and smallest in magnitude. If we 
assume the measurement from the 7th satellite is lost, we 
can compare the solution obtained using the S matrix via 
equation (10) with the original solution and with the 
solution obtained by recomputing the B matrix for the 
remaining nine satellites.  
 
The S matrix as given in the prior paper is given below in 
Table 4. Equation (10) is used to compute an innovation 
value for the 7th satellite using the 7th row of this matrix. 
This requires the computation of the dot product of the 
row with the innovations in Table 1 (excluding the 
seventh element) and dividing that dot product by the 
negative of the element of S in the 7th row and 7th column. 
Performing the computation gives new innovation values 
of  -218.55404 and 0.004730925 which can be compared 
to the original values for the seventh row of Table 1.  

 

Delta North 0.001385075 
    Delta East  -0.007046667 
    Delta Up 0.005448203 

 Delta Clock 0.001629056 

       No.    Innovations  (z)  Innovations - Bias 
1         -218.547079  -0.005753025 
2 -218.5458158 -0.004489820 
3 -218.5325198  0.008806160 
4 -218.5530649  -0.011738897 
5 -218.5352066   0.006119423 
6 -218.5275850   0.013740939 
7 -218.5351474   0.006178554 
8 -218.5475043      -0.006178300 
9 -218.5405446   0.000781382 
10 -218.5487924  -0.007466415 

Table 1: Innovations for 10 satellites 



0.61558 -0.3378 -0.09293 -0.05848 0.00559 0.10086 0.05103 0.09207 -0.09162 -0.28423 
-0.3378 0.54399 0.08014 -0.27027 -0.10215 -0.02931 0.10684 0.14591 -0.04596 -0.09131 

-0.09293 0.08014 0.65739 0.05339 0.14801 -0.08285 -0.15667 -0.23683 -0.06311 -0.30651 
-0.05848 -0.27027 0.05339 0.51916 -0.01134 -0.38257 0.03675 -0.07212 0.09184 0.09373 
0.00559 -0.10215 0.14801 -0.01134 0.35009 0.03069 -0.22069 -0.00788 -0.34819 0.15573 
0.10086 -0.02931 -0.08285 -0.38257 0.03069 0.54924 -0.0936 -0.24797 0.07816 0.0774 
0.05103 0.10684 -0.15667 0.03675 -0.22069 -0.0936 0.75165 -0.21805 -0.19441 -0.06291 
0.09207 0.14591 -0.23683 -0.07212 -0.00788 -0.24797 -0.21805 0.69548 -0.06334 -0.08727 

-0.09162 -0.04596 -0.06311 0.09184 -0.34819 0.07816 -0.19441 -0.06334 0.72421 -0.08766 
-0.28423 -0.09131 -0.30651 0.09373 0.15573 0.0774 -0.06291 -0.08727 -0.08766 0.59308 

 

Table 4: S Matrix for the 10 satellites 

Clearly, the two computed values are close to, but slightly 
different, from the original innovation values computed 
directly from the 7th satellite’s measurements.  
 
To compute the revised solution, the value in the seventh 
element of the last column of Table 1 is replaced with the 
new value of 0.004730925; and this column is multiplied 
by the original B matrix given in Table 2 above. This 
gives the new state updates as: 
 
 
 
 
 

Table 5: Solution with measurement 7 missing 
 

The change in the solution resulting from the drop from 
10 satellites to 9 is about 0.3 millimeters.  
 
This solution is now verified by using the H matrix as 
given in the prior paper and computing a new B matrix 
based on the original measurements with the seventh 
satellite deleted. This revised B matrix without the 
frequency row is given in transposed form in Table 6. 
 
With the exception of the missing row (column before 
transposition), the B matrix has only changed slightly 
from the original values give in Table 2 above. 

 
Table 6: Revised B matrix (transposed) 

 To get the direct solution the innovations in Table 1, with 
the seventh value deleted, is multiplied by the B matrix in 
Table 6. The result is: 

 

 

Table 7: Direct solution with measurement 7 missing 
 
The difference between the solution obtained by 
synthesizing the 7th satellite’s measurement (Table 5) and 
that obtained by the full rigorous computation (Table 7) is 
only one micron in height and is due to the limitations in 
the numerical precision. 
 
CONCLUSIONS 
 
A simple and very efficient algorithm has been described 
for propagating the position forward in time at a high rate. 
Because the algorithm uses the change in carrier-phase 
measurements at the high-rate epoch interval, it is very 
accurate and does not limit the accuracy when used in 
even the highest precision RTK mode.  Two variations 
were described. One mode, the “maximum availability” 
mode, is designed to make maximum use of any available 
satellites. It is optimized to propagate the position forward 
for only short intervals of time, typically only one second. 
A second mode of operation, the “maximum accuracy” 
mode, is designed to propagate the position forward for 
multiple seconds. It attempts to correct for all known 
factors which affect the accuracy of the propagation. 
 
New satellites which arise during the high-rate position 
propagation can be ignored  until the next low-rate epoch 
without any significant impact on the navigation. 
However, a satellite whose measurements have been lost 
must be deleted from the position computation. A new 
algorithm, which makes use of the S matrix to synthesize 
the measurement innovation has been described and 
illustrated.    
 

Delta North 0.001387577 
   Delta East  -0.00675301 
   Delta Up 0.005378765 

-0.1434711 0.2348836 -0.2958577 
-0.1471293 0.3458552 0.1207247 
0.1581188 -0.170231 -0.5082022 
0.1693780 0.1854361 0.3590323 

-0.3429518 -0.138841 0.6811758 
0.3007299 -0.057931 0.2467237 
0.2060528 -0.261620 -0.0763811 

-0.2135198 -0.1419610 0.1139474 
0.0127925 0.004409 -0.641163 

Delta North 0.001388319 
   Delta East  -0.006753015 
   Delta Up 0.005376841 
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