The Impedance Concept and Its Application to Problems of
Reflection, Refraction, Shielding and Power Absorption

By S. A. SCHELKUNOFF

This paper calls attention to the practical value of a more ex-
tended use of the impedance concept. It brings out a certain
underlying unity in what otherwise appear diverse physical phe-
nomena. Although an attempt has been made to trace the history
of the concept of “impedance” and many interesting early sug-
gestions have been found, reference to these lies beyond the scope
of this paper. Apparently, Sir Oliver Lodge was the first to use
the word “impedance,” but the concept has been developed grad-
ually as circumstances demanded through the efforts of countless
workers.

The main body of the paper is divided into three parts: Part I,
dealing with the exposition of the impedance idea as applied to
different types of physical phenomena; Part II, in which the
general formule are deduced for reflection and transmission co-
efficients; Part IT1, presenting some special applications illustrating
the practical utility of the foregoing manner of thought.

HE term “impedance’ has had an interesting history, in which

one generalization has suggested another with remarkable rapid-

ity. Introduced by Oliver Lodge,! it meant the ratio V/I in the
special circuit comprised of a resistance and an inductance, I and V
being the amplitudes of an alternating current and the driving force
which produced it. This was soon extended to the somewhat more
general circuit consisting of a resistance, an inductance coil and a
condenser.? The usage did not develop much further until the use of

! Dr. Oliver Lodge, F.R.S., ''On Lightning, Lightning Conductors, and Lightning
Protectors,”” Electrical Review, May 3, 1889, p. 518

21t is interesting to note that the first impulse was to introduce a new word
rather than to extend the meaning of the old term. Thus in 1892, F. Bedell and
A. Crehore write as follows: *From the analogy of this equation to Ohm's law, we

see that the expression _\/Ra_'_ (Ci -—Lm)2 is of the nature of a resistance, and
] w

is the apparent resistance of a circuit containing resistance, self-inductance and
capacity. This expression would quite properly be called ‘impedance’ but the term

impedance has for several years been used as a name for the expression VR + L%,
which is the apparent resistance of a circuit containing resistance and self-inductance
only, We would suggest, therefore, that the word ‘impediment’ be adopted as a

name for the expression \/Rz + (CL - Lm)Ewhich is the apparent resistance of a
w

circuit containing resistance, self-induction and capacity, and the term impedance be
retained in the more limited meaning it has come to have, that is VR + L%?, the
17
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complex quantities, which had begun early in the nineteenth century

-among mathematicians, was popularized among engineers by Kennelly

and Steinmetz. Then the proportionality relation V = ZI, which had
previously been true only if ¥V and I were interpreted as amplitudes,
acquired a more general significance, for it was found that this relation
could express the phase relationship as well, provided Z was given a
suitable complex value.

An important generalization came when the close similarity of the
laws connecting ¥ and I in an electric circuit to those governing force
and velocity in mechanical systems suggested that the ratio ‘‘force/
velocity”” be called a ‘‘mechanical impedance.” This usage is now
well nigh universal. -

The next step was a short one: it amounted to extending the term
to include also the ratio ‘‘force per unit area/flow per unit area'’; that
is, ‘““pressure/flux.”” This usage is well known in such fields as acous-
tics, but it has not penetrated as far into the electrical field as con-
venience seems to warrant. )

If we read these remarks with a view to appraising the direction in
which future growth might be expected, we are immediately impressed
by the strong trend toward interpreting the ratio ‘‘force/velocity’' in
an ever widening sense. It is my purpose in the present paper to
indicate some further extensions which I have found to be useful.
They are founded upon five basic ideas. The first is to recognize
and use whenever possible analogies between dynamical fields in which
the impedance concept is common and others (heat, for instance) in
which it is not. The second is the idea of extending the V/I relation
from circuits to radiation fields, in much the same way that the
“force/velocity" concept has been made to embrace ‘' pressure/flux"
in hydrodynamics. The third is, to regard the impedance as an attri-
bute of the field as well as of the body or the medium which supports
the field, so that the impedance to a plane wave is not the same as
the impedance to a cylindrical wave, even when both are propagated
in infinite “free space.” The fourth basic idea is that of assigning
direction to the impedances of fields. This does not mean, however,
that the impedances are vectors; in fact, they are not, since they fail
to obey the laws of addition and the laws of transformation peculiar
to vectors. And finally the fifth is a generalization of the idea of a
one-dimensional transmission line or simply a transmission line. While
apparent resistance of a circuit containing resistance and self-induction only.”
Frederick Bedell and Albert C. Crehore, ‘' Derivation and Discussion of the General
Solution of the Current Flowing in a Circuit Containing Resistance, Self-Induction

and Capacity, With Any Impressed Electromotive Force,” Journal A. I. E. E., Vol.
IX, 1892, pp. 303-374, see p. 340.
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all physical phenomena are essentially three-dimensional, frequently
all but one are irrelevant and can be ignored or are relatively unimpor-
tant and can be neglected. In the mathematical language, this
means that only one coordinate (distance, angle, etc.) is retained ex-
plicitly in the equations of transmission.

The paper is divided into three parts. Part I discusses broadly the
ratios to which the term “‘impedance’ can appropriately be applied
in a wide variety of physical fields, ranging from electric circuits and
heat conduction to electromagnetic radiation. In this part the con-
cept is gradually broadened until at the end it has acquired the prop-
erty of direction mentioned above. Parts II and III consider the
general laws governing reflection, refraction, shielding and power
absorption, and rephrase them as theorems regarding the generalized
impedances. To make the illustrations more effective, familiar ex-
amples are chosen.

PART 1
THE IMPEDANCE CONCEPT

ELEcTRIC CIRCUITS

In an electric circuit comprised of a resistance R and an inductance
L, the instantaneous voltage-current relation is described by the fol-
lowing differential equation

dI,

L

+ RIy = V,, (1
where Vyis the applied electromotive force. If V, varies harmonically
with frequency f, ultimately I, will also vary harmonically with fre-
quency f. What happens is that the solution of (1) consists of two
parts, the fransient part and the steady state part, the former decreasing
exponentially with time and the latter being periodic.

The steady state solution of (1), or indeed of the most general linear
differential equation with constant coefficients, can be found by means
of a simple mathematical device based upon the use of complex num-
bers. Thus if V, and [, vary harmonically, they may be regarded as
real parts of the corresponding complex expressions Ve™! and Ie™!,
where f = w/27 is the frequency. The quantities V and I are complex
numbers whose moduli represent the amplitudes and whose phases
are the initial phases (at the instant ¢ = 0) of the electromotive force
and the electric current. The time rate of change of I, is then the
real part of the derivative of Ie™!, that is, the real part of iwle™*.

- If we form another equation after the pattern of (1), replacing I,
and ¥, by the imaginary part of Ie®t and Ve**, and add the new
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equation to (1), we shall have

d(Ieiw!)

L=G

+ R(Ie™t) = Ve,

Differentiating and cancelling the time factor e, we obtain
(R + iwL)I = V.

The ratio Z = V/I = Vewt/Ieit is called the impedance of the elec-
tric circuit. In the present instance

Z = R + iwL.

In general, the impedance Z = R + X has a real and an imaginary
part, the former being the resistive component of the impedance and
the latter the reactive.

MECHANICAL CIRCUITS

Linear oscillations of a mass in a resisting medium are described by
equations identical with (1) and (2) except for the customary differ-
ence in lettering

d ﬂ'e"‘“‘
 d(we)

wl) — Faiwt
7 + r(veit) = Fewt,

In this equation, v represents the velocity and F the applied force,
m the mass and 7 the resistance coefficient. The mechanical im-

pedance is then
Z =t + iwm.

Similarly, for torsional vibrations the impedance is defined as the
ratio ‘‘torque/angular velocity."

ELEcTRIC WAVES IN TRANsMIssION LINES

Let x be the distance coordinate specifying a typical section of an
electric transmission line. Let the complex quantities V and I be
the voltage across and the electric current in the transmission line.?
Then the space rate of change of the voltage is proportional to the
current and the space rate of change of the current is proportional to
the voltage

av dI :
T = - ZI, il Yv. (2)

3 The time factor ¢*“* is usually implicit.
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The coefficients of proportionality Z and Y are known as the dis-
tributed series impedance and the distributed shunt admittance of the
line; they depend upon the distributed series resistance R, shunt con-
ductance G, series inductance L and shunt capacity C in the following
manner:

Z =R+ iwL, Y =G + iwC. (3)

In a generalized transmission line Z and ¥ may be functions of x
and may depend upon w in a more complicated manner than that
suggested in (3).

If Z and Y are independent of x, (2) possesses two exponential
solutions:

I+ = Ae—l":+iul' Vt = ZoI+;
(4)
I- = Bels+ie, V-

I
|
N
n

where

T'=a+i8=+Z7, zo=\/Z=Y=

It is customary to designate by I' that value of the square root which
is in the first quadrant of the complex plane or on its boundaries; the
other value of the square rootis — T

The two ‘“‘secondary’’ constants I' and Z, are called, respectively,
the propagation constant and the characteristic impedance. The real
part a of the propagation constant is the altenuation constant and B
is the phase constant.

Equations (4) represent progressive waves because an observer
moving along the line with a certain finite velocity beholds an un-
changing phase of V and I. This velocity ¢ is called the phase velocity
of the wave. Setting x = ¢t in the upper pair of (4), we obtain the
condition for the stationary phase

—pBc+ w=0, c=%.

Hence, V+ and I* represent a wave traveling in the positive x-direc-
tion. Similarly we find that ¥V~ and I~ represent a wave traveling
in the opposite direction.

Consider two points in which the phases of ¥ and I differ by 2=
when observed at the same instant; the distance N between these
points is called the wave-length. By definition

AN = 2m, AN=—.
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If the transmission line is non-uniform, that is, if Z and ¥ are func-
tions of x, then the solutions of (2) are usually more complicated.
In any case, however, there are two linearly independent solutions
I+(x) and I—(x) in terms of which the most general solution can always

be expressed
I(x) = AI*(x) + Bl (x).

These independent solutions may represent either progressive waves

in two opposite directions or certain convenient combinations of such
waves.

The corresponding V-functions are found by differentiation from

(2); thus '

1dr+ 1dI-

V+(x) = _?E' = -3

The impedance of the V*, I*-wave is then

Vi) 1 dI_ 1d

L) =Ty T T VI dx

Similarly the impedance of the V—, I=-wave is

)= V@ LA _1d
Zi® =~ ~ Ve - Vax BT ®)

The negative sign in (5) is merely a matter of convention: the * posi-
tive" and the ‘“negative” directions of the transmission line are so
defined that the real parts of Zst and Z,~ are positive.

In general, Z,* and Z,~ are not equal to each other. Moreover,
there is a considerable amount of arbitrariness in our choice of the
basic solutions I+ and I~. Thus, we are brought face to face with
the fact that we must regard the impedance as an attribute of the
wave as well as of the transmission line. This point of view will
become even more prominent when we come to deal with the wave
transmission in three-dimensional media. There even progressive
waves may have different characters (they may be plane, cylindrical,
spherical, etc.) and the impedances of the same medium to these waves
will be different. And naturally, it goes without saying that the
impedances to like waves in different media may also be different.
One could, perhaps, take the position that geometrically similar
waves in different media are not really alike if the corresponding
“force/velocity ' ratios are not equal and that under all circumstances
the “‘impedance” is the property of a wave. However, “intrinsic im-
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pedance” will be used to designate a constant of the medium without
reference to any particular wave.

VIBRATING STRINGS

In strings under constant tension 7, simply periodic waves may be
described by the following two equations:
aF . dv w
E=—(r+wm)v, E;=—~—F,
where m is the mass and » the resistance per unit length of the string.
The variable F represents the force on a typical point of the string at
right angles to the string and v is the velocity at that point.
Hence the characteristic impedance and the propagation constant
are given by

zuz,}ﬁw, p.—_‘f(rq.f,'wm)i_“’_
1w T

In the non-dissipative case we have simply
’ . Im

HeaT WAVES

Transmission of heat waves is also a special case of the generalized
transmission line theory. In the one-dimensional case we have
o _ _ v v_ _ 0T
ox K’ ax at '’
where: T is the temperature, v the rate of heat flow, K the thermal
conductivity, é the density and ¢ the specific heat. For simply peri-
odic waves, we obtain '
T _ 1 dv

ix —% v Ie = — dwcd T.

Thus the characteristic impedance and the propagation constant of

heat waves are
1 twed
% =lwak' T=NTE-

The ratio ‘““‘the temperature of the source/the rate of heat flow from
the source’ is the impedance ‘‘seen’’ by the heat source.
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ELECTROMAGNETIC WAVES

The transmission equations of uniform linearly polarized* plane

waves are:
g—f= — twuH, d—*fj= — (g + twe)E,

where: E is the electric intensity, H the magnetic intensity, and g, ¢, u
are, respectively, the conductivity, the dielectric constant and per-
meability of the medium. These equations are of the same form as
(2). Even the physical meanings of E and H are closely related to
those of V and I; thus E is V per unit length and H is I per unit
length.

The propagation constant and the characteristic impedance of an
unbounded medium to linearly polarized plane waves are:

AT L) _ WM _ o _ W_ﬂ.
0 = Viwu(g + iwe), T?_\/g-f-'ime_g+z'f.-.:e_ T
These constants are so directly related to the fundamental electro-
magnetic constants of the medium that they themselves may be re-
garded as fundamental constants. On this account, we call ¢ and 7,
respectively, the intrinsic propagation constant and the intrinsic im-
pedance of the medium. The intrinsic impedance will frequently occur
as a multiplier in the expressions for the impedances of various types
of waves. ‘

The intrinsic impedance of a non-dissipative medium is simply
n = Vpfe; in air, this is equal to 1207 or approximately 377 ohms.*
Thus in the uniform linearly polarized plane wave traveling in free
space, the relation between E and H is

E = 120=H or E = 377H,

provided the positive directions of E and H are properly chosen.

An electromagnetic field of general character can be described by
means of three electric components E,, E,, E,, and three magnetic
components H,, H,, .. We can form the following matrix whose
components can be regarded as impedances:

4 In this connection the word “‘uniform" is used to mean that equiphase planes

are also equi-amplitude planes.
* See the letter from G. A. Campbell to Dean Harold Pender reproduced at the

end of this paper.
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E, E _E
}Iz’ Hy, HB
_ L, E, E,
H;’ H,’ H,
E  _E E,
.1:, Hy, Hz

The algebraic signs preceding the ratios of components with different
subscripts are assigned as follows. If a right-hand screw is rotated
through 90° from the positive axis indicated by the subscript in the
numerator toward the positive axis indicated by the subscript in the
denominator, it will advance either in the positive or in the negative
direction of the remaining axis. In the former case the ratio is given
the positive sign and in the latter the negative sign. This convention
happens to be particularly convenient in expressions for the Poynting
vector.

Thus two impedances are associated with any pair of perpendicular
directions, the x-axis and the y-axis, let us say; these impedances are:

E E,

E. L= —75

Loy = 7.

If these two impedances are equal, then we define the impedance in
the direction of the positive z-axis as follows:
E, E,
Z=@,= T
Similar definitions hold for the impedances in other directions.

While the impedances as now defined possess an attribute of direc-
tion, they are neither vectors nor tensors because they do not add in
the proper fashion. However, in practical applications this lack of
vectorial properties does not seem to be a drawback.

The above definitions can be extended to other systems of coordi-
nates. Let r be the distance of a point P (r, 8, ¢) from the origin of
the spherical coordinate system, # the polar angle or colatitude and
¢ the meridian angle or the longitude (Fig. 1). Then the “radial”
impedance in the outward direction is defined as

_E,_ E,
Z, = o= " (6)
provided the two ratios of the field components are equal. The radial
impedance looking foward the origin is defined as the negative of (6).

Similarly the “meridian” impedance in the direction of increasing @
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/x

Fig. 1—Spherical coordinates. The positive directions of r-, -, and ¢-components
of a vector are, respectively, the directions of increasing r, 8, and ¢.

and the impedance in the direction of increasing ¢ are:

_E _E, E, ]
H,~H’ ) ,

Zy =

In cylindrical coordinates we have (Fig. 2):

__E,_Ew _E;_u E, &__E,,
Z=-g.~mr %~m-"@m “~m= &
z
h[-‘2
5 o
P
2z
v
*
x

Fig. 2—Cylindrical coordinates. The positive .directions of p-, ¢-, and z-components
of a vector are, respectively, the directions of increasing p, ¢, and 2.
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Usually it is only one of the entire set of three-dimensional imped-
ances that is of particular importance, the preferred direction being
frequently the direction of the wave under consideration. When the
ratios involved in the above definitions are unequal, it is expedient to
resolve the field into component fields for which the ratios are equal.
We shall now consider some special examples.

The field of the spherical electromagnetic wave emitted by a Hertzian
doublet is known to be

' twulle " 1 1 .
Eq Ay I+ ar + air? sin 6,
+ _ nlle 1
.E, T (1 — - cos 8, (7)
Ile—er 1 .
+ =7 -
I, dnr (1 — w) sin 6,

where: Il is the moment of the doublet in ampere-meters, 7 is the

distance from the doublet, # the angle made by a typical direction in

space with the axis of the doublet, and ¢ is the angle between two

planes containing the doublet, one of which is kept fixed for reference.

The radial impedance of this wave is

ERE
ar

a’r?
.
14—

In a non-dissipative medium this becomes

1 1
L v
Zr+=n——@ﬁrlﬁr'
4

At a distance large compared with the wave-length, the radial im-
pedance to the spherical wave emitted by a doublet is substantially
equal to the intrinsic impedance of the medium. Very close to the
doublet (compared with the wave-length) the radial impedance is sub-
stantially a capacitive reactance; in fact, we have approximately
Zot = 1/iwer.

Reversing the sign of ¢ in (7), we obtain a spherical wave traveling
toward the origin. At first sight, this inward bound wave appears to
be the natural mate to the outward bound wave. Two such waves
move in opposite directions in the same sense in which two plane
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waves spread out from a plane source in an infinite homogeneous space.
However, the analogy is not complete. The inward bound spherical
wave cannot exist without an appropriate receiver of energy at the
origin. In absence of such a receiver, the energy condenses at the
origin and spreads outward again. The result of interference between
two such progressive waves will be called the “internal” spherical
wave.s It 1s natural to regard a thin spherical source in an infinite
homogeneous medium as an analogue of a thin plane source and to
consider the waves on the two sides of such a spherical source as the
mates. In accordance with this idea the (+) and the (—) signs are
used to distinguish between the waves produced by a source on its
two sides rather than to indicate * progressive’’ waves moving in oppo-
site directions. This attitude is not only a possible and a natural
attitude but almost a necessary one in view of the fact that no gen-
erally applicable criterion is known by which ‘“progressive’” waves
could be identified in any particular case. As often happens, in simple
situations there is no need for arguing as to which attitude is the more
proper one; thus the waves on the two sides of a plane source in an
infinite homogeneous medium are two progressive waves moving in
opposite directions.
The field of the internal spherical wave is

twpd [ . cosh or  sinh ar) .
Ey = sinh o — sin @
f 27r . ar + a’r? !
_ 14 [sinh or
T ot at

H, = o4 (Smh 7" _ cosh crr) sin 6.
2nr at

— cosh o-r) cos 8,

The corresponding impedance is then

cosh or |, sinh or

sinh o7 —
P Ey ar + a’r?
" 7" sinh o7
cosh or — ——
ar

Close to the origin we have approximately

2
(g + iwe)r’

_®If the medium is non-dissipative, this wave is a standing wave; but, in general,
it is simply a combination of two progressive waves in such proportions that the field
is finite at the origin.

Z,m =
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If the source of electromagnetic waves is a small coil rather than
a small doublet, the field is

+— _ notSle—r 1y .
E, Ey e 1+ - sin 6,
2STe—r 1 1
— a = .
Hy g (1 + g + —02,,2) sin 6, (8)
oSIe—r 1
Hr+=—W(1 "l‘;) COSG.

In this equation I is the current in the loop and S is the area. The
corresponding radial impedance is then:

1
_Er_ T

Z, = aF- "

1 1"
T+ T an
This impedance approaches 5 as r increases indefinitely. Close to the
loop we have approximately
Zt = dwur. 9

The field of the internal wave having the same type of amplitude
distribution over equiphase surfaces as the diverging wave (8) is

. . .
E,~ = ne’d (cosh or — sinh ¢7 Ur) sin 6,
27y or
- cosh or | sinh or\ .
Hy = Iy (smh a¥ — + pow )sm 8,
H- = f—'/-!i (smh T _ cosh ar) cos f.
wr ar

The radial impedance to this wave is then

sinh o7
_ cosh or — ——
7= E,~ or
T Hy nsinh . cosh or N sinh o7’
or —
ar a’r?

Close to the origin we have approximately
Z,” = jiwpr. (10)

A line doublet formed by two parallel electric current filaments
produces a cylindrical wave. Close to the doublet (compared with
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the wave-length) we have

Ht = 2%5.(:05 @, Ht = — %sin o. (11)
In this equation Il is the moment of the doublet per unit length,
I being the current and ! the distance between the filaments. These
equations are well known in the elementary theory of electromag-
netism. The electric field is obtainable from (11) with the aid of
Faraday's law of electromagnetic induction. This field and the corre-
sponding radial impedance are

_ twpll
2mp

E+= cos ¢, Z,* =-'im,up. (12)

The exact field of the line doublet and the corresponding radial
impedance are:

2J1 211
Eft = — ""gr Ki(op) cos o, H, = — %;Kl'(a'p) cos o,
: 11 . Ki(ap)
r+ - 9 + = nee
H, Zﬂ_pKl(ap) sin o, Z, nK{(UP) .

The internal cylindrical wave with the same relative amplitude
distribution over equiphase surfaces as in the wave originated by the
line doublet is®

E,~ = iwud I(cp) cos ¢, H,~ = cA I/(op) cos ¢,
__4 . N $1C/))
Hﬂ - "p_Il(U'P) sin ¢, Z.D - T’If(a'p) .
Close to the doublet we have approximately
E.,” = iwuPp cos o, H,~ = P cos ¢,
H,~ = Psin ¢, Z,” = iwup.

Another familiar field is that produced by two parallel line charges
in a perfect dielectric. Close to the doublet this field is

s _glsin g + _(Qlcos ¢
Ee 2mep® E, 27ep® '
il si ) (13)
+ _ twglsin g s 1
H. 2mp ' Zs fwep '

¢ The symbols I,(x) and Ka(x) designate the modified Bessel functions as defined
in G. N. Watson's ‘‘ Bessel Functions.”
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gl being the moment of the doublet. The last equation is obtained
from the first two with the aid of Ampére'slaw. The exact expressions
for any medium are

fwql . iwql
Ej = — —wg:n K,/ (ap) sin o, Et = %';KI(UP) cos ¢,
+ o iwgle . +— _ K,y'(op)
H, - K (ap) sin ¢, Z, Ui Ki(op)

For an internal cylindrical wave, we have

E,~

AO'II’((IP) Sil'l @, Ep" = — % Il(o-p) cos ¢,

I (ap)
Ii(op) *

Close to the doublet this becomes substantially

I

H,” = — A(g + iwe)[1(op)sin ¢, Z,~ =19

E,~ = Psin ¢, E,~ = — Pcos ¢,
1

e @+ o’

— P(g + iwe)p sin g, Ly =

In concluding this set of examples we shall emphasize the fact that
the impedance to a wave depends upon the particular manner in which
the applied electromotive force is distributed in space, in very much
the same way as it depends upon the manner of distribution of this
force in time, that is, upon the frequency of the wave. Just as the
impedance has a meaning only if the applied electromotive force varies
harmonically with a certain well defined frequency,” there are definite
types of applied force distribution in space for which the impedance
has a meaning and other types for which it has not. Arbitrary spatial
distributions of force may be decomposed into ‘‘space harmonics’ in
a manner analogous to Fourier’s frequency analysis of arbitrary time
distributions of force. This is just another way of interpreting the
well-known method of solving Maxwell's equations with the aid of
characteristic wave functions.

Here is a simple example of the dependence of the impedance to
a wave upon the manner of applied force distribution. Consider the
wave generated by an infinite electric current filament of radius a

7 Strictly speaking, the impedance concept is applicable to any impressed force
which varies exponentially with time, the exponent being in general a complex
number. The only exceptions are the exponents which are either zeros or infinities
of the impedance function. Undamped impressed forces constitute merely an im-
portant subclass of exponential forces.
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when the electromotive force driving the current is distributed uni-
formly along the filament. In this case we have

_ nlK(op) g IKs(op)
2maK,(oa)’ ¢ 2maKi(ca)’

KO(G'P)

Z, = nK[(dp)'

E, =

where I is the current in the filament. On the other hand if the
electromotive force is applied to the filament with a uniform progres-
sive phase delay so that it varies along the filament as e~#¢ for in-
stance, then the field and the impedance are

—_ UIKO(FP) —ikz _ IKI(PP} —ikz
E.= 2raK,(Ta) e H, = 2raK,(Ta) '
_ Ko(Tp) = +/g? 2
Z’_nKl(I‘p)’ I' =+vo* + k%
PART II

REFLECTION, REFRACTION, SHIELDING AND POWER
ABSORPTION—GENERAL FORMULAE

UnirForRM TrRANSMISSION LINES

While the following discussion refers specifically to an electric trans-
mission line, the results apply to all generalized transmission lines of
which the former may be considered typical. These results depend
upon certain boundary conditions and are not influenced by the names
of the variables.

Consider a semi-infinite transmission line terminated by a pre-
scribed impedance Z,. Suppose that an ‘‘impressed’’ wave is coming
from infinity. If V;and I; are the voltage and the current, their ratio
must equal the characteristic impedance Z, of the wave. On the
other hand, the ratio of the voltage across the impedance Z, to the
current through it is Z, by definition. ‘Thus, unless Z, is equal to Z, a
“reflected " wave must originate at the terminal and travel backwards.
Let V, and I, be the voltage and the current of the reflected wave at
the terminal. The total values of the voltage and the current will be
designated by V;and I;. Then at the terminal

L+ I =1, Vi+ V.=V (14)
By (9) and by the definition of Z,, we have
V" = ZuI", Vr = — ZoI,, Vg b Z;Ig. (15)

Designating the ratio of the characteristic impedance of the line to
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the terminal impedance by k&, we use (15) to rewrite (14) in the follow-
ing form:
I,

Ii+Ir=Ih Ii_Ir='_k': k=z-

Solving, we obtain the reflection and transmission coefficients:

I, k—1 V. 1—&
ool 2% oo Ve 2 (
L PR Ry LA 7R G

Thus when k = 1, that is when the terminal impedance equals the char-
acteristic impedance, there is no reflection. When the ratio of the imped-
ances is zero or infinity the reflection is complete: in the first case the
current vanishes and the voltage is doubled, and in the second the current
is doubled and the voltage vanishes. The amount of reflection is com-
pletely determined by the ratio of the impedances.

The terminal impedance may be another semi-infinite transmission
line and its characteristic impedance will play the part of Z,. It is
important to note that neither the propagation constants nor the velocities
of the wave in the lines have anything to do with reflection. No reflection
will take place if the lines have equal impedances and there will be
reflection in the case of unequal impedances even if the velocities are
the same,

The variables V' and I can stand for any two physical quantities
satisfyiné equations (2). It will be observed that if we disregard the
physical significance,of the variables V" and I, the characteristic im-
pedance can be defined either as the ratio V/I or as I/V. We are
perfectly free to make our choice. It is evident from (16) that if we
interchange V and I and replace %k by its reciprocal, the expressions
for the reflection and transmission coefficients remain unaltered.

NoN-UNIFORM TRANSMISSION LINES

The foregoing analysis has to do only with u#niform lines. In the
case of non-uniform lines the impedances looking in the opposite direc-
tions may be different. These two impedances will be defined by the
following equations:

v+ V-

Zu+-_—F, Zn—:_I__s

where V+, It and V-, I~ refer to the two waves.
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At the terminal we have as before:
Li+ I, =1, Zoitl — Zo I, = Zd4.

Hence the more general expressions for the reflection and transmission
coefficients are:

_Zg+—Z.: _ __Z()_
Ri=zovz Rr=zife

_Zo_+Zo+ _ Z,
Tr—m; TV_Z_(FTI

These reflection and transmission coefficients can be expressed in terms
of the ratios of the line impedances to the terminal impedance.

SHIELDING

When a source of electromagnetic waves is enclosed in a metallic
box, the field outside the box is substantially weaker than it would
have been in the absence of the box. The box is said to act as a
“shield.” Under some conditions, transmission of electromagnetic
waves in free space and in the metallic shield is governed by equations
of the form (1). In those cases the shielding effect can evidently be
regarded as due to a reflection loss at the boundaries of the shield and
to an attenuation loss in the shield itself. A schematic representation
of a single layer shield is shown in Fig. 3. The source of disturbance

i "
@ Z2,—* Zy—> Zt

o] P Q

Fig. 3—Transmission line representation of a shield. The generatgr represents
the source of the electromagnetic disturbance, the section OP the space surrounding
the source, the section PQ the shield, and the impedance Z, the space outside the
shield.

is shown as a generator, the space around this source is represented
by a piece of a transmission line OP, the shield by a piece PQ and the
space outside the shield by the impedance Z..

The simplest case to consider is that of an elecirically thick shield,
in which the attenuation between P and Q is so great that waves
reflected at Q do not affect appreciably the situation at P. Insucha
case the impedance at P looking toward Q equals the characteristic
impedance Z," and the same is true of the impedance at Q looking
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toward P. The effect of the inserted piece is comprised of two inde-
pendent reflections at P and Q and of attenuation with concomitant
phase change between P and (. Thus the transmission coefficients
across PQ, that is, the ratios of the quantities at Q to the impressed
quantities at P, are

Tj" = T}',P T[, QE—P”'!, Ty = Tv,p TV, Qe—‘""‘,

where T, p is the transmission coefficient for I at P and the remain-
ing T"s have similar meanings.

If PQ is a piece of a uniform transmission line inserted into a uniform
semi-infinite line, Z; = Z,’. In this case, we have

&

T;=TV=~(k—+1)‘§6’ ’

where k is the ratio of the characteristic impedances. The factor
4k/(k + 1)* represents the reflection loss and e=="! the attenuation
loss.

Let us now assume that PQ is electrically short and that all the
transmission lines in question are uniform. By the transmission line
theory, the ratios of the total currents and voltages at P and Q are:

I_Q B Z"
Ip  Zy" coshT"l + Z,sinh T"'[’
Va Zy

Ve Zicosh T+ Z sinh IVl
On the other hand, we have
Ir _ _ 2Z¢ , Ve _ _ 2Zp ’
I;  Zd 4+ Zp Vi Zd +Zp
where Zp is the impedance at P looking toward Q

» Zycosh Tl + Zy'' sinh T"]

Zp =2y Z" cosh Tl + Z,sinh Tl

The transmission coefficients across PQ can be represented as

___IO__IO_IP _ _ e
Le=r=n1 """w-ww

Making appropriate substitutions into this equation, we obtain

T = p(] — ge‘zr”')—le—r”‘, Ty = =L
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where
420z

p= (Za” + Zo’)(zon + Z;),
_ (Zu” _ Zn’)(zo” —Z) -
1= @ +zh@"+2)

In the special case when Z, = Z,, we have

4k B —1\2
P_(le)i’ q = (m) ) and TV— T].
If PQ is electrically long, (17) becomes simply
rn Z
T = PG_P L Ty = 2—:, Tr.

An interesting physical interpretation of (17) will follow if we ex-
pand the factor in parentheses into a series

Tr = pe Tt + pge=T"" + pgte "1 4 - - .,

The first term represents what remains of the original wave on the
first passage through PQ. A part of the original wave is reflected
back at ( and then partially re-reflected from P; the second term
represents that fraction of the re-reflected wave which is transmitted
beyond Q. The following terms represent succeeding reflections. In
making this analysis, we must remember that = p,p, where p, and
p» are respectively the transmission coefficients across the first and
the second boundaries on the supposition that the inserted piece is
infinitely long. Similarly, ¢ = ¢:1gs, the product of the two reflection
coefficients.

Let us now consider a non-uniform transmission line. The propa-
gation of a disturbance is no longer exponential and we introduce the
ratios «t = V+(x9)/V*+(x,) and x~ = V—(x1)/V—(x2) for the voltage
ratios in the waves moving in opposite directions. In what follows
x; and x, are the coordinates of the beginning and the end of the
inserted piece. The transmission coefficient T" across the insertion,
that is, the ratio of the total quantity at x = x; to the impressed
quantity at x = xi, is then

T = pwtps + (put)(gexquict) P2 + (P1x) (e quxt) (qax—qut) s + - -+

This can be rewritten as follows:

T =p[1+ g+ () + (ge)* + -+ -t = ) fgxx+’
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where
P = Do, q = 192, Kk = ktx.

The same formula applies of course to I provided we interpret the
$'s, ¢'s and «’s as referring to the variable I rather than the variable
V. If the inserted piece is electrically long, we have approximately

T = pxt.

In many practical applications the inserted piece is a uniform trans-
mission line, so that

kt =k~ = e T k = e,
where T' is the propagation constant and ! is the length of the piece.
In this case
_ P _
T = T o™ ge_me I,

PowER ABSORPTION AND RADIATION

The power transferred from left to right across P is the real part
of the following function ¥:

Vp = %Vp[p* = %ZPIPIP*, (18)

where the asterisk denotes the complex number conjugate to the one
represented by the letter itself. The power absorbed by the imped-
ance Z; is

TYp = 3 ZJolo* (19)

The difference between (18) and (19) represents the power absorbed
by the section PQ.

The power absorbed by a shield is calculated in a similar manner.
The energy flow per unit area of the shield is given by an expression
closely analogous to (18); the tangential component of H appears in
the place of I and Zp is to be interpreted as the impedance in the
direction normal to the shield. The formula is derivable from the
Poynting expression for energy flow. Thus the power flow per unit
area is 3Z,H,H* where I, is the tangential component of 7/ and Z,
is the impedance in the direction normal to the shield.
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PART III

REFLECTION, REFRACTION, SHIELDING AND POWER
ABSORPTION

SPECIAL APPLICATIONS

The general formule derived in the preceding part are directly
applicable to a variety of special cases such as reflection of plane
waves at a plane boundary, shielding action of cylindrical shields upon
electric waves produced by an infinite parallel pair of electric current
filaments, shielding action of spherical shields upon electric waves
produced by a coil or a condenser, etc. Of course, most of these
results have already been obtained and published, each special prob-
lem having been treated on its own merits rather than as a particular
case of a general formula. For this reason, we shall confine ourselves
largely to a discussion of those aspects of reflection which are par-
ticularly illuminated by the general point of view.

CvyLINDRICAL WAVES

Consider two parallel wires carrying equal and opposite alternating
currents. At a distance from the wires two or three times as large
as their interaxial separation, the wave is substantially that of a line
doublet and the radial impedance in free space is approximately 8 fwup
so long as p is much less than the wave-length. This restriction on p
is permissible in the present communication art. In metallic media
this expression for the radial impedance is good only at very low fre-
quencies. At high frequencies the radial impedance in metallic media
is substantially ¢ Viwp/g.

If the pair of wires is surrounded by a metal cylinder, the latter
will act as a shield by virtue of reflections taking place at the boundary
and attenuation through the shield.

The attenuation constant is substantially vmrugf nepers per meter,
Thus the attenuation in logarithmic units through the shield is pro-
portional to the first power of its thickness and to the square roots of
the conductivity, the permeability and the frequency.

The reflection loss depends upon the impedance ratio. In the
neighborhood of f = 0, the impedance ratio is seen to be equal to the
ratio of the permeabilities. Consequently, at very low frequencies
non-magnetic shields are relatively inefficient since there is no reflec-

8 Equation (12).

® The approximate error is 1/20p; at 10 ke. the error is about 2.5 per cent at a

distance 1 cm. from the line source. = o L
10 This is true even at low frequencies if the shield is thin compared to its diameter.
Otherwise, the cylindrical divergence of the wave must be taken into account.
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tion loss. Inasmuch as the radial impedance in air is proportional
to the first power of the frequency and in metal it is proportional only
to the square root of the frequency, a point is reached beyond which
the radial impedance in air always exceeds the radial impedance in
metals. Thus the air-to-magnetic metal impedance ratio is less than
unity near f = 0 and greater than unity for sufficiently high frequen-
cies. Consequently, the absolute value of this impedance ratio is
equal to unity at some intermediate frequency at which the reflection

1.0
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Fig. 4—The radial impedances in air, copper and iron at a distance of 2 centi-
meters from the axis for cylindrical waves generated by line doublets comprised of
infinitely long electric current filiments. The conductivity of copper = 5.8005 X
10" mhos per meter, the conductivity of iron = 10" mhos per meter, the permeability
of air and copper = 1.257 X 10~¢ henries per meter, the permeability of iron =
1.257 X 107 henries per meter.

loss will be quite small.!* Some typical curves of radial impedances
are shown in Fig. 4. The radial impedances in non-magnetic metals
are always less than the impedance in air.

At high frequencies the reflection loss between metals is substan-
tially independent of the frequency. At copper-iron boundaries this
loss is always high and at copper-air boundaries it increases steadily
with the frequency and becomes quite substantial at frequencies as

1t A small reflection loss exists because the impedances have different phases.
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high as 100,000 cycles. On the other hand, in a certain frequency
range the reflection loss at iron-air boundaries may be very low. Since

‘the attenuation loss of a complete shield made of coaxial layers of

copper and iron is independent of the sequence of the layers, consider-
able gain in shielding may be secured by placing an iron layer between
two copper layers rather than a copper layer between two iron layers
so as to take advantage of the added reflection loss, assuming of course
that the amounts of copper and iron are the same in both cases.

Since the high-frequency impedance ratio is proportional to the
diameter of the shield, the size has a substantial influence upon the
effectiveness of the shield. Each time the diameter of a non-magnetic
shield is doubled, the shielding is increased by 6 decibels. In the
case of magnetic shields, this is true only at frequencies considerably
higher than the critical frequency at which the reflection loss is mini-
mum. Considerably below this frequency, the effectiveness of a mag-
netic shield is decreased by 6 decibels with each doubling of the diam-
eter of the shield. For the transition region we can say that with
increasing size the effectiveness of the magnetic shield decreases below
the critical frequency and increases above it.

“ELECTROSTATIC SHIELDING''

If the cylindrical wave is originated by two parallel oppositely
charged wires, alternating with a given frequency f, the radial imped-
ance in free space is 1/iwep provided p is small compared with the
wave-length.’? As in the preceding case, in metallic media the radial
impedance is Viwu/g provided the frequency is not too low; for very
low frequencies the radial impedance becomes 1/gp.

It is clear at once that for these waves the reflection loss is tre-
mendous. Thus in air e = (1/367)10~° farads per meter ;if f = 10° and
p = 0.01 m., then the radial impedance is 1,800,000 ohms. The corre-
sponding impedance in copper is only 0.000369 ohms. At lower fre-
quencies the disparity between the radial impedances becomes even
greater. The impedance ratio tends to infinity as the frequency
approaches zero.

In the elementary theory a metal shield is regarded as a perfect
shield against this ‘‘electrostatic field."” An “electrostatic " field alter-
nating 1,000,000 cycles per second is probably a misnomer. And the
shielding is excellent but not perfect. Nevertheless the distinction
between two possible types of waves is a valid one, at least in the
frequency range usually employed in the communication art. In one
wave the electric field is normal to the direction of propagation and

12 Equation (13).
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in the other the magnetic field is so disposed. The former wave may
be called iransverse eleciric and the latter tramsverse magnetic. The
product of the corresponding radial impedances of these waves is
equal to the square of the intrinsic impedance. Hence if one wave
is a low impedance wave (as compared to the intrinsic impedance),
the other is a high impedance wave. Under the usual engineering
conditions these waves are unmistakably different in air, although
this distinction disappears in metallic media. It must be pointed
out, however, that for micro-waves the dimensions of the shield may
be comparable to the wave-length, in which case the radial impedances
may be of the same order of magnitude.

In the above discussion we have supposed that the line source was
on the axis of the shield. If it is not, it is possible to represent the
actual source by means of an equivalent system of sources along the
axis and calculate the shielding effect. The latter is different for
cylindrical waves of different orders. This will result in somewhat
different shielding for different positions outside the shield. Ordi-
narily, however, the difference is not large enough to be considered in
practical problems.

SPHERICAL WAVES

A small coil carrying an alternating current will give rise to a trans-
verse electric spherical wave and a small condenser to a transverse
magnetic wave. Consider a shield concentric with the coil or the
condenser. In the shield the radial impedance is Viwu/g, again ex-
cepting very low frequencies. In air the radial impedance of the
outward bound electric wave is ¥ twur and that of the internal wave
Liwur. The corresponding impedances of transverse magnetic waves
are 1/iwer and 2/iwer. The conditions for reflection and shielding are
substantially the same as in the case of cylindrical waves. Some
quantitative difference results from the inequality of the radial imped-
ances in opposite directions.

PLANE WAVES

The next example of uniform linearly polarized plane waves is par-
ticularly well known.** When the boundary between two media coin-
cides with an equiphase surface of the impinging wave, the formule

13 Equations (9), (10).

U4 The general formule for the reflection and transmission coefficients have been
obtained by T. C. Fry on the basis of the Maxwell theory in his paper ‘' Plane Waves
of Light II,” published in the Journal of the Optical Society of America and Review
of Scientific Instruments, Vol. 16, pp. 1-25 (1928). The earliest formula are prob-
ably due to A. Cauchy, who obtained them from the ‘‘elastic solid” theory of light
waves.
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of Part 11 are directly applicable and the reflection coefficient depends
upon the ratio of the intrinsic impedances of the media.

A more interesting situation arises when the incidence is oblique.
Let the xy-plane be the boundary between two homogeneous media
and let the electric vector be parallel to this boundary. We may assume
it to be parallel to the x-axis. In this case the electric field strength
is given by

E, = Ep ottt E,=E,=0, (20)

where E, is the amplitude and s is the distance from the equiphase
surface passing through the origin. If the angle of incidence is ¢
(Fig. 5), this distance may be expressed as: s = ysin ¢ + 2 cos &

z

Fig. 5—Reflection of plane waves. The x-axis is toward the reader, the xy-

. plane is the boundary between the media, the E-vector is toward the reader, the

angle of incidence = @&, and the angle of reflection = y.

The magnetic vector is perpendicular to E and to the ray and its

value is
H = Hgeostivt Eq = nH,. (21)

The cartesian components are then

H, = Hjcos ¢ e7o*tiot, H, = — Hysin ¢ e-ostiot) H, = 0.

Equations (20) and (21) represent the motion of equiphase planes
in the direction specified by the angle ¢. It is equally possible to
regard them as representing the motion of phase-amplitude paiterns
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in the direction normal to the xy-plane. We need only to rewrite
these equations as follows:

Ez — (Ene-—vy sin J)s—o: cos 6+|'mt’

II" = (HO cos ¢ e~V sin 0)8—0': cos d+iwt (22)

The relative distribution of the amplitude and the phase of the wave
are governed by the factor e #in ¥ and this phase-amplitude pattern
is propagated in the direction of the z-axis, the propagation constant
being ¢ cos .

The advantages of this point of view are clear. In attempting to
find the reaction of the second medium upon the incident wave, it is
necessary to satisfy certain boundary conditions at every point of the
interface. This can be insured by requiring the reflected and the
refracted waves to have the same phase-amplitude patterns at the
interface and by adjusting their relative amplitude and phases to
secure the fulfilment of the boundary conditions at some one point.
In other words, the problem is reduced to that for which the general
solution was given in Part II.

The impedance to the incident wave in the z-direction is found
from (22):

Ez ED

Z,=E=m=ﬂsecﬂ.

This impedance is seen to be a function of the intrinsic impedance of
the medium and of the angle of incidence.

For the refracted wave in the second medium the transmission
equations are similar to (22):

Ezl —_ (Eule—a’y sin ,‘,)e,,f‘ cos \&+iwi‘ (23)
H, = (Hy' cosy e 'vsin¥)g—a'z cos ytiut Ey = 4'H,.
The ‘““angle of refraction’ y is, in general, different from ¢. In our
equations we may regard ¢ merely as a parameter. Its wvalue is
obtained from the condition that at the xy-plane the phase-amplitude
pattern of the incident and the refracted waves must be the same, and
consequently

osind = ¢ sin y. (24)

In dielectrics this relation is known as Snell's law of refraction.
By (23), the impedance to the refracted wave in the z-direction is

!

Z! = % = 7 sec y.
v
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The reflection and the transmission coefficients are then obtained from
(22) in terms of the impedance ratio

_ nsec‘él _ mcosy
T n'secy 7 cosd’ (25)
Thus, we have

E—1 1—k

Re =377 Re=71rp
2k 2

Te=pg71. Te=11%

These coefficients refer to the tangential components of the field.

In a similar way we can deal with the case in which the magnetic
vector of the incident wave is parallel to the boundary. The parts
played by E and H are interchanged and the impedance ratio becomes

__ nmcosd
- nl COS'IP. (26)

The cosine factors have changed their places.

The general case, in which neither E nor H is parallel to the bound-
ary, cannot be treated in the above manner. In this case the com-
ponents of E and H which are parallel to the boundary are not per-
pendicular to each other, the impedances Z,, and Z,, are not equal
to each other and the unique impedance Z, = Z,, = Z,;, upon which
the results of Part II are based, does not exist. In accordance with
a suggestion made in Part I, the incident wave must be resolved into
components possessing unique impedances in the direction normal to
the boundary. It is well known that such a decomposition is possible
for ordinary plane waves; the latter can always be decomposed into
two components, in one of which E is parallel to the boundary and
in the other H is so disposed.

It is not surprising that reflection of arbitrarily oriented waves
cannot be treated directly. The impedance ratios (25) and (26) for
two basic orientations are in general different and the polarization of
the reflected wave will be changed. An exceptional case arises when
the intrinsic propagation constants of the media are equal. 1In this case
¥ = 9, as seen from (24), and the impedance ratio is independent of the
angle of incidence and of the particular orientation of the wave. Con-
sequently, the reflection and the transmission coefficients depend solely
upon the ratio of the inirinsic impedances of the media.

Frequently the permeabilities of the media are assumed to be the
same, in which case the ratio of the intrinsic impedances is equal to
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the inverse ratio of the “indices of refraction” of the media. Much
could be said, however, in favor of not making such an assumption
when formulating the general results since in many applications the
permeabilities may be unequal.

IMAGES

A few additional interesting results can be obtained for the special
case of two semi-infinite homogeneous media having equal propaga-
tion constants. If the media are separated by a plane boundary,
problems of reflection and refraction can be solved by the method of
images. This method is frequently used in electrostatics and one or

o
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Fig. 6

two simple examples from that science will serve as an introduction to
the later generalizations.

The field of a point charge g above a conducting plane can be found
by assuming another point charge (— g). This “image’ charge
(Fig. 6) is the same distance below the plane as the actual charge is
above the plane, both charges lying on the same perpendicular. The
field due to the original charge and to the image charge satisfies the
boundary conditions at the conducting plane since it makes the latter
an equipotential. This combined field gives the correct resultant field
on the same side of the plane as the original charge; on the opposite
side the field is zero.

If the boundary is the interface between two perfect dielectrics
(Fig. 7) with dielectric constants respectively equal to e and e,
the results are almost equally simple. Above the boundary we have
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a reflected field in addition to the original field. This reflected field
is produced by an image charge ¢’ = (e1 — €2)g/(e1 + €2) on the sup-
position that the dielectric constant is everywhere equal to ¢;. Be-
low the plane the field is such as would be produced by a charge
q¢" = 2e19/(e1 + €2) if placed where the original charge is, also on the
assumption that the dielectric constant is everywhere e. The
charge producing the correct field below the boundary would be
q¢"" = 2eq/(e1 + e2) if we were to assume e; as the dielectric constant of
the whole space.

Inspecting equations (7) for an electric current element, which we
assume to be perpendicular to the plane interface of two homogeneous
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media, we see that the method of images can readily be extended to
dynamic fields provided the intrinsic propagation constants of the
media are equal. In order to make this conclusion more evident,
we replace 4wu in the first equation by the equivalent product s and
then calculate the component of E fangential to the interface

+ = Fgt +sinf = nI1Z5 343
E, Egtcosd + E,Fsinf = nll iy (1 + - + prx sin @ cos 8.

It is easy to see that the continuity of the tangential field compo-
nents will be preserved if we assume a reflected field on the same side
of the boundary and a refracted field on the opposite side in accordance
with the following specifications. The reflected field is such as would
be produced by an image current element of moment (n1 — n2)Il/(n1 + n2)
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and the refracted field is such as could be produced by a current element
of moment 2q1Il/(n1 + na), occupying the same position as the source.
In calculating these fields a uniform inirinsic impedance n, is assumed
throughout the whole space.

Since the current I in the element implies two point charges, — Ifiw
and I/iw, at its terminals, we can interpret the above rule of images in
terms of the charges. The image of a point charge q for calculating the
reflected field is (na — n1)q/(n2 + m). For calculating the refracted field
a charge 2mq/(n + n2) must be assumed in the same position as the
original charge. For perfect dielectrics the expressions of the image
charges reduce to those given by electrostatics.
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AN HISTORICAL NOTE

The following memorandum written in 1932 by Dr. G. A. Campbell,
formerly of the American Telephone and Telegraph Company, repre-
sents an interesting historical comment and it is reprinted with Dr.
Campbell's permission.

A letter discussing the characteristic impedance of free space, written to
me seven years ago by Dr. H. W. Nichols, is of possible interest in con-
nection with both this impedance and the question of superfluous units.
He derives the impedance from the Poynting vector by simple substitu-
tions. Specific use is made, however, of five systems of units. The letter
also supplies an illustration of confusion arising from the multiplicity of
units in use. Apparently, Heaviside's 30 ohms (*'Electrical Papers," ii,
p. 377, 1888) was in ordinary ohms and not in Heaviside's own units, as
Nichols quite naturally assumed. The correct explanation of the 30 ohms
seems to be that Heaviside's ‘' resistance-operator of an infinitely long tube
of unit area’ was not intended to be the characteristic impedance, as I
define it.

In definitive units the characteristic impedance of free space equals the
square of the effective volts per meter, in a plane electromagnetic wave,
divided by the transmitted watts per square meter. For a numerical ex-
ample, take the figures for strong sunlight (Maxwell, ii, footnote p. 441)
which correspond to 666.1 effective volts per meter and 1176 watts per
square meter. The characteristic impedance of free space implicitly as-
sumed was thus 377.3 ohms, which checks well with my 376.54 international
ohms.

If free space could be bounded in one direction by a thin, plane film
having surface resistivity equal to the characteristic impedance of space,
a normally incident plane wave would be completely absorbed by the film;
there would be neither reflected wave nor transmitted wave beyond the
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film. This picture is suggested by the analogy of a transmission line ter-
minated, at the receiving end, in its characteristic impedance, so that there
is no reflected wave. The difficulty with the analogy is that free space
exists beyond the film and cannot be cut off. This idealized picture may
serve, however, to indicate the simplification made possible by the intro-
duction of characteristic impedances in practical problems involving reflec-
tion, refraction and absorption.

The characteristic impedance of free space may be usefully introduced
into formulas for the characteristic impedances of transmission lines. Thus, *
assuming perfect conductors, we have:

For flat strips, width w, separation d, if w/d is large or the guard-ring
method is employed in measurements,

K, = 37654 %,
N w .
For concentric cylinders, with radii & and a,
_37654, b
‘ r  Bg”

These characteristic impedances will each agree with the characteristic
impedance of free space if w = d and b = 535.49 a. Since these strips are
not wide compared with the separation, it would be necessary to employ
the guard-ring method to maintain the plane wave assumed in the square
shaft between the two strips. These two characteristic impedances would
each become one ohm if w = 376.54 d, and & = 1.0168 a.

Practically, the finite conductivity of copper would add a reactance com-
ponent and change the resistance component. It would be interesting to
investigate simple cases numerically and include mutual characteristic
impedances between two metallic circuits.

My own interest in the applications of the impedance concept to
the electromagnetic field theory dates back to the last quarter of 1931.



