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But the trouble was that ignorance became more interesting, [. . . ] and people

started getting interested in the chaos itself — partly because it was a lot easier

to be an expert on chaos, but mostly because it made really good patterns that

you could put on a t-shirt. And instead of getting on with proper science (like

finding that bloody butterfly whose flapping wings cause all these storms we’ve

been having lately and getting it to stop) scientists suddenly went around saying

how impossible it was to know anything, and that there wasn’t really anything

you could call reality to know anything about, and how all this was tremendously

exciting [. . . ]? Incidentally, don’t you think this is a rather good t-shirt?

in Witches Abroad by Terry Pratchett, from the Discworld series





Abstract

The aim of the experiments described in this thesis was the investigation of

different aspects of dielectric resonators with microwave experiments. Dielectric

cavities have received much attention in the last years due to applications of

microlasers and -cavities in telecommunications, integrated optics or as sensors.

A key issue in current research is the correspondence between the ray– and the

wave–dynamics in these systems, that is their semiclassical description. There-

fore, different semiclassical approaches to dielectric resonators have been tested

experimentally with macroscopic flat dielectric microwave resonators. The results

can be directly applied to microcavities working in the infrared up to optical fre-

quency regime via scaling as long as the ratio between wavelength and resonator

dimensions is similar. Both quasi two–dimensional setups consisting of a dielec-

tric plate squeezed between two metal plates and three-dimensional setups with

“levitating” dielectric plates surrounded by air have been investigated. Both the

frequency spectra and near field distributions were measured.

In the first part of the thesis, a two-dimensional approximation for three-dimen-

sional flat dielectric resonators has been tested quantitatively with two different

circular Teflon disks. The approximation is based on the projection of the three–

dimensional ray-dynamics onto two dimensions and the introduction of a so-called

effective index of refraction. Comparison of the model calculations with the mea-

sured resonance frequencies and widths reveal that they predict the correct order

of magnitude, but significant deviations remain. It was thus shown that the model

of an effective index of refraction is too imprecise for the detailed understanding

of measured frequency spectra, and that furthermore the systematic error of the

model calculations is not under control.

In the second part of the thesis, the localization of resonance states on certain

periodic orbits was investigated. The existence of such so-called superscars in

polygonal metal cavities is well known and was recently predicted also for dielec-

tric polygonal resonators. Therefore, the field distributions of a square ceramic

resonator were measured experimentally. The measurements confirmed the ex-

istence of superscarred states, but also showed localized states with unexpected

character. The physical origin of these states is unclear so far, motivating further

investigations.

In the third part of the thesis, a trace formula connecting the resonance density of



two-dimensional dielectric resonators with the periodic orbits of the correspond-

ing classical billiards was investigated with quasi two-dimensional resonators of

circular and square shape. The length spectra deduced from the measured fre-

quency spectra reveal contributions of the periodic orbits to the resonance density,

but also show significant deviations from the trace formula since only a part of

the expected resonances could be observed experimentally. The results demon-

strate that the systematics of the observed states must be taken into account for

an understanding of the experimental length spectra. A connection between the

most long-lived resonances of the cavities and the most strongly confined periodic

orbits of the corresponding classical billiards was established.

In the fourth part of the thesis, the applicability of the trace formula for two-

dimensional dielectric resonators to flat three-dimensional resonators was inves-

tigated. An approach combining the trace formula with the effective index of

refraction model investigated in the first part was tested for two flat circular

Teflon disks. Preliminary results show good qualitative agreement between the

model and the experimental data, but also that additional effects due to the dis-

persion of the effective index of refraction and due to the systematic error of the

model must be taken into account.



Zusammenfassung

Ziel der in der vorliegenden Arbeit beschriebenen Experimente war die Unter-

suchung verschiedener Aspekte von dieletrischen Resonatoren anhand von Expe-

rimenten mit Mikrowellenresonatoren. Dielektrische Resonatoren haben aufgrund

der Anwendungen von Mikrolasern und -kavitäten in der Telekommunikation, in

integrierten optischen Schaltkreisen oder als Sensoren in den vergangenen Jah-

ren großes Interesse hervorgerufen. Eine der zentralen Fragestellungen ist der

Zusammenhang zwischen der Strahlen- und der Wellendynamik in diesen Syste-

men, entstammt also ihrer semiklassischen Beschreibung. Es wurden verschiede-

ne semiklassische Ansätze für dielektrische Resonatoren experimentell mit Hil-

fe von makroskopischen, flachen dielektrischen Mikrowellenresonatoren getestet.

Die Ergebnisse sind direkt auf Mikrokavitäten im infraroten und optischen Fre-

quenzbereich übertragbar, sofern das Verhältnis der Wellenlänge zur Größe des

Resonators vergleichbar ist. Sowohl quasi-zweidimensionale Aufbauten bestehend

aus dielektrischen Scheiben zwischen zwei Metallplatten als auch dreidimensio-

nale Aufbauten mit
”
freischwebenden“, nur von Luft umgebenen dielektrischen

Scheiben wurden untersucht. Zusätzlich zu den Frequenzspektren wurden auch

Feldverteilungen gemessen.

Im ersten Teil der Dissertation wurde eine zweidimensionale Näherungsmethode

für dreidimensionale, flache dielektrische Resonatoren quantitativ untersucht. Da-

für wurden zwei kreisförmigen Teflonscheiben verwendet. Die Näherungsmethode

basiert auf einer Projektion des dreidimensionale Strahlengangs im Resonator auf

die Ebene und der Einführung eines sogenannten effektiven Brechungsindexes.

Diese Modellrechnungen ergeben zwar die richtige Größenordnung für gemesse-

ne Resonanzfrequenzen und -breiten, aber es verbleiben signifikante Abweichun-

gen. Es wurde gezeigt, daß die Modellrechnungen basierend auf dem effektiven

Brechungsindex zu unpräzise für ein detailliertes Verständnis von gemessenen

Frequenzspektren sind. Darüber hinaus ist der systematische Fehler der Modell-

rechnungen nicht unter Kontrolle.

Im zweiten Teil der Dissertation wurden Resonanzzustände untersucht, welche auf

bestimmten periodischen Bahnen lokalisiert sind. Solche sogenannten Superscars

sind für metallische Polygonbillards bekannt und wurden kürzlich auch für di-

elektrische vorausgesagt. Daher wurden die Feldverteilungen eines quadratischen

Mikrowellenresonators aus Keramik gemessen. Die Messungen bestätigen die Exi-



stenz solcher Superscars, es wurden jedoch auch lokalisierte Zustände mit uner-

warteten Eigenschaften gemessen. Da der physikalische Ursprung dieser Zustände

nicht klar ist, sind weitere Untersuchungen geplant.

Im dritten der Dissertation Teil wurde eine Spurformel, welche die Resonanzdichte

zweidimensionaler dielektrischer Resonatoren mit den periodischen Bahnen des

entsprechenden klassischen Billards verknüpft, mittels quasi-zweidimensionaler

Mikrowellenresonatoren kreisförmiger und quadratischer Geometrie untersucht.

Die aus den gemessenen Frequenzspektren gewonnenen Längenspektren bestä-

tigen den Beitrag der periodischen Bahnen zur Resonanzdichte, jedoch zeigen

sich auch deutliche Abweichungen gegenüber den Vorhersagen der Spurformel

da nur ein Teil aller Resonanzzustände experimentell beobachtet wird. Für ein

Verständnis der experimentellen Längenspektren muß daher die Systematik der

beobachtbaren Resonanzen berücksichtigt werden. Darüber hinaus wurde ein Zu-

sammenhang zwischen den langlebigsten Resonanzen des Resonators und den am

stärksten im dielektrischen Billiard gebundenen periodischen Bahnen ermittelt.

Im vierten Teil der Dissertation wurde die Anwendbarkeit der Spurformel für

zweidimensionale dielektrische Resonatoren auf flache dreidimensionale unter-

sucht. Eine Kombination aus der Spurformel und dem Modell eines effektiven

Brechungsindexes aus dem ersten Teil der Dissertation wurde mit den Daten für

zwei Kreisscheiben aus Teflon verglichen. Die vorläufigen Ergebnisse zeigen eine

gute qualitative Übereinstimmung, jedoch müssen zusätzlich die Dispersion des

effektiven Brechungsindexes und der systematische Fehler des Modells aus Teil

eins berücksichtigt werden.
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1 Introduction

At the end of the 19th century, it was generally believed that with the estab-

lishment of classical mechanics by Newton [1] the calculation of all dynamical

problems, including celestial mechanics, became feasible. This was proven wrong

by Henri Poincaré with his results on the three-body problem in 1892 [2]. He

showed that the solution could not be expanded into a convergent series, and

that slightest deviations in the initial conditions resulted in very different trajec-

tories, implying unpredictability of the evolution of the system with time. This

highly sensitive dependence on the initial conditions is the essence of chaotic be-

havior in classical systems: Even though the time evolution of a dynamical system

is in principle fully determined by its equations of motion and initial conditions,

it cannot be predicted for arbitrarily long times because the initial conditions are

only known with finite precision. This seeming contradiction has led to the term

Deterministic Chaos [3].

The effects of chaotic behavior have not only been studied in classical, but also

in quantum systems. Since position and momentum of a particle cannot be

measured precisely at the same time in quantum mechanics, other measures to

characterize quantum manifestations of classical chaos, so-called quantum chaos,

were developed. One is the investigation of the statistical properties of energy

spectra. It has been conjectured that the spectral fluctuation properties of chaotic

quantum systems are universal and are described by random matrix theory [4],

which has been confirmed e.g. for the spectra of nuclei [5–8] and atoms [9]. Fur-

thermore, Gutzwiller introduced the periodic orbit theory with his work on trace

formulas for regular [10] and chaotic [11] systems. The trace formulas provide

a semiclassical connection between the density of states (DOS) of the quantum

system and the periodic orbits (POs) of the corresponding classical system. In

general, semiclassics can be used to connect different properties of a quantum

mechanical system with those of the analogous classical system [12] and is the

second important tool in quantum chaos besides random matrix theory.

Originally it seemed that chaotic motion is a property of very complex systems,

but in 1963 Lorenz found, as he investigated a model for convective flow, that

also a system with only three degrees of freedom could exhibit chaos [13]. In fact,

even systems with only two degrees of freedom can be chaotic. One such class
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of systems are two-dimensional (2d) billiards. A billiard is a domain of arbitrary

shape inside which a point-like particle moves freely and is reflected elastically

at the boundaries of the domain. Therefore, the dynamics is only determined

by the shape of the boundary and can be regular (i.e. circle and rectangle bil-

liard), fully chaotic (i.e. stadium billiard [14]) or mixed. Billiards are widely used

as model systems both for classical and quantum chaos. In a quantum billiard

a particle is confined by an infinitely high potential along its boundary, which

can be realized e.g. as electrons in a quantum dot [15]. Below a certain energy

a quantum billiard can also be investigated with analog experiments using flat

microwave resonators because the stationary Schrödinger equation describing the

former is identical to the Helmholtz equation for the latter [16, 17]. In fact, many

properties of chaotic quantum systems like the spectral statistics are also found in

other wave-dynamical systems like three-dimensional (3d) microwave [18, 19] or

acoustic [20, 21] resonators, even though they are not fully equivalent to a quan-

tum billiard. It seems that these properties are universal for systems described

by a wave equation, and one also speaks more generally of wave-dynamical chaos.

Another interesting class of wave-dynamical systems are dielectric microresona-

tors and -lasers working in the infrared to optical frequency regime. Microlasers

were first introduced in 1992 by McCall et al. [22] and have since then been a

field of intense research due to potential applications in telecommunications, in

integrated optics, as sensors etc. [23]. In contrast to closed quantum billiards,

dielectric resonators are open systems which lose some of the stored energy by

radiation, but can have resonant modes with very long lifetimes (high quality

factors Q) due to total internal reflection (TIR). Especially geometries with ro-

tational symmetry like circular disks [22], toroids [24] and spheres [25] are known

for their high-Q modes, which have low lasing thresholds. On the other hand,

these resonators emit light uniformly due to their symmetry. However, direc-

tional emission is required for many applications. This can be achieved with

asymmetric (and thus chaotic) resonator geometries, which have the drawback of

lower quality factors though [26, 27]. Therefore, one of the main goals of current

research is a resonator geometry which combines unidirectional emission with

high quality factors. Promising candidates are the Limaçon [28–30] and annular

[31] billiard geometries. It has been established that the emission directionality

of asymmetric microlasers is closely related to the unstable manifolds of certain
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POs of the corresponding classical billiards [32–34]. The classical analog, the

so-called dielectric billiard, is an open billiard where at each reflection at the

boundary a part of the ray exits according to the Fresnel formulas. Thus, the

ray-wave correspondence between the ray-dynamics of the classical billiard and

the wave-dynamics of the resonator and semiclassical methods have become very

important for the investigation of dielectric cavities. Another point of interest is

the occurrence of modes localized on a certain PO. Such states were first found

for closed quantum billiards by Heller [35], who called them scars, and have also

been reported for microlasers [36, 37].

Since there is no inherent scale in electromagnetism, the properties of a resonator

only depend on the ratio between its dimensions and the wavelength. Therefore,

results form experiments with dielectric microwave resonators like [33] can be

directly applied also to microcavites. The only difference is in the choice of mate-

rials, and that the microwave resonators are passive ones whereas the microlasers

contain an active medium. The advantage of microwave resonators is their eas-

ier handling due to their macroscopic dimensions and the larger frequency range

available. They are especially suited to investigate the properties of passive reso-

nators since nonlinear effects due to the active medium like mode-pulling can be

excluded. This thesis treats several aspects of dielectric cavities experimentally

with dielectric microwave resonators. The basics of the experiments and the the-

oretical description of dielectric resonators is outlined in chapter 2. In chapter 3,

the approximation of flat 3d resonators as 2d objects by introducing a so-called

effective index of refraction, neff , is tested. This approximation, the so-called

neff -model, is widely used in the description of flat dielectric resonators. A test

of the model with experimental data is presented. In chapter 4, the electric field

distributions of a dielectric square billiard are investigated. This was motivated

by the prediction of (super-) scarred states in the dielectric square [38], and the

existence of such states could be confirmed experimentally. Chapter 5 presents

an experimental test of a trace formula for dielectric cavities recently proposed

by Bogomolny et al. [39]. The length spectra of several 2d dielectric microwave

resonators are compared to the predictions of the trace formula. Chapter 6 finally

investigates the length spectra of flat 3d dielectric resonators, and an approach

for their theoretical description by combining the trace formula for 2d resonators

and the neff -model is presented. Chapter 7 closes with some final remarks.
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2 Basics

In this chapter the basic theory and experimental techniques for (dielectric) mi-

crowave resonators are described. Schematic, idealized side views of the different

resonator setups discussed in the following are shown in Fig. 2.1. All the resona-

tors shown there are of cylindrical form (with the z–axis parallel to the cylinder

axis) with arbitrary shape of the cross section. A closed metallic cavity of height

b is shown in Fig. 2.1(a). Such flat cylindrical cavities are used as analogs for

2d quantum billiards [17], where the cross section in the plane perpendicular to

the z–axis defines the billiard geometry. Figure 2.1(b) depicts a dielectric plate

between two copper plates, used for the experimental realization of a 2d open

dielectric resonator. The simplest setup is shown in Fig. 2.1(c): It consists of a

flat dielectric plate surrounded only by air (or other materials with lower index

copper
airb

(a)

copper

copper
dielectricb

x, y

z

(b)

dielectric b

(c)

Fig. 2.1: Basic resonator setups (not to scale). (a): A closed metallic cavity. The

shape of its cross-section in the plane perpendicular to the z–axis defines

the billiard geometry. It is equivalent to a 2d quantum billiard below

a certain cutoff frequency. (b): A dielectric plate with arbitrary shape

between two copper plates. This setup is the experimental realization

of an open 2d dielectric resonator. (c): A dielectric plate surrounded by

air (or other media with lower index of refraction). This is the typical

setup also of microlasers.
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of refraction). Such a setup, e.g. a plate atop a small pillar [22], is often used in

microlaser experiments since the use of metallic enclosures is discouraged by the

high losses at optical frequencies. In contrast to the other two setups, however,

it can be treated only approximately as a 2d system (see chapter 3). In the next

section, the solutions of the Helmholtz equation for these setups are discussed.

2.1 Maxwell and Helmholtz equations

The Maxwell equations for the electric ( ~E) and magnetic fields ( ~B) in a linear,

isotropic medium are

~∇ ~E = ρ/(ǫrǫ0) ~∇× ~E = −∂ ~B
∂t

~∇ ~B = 0 ~∇× ~B = µrµ0

(
ǫrǫ0

∂ ~E
∂t

+~j
)
,

(2.1)

where ǫr and µr are the reltive electric and magnetic permeability of the medium,

ρ the free charge density and ~j the free electric currents [40]. The general bound-

ary conditions at an interface between two media 1 and 2 are

~n · ( ~E(2) − ~E(1)) = σ/(ǫrǫ0) ~n · ( ~B(2) − ~B(1)) = 0

~n× ( ~E(2) − ~E(1)) = 0 ~n× ( ~B(2) − ~B(1)) = µrµ0 ~g
(2.2)

with ~n being the surface normal vector pointing to medium 2, and σ and ~g being

the surface charge and current densities. Two important cases are a perfect

electric conductor as medium 2 or the interface between two dielectric media

(with µr = 1 each). At the surface S of a perfect conductor, ~B⊥|∂S and ~E‖|∂S
must vanish (the indices ⊥ and ‖ denote the parts of the vector perpendicular

respectively parallel to the surface), while ~E⊥|∂S and ~B‖|∂S are discontinuous. At

the interface between two dielectrics, the quantities ǫ
(j)
r

~E
(j)
⊥ , ~B

(j)
⊥ , ~B

(j)
‖ and ~E

(j)
‖

(j = 1, 2) are continuous.

In absence of free charges and currents, RF fields with harmonic time dependence

e−iωt, where ω is the angular frequency, are described by the vectorial Helmholtz

equation

(∆ + n2(~r) k2)





~E

~B



 = 0 . (2.3)
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Here, n(~r) is the index of refraction at a given point ~r in space, and k = ω/c is

the wave number with c the speed of light in vacuum. The solutions ~E and ~B

and the corresponding wave numbers k are called the eigenfunctions and -values

of the Helmholtz equation.

2.2 The Helmholtz equation in cylindrical coor-

dinates

Due to the cylindrical geometry of the setups depicted in Fig. 2.1, the vectorial

Helmholtz equation (2.3) is solved in cylinder coordinates. Therefore we assume

for the fields a harmonic z–dependence, i.e. ~E, ~B ∝ e±ikzz, sin (kzz) or cos (kzz)

and a time dependence of e−iωt, which will be suppressed in the following calcu-

lations. We also define ~At = Ax~ex+Ay~ey as the transverse component of a vector

~A, respectively ∆t =
∂2

∂x2 +
∂2

∂y2
. Then the fields fulfill

(∆t + γ2)





~E

~B



 = 0 (2.4)

with

ω2

c2
= k2 =

γ2 + k2
z

n2
. (2.5)

Some simple calculations yield that the transverse components of ~E and ~B, ~Et

and ~Bt, can be expressed solely in terms of the field components Ez and Bz,

~Et = 1
γ2
~∇t

∂Ez

∂z
− i ω

γ2~ez × ~∇tBz

~Bt = 1
γ2

∂Bz

∂z
+ i ωn

2

c2γ2~ez × ~∇Ez ,
(2.6)

so that only the Helmholtz equation for Ez and Bz needs to be solved [40].

Depending on the boundary conditions, these equations can be further simplified

by considering transverse magnetic (TM) modes with Bz = 0 or transverse electric

(TE) modes with Ez = 0.
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2.3 Metallic cavity

For a metallic cavity as shown in Fig. 2.1(a) with bottom plate at z = 0 and

top plate at z = b, the z–dependence of the fields must be Ez ∝ cos (kzz) and

Bz ∝ sin (kzz) with kz = nzπ/b and nz integer due to the boundary conditions

described in section 2.1. Accordingly, one obtains Ez|∂S = 0 and ∂Bz

∂n

∣∣
∂S

= 0 at

the boundary ∂S in the x–y–plane, with ~n being the normal vector to ∂S. So,

Ez and Bz are not coupled, and all modes can be classified as TMnz and TEnz

modes. Below the frequency

f2d =
c

2nb
, (2.7)

only TM0 modes exist and the resonator is quasi two-dimensional, where n is the

index of refraction of the medium filling the cavity (e.g. air). With n = 1, the

fields for the TM0 modes are

~E = Ψ(x, y)e−iωt~ez

~B = i
ω
~ez × ~∇tΨ(x, y)e−iωt .

(2.8)

The function Ψ(x, y) fulfills the scalar Helmholtz equation

(∆ + k2)Ψ = 0 with Ψ|∂S = 0 , (2.9)

which is identical to the stationary Schrödinger equation for a 2d quantum bil-

liard. Therefore, Ψ is also called wave function. Due to this mathematical iden-

tity, flat cylindrical microwave resonators are used as analogs of quantum billiards

[16, 17].

2.4 Dielectric plate between two metal plates

For the resonator setup shown in Fig. 2.1(b), the z–dependence of the fields Ez

and Bz is the same as in the previous section, but the boundary conditions in

transverse direction are more complicated. At an interface ∂S between two di-

electric media 1 and 2 with indices of refraction n1, 2 the continuity conditions
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parallel to ~ez can be summarized as [41]


 E

(1)
z

B
(1)
z



∣∣∣∣∣∣
∂S

=


 E

(2)
z

B
(2)
z



∣∣∣∣∣∣
∂S

A1


 E

(1)
z

cB
(1)
z



∣∣∣∣∣∣
∂S

= A2


 E

(2)
z

cB
(2)
z



∣∣∣∣∣∣
∂S

(2.10)

with the matrices Aj

Aj =




i
kn2

j

γ2
j

∂
∂n

1
γ2
j

∂
∂z

∂
∂l

− 1
γ2
j

∂
∂z

∂
∂l

i k
γ2
j

∂
∂n


 . (2.11)

Here, ~n is the unit vector normal to ∂S, the unit vector ~l = ~ez × ~n lies in the

x–y–plane and is tangential to ∂S, and γj =
√
n2
jk

2 − k2
z . The important point

is that Ez and Bz are coupled via the matrices Aj , so that there are in general no

pure TM or TE modes. They are decoupled only when the off-diagonal elements

of Aj vanish, e.g. for kz = 0. For the present setup, this is only the case for TM0

modes. Then, the continuity conditions simplify to

E
(1)
z |∂S = E

(2)
z |∂S

and ∂E
(1)
z

∂n

∣∣∣
∂S

= ∂E
(2)
z

∂n

∣∣∣
∂S

(2.12)

for TM0, respectively,

B
(1)
z |∂S = B

(2)
z |∂S

and 1
n2
1

∂B
(1)
z

∂n

∣∣∣
∂S

= 1
n2
2

∂B
(2)
z

∂n

∣∣∣
∂S

(2.13)

for TE0 modes. The fields obey the scalar Helmholtz equation

(∆ + n2(~r)k2)Ψ = 0 (2.14)

where the wave function Ψ signifies Ez for TM respectively Bz for TE modes.

It should be noted that a TE0 mode can only exist in a dielectric cylinder in-

finitely extended in the z–direction. The general properties of the solutions of the

8



Helmholtz equation (2.14) for open 2d dielectric resonators are summarized in the

next section. It can usually be solved only numerically, e.g. with the boundary

element method [42]. The only case of an analytic solution is the dielectric circle,

which will be given in section 2.6.

2.5 Quasi-bound modes in open dielectric

resonators

While the Helmholtz equation (2.9) for closed metallic resonators has real eigen-

values k and eigenfunctions Ψ, only so-called quasi-bound states exist in a dielec-

tric resonator [described by Eq. (2.14)] due to its openness. The related eigen-

values can be calculated as the poles (i.e. resonances) of the scattering matrix

[43–45]. The quasi-bound modes or resonances are characterized by a complex

wave number k whose real and imaginary part correspond to the resonance fre-

quency respectively width. The width signifies the losses due to radiation. For

a time dependence e−iωt the imaginary part of k = ω/c is negative, and the

resonance width (full width at half maximum, FWHM) equals

Γ = −2
c

2π
Im (k) , (2.15)

the resonance frequency

f =
c

2π
Re (k) . (2.16)

The decay rate of the energy stored in the resonator is 2πΓ, and the quality factor

of a resonance is

Q =
f

Γ
= − Re (k)

2Im (k)
. (2.17)

The quality factors of the resonances of a resonator usually differ by several orders

of magnitude, and for most applications like lasers with low threshold only those

with high Qs are relevant. The above statements generally apply both to 2d and

to 3d dielectric resonators.
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2.6 The two-dimensional dielectric circle

The 2d dielectric circle billiard is simply a dielectric disk with radius R and

index of refraction n > 1 surrounded by air (n = 1). The solution of the scalar

Helmholtz equation (2.14) in polar coordinates (r, ϕ) is

Ψ(1)(r, ϕ) = E
(1)
0 Jm(nkr)f(ϕ) : r ≤ R

Ψ(2)(r, ϕ) = E
(2)
0 H

(1)
m (kr)f(ϕ) : r ≥ R

(2.18)

with Ψ corresponding to Ez for TM and to Bz for TE modes. For r > R, only

outgoing solutions are considered because the field mode is excited inside the

dielectric disk. Here, Jm(x) is a Bessel-function of the first kind and H
(1)
m (x) a

Hankel-function of the first kind and order m, where m is the azimuthal quantum

number. The function f(ϕ) is either equal to cos (mϕ) or sin (mϕ), so that all

modes with m > 0 are doubly degenerate. Imposing the boundary conditions for

(a)

α

(b)

Fig. 2.2: (a): Calculated intensity distribution of a dielectric circle with index

of refraction n = 1.42. The related mode has quantum numbers (m =

80, nr = 2), rescaled resonance frequency Re (kR) = 65.6 and quality

factor Q = 1.4 · 107. The plot shows |Ψ|2 inside the circle in false colors

(blue is low and red high intensity). There are 2m maxima in azimuthal

and nr = 2 rings in radial direction. The mode is of the whispering

gallery type with its field intensity located close to the boundary of the

circle. (b): Trajectory corresponding to this mode. The dashed line is

the caustic of the trajectory and α = 59.2◦ the angle of incidence with

respect to the surface normal.

10



TM [Eq. (2.12)] respectively TE modes [Eq. (2.13)] on the functions Eq. (2.18)

at r = R yields the quantization condition

µn
J′m(nkR)

Jm(nkR)
=

H′(1)
m (kR)

H
(1)
m (kR)

with µ =





1 : TM

1
n2 : TE

(2.19)

for the dielectric circle [44]. It can be solved numerically. For each m there

is an infinite number of roots km,nr , where nr is the radial quantum number.

An example of a calculated wave function is shown in Fig. 2.2(a). The graph

shows the field intensity |Ψ|2 for the (m = 80, nr = 2)-mode. The mode has a

very high quality factor of Q = 1.4 · 107 and its intensity is located close to the

boundary of the disk. Such modes are called whispering gallery modes (WGMs).

The term comes from the acoustic effect that a person standing at the wall of

a circular room and whispering in azimuthal direction can be heard along the

circumference, but not in the middle of the room. This phenomenon was first

discovered by Rayleigh in St. Paul’s cathedral, London, in 1910 (cf. [46, 47]). In

fact, all the high-Q modes of the dielectric circle are WGMs with large m and low

nr. Their high quality factors can be explained as follows: Each resonance has

an angular momentum of Lz = ~m. A classical trajectory with the same angular

momentum has an angle of incidence α with respect to the surface normal given

by [44]

sinα =
m

nkR
. (2.20)

Such a trajectory is shown in Fig. 2.2(b). It has a large angle of incidence α so

that the ray is confined in the resonator by TIR, and the corresponding resonance

mode has only minimal losses. These are due to tunneling escape at the curved

interface [44]. If α is smaller than αcrit = arcsin (1/n), then a part of the ray

escapes at each reflection according to the Fresnel formulas (so-called refractive

escape), and the corresponding mode has a low quality factor.
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2.7 Three-dimensional dielectric plate and ef-

fective index of refraction

The resonator setup shown in Fig. 2.1(c) is the typical setup of microlasers: A

dielectric disk of arbitrary shape containing the active medium is placed atop

a small pillar [22], on top of a substrate [48] or sandwiched between media of

lower index of refraction [49]. The most simple treatment of such setups is to

approximate the bulk of the resonator as a dielectric slab waveguide infinitely

extended in the plane of the disk (see e.g. [38, 50]). Although the Helmholtz

equation for such an infinite slab waveguide can be solved analytically, this is only

an approximation because the lateral boundaries of the disk are ignored. They

will be discussed further below. The electromagnetic waves can be confined in the

slab waveguide by TIR. This corresponds to rays traveling through the waveguide

in a zig-zag fashion with angle of incidence greater than the critical angle as

illustrated in Fig. 2.3. The fields in the slab waveguide can again be classified

as TM or TE modes, and the ansatz for Ez, respectively, Bz corresponding to

Fig. 2.3 is

Ψ(x, y)e−iωt ·





(
a1e

ikzz + a2e
−ikzz

)
: inside the slab

bje
−qj |z| : outside the slab

, (2.21)

z

x, y

b n

n1

n2

n
~k

~k‖

kz~ez
θ

Fig. 2.3: Ray traveling through an infinite dielectric slab waveguide. The slab

with index of refraction n and thickness b is surrounded by media of

lower indices of refraction n1, 2. The wave vector n~k is decomposed into

its components perpendicular (kz~ez) and parallel (~k‖) to the plane of

the waveguide, where |~k‖| = γ = neff |~k|. The angle of incidence on the

surfaces is θ.
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where a1,2 and b1,2 are constants and Ψ fulfills (∆t + γ2)Ψ = 0. Due to the

TIR, only evanescent fields exist outside the slab which decay exponentially in

z–direction with

qj =
√
γ2 − n2

jk
2 . (2.22)

The effective index of refraction is defined as

neff = n sin θ , (2.23)

where θ is the angle of incidence of the rays (see Fig. 2.3). It describes the phase

velocity of the waves in the plane of the slab, ω/γ = c/neff , and the Helmholtz

equation for Ψ can be written as

(∆ + n2
effk

2)Ψ(x, y) = 0 . (2.24)

The allowed values for kz are determined from the condition

e2ikzbr1(θ)r2(θ) = 1 , (2.25)

where rj(θ) is the Fresnel coefficient for reflection at the medium j with angle

of incidence θ with respect to the surface normal. For θ larger than the critical

angle, the Fresnel coefficients can be written in the form

rj = exp (−2iδj) (2.26)

with

δj = arctan


νj

√
n2 sin2 θ − n2

j

n cos θ


 . (2.27)

The parameter νj equals n2/n2
j for TM and 1 for TE polarization. With the

definition of neff we furthermore obtain that

kz = k
√

n2 − n2
eff . (2.28)

Inserting Eqs. (2.26)–(2.28) into Eq. (2.25) leads to the quantization condition

kb
√

n2 − n2
eff = arctan

(
ν1

√
n2
eff − n2

1√
n2 − n2

eff

)
+ arctan

(
ν2

√
n2
eff − n2

2√
n2 − n2

eff

)
+ ζπ (2.29)
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for the effective index of refraction [38]. The index ζ = 0, 1, 2, . . . denotes the

excitation in z–direction. Usually, the thickness b is chosen such that only modes

with ζ = 0 exist in the frequency range of interest. The effective index of refrac-

tion only depends on kb, i.e. the ratio between thickness b and wavelength λ, and

the indices of refraction. Equation (2.29) can also be deduced by matching the

fields in- and outside the slab [Eq. (2.21)] using the boundary conditions from

section 2.1.

The idea for modeling the flat 3d dielectric plate of Fig. 2.1(c) is to treat it as a

2d plate with index of refraction equal to neff . Accordingly the scalar Helmholtz

equation

∆Ψin,out =





−n2
effk

2Ψin : ~r ∈ S

−k2Ψout : ~r /∈ S
(2.30)

is used for the wave function Ψ(x, y) in analogy to Eq. (2.14), where S is the

domain of the dielectric plate. The material outside the plate is assumed to be

air with n = 1. Furthermore, boundary conditions analogous to Eqs. (2.12) and

(2.13) are imposed, i.e.

Ψin|∂S = Ψout|∂S and µ
∂Ψin

∂n

∣∣∣∣
∂S

=
∂Ψout

∂n

∣∣∣∣
∂S

(2.31)

with µ = 1 for TM and µ = 1/n2
eff for TE modes. Equations (2.30) and (2.31)

constitute the so-called neff–model for flat dielectric resonators. The boundary

conditions Eq. (2.31) are a simplification as they assume that the fields are ho-

mogeneous in z–direction. If this is not the case the more complicated boundary

conditions of Eq. (2.10) have to be applied, implying that Ez and Bz are coupled

so that there are no states of pure polarization. Furthermore, diffraction at the

edges of the disk is neglected. Therefore, the neff–model only provides an appro-

ximate description of the resonator. A drawback of the neff–model is that it uses

a separation of the z and in-plane variables although this is not possible at the

cylindrical sidewalls. Its advantage is that it reduces the dimensionality of the

problem and that is why it is commonly used. A detailed experimental test of its

accuracy concerning the resonance frequencies and widths is given in chapter 3.
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2.8 Measurement of frequency spectra and scat-

tering matrix

The resonances of a microwave resonator can be determined experimentally with

a vectorial network analyzer (VNA). Two different VNAs, models HP 8510C and

N5230A by Agilent Technologies, were used for the experiments presented in this

thesis. Antennas attached to the resonator are used to couple in and out RF

power (details on the antennas and their usage are given in the corresponding

chapters). The antennas are connected via coaxial cables to the VNA, which

measures the so-called S-parameter. The squared modulus of the S-parameter is

the ratio between the input and output signal of the VNA, or explicitly

|Sba(f)|2 =
Pout,b

Pin,a

(2.32)

where Pin,a is the power coupled into the resonator via antenna a and Pout,b is the

power coupled out via antenna b for a given frequency f . The function |Sba(f)|2

plotted versus the frequency f yields the frequency spectrum. For b 6= a it is

called a transmission and for b = a a reflection spectrum. The VNA furthermore

measures the phase shift between input and output signal, or the S-parameter

Sba(f), which in fact is a complex quantity.

The system consisting of the resonator and the antennas can be viewed as a

scattering system with the antennas acting as scattering channels where Sba is

the scattering matrix element for scattering from channel a to channel b. It

can treated with methods developed in nuclear physics for compound nucleus

reactions [51]. For an ideal metallic cavity, the scattering matrix in the vicinity

of an isolated resonance is of Breit-Wigner shape, and for a series of weakly

overlapping resonances it is well described by [52]

Sba(f) = δba − i
∑

j

γa
j γ

b
j

f − fj + iΓj/2
. (2.33)

The factors in the numerator are proportional to the electric field of the resonance

at the positions ~ra,b of the antennas, i.e. γa,b
j ∝ Ez(~ra,b). The total width of each

resonance is Γj = Γa
j+Γb

j , where Γ
a,b
j = |γa,b

j |2 are the partial widths which describe

the loss of energy due to the coupling of the antennas to the resonator. The
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transmission scattering matrix element at a resonance frequency fj is accordingly

Sba(fj) ∝ Ez(~rb; fj)Ez(~ra; fj) . (2.34)

This can be exploited to measure the field distributions of resonances with the

so-called scanning antenna technique, which will be treated in more detail in

chapter 4. Another method of measuring field distributions, the perturbation

body method, is described in chapter 3.

For an open dielectric resonator, the resonance shapes can deviate from the sim-

ple Breit-Wigner shape. In addition to the resonance terms in Eq. (2.33), Sba

includes contributions due to direct transmission between the antennas. For

closed cavities, the direct transmission is usually negligible, but this is not the

case for dielectric cavities. This can lead to resonances with Fano profile [53], but

usually the resonance shape is still described reasonably well by the Breit-Wigner

shape, and the resonance frequencies and widths are extracted from the measured

spectra using Eq. (2.33) with the program GWignerfit [54].

In an experiment, there are losses in addition to the energy coupled out by the

antennas. First, there are Ohmic losses (ΓΩ) in the metallic components of a

cavity. These can be reduced almost to zero with superconducting cavities made

of niobium or lead-plated copper [55]. In an open dielectric resonator, there are

furthermore losses due to radiation and due to absorption in the dielectric ma-

terial. The radiation losses (Γrad) are accounted for by Eq. (2.15) and are an

intrinsic property of each resonance like the resonance frequency. Therefore, they

cannot be avoided or reduced except by changing the resonator shape. The ab-

sorption losses are determined by the properties of the dielectric medium, which

are usually characterized by the loss tangent

tan δ =
|Im (ǫr) |
Re (ǫr)

, (2.35)

that is, the angle between the real and imaginary part of the dielectric constant.

For low loss materials like Teflon, the loss tangent is in the order of 10−4–10−3,

and the absorption loss Γabs of the resonator is approximately given by

Γabs = f tan δ . (2.36)
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The total width of a resonance (including possible Ohmic losses if metal plates

are used) is then

Γj = Γa
j + Γb

j + ΓΩ + Γj
rad + Γabs . (2.37)

The resonance widths in an experiment are therefore expected to be somewhat

larger than predicted by the solutions of the Helmholtz equation, as there only

Γj
rad is accounted for.
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3 Test of a two-dimensional approxima-

tion for flat resonators

Dielectric microcavities have been constructed with many different shapes and ge-

ometries (including e.g. microtoroids [24] and -spheres [25]), but the most common

ones are flat cylindrical plates with circular [22] or asymmetric cross section [56].

This typical geometry is illustrated in Fig. 3.1(b), with the thickness b of the disk

being usually much smaller than its transverse dimensions. The limiting cases

are the 2d disk in Fig. 3.1(a) and the infinitely long cylinder in Fig. 3.1(c). The

resonance frequencies of 2d dielectric resonators of arbitrary shape can be com-

puted e.g. with the boundary element method [42], and quasi-2d resonators can

be realized experimentally by squeezing a dielectric plate between two (infinitely

extended) metal plates (see section 2.4). Such a setup has been constructed with

macroscopic dielectric microwave resonators [33] and is also used in chapter 5.

However, it is not suitable for microcavities due to the large losses in metals at

optical frequencies. The case of an infinitely long cylinder can also be reduced

to a 2d problem by separation of variables (see [41] and sections 2.2 and 2.4).

An experimental realization are e.g. ZnO nanorods [57] or liquid microjets [58].

The most common setup, the microdisk with finite thickness b, however, cannot

be solved analytically, and 3d numerical simulations using e.g. the finite diffe-

rence time domain method are feasible, but computationally demanding [59, 60].

(a) (b) (c)

b

Fig. 3.1: Geometry of microlasers. The typical design of a plate with thickness b

much smaller than its transverse dimension is shown in panel (b). The

limiting cases are the 2d disk shown in panel (a) and the infinitely long

cylinder in panel (c). The cross section is circular here, but can generally

be of any shape.
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Therefore, a 2d approximation for the disk with finite thickness is favorable. This

is commonly done by introducing an effective index of refraction neff as explained

in section 2.7. In the following, we will test the neff–model rigorously by compa-

ring measured resonance frequencies and widths of two different circular dielectric

microwave resonators with calculations based on the neff–model. The key results

have been published in [61].

3.1 Experimental setup and measurements

Figure 3.2 shows a sketch of the experimental setup: A circular Teflon disk is

hanging down from three metal suspensions, but is otherwise surrounded by air.

Two antennas put on opposite sides of the disk are used to couple in and out RF

power and the whole setup is surrounded by a thermostat to keep it at a fixed

temperature. The three suspensions form an equilateral triangle. They perturb

the resonator only negligibly due to two reasons: First, the only observed modes

are of WGM type and the distance of the suspensions from the center of the disk is

only 145 mm compared to a radius of R = 275 mm, so that the WGMs which are

localized near the boundary of the disk have no overlap with the suspensions, and

second, while the suspensions are made of metal, the actual bolts going through

the Teflon disk are also made of Teflon. Further perturbations are caused by

the antennas themselves and the bending of the resonator under its own weight,

suspensions

RF cable

antenna Teflon disk

Fig. 3.2: Schematic side view of the experimental setup (not to scale). The Teflon

disk is hanging on three metal suspensions. Two dipole antennas pro-

truding from an RF cable are placed close to the rim of the disk on

opposite sides. Reprinted from [61].
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Fig. 3.3: Sketches of the two antenna types. Left: The dipole antenna is an in-

ner conductor protruding about 4.5 mm from a semi-rigid coaxial cable.

Right: Curved antenna with a total length of about 30 mm. The cylin-

drical sidewall of the Teflon disk is shown in gray in the background.

Both types of antennas are placed directly alongside the sidewall of the

disk to obtain good coupling to the resonator.

but these shift the resonance frequencies by less than 2% of the mean resonance

spacing, i.e. less than 4 MHz for a resonance spacing of about 120 MHz. The

two types of antennas used are shown in Fig. 3.3: Vertical dipole antennas were

utilized to excite mainly TM modes, while the so-called curved antennas excite

mainly TE modes. The antennas may slightly lift the double degeneracy of the

WGMs.

The experiments were performed with circular disks made of Teflon (by the com-

pany Grünberg Kunststoffe GmbH). Two disks with different thickness b were

studied to investigate the relation between the aspect ratio R/b and the preci-

sion of the neff–model. Disk A has a radius of R = 274.8 mm and a thickness

of b = 16.7 mm, and disk B of R = 274.9 mm and of b = 5.0 mm. A frequency

of 10 GHz corresponds to kR = 57.6, and kb = 3.5 (disk A) and kb = 1.0 (disk

B), respectively. The indices of refraction were determined as n = 1.434 ± 0.01

for disk A and n = 1.439 ± 0.01 for disk B with a split-cylinder resonator tech-

nique [62, 63]. A frequency spectrum of disk A measured with dipole antennas is

shown in Fig. 3.4. The spectrum shows a superposition of several series of almost

equidistant resonances. Each series (or subspectrum) consists of modes with fixed

polarization and radial quantum number nr and increasing azimuthal quantum

number m as indicated in the lower panel of Fig. 3.4. The resonance spacings

of each subspectrum are of the order of 120–130 MHz, with slightly larger reso-

nance spacings for the series with larger nr. For each subspectrum, the resonance

20



F
re

q
u
en

cy
(G

H
z)

F
re

q
u
en

cy
(G

H
z)

|S12||S12|

0
.0

1

0
.0

2

0
.0

2

0
.0

3

0
.0

4

0
.0

4

0
.0

6

6
7

8

8

9

9
1
0

1
1

1
2

1
3

8
.5

7
.5

TE(49,1)

TE(50,1)

TE(51,1)

TE(52,1)

TE(53,1)

TE(54,1)

TE(55,1)

TE(56,1)

TE(57,1)

TE(58,1)

TE(59,1)

TE(60,1)

TM(47,1)

TM(48,1)

TM(49,1)

TM(50,1)

TM(51,1)

TM(52,1)

TM(53,1)

TM(54,1)

TM(55,1)

TM(56,1)

TM(57,1)

TM(58,1)

F
ig
.
3.
4:

F
re
q
u
en
cy

sp
ec
tr
u
m

of
d
is
k
A

m
ea
su
re
d
w
it
h
d
ip
ol
e
an

te
n
n
as
.
T
h
e
tr
an

sm
is
si
on

am
p
li
tu
d
e,

i.
e.

|S
1
2
|,

is
sh
ow

n
w
it
h

re
sp
ec
t
to

th
e
fr
eq
u
en
cy

f
.

In
th
e
m
ag
n
ifi
ed

p
ar
t
of

th
e
sp
ec
tr
u
m
,
th
e
re
so
n
an

ce
s

ar
e
la
b
el
ed

w
it
h
T
M

or
T
E
(m

,n
r
)
to

in
d
ic
at
e
th
ei
r
p
ol
ar
iz
at
io
n
as

w
el
l
as

th
ei
r
az
im

u
th
al

an
d
ra
d
ia
l

q
u
an

tu
m

n
u
m
b
er
s
m

an
d
n
r
,
re
sp
ec
ti
ve
ly
.
T
w
o
se
ri
es

of
re
so
n
an

ce
s
ar
e
ob

se
rv
ed
:
th
e
b
ro
ad

er
an

d
la
rg
er

re
so
n
an

ce
s
co
rr
es
p
on

d
to

m
o
d
es

w
it
h
T
M

p
ol
ar
iz
at
io
n
an

d
ra
d
ia
l
q
u
an

tu
m

n
u
m
b
er

n
r
=

1,
th
e
sh
ar
p
er

an
d
sm

al
le
r
re
so
n
an

ce
s
to

m
o
d
es

w
it
h
T
E
p
ol
ar
iz
at
io
n
an

d
n
r
=

1.
R
es
on

an
ce
s
w
it
h
n
r
>

1
ca
n
al
so

b
e

se
en

at
h
ig
h
er

fr
eq
u
en
ci
es
.
R
ep
ri
n
te
d
fr
om

[6
1]
.

21



widths decrease with increasing azimuthal quantum number, while resonances

with higher radial quantum number have larger widths than those with lower nr

at the same frequency. This can be explained within the ray-picture presented in

section 2.6: Each resonance can be associated with a classical trajectory of the

same angular momentum Lz = ~m. A higher angular momentum, respectively,

azimuthal quantum number implies a larger angle of incidence [cf. Fig. 2.2(b)]

and thus lower radiation losses. As a consequence, the different subspectra only

become distinguishable above a certain frequency.

The polarization (TM or TE) of the resonances can be guessed from their

different amplitudes for dipole or curved antennas, but the polarizations were

additionally determined unambiguously with a perturbation technique: a metal

plate plate was introduced parallel to the Teflon disk with varying vertical dis-

tance D, shifting the resonance frequencies as shown in Fig. 3.5. The direction

of the shift depends on the polarization of the modes: TE modes are shifted to

higher frequencies with decreasing distance D while TM modes are shifted to

lower frequencies. A detailed explanation of this effect is given in appendix A.1.

In order to determine the quantum numbers of the resonance modes, the in-

Frequency (GHz)
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Fig. 3.5: Shift of resonances due to the influence of a metal plate parallel to

the Teflon disk. The solid line is the unperturbed spectrum (same as in

Fig. 3.4), the dotted line is the spectrum with a metal plate at a distance

of D = 16 mm, the dashed line for D = 10 mm and the dash-dotted line

for D = 6 mm. With decreasing D the TE modes are shifted to higher,

the TM modes to lower frequencies.
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(a) 7.94 GHz: TM (50, 1) (b) 13.80 GHz: TM (92, 2) (c) 14.33 GHz: TM (91, 3)

0

1

Fig. 3.6: Measured intensity distributions of three TM modes with quantum num-

bers (m,nr). A mode with azimuthal quantum number m and radial

quantum number nr has 2mmaxima in azimuthal direction and nr rings.

Shown are modes of whispering gallery type, as are all other identifiable

modes. Therefore, the intensity distributions were only measured in the

outer ring of the resonator. Adapted from [61].

tensity distributions were measured with the perturbation body method [64]. A

perturbation body made of magnetic rubber [65, 66] was moved along the sur-

face of the disk by a computer controlled positioning unit developed in [66]. The

dimensions of the cylinder (diameter of 4 mm and height of 8 mm) are small

compared to a free space wavelength of λ = 30 mm at 10 GHz. The shift of the

resonance frequency fj induced by the perturbation body at position ~r equals

∆fj(~r) ∝ −| ~Ej(~r)|2 . (3.1)

Thus, the electric field intensity can be mapped by measuring ∆fj for different

positions of the perturbation body. In practice, only the shift of the phase of

the scattering matrix element Sba at the resonance is measured, which is in turn

proportional to the shift of the resonance frequency1, so that

∆ arg [Sba(fj)] ∝ −| ~Ej(~r)|2 . (3.2)

It should be noted that this simple relation between phase shift and field intensity

fails for strongly overlapping resonances. Three examples of measured intensity

distributions are shown in Fig. 3.6. The modes are of the WGM type, as are all

1Consider Eq. (2.33) for an isolated resonance and a small shift of the resonance frequency.
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measured resonances. Therefore, the intensity distributions were only measured

close to the boundary of the disk. The azimuthal and radial quantum numbers

(m,nr) were determined simply by counting the number of field maxima in radial

and azimuthal direction (see section 2.6). The knowledge of the polarization

and quantum numbers enables a direct comparison of the measured resonance

frequencies and widths with those computed from the neff–model.

3.2 Comparison of model and experiment

In the following, the experimental data is compared to calculations based on the

neff–model, i.e. Equations (2.30) and (2.31). The solution of this set of equations

for the circle is then the same as for the 2d dielectric circle, but with the index of

refraction n replaced by the effective index of refraction, neff(k). So the resonance

frequencies and widths are computed by solving

µneff
J′m(neffkR)

Jm(neffkR)
=

H′(1)
m (kR)

H
(1)
m (kR)

with µ =





1 : TM

1
n2
eff

: TE
. (3.3)

The effective index of refraction is calculated according to Eq. (2.29), with n1 =

n2 = 1 for air, and with n and b for disk A and B given in the previous section. The

effective index of refraction is shown in Fig. 3.7(a) for disk A and in Fig. 3.7(b)

for disk B. The effective index of refraction is increasing monotonically with

increasing frequency and is always in between the indices of refraction of the

surrounding media (nj = 1 here) and the index of refraction of the Teflon itself.

The solid lines are for the TM and the dashed lines for the TE modes. For a

given frequency, neff for disk A is always larger than neff for disk B because disk

A is thicker. At about 8.76 GHz, modes with higher z–excitation (ζ = 1) begin

to exist for disk A, and further z–excitations for higher frequencies. Obviously,

neff is strongly frequency dependent, and the dependence on (the real part of) k

is fully taken into account when solving Eq. (3.3).
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Fig. 3.7: Effective index of refraction neff with respect to the frequency for disk A

with b = 16.7 mm (left) and disk B with b = 5.0 mm (right). The solid

lines correspond to the TE modes, the dashed lines to the TM modes

with various z–excitations. The dotted lines are the indices of refraction

of the Teflon and air, respectively.

3.2.1 Results for disk A

The difference between the measured resonance frequencies fexpt of disk A (b =

16.7 mm thick) and those calculated with Eq. (3.3), fcalc, are shown in Fig. 3.8.

There are actually two series of data points for each radial quantum number nr

in the case of the TE modes in Fig. 3.8(a) because the curved antennas used in

the measurement slightly lift the degeneracy of the modes. The data points scat-

ter around the frequency dependent average by about 5 MHz. This stems from

problems with the determination of the resonance frequencies, either because

the resonances are badly shaped (at lower frequencies) or because of overlapping

resonances (at higher frequencies). Some resonances are also missing in the ex-

perimental data due to the overlap with others. Although the deviations between

the measured and computed resonance frequencies are less than 1%, they must

still be considered significant. The deviations are as large as half a resonance

spacing (up to 60 MHz compared to a spacing of 120 MHz), rendering impossible

the correct identification of the resonances just by comparison with the model

calculations. The deviations are a bit larger for modes with higher nr, especially

for the TE modes. With increasing frequency the difference between the calcu-

lated and measured resonance frequencies decreases and appears to reach a finite

value, which is different for the two polarizations, though. Thus, although the
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Fig. 3.8: Difference between measured (fexpt) and calculated (fcalc) resonance fre-

quencies with respect to fexpt for disk A. The different symbols corres-

pond to the different radial quantum numbers (× : nr = 1; ◦ : nr = 2;

+ : nr = 3). (a) TE modes: the range of azimuthal quantum numbers

for nr = 1 is m = 37–148. (b) TM modes: the range of azimuthal

quantum numbers for nr = 1 is m = 39–150. The measurement was

done with dipole antennas, and no break up of degenerate modes was

observed. Reprinted from [61]

calculations are more precise in the high frequency or, equivalently, semiclassi-

cal limit, the experimental data indicates a systematic failure of the neff–model

in all frequency regimes. Furthermore, the calculations overestimate the reso-

nance spacings by about 0.4 MHz, though the exact magnitude of this deviation
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Fig. 3.9: Comparison of the spacings ∆fm = fm − fm−1 between consecutive

resonances for the TM modes of disk A with nr = 1. The calculated

spacings (shown as solid line to guide the eye) are slightly, but systemat-

ically larger than the measured ones. The deviation between calculated

and measured spacings is in the order of 0.4 MHz, as can be seen from

the magnified part (bottom panel).

is hard to tell due to the uncertainty in the experimental data. This is illustrated

in Fig. 3.9, which shows the resonance spacings ∆fm between TM modes with

nr = 1. The experimental resonance spacings (×) lie slightly, but systematically

below the calculated ones (solid line). Thus the difference between calculated

and measured spacings is small and hardly visible when comparing measured and

calculated spectra, but adds up significantly over a larger frequency range. The

same applies to other radial quantum numbers and the TE modes.

The calculated resonance frequencies and thus their deviations from the mea-

sured ones depend sensitively on the index of refraction n, which is only known

with an uncertainty of ∆n = 0.01. In Fig. 3.10, the differences fexpt−fcalc between

the measured resonance frequencies and three calculations with different indices

of refraction are shown. The index of refraction was varied by only 0.002 there,
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Fig. 3.10: Difference between measured (fexpt) and calculated (fcalc) resonance

frequencies with respect to fexpt for the TE modes of disk A. Results

from three different calculations with three different indices of refrac-

tion n = 1.432 (◦), 1.434 (×), and 1.436 (+) are shown. Only resonan-

ces with nr = 1 are considered for the sake of clarity. Reprinted from

[61].

which is even less than ∆n. Only the data points with nr = 1 are displayed since

those for higher nr show a similar behavior. The magnitude of the deviations is

roughly the same for low frequencies, but very different in the semiclassical regime.

Accordingly, due to the experimental uncertainty ∆n, it is unclear whether the

deviations reach a finite value for high frequencies or whether they even increase

again at some point. In order to come to a conclusion independent of the mea-

sured n, the index of refraction was also considered as a fit parameter called

ñ. For each resonance, it was varied such that Eq. (3.3), which depends on the

index of refraction implicitly via neff , yields the measured resonance frequency.

The thus obtained values of ñ are expected to scatter around the real index of

refraction n if the neff–model describes the resonator correctly. Figure 3.11 shows

the fitted ñ–values. The data points lie inside the error band n−∆n except for

low frequencies, but they do not scatter around some constant value and form

three distinct curves corresponding to the different radial quantum numbers in-

stead of just one. This is clear evidence for the failure of the neff–model, since n

should not depend on the polarization or nr. Furthermore, the ñ–curves show a

relatively strong frequency dependence, but it is known from literature and was
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Fig. 3.11: Values of the index of refraction ñ for which Eq. (3.3) yields the mea-

sured resonance frequencies for (a) the TE modes and (b) the TM

modes of disk A. The different symbols denote the different radial

quantum numbers (×: nr = 1; ◦: nr = 2; +: nr = 3). The solid

line indicates the real index of refraction n of the disk, the dashed line

the value of n − ∆n, i.e. the lower end of the error band for n. The

systematic deviation of the data points from the measured n signifies

the failure of the neff–model. Reprinted from [61].

confirmed by our own experiments that Teflon has negligible dispersion in the

considered frequency range. We conclude that, since it is impossible to achieve

agreement between fexpt and fcalc in the whole frequency range with a single,

fixed value of n, the deviations between model and experiment are not due to

an incorrectly determined index of refraction. The same applies for the radius R
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and the thickness b, or combinations of all three parameters. With experimental

inaccuracies for the parameters and the measured resonance frequencies excluded

as sources for the observed deviations, the following conclusion has to be drawn:

the calculations do not correctly describe the measured resonance frequencies due

to systematic errors of the neff–model.

As a further test of the neff–model, Fig. 3.12 shows the comparison of measured

and calculated resonance widths of the TM modes. The experimental resonance

widths Γexpt are obtained by fitting Breit-Wigner curves to the measured reso-

nance shapes and contain losses due to radiation, absorption and the antennas

as described in section 2.8. The widths Γcalc are computed via Eq. (2.15) and

account only for the radiation losses. Even though the measured widths contain

additional loss mechanisms, the calculated widths are up to twice as large for low

frequencies (up to 8 GHz for nr = 1 and up to 10.5 GHz for nr = 2). On the

other hand, the measured widths saturate at a value of about 4 MHz for higher

frequencies. There the absorption and antenna losses, which are approximately
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Fig. 3.12: Measured (Γexpt) and calculated (Γcalc) resonances withs for TM modes

of disk A. Both Γexpt and Γcalc are plotted as function of the measured

resonance frequency fexpt. The symbols denote the measured widths

for different radial quantum numbers (+: nr = 1; ×: nr = 2). The

calculated widths are plotted as curves (solid line for nr = 1, dashed for

nr = 2) instead of data points to guide the eye. The calculations clearly

overestimate the widths at least in some frequency regimes. Reprinted

from [61].
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independent of the frequency, become dominant. Since the radiation losses Γrad

can generally not be extracted from the measured widths Γexpt, a quantitative

comparison with the calculated widths is not possible. Nonetheless it is certain

that the widths Γcalc predicted by the neff–model are in general too large, and

the actual differences are even larger than shown in Fig. 3.12 since Γcalc does not

account for absorption and antenna losses. This means that the neff–model fails

to accurately predict both resonance frequencies and widths of the resonator.

Since Γcalc does not depend as sensitively on n as the resonance frequencies, the

above statements are valid even under consideration of the uncertainty of the

index of refraction. The widths for the TE modes show the same trend although

the difference between Γexpt and Γcalc is not as large as for the TM modes.

3.2.2 Results for disk B

The differences between the measured and calculated resonance frequencies for

the thinner disk B (b = 5.0 mm) is shown in Fig. 3.13. The frequency range of

identifiable TE and TM modes differs due to the different quality factors of the

resonances and the different antenna types used. A comparison with Fig. 3.8

shows that they seem to be larger than for disk A, but of the same order of

magnitude, i.e. approximately equal to one resonance spacing. The difference even

seems to increase with the frequency unlike the case of disk A, but this behavior

depends sensitively on n as demonstrated for disk A in Fig. 3.10. In fact, the

deviations can increase, decrease or reach a finite value in the semiclassical limit

for different values of n within the range of accuracy ∆n = 0.01. Nonetheless

the deviations for disk B are somewhat larger than for disk A at least in the

regime up to 20 GHz. The index of refraction ñ needed to obtain the measured

resonance frequencies from Eq. (3.3) is shown in Fig. 3.14. The fitted values ñ

increase with the frequency and seem to reach a certain value which depends on

the polarization, and ñ follows a different curve for each radial quantum number,

that is, the qualitative behavior is the same as for disk A in Fig. 3.11. This again

demonstrates the systematic failure of the neff–model. In fact, the errors seem to

be larger for the thinner disk, and also the dependence on nr is more pronounced.

dummy
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Fig. 3.13: Difference between measured (fexpt) and calculated (fcalc) resonance

frequencies with respect to fexpt for disk B. The symbols correspond

to the different radial quantum numbers (×: nr = 1; ◦: nr = 2; +:

nr = 3). The TE modes measured with curved antennas are plotted in

graph (a) and have a range of azimuthal quantum numbers m = 64–188

for resonances with nr = 1. The TM modes shown in graph (b) were

measured with dipole antennas and have azimuthal quantum numbers

m = 97–204 for nr = 1. Reprinted from [61].
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Fig. 3.14: Index of refraction ñ required to reproduce the measured resonance

frequencies with Eq. (3.3) as a function of the resonance frequency

fexpt for disk B. Each symbol corresponds to a radial quantum number

(×: nr = 1; ◦: nr = 2; +: nr = 3), the solid lines denote the index of

refraction n = 1.439 of the disk and the dashed line n−∆n its range

of accuracy. Panel (a) shows the data points for the TE modes, panel

(b) those for the TM modes. Reprinted from [61].
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Fig. 3.15: Measured (Γexpt) and calculated (Γcalc) resonance widths for the TE

modes of disk B with respect to the measured resonance frequency fexpt.

The symbols denote the measured widths for different radial quantum

numbers (×: nr = 1; ◦: nr = 2; +: nr = 3). The calculated widths are

plotted as curves (solid line for nr = 1, dashed for nr = 2, dot-dashed

for nr = 3) instead of data points to guide the eye. Reprinted from

[61].

The calculated and measured resonance widths for disk B are compared in

Fig. 3.15. The former are significantly larger than the latter for lower azimuthal

quantum numbers, but the difference is not as large as for disk A in Fig. 3.12.

The measured widths saturate at a value of 7 MHz for higher frequencies due to

absorption and antenna losses, so that a meaningful comparison with the calcu-

lated widths is not possible in this regime. For TM modes, the difference between

Γexpt and Γcalc is somewhat smaller. All in all, the calculations overestimate the

widths at least for some frequency regimes. This remains true even if the index

of refraction is varied. In conclusion, the data for both disks confirms the failure

of the neff–model, and the deviations found for the thinner disk are of the same

order of magnitude or even a bit larger.

3.2.3 Results for a microlaser experiment

Another set of measured resonance frequencies was extracted from an experiment

reported in [59] with a microlaser made of SiOx. The microlaser has a radius of
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Fig. 3.16: Difference between measured (fexpt) and calculated (fcalc) resonance

frequencies of a microlaser described in [59]. Only TE modes with

radial quantum number nr = 1 were observed in the experiment. The

range of azimuthal quantum numbers is m = 29–42, and the resonance

frequencies correspond to wavelength in the regime of λ = 700–900 nm.

The deviations are in the order of the resonance spacing.

R = 4µm, and index of refraction of n = 1.8 and a thickness of b = 135 nm. The

resonance frequencies were extracted graphically from the spectrum in Fig. 2 of

[59], which shows several resonances with TE polarization around λ = 800 nm.

This wavelength corresponds to kR = 31.4 and kb = 1.1. The effective index of

refraction at 800 nm is about neff = 1.34 for TE modes. The differences between

the measured resonance frequencies and calculations based on the neff–model

are shown in Fig. 3.16. The observed deviations of ≥ 8 THz are in the order of

the resonance spacing, which is 7.6 THz. The magnitude of the deviations with

respect to the resonance spacing is thus in the same order as for the microwave

resonators treated in the two previous sections. Consequently, this data provides

a further independent proof of the inaccuracy of the neff–model.
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3.3 Conclusions

The data presented above shows deviations between the measured resonance fre-

quencies and those computed with the neff–model which cannot be explained by

experimental effects like bending of the resonator or the shift of resonances due

to the antennas. They definitely arise from a systematic failure of the model.

The ratio between the deviations and the measured resonance frequencies is in

the regime of 1–3%, which seems to be fairly accurate. However, the deviations

are of the same order of magnitude as the resonance spacing2. Therefore, an

identification of the measured resonance modes only by comparison with the mo-

del calculations is not possible, especially when several series of resonances are

visible in the spectrum. Only the additional measurement of the polarization and

the intensity distribution enabled an unambiguous identification. Furthermore,

the calculated resonance spacings differ from the measured ones. The deviations

are quite small, but nonetheless significant (see Fig. 3.9). This can lead to the

false impression that the neff–model yields accurate predictions when only a small

frequency range is considered, while a comparison over a wider frequency regime

shows the error of the calculations. An example for this effect are the data points

marked with ◦ (calculations for n = 1.432) in Fig. 3.10: only around 13 GHz

the deviations are (almost) zero. Another example is Fig. 7 in reference [50],

where some resonance frequencies are reproduced precisely by the calculations,

but not the spacings to the adjacent resonances. As a consequence, methods to

determine the index of refraction of a material sample by comparing the mea-

sured resonance spacing to neff–calculations as proposed in [67] also suffer from a

systematic error. In addition, the resonance widths, which are important for ap-

plications because they dictate e.g. the lasing thresholds of a microlaser, are not

predicted precisely either by the neff–model. Deviations of up to a factor of two

are found for the widths. In conclusion, the neff -model predicts the correct order

of magnitude for resonance frequencies and widths and is useful for a qualitative

understanding of flat dielectric resonators, but cannot be used for a detailed and

precise understanding or even design of such devices. Above all, the precision of

the model calculations is not under control: Figure 3.8 indicates that the devia-

2Resonance spacing means here the frequency spacing between adjacent resonance modes of
the same radial quantum number and polarization.
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tions might reach a finite value in the semiclassical regime, but this cannot be

taken for granted because the index of refraction of the microwave resonators is

not known precisely, as Fig. 3.10 demonstrates. Also the role of the aspect ratio

R/b is not clear, though the experiments indicate that the deviations are larger

for thinner disks respectively larger aspect ratios.

We conjecture that the main reason for the imprecision of the neff–model are

the boundary conditions given by Eq. (2.31), which are just imposed in view of

the analogy to a 2d dielectric resonator. For an improvement of the model, a

systematic approximation to the correct boundary conditions given by Eq. (2.10)

would be needed. The improper choice of boundary conditions might be respon-

sible especially for the large deviations for the resonance widths that were found

in the experiments. Furthermore, it is expected that the resonators radiate not

only in the plane of the disk, but also in z–direction. The neff–model, though,

does not account for this. Preliminary numerical simulations of the full 3d resona-

tor problem with the commercial program CST MicrowaveStudio [68] have been

performed to get a better understanding of the system. These calculations suc-

cessfully reproduced the measured resonance frequencies of disk A up to 10 GHz,

as did other numerical simulations using a finite integration technique [69]. The

simulation results showed that the field profiles of the resonance modes in the

z–direction deviate from that assumed for the neff–model [see Eq. (2.21)] close to

the boundary of the disk. This leads to the conclusion that the boundary con-

ditions of the neff–model must be modified, and indicates that diffraction effects

due to the edges of the disk are important.

It might be argued that the neff–model fails for the case of the circular disk be-

cause the WGMs are located close to the boundary. This is however not the

case since the deviations for modes with higher radial quantum number, which

are located further apart from the boundary, are actually even slightly larger.

Nonetheless a test of the model with other cavity geometries has not yet been

done and might be an interesting future problem.

Summing up, it has been shown that the neff–model is not capable of precise

predictions for the resonance frequencies and widths of flat dielectric cavities.

One way of obtaining more precise predictions are 3d numerical calculations with

finite integration [69] or finite difference time domain methods (e.g. [59, 60]). The

drawback of these methods is that even with improving numerical techniques and
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computing power, the computational effort is very large especially for highly ex-

cited modes. Therefore, the development of an improved neff–model would still

be worthwhile.
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4 Superscars in the dielectric square

billiard

Periodic orbits play an important role in the semiclassical theory of quantum sys-

tems. Not only is the resonance density of quantum systems related to the POs

via so-called trace formulas (see chapter 5), but there also exist wave functions

with patterns of high intensity along POs. Such wave functions localized on a

certain PO were first discovered by McDonald for unstable, isolated POs in sys-

tems with chaotic (or mixed) dynamics [70] and were termed scars by Heller [35].

They have been experimentally observed in metallic microwave billiards [71], and

they have also been reported in microlaser experiments [36, 37]. Additionally, e.g.

in pseudointegrable quantum billiards [72], scarring wavefunctions were observed

which are related to families of (non-isolated) POs. They were named superscars

to stress the fact that the scar structure does not vanish in the semiclassical limit

[72] as is the case for ordinary scars [73]. This term was also proposed by Heller as

the superscars result “from the overlap of many scars” [35]. Superscarred wave

functions have been measured in experiments with a closed microwave barrier

billiard [65], and the distinct superscar states can be regarded as doorways to the

nonscarring resonance states [74]. Furthermore, modes in (dielectric) billiards

can be localized on stable POs [75, 76]. For the dielectric spiral even states which

look like scars although there is no corresponding classical PO have been found

[77–79]. These so-called quasi-scars can be explained by an adjusted ray dynam-

ics incorporating the Goos-Hänchen shift and Fresnel filtering [80].

Superscars commonly appear in pseudointegrable billiards. Examples of such bil-

liards are polygons whose internal angles are all equal to αj = πmj/nj, where

mj and nj are co-prime integers and the mj for at least one corner is greater

than 1. Such corners are singular and induce the pseudointegrable dynamics [81].

Examples of such polygonal billiards are the hexagon and the barrier billiard.

Polygonal resonator shapes are also of great interest for dielectric cavities, e.g.

as add-drop filters [82, 83] or as microlasers [84, 85]. Recently, the existence of

superscars in such polygonal dielectric resonators has been proposed [38], includ-

ing the dielectric square even though the classical square billiard is integrable.

This was the motivation for the investigation of the wave functions of a dielectric

square resonator presented in this chapter.
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4.1 Experimental setup and technique

A square alumina plate with a side length of a = 300.0 mm and a thickness

of b = 8.3 mm was used as resonator. It is made of 99.5% Al2O3 (ceramic

DeranoxTM995 by Morgan Advanced Ceramics) and has an index of refraction of

about n = 3.16 [86]. A sketch of the experimental setup is shown in Fig. 4.1: the

alumina plate is placed on top of a special foam (Rohacell 31IG by Gaugler und

Lutz oHG) with an index of refraction, n2 = 1.02, close to that of air to keep it

at a distance of D = 120 mm from the optical table. This distance was chosen

large enough so that the electromagnetic fields in the alumina resonator are only

negligibly perturbed by the optical table (cf. appendix A). Two dipole antennas,

a static one below the resonator and a movable one above it, are used to couple

RF power into and out of the resonator. The emitting antenna below the alumina

plate is connected to a semi-rigid coaxial cable lead through a hole in the foam,

and the receiving antenna above is moved around with a positioning unit [66].

The transmission amplitude Sba(f) between two dipole antennas is proportional

optical table

foam, n2 foam

cable

cable

alumina, n

antenna

b

D

Fig. 4.1: Schematic drawing of the experimental setup (not to scale). The whole

setup is placed on an optical table, and the alumina plate used as mi-

crowave resonator is separated from the table with a foam of index of

refraction close to that of air, n2 = 1.02, and thickness D = 120 mm.

One static antenna is placed beneath the plate as emitter, and the re-

ceiving antenna above the plate can be moved around with a positioning

unit. The field distributions in the resonator are measured by scanning

it with the moving antenna.
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to the electric fields Ez(~r) at their positions ~ra,b [see Eq. (2.34)]. Therefore the

near field distribution for a given resonance frequency fj is obtained by keeping

antenna a fixed and scanning the resonator with antenna b. Accordingly we in-

terpret the transmission amplitude with respect to the antenna position ~rb as the

wave function Ψj of the jth resonance, i.e.

Ψj(x, y) ∼ Sba(fj ;~rb) . (4.1)

The advantage of this so-called scanning antenna technique is that not only the

modulus, but also the phase of the complex wave functions is measured. The

drawback is that the relation Eq. (4.1) is only an approximate one since the

movable antenna itself is a position-dependent perturbation of the system [87].

It can be shown that Sba is in fact proportional to the Green function of the

resonator [88]. Furthermore, perturbations of the measured “wave functions” are

found close to the static antenna due to direct transmission between the antennas

(see below). The interpretation of Sba(~rb) as a wave function fails in the regime

of overlapping resonances [88, 89]. Nonetheless, the scanning antenna technique

usually yields reliable near field distributions.

4.2 Measured and constructed superscar states

The top graph of Fig. 4.2 shows a frequency spectrum of the square alumina

resonator measured with antennas at the positions indicated in the inset. Due

to the use of dipole antennas, only TM modes were excited. From 5.5–6.5 GHz,

the spectrum features a single family of roughly equidistant resonances with qua-

lity factors Q = 500–1000. Additional resonances appear at about 6.5 GHz. The

broad oscillating background below 5.5 GHz originates from the direct transmis-

sion between the antennas. A similar spectrum of equidistant resonances was

observed for a square polymer microlaser in [38], and it was conjectured that the

measured resonances are superscarred states around the family of the diamond

PO shown in the bottom inset. For neff ≥
√
2, the diamond orbit is the shortest

PO confined by total internal reflection. The effective index of refraction for the

alumina resonator, calculated according to Eq. (A.13), is shown in the bottom
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Fig. 4.2: Measured frequency spectrum (top) and effective index of refraction

(bottom) of the square alumina resonator. The broad oscillating struc-

ture below 5.5 GHz stems from the direct transmission between the

antennas. Their positions are indicated by the crosses in the top inset.

Above 5.5 GHz, the spectrum shows a series of evenly spaced resonances.

The arrow in the bottom graph indicates the frequency fcrit ≈ 5.23 GHz

for which neff =
√
2, i.e. the critical angle is equal to the angle of inci-

dence of the diamond PO shown in the bottom inset, 45◦.

graph of Fig. 4.2. The arrow marks the frequency fcrit ≈ 5.23 GHz from which

on the diamond PO is confined by TIR. In fact, no resonances are observed be-

low this frequency, which is a first hint that the measured resonances are indeed

related to the diamond PO. To confirm this, the associated wave functions were

measured.

Two examples of measured field distributions are shown in the left column of

Fig. 4.3. There are four symmetry classes of states in the dielectric square accord-

ing to their symmetry with respect to the diagonals. The states shown in Fig. 4.3

are antisymmetric with respect to both diagonals, denoted as (−−)–symmetry.

The white circle in Fig. 4.3(a) indicates the position of the static antenna. There

a perturbation of the wave pattern due to the direct transmission between the

antennas is visible. No such perturbation is observed for the wave function in

Fig. 4.3(c). The visibility of this perturbation depends on the width and ampli-

tude of the resonance in the frequency spectrum; the larger the amplitude of the

resonance is, the smaller is the relative effect of the direct transmission. Both

wave functions show a symmetric and regular pattern, and close to the diagonals,

42



(a) fexpt = 6.629 GHz (b) (34, 1)

(c) fexpt = 7.149 GHz (d) (40, 2)

Fig. 4.3: Comparison of the measured near field distributions (left column) with

the constructed superscar states (right column). Both resonance states

are antisymmetric with respect to the diagonals, i.e. (−−)–symmetry.

The modulus of the transmission amplitude, |Sba(x, y)|, is plotted in

false colors, where blue corresponds to low and red to high |Sba|. Only

the fields inside the resonator are shown. The resonance frequencies

of the measured and the quantum numbers (m, p) of the constructed

superscar states are indicated. The white circle in (a) marks the pertur-

bation of the wave function due to the static antenna. The agreement

between measured and constructed states is very good, the overlap in-

tegrals yielding |c34,1|2 = 71% (top) and |c40,2|2 = 64% (bottom).

the patterns resembles a plane wave traveling along the diamond PO. Indeed, the

measured wave functions agree well with the calculated superscar wave functions

shown in the right column, whose construction is explained in the following.

The POs in polygonal billiards form continuous families which can be obtained by
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L/2

2L

χη

(a) (b)

Fig. 4.4: Unfolding procedure. (a) The diamond PO (dashed line) is unfolded by

reflecting the square billiard at its sides. The black dots indicate the

orientations of the square. The corners of the square (red dots) form

the (fictitious) boundaries of the periodic orbit channel. (b) Unfolding

of the measured wave function with (−−)–symmetry from Fig. 4.3(a).

The unfolded wave function obeys Dirichlet boundary conditions at the

long sides of the channel (indicated by the white lines), and periodic

boundary conditions at the short sides.

unfolding the particle trajectories in the classical billiard as shown in Fig. 4.4(a).

There, the diamond PO (dashed line) is unfolded into a straight line by reflecting

the billiard at the sides hit by the PO. After four reflections the billiard regains its

original orientation (indicated by the black dots in the corners), and the diamond

PO closes. The lines connecting the corners of the square (red dots) are paral-

lel to the PO and define a channel, the so-called periodic orbit channel (POC).

The associated family of POs comprises all trajectories traveling inside the POC

parallel to its sides. In the case of the diamond PO and its family, the length

respectively period of the POC is 2L and its width is L/2, where L is the length

of the diagonal of the square. The superscar states are constructed by introduc-

ing a wave into the POC with periodic boundary conditions at the short sides

(see [38, 65]). Figure 4.4(b) demonstrates that the unfolded (−−)–states from

Fig. 4.3 obey Dirichlet boundary conditions at the long lateral sides in analogy to

the case of closed polygonal billiards. The constructed superscar wave function
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is thus

Ψm,p(χ, η) = Ψ0 exp {i[kχχ+ Φ(χ)]} sin (kηη) + c.c. (4.2)

in the coordinates (χ, η) of the POC [see Fig. 4.4(a)] and m and p are the lon-

gitudinal and transverse quantum numbers of the superscar. The phase Φ(χ)

comprises the Fresnel phases accumulated on the reflections at the boundaries of

the square. It is

Φ = −2Nrefl δ(45
◦) (4.3)

where Nrefl is the number of reflections and

δ(α) = arctan

(√
n2
eff sin

2 (α)− 1

neff cos (α)

)
(4.4)

is related to the Fresnel reflection coefficient via Eq. (2.26). The wave number kχ

is given as

Lkχ = πm+ 4δ(45◦) (4.5)

due to the periodic boundary conditions at the short sides, and kη as

1

2
Lkη = pπ (4.6)

due to the Dirichlet boundary conditions at the lateral sides of the POC. The

resonance frequency of the constructed superscar is thus

fm,p =
c

2πneff

√
k2
χ + k2

η . (4.7)

Finally, the wave Eq. (4.2) is folded back into the square to obtain the constructed

superscar wave function [66].

The constructed wave functions corresponding to the measured ones in Fig. 4.3

are shown in the right column. The top wave functions corresponds to the trans-

verse quantum number p = 1, and the bottom ones to p = 2. The constructed

wave functions Ψm,p(x, y) agree very well with the measured ones and reproduce

their structure precisely. This is also confirmed by the overlap integrals

cm,p =

∫

S

dxdy Sba(x, y)Ψ
∗
m,p(x, y) (4.8)

which yield |c34,1|2 = 71% for the top and |c40,2|2 = 64% for the bottom wave

functions. The domain of integration S is the interior of the square resonator.
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It should be noted though that the overlap integrals are not an exact measure

due to possible perturbations near the static antenna and because Sba(x, y) is not

exactly equivalent to the wave functions of the resonances as explained in section

4.1. Nonetheless the measured wave functions of (−−)–states clearly confirm the

existence of superscarred states around the family of the diamond PO in the di-

electric square resonator as predicted by [38].

The measured wave functions for two (+−)–states are presented in the left co-

lumn of Fig. 4.5. The structure looks similar to that of the (−−)–states, but it

cannot be explained with the superscar construction discussed in the previous

paragraphs. This is best seen when unfolding the wave function from Fig. 4.5(c),

which is shown in Fig. 4.6. The white lines indicate the POC. Its side designated

with a D lies on a nodal line of the measured wave function. Thus there it obeys

Dirichlet boundary conditions like in the example in Fig. 4.4(b). The other late-

ral side (designated with an N), however, does not lie on a nodal line, but rather

on a series of maxima of the wave function. This means that it obeys Neumann

boundary conditions on that side. This is a surprising finding since superscars

with Neumann boundary conditions on a side of the POC do not exist for metallic

microwave billiards, and the origin of such wave functions in the dielctric square is

not known. Mathematically, superscars with such boundary conditions (denoted

as DN–superscars in the following) can be constructed with the same ansatz as

before, Eq. (4.2). The only change due to the Neumann boundary conditions is

that the transverse quantum number is now a half integer, p = 1/2, 3/2, 5/2, . . ..

Thus, the wave function in Fig. 4.5(a) can be identified as a DN–superscar with

p = 1/2, and the one in Fig. 4.5(c) has p = 3/2. The corresponding constructed

wave functions (right column) agree well with the measured ones, and the overlap

integrals yield |c41,1/2|2 = 54% (top) and |c45,3/2|2 = 55% (bottom), respectively.

The agreement is not as good as for the superscars with Dirichlet boundary con-

ditions on both sides of the POC (designated DD–superscars). This can also be

seen when investigating the structure of the wave functions more closely: the

white lines in Fig. 4.5(d) indicate the major nodal lines of the constructed DN–

superscar. A comparison with the measured wave function shows these white

lines do note agree precisely with the major nodal lines of the measured wave

function. This is in contrast to the case of the DD-superscars, where the major

nodal lines of constructed and measured wave functions agree perfectly. It indi-
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(a) fexpt = 7.219 GHz (b) (41, 1/2)

(c) fexpt = 7.571 GHz (d) (45, 3/2)

Fig. 4.5: Comparison of the measured near field distributions (left column) with

the corresponding constructed superscar states (right column) for two

(+−)–symmetry states. The resonance frequencies of the measured and

the quantum numbers (m, p) of the constructed superscar states are in-

dicated. The agreement between measured and constructed wave func-

tions is good with |c41,1/2|2 = 54% (top) and |c45,3/2|2 = 55% (bottom).

The white lines in the bottom graphs indicate the major nodal lines of

the constructed superscar with p = 3/2. A comparison with the mea-

sured wave function in (c) shows that there is actually a small deviation

in the structure of the meausured and the constructed wave function.

cates that there is some additional effect that is not accounted for by the simple

DN–superscar model used here.
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D

N

Fig. 4.6: Unfolding of the measured (+−)–symmetry state from Fig. 4.5(c). The

unfolding shows that the field distribution obeys Dirichlet boundary

conditions (D) on one, but Neumann boundary conditions (N) on the

other lateral side of the periodic orbit channel (indicated by the white

lines).

Last but not least, we investigate wave functions of states with (++)–symmetry

in Fig. 4.7. Due to this symmetry, the antenna was placed in the middle of the

square, leading to a perturbation there of the measured wave function as visible

in Fig. 4.7(a). The unfolding of the wave function (not shown here) demonstrates

that it obeys Neumann boundary conditions on both lateral sides of the POC. A

corresponding superscar (so-called NN–superscar) can be constructed by replac-

ing the term sin (kηη) in Eq. (4.2) by cos (kηη). The transverse quantum number

is then an integer, p = 1, 2, . . .. Such a constructed NN–superscar is shown in

Fig. 4.7(b), showing good agreement with an overlap of |c44,2|2 = 49%. Nonethe-

less, a comparison of the locations of the major nodal lines of the constructed

superscar (indicated by the white lines) with those of the measured one shows

small discrepancies like for the case of the DN–superscars.
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(a) fexpt = 7.457 GHz (b) (44, 2)

Fig. 4.7: Comparison of the measured near field distribution of a (++)–state (left)

with the corresponding constructed superscar state (right). The reso-

nance frequency of the measured and the quantum numbers (m, p) of the

constructed superscar state are indicated. The overlap integral yields

|c44,2|2 = 49%. The white lines indicate the major nodal lines of the

constructed wave function. The comparison of those with the measured

wave function shows up small discrepancies between the structures of

the measured and constructed wave function.

4.3 Summary and outlook

In summary, the measured wave functions of resonance states with (−−)–sym-

metry confirm the existence of superscars based on the diamond PO as predicted

by [38], and the constructed superscar wave functions with Dirichlet boundary

conditions on the lateral sides of the POC describe the measured ones very well.

These boundary conditions were conjectured in analogy to the case of metallic

polygonal microwave billiards: it has been shown in [72, 90] for the metallic case

that a wave in the POC, which is scattered at the infinite periodic array of corners

forming the sides of the POC, effectively obeys Dirichlet boundary conditions in

the semiclassical limit k → ∞. A similar effect is expected for the scattering at

dielectric corners, but this has not yet been shown mathematically. The inves-

tigation of (+−)– and (++)–symmetry states, however, showed wave functions

which cannot be described by this standard superscar model, having Neumann
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boundary conditions on one or both sides of the POC instead. Superscar states

with such boundary conditions are easily constructed, but the mechanism leading

to their formation is unknown. Moreover such states do not appear in metallic

polygonal billiards. Thus, apparently the scattering at dielectric corners is much

more complicated than at metallic ones and not yet understood. This suggests

further investigations concerning dielectric corners and polygonal dielectric reso-

nators since the existence of superscars has been proposed also for other cavities

of this type, and they are used in a variety of applications [82–85].

It should furthermore be noted that numerical investigations of dielectric ellipse

and rectangle resonators also yielded wave functions localized on POs [91]. Fur-

ther investigations indicated that the formation of such wave functions is related

to avoided resonance crossings where different modes hybridize to form these

localized states [76]. It was conjectured that this happens for all dielectric reso-

nators with integrable classical counterpart, which might provide an alternative

explanation for the localized wave functions presented in this chapter.

The overlaps |cm,p|2 between the measured wave functions and the constructed

superscars depend on the individual mode and are statistically distributed. This

distribution has been investigated in [74] for the case of the barrier billiard, and

it was shown that the idealized superscar states can be interpreted as so-called

doorway states interacting with the complex resonance states of the real cavity.

This doorway mechanism is well known e.g. from the giant resonances of nuclei

[92]. Indications for such an interaction have also been found for a 2d dielectric

square billiard (see section 5.5). Further investigations of the interaction effect

and the distribution of the overlaps are planned in order to test recent theoretical

predictions [93–95].
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5 Trace formula for two-dimensional

dielectric cavities

Trace formulas are a paradigm of semiclassical physics: they relate the level

density of a quantum (or more general, wave-dynamical) system to the periodic

orbits (POs) of the corresponding classical system, i.e. to trajectories that retrace

themselves after a finite time. Trace formulas were first introduced by Gutzwiller

in 1970 for regular [10] and chaotic [11] quantum systems and are applied not

only in atomic and nuclear physics [96, 97], but also to other wave-dynamical

systems like electromagnetic [98–100] or acoustic [101, 102] resonators. Recently,

Bogomolny et al. proposed a trace formula for dielectric resonators [39], which

was developed to explain the occurrence of peaks at the lengths of the POs in the

Fourier transform (FT) of the spectra of flat polymer microlasers [38]. Similar

findings have recently been reported for vertical cavity surface emitting lasers

(VCSELs) [103]. In the following, we will present a detailed test of this trace

formula with three different dielectric microwave resonators, a circular one made

of Teflon (n ≈ 1.4) and two square shaped ones made of Teflon and alumina

(n ≈ 3), respectively. The main focus here will be on the incompleteness of

the measured spectra: Only the resonances with the lowest radiation losses are

actually discernible in the measured frequency spectra. Therefore, the relation

between the most long-lived resonances and certain POs can be investigated. The

main results have been published in [104].

5.1 Resonance density and trace formula

The level density of a closed quantum system or microwave billiard equals

ρ(k) =
∑

j

δ(k − kj) . (5.1)

The analogous quantity for a dielectric resonator is the resonance density (RD),

which equals [39]

ρ(k) = −1

π

∑

j

Im (kj)

[k − Re (kj)]2 + [Im (kj)]2
(5.2)
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since the quasi-bound modes or resonances are characterized by a complex kj (see

section 2.5). The RD can be decomposed into a smooth and a fluctuating part,

ρ(k) = ρWeyl(k) + ρfluc(k) , (5.3)

where the smooth part is also known as Weyl term. The Weyl term is only related

to the gross geometrical parameters, i.e. the area A and circumference U , of the

billiard, while the fluctuating part is connected to the POs. For a 2d dielectric

cavity [39],

ρWeyl(k) =
An2

2π
k + r̃(n)

U

4π
(5.4)

where r̃(n) is related to the dielectric boundary conditions with n again denoting

the index of refraction. It is given by

r̃(n) = 1 +
n2

π

+∞∫

−∞

dt

t2 + n2
R̃(t)− 1

π

+∞∫

−∞

dt

t2 + 1
R̃(t) (5.5)

where for TM modes

R̃(t) =

√
t2 + n2 −

√
t2 + 1√

t2 + n2 +
√
t2 + 1

. (5.6)

For a billiard with regular classical dynamics, the fluctuating part of the RD is

[39]

ρsclfluc(k) =
∑

po

(√
n/π

)3
Bpo|Rpo|

√
k ei(nkℓpo+ϕpo) + c.c. (5.7)

Here, Bpo ∝ Apo/
√

ℓpo is the amplitude of each PO contribution, where Apo is the

area of the billiard in configuration space covered by the family of the POs with

length ℓpo. The factor Rpo is the product of all Fresnel reflection coefficients for

the reflections at the boundary, and ϕpo includes phases picked up along the PO.

These include the phase changes at reflections, i.e. arg (Rpo), and phases due to

so-called conjugate points, e.g. caustics [12]. The details of Bpo, Rpo and ϕpo for

the dielectric circle and square billiards are given in the corresponding sections

below. Note that for n = 1 and Rpo = (−1)q with q denoting the number

of reflections at the boundary in Eq. (5.7) and r̃ = −1 in Eq. (5.4), the trace

formula for a closed regular quantum billiard with Dirichlet boundary conditions

is recovered. Thus the only significant modifications for dielectric resonators are

the n-dependent factors accounting for the larger optical length or volume and the

Fresnel reflection coefficients due to the open boundary conditions. In the limit
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k → ∞, the RD given by Eq. (5.2) should be well described by the semiclassical

approximation ρWeyl(k)+ρsclfluc(k). For a comparison of the experimental ρ(k) with

the trace formula, it is useful to look at the FT of its fluctuating part,

ρ̃(ℓ) =
kmax∫
kmin

dk [ρ(k)− ρWeyl(k)] e
−iknℓ

=
∑
j

e−ikjnℓ − FT{ρWeyl(k)} ,
(5.8)

where the summation runs over all resonances with kmin ≤ Re (kj) ≤ kmax. The

corresponding semiclassical expression is given as

ρ̃scl(ℓ) =

kmax∫

kmin

dk ρsclfluc(k)e
−iknℓ . (5.9)

The value ℓ has the meaning of a geometrical length, and |ρ̃(ℓ)| is called the length

spectrum. Due to the terms eiknℓpo in the trace formula Eq. (5.7) it is expected

that the length spectrum shows peaks at the lengths of the POs. It should be

noted that long-lived resonances yield larger contributions to the length spectrum

than short-lived ones due to the factor exp{−nℓ|Im (kj) |} in Eq. (5.8).

5.2 Experimental setup

To construct a quasi-2d dielectric resonator, the dielectric plates are placed be-

tween two copper plates as sketched in Fig. 2.1(b). This is shown in more detail

in Fig. 5.1. Two dipole antennas are used to excite TM modes and measure

the transmission spectra between them. The antennas are placed next to the

sidewalls of the resonators as shown in Fig. 5.1(a) so that they couple to the

evanescent fields of the resonances. Three different resonators were investigated,

and their details are given in the corresponding sections. In the case of the cir-

cular resonator, the antennas were put opposite to each other due to symmetry

reasons because then one mode of each degenerate doublet is excited with equal

amplitude for all doublets. In the case of the square resonators, the antennas were

deliberately placed off any symmetry axis so that modes of all symmetry classes
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Fig. 5.1: Schematic picture of the experimental setup (not to scale). (a) Side

view: the dielectric plate is placed between two copper plates. Two

dipole antennas entering the resonator through small holes in the top

plate are placed next to the sidewalls of the dielectric plate. (b) Top

view: The solid lines indicate the contour of the copper plates, the

dashed lines that of the dielectric plates, a circle with radius R or a

square with side length a. The crosses indicate the positions of the

antennas. Adapted from [104].

are excited with roughly equal amplitude [see Eq. (2.18)]. The influence of waves

reflected at the edges of the copper plates is negligible. The indices of refraction

n of the dielectric plates were deduced from the length spectra: The positions of

the peaks corresponding to POs in the length spectrum depend sensitively on the

value of n used in the FT Eq. (5.8). Therefore, n was fitted such that the posi-

tions of the peaks and the lengths of the POs agree. The n determined this way

slightly deviates from the real index of refraction. This is attributed to air gaps

between the dielectric disk and the copper plates. Thus, the fitted n is actually

the effective index of refraction which corresponds to the in-plane phase velocity

c/neff of the waves in the combination of the dielectric plate with the air gap (see

also section 2.7). It is shown in appendix A.2 that

neff =
n

1 + d
2b
(n2 − 1)

(5.10)
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for small air gap sizes d. Thus, even an air gap smaller than 0.1 mm, i.e. 2% of

the thickness b of the dielectric plate, leads to a deviation from the real n of a

few percents. This air gap effect is well known and can hardly be avoided [105].

In order to minimize the air gap, several measures were taken: First, the whole

setup was put on a flat optical table so that bending of the different components

cannot induce additional gaps. Second, the upper plate was weighted with lead

bricks to minimize remaining air gaps. Care was taken that the additional weight

did not perceivably deform the elastic Teflon plates. Then there still are air gaps,

but the frequency spectra are reproducible with sufficient accuracy.

5.3 Circular Teflon resonator

The circular Teflon resonator (called Teflon circle in the following) is the same

one as disk B from chapter 3. It has a radius of R = 274.9 mm and a thickness

of b = 5.0 mm. The index of refraction which was determined via the positions

of the peaks in the length spectrum is n = 1.419 ± 0.001, which corresponds to

a critical angle for TIR αcrit = 44.8◦. This value of n is smaller than the one

measured independently, 1.439. The error ∆n = 0.001 only accounts for the ac-

curacy of the fitting procedure, but not for the systematic error due to the air

gaps. A frequency spectrum measured with two dipole antennas on opposite sides

of the disk [see Fig. 5.1(b)] is shown in Fig. 5.2. A frequency of 10 GHz corres-

ponds to kR = 57.6, and the quality factors of the resonances are in the regime of

Q = 1000–5000. The spectrum consists of several families of modes with different

radial quantum numbers nr. It is similar to that shown in Fig. 3.4 except that

there are no TE modes below f2d & 20.5 GHz. Only modes with low nr are dis-

cernible in the measured spectrum since they have the lowest radiation losses as

explained in section 2.6. The bars above the graph indicate the frequency regimes

in which modes with different nr can be observed experimentally. The trajecto-

ries corresponding to two modes with nr = 1 and 2 are shown as insets, where the

angle of incidence α with respect to the surface normal has been computed via

Eq. (2.20). All observed resonance modes are like these of the whispering gallery

type and thus correspond to trajectories with high α and are located close to the
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Fig. 5.2: Frequency spectrum of the Teflon circle. The classical trajectories asso-

ciated with two resonances with radial quantum numbers nr = 1 and 2

are shown as insets. There, α is the angle of incidence with respect to

the surface normal of the trajectories and the dashed line is their caustic.

The bars above the graph indicate the frequency regimes in which modes

with certain radial quantum numbers are observed experimentally. All

modes are of TM type due to the two copper plates. Reprinted from

[104].

boundary of the disk like in chapter 3. The comparison between the two trajec-

tories shown in Fig. 5.2 shows that modes with higher nr (at a given frequency)

correspond to trajectories with smaller α and thus smaller caustic (the dashed line

in the insets). Figure 5.3 shows the integrated resonance density N(f), which is

the number of resonances below a certain frequency f . All resonances observed

in the measured spectrum (solid line) were counted twice since the modes with

m > 0 are doubly degenerate. Only modes below f2d ≈ 20.5 GHz were taken into

account. The dashed line is Weyl’s law obtained by integrating Eq. (5.4). The

comparison of the experimental N(f) with Weyl’s law shows that the long-lived,

observable resonance modes are only a small part (about 10%) of the spectrum.

The question is therefore what effect the huge amount of missing modes has on

the experimental length spectrum, which is shown as solid line in Fig. 5.4. It was

obtained from the list of measured resonance frequencies and widths (including

the double degeneracy of the modes) via Eq. (5.8). The length spectrum shown

as dashed line was obtained from a complete spectrum calculated via Eq. (2.19),
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Fig. 5.3: The integrated resonance density N(f) for the Teflon circle. The solid

line isN(f) for the measured spectrum shown in Fig. 5.2, and the dashed

line is computed fromWeyl’s law. Altogether 716 resonances were identi-

fied in the spectrum up to 20.5 GHz, which is only 10% of all resonances.

Reprinted from [104].

and the dotted line shows the FT of the trace formula, ρ̃scl(ℓ) from Eq. (5.9). All

FTs in this chapter were performed with the Welch function as window function

in order to smooth the resulting curves [106]. The lengths of the POs and that of

the circumference, 2πR, are indicated by arrows. The POs in the circle billiard

have the shapes of polygons and stars. They are characterized by their period, q,

which is the number of reflections at the boundary, and the rotation number η,

which is the number of turns around the center. So the PO with (q, η) = (4, 1) is

a square, while the (5, 2)–orbit is a pentagram. The POs relevant for the lengths

considered in Fig. 5.4 are shown as insets. Their lengths are

ℓpo(q, η) = 2Rq sin(ηπ/q) , (5.11)

and the amplitudes and phases appearing in the trace formula Eq. (5.7) are

Bpo =
Apo√
ℓpo

√
2fpo with fpo =





1 : q = 2η

2 : otherwise
(5.12)

and

ϕpo =
π

4
− q

π

2
+ q arg [r(αpo)] . (5.13)
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Fig. 5.4: Length spectrum for the Teflon circle. The modulus of ρ̃(ℓ) is plotted

with respect to the geometrical length. The full line results from the

measured spectrum, the dashed line from a complete calculated spec-

trum, and the dotted line is the semiclassical expression |ρ̃scl(ℓ)|. The

arrows indicate the lengths of the depicted polygonal POs and of the cir-

cumference 2πR of the circle. The semiclassical expression (dotted line)

and the calculated length spectrum (dashed line) agree well except for

the square orbit. The experimental length spectrum has smaller peak

amplitudes than the calculated one, but the deviations are smaller for

the higher-order polygons. Reprinted from [104].

The area covered by the family of the (q, η)–orbits is Apo = πR2 sin2 (ηπ/q), and

r(α) is the Fresnel reflection coefficient for angle of incidence α with respect to

the surface normal and electric field perpendicular to the plane of incidence (TM

polarization). The angle of incidence of a PO is αpo = π/2− ηπ/q. For the case

r = −1 in Eq. (5.7), the amplitudes and phases for a circle billiard with Dirichlet

boundary conditions are recovered (cf. [12, 107]). For q/η → ∞ with η fixed,

the lengths of the POs converge to η times the circumference, but contribute

only negligibly since Bpo ∝ sin3/2 (ηπ/q). Therefore, only the POs up to the

octagon are indicated in Fig. 5.4. The calculated length spectrum (dashed line)

and the FT of the trace formula (dotted line) agree very well except for the case

of the square orbit, that is αpo = 45◦. The trace formula generally overestimates

the amplitudes of POs with an angle of incidence close to αcrit because for such

orbits the stationary phase approximation used to derive Eq. (5.7) is only valid
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in the strict semiclassical limit k → ∞. For large but finite k, further corrections

to the term Rpo (the product of the reflection coefficients) must be taken into

account [39], however a useful approximation has not yet been found. The use

of modified Fresnel coefficients for curved interfaces [108], for example, does not

yield more accurate results. Note that for POs like the triangle orbit which are

not confined by TIR there are no discernible peaks as expected from the trace

formula. The experimental length spectrum (solid line) also features peaks at

the lengths of the POs, in agreement with the calculated and the semiclassical

length spectrum. However, the peak amplitudes are significantly smaller, which

was to be expected due to the many missing resonances. Still, some peaks in the

experimental length spectrum are as large as 80% of the calculated ones. Thus,

apparently the 10% most long-lived resonances suffice to reproduce the greater

part of the peaks expected semiclassically. The reason for this is that the most

long-lived modes give the dominant contributions to Eq. (5.8). Interestingly,

the agreement between experimental and calculated length spectra is better for

the higher order polygons like hexagon, heptagon and ocatagon, and worst for

pentagon and the square orbit. The reason for this might be that the measured

resonances are all WGMs, which correspond to trajectories close to the boundary

like the high-order polygons (cf. the insets in Fig. 5.2). The spectrum was divided

into the different subspectra with radial quantum numbers nr = 1, 2, 3 and nr ≥
4 in order to investigate the relation between the different resonance families

and the different POs. The quantum numbers of the modes were identified by

following the different series along the frequency spectrum and comparing them

with the calculated spectrum. As a start, only the modes with nr = 1 are

considered, which form a series of almost (but not exactly) equidistant resonances.

This is an interesting test case because spectra consisting of a single equidistant

resonance family are often encountered in microlaser and -cavity experiments (e.g.

[38, 109]). In Fig. 5.5, the length spectra resulting from modes with nr = 1 up to

a certain frequency fmax are shown. The solid line corresponds to modes up to

fmax = 20.5 GHz, the dashed line up to fmax = 15 GHz and the dotted line up to

fmax = 10 GHz. Each curve has only one peak at a length similar to the lengths

of the polygon orbits, but there is no direct correspondence between the peak

position and any particular PO. Instead, the position of the peak only depends

on fmax. This can be explained by the structure of the subspectrum with nr = 1
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Fig. 5.5: Length spectrum for a single resonance family. Only measured modes

with radial quantum number nr = 1 were considered and only up to

a certain frequency fmax (solid line: 20.5 GHz; dashed line: 15 GHz;

dotted line: 10 GHz). The arrows indicate the lengths of the POs shown

as insets and of the circumference 2πR of the circle. Apparently, the

position of the maximum of |ρ̃(ℓ)| only depends on the frequency fmax,

but is not related to any particular PO. Reprinted from [104].

and the fact that an equidistant series of resonances with spacing ∆f results

in a peak at a position ℓ ∝ 1/∆f in the length spectrum. The wave numbers

of the TM modes with low nr of a dielectric circle can be approximated with

O(m−1/3)–precision as [110]

Re (km,nr) =
m

nR
+

xnr

nR

(m
2

)1/3
− 1

R
√
n2 − 1

, (5.14)

with xj being the modulus of the jth root of the Airy function Ai(x). The

resonance spacing ∆k between modes of the same nr can thus be estimated as

∆k =
1

nR
+

xnr

6nR

(m
2

)−2/3

. (5.15)

Here, the resonance spacing is almost constant, but with a small m- (and thus

frequency-) dependent additional term. In accordance, the length spectra in

Fig. 5.5 show only one peak whose position is determined by the minimal reso-

nance spacing (∆k)min, i.e. the maximal frequency considered, fmax. This applies

also to the length spectra shown in Fig. 5.6(a). A more detailed mathematical
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Fig. 5.6: Length spectra for different resonance families. (a) Only one radial

quantum number taken into account each (solid line: nr = 1; dashed

line: nr = 2; dotted line: nr = 3). As in Fig. 5.5, the length spectra

have a single peak each, whose position is not related to any PO. (b)

Several families combined. The solid line is the length spectrum for

the families with radial quantum numbers nr = 1 and 2 combined, the

dashed line is for nr = 1, 2, and 3 combined, and the dotted line is for

all resonances (identical with the solid line in Fig. 5.4). Reprinted from

[104].

explanation is given in appendix B.1. The example Fig. 5.5 shows that caution

is necessary when trying to relate a single family of resonances to a certain PO,

and it explains a similar effect found for the case of a circular microlaser, see [38].

In conclusion, a single resonance family by itself has no clear relation to any

PO. Therefore, the length spectra resulting from several resonance families are
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investigated in Fig. 5.6(b). Indeed, already the combination of modes with nr = 1

and 2 (solid line) gives rise to peaks whose positions coincide with the lengths

of the POs. This is due to an interference effect between the two families (see

appendix B.2). Moreover, the peaks with the highest amplitudes are those for

the high-order polygons (hexagon to octagon). This length regime is the one

where the corresponding single-family length spectra [solid and dashed lines in

Fig. 5.6(a)] have their maxima. The combination of nr = 1, 2 and 3 yields the

dashed line in Fig. 5.6(b). The comparison with the nr = 1, 2 case in Fig. 5.6(b)

shows that the resonances with nr = 3 mainly contribute in the length regime

where the corresponding single-family length spectrum [dotted line in Fig. 5.6(a)]

has its maximum. The few remaining resonances with nr ≥ 4, included to obtain

the dotted length spectrum in Fig. 5.6(b), contribute mainly to the pentagon and

square orbits. We can conclude that there indeed is a connection between the

long-lived WGMs and the higher-order polygons: the different families of WGMs

do not contribute to a single PO in the length spectrum, but to the higher-order

polygons as a whole. In addition this explains why the peak amplitudes in the

length spectrum are larger for the high-order polygons: the resonance states with

the longest lifetimes of the circular dielectric resonator correspond to the most

confined POs of the classical dielectric billiard. These results were also confirmed

with a complete, calculated spectrum. A further effect which slightly decreases

the peak amplitudes of the experimental length spectrum is the enlargement of

the measured resonance widths due to absorption, Ohmic losses and the antennas,

but these effects are of little importance here due to the generally large quality

factors.

5.4 Square Teflon resonator

The square Teflon resonator (called the Teflon square in the following) has a

side length of a = 300 mm, a thickness of b = 5.1 mm and an index of refraction

of n = 1.430 ± 0.001, which corresponds to αcrit = 44.4◦. Figure 5.7 shows its

frequency spectrum. A frequency of 10 GHz corresponds to ka = 62.9. The

spectrum shows only a single family of broad equidistant resonances with quality
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Fig. 5.7: Frequency spectrum of the Teflon square. The series of equidistant re-

sonances atop the slowly oscillating background consists of superscarred

states localized on the family of the diamond PO (shown as inset). The

arrows indicate the computed resonance frequencies of the superscarred

states according to Eq. (5.17). The quantum numbers m = 35 and

m = 80 are indicated for two examples. Reprinted from [104].

factors Q = 100–500. The slowly oscillating background stems from the direct

transmission between the antennas. A similar spectrum was observed for a poly-

mer microlaser (neff ≈ 1.5) in [38], and it was conjectured that the resonance

modes of the dielectric square resonator are superscarred states localized on the

family of the diamond PO (see inset of Fig. 5.7). The existence of superscarred

states was confirmed experimentally in section 4 for a different setup with a di-

electric square resonator. A simple quantization for a superscar localized on the

diamond PO is

exp (ink2L) r4(45◦) = 1 , (5.16)

where 2L is the length of the diamond PO with L =
√
2a being the length of the

diagonal. This leads to

nLRe (km) = πm+ 2i ln[r(45◦)] = πm+ 4δ(45◦) , (5.17)

where m is the longitudinal quantum number of the superscar and the phase

δ(45◦) = arctan (
√

1− 2/n2) [cf. Eq. (4.4)] is related to the Fresnel reflection

coefficient as in Eq. (2.26) via r = exp (−2iδ). This approximation for the reso-

nance frequencies of the superscars is a simplification of Eqs. (4.5) to (4.7) in the

limit m ≫ p, where p denotes the transverse excitation of the superscar. It is only
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correct up to O(1/m) (see [38]), but still quite accurate in the case considered

here: The resonance frequencies computed according to Eq. (5.17) are indicated

in Fig. 5.7 by the arrows and agree very well with the resonance positions in the

measured spectrum. Thus the experimentally observed resonances are apparently

superscarred states localized around the family of the diamond orbit with lon-

gitudinal quantum numbers m = 35–80 and first transverse excitation. The low

quality factors, which are an order of magnitude smaller than for the Teflon circle,

result from the fact that the angle of incidence of the diamond PO, αpo = 45◦,

is very close to the critical angle, which implies large radiation losses. Due to

these, only 49 resonances were observed up to 20.5 GHz, which is only 2% of the

approximately 2220 modes expected according to Weyl’s law.

The length spectrum of the Teflon square is shown in Fig. 5.8. The experimental

length spectrum is the solid line in the top graph, and the trace formula predic-

tion is shown in the bottom graph with a different scale. The arrows indicate the
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Fig. 5.8: Length spectrum for the Teflon square. The top graph shows the ex-

perimental length spectrum (solid line) and the length spectrum for a

single family of superscars according to Eq. (5.22) (dashed line). The

bottom graph shows the FT of the trace formula. Note the different

scales of top and bottom graph. The arrows indicate the lengths of the

POs (dashed arrows for POs not confined by TIR) labeled with (nx, ny).

The Fabry-Perot orbit (left inset) and the diamond orbit (right inset)

are shown as examples. The experimental length spectrum features only

the diamond orbit and its repetitions. Reprinted from [104].
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lengths of the POs with dashed arrows for those POs not confined by TIR. The

POs are labeled with indices (nx, ny) equal to half the number of bounces in the

x– respectively y–direction. Two examples are shown as insets. The lengths of

the POs are

ℓpo(nx, ny) = 2a
√

n2
x + n2

y . (5.18)

Since all families of POs cover the whole billiard area, i.e. Apo = a2, the semi-

classical amplitudes of the POs in Eq. (5.7) are

Bpo =
Fpo√
2

a2√
ℓpo

=
Fpoa

3/2

2 4
√
n2
x + n2

y

, (5.19)

where Fpo = 2 for the Fabry-Perot orbits [(nx, 0) or (0, ny)] and the diamond

orbits (nx = ny) and Fpo = 4 for all other POs. The total Fresnel reflection

coefficient is

Rpo = r2nx(αpo) r
2ny(α′

po) (5.20)

with αpo = arctan (ny/nx) being the angle of incidence at the vertical sides and

α′
po = π/2 − αpo the one at the horizontal sides. The phase ϕpo in Eq. (5.7) is

accordingly

ϕpo = −π

4
+ arg (Rpo) . (5.21)

Only the diamond PO and its repetitions are contained by TIR and found in

the experimental length spectrum accordingly. The small peak predicted by the

trace formula for the (1, 0)–orbit (Fabry-Perot orbit, see left inset in Fig. 5.8) is

not observed in the experimental length spectrum. Accordingly, the structure

of the experimental length spectrum qualitatively agrees with the semiclassical

prediction, and it also explains the very simple, equidistant frequency spectrum

measured. On a quantitative level, however, there are large differences between

the measurement and the trace formula: The peak amplitudes of the experimental

length spectrum are less than 15% of the semiclassical ones due to the large

amount of unobserved resonances, and they decay exponentially with the number

of repetitions µ, while the trace formula predicts an algebraic decay ∝ 1/
√
µ.

The exponential decay arises because only one family of superscarred states is

observed, and these states have a finite lifetime. The (fluctuating part of the)

RD for a single family of superscarred states with resonance frequencies given by
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Fig. 5.9: Ratio between the peak amplitudes of the experimental and the super-

scar length spectrum. The diamonds are the relative amplitudes for the

indicated POs, and the full line is the exponential fit of Eq. (5.23). The

slope corresponds to a resonance width of Γ = 56.1 MHz. Reprinted

from [104].

Eq. (5.17) is according to Eq. (B.1)

ρ
(ss)
fluc(k) =

2nL

π

∞∑

µ=1

cos (2µnLk − 8µδ) . (5.22)

This formula predicts a constant amplitude for all repetitions of the diamond

orbit as can be seen in Fig. 5.8, where the FT of ρ
(ss)
fluc(k), i.e. the length spectrum

for a single family of superscars, is plotted as dashed line in the top graph. As

can be seen, ρ
(ss)
fluc(k) predicts the correct order of magnitude for the amplitudes.

However, it does not reproduce their exponential decay because in Eq. (5.22)

the imaginary part of km arising due to the the finite lifetime of the resonances

is not accounted for. In Fig. 5.9, the ratio between the peak amplitudes of

the experimental and the constructed superscar length spectrum (see top graph

of Fig. 5.8) is plotted with respect to the lengths of the POs together with an

exponential fit of the form

A0 exp (−nℓpoπΓ/c) . (5.23)

The fitted parameters are A0 = 1.09 and Γ = 56.1 MHz, which matches the typi-

cal widths of the resonances. Incorporation of the finite lifetime of the resonances,
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Fig. 5.10: Experimental length spectrum (top graph) and the superscar length

spectrum multiplied with the exponential fit from Fig. 5.9, i.e. the FT

of Eq. (5.24) (bottom graph). Reprinted from [104].

i.e. the openness of the system, in Eq. (5.22) leads to

ρ
(sse)
fluc (k) = A0

2nL

π

∞∑

µ=1

e−2µnLπΓ/c cos (2µnLk − 8µδ) . (5.24)

Figure 5.10 demonstrates that the experimental length spectrum (top graph) is

indeed precisely described by the FT of Eq. (5.24) (bottom graph), implying that

the experimental length spectrum is completely understood in terms of a single

family of superscars.

The Teflon square is an example for a system with just a single dominant PO

which thus effectively acts like a one-dimensional system. It should be noted that

further series of resonances, namely superscars with higher transverse excitation,

may become discernible in the spectrum for higher frequencies or a higher index of

refraction (cf. Fig. 4.2). In fact, frequency spectra with just one series of (roughly)

equidistant resonances often occur for dielectric resonators, but the example of the

Teflon circle (see Fig. 5.5) shows that such spectra are not necessarily connected

with a single PO. The difference between the two examples is that the resonance

states of the Teflon square are (super)scarred states, while those of the circle

are not. Whether this is a general rule remains an open question. Therefore,

the connection of a single resonance family to certain POs needs to be analyzed

carefully in each case.
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5.5 Square alumina resonator

The square alumina resonator (called the alumina square in the following) has a

side length of a = 300.0 mm, a thickness of b = 8.3 mm and an index of refraction

of n = 3.050± 0.008, which corresponds to a critical angle of αcrit = 19.1◦. It is,

in fact, the same alumina plate which was used for the experiments described in

chapter 4. In distinction to these, the alumina square is squeezed between two

copper plates to obtain a quasi-2d setup. The frequency spectrum with antennas

positioned as shown in Fig. 5.1(b) is plotted in Fig. 5.11. A frequency of 5 GHz

corresponds to ka = 31.4. The spectrum shows many sharp resonances with qua-

lity factors of Q = 200–2000. The Q–values are higher than for the Teflon square

because the radiation losses are smaller for a higher index of refraction and the

absorption in the alumina is only slightly larger than in the Teflon. Altogether

212 resonances were identified in the range of 1.4–6.1 GHz out of the 1035 re-

sonances expected according to Weyl’s law. In contrast to the Teflon square no

single equidistant family of superscarred states can be seen in the spectrum. The

reason for this is that due to the smaller value of αcrit the diamond PO is not the

only PO confined by TIR in the alumina square. A generalized superscar model

which takes into account also other trajectories can be constructed in a simple

way [111]: For a ray with wave vector (kx, ky) traveling in the square, where the

x– and y–axes are parallel to the sides of the square, the resonance condition

after one roundtrip is

exp (2iakx) r
2(χ) = 1 and exp (2iaky) r

2(π/2− χ) = 1 (5.25)

with χ being the angle of incidence on the vertical sides of the resonator. This

resonance condition is the generalization of Eq. (5.16) to angles of incidence χ

different from 45◦. A similar model was proposed in [112]. An approximate

solution of this resonance condition is given by

kxa = mxπ + i ln [r(χ)]

kya = myπ + i ln [r(π/2− χ)] ,
(5.26)

where (mx, my) are the x– and y–quantum numbers and the angle of incidence

is approximated as χ = arctan (my/mx). Modes with mx 6= my are doubly
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degenerate and the wave number is k =
√
k2
x + k2

y/n. Equation (5.17) is recovered

for mx ≈ my and χ = 45◦. In the magnified part of the spectrum (bottom graph

in Fig. 5.11), the resonance frequencies computed from Eq. (5.26) are indicated

by arrows together with the quantum numbers and the angle of incidence χ̃ =

arctan (ky/kx) ≈ χ of the wave vector. Only those modes are indicated for which a

corresponding resonance was found in the measured spectrum, and computed and

measured resonance frequencies agree quite well in most cases. In some cases, on

the other hand, there are small deviations, and in a few cases like at 2.7 GHz no

clear correspondence was found. Equation (5.26) yields both modes with complex

resonance frequencies (Im (k) < 0) for modes with χ < αcrit, i.e. modes with losses

due to refractive escape, and lossless modes with Im (k) = 0 for χ > αcrit, which

correspond to trajectories confined by TIR. In the latter case other radiative

loss mechanisms, e.g. due to the corners [113], are neglected by this model, that

is, it does not provide meaningful resonance widths for χ > αcrit. All resonance

modes found in the measured spectrum are of this type. For these modes it would

be expected in practice that the radiation losses get smaller when χ̃ approaches

45◦, so that the spectrum would be dominated by a series of resonances with

χ̃ ≈ 45◦ like for the Teflon square. The measured spectrum, however, shows

no clear correlation between χ̃ and the widths or amplitudes of the resonances.

Preliminary numerical calculations indicate that there is an interaction between

the superscar states of the model and the background states (cf. [74]), which

would explain why the precision of the calculated resonance frequencies varies

for different resonances. This interaction effect is however not yet understood

and will be further investigated. Nonetheless the generalized superscar model

explains the structure of the spectrum well with the exception of some details

like the resonance widths.

The experimental length spectrum is shown in the upright graph of the top

panel of Fig. 5.12. There are several peaks corresponding to POs confined by

TIR, but most of them are only slightly higher than the noise level. No peaks at

the lenghts of POs not confined by TIR were observed as for the Teflon circle and

square. A comparison with the FT of the trace formula in the bottom panel shows

that the peak amplitudes of the experimental length spectrum are less than 35%

of the semiclassical ones. This is surprising given that in the case of the circle

billiard, 10% of all resonances were sufficient to obtain peaks as high as 80% of
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Fig. 5.12: Length spectrum for the alumina square. The upright graph in the top

panel is the experimental length spectrum, the inverse graph is a com-

puted length spectrum based on the generalized superscar model. The

bottom panel shows the trace formula prediction. Note the different

scales of top and bottom panel. The lengths of the POs are indicated

by arrows (dashed arrows for POs not confined by TIR) and the indices

(nx, ny) characterizing the POs are also indicated. The inverse graph

in the top panel is the length spectrum for a set of modes computed

according to the generalized superscar model, Eq. (5.26). This set of

modes consists only of states with χ̃ > 28◦, and degenerate modes were

counted only once. Reprinted from [104].

the semiclassical prediction, while 20% of all resonances were observed for the

alumina square. We conjecture that the relation between the number of observed

modes and the peak amplitudes of the experimental length depends strongly on

the distribution of the resonance widths for the respective resonators, but this

relation is not yet understood. Furthermore, the ratios between experimental and

semiclassical peak amplitude vary significantly for the different POs as illustrated

in Fig. 5.13. There, the relative peak amplitudes are plotted with respect to the
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Fig. 5.13: The ratio between the peak amplitudes of the experimental and semi-

classical length spectra with respect to the angle of incidence αpo of the

corresponding PO. The indices (nx, ny) of the POs are indicated. The

vertical line signifies the critical angle for TIR, and the relative peak

amplitudes of the POs get smaller as they get closer to αcrit. Reprinted

from [104].

angle of incidence αpo. It should be noted that the orbits in the square billiard

are characterized by two angles of incidence, of which the smaller one is used

here (the other one is π/2−αpo). The graph clearly shows that the relative peak

amplitudes for POs with an angle of incidence close to the critical angle is smaller

than for those POs with αpo significantly larger than αcrit. Exactly the same effect

is observed for the Teflon circle in Fig. 5.4, where the higher-order polygons with a

large angle of incidence have the highest peak amplitudes. Next, the experimental

length spectrum is compared to the generalized superscar model. In fact, the trace

formula Eq. (5.7) for the dielectric square can be deduced from Eq. (5.26) when

all modes are taken into account [111]. We instead take into account that only

a part of all resonances is observed in the measured spectrum and consider only

modes computed via Eq. (5.26) with associated angle of incidence χ̃ greater than

a certain cutoff angle χco. Also, only one mode of each degenerate doublet is

taken into account as in the measured spectrum. The cutoff angle was chosen

as χco = 28◦ so that the number of modes obtained from 1.4–6.1 GHz, 215, is

comparable with the number of experimentally observed resonances, 212. The

lower graph in Fig. 5.11 shows that indeed almost only modes with χ̃ > χco are

observed experimentally. Furthermore, the relative peak amplitudes in Fig. 5.13
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start to decline at a similar angle. A uniform resonance widths of Γ = 8 MHz

was assumed for the computed modes since as outlined above the model does not

yield a meaningful estimate of their resonance widths. This value of Γ is similar

to the typical measured resonance widths. The length spectrum computed from

this set of modes is plotted in the inverse graph of the top panel of Fig. 5.12, and

it shows good agreement with the experimental length spectrum (upright graph).

An exception are the (1, 1)– and the (2, 2)–orbit, for which peak amplitudes

significantly larger than the experimental ones are obtained. In conclusion, even

though some details cannot be explained by the generalized superscar model, it

describes the general features of both the frequency and the length spectrum of

the alumina square very well and thus enables a deeper understanding of the

square alumina resonator.

The data for the alumina square confirms the observation which was made for the

Teflon circle, namely that the most long-lived and thus experimentally observable

modes mainly contribute to those POs with angles of incidence far away from the

critical angle, while POs close to it are significantly suppressed. The comparison

with the Teflon square furthermore shows that the larger number of POs confined

by TIR due to the higher index of refraction is reflected in a frequency spectrum

with a more complicated structure. Thus, the structure of the frequency and

length spectrum of a resonator is not only determined by its shape, but also by

the index of refraction respectively the critical angle for TIR.

5.6 Conclusions

In conclusions, the length spectra deduced from the measured frequency spectra

of three different 2d dielectric microwave resonators show peaks at the lengths of

the POs of the corresponding classical billiards as predicted by the trace formula

proposed in [39]. The amplitudes of these peaks are, however, smaller than pre-

dicted by the trace formula because only between 2% and 20% of all resonances

are actually observed experimentally. Moreover, peaks corresponding to POs not

confined by TIR were not observed, even if a finite amplitude is predicted semi-

classically. The deviations of the peak amplitudes for POs close to the critical
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angle, but still confined by TIR, from the predicted ones are considerably larger

than for POs far away from the critical angle. The reasons for this are twofold:

First, the trace formula was derived in the strict semiclassical limit k → ∞,

whereas for large though finite k further corrections are necessary especially close

to the critical angle [39]. Second, the experimentally observed, long-lived reso-

nance modes seem to correspond mainly to those POs with angles of incidence far

away from the critical angle, which in a classical dielectric billiard are the ones

with the longest lifetimes. This systematics of observed and unobserved modes

must be taken into account for an understanding of the experimental length spec-

tra. The comparison of the Teflon and the alumina square furthermore demon-

strates that there is a connection between the number of POs contributing to

the length spectrum and the complexity of the frequency spectrum. Accordingly,

not only the shape, but also the index of refraction and resulting number of POs

confined by TIR should be taken into account for the design of dielctric cavities.

Another important conclusion is that individual resonances or single families of

resonances are in general not related to certain POs, and only scarred states may

be an exception to this rule. Spectra with a single family of resonances often

occur in microlaser or -cavity experiments, and the corresponding length spectra

must be analyzed especially carefully.

In summary, the length spectrum and the trace formula for dielectric resonators

are useful tools for the investigation of the ray-wave-correspondence in such de-

vices. The advantage of such an analysis is that only the resonance frequencies

and widths are needed, but no information on the field distributions of the reso-

nance states. The drawback is that no information on individual resonances is

obtained and that a sufficiently large number of resonances is needed to obtain a

meaningful length spectrum. All three resonators investigated above are passive

systems and have regular classical counterparts. Therefore, the test of the trace

formula for (partially) chaotic systems or systems with an active medium like

microlasers are future challenges. Furthermore, the resonators investigated here

were two-dimensional, but microlasers typically have a flat, but three-dimensional

geometry like the resonators investigated in chapter 3. The applicability of the

trace formula for 2d dielectric cavities to flat 3d ones remains to be tested. First

results are presented in chapter 6.
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6 Trace formula for three-dimensional

dielectric cavities

In the previous section, the trace formula for two-dimensional dielectric cavi-

ties was tested extensively with three resonators. However, typical microlasers

and -cavities consisting of flat dielectric plates [see Fig. 2.1(c)] are not two-

dimensional. It is not clear how to describe the length spectra of such resonators

and whether the trace formula for 2d resonators is applicable or needs to be ex-

tended. In the following, we will investigate the length spectra of flat 3d dielectric

resonators with two different approaches: the first approach is to treat the cavi-

ties as what they are, namely 3d objects with the index of refraction n of their

material (3d–approach). This will be discussed in detail in section 6.1. It should

be noted that trace formulas for metallic 3d microwave resonators exist and have

been tested experimentally [98–100], but to the author’s knowledge none exist for

dielectric 3d resonators. The second approach is based on the neff–model intro-

duced in section 2.7, namely the cavity is treated as a 2d object with index of

refraction equal to neff , and the 2d trace formula is combined with the neff–model

to obtain a simplified semiclassical description (neff–approach). We demonstrated

in chapter 3 that the neff–model does not precisely reproduce the measured fre-

quency spectra, but rather suffers from a systematic error. Consequently, a test

of the neff–approach, that is whether it yields a reasonable description of the

length spectra, is necessary. This is discussed in section 6.2. The investigation

of the trace formula for 3d dielectric cavities has not yet been completed, and

in the following sections a number of open questions are posed. Nonetheless, a

summary of the preliminary results and a comparison of the different approaches

is given in section 6.3 along with the an outlook.

The measurements were performed with the same circular Teflon disks and setup

as in chapter 3 (see Fig. 3.2). Disk A has a radius of R = 274.8 mm, a thick-

ness of b = 16.7 mm and an index of refraction of n = 1.434, and disk B has

R = 274.9 mm, b = 5.0 mm and n = 1.439. The resonances were classified ac-

cording to their polarization using the technique described in section 3.1.
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6.1 Three-dimensional approach

In the 3d–approach, the FT of the fluctuating part of the resonance density,

ρfluc(k), is calculated as

ρ̃(ℓ) =

kmax∫

kmin

dk ρfluc(k) exp {−iknℓ} , (6.1)

with the real index of refraction n in the exponent as in Eq. (5.8). In contrast to

chapter 5, no window function was used for the FT throughout this chapter to

simplify the calculations. It should be noted that n cannot be determined from

the length spectrum as in chapter 5 since there is no reliable prediction for the

positions of the peaks. The length spectrum computed for 286 measured TM0

modes3 of disk A in the regime of 6.8–20.0 GHz is shown in Fig. 6.1. All modes

were counted twice (for a total of 572 modes) due to their double degeneracy.

The length spectrum shows three dominant peaks in the plotted length regime,

but their identification with certain POs proves difficult: From the length spec-

trum for the 2d Teflon circle in Fig. 5.4 it would be expected that the first two

major peaks correspond to the pentagon and the hexagon orbit, respectively, and

the third peak to the heptagon and octagon orbit. The lengths of the different

POs in the 2d circle billiard, ℓpo(q, η) given by Eq. (5.11), are indicated by the

black arrows, along with the circumference 2πR. The expected correspondence

is, however, not confirmed; the peaks are located at larger lengths than in the

2d case (Fig. 5.4). In fact, the third peak is located at a length larger than the

circumference, where no POs exist in the 2d circle billiard. This proves that

the resonator has to be treated as a 3d object, that is the POs of the 3d circular

cylinder billiard need to be considered. These can be designated with three in-

dices, (q, η, ξ), where q and η have the same meaning as for the 2d circle billiard,

and ξ is half the number of bounces at the top and bottom surface of the cylinder.

One example, the (4, 1, 2)–orbit, is illustrated in Fig. 6.2. The lengths of the 3d

POs are then

ℓpo(q, η, ξ) =
√

ℓ2po(q, η) + (2ξb)2 = ℓpo(q, η)/ sin θ (6.2)

3Modes with higher z–excitation appear in the spectrum at about 16 GHz, but could be
excluded with the help of the measured intensity distributions.
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Fig. 6.1: Length spectrum (3d–approach) for the TM0 modes of disk A. The black

arrows indicate the lengths ℓpo(q, η) of the 2d POs and of the circumfer-

ence, 2πR. For each 2d PO, there is a family of associated 3d POs, and

the gray bars indicate the length regime in which the associated 3d POs

are confined by TIR. For the (2, 1)–orbit, the individual 3d POs are also

indicated by small black lines. They almost form a continuum especially

close to the associated 2d PO. Only POs with q ≤ 10 and η = 1 are

indicated. The peaks in the length spectrum cannot be identified with

the 2d POs, and also not with certain 3d POs due to their large number

and density.

where ℓpo(q, η) is the length of the (q, η)–PO in the 2d circle billiard given by

Eq. (5.11) and θ is the angle of incidence at the top and bottom surface of the

cylinder. Accordingly, every 2d PO comes with an infinite series of corresponding

3d POs. Only those which are confined by TIR in z–direction, i.e. with θ ≥ αcrit,

are expected to yield a relevant contribution. These POs have lengths between

ℓpo(q, η) and ℓpo(q, η, ξcrit) ≤ n ℓpo(q, η). The associated length intervals are in-

dicated by the gray bars in Fig. 6.1. For the (2, 1)–orbit, the individual 3d POs

are in addition indicated by black lines to demonstrate that the 3d POs lie very

densely and almost form a continuum close to the length of the related 2d PO.
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Fig. 6.2: Top view (upper panel) and side view (lower panel) of a PO in the

circular cylinder billiard. It bounces back and forth twice in the z–

direction, and is thus designated as (4, 1, 2). The angle of incidence on

the bottom and top surfaces is θ.

Due to the large number and the high density of the 3d POs, an identification

of the peaks with certain 3d POs is impossible. Indeed, it is surprising that only

three peaks are seen in the length spectrum and only in a small length regime

despite the large number of 3d POs confined by TIR which moreover span a much

larger length interval. An explanation might be that in a 3d trace formula for the

RD most of the contributions of these closely spaced POs interfere destructively,

but this can only be clarified by developing and investigating the trace formula for

such cylindrical 3d dielectric resonators. Furthermore, it is questionable whether

a semiclassical approximation is meaningful at all for the 3d–approach: the semi-

classical regime corresponds to frequencies large, respectively wavelengths small

as compared to the system’s dimensions. The maximal frequency considered,

fmax = 20 GHz, corresponds to a free-space wavelength of λ = 15 mm, which is

small compared to the radius R, but is in the same order of magnitude as the

thickness b. This means that the semiclassical limit is not yet reached for the

z–direction. The large aspect ratio R/b respectively small b is also the reason for

the high density of the 3d POs, and a frequency of 20 GHz seems to be simply

not sufficient to resolve the densely spaced POs.
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The length spectrum for the TE0 modes of disk A (not shown here) also shows a

small number of dominant peaks which cannot be related to certain POs, i.e. ex-

actly the same qualitative behavior as for the TM0 modes is found. In conclusion,

no clear interpretation in terms of POs could be obtained for the length spec-

trum of the Teflon disk A in the 3d–approach, and it remains doubtful whether

this is actually possible since the semiclassical limit is not reached for the z–

direction. Therefore, the neff–approach, i.e. treating the disk as an approxi-

mately two-dimensional system, seems more promising and will be investigated

in the next section. Nonetheless, the length spectrum in the 3d–approach shows

a simple and clear structure which should be understood.

6.2 Approach with effective index of refraction

In the neff–approach, the FT of the RD is calculated as

ρ̂(ℓ) =
kmax∫
kmin

dk ρfluc(k) exp {−ikneff(k)ℓ}

=
∑
j

exp {−ikjneff(kj)ℓ} − FT{ρWeyl(k)} ,
(6.3)

where the effective index of refraction is used instead of the real one. This means

that the 3d resonator is considered as a 2d resonator with effective index of

refraction here. This ”effective” length spectrum for the TM0 modes of disk A

(same data set as in the previous section) is plotted as solid line in the top graph

of Fig. 6.3. The solid arrows indicate the lengths of the POs depicted as insets.

The dashed line in the top graph is the FT (taken from 6.8–20 GHz) of the exact

trace formula

ρfluc(k) =
∑

po=(q,η)

∞∫

−∞

dm
4

π2k
exp (2πiηm)Pm(RmEm)

q + c.c. (6.4)

The details of the terms Pm, Rm and Em (which are functions of k and neff

each) are given in appendix C together with a derivation of the formula. It is a

modification of Eq. (66) in [39] incorporating the frequency dependence of neff .

The semiclassical trace formula Eq. (5.7) for the circle (with n replaced by neff)
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Fig. 6.3: Length spectrum (neff–approach) for the TM0 modes of disk A. The

solid line in the top graph is the experimental length spectrum evaluated

according to Eq. (6.3), and the dashed line is the FT of the exact trace

formula, Eq. (6.4). The curves in the bottom graph are the contributions

of the individual POs to the exact trace formula. The solid arrows

denote the lengths of the POs denoted by (q, η), and the dashed arrows

indicate the peak positions of the trace formula estimated from Eq. (6.8).

is recovered in the limit k → ∞. When calculating the integral over m in this

limit, the term Rq
m becomes the total Fresnel coefficient Rpo, the term e2πiηmEq

m

becomes the oscillating term ei(nkℓpo+ϕpo), and Pm contributes to the amplitude

Bpo. This exact trace formula is used instead of its semiclassical approximation

Eq. (5.7) because the latter does not give the correct amplitudes for the POs close

to the critical angle (see section 5.3 and Fig. 5.4). While this concerned only the

(4, 1)–orbit in Fig. 5.4, this is not the case here. Figure 6.4 shows the critical

angle αcrit = arcsin (1/neff) with respect to the frequency. Indeed, most POs are

close to the critical angle in some part of the considered frequency interval. Only
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Fig. 6.4: Critical angle αcrit = arcsin (1/neff) with respect to the frequency for

the TM0 modes of disk A. The horizontal lines indicate the angles of

incidence αpo of the (q, η)–orbits, and the vertical lines indicate the

critical frequency fcrit at which the POs become confined by TIR. Some

POs like the (4, 1)–orbit are not confined in the whole frequency regime.

POs with η = 1 and q ≤ 10 were used in the calculation of the exact trace formula

to keep the computation time reasonable. The small peak at the length ℓ ≈ 1.7 m

between the (8, 1)–orbit and the circumference 2πR is an artifact due to the finite

q. A close inspection of the graph shows that the positions of the peaks of the

experimental length spectrum (solid line) do not agree with the lengths of the

POs (solid arrows), and the positions of the peaks of the FT of the trace formula

(dashed line) agree with neither of them. There are two reasons for these discrep-

ancies. The first reason is the frequency dependence of neff [cf. Fig. 3.7(a)]. This

leads to a shift of the peaks of the trace formula to lengths smaller than those

of the POs. The second reason is the systematic error of the neff–model, due to

which the peaks of the experimental length spectrum are shifted to larger lengths

than predicted by the trace formula. The second effect thus partly compensates

the first one. They are explained in detail in the following.

Concerning the first effect the crucial point is that the Fresnel reflection co-

efficient also depends on the frequency in the case considered here since it is a

function of neff(k). Thus a PO confined by TIR has a frequency dependent Fres-

nel phase (denoted by arg (Rpo) in the semiclassical trace formula). Each peak

in the length spectrum is formed by the contributions of one PO over the whole
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frequency range, and the interference between the corresponding Fresnel phases

leads to a shift of the peak position. This effect is similar to (but not the same as)

the Goos-Hänchen shift [114, 115]. The effect is seen best in the bottom graph of

Fig. 6.3, where the contributions of individual POs, i.e. of certain summands of

the exact trace formula Eq. (6.4), are shown. The positions of the peaks, ℓpeak,

clearly deviate from the lengths of the POs indicated by the solid arrows for the

POs confined by TIR, whereas those of the square and triangle orbit, which are

not confined in the frequency interval considered (see Fig. 6.4), are not shifted.

The magnitude of the shift can be estimated from the semiclassical trace formula

as follows: When taking the FT [as in Eq. (6.3)] of the semiclassical trace formula

Eq. (5.7) with n replaced by neff , the oscillating term of the integrand reads

exp {ig(k)} = exp
{
i
[
neffk(ℓpo − ℓ) +

π

4
− q

π

2
+ arg [Rpo(neff)]

]}
. (6.5)

The integral over this term is largest for those ℓ for which the phase is stationary,

i.e. the derivative dg
dk

of the exponent is equal to zero. The Fresnel phase is

arg [Rpo(neff)] = −2q δ(αpo, neff) (6.6)

with

δ(α, n) = arctan

{√
n2 sin2 (α)− 1

n cos (α)

}
(6.7)

and the definition Eq. (2.26) for δ. Computing dg
dk

and solving for ℓ yields

ℓpeak ≈ ℓpo − 2q
∂δ

∂neff

dneff

dk

neff + dneff

dk
k

∣∣∣∣∣
k0

(6.8)

for the position of the peaks, referred to in the following as the peak positions of

the trace formula. They are equal to the lengths of the corresponding POs plus

a correction due to the frequency dependent Fresnel phase. This approximation

corresponds to a linear Taylor expansion of g around k0, which is chosen as

k0 =





1
2
(kmin + kmax) : kcrit < kmin

1
2
(kcrit + kmax) : kcrit ≥ kmin

(6.9)

with fcrit = ckcrit/(2π) corresponding to the frequency where αcrit is reached (see

Fig. 6.4). The reason for this choice of k0 is that the frequency regime below
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fcrit does not contribute to the shift of the PO since arg [Rpo] = 0 there. More-

over the peak position depends on the frequency interval [fmin, fmax] considered.

The resulting estimates Eq. (6.8) for ℓpeak are indicated by the dashed arrows in

Fig. 6.3, and they reproduce the peak positions of the trace formula prediction

very well. However, the estimate may be worse if g cannot be approximated

well with a linear function in the considered frequency regime. The same effect

is also responsible for the oscillating tail to the left of the single orbit contribu-

tions to the trace formula (see e.g. the dashed line for the pentagon–orbit in the

bottom graph of Fig. 6.3), which are not observed for those POs not confined

as e.g. the square–orbit (solid line). These tails can lead to unexpected interfer-

ence patterns, for example the right shoulder around 1.62 m of the (5, 1)–peak of

the trace formula prediction (dashed line in the top graph) stems from the tail

of the (6, 1)–contribution, and the double peak at the length of the (4, 1)–orbit

around 1.55 m originates from interference between the (4, 1)– and the (5, 1)–

contributions. It should be noted that the shift of the peak positions due to the

frequency dependent Fresnel phase also appears for a 2d dielectric resonator with

a frequency dependent index of refraction.

Concerning the second effect it was shown in Fig. 3.9 for the TM modes of disk

A that the resonance spacings (for modes with the same radial quantum number)

predicted by the neff–model are slightly, but systematically larger than the mea-

sured spacings. These deviations are accompanied by a shift of the peaks in the

length spectrum. Namely, a system with equidistant resonances with resonance

spacing ∆f (i.e. a particle in a 1d box potential or a resonator with a family of

WGMs) has a length spectrum with a peak at

ℓpo = c/(∆f) . (6.10)

A small shift δ(∆f) of the resonance spacing leads to a shift δ(ℓpo) of the peak

position, related via
δ(ℓpo)

ℓpo
= −δ(∆f)

∆f
. (6.11)

Therefore, a deviation δ(∆fm) = ∆f expt
m − ∆f calc

m ≈ −0.4 MHz compared to a

resonance spacing ∆fm ≈ 120 MHz corresponds to a shift δ(ℓpo) = ℓexptpo − ℓcalcpo of

about 5 mm for a peak at about 1.6 m. Indeed, it equals δ(ℓpo) ≈ 4 mm for the

pentagon–orbit and δ(ℓpo) ≈ 3 mm for the hexagon–orbit. Of course Eq. (6.11)

is only an approximation for the effect of the systematic error, but it explains
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the principle well and yields a reasonable estimate for the magnitude of the shift,

even though in practice the magnitude of the deviations between the neff–model

expectation and experimental data cannot be predicted reliably. Furthermore, an

error in the determination of the index of refraction n of the material would lead

to an additional shift of the peaks. Nonetheless, Fig. 6.3 demonstrates that the

combination of the trace formula for 2d dielectric billiards with the neff–model

yields a satisfactory prediction for the experimental length spectrum, and that

the peaks can be successfully identified with the POs.

The length spectrum for the TM0 modes of disk B is shown as solid line in the
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Fig. 6.5: Length spectrum (neff–approach) for the TM0 modes of disk B. The solid

line in the top graph is the experimental length spectrum according to

Eq. (6.3), and the dashed line is the FT of the exact trace formula,

Eq. (6.4). The curves in the bottom graph are the contributions of the

individual POs to the exact trace formula. The solid arrows denote the

lengths of the POs denoted with (q, η), and the dashed arrows indicate

the peak positions of the trace formula estimated from Eq. (6.8).

84



Frequency (GHz)

α
cr
it
(d
eg
)

10 15 20 25

30

30

40

50

60

70

80

90

(10, 1)
(9, 1)

(8, 1)
(7, 1)

(6, 1)

(5, 1)

(4, 1)

(3, 1)

Fig. 6.6: Critical angle αcrit = arcsin (1/neff) with respect to the frequency for

the TM0 modes of disk B. The horizontal lines indicate the angles of

incidence αpo of the (q, η)–orbits, and the vertical lines indicate the

critical frequency fcrit at which the POs become confined by TIR.

top graph of Fig. 6.5. The dashed line is the FT of the exact trace formula from

16.1–30 GHz with q ≤ 10. The lengths of the POs are indicated with the solid

arrows while the dashed arrows indicate the estimated peak positions of the trace

formula, ℓpeak according to Eq. (6.8). Both the experimental length spectrum and

the FT of the trace formula have two major peaks. A comparison of the trace

formula prediction (dashed line) with the estimates ℓpeak (dashed arrows) shows

that the first peak corresponds to the (6, 1)– and (7, 1)–orbits and the second

one to the (9, 1)– and (10, 1)–orbits, while the (8, 1)–orbit is located in between.

This surprising correspondence between the peaks and the POs is attributed to

the strong interference between the different contributions of the individual POs

(see bottom graph). The difference between the peak positions of the experi-

mental length spectrum and the trace formula prediction is δ(ℓpo) = −12 mm for

the first peak and −19 mm for the second one. The deviation between measured

and calculated resonance spacings is δ(∆fm) ≈ 0.8 MHz, which corresponds to

δ(ℓpo) = −11 mm according to Eq. (6.11). The sign of the shift differs from that

for disk A since the experimental resonance spacings are larger than the calcu-

lated ones in this case. Furthermore, the shift is significantly larger for the second

peak compared to the first one and also to the estimate from Eq. (6.11). An ex-

planation for this might be that the contribution of the (8, 1)–orbit interferes

85



constructively with the other PO–contributions instead of destructively as pre-

dicted by the trace formula. Moreover the small double peak at the (5, 1)–orbit

observed for the FT of trace formula is not found in the experimental length

spectrum. The reason for this is that the pentagon orbit is not confined by TIR

in almost the whole frequency range, as can be seen in Fig. 6.6.

In conclusion, the length spectra obtained with the neff–approach can be suc-

cessfully interpreted in terms of POs. However it is crucial to account for the

two mechanisms leading to shifts of the peaks, i.e. the frequency dependence of

the Fresnel phase and the systematic error of the neff–model. For example, the

peak position of the trace formula for the (8, 1)–orbit (dashed arrow) in Fig. 6.5

is almost identical with the geometrical length of the (7, 1)–orbit (solid arrow),

which allows for a false identification of the peak. The shifts in the case of disk

A are smaller and lead to less confusion than for the case of disk B which is a

rather extreme one. The main problem with the second mechanism is that the

magnitude of the systematic error is generally not known and cannot be pre-

dicted. Furthermore, the peak amplitudes of the experimental length spectra

are not understood: From Fig. 5.4 it is expected that the amplitudes predicted

by the trace formula are more accurate for the higher–order polygons, but the

opposite is the case in Fig. 6.5. The reason for this is not clear, but it could also

be related to a further systematic error of the neff–model. Figures 3.12 and 3.15

demonstrate that the neff–model predicts incorrect resonance widths, and these

are related to the amplitudes of the peaks in the length spectrum. Nonetheless,

the 2d trace formula combined with the neff–model provides good predictions for

the experimental length spectra at least on a qualitative level.

6.3 Conclusions

A comparison between the two approaches shows that so far only the neff–

approach allows for a clear interpretation of the experimental length spectra,

although different mechanisms leading to shifts of the peaks must be taken into

account. While the basic principles and important effects for this approach are

understood, the peak amplitudes of the length spectrum are not. Furthermore,
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a trace formula for the TE modes is still missing. The main drawbacks of the

neff–approach, however, are that the trace formula is mathematically rather com-

plicated and that the systematic error of the neff–model remains an effect of

unpredictable magnitude. The 3d–approach, on the other hand, should not suf-

fer from systematic errors and might be mathematically less complicated since no

frequency dependent neff is used, but up to now there is no 3d trace formula or

any other means of interpreting the experimental length spectrum. In conclusion,

both approaches are not yet fully understood, but the results presented demon-

strate that it is worthwhile to develop both of them further in order to achieve a

full understanding of the length spectra of flat 3d dielectric resonators.
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7 Conclusions

Dielectric cavities are of great interest not only due to the multitude of applica-

tions concerning microcavities and -lasers, but also because they are paradigms

of wave-mechanical chaos in open systems. Especially the correspondence be-

tween the wave- and ray-dynamics has attracted much attention. In this thesis,

different aspects of dielectric resonators were investigated experimentally with

macroscopic dielectric microwave resonators.

The first part of the thesis was the test of the neff–model, a 2d approximation

for flat 3d resonators, as e.g. used for microlasers. This approximation is widely

applied due to its simplicity and was also utilized for the other parts of the thesis.

The experiments showed that the model predicts the correct order of magnitude

for resonance frequencies and widths, but is too imprecise for a direct comparison

with the measured spectra. This systematic error is a considerable drawback of

the model and demonstrates the need for improvement. It is conjectured that

a better treatment of the boundary conditions at the edges of the resonator is

essential.

The other parts of the thesis dealt with the connections between different pro-

perties of the dielectric resonators and the periodic orbits of the corresponding

classical billiards. First, the near field distributions of a square resonator were

measured. The measurements confirmed the existence of superscarred states in

dielectric cavities as predicted by [38], and provide the first direct experimental

evidence. It is expected that similar states are found for cavities of other po-

lygonal shapes as well. In addition, scarred states with unexpected properties

were observed, raising the question of their physical origin. It is believed that

the existence of (super-)scarred states in polygonal resonators is related to the

scattering properties of the dielectric corners, which are not well understood so

far, despite the many applications of polygonal cavity shapes.

Furthermore, the resonance density of both 2d and 3d resonators was investigated

and compared to the predictions of a trace formula for 2d dielectric resonators

which relates it to the periodic orbits [39]. The length spectra for different 2d re-

sonators clearly revealed the influence of the periodic orbits. Deviations from the

trace formula prediction were attributed to the large number of resonances not

observed experimentally. Furthermore, the experimental results demonstrated a
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connection between the most long-lived resonant states and the best confined

periodic orbits. The experimental data for the 3d resonators was analyzed with

a combination of the 2d trace formula and the neff–model. Then the connection

between the resonance density and the periodic orbits emerges, but additional ef-

fects due to the dispersion of the effective index of refraction and the systematic

error of the neff–model must be taken into account. The results thus demonstrate

again both the usefulness of the trace formula and the need of an improved neff–

model.

In conclusion, the experimental results provide evidence of the importance of pe-

riodic orbits for the understanding of dielectric resonators. Most investigations

concerning periodic orbits focus on the connections between periodic orbits and

the far field distributions [32–34], but our results demonstrate their much broader

impact. Especially the length spectra are a practical tool for analyzing their in-

fluence. Furthermore, there seems to be a connection between the occurrence

of scarred states and the structure of the length spectrum, as was observed for

square resonators with different indices of refraction. However, these connections

are not clear yet and need to be further investigated. Furthermore, all experi-

ments were done with cavities with integrable classical counterparts, i.e. circular

and square resonators. The study of e.g. the trace formula for systems with

chaotic dynamics remains an interesting future problem.
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A Effective index of refraction for other

setups

A.1 Setup with additional metal plate

In this section, the effective index of refraction for the setup shown in Fig. A.1

is calculated. This setup is used in chapter 4 and for measuring the polarization

of resonance modes (cf. section 3.1). The only modification of the setup with

respect to the one shown in Fig. 2.3 is the additional metal plate at a distance D

to the dielectric plate.

A.1.1 Modified Fresnel reflection coefficients

First, we calculate the modification of the Fresnel reflection coefficients for the

setup shown in Fig. A.2, where a ray traveling in medium I is reflected at the

interface with medium II and at the metal plate which is placed at a distance D

behind the interface between medium I and II. The coordinate system used in

this section is shown in Fig. A.2. The general ansatz for the field Ez (TM modes)

respectively Bz (TE modes) of a wave traveling in the z-direction is (cf. section

2.7)

Ez, Bz =





AΨ(x, y)
(
eikzz + re−ikzz

)
e−iωt : z ≤ 0

Ψ(x, y) (b1e
−qz + b2e

+qz) e−iωt : 0 ≤ z ≤ D
(A.1)

where A, b1 and b2 are constants and r is the modified Fresnel reflection coefficient.

The wave function Ψ satisfies (∆+γ2)Ψ = 0, and γ, kz and q fulfill the dispersion

dielectric plate, n

metal

n1

n2

b

D

Fig. A.1: Dielectric plate with additional metalplate beneath.
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dielectric, n

metal

n2

0

D

z

I

II

Fig. A.2: Coordinate system for the calculation of the modified Fresnel reflection

coefficients.

relation
ω2

c2
= k2 =

γ2 + k2
z

n2
=

γ2 − q2

n2
2

=
γ2

n2
eff

. (A.2)

It should be noted that we assume that the wave is totally reflected at the interface

between medium I and II, which corresponds to a real decay constant q, but the

following calculations are also correct for complex q. First we consider TM modes.

Since Ez must fulfill Neumann boundary conditions at the metal plate at z = D,

the field in II can be written in the form

E(II)
z = BΨcosh [q(z −D)]e−iωt (A.3)

where B is another constant. Now we introduce the boundary conditions at the

interface at z = 0. Since n2
j
~E
(j)
⊥ ∝ Ez must be continuous, we get with Eqs. (A.1)

and (A.3)

n2A(1 + r) = n2
2B cosh (qD) . (A.4)

Furthermore, ~Et ∝ ∂Ez

∂z
[cf. Eq. (2.6)] must be continuous, so

ikzA(1− r) = −Bq sinh (qD) . (A.5)

Taking the ratio of the above two equations and solving for r yields the modified

Fresnel reflection coefficient

rTM(D) =
1− i n2q

n2
2kz

tanh (qD)

1 + i n2q
n2
2kz

tanh (qD)
. (A.6)

Writing the reflection coefficient as a pure phase as in Eq. (2.26) and inserting

q = k
√

n2
eff − n2

2 and kz = k
√
n2 − n2

eff (A.7)
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results in

tan [δTM(D)] =
n2
√

n2
eff − n2

2

n2
2

√
n2 − n2

eff

tanh

(
kD
√
n2
eff − n2

2

)
. (A.8)

The calculation for TE modes is analogous. Since Bz obeys Dirichlet boundary

conditions at z = D, the field in II is

B(II)
z = BΨ sinh [q(z −D)]e−iωt . (A.9)

With Bz and ~Bt ∝ ∂Bz

∂z
continuous at z = 0, we get

A(1 + r) = −Bq sinh (qD) and

ikzA(1− r) = Bq cosh (qD) ,
(A.10)

leading to

rTE(D) =
1− i

√
n2
eff−n2

2√
n2−n2

eff

coth (kD
√

n2
eff − n2

2)

1 + i

√
n2
eff−n2

2√
n2−n2

eff

coth (kD
√

n2
eff − n2

2)
(A.11)

and

tan [δTE(D)] =

√
n2
eff − n2

2√
n2 − n2

eff

coth

(
kD
√

n2
eff − n2

2

)
. (A.12)

For qD ≫ 1, that means the metal plate is much further away than the penetra-

tion depth of the fields, the usual Fresnel reflection coefficients are recovered [cf.

Eq. (2.29)].

A.1.2 Effective index of refraction with additional metal

plate

The quantization condition for the effective index of refraction is deduced again

from Eq. (2.25), but with r2 replaced by r2(D) given by Eq. (A.6) or (A.11). The

condition then reads

kb
√

n2 − n2
eff = ζπ + arctan

(
ν1

√
n2
eff−n2

1√
n2−n2

eff

)
+

+arctan

(
ν2

√
n2
eff−n2

2√
n2−n2

eff

h
[
kD
√

n2
eff − n2

2

])
(A.13)
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with νj = n2/n2
j for TM and νj = 1 for TE modes. The function h(x) is

h(x) =





tanh x : TM

coth x : TE
. (A.14)

When removing the metal plate, that is for D → ∞, Eq. (2.29) is recovered. In

the following, we will calculate neff(D) for large D in order to understand the

effect of the metal plate on the resonance frequencies (see Fig. 3.5), which is used

to measure the polarization of resonance modes. The resonance frequencies are

roughly proportional to 1/neff . Thus, the direction of their shift due to the metal

plate is determined from the sign of ∂neff

∂D
. To determine it, we rewrite Eq. (A.13)

as

kb =
1√

n2 − n2
eff

{δ1 + δ2(D) + ζπ} = g(neff , D) (A.15)

with neff = neff(D) and the abbreviations

δj(D) = arctan
(
ηjh[D/(2∆)]

)
with ηj = νj

√
n2
eff − n2

j
√

n2 − n2
eff

(A.16)

and δj = δj(D → ∞). The term

∆j =
1

2k
√

n2
eff − n2

j

(A.17)

is the penetration depth of the field intensity into the medium with index of

refraction nj . For fixed k, the derivative of neff with respect to D is given with

Eq. (A.15) as
∂neff

∂D
= − ∂g

∂D

/ ∂g

∂neff

. (A.18)

Since neff increases monotonically with kb, the quantity ∂g
∂neff

is always positive

[see Eq. (A.15)]. The other term is given as

∂g

∂D
=

1√
n2 − n2

eff

∂δ2
∂D

(A.19)

with
∂δ2
∂D

=
1

1 + η22h
2

η2
2∆2

h′[D/(2∆2)] . (A.20)
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The derivative of h(x) is

h′(x) =





1
cosh2 (x)

: TM

− 1
sinh2 (x)

: TE
. (A.21)

In the limit of large x respectively D, in which we are interested, h′(x) becomes

h′(x → ∞) = 4υe−2x (A.22)

with υ equal to +1 for TM and to −1 for TE modes. Putting everything together

yields

∂neff

∂D
= − C

∆2
υe−D/∆2 (A.23)

with the constant C given as

C =
1
∂g

∂neff

2√
n2 − n2

eff

η2
1 + η22h

2[D/(2∆2)]
. (A.24)

With ∂g
∂neff

> 0 and η2 > 0 [see Eq. (A.16)] we obtain C > 0. We now expand

neff(D) around D = ∞ using

neff(D)− neff(D = ∞) =

D∫

∞

dD′∂neff

∂D′ ≈ −C|D=∞
∆2

υ

D∫

∞

dD′e−D′/∆2 , (A.25)

which leads to the final result

neff(D) ≈ neff(D = ∞) +





+Ce−D/∆2 : TM

−Ce−D/∆2 : TE
. (A.26)

This explains the resonance shifts in Fig. 3.5: For TM modes, the metal plate

shifts neff to higher values, which leads to lower resonance frequencies since these

are roughly ∝ 1/neff . For TE modes, it is the other way round. The above

approximation for neff is of course only valid for D ≫ ∆2, but even beyond this

regime neff is a strictly monotonic function of D, so that the measurement of the

polarization with a metal plate works the same way also for small D.
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A.2 Quasi-2d setup with air gap

The ansatz for a TM mode in the setup shown in Fig. A.3 is

Ez =





AΨ(x, y) cos [kzz]e
−iωt : 0 ≤ z ≤ b

BΨ(x, y) cos [κz(z − b− d)]e−iωt : b ≤ z ≤ b+ d
(A.27)

with A and B constants, b and d the thicknesses of the dielectric plate and the

air gap, respectively, and

κz =
1

n

√
k2
z − (n2 − 1)γ2 , (A.28)

where γ2 is the eigenvalue of the wave function Ψ. These fields satisfy the Neu-

mann boundary conditions at the copper plates per construction, and from the

boundary conditions at the dielectric interface at z = b follows the quantization

condition
kz
n2

tan (kzb) = −κz tan (κzd) . (A.29)

Inserting Eq. (A.28) for κz in the limit of small air gaps and not too large fre-

quencies, i.e. kzb, κzd ≪ 1, we obtain

−k2
zd+ (n2 − 1)γ2d = k2

zb . (A.30)

Inserting Eq. (A.7) and using γ = neffk and d/b ≪ 1 leads to the final result

neff =
n

1 + d
2b
(n2 − 1)

(A.31)

copper

copper

dielectric

air gap

b

d

0

z

Fig. A.3: Dielectric plate between two copper plates with an air gap. The size

of the air gap is exaggerated: the thickness of the air gap is usually

d < 0.1 mm while the thickness of the dielectric plate is e.g. b = 5 mm.
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for the effective index of refraction in the quasi-2d setup with a small air gap.

It should be noted that the case of air gaps above and below the dielectric plate

leads to the same expression when d is the total size of both air gaps. The formula

demonstrates that e.g. an air gap as small as d/b = 2% leads to a deviation of

neff from n which is about 1% of n with n ≈ 1.4. For larger n, the deviation

increases rapidly.
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B Trace formula for single and multiple

subspectra of the dielectric circle

B.1 Single resonance family

The resonance density for a series of resonances with wave numbers given as

k = f(m), where m is the quantum number and f is a monotonic function, is

ρ(k) = D|F ′(k)|
{
1 + 2

∞∑

η=1

cos [2πηF (k)]

}
(B.1)

where F is the inverse function of f , i.e. m = F (k), and D is the degeneracy

factor of the modes [12]. We consider a single family of resonances of the dielec-

tric circle with fixed radial quantum number nr, whose wave numbers are given

by Eq. (5.14). The imaginary parts of the wave numbers km,nr of the WGMs

are small. Therefore, it is dropped to simplify the following calculations. The

approximate inverse of Eq. (5.14) is

Fnr(k) = Ak −Bxnrk
1/3 +

n√
n2 − 1

(B.2)

with

A = nR and B =

(
nR

2

)1/3

(B.3)

and D = 2. We neglect the third term in F (k) since it only adds a phase to

the RD, and the dependence of F and x on the radial quantum number nr is

suppressed in the notation. As usually, the RD decomposes into a smooth part,

ρWeyl(k) = 2

(
A− 1

3
Bxk−2/3

)
, (B.4)

and a fluctuating part,

ρfluc(k) = 4

(
A− 1

3
Bxk−2/3

) ∞∑

η=1

cos [2πη(Ak − Bxk1/3)] . (B.5)

The corresponding length spectrum is then

ρ̃(ℓ) =
kmax∫
kmin

dk e−iknℓρfluc(k)

= 2
∞∑
η=1

kmax∫
kmin

dk
(
A− 1

3
Bxk−2/3

)
ei(2πηF (k)−knℓ)

(B.6)
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where in the cos–function the term exp {−2πiηF (k)} was omitted since it only

gives a contribution for ℓ < 0. This integral is computed with the stationary

phase approximation

∞∫

∞

dy h(y)eig(y) =

√
2π

|g′′(y0)|
h(y0)e

i{g(y0)+sign[g′′(y0)]π/4} (B.7)

where eig(y) is a rapidly oscillating function while h varies only slowly, and y0 is

the single stationary point of g. In our case,

g(k) = 2πηF (k)− knℓ (B.8)

and the stationary point is

k0 =

(
2/3 πηBx

2πηA− ℓn

)3/2

. (B.9)

It should be noted that k0 depends on η. The second derivative of g at the

stationary point is then

g′′(k0) =
4

9
πηBx

(
2πηA− ℓn

2/3 πηBx

)5/2

. (B.10)

With this the stationary phase approximation yields

ρ̃(ℓ) = 9
∞∑
η=1

(
A− 1

3
Bxnrk

−2/3
0

)
1√

2πηBxnr

(
2/3πηBxnr

2πηA−ℓn

)5/4
×

× exp [i(2πηF (k0)− k0ℓn+ sign(k0)π/4)]

=
∞∑
η=1

C(η)

(2πRη−ℓ)5/4
.

(B.11)

This formula predicts an increase of |ρ̃(ℓ)| with ℓ and singularities at the multiples

of the circumference, 2πRη. The increase can indeed be seen in Fig. 5.5, but |ρ̃(ℓ)|
has a peak and decreases again at a length ℓ < 2πR. The reason for this is that

the stationary phase approximation fails if the stationary point k0 is outside the

interval of integration [kmin, kmax]. This happens for lengths longer than a certain

ℓ0 and for ℓ > ℓ0 the integral drops to zero quickly. The stationary point reaches

kmax for the length

ℓ0 = 2πRη

(
1− 1

3nR

(
nR

2

)1/3

xnrk
−2/3
max

)
< 2πRη , (B.12)
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yielding that the peak in the length spectrum lies close to but below ℓ0 and thus

also below 2πRη. This explains why the position of the peak in the length spec-

trum for a single resonance family depends on the maximal frequency considered,

but is not related to any PO.

B.2 Two resonance families

In the following we will calculate the resonance density for the combination of two

resonance families of the dielectric circle and the corresponding length spectrum.

Adding the resonance densities ρfluc(k) according to Eq. (B.5) for two families

with different nr (e.g. nr = 1 and 2) and applying a trigonometric addition

theorem results in the RD

ρfluc(k) = 8
(
A− 1

3
Bx̄k−2/3

)
×

×
∞∑
η=1

cos [2πη(A− Bx̄k1/3)] cos [πηB∆xk1/3]
(B.13)

with x̄ = (x1 + x2)/2 and ∆x = x2 − x1. We calculate the corresponding length

spectrum again with the stationary phase approximation and use that only the

first cosine-term is a rapidly oscillating function of k. The result is

ρ̃(ℓ) =
∞∑
η=1

2ℓn
η

√
3
π
eiΦη 4

√
(2/3 πηBx̄)3

(2πnRη−ℓn)5
×

× cos
[
πηB∆x

√
2/3 πηBx̄
2πnRη−ℓn

]
.

(B.14)

The details of the phase Φη are omitted here as it is irrelevant for what follows.

Again, the stationary phase approximation is only valid for lengths shorter than

ℓ0 defined by Eq. (B.12) with xnr replaced by x̄. The modulus of the cosine term

is maximal for its argument equal to qπ, where q is an integer, i.e. the peaks of

|ρ̃(ℓ)| are expected at the lengths

ℓmax(q, η) = 2πRη

[
1− x̄

6

(
η∆x

q

)2
]
. (B.15)

The numerical values of ℓmax are compared with the exact lengths of the POs

in the circle billiard in Table B.1. The agreement is very good for large q/η,
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q ℓpo(q, η = 1) (m) ℓmax(q, η = 1) (m) ∆ℓ (m)

3 1.4284 1.4126 0.0158

4 1.5551 1.5502 0.0049

5 1.6158 1.6140 0.0018

6 1.6494 1.6486 0.0008

7 1.6698 1.6694 0.0004

8 1.6832 1.6830 0.0002

9 1.6924 1.6923 0.0001

10 1.6990 1.6989 0.0001

Tab. B.1: Comparison of the lengths ℓpo of the periodic orbits in the Teflon circle

with the length ℓmax according to Eq. (B.15). The values are computed

for R = 274.9 mm and η = 1. The agreement is very good for large q,

and reasonable even for smaller q. Reprinted from [104].

which explains the appearance of peaks at lengths close to those of the POs in

Fig. 5.6(b). They are the result of an interference between the contributions of

the two resonance families to the trace formula. Indeed, on one hand the lengths

of the POs can be approximated as

ℓpo(q/η → ∞) = 2πRη

[
1− 1

6

(
ηπ

q

)2
]
, (B.16)

and on the other hand it can be shown that in Eq. (B.15) the factor x̄(∆x)2 ≈ π2

for adjacent zeros xj , xj+1 of the Airy-function Ai(x), such that ℓmax(q, η) ≈
ℓpo(q, η).
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C Exact trace formula for the dielectric

circle billiard

In this appendix, the exact trace formula Eq. (6.4) is derived. The calculations

are simplified as they ignore mathematical intricacies, and are based on [116].

In the following it will be assumed that n is frequency dependent, as is the case

for neff(k), but the explicit frequency dependence is suppressed for the sake of

brevity.

The starting point is the quantization condition for the TM modes of the dielectric

circle [see Eq. (3.3)],

sm(x) = n
J′m
Jm

(nx)− H
′(1)
m

H
(1)
m

(x) (C.1)

where x = kR. The resonance density in terms of the roots km,nr of sm(x) is

written as

ρ(k) =
+∞∑

m=−∞

∞∑

nr=1

δ(k − km,nr) . (C.2)

An alternate expression for the RD would be a sum of Lorentzians, that is of

“δ”–functions with finite widths, see Eq. (5.2). We now use that

δ[g(z)] =
∑

j

δ(z − zj)

|g′(z)| (C.3)

with zj denoting the roots of g(z) to obtain

ρ(k) =
+∞∑

m=−∞

∣∣∣∣
dsm
dk

∣∣∣∣ δ[sm(k)] . (C.4)

With lim
ǫ→0+

1
z+iǫ

= P 1
z
− iπδ(z) and x = kR we arrive at

ρ(k) = −R

π

+∞∑

m=−∞

∣∣∣∣
dsm
dx

∣∣∣∣ Im
(

1

sm

)
. (C.5)

The next step is to calculate dsm
dx

= ∂sm
∂x

+ ∂sm
∂n

dn
dx
. The first term yields

∂sm
∂x

= n2

[
J′′m
Jm

(nx)−
(
J′m
Jm

)2

(nx)

]
−


H

′′(1)
m

H
(1)
m

(x)−
(
H

′(1)
m

H
(1)
m

)2

(x)


 . (C.6)
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With the property
Z ′′

m(z)

Zm(z)
= − Z ′

m(z)

zZm(z)
−
(
1− m2

z2

)
(C.7)

of Bessel-functions Zm this can be further simplified to

∂sm
∂x

= −(n2 − 1)− sm
x

− sm

(
n
J′m
Jm

(nx) +
H

′(1)
m

H
(1)
m

(x)

)
. (C.8)

The second term is

∂sm
∂n

= −nx


1− m2

n2x2
+

1

n2

(
H

′(1)
m

H
(1)
m

)2

(x)


 (C.9)

where we replaced J′m
Jm

(nx) by 1
n
H

′(1)
m

H
(1)
m

(x) since sm(x) = 0. For m ≫ x we can use

the approximation

H
′(1)
m

H
(1)
m

(x) ≈ −
√

m2

x2
− 1 (C.10)

to obtain
∂sm
∂n

= −x

n
(n2 − 1) . (C.11)

It should be noted that this is the only approximation in the whole calcula-

tion, and it has been checked numerically that the approximation is very precise.

Therefore, the final result Eq. (6.4) can be regarded as an exact trace formula.

Thus, we get

dsm
dx

sm
= −n2 − 1

sm
− 1

x
−
(
n
J′m
Jm

(nx) +
H

′(1)
m

H
(1)
m

(x)

)
− dn

dx

x

n

n2 − 1

sm
(C.12)

It can be argued that only the first and fourth term give the relevant poles for

ρ(k) [116], and therefore the second and third one are dropped. The result is

ρ(k) =
R(n2 − 1)

π

(
1 +

k

n

dn

dk

) +∞∑

m=−∞
Im

(
1

sm

)
. (C.13)

which is Eq. (40) from [39] multiplied with 2k and the factor
(
1 + k

n
dn
dk

)
to account

for the frequency dependence of n. Following the procedure of [39] we finally ob-

tain Eq. (6.4). For the sake of completeness, this is also outlined in the following.

First we use Im (z) = z
2i
+ c.c. to get

ρ(k) =
R(n2 − 1)

2πi

(
1 +

k

n

dn

dk

) +∞∑

m=−∞

1

sm(x)
+ c.c. . (C.14)
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Next, we rewrite sm in the more convenient form

sm(x) = n
H′(1)

m (nx) + H′(2)
m (nx)

H
(1)
m (nx) + H

(2)
m (nx)

− H
′(1)
m

H
(1)
m

(x) . (C.15)

Extracting the term [H
(1)
m (nx)/H

(2)
m (nx) + 1]−1 leads to

sm(x) =
1

Em(x) + 1
[Em(x)Am(x) +Bm(x)] (C.16)

with the definitions

Em(x) = H
(1)
m

H
(2)
m

(nx) ,

Am(x) = nH
′(1)
m

H
(1)
m

(nx)− H
′(1)
m

H
(1)
m

(x) and

Bm(x) = nH
′(2)
m

H
(2)
m

(nx)− H
′(1)
m

H
(1)
m

(x)

(C.17)

as in [39]. Then
1

sm(x)
=

Em + 1

Bm

1

EmAm/Bm + 1
, (C.18)

and with the definition

Rm(x) = −Am(x)

Bm(x)
(C.19)

and the geometric series 1/(1− z) =
∞∑
q=0

zq this becomes

1

sm(x)
=

1

Bm
+

(
1 +

1

Rm

)
Bm

∞∑

q=1

(EmRm)
q . (C.20)

The prefactor

P̃m =

(
1 +

1

Rm

)
Bm =

n

AmBm

H
′(1)
m H

(2)
m −H

(1)
m H

′(2)
m

H
(1)
m H

(2)
m

(nx) (C.21)

is simplified to

P̃m =
4i/(πx)

AmBmH
(1)
m (nx)H

(2)
m (nx)

(C.22)

with the Wronskian [117]

W [H(2)
m (z),H(1)

m (z)] =
4i

πz
. (C.23)
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Inserting the result for 1/sm(x) into Eq. (C.14) yields

ρ(k) =
R(n2 − 1)

2πi

(
1 +

k

n

dn

dk

) +∞∑

m=−∞

(
1

Bm

+ P̃m

∞∑

q=1

(EmRm)
q

)
+ c.c. (C.24)

The first term, 1/Bm, corresponds to the smooth part of the DOS and is therefore

ignored in the following, leaving

ρfluc(k) =
2R

π2x

+∞∑

m=−∞
Pm

∞∑

q=1

(EmRm)
q + c.c. (C.25)

with

Pm =
(n2 − 1)(1 + k

n
dn
dk
)

AmBmH
(1)
m (nx)H

(2)
m (nx)

. (C.26)

With the Poisson-resummation formula this becomes

ρfluc(k) =
2R

π2x

+∞∑

η=−∞

+∞∫

m=−∞

dme2πiηmPm

∞∑

q=1

(EmRm)
q + c.c. (C.27)

The last step is to replace the summation
+∞∑

η=−∞

∞∑
q=1

by 2
∞∑
η=1

∞∑
q=2η

= 2
∑
po

, where

the fact was used that certain combinations of η and q do not give relevant

contributions (namely those that do not correspond to POs). This yields the

final result

ρfluc(k) =
4

π2k

∞∑

η=1

∞∑

q=2η

+∞∫

−∞

dme2πiηmPm(RmEm)
q + c.c. (C.28)

The semiclassical trace formula Eq. (5.7) can then be deduced as presented in

[39].
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