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PREFACE.

THE following work embodies the subject-matter of a lecture

course which I have given to the junior and senior electrical

engineering students of Union University for a number of

years.

It is generally conceded that a fair knowledge of mathe-

matics is necessary to the engineer, and especially the electrical

engineer. For the latter, however, some branches of mathe-

matics are of fundamental importance, as the algebra of the

general number, the exponential and trigonometric series, etc.,

which are seldom adequately treated, and often not taught at

all in the usual text-books of mathematics, or in the college

course of analytic geometry and calculus given to the engineer-

ing students, and, therefore, electrical engineers often possess

little knowledge of these subjects. As the result, an electrical

engineer, even if he possess a fail' knowledge of mathematics,

may often find difficulty in dealing with problems, through lack

of familiarity with these branches of mathematics, which have

become of importance in electrical engineering, and may also

find difficulty in looking up information on these subjects.

In the same way the college student, when beginning the

study of electrical engineering theory, after completing his

general course of mathematics, frequently finds' himself sadly

deficient in the knowledge of mathematical subjects, of which

a complete familiarity is required for effective understanding

of electrical engineering theory. It was this experience which

led me some years ago to start the course of lectures which

is reproduced in the following pages. I have thus attempted to

bring together and discuss explicitly, with numerous practical

applications, all those branches of mathematics which are of

special importance to the electrical engineer. Added thereto
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are a number of subjects which experience has shown me

to be important for the effective and expeditious execution of

electrical engineering calculations. Merc theoretical knowledge

of mathematics is not sufficient for the engineer, but it must

be accompanied by ability to apply it and derive resultsto

carry out numerical calculations. It is not sufficient to know

how a phenomenon occurs, and how it may be calculated, but

very often there is a wide gap between this knowledge and the

ability to carry out the calculation; indeed, frequently an

attempt to apply the theoretical knowledge to derive numerical

results leads, even in simple problems, to apparently hopeless

complication and almost endless calculation, so that all hope

of getting reliable results vanishes. Thus considerable space

has been devoted to the discussion of methods of calculation,

the use of curves and their evaluation, and other kindred

subjects requisite for effective engineering work,

Thus the following work is not intended as a complete

course in mathematics, but as supplementary to the general

college course of mathematics, or to the general knowledge of

mathematics which every engineer and really every educated

man should possess.

In illustrating the mathematical discussion, practical

examples, usually taken from the field of electrical engineer-

ing, have been given and discussed. These are sufficiently

numerous that any example dealing with a phenomenon

with which the reader is not yet familiar may be omitted and

taken up at a later time.

As appendix is given a descriptive outline of the intro-

duction to the theory of functions, since the electrical engineer

should be familiar with the general relations between the

different functions which he meets.

In relation to
"
Theoretical Elements of Electrical Engineer-

ing/' "Theory and Calculation of Alternating Current Phe-

nomena/
7

and
"
Theory and Calculation of Transient Electric

Phenomena/' the following work is intended as an introduction

and explanation of the mathematical side, and the most efficient

method of study, appears to me, to start with
"
Electrical

Engineering Mathematics," and after entering its third

chapter, to take up the reading of the first section of
"
Theo-

retical Elements," and then parallel the study of
"
Electrical
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Engineering Mathematics/'
"
Theoretical Elements of Electrical

Engineering/' and
"
Theory and Calculation of Alternating

Current Phenomena/' together with selected chapters from

"Theory and Calculation of Transient Electric Phenomena/'
and after this, once more systematically go through all four

books.

CHARLES P. STEINMETZ.

SCHENECTADY, N. Y.,

December, 1910,
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ENGINEERING MATHEMATICS.

CHAPTER I.

THE GENERAL NUMBER.

A. THE SYSTEM OF NUMBERS.

Addition and Subtraction.

i. From the operation of counting and measuring arose the

art of figuring, arithmetic, algebra, and finally, more or less,

the entire structure of mathematics.

During the development of the human race throughout the

ages, which is repeated by every child during the first years

of
life, the first conceptions of numerical values were vague

and crude: many and few, big and little, large and small.

Later the ability to count, that is, the knowledge of numbers,

developed, and last of all the ability of measuring, and even

up to-day, measuring is to a considerable extent clone by count-

ing: steps, knots, etc.

From counting arose the simplest arithmetical operation

.addition. Thus we may count a bunch of horses:

1, 2, 3, 4, 5,

and then count a second bunch of horses,

1 2 3-
i, *j, ;

now put the second bunch together with the first one, into ono

bunch, and count them. That is, after counting the horses
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of the first bunch, we continue to count those of the second

bunch, thus:

1, 2, 3, 4, 5 -G, 7, 8;

which gives addition,

5+3-8;

or, in general,

a+l>=c.

We may take away again the second bunch of horses, that

means, we count the entire bunch of horses, and then count

off those we take away thus:

1,
2

; 3, 4, 5, 6, 7, 8-7, 6, 5;

which gives subtraction,

8-3-5;

or, in general,

The reverse of putting a group of things together with

another group is to take a group away;
therefore subtraction

is the reverse of addition,

2. Immediately we notice an essential difference between

addition and subtraction, which may be illustrated by the

following examples:

Addition: 5 horses -I- 3 horses gives 8 horses,

Subtraction; 5 horses -3 horses gives 2 horses,

Addition: 5 horses +7 horses gives 12 horses,

Subtraction: 5 horses -7 horses 'is impossible.

From the above it follows that we can always add, but we

cannot always subtract; subtraction is not always possible;

it is not, when the number of things which we desire to sub-

tract is greater than the number of things from which we

desire to subtract.

The same relation obtains in measuring; we may measure

a distance from a starting point A (Fig, 1), for instance in steps,

and then measure a second distance, and get the total distance

from the starting point by addition: 5 steps, from A to B,



THE GENERAL NUMBER. 3

then 3 steps, from B to C, gives the distance from A to (7, as

8 steps.

5 steps +3 steps =8 steps;

12345678
$ 1 1 1 1 s 1 1 $

,

A B C

FIG. 1. Addition.

or, we may step off a distance, and then step back, that is,

subtract another distance, for instance (Fig. 2),

5 steps -3 steps =2 steps;

that is, going 5 steps, from A to B, and then 3 steps back,

from B to C, brings us to C, 2 steps away from A.

AC B

FIG. 2. Subtraction.

Trying the case of subtraction which was impossible, in the

example with the horses, 5 steps -7 steps
= ? We go from the

starting point, A, 5 steps, to
,
and then step back 7 steps;

here we find that sometimes we can do
it, sometimes we cannot

do it; if back of the starting point A is a stone wall, we cannot

step back 7 steps. If A is a chalk mark in the road, we may

step back beyond it,
and come to in Fig. 3. In the latter case,

at i o i a s 4 s

c A

FIG. 3. Subtraction, Negative Result.

at C we are again 2 steps distant from the starting point, just

as in Fig, 2. That
IKS,

5-3=2 (Fig. 2),

5-7=2 (Fig. 3).

In the case where we can subtract 7 from 5, we get the same

distance from the starting point as when we subtract 3 from 5,
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but the distance AC in Fig. 3, while the same, 2 stops, as

in Fig. 2, is different in character, the one is toward the left,

the other toward the right, That means, we have two kinds

of distance units, those to the right and those to the left, and

have to find some way to distinguish them. The distance 2

in Fig. 3 is toward the left of the starting point A, that is,

in that direction, in which we step when subtracting, and

it thus appears natural to distinguish it from the distance

2 in Fig. 2, by calling the former -2, while we call the distance

AC in Fig. 2: +2, since it is in the direction from A, in which

we step in adding.

This leads to a subdivision of the system of absolute numbers,

1,2,3,...

into two classes, positive numbers,

+ 1, +2, +3, ...:

and negative numbers,

-1, -2, -3,...:

and by the introduction of negative numbers, we can always

carry out the mathematical operation of subtraction:

and, if 6 is greater than c, a merely becomes a negative number,

3. We must therefore realize that the negative number and

the negative unit, -1, is a mathematical fiction, arid not in

universal agreement with experience, as the absolute number

found in the operation of counting, and the negative number

does not always represent an existing condition in practical

experience.

In the application of numbers to the phenomena of nature,

we sometimes find conditions where we can give the negative
1

,

number a physical meaning, expressing a relation as the

reverse to the positive number; in other cases we cannot do

this. For instance, 5 horses -7 horses = -2 horses has no

physical meaning. There exist no negative horses, and at the

best we could only express the relation by saying, 5 horses -7

horses is impossible, 2 horses are missing.
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In the same way, an illumination of 5 foot-candles, lowered

by 3 foot-candles, gives an illumination of 2 foot-candles, thus,

5 foot-candles -3 foot-candles =2 foot-candles.

If it is tried to lower the illumination of 5 foot-candles by 7

foot-candles, it. will be found impossible; there cannot be a

negative illumination of 2 foot-candles; the limit is zero illumina-

tion, or darkness

From a string of 5 feet length, we can cut off 3 feet, leaving

2 feet, but we cannot cut off 7 feet, leaving -2 feet of string.

In these instances, the negative number is meaningless,

a mere imaginary mathematical fiction.

If the temperature is 5 deg. cent, above freezing, and falls

3 deg., it will be 2 deg. cent, above freezing If it falls 7 deg

it will be 2 deg. cent, below freezing. The one case is just as

real physically, as the other, and in this instance we may

express the relation thus:

+5 deg. cent. -3 deg. cent. = +2 deg. cent
,

+5 deg cent. -7 deg. cent. = -2 deg. cent.;

that is,
in temperature measurements by the conventional

temperature scale, the negative numbers have just as much

physical existence as the positive numbers.

The same is the case with time, we may represent future

time, from the present as starting point, by positive numbers,

and past time then will be represented by negative numbers.

But wo may equally well represent past time by positive num-

bers, and future times then appear as negative numbers. In

this, and most other physical applications, the negative number

thus appears equivalent with the positive number, and inter-

changeable: we may choose any direction as positive, and

the reverse direction then is negative. Mathematically, how-

ovor, a difference exists between the positive and the negative

number, the positive unit, multiplied by itself, remains a pos-

itive unit, but the negative unit, multiplied with itself, does

not remain a negative unit, but becomes positive:

(-l)X(-l)=(+l),andnot =(-1).
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Starting from 5 deg. northern latitude and going 7
cleg,

south, brings us to 2 deg. southern latitude, which may bo

expresses thus,

+5 cleg,
latitude -7 deg. latitude = -2 clog, latitude.

Therefore, in all cases, where there are two opposite direc-

tions, right and left on a line, north and south latitude, east

and west longitude, future and past, assets and liabilities, etc.,

there may be application of the negative number; in other cases,

where there is only one kind or direction, counting horses,

measuring illumination, etc., there is no physical meaning

which would be represented by a negative number. There

are still other cases, where a meaning may sometimes be found

and sometimes not; for instance, if we have 5 dollars in our

pocket, we cannot take away 7 dollars; if we have 5 dollars,

in the bank, we may be able to draw out 7 dollars, or we may

not, depending on our credit, In the first case, 5 dollars -7

dollars is an impossibility, while the second case 5 dollars -7

dollars =2 dollars overdraft.

In any case, however, we must realize that the negative

number is not a physical, but a mathematical conception,

which may find a physical representation, or may not, depend-

ing on the physical conditions to which it is applied. The

negative number thus is just as imaginary, and just as real,

depending on the case to which it is applied, as the imaginary

number V-4, and the only difference is, that we have become

familiar with the negative number at an earlier age, where we

were less critical, and thus have taken it for granted, become

familial with it by use, and usually do not realize that it is

a mathematical conception, and not a physical reality. When

we first learned it, however, it was quite a step to become

accustomed to saying, 5-7-2, and not simply, 5-7 is

impossible.

Multiplication and Division.

4, If we have a bunch of 4 horses, and another bunch of 4

horses, and still another bunch of 4 horses, and add together

the three bunches of 4 horses each, we get,

4 horses +4 horses +4 horses = 12 horses;
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or, as we express it,

3X4 horses =12 horses.

The operation of multiple addition thus leads to the next

operation, multiplication. Multiplication is multiple addi-

tion,

thus means

a+a+a+... (6 terms) =c.

Just like addition, multiplication can always be carried

out,

Three groups of 4 horses each, give 12 horses. Inversely, if

we have 12 horses, and divide them into 3 equal groups, each

group contains 4 horses. This gives us the reverse operation

of multiplication, or division, which is written, thus:

12 horses . .

5 =4 horses;

or, in general,

If we have a bunch of 12 horses, and divide it into two equal

groups, we get 6 horses in each group, thus:

12 horses n ,= " horses,

if we divide unto 4 equal groups,

12 horses
3 horses.

If now we attempt to divide the bunch of 12 horses into 5 equal

groups, we find we cannot do it; if we have 2 horses in each

group, 2 horses are left over; if we put 3 horses in each group,

we do not have enough to make 5 groups; that
is,

12 horses

divided by 5 is impossible; or, as we usually say; 12 horses

divided by 5 gives 2 horses and 2 horses left over, which is

written,

12

-r=2, remainder 2.



8 ENGINEERING MATHEMATICS.

Thus it is seen that the reverse operation of multiplication,

or division, cannot always be carried out.

5. If we have 10 apples, and divide them into 3, we get 3

apples in each group, and one apple left over,

-5- =3, remainder 1,
o

we may now cut the left-over apple into 3 equal parts, in which

cape

In the same manner, if we have 12 apples, we can divide

into 5, by cutting 2 apples each into 5 equal pieces, and get

in each of the 5 groups, 2 apples and 2 pieces.

To be able to carry the operation of division through for

all numerical values, makes it necessary to introduce a new

unit, smaller than the original unit, and derived as a part of it.

Thus, if we divide a string of 10 feet length into 3 equal

parts, each part contains 3 feet, and 1 foot is left over. One

foot is made up of 12 inches, and 12 inches divided into 3 gives

4 inches; hence, 10 feet divided by 3 gives 3 feet 4 inches.

Division leads us to a new form of numbers: the fraction.

The fraction, however, is just as much a mathematical con-

ception, which sometimes may be applicable, and sometimes

not, as the negative number. In the above instance of 12

horses, divided into 5 groups, it is not applicable,

12 horses rt ,-
r 2} horses
o

is impossible; we cannot have fractions of horses, and what

we would get in this attempt would be 5 groups, each com-

prising 2 horses and some pieces of carcass.

Thus, the mathematical conception of the fraction is ap-

plicable to those physical quantities which can be divided into

smaller units, but is not applicable to those, which are indi-

visible, or individuals, as we usually call them.
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Involution and Evolution.

6. If we have a product of several equal factors, as,

4X4X4=64,

it is written as, 43
=64;

or
;
in general, a

b
=c.

The operation of multiple multiplication of equal factors

thus leads to the next algebraic operationwwto'oft just as

the operation of multiple addition of equal terms leads to the

operation of multiplication.

The operation of involution, defined as multiple multiplica-

tion, requires the exponent b to be an integer number; 6 is the

number of factors.

Thus 4~ 3
has no immediate meaning; it would by definition

be 4 multiplied (-3) times with itself.

Dividing continuously by 4, we get, 46 -i-4=45
;

45 -r4=44
;

44^4=43- etc., and if this .successive division by 4 is carried

still further, we get the following series:

=42

=41

=4

-

42

i
=

? ;

or, in general,
~6=

a&'
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Thus, powers with negative exponents; as a~ &
,

arc the

reciprocals of the same powers with positive exponents:
~
b

.

7. From the definition of involution then follows,

ab Xan =d'+n)

because a
& means the product of & equal factors a, and an the

product of n equal factors a, and a
b Xan

thus is a product hav-

ing b+n equal factors a. For instance,

43 X42
=(4X4X4)X(4X4)=4

r
>.

The question now arises, whether by multiple involution

we can reach any further mathematical operation, For instance,

(4
3
P=? ?

may be written,

(43)2.43x43

= (4X4X4)X(4X4X4);

-4';

and in the same manner,

(a
6)"^;

that is, a power cf is raised to the wth
power, by multiplying

its exponent, Thus also,

(a*)
n
=(a

n
)

6

;

that is, the order of involution is immaterial,

Therefore, multiple involution leads to no further algebraic

operations.

8. 43 -64;

that
is,

the product of 3 equal factors 4, gives 64.

Inversely, the problem may be, to resolve 64 into a product

of 3 equal factors, Each of the factors then will be 4. This

reverse operation of involution is called evolution, and is written

thus,

or, more general,
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Vc thus is defined as that number a, which, raised to the power

6, gives c; or, in other words,

Involution thus far was defined only for integer positive

and negative exponents, and the question arises, whether powers
1 i

with fractional exponents, as c& or ct>
}
have any meaning.

Writing,

it is seen that & is that number/which raised to the power 6,

gives c; that
is,

c& is 3/c, and the operation of evolution thus

can be expressed as involution with fractional exponent,

and

or,

and

Obviously then,

Irrational Numbers.

9, Involution with integer exponents, as 43 =64, can always

be carried out. In many cases, evolution can also be carried

out. For instance,

while, in other cases, it cannot be carried out. For instance,
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Attempting to calculate $, we get,

$=1.4142135...,

and find, no matter how far we carry the calculation; wo never

come to an end, but get an endless decimal fraction; that is,

no number exists in our system of numbers, which can express

^2, but we can only approximate it,
and carry the approxima-

tion to any desired degree; some such numbers, as TT,
have been

calculated up to several hundred decimals.

Such numbers as ^2, which cannot be expressed in any

finite form, but merely approximated, are called irrational

numbers. The name is just as wrong as the name negative

number, or imaginary number. There is nothing irrational

about -fe If we draw a square, with 1 foot as side, the length

of the diagpnal is $ feet, and the length of the diagonal of

a square obviously is just as rational as the length of the sides.

Irrational numbers thus are those real and existing numbers,

which cannot be expressed by an integer, or a fraction or finite

decimal fraction, but give an endless decimal fraction, which

does not repeat.

Endless decimal fractions frequently are met when express-

ing common fractions as decimals. These decimal representa-

tions of common fractions, however, arc periodic decimals,

that is, the numerical values periodically repeat, and in this

respect are different from the irrational number, .and can, due

to their periodic nature, be converted into a finite common

fraction. For instance, 2.1387387. . . .

Let

x = 2.1387387,.,,;

then,

lOOOz -2138.7387387....,

subtracting,

999Z-2136.6

Hence,

2136.6 21366 1187
11_X~

999
"

9990 ~55T~
2
555'
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Quadrature Numbers,

10, The following equation,

1+4 = (+2),

may be written, since,

hut also the equation,

4+4 =(-2),

may be written, since

Therefore, 4+4 has two values, (+2) and (-2), and in

evolution we thus first strike the interesting feature, that one

and the same operation, with the same numerical values, gives

several different results.

Since all the positive and negative numbers are used up

as the square roots of positive numbers, the question arises,

What is the square root of a negative number? For instance,

4 -4 cannot be -2, as -2 squared gives ; 4, nor can it be +2.

4^I=44x(-l)=:lr24-l, and the question thus re-

solves itself into : What is 4^T?

We have derived the absolute numbers from experience,

for instance, by measuring distances on a line Fig. 4, from a

starting point A.

i
- -

B

FIG 4 Negative and Positive Numbers.

Then we have seen that we get the same distance from A,

twice, once toward the right, once toward the left, and this

has led to the subdivision of the numbers into positive and

negative numbers. Choosing the positive toward the right,

in Fig. 4, the negative number would be toward the left (or

inversely, choosing the positive toward the left, would give

the negative toward the right).

If then we take a number, as +2, which represents a dis-

tance AB t
and multiply by (-1), we get the distance AC~ -2
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in opposite direction from' A, Inversely, if we take AC= -2,

and multiply by (-1), we get iS=+2; that is, multiplica-

tion by (-1) reverses the direction, turns it through 180 cleg.

If we multiply +2 by \/::l
;
we get +2V-1, a quantity

of which we do not yet know the
meaning.___Multiplying

once

more by V-L, we get ^xV^X^l- -2; that is,

multiplying a number H-2, twice by V-l, gives a rotation of

180 deg., and multiplication by V-l thus means rotation by

half of 180 deg.; or, by 90 dcg. ;
and -f2V^I thus is the dis-

\90

I' (D h

FIG. 5,

tance in the direction rotated 90 deg. from +2, or in quadrature

direction AD in Fig. 5, and such numbers as +2V-1 thus

are quadrature numbers, that is, represent direction not toward

the right, as the positive, nor toward the left, as the negative

numbers, but upward or downward.

For convenience of writing, V-f is usually denoted by

the letter j,

n. Just as the operation of subtraction introduced in the

negative numbers a new kind of numbers, having a direction

180 deg. different, that is,
in opposition to the positive num-

bers, so the operation of evolution introduces in the quadrature

number, as 2f, a new kind of number, having a direction 90 deg.
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different; that is, at right angles to the positive and the negative

numbers, as illustrated in Fig. 6.

As seen, mathematically the quadrature number is just as

real as the negative, physically sometimes the negative number

has a meaningif two opposite directions exist; sometimes it

has no meaning where one direction only exists. Thus also

the quadrature number sometimes has a physical meaning, in

those cases where four directions exist, and has no meaning,

in those physical problems where only two directions exist.

H-
-4 -3 -2 -1 +1 +2 +3 r4

-i

For instance, in problems dealing with plain geometry, as in

electrical engineering when discussing alternating current

vectors in the plane, the quadrature numbers represent the

vertical, the ordinary numbers the horizontal direction, and then

the one horizontal direction is positive, the other negative, and

in the same manner the one vertical direction is positive, the

other negative. Usually positive is chosen to the right and

upward, negative to the left and downward, as indicated in

Fig. 6. In other problems, as when dealing with time, which

has only two directions, past and future, the quadrature num-

bers are not applicable, but only the positive and 'negative
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numbers. In still other problems, as when dealing with illumi-

nation, or with individuals, the negative numbers are not

applicable, but only the absolute or positive numbers.

Just as multiplication by the negative unit (-1) means

rotation by 180 cleg,,
or reverse of direction, so multiplication

by the quadrature unit, j,
means rotation by 90 cleg,, or change

1

from the horizontal to the vertical direction, and inversely,

General Numbers.

12. By the positive and negative numbers, all the points of

a line could be represented numerically as distances from a

chosen point A.

FIG. 7. Simple Vector Diagram.

By the addition of the quadrature numbers, all points of

the entire plane can now be represented as distances from

chosen coordinate axes x and y, that is, anyjDoint
P of the

plane, Fig. 7, has a horizontal distance, 05=+3, and ti

vertical distance, 5P= +2}, and therefore
js_ given by a

combination of the distances, 0=+3 and j8PH-2j. For

convenience, the a,ct of combining two such distances in quad-

rature with each other can be expressed by the plus si^n,

and the result of combination thereby expressed by OB+BP
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Such a combination of an ordinary number and a quadra-

ture number is called a general number or a complex- quantity.

The quadrature number jb thus enormously extends the

field of usefulness of algebra, by affording a numerical repre-

sentation of two-dimensional systems, as the plane, by the

general number a-f j&. They are especially useful and impor-

tant in electrical engineering, as most problems of alternating

currents lead to vector representations in the plane, and there-

fore can be represented by the general number a-fj&j that is,

the combination of the ordinary number or horizontal distance

a
}
and the quadrature number or vertical distance fb.

o,

FIG. S. Vector Diagram.

Analytically, points in the plane are represented by their

two coordinates: the horizontal coordinate, or abscissa x, and

the vertical coordinate, or ordinate y. Algebraically, in the

general number a+jb both coordinates are combined, a being

the x coordinate, jb the y coordinate.

Thus in Fig. 8, coordinates of the points are,

Pi' s=.+3, 2/=+2 P2 : =+3 y=-2,

P3 : x--3, </=+2 P4 : *=-3 y- -2,

and the points are located in the plane by the numbers:

Pa=3-2/ P8=-3+2j P4 =-3-2j



18 ENGINEERING MATHEMATICS.

13. Since already the square root of negative numbers has

extended the system of numbers by giving the quadrature

number, the question arises whether still further extensions

of the system of numbers would result from higher roots of

negative quantities.

For instance,

The meaning of ~l we find in the same manner as that

of f=T.

A positive number a may be represented on the horizontal

axis as
1

P.

Multiplying a by ^-1 gives a-tf-1, whose meaning we do

not yet know. Multiplying again and again by -tf-1, we get, after

four multiplications, a(^-l)
4 =

-a; that is, in four steps wo

have been carried from a to -a, a rotation of 180 dcg., and_ 1OQ __
4-1 thus means a rotation of -7-= 45 cleg., therefore, a 4-1

4

is the point PI in Fig. 9, at distance a from the coordinate

center, and under angle 45 cleg., which has the coordinates;

#._ and y==j] or, is represented by the general number.
V2 V2

V-T, however, may also mean a rotation by 135
cleg, to ?2,

since this, repeated four times, gives 4x135=540 deg,,

or the same as 180 deg. ;
or it may mean a rotation by 225 deg.

or by 315 deg. Thus four points exist, which represent a -^
-

1
;

the points;

"

-+1+L -dL+L

Therefore, 4-f is still a general number, consisting of an

ordinary and a quadrature number, and thus does not extend

our system of numbers' any further.
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In the same manner, ty+1 can be found; it is that number,

which, multiplied n times with itself, gives +1. Thus it repre-

360
sents a rotation by deg., or any multiple thereof; that is,

360 . .. .
360

the x coordinate is cos qX . the y coordinate sin gX ,

n n

and,

360 . , 360
v +l=cos#X fjsingX ,

where q is any integer number.

FIG. 9, Vector Diagram o-v-1.

There are therefore n different values of a^+1, which lie

equidistant
on a circle with radius 1, as shown for n=9 in

Fig, 10.

14. In the operation of addition, a-f6c, the problem is,

a and 6 being given ;
to find c.

The terms of addition, a and 5, are interchangeable, or

equivalent,
thus: aH-6=Ha, and addition therefore has only

one reverse operation, subtraction; c and b being given, a is

found, thus; a-c-5, and c and a being given, 6 is found, thus:

&=c-a. Either leads to the same operation subtraction.

The same is the case in multiplication; aX&=c. The
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factors a and 5 arc interchangeable or equivalent;

and the reverse operation, division, a=r is the same as &=-.

In involution, however, a
b

=c, the two numbers a and &

arc not interchangeable, and a
6
is not equal to b

a
, For instance

Therefore, involution has two reverse operations:

(a) c and b given, a to be found,

or evolution,

FIG. 10. Points Determined by v'l.

(6) c and a given, 6 to be found,

or, logarithmation.

Logarithmation.

15. Logarithmation thus is one of the reverse operations

of involution, and the logarithm is the exponent of involution.

Thus a logarithmic exprcssidn may be changed to an ex-

ponential, and inversely, and the laws of logarithmation are

the laws, which the exponents obey in involution.

1. Powers of equal base are multiplied by adding the

exponents: ab Xan =at+n , Therefore, the logarithm of a



THE GENERAL NUMBER. 21

product is the sura of the logarithms of the factors, thus loga c Xd
=
loga c-t- loga d.

2. A power is raised to a power by multiplying the exponents :

(
a&)n =0

to

Therefore the logarithm of a power is the exponent times

the logarithm of the base, or, the number under the logarithm

is raised to the power n, by multiplying the logarithm by n:

loga c
n
=nhga c,

loga 1 =0, because a = 1. If the base a > 1, logfl c is positive,

if c>l, and is negative, if c<l, but >0. The reverse is the

case, if a<l, Thus, the logarithm traverses all positive and

negative values for the positive values of c, and the logarithm

of a negative number thus can be neither positive nor negative.

loga (~c)=loga c+loga (-1), and the question of finding

the logarithms of negative numbers thus resolves itself into

finding the value of loga ( -1).

There are two standard systems of logarithms one with

the base =2.71828. . .*, and 'the other with the base 10 is

used, the former in algebraic, the latter in numerical calcula-

tions. Logarithms of any base a can easily be reduced to any

other base.

For instance, to reduce 6=loga c to the base 10; i-log c

means, in the form of involution: a
&
=e. Taking the logarithm

hereof gives, 6 logio a=logio c, hence,

r logio c . logio c

5__ or | g c=a
.

m

logio ^
6

logio a

Thus, regarding the logarithms of negative numbers, we need

to consider only logio (-1) or logs ( -1).

If /3-log,(-l),then *=-!,

and since, as will be seen in Chapter II,

E
3*-cos x-)-f sin x,

it follows that,

cos +/ sins =
-1,

*
Regarding e,

see Chapter II, p. 71.
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Hence, x=^
;
or an odd multiple thereof, and

where n is any integer number.

Thus logarithmation also leads to the quadrature number

/,
but to no further extension of the system of numbers.

Quaternions.

16. Addition and subtraction, multiplication and division,

involution and evolution and logarithmation thus represent all

the algebraic operations, and the system of numbers in which

all these operations can be carried out under all conditions

is that of the general number, a+jbj comprising the ordinary

number a and the quadrature- number jb. The number a as

well as b may be positive or negative, may be integer, fraction

or irrational.

Since by the introduction of the quadrature number jb,

the application of the system of numbers was extended from the

line, or more general, one-dimensional quantity, to the plane,

or the two-dimensional quantity, the question arises, whether

the system of numbers could be still further extended, into

three dimensions, so as to represent space geometry. While

in electrical engineering most problems lead only to plain

figures, vector diagrams in the plane, occasionally space figures

would be advantageous if they could be expressed algebra-

ically. Especially in mechanics this would be of importance

when dealing with forces as vectors in space.

In the quaternion calculus methods have been devised to

deal with space problems. The quaternion calculus, however,

has not yet found an engineering application comparable with

that of the general number, or, as it is frequently called, the

complex quantity. The reason is that the quaternion is not

an algebraic quantity, and the laws of algebra do not uniformly

apply to it.

17. With the rectangular coordinate system in the piano,

Fig. 11, the x axis may represent the ordinary numbers, the y

Axis the quadrature numbers, and multiplication by j^V-l
represents rotation by 90 deg. For instance, if PI is a point
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a+j&=3+2?s, the point P2 ,
90 deg. away from PI, would

be:

To extend into space, we have to add the third or z axis,

as shown in perspective in Fig. 12. Rotation in the plane xy,

by 90 deg., in the direction -f x to +t/, then means multiplica-

tion by j.
In the same manner, rotation in the yz plane, by

90 deg. ;
from +y to +zf would be represented by multiplica-

FIG. 11. Vectors in a Plane.

tion with h, and rotation by 90 dcg. in the zx plane, from +z

to + x would be presented by k, as indicated in Fig. 12.

All three of these rotors, j, h, Is,
would be V^T, since each,

applied twice, reverses the direction, that is, represents multi-

plication by (-1).

As seen in Fig. 12, starting from +x, and going to -ft/,

then to 4-0, and then to +x
;
means successive multiplication

by j,
h and Jfc

?
and since we come back to the starting point, the

total operation produces no change, that is, represents mul-

tiplication by ( +1), Hence, it must be,

fhk= +1.
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Algebraically this is not possible, since each of the three quan-

tities is X/-1, and v'-lxV-lxV'-]^ -V-l, and not

(+D.

PIG. 12, Vectors in Space, jhk= + 1.

If we now proceed again from #, in positive rotation, but

first turn in the xz plane, we reach by multiplication with k

the negative z axis, ~z, as seen in Fig, 13. Further
multiplica-

FIG. 13, Vectors in Space, -1.

tion by A brings us to +j/, and multiplication by j
to -x, and

in this case the result of the three successive rotations by
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90 deg,, in the same direction as in Fig. 12, but in a different

order, is a reverse; that is, represents (-1). Therefore,

and hence,

jhk- -khj.

Thus, in vector analysis of space,we see that the fundamental

law of algebra,

does not apply, and the order of the factors of a product is

not immaterial, but by changing the order of the factors of the

product jhkj its sign was reversed. Thus common factors

cannot be canceled as in algebra; for instance, if in the correct

expression, jhk= khj, we should cancel by j,
h and k

}
as could be

done in algebra,we would get +1 = -1, which is obviously wrong.

For this reason all the mechanisms devised for vector analysis

in space have proven more difficult in their application, and

have not yet been used to any great extent in engineering

practice.

B. ALGEBRA OF THE GENERAL NUMBER, OR COMPLEX

QUANTITY.

Rectangular and Polar Coordinates.

18. The general number, or complex quantity, a+}&, is

the most general expression to which the laws of algebra apply.

It therefore can be handled in the same manner and under

the same rules as the ordinary number of elementary arithmetic.

The only feature which must be kept in mind is thatf= -1, and

where in multiplication or other operations f occurs, it is re-

placed by its value, -I. Thus, for instance,

Hercfrom it follows that all the higher powers of j can be

eliminated, thus:

f-4-j, . . . eta
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In distinction from the general number or complex quantity,

the ordinary numbers, +a and -a, are occasionally called

scaZars, or real number?. Tho general number thus consists

of the combination of a scalar or real number and a quadrature

number, or imaginary number.

Since a quadrature number cannot be equal to an ordinary

number it follows that, if two general numbers are equal,

their real components or ordinary numbers, as well as their

quadrature numbers or imaginary components must be equal,

thus, if

a+fi=c+jd,

then,

a=c and b~d.

Every equation with general numbers thus can be resolved

into two equations, one containing only the ordinary numbers,

the other only the quadrature numbers, For instance, if

then,

x=5 and y= -3.

19. The best way of getting a conception of the general

number, and the algebraic operations with
it, is to consider

the general number as representing a point in the plane. Thus

the general number a4-j6=
s

6+2.5j may be considered as

representing a point P, in Fig. 14, which has the horizontal

distance from the y axis, OA**BP=a=6, and the vertical

distance from the x axis, 0#-AP=6=2.5.

The total distance of the point P from the coordinate center

then is

and the angle, which this distance OP makes with the x axis,

i-s given by

AP 2.5
=^~r
OA b

-=0.417.
a
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Instead of representing the general number by the two

components, a and
6, in the form a+jb, it can also be repre-

sented by the two quantities:

The distance of the point P from the center 0,

and the angle between this distance and the x axis,

tanfl--.
a

^y

Fio, 14. Rectangular and Polar Coordinates.

Then referring to Fig, 14
;

a=ccostf and 6=csin#,

and the general number a+jb thus can also be written in the

form,

The form a-\-jb expresses the general number by its

rectangular components a and 6, and corresponds to the rect-

angular coordinates of analytic geometry; a is the x coordinate,

b the y coordinate.

The form c(cos +j sin ft] expresses the general number by

what may be called its polar components, the radius c and the



28 ENGINEERING MATHEMATICS.

angle 6, and corresponds to the polar coordinates of analytic

geometry, c is frequently called the radius vector or scalar,

9 the phase angle of the general number.

While usually the rectangular form a+jb is more con-

venient, sometimes the polar form c(cos 6 +f sintf) is preferable,

and transformation from one form to the other therefore fre-

quently applied,

Addition and Subtraction,

20. If ai+#i
= 6+2.5j is represented by the point PI;

this point is reached by going the horizontal distance i
= B

and the vertical distance &i -2.5. If a2 +/52 =3+4;/ is repre-

sented by the point P2 ,
this point is reached by going the

horizontal distance a2 =3 and the vertical distance fr3 =4.

The sum of the two general numbers
(ai+j&i}

+ (02+^2)
=

(6+2.5f) + (3+*i); then is given by point P0; which is reached

by going a horizontal distance equal to the sum of the hor-

izontal distances of PI and P2 : ao=ai+a2
= (H3=9

7
and a

vertical distance equal to the sum of the vertical distances of

PI and P2 : 6 =^i+&2=2.5+4=6.5 ; hence, is given by the

general number

Geometrically, point P is derived from points PI and P
2?

by the diagonal OP~o of the parallelogram OPiP^, constructed

with"OPi and OP2 as sides, as seen in Fig. 15.

Herefrom it follows that addition of general numbers

represents geometrical combination by the parallelogram law.

Inversely, if PO represents the number

ao+/&o
=
9+6.5],

and PI represents the number

the difference of these numbers will be represented by a point

P2,
which is reached by going the difference of the horizontal
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distances and of the vertical distances of the points PO and

PI, P2 thus is represented by

and

0-^1 =9 -6=3,

o-&i=6 5-2.5=4.

Therefore, the difference of the two general numbers (a +f&o)

and (di +/&j) is given by the general number:

as seen in Fig. 15.

FIG. 15. Addition and Subtraction of Vectors,

This difference a^+jh is represented by one side OP 2 of

the parallelogram OPiP^P^ which has QP\ as the other side,

and OP as the diagonal.

Subtraction of general numbers thus geometrically represents

the resolution of a vector OP into two components OP] and

OP"2 , by the parallelogram law.

Herein lies the main advantage of the use of the general

number in engineering calculation : If the vectors are represented

by general numbers (complex quantities), combination and

resolution of vectors by the parallelogram law is carried out by
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simple addition or subtraction of their general numerical values,

that
is, by the simplest operation of algebra.

21. General numbers are usually denoted by capitals, and

their rectangular components, the ordinary number and the

quadrature number, by small letters, thus:

the distance of the point which represents the general number A

from the coordinate center is called the absolute value, radius

or scalar of the general number or complex quantity. It is

the vector a in the polar representation of the general number:

J. = fl(cos 0-f/ sin 0),

and is given by a= Vfli
3
+aa

2
.

The absolute value, or scalar, of the general number is usually

also denoted by small letters, but sometimes by capitals, and

in the latter case it is distinguished from the general number by

using a different type for the latter, or underlining or dotting

it, thus :

A = a\ + /as ;
or -4 ~ o,\ + ja>> ;

or i=ai+ja2 ;
or AGi+jaj

or A-Vaf+a/,

and &\ +jag
= a (cos + j sin 6) ;

or on +ja2=^(cos Q+j sin 6),

22. The absolute value, or scalar, of a general number is

always an absolute number, or positive, that
is, the sign of the

rectangular component is represented in the angle 0. Thus

referring to Fig. 16,

gves,

tan 0-| -075;

0=37 deg.;

and A = 5 (cos 37 deg. + j sin 37 cleg) .



THE GENERAL NUMBER.

The expression

gives

tan 0--- = -
0.75;

37 deg.; or = 180 -37 =143 deg.

FIG. 16. Representation of General Numbers.

Which of the two values of 6 is the correct one is seen from

the condition a\=a cos 9. As a\ is positive, +4, it follows

that cos 6 must be positive; cos (-37 deg.) is positive, cos 143

deg. is negative; hence the former value is correct:

A=5{cos(-37 deg.) +j sin(-37deg.)}

=5(cos 37 deg. -j sin 37 deg.).

Two such genera! numbers as (4+3f) and (4-3j), or,

in general,

(a+j&) and (a-}5),

are called conjugate numbers. Their product is an ordinary

and not a general number, thus: (a+2'6)(a-j'6)=a
2 +62

.
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The expression

gives

Q

tan0=~ =-0.75;
4

0= -37 deg, or =180-37 = 143 cleg,;

but since &i=a cos is negative, -4, cos 6 must be negative,

hence, #=143 deg. is the correct value, and

4=5(cos 143 deg. +/sin 143 deg,)

=5(-cos 37 deg. +}' sin 37 deg,)

The expression

4=01+^2= -4-3;

gives

0=37 deg,; or ==180 +37 =217 deg.;

but since ai=a cos 6 is negative, -4, cos 6 must be negative,

hence 0=217 deg. is the correct value, and,

4=5 (cos 217 deg. + j sin 217 deg.)

=5(
-

cos 37 deg. -/ sin 37 deg.)

The four general numbers, +4+3j ; +4-3j, -4-1-3/, ami

-4~3j, have the same absolute value, 5, and in their repre-

sentations as points in a plane have symmetrical locations in

the four quadrants, as shown in Fig. 16.

As the general number A-ai+jaz finds its main use in

representing vectors in the plane, it very frequently is called

a vector quantity, and the algebra of the general number is

spoken of as wdw analysis.

Since the general numbers 4=^1+^2 can be made to

represent the points of a plane, they also may be called plane

numbers, while the positive and negative numbers, -fa and -a,
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may be called the linear numbers, as they represent the points

of a line.

Example: Steam Path in a Turbine.

23. As an example of a simple operation with general num-

bers one may calculate the steam path in a two-wheel stage

of an impulse steam turbine.

<<(

FIG. 17. Path of Steam in a Two-wheel Stage of an Impulse Turbine,

Let Fig. 17 represent diagrammatically a tangential section

through the bucket rings of the turbine wheels. W\ and F2

are the two revolving wheels, moving in the direction indicated

by the arrows, with the velocity $=400 feet per sec. 7 are

the stationary intermediate buckets, which turn the exhaust

steam from the first bucket wheel Wi, back into the direction

required to impinge on the second bucket wheel Wz. The

steam jet issues from the expansion nozzle at the speed s =2200
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feet per sec,, and under the angle 6^-20 cleg., against the first

bucket wheel W\.

The exhaust angles of the three successive rows of buckets,

W
1? /, and W2 ,

are respectively 24 deg., 30 dcg. and 45 deg.

These angles are calculated from the section of the bucket

exit required to pass the steam at its momentary velocity,

and from the height of the passage required to give no steam

eddies, in a manner which is of no interest here,

As friction coefficient in the bucket passages may be assumed

A
/ =0.12; that

is, the exit velocity is 1-^=0.88 of the entrance

velocity of the steam in the buckets.

FIG. 18. Vector Diagram of Velocities of Steam in Turbine.

Choosing then as re-axis the direction of the tangential

velocity of the turbine wheels, as ?/~axis the axial direction,

the velocity of the steam supply from the expansion nozzle is

represented in Fig. 18 by a vector 05 of length s =2200 feet

per sec., making an angle #0=20 deg. with the z-axis; hence,

can be expressed by the general number or vector quantity;

=2200 (cos 20 dcg. +j sin 20 deg.)

=2070 +760; ft. per sec.

The velocity of the turbine wheel W\ is $=400 feet per second,

and represented in Fig. 18 by the vector OS, in horizontal

direction.
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The relative velocity with which the steam enters the bucket

passage of the first turbine wheel W\ thus is;

-(2070 +750}) -400

= 1670 +740} ft. per sec.

This vector is shown as 0&\ in Fig, 18.

The angle 0i, under which the steam enters the bucket

passage thus is given by

750
tan

0i=ig70
=

0-450, as 0i=24.3deg.

This angle thus has to be given to the front edge of the

buckets of the turbine wheel Ifi.

The absolute value of the relative velocity of steam jet

and turbine wheel W\, at the entrance into the bucket passage,

is

si
= V16702 + 7502 = 1830 ft. per sec,

In traversing the bucket passages the steam velocity de-

creases by friction etc., from the entrance value $1 to the

exit value

s2 =si(l-fy)
= 1830X0.88 = 1610 ft. per see.,

and since the exit angle of the bucket passage has been chosen

as ^==24 deg., the relative velocity with which the steam

leaves the first bucket wheel Wi is represented by a vector

OS~2 in Fig. 18, of length s2 =161Q, under angle 24 deg. The

steam leaves the first wheel in backward direction, as seen in

Fig. 17, and 24 deg. thus is the angle between the steam jet

and the negative x-axis; hence, 02= 180 -24 = 156 deg. is the

vector angle. The relative steam velocity at the exit from

wheel If i can thus be represented by the vector quantity

-1610 (cos 156 deg. +jw 156 deg.)

= -1470 +655 j.

Since the velocity of the turbine wheel W\ is s=400, the

velocity of the steam in space, after leaving the first turbine
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wheel, that is, the velocity with which the steam enters the

intermediate /, is

~(l470+655j)+400
= -1070 +655

j,

and is represented by vector 0/S3 in Fig. 18.

The direction of this steam jet is given by

to 03= -

as

3 =-31.6dcg.; or, 180-31.0=148.4 deg.

The latter value is correct, as cos #3 is negative, and sin # 3 is

positive.

The steam jet thus enters the intermediate under the angle

of 148.4 deg. ;
that is, the angle 180 - 148.4 31.6 deg. in opposite

direction. The buckets of the intermediate / thus must be

curved in reverse direction to those of the wheel Wi, and must

be given the angle 31.6 deg. at their front edge.

The absolute value of the entrance velocity into the inter-

mediate / is

58 V1070H-6552 =1255 ft. per sec.

In passing through the bucket passages, this velocity de-

creases by friction, to the value;

$4*53(1 -fc/)=12S5X0.881105 ft. per sec.,

and since the exit edge of the intermediate is given the angle:

#4=30 deg., the exit velocity of the steam from the intermediate

is represented by the vector OS4 in Fig. 18, of length s4 =1105,

and angle 04-30 deg. ; hence,

S 4 =1105 (cos 30 deg. +j sin 30 deg.)

=955 +550? ft. per sec.

This is the velocity with which the steam jet impinges

on the second turbine wheel W% and as this wheel revolves
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with velocity s=400
;
the relative velocity that

is, the velocity

with which the steam enters the bucket passages of wheel W%, is,

=(955 +550?) -400

=555 +550/ ft. per sec.;

and is represented by vector OS5 in Fig, 18.

The direction of this steam jet is given by

550
tan 6

=ggp0.990,
as 5 =44.Sdeg.

Therefore, the entrance edge of the buckets of the second

wheel W% must be shaped under angle #5=44.8 deg.

The absolute value of the entrance velocity is

s5
= V5552 +5502 -780 ft. per sec.

In traversing the bucket passages, the velocity drops from

the entrance value $5, to the exit valve,

s6 =s5 (l~/c/)=780XO,88=690 ft. per sec.

Since the exit angles of the buckets of wheel W% has been

chosen as 45 deg., and the exit is in backward direction, 6$
=

180-45=135 deg., the steam jet velocity at the exit of the

bucket passages of the last wheel is given by the general number

f sin 06)

=690 (cos 135 deg. +/ sin 135 deg.)

= -487 +487; ft. per sec.,

and represented by vector OS& in Fig. 18.

Since 5=400 is the wheel velocity, the velocity of the

steam after leaving the last wheel W
2}

that is, the "lost"

or
"
rejected

"
velocity, is

-(487+487?) +400

= -87+487jft. per sec.,

and is represented by vector OS? in Fig. 18.
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The direction of the exhaust steam is given by,

tan 7
=
--0^-= -5.fi, as 7 =180-SO100deg.,

CM

and the absolute velocity is,

s7
= \/872 +487 2 =495 ft. per sec.

Multiplication of General Numbers.

24, If A = ai+/a2 and #=&i+j&2 ,
are two general, 01

plane numbers, their product is given by multiplication, thus

and since f = -1,

AB = (ai&i-a2&2)+/(ai&2 + 21),

and the product can also bo represented in the plane, by a point,

where,

and

For instance, A=2+j multiplied by 5 = l+l.Sf gives

d=2Xl-lXl.5=0.5,

C2 =2X1.5+1X1=4;

hence,

C=0.5+4j,

as shown in Fig. 19.

25. The geometrical relation between the factors A and 1

and the product C is better shown by using the polar expression

hence, substituting,

ai-acosal I &i=Z>cos/?l

a2=asin

which gives

and
J n 62

tan/9-^-
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the quantities may be written thus:

4=a(cos a+/sin a-);

and then,

C=AB =
ab(Qos a'+j sin a) (cos $ + j

sin $
=ab

{ (cos a. cos
/5
-sin a- sin $ + /(cos a sin

/? -fsin a cos
/

=a5 icos (a +$ +/ sin (a +$} ;

FIG. 19, Multiplication of Vectors,

that
is, two general numbers are multiplied by multiplying their

absolute values or vectors, a and 6, and adding their phase angles

a and
/?.

Thus, to multiply the vector quantity, A=a\+ja2-a (cos

a+j sin
fl) by J3=&i+/6 2 =&(cos i#+/sin/?) the vector OA in Fig.

19, which represents the general number A, is increased by the

factor 6 = vV+&22
,
and rotated by the angle ft which is given

&2

by tan/?=r--
Oi

Thus, a complex multiplier B turns the direction of the

multiplicand A, by the phase angle of the multiplier B, and

increases the absolute value or vector of A, by the absolute

value of B as factor.
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The multiplier B is occasionally called an operator,
as it

carries out the operation of rotating the direction and changing

the length of the multiplicand.

26. In multiplication, division and other algebraic opera-

tions with the representations of physical quantities (as alter-

nating currents, voltages, impedances, etc.) by mathematical

symbols, whether ordinary numbers or general numbers, it

is necessary to consider whether the result of the algebraic

operation, for instance, the product of two factors, has a

physical meaning, and if it has a physical meaning, whether

this meaning is such that the product can be represented
in

the same diagram as the factors.

For instance, 3X4 = 12; but 3 horses X 4 horses does not

give 12 horses, nor 12 horses
2

,
but is physically meaningless.

However, 3 ft. X4 ft, = 12 sq.ft. Thus, if the numbers represent

$. I I 0) I I I I I I 1 I I I

A B C

FIG. 20.

horses, multiplication has no physical meaning. If they repre-

sent feet, the product of multiplication has a physical meaning,

but a meaning which differs from that of the factors. Thus,

if on the line in Fig. 20, Ol=3 feet, 05-4 feet, the product,

12 square feet, while it has a physical meaning, cannot be

represented any more by a point on the same line; it is
jiot

the point "OC^ 12, because, if we expressed the distances OA

aad 05 in inches, 36 and 48 inches
respcctively,Jhe product

would be 36x48-1728 sq.in., while the distance OC would be

144 inches.

27. In all mathematical operations with physical quantities

it therefore is necessary to consider at every step of the mathe-

matical operation, whether it still has a physical meaning,

and, if graphical representation is resorted to, whether the

nature of the physical meaning is such as to allow graphical

representation in the same diagram, or not.

An instance of this general limitation of the application of

mathematics to physical quantities occurs in the representation

of alternating current phenomena by general numbers, or

complex quantities.
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An alternating current can be represented by a vector 01

in a polar diagram, Fig. 21, in which one complete revolution

or 360 deg represents the lime of one complete period of the

alternating current. This vector 01 can be represented by a

general number,

where i\ is the horizontal, i% the vertical component of the

current vector 01.

FIG, 21. Current, E M F. and Impedance Vector Diagram.

In the same manner an alternating E.M.F. of the same fre-

quency can be represented by a vector OE in the same Fig. 21,

and denoted by a general number,

An impedance can be represented by a general number,

Z-r-jx,

where r is the resistance and x the reactance.

If now we have two impedances, OZ\ and OZ2, %i=r\ -jx\

and Z2 =r2 "^2, their product #1 Z2 can be formed mathema -

ically, but it has no physical meaning.
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If we have a current and a voltage, 7 = ii 4- /^ and $ =
e\ 4- fea,

the product of current and voltage is the power P of tho alter-

nating circuit.

The product of the two general numbers 7 and E can be

formed mathematically, IE, and would represent a point C

in the vector plane Fig, M. This point C, however, and the

mathematical expression IE, which represents it,
docs not give

the power P of the alternating circuit, since the power P is not

of the same frequency as 7 and E, and therefore cannot be

represented in the same polar diagram Fig. 21, which represents

If we have a current 7 and an impedance Z, in Fig
1

. 21;

7={1 -f^2 and Z=r-jx, their product is a voltage, and as the

voltage is of the same frequency as the current, it can be repre-

sented in the same polar diagram, Fig. 21, and thus is given by

the mathematical product of 7 and Z,

28. Commonly, in the denotation of graphical diagrams by

general numbers, as the polar diagram of alternating currents,

those quantities, which are vectors in the polar diagram, as the

current, voltage, etc., are represented by dotted capitals; E, 7,

while those general numbers, as the impedance, admittance, etc.,

which appear as operators, that is, as multipliers of one vector,

for instance the current, to get another vector, the voltage, are

represented algebraically by capitals without dot; Z=r~jx=

impedance, etc.

This limitation of calculation with the mathematical repre-

sentation of physical quantities must constantly be kept in

mind in all theoretical investigations.

Division of General Numbers.

29. The division of two general numbers, A^ai+jat and

B =4i +762, gives,

A.

*~fi~

This fraction contains the quadrature number in the numer-

ator as well as in the denominator. The quadrature number
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can bo eliminated from the denominator by multiplying numer-

ator and denominator by the conjugate quantity of the denom-

inator, bi-jbzj which gives:

(ai+7fl2)(6i -jb*) (a\b\ +

for instance,

i_6+2.5f

28-16.5/

25

=1.12-0.60?.

If desired, the quadrature number may be eliminated from

the numerator and left in the denominator by multiplying with

the conjugate number of the numerator, thus:

for instance,.

(3+4j)(6-2.6jJ

29.75

28 + 16.5]

30. Just as in multiplication, the polar representation of

the general number in division is more perspicuous than any

other.
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Let l=a(cos a-f /sin a) be divided by JS=6(cos ,

thus;

a(cos a -f f sin )(cos j? -? sin /9)

6 (cos p +/ sin
/?) (cos /? -j sin

/?)

__a{ (cos a cos /Hsin a sin
/?) +j(sin

a: cos
/?
-cos ct Pin /?) j"

6(cos
2
/5+sin

2
/?)

ct

=rjcos (a -/?)+/ sin (a-/?)}.

That
is, general numbers A and 5 are divided by dividing

their vectors or absolute values, $ and 6
;
and subtracting their

phases or angles a and
/?.

Involution and Evolution of General Numbers,

31, Since involution is multiple multiplication, and evolu-

tion is involution with fractional exponents; both can be resolved

into simple expressions by using the polar form of the general

number.

a(cos a+j sin a),

then

C=Aw== an (cos na+j sin no).

For instance, if

4=3+ 4/=5(cos 53 deg.+f sin 53 dcg.);

then,

(7= A4 =54
(cos 4X53 dog. +j sin 4x53 dog.)

-625(cos 212 deg. +j sin 212
cleg.)

-625( -cos 32 deg. -/ sin 32 dcg.)

-625( -0.848 -0.530 j)

= -529 -331
j.

If, A=ai -f jct2 =a (cos CL+J sin a), then

- / QL ff.

G-vA^An =an cos~-Hsin-
\ /M J nn

n/-/ a . . CM
= valcos-+?sm-).

v n J

n
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32. If, in the polar expression of A, we increase the phase

angle a by %n, or by any multiple of 2?r : 2#7r, where q is any

integer number, we get the same value of 4, thus;

4=a|cos(a +2^) +f sin(a+2<pr)},

since the cosine and sine repeat after every 360 cleg, or 2-.

The nth root, however, is different:

/-y */T W a+29^
,

(7=vA = v a cos
- + 1 sm

\ n J

We hereby get n different values of C, for q=0, 1, 2, . .n-1;

g
= n gives again the same as q

- 0. Since it gives

that is, an increase of the phase angle by 360 deg., which leaves

cosine and sine unchanged.

Thus, the nth root of any general number has n different

values, and these values have the same vector or absolute

term v^, but differ from each other by the phase angle and

its multiples.

For instance, let A- -529-331f=625 (cos 212 deg.f

j sin 212 deg.) then,

212+360? . . 212+3600'- 1 - -

=5(cos53+jsin53)

=5(cosl43+/sinl43)=5(-cos37+jsin37)=-4+3/

=5(cos233+jsin233)-5(-cos53+jsin53)=-3-f4/
=

5(cos 323 + / sin 323)
-
5(cos 37 -f sin 37) =4 -3j

==5(cos 413+j sm 413)=5(cos 53+j sin 53) =3+4f

The n roots of a general number A=a(cos a+f sin a) differ

from each other by the phase angles ,
or I/nth of 360 deg.,

Tlr

and since they have the same absolute value va, it follows, that

they are represented by n equidistant points of a circle with

radius #a, as shown in Fig. 22, for n=4, and in Fig, 23 for
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ft -9, Such a system of n equal vectors, differing in phase from

each other by I/nth of 360 cleg., is called a polyphase system, or

an n-phase system. The n roots of the general number thus

give an n-phase system.

33 For instance, $T?
If A=a (cos a +7 sin a)

= l
;
this means; a=l, o:=0; and

hence,

l=cos -H'sin ;

n
' n

P
3=-3-4?<

FIG. 22. Roots of a General Number, n=4.

and the n roots of the unit are

cos
360 360

However,

cos (n-1) +/siu (n-1) .

IV t\l

360 . . 360 / 360
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hence, the n roots of 1 arc,

n/r / 360 .. 360\
VI = cos +jsm ,

\ n J
n I

'

where q may be any integer number.

One of these roots is real, for q=0 }
and is= +1,

If n is odd, all the 'other roots are general, or complex

numbers.

If n is an even number, a second root, for q=^,
is also real:

cos 180 +?' sin 180 =-1.

FIG. 23. Roots of a General Number, w=9.

If n is divisible by 4, two roots are quadrature numbers, and

are

34. Using the rectangular coordinate expression of the

general number, A=a>i +^2, the calculation of the roots becomes

more complicated. For instance, given ^5=?

Let C=4

then, squaring,

hence,

Since, if two general numbers are equal, their horizontal

and their vertical components must be equal, it is:

ai=ci
2
-C2

2 and a
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Thus

and

and
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Squaring both equations and adding them, gives,

Hence :

and since

then,

C2=rMA2
+a2

2 -a2 !,

which is a rather complicated expression.

35. When representing physical quantities by general

numbers, that is, complex quantities, at the end of the calcula-

tion the final result usually appears also as a general number,

or as a complex of general numbers, and then has to be reduced

to the absolute value and the phase angle of the physical quan-

tity. This is most conveniently done by reducing the general

numbers to their polar expression. For instance, if the result

of the calculation appears in the form,

by substituting

Aand so on.

g_g(cos
a-f j'sin tt s j?+f sin

j?)

8
Vc(cos y+j'sin y)*

sn e +/ sin
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Therefore, the absolute value of a fractional expression is

the product of the absolute values of the factors of the numer-

ator, divided by the product of the absolute values of the

factors of the denominator.

The phase angle of a fractional expression is the sum of

the phase angles of the factors of the numerator, minus the sum

of the phase angles of the factors of the denominator,

For instance,

5(4+3j)
2v/

2

25(cos3Q7+fsm307)
2
2\/2(cos45+fsm45)^6!5(cosll4+jsmll4)^

125 (cos 37 +/ sin 37)V2

/ 114

+jsin 2X307+45+-5 2X37
\ o /

0.4^o\5jcos263+/sin263}

0.746
j -0.122-0.992/}

= -0.091 -0.74j.

36. As will be seen in Chapter II:

J^jf_ tf_

A "16
+

|8

'

Hcrefrom follows, by substituting, x=6, u=j6,

cos 0+y' sin 0W,

and the polar expression of the complex quantity,

A=a(cos a+/sin a),

thus can also be written in the form,
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where s is the base of the natural logarithms,

Since any number a can be expressed as a power of any

other number, one can substitute;

where aQ =log a='j-
1Q

,
and the general number thus can

iogio

also be written in the form,

i= ao+J
'

a
;

that is the general number, or complex quantity, can be expressed

in the forms,

=a(cos a+j sin a)

The last two, or exponential forms, are rarely used, as they

are less convenient for algebraic operations. They are of

importance; however, since solutions of differential equations

frequently appear in this form, and then are reduced to the

polar or the rectangular form,

37. For instance, the differential equation of the distribu-

tion of alternating current in a flat conductor, or of alternating

magnetic flux in a flat sheet of iron, has the form:

and is integrated by y^Ar 7
*, where,

hence,

This expression, reduced to the polar form, is

y=Aie
+cs(m cx-j sin ex) +A2 r^(cos a+j sin ex).
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Logarithmation.

38. In taking the logarithm of a general number, the ex-

ponential expression is most convenient, thus :

logs (01 +^2) = loga a (cos a+j sin a)

or, if 6 = base of the logarithm, for instance, 6 = 10, it is:

logj(oi +702) =log6
a 3

'

a
=log& a+ja Iog6 ;

or, if 6 unequal 10, reduced to logio;

logio a
,

logio ^



CHAPTER II.

POTENTIAL SERIES AND EXPONENTIAL FUNCTION.

A, GENERAL.

39. An expression such as

represents a fraction; that is, the result of division, and like

any fraction it can be calculated; that is, the fractional form

eliminated, by dividing the numerator by the denominator, thus:

l-x l

Heriee, the fraction (1) can also be expressed in the form;

....... (2)
1-rX

This is an infinite series of successive powers of x, or a potcrir-

tial series.

In the same manner, by dividing through, the expression

y =T+~x
}
........... (3)

can be reduced to the infinite scries,

52
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The infinite series (2) or (4) is another form of representa-

tion of the expression (1) or (3), just as the periodic decimal

fraction is another representation of 'the common fraction

(for instance 0.6363. ...=7/11).

40. As the series contains an infinite number of terms,

in calculating numerical values from such a series perfect

exactness can never be reached; since only a finite number of

terms are calculated, the result can only be an approximation.

By taking a sufficient number of terms of the series, however,

the approximation can, bo made as close as desired; that
is,

numerical values may be calculated as exactly as necessary,

so that for engineering purposes the infinite series (2) or (4)

gives just as exact numerical values as calculation by a finite

expression (1) or (2), provided a sufficient number of terms

arc used. In most engineering calculations, an exactness of

0.1 per cent is sufficient; rarely is an exactness of 0.01 per cent

or even greater required, as the unavoidable variations in the

nature of the materials used in engineering structures, and the

accuracy of the measuring instruments impose a limit on the

exactness of the result.

For the value =0,5, the expression (1) gives /
=
i_ Q

r=2;

while, its representation by the series (2) gives

y=l +0.5+0.25+0.125+0,0625+0.03125+. .. (5)

and the successive approximations of the numerical values of

y then are :

using one term: y=l =
1; error' -1

"
two terms: y= 1+0.5 =15,

"
-0.5

"
three terms: y= 1+0.5+0.25 =1.75-;

fc -025
"

four terms: y= 1+0.5+0.25+0.125 =1.875;
"

-0.125
"

fiveterms: 2/=l+0,5+0.25+0,125+0,0625=l,9375
"

-0.0625

It is seen that the successive approximations come closer and

closer to the correct value, y=2, but in this case always remain

below it; that is, the series (2) approaches its limit from below,

as shown in Fig. 24, in which the successive approximations

are marked by crosses.

For tho value re =0.5, the approach of the successive

approximations to the limit is rather slow, and to get an accuracy

of 0.1 per cent, that is, bring the error down to less than 0.002,

requires a considerable number of terms.
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For a =0.1 the series (2) is

2/
= l +0.1 +0.01 +0.001 +0.0001+..

and the successive approximations thus are

1;
j(
=

l;

2; y
=

l.l;

3; y
=

l.ll;

4: y
=

l.lll;

5: t/
=

l.llll;
?

and as, by (1) ;
the final or limiting value is

FIG. 24, Direct Convergent Series with One-sided Approach,

the fourth approximation already brings the error well below

0.1 per cent
;
and sufficient accuracy thus is reached for most

engineering purposes by using four terms of the series,

41. The expression (3) gives, for a; =0.5, the value,

'-ris-r -0880-

Represented by series (4), it gives

y~ 1-0.5 +0.25 -0.125 +0.0625 -0.03125+ -
(7)

the successive approximations arc;

1st: y=l *1; error: +0.333,.,
2d: y=l-0.5 =0.5;

"
-0.1666,, .

3d, ?/=l-0.5+0.25 =0.75;
"

+0.0833,,.
4th: 2/-1-0.5+0.25-0125 =0,625;

"
-0.04166..

5th: s/=l-0.5+0.25~0.125+0.0625=0.6875;
"

+0,020833...

As seen, the successive approximations of this scries come

closer and closer to the correct value y= 0.6666 . . .
,
but in this

case are alternately above and below the correct or limiting
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value, that is, the series (4) approaches its limit from both sides,

as shown in Fig. 25, while the series (2) approached the limit

from below, and still other series may approach their limit

from above.

With such alternating approach of the series to the limit,

as exhibited by series (4), the limiting or final value is between

any two successive approximations, that is, the error of any

approximation is less than the difference between this and the

next following approximation.

42. Substituting x=2 into the expressions (1) and (2),

equation (1) gives

2

FIG. 25. Alternating Convergent Series.

while the infinite series (2) gives

2^1+2+4+8+16+32+. .;

and the successive approximations of the latter thus are

1; 3; 7; 15; 31; 63...;

that is, the successive approximations do not approach closer

and closer to a final value, but, on the contrary, get further and

further away from each other, and give entirely wrong results.

They give increasing positive values, which apparently approach

oo for the entire series, while the correct value of the expression,

by (1), is j=-l. .

Therefore, for 3 =2, the series (2) gives unreasonable results,

and thus cannot be used for calculating numerical values.

The same is the case with the representation (4) of the

expression (3) for i=2. The expression (3) gives
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while the infinite series (4) gives

2/=l-2+4-S+16-32+-. ,.,

and the successive approximations of the latter thus arc

1; -1; +3; -5; +11; -21;...:

hence, while the successive values still are alternately above

and below the correct or limiting value, they do not approach

it with increasing closeness, but more and more diverge there-

from.

Such a series, in which the values derived by the calcula-

tion of more and more terms do not approach a final value

closer and closer, is called divergent, while a series is called

convergent if the successive approximations approach a final

value with increasing closeness.

43. While a finite expression, as (1) or (3), holds good for

all values of x, and numerical values of it can be calculated

whatever may be the value of the independent variable x, an

infinite series, as (2) and (4), frequently does not give a finite

result for every value of x, but only for values within a certain

range. For instance, in the above series, for -1 <x< + l,

the series is convergent; while for values of x outside of this

range the series is divergent and thus useless.

When representing an expression by an infinite series,

it thus is necessary to determine that the scries is convergent;

that is, approaches with increasing number of terms a finite

limiting value, otherwise the scries cannot be used. Where

the series is convergent within a certain range of x, diver-

gent outside of this range, it can be used only in the ro^ge o/

convergency, but outside of this range it cannot be used for

deriving numerical values, but some other form of representa-

tion has to be found which is convergent.

This can frequently be done, and the expression thus repre-

sented by one series in one range and by another series in

another range. For instance, the expression (1), y--. , by~~

substituting, ---, can be written in the form
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and then developed into a series by dividing the numerator

by the denominator, which gives

or, resubstituting x,

1111
^-? +5-? + "-' - - - -

which is convergent for x=2, and for 2=2 it gives

y=0.5-0.25+0.125-0.0625+. . . (9)

With the successive approximations :

0.5; 0.25; 0.375; 0.3125...,

which approach the final limiting value,

2/=0.333..

44. An infinite series can be used only if it is convergent.

Mathematical methods exist for determining whether a series

is convergent or not. For engineering purposes, however,

these methods usually are unnecessary; for practical use it

is not sufficient that a series be convergent, but it must con-

verge so rapidlythat is, the successive terms of the series

must decrease at such a great rate that accurate numerical

results are derived by the calculation of only a very few terms;

two or three, or perhaps three or four. This, for instance,

is the case with the series (2) and (4) for x =0.1 or less. For

a;=0.5, the series (2) and (4) are still convergent, as seen in

(5) and (7), but are useless for most engineering purposes, as

the successive terms decrease so slowly that a large number

of terms have to be calculated to get accurate results, and for

such lengthy calculations there is no time in engineering work.

If, however, the successive terms of a series decrease at such

a rapid rate that all but the first few terms can be neglected,

the series is certain to be convergent.

In a series therefore, in which there is a question whether

it is convergent or divergent, as for instance the series
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or

11111
y= 1 -- +- -

j -f r -77 + . . . (convergent),

the matter of convergency is of little importance for engineer-

ing calculation, as the series is useless in any case; that is
;
docs

not give accurate numerical results with a reasonably moderate

amount of calculation.

A series, to be usable for engineering work, must have

the successive terms decreasing at a very rapid rate, and if

this is the case, the scries is convergent, and the mathematical

investigations of convergency thus usually becomes unnecessary

in engineering work.

45. It would rarely be advantageous to develop such simple

expressions as (1) and (3) into infinite series, such as (2) and

(4), since the calculation of numerical values from (1) and (3)

is simpler than from the series (2) and (4), even though very

few terms of the series need to be used.

The use of the series (2) or (4) instead of the expressions

(1) and (3) therefore is advantageous only if these series con-

verge so rapidly that only the first two terms arc required

for numerical calculation, and the third term is negligible;

that is,
for very small values of x. Thus, for x=0.01, accord-

ing to (2),

0=1+0.01+0.0001+... -1+0.01,

as the next term, 0.0001, is already less than 0.01 per cent of

the value of the total expression.

For very small values of x, therefore, by (1) and (2),

1__

and by (3) and (4),

ana tnesc expressions (10) and (11) are useful and very com-

monly used in engineering calculation for simplifying work.

For instance, if 1 plus or minus a very small quantity appears

as factor in the denominator of an expression, it can be replaced

by 1 minus or plus the same small quantity as factor in the

numerator of the expression, and inversely.
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For example, if a direct-current receiving circuit, of resist-

ance
r, is fed by a supply voltage eo over a line of low

resistance TQ, what is the voltage e at the receiving circuit?

The total resistance is r-fr
; hence, the current, i-

;

and the voltage at the receiving circuit is

If now r is small compared with
r,

it is

== f <
r"

~i+-r
r

(13)

As the next term of the series would be ( )
,
the erroi

made by the simpler expression (13) is less than 1 1 . Thus
;

if rQ is 3 per cent of r, which is a fair average in interior light-

>oV
ing circuits, (-1 =0.032 =

0.0009, or less than 0.1 per cent;

hence, is usually negligible.

46. If an expression in its finite form is more complicated

and thereby less convenient for numerical calculation, as for

instance if it contains roots, development into an infinite series

frequently simplifies the calculation.

Very convenient for development into an infinite series

of powers or roots, is the binomial theorem,

. (14)
where

Thus, for instance, in an alternating-current circuit of

resistance r, reactance x, and supply voltage e
}
the current

is,
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If this circuit is practically non-inductive, as an incandescent

lighting circuit; that is, if x is small compared with r, (15)

can be written in the form,

and the square root can be developed by the binomial (14), thus,

Ma i

u=H ;n=, and gives

o o
2\r/ 8W 16

In this series (17), if x=0.1r or less; that
is, the reactance

is not more than 10 per cent of the resistance, the third term,

3 M 4

-
(-) ,

is less than 0.01 per cent; hence, negligible, and the
o \T /

series is approximated with sufficient exactness by the first

two terms,

and equation (16) of the current then gives

This expression is simpler for numerical calculations than

the expression (15), as it contains no square root

47. Development into a series may become necessary, if

further operations havo to be carried out with an expression

for which the expression is not suited, or at least not well suited.

This is often the case where the expression has to be integrated,

since very few expressions can be integrated.

Expressions under an integral sign therefore very commonly

have to bo developed into an infinite series to carry out the

integration.
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EXAMPLE 1.

Of the equilateral hyperbola (Fig 26),

a#
= a2

,
, . . . (20)

the length L of the arc between x\=
k

2a and X2=10a is to be

calculated.

An element dl of the arc is the hypothenuse of a right triangle

with dx and dy as cathotes. It, therefore, is,

(21)

and from (20),

FIG. 26, EquilateralHyperbola.

a2 . dy a2

and 5=-?
Substituting (22) in (21) gives,

(22)

(23)

hence, the length L of the arc, from xi to z2 is,

Cm C^ I TTw

L=| dl=Jx
Jl +^j^ (24)
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Substituting -=v; that is, dx^adv, also substituting
cl

t,1=^=2 and i>2 =-=10 (25)
a

gives

L-o
r,,

r-j-

JL V
1Vr -

The expression under the integral is inconvenient for integra-

tion; it is preferably developed into an infinite series, by the

binomial theorem (14).

'

Write w=-j and n^ }
then

rr
j.___i^ .

i

and

1 1 1

mv

1
_
7^+T^___^__

1

3Xl28Xt>16

and substituting the numerical values,

L=ai (10-2)
4-^(0.125-0.001)

-1(0.0078-0) +

-a{8 +0.0207-0.0001) =8.0206a.

As seen, in this series, only the first two terms are appreciable

in value, the third term less than 0.01 per cent of the total,

and hence negligible, therefore the series converges very

rapidly, and numerical values can easily be calculated by it.
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For xi <2 a; that is, vi <2, the series converges less rapidly,

and becomes divergent for xi<a; or, vi<l. Thus this series

(17) is convergent for v>l, but near this limit of convergency

it is of no use for engineering calculation, as it does not converge

with sufficient rapidity, and it becomes suitable for engineering

calculation only when v^ approaches 2.

EXAMPLE 2.

48. log 1=0, and, therefore log (14- a;) is a small quantity

if x is small, log (14-z) shall therefore be developed in such

a series of powers of x, which permits its rapid calculation

without using logarithm tables.

It is

r
du

then, substituting (14-z) for u gives,

log (l+x.)=
)

r~ (18)

From equation (4)

hence, substituted into (18),

log (1+s)-
J(l-:c+:c

2 -aH. . .)4c

= fdx - (xdx + (x*dx -(x*dx +...

hence, if x is ^^ery small,
- is negligible, and, therefore, all

it

terms beyond the first are negligible, thus,

while, if the second term is still appreciable in value, the more

complete, but still fairly simple expression can be used,

(21)
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If instead of the natural logarithm, as used above, the

decimal logarithm is required, the following relation may be

applied :

logic a=logiodoga=0 43-13 logs a,
. . (22)

logic a is expressed by log a, and thus (19), (20) (21) assume

the form, -- + ...; . (23)

or
; approximately,

logio(l+ z) =0.4343; (24)

or, more accurately,

. . . (25)

B. DIFFERENTIAL EQUATIONS.

49. The representation by an infinite series is of special

value in those capes, in which no finite expression of the func-

tion is known, as for instance, if the relation between x and y

is given by a differential equation.

Differential equations are solved by separating the variables,

that is, bringing the terms containing the one variable, y, on

one side of the equation, the terms with the other variable x

on the other side of the equation, and then separately integrat-

ing both sides of the equation. Very rarely, however, is it

possible to separate the variables in this manner, and where

it cannot be done, usually no systematic method of solving the

differential equation exists, but this has to be clone by trying

different functions, until one is found which satisfies the

equation.

In electrical engineering, currents and voltages are dealt

with as functions of time. The current and c.m.f. giving the

power lost in resistance are related to each other by Ohm's

law. Current also produces a magnetic field, and this magnetic

field by its changes generates an e.m.f. the e.m.f. of self-

inductance. In this case, e.m.f. is related to the change of

current; that is,
the differential coefficient of the current, and

thus also to the differential coefficient of e.m.f., since the e.m.f.
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is related to the current by Ohm's law. In a condenser, the

current and therefore, by Ohm's law, the e.m.f., depends upon
and is proportional to the rate of change of the e.m.f. impressed

upon the condenser; that is, it is proportional to the differential

coefficient of e.m.f.

Therefore, in circuits having resistance and inductance,

or resistance and capacity, a relation exists between currents

and e.m.fs., and their differential coefficients, and in circuits

having resistance, inductance and capacity, a double relation

of this kind exists; that is, a relation between current or e,m,f.

and their first and second differential coefficients.

The most common differential equations of electrical engineer-

ing thus are the relations between the function and its differential

coefficient, which in its simplest form is,

or

and where the circuit has capacity as well as inductance, the

second differential coefficient also enters, and the relation in

its simplest form is,

s-* ........
or

and the most general form of this most common differential

equation of electrical engineering then is,

g +a!
|+ay+6-0

...... (30)

The differential equations (26) and (27) can be integrated

by separating the variables, but not so with equations (28),

(29) and (30); the latter require solution by trial.

50. The general method of solution may be illustrated with

the equation (26) ;
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To determine whether this equation can be integrated by an

infinite series, choose such an infinite series,, and then, by sub-

stituting it into equation (26), ascertain whether it satisfies

the equation (26) ;
that is, makes the left side equal to the right

side for every value of x.

Let,

(31)

be an infinite series, of which the coefficients ao, a\, a*, % - -

are still unknown, and by substituting (31) into the differential

equation (26), determine whether such values of these coefficients

can be found, which make the series (31) satisfy the equation (26).

Differentiating (31) gives,

(32)

The differential equation (26) transposed gives,

Substituting (31) and (32) into (33), and arranging the terms

in the order of x, gives,

fa
-

GO) + (202- ai)x + (3fls
-

az}x
2

.=0. . (34)

If then the above series (31) is a solution of the differential

equation (26), the expression (34) must be an identity; that is,

must hold for every value of x.

If, however, it holds for every value of x, it does so also

for =0, and in this case, all the terms except the first vanish,

and (34) becomes,

or,

To make (31) a solution of the differential equation (ai-ao)

must therefore equal 0. This being the case, the term (ai~flo)

can be dropped in (34), which then becomes,

(2a2-ai)^-l-(3a3-a2^
2
-f (4a4-a3)^ + (5 5 ~a4)^4-. . .=0;

or,
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Since this equation must hold for every value, of x, the second

term of the equation must be zero, sinco the first term, x
t
is

not necessarily zero. This gives.

As this equation holds for every value of x, it holds also for

x-0. In this case, however, all terms except the first vanish,

and,

2a2 -<zi=0; ....... (36)

hence,

and from

Continuing the same reasoning,

Therefore, if an expression of successive powers of x, such as

(34), is an identity, that is, holds for every value of x, then oil

the coefficients of all the powers of x must separately be zero*

Hence
;

ai-a^O; or a\=a ]

or

3a3~a2 =0; or

4a4-3a3

etc.,

0; or ^T^JT;

etc,

(37)

* The reader must realize the difference between, an expression (34), as

equation in x, and as substitution product of a function; that is, an as

identity.

Regardless of the values of the coefficients, an expression (34) as equation

gives a number of separate values of ;c, the roots of the equation, which

make the left side of
(34} equal zero, that is, solve the equation. If, however,

the infinite series '(31) is a solution of the differential equation (26), then

the expression (34), which is the result of substituting (31) into (26), must

be correct not only for a limited number of values of x, which are the roots

of the equation, but for all values of t, that is, no matter what value is

chosen for
as,

the left side of (34) must always give the same result, 0, that

is, it must not be chaagecLby a change of x, or in other words, it must not

contain x, hence all the coefficients of the powers of x must be zero.
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Therefore, if the coefficients of the series (31) are chosen

by equation (37), this series satisfies the differential equation

(18); that is,

is the solution of the differential equation,

dy =
11.

51. In the same manner, the differential equation (27),

I-
is solved by an infinite series,

and the coefficients of this series determined by substituting

(40) into (39), in the same manner as clone above. This gives,

-K4a4~aa3)2
3
-[-... =0, . (41)

and, as this equation must be an identity, all its coefficients

must be zero; that
is,

ai aao=0; or ai=aoo;on a
2a2-aai=0; or a2=ai7r=ao7

3-aa3 -0; or

etc.,

a
'

a3

or a4=a3 ==a -;

etc.

. . . (42)

and the solution of differential equation (39) is,

aV a%3 A4

--+--+--+.... . - (43)

52. These solutions, (38) and (43), of the differential equa-

tions (26) and (39), are not single solutions, but each contains

an infinite number of solutions, as it contains an arbitrary
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constant ao; that is, a constant which may have any desired

numerical value.

This can easily be seen, since, if z is a solution of the dif-

ferential equation,

dz

-r=az,
dx

;

then, any multiple, or fraction of
z, fa, also is a solution of the

differential equation;

d(h)

lT- flW>

since the b cancels,

Such a constant, ao, which is not determined by the coeffi-

cients of the mathematical problem, but is left arbitrary, and

requires for its determinations some further condition in

addition to the differential equation, is called an integration

constant. It usually is determined by some additional require-

ments of the physical problem, which the differential equation

represents; that is, by a so-called terminal condition, as, for

instance, by having the value of y given for some particular

value of &, usually for x =0, or =oc.

The differential equation,

thus, is solved by the function,

#=flo2/o, ....... (45)

where,

-
and the differential equation,

is solved by the function,

- ' z=aQZQ }
....... (48)

where,

(At
3 a%3 aV /A(f

.

+-3-+1T
+....... ( }
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2/o and 20 thus are the simplest forms of the solutions y and z

of the differential equations (26) and (39).

53. It is interesting now to determine the value of ?/. To

raise the infinite series (46), which represents yQj to the nth

power, would obviously be a very complicated operation.

However,

and since from (44) JT~^
........ ^

by substituting (51) into (50),

-v; ....... (52)

hence, the same equation as (47), but with y
n instead of z.

Hence, if y is the solution of the differential equation,

then z=y
n

*s the solution of the differential equation (52),

dz
-r~nz.
dx

However, the solution of this differential equation from (47),

(48), and (49), is

that is,
if

then,

...; - - (53)

therefore the series y is raised to the nth power by multiply-

ing the variable x by n.
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Substituting now in equation (53) for n the value -
gives

1 111
2/0*

that is, a constant numerical value. This numerical value

equals 2.7182828. .
.,
and is usually represented by the symbol e.

Therefore,

hence,

X2 .T
3 J*

^,^l +x +_+ + + -, ....... (55)

and

n
+ +_ + ...; (56)

i

therefore, the infinite series, which integrates above differential

equation, is an exponential function with the base

-2.7182818......... (57)

The solution of the differential equation,

thus is,

2/=o^

and the solution of the differential equation,

is,

where a is an integration constant.

The exponential function thus is one of the most common

functions met in electrical engineering problems.

The above described method of solving a problem, 'by assum-

ing a solution in a form containing a number of unknown

coefficients, a , at, a2 ., substituting the solution in the problem

and thereby determining the coefficients, is called the method

of indeterminate coefficients* It is one of the most convenient
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and most frequently used methods of solving engineering

problems,

. EXAMPLE 1.

54. In a 4-pole 500-volt 50-kw. direct-current shunt motor,

the resistance of the field circuit, inclusive of field rheostat, is

250 ohms. Each field pole contains 4000 turns, and produces

at 500 volts impressed upon the field circuit, 8 megalines of

magnetic flux per pole,

What is the equation of the field current, and how much

time after closing the field switch is required for the field cur-

rent to reach 90 per cent of its final value?

Let r bo the resistance of the field circuit, L the inductance

of the field circuit, and i the field current, then the voltage

consumed in resistance is,

In general, in an electric circuit, the current produces a

magnetic field; that is, lines of magnetic flux surrounding the

conductor of the current; or, it is usually expressed, interlinked

with the current. This magnetic field changes with a change of

the current, and usually is proportional thereto. A change

of the magnetic field surrounding a conductor, however, gen-

erates an e.m.f. in the conductor, and this e.m.f. is proportional

to the rate, of change of the magnetic field; hence, is pro-

portional to the rate of change of the current, or to

di

"T
}
with a proportionality factor L, which is called the induct-

WJ

ance of the circuit. This counter-generated e.m.f. is in oppo-

di

sition to the current, -LjfJ
and thus consumes an e.ml,

di

+Lj.j
which is called the e.m.f. consumed by self-inductance,

or Muctance e.m.f.

Therefore, by the inductance, L }
of the field circuit, a voltage

is consumed which is proportional to the rate of change of the

field current, thus,

di
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Since the supply voltage, and thus the total voltage consumed

in the field circuit, is 6=500 volts,

; (62)

or, rearranged,

*_e-n
dt~ L

'

Substituting herein,

u=e-ri] (63)

hence,

du di

This is the same differential equation as (39), with a=~y,L
and therefore is integrated by the function,

therefore, resubstituting from (63),

- = 'I*

and

This solution (65), still contains the unknown quantity OQ;

or, the integration constant, and this is determined by know-

ing the current i for some particular value of the time t,

Before closing the field switch and thereby impressing the

voltage on the field, the field current obviously is zero. In the

moment of closing the field switch, the current thus is still

zero; that is,

t-0 for M. (66)
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Substituting these values in (65) gives,

n e
,

a

0=7+7;
or a =

-e,

hence,

W -I A
(67)

is the final solution of the differential equation (62); Lhat is,

it is the value of the field current, i, as function of the time, t
t

after closing the field switch.

After infinite time, i-oo, the current i assumes the final

value io, which is given by substituting i~oo into equation

(67), thus,

^=-=^=2 amperes; . , . . (68)

hence, by substituting (68) into (67), this equation can also be

written,

=2(i-rr'), ..... (69)

where 10=* 2 is the final value assumed by the field current.

The time h, after which the field current i has reached 90

per cent of its final value i
Q ,

is given by substituting

into (69), thus,

and

rr*-o.i.

Taking the logarithm of both sides,

and

ft-n^-........ (70)
rlogs
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55- The inductance L is calculated from the data given

in the problem. Inductance is measured by the number of

interlinkages of the electric circuit, with the magnetic flux

produced by one absolute unit of current in the circuit; that

is,
it equals the product of magnetic flux and number of turns

divided by the absolute current.

A current of i' -2 amperes represents 0.2 absolute units,

since the absolute unit of current is 10 amperes, The number

of field turns per pole is 4000; hence, the total number of turns

n= 4X4000 -16,000. The magnetic flux at full excitation,

or i
Q
=0.2 absolute units of current, is given as $=8xl06

lines

of magnetic force. The inductance of the field thus is:

the practical unit of inductance, or the henry (h) being 109

absolute units.

Substituting 1 = 640 r=250 and e-500, into equation (67)

and (70) gives

<>=*^r 5 -88sC (?1)

Therefore it takes about 6 sec. before the motor field has

reached 90 per cent of its final value.

The reader is advised to calculate and plot the numerical

values of i from equation (71), for

HO, 0.1, 0.2, 0.4, 0.6, 0,8, 1.0, 1.5, 2.0, 3, 4, 5, 6, 8, 10 sec.

This calculation is best made in the form of a table, thus;

and,

logs =0.4343;

hence,

0,39 log* =0.1694i;

and,

c~-39f^ -0.1694i.
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The values of"~ 039f
can also be taken directly from the

tables of the exponential function, at the end of the book.

EXAMPLE 2.

56. A condenser of 20 mf . capacity, is charged to a potential

of e =10,000 volts, and then discharges through a resistance

of 2 megohms. What is the equation of the discharge current,

and after how long a time has

the voltage at the condenser

dropped to 0.1 its initial value?

A condenser acts as a reser-

voir of electric energy, similar

to a tank as water reservoir.

If in a water tank, Fig, 27, A
is the sectional area of the tank,

e, the height of water, or water

pressure, and water flows out

of the tank, then the height e

decreases by the flow of water;

that is the tank empties, and

the current of water, i, is proportional to the change of the

de

water level or height of water, ,
and to the area A of the

dt

tank; that is,
it

is,

FIG. 27. Water Reservoir.

(72)

The minus sign stands on the right-hand side, as for positive

t; that is, out-flow, the height of the water decreases; that
is,

de is negative.
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In an electric reservoir, the electric pressure or voltage e

corresponds to the water pressure or height of the water, and

to the storage capacity or sectional area A of the water tank

corresponds the electric storage capacity of the condenser,

called capacity C. The current, or, Sow out of an electric

condenser, thus is,

The capacity of condenser is,

(7=20 mf=20xlO- 6
farads,

The resistance of the discharge path is,

r=2X!06
ohms;

hence, the current taken by the resistance, r, is

. e

and thus

-C =-;

and

dr~Cr
e '

Therefore, from (60) (61),

and for Z=0, e=e
Q
*=
10,000 volts; hence

' '

10
;
000=a

,
....... (74)

=
10,000-

025'

volts;

0.1 of the initial value:

is reached at:

(75)
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The reader is advised to calculate and plot the numerical

values of
e, from equation (74), for

-0; 2; 4; 6; 8; 10; 15; 20; 30; 40; CO; 80; 100; 150; 200 sec.

57. Wherever in an electric circuit, in addition to resistance,

inductance and capacity both occur, the relations between

currents and voltages lead to an equation containing the second

differential coefficient, as discussed above.

The simplest form of such equation is:

To integrate this by the method of indeterminate coefficients,

we assume as solution of the equation (76) the infinite series,

y=ao-
!raix+02X

2
+a^i-aiX^ +...... (77)

in which the coefficients a
, ai, ao, as, 0,4. . . are indeterminate.

Differentiating (67) twice, gives

f-..., . (78)

and substituting (77) and (78) into (76) gives the identity,

or, arranged in order of x,

(79)

Since this equation (79) is an identity, the coefficients of

all powers of x must individually equal zero. This gives for

the determination of these hitherto indeterminate coefficients

the equations,

7
etc.
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Therefore

|4

' ^
4X5~ 5

;

_g a3
> _ oa5 _flia

3

~~J6~
;

'7
^W)<7

:==~~
:

QjQCfi (Ldj

etc., etc.

Substituting these values in (77),

(80)

In this case, two coefficients ao and a\ thus remain inde-

terminate, as was to be expected, as a differential equation

of second order must have two integration constants in its

most general form of solution.

Substituting into this equation,

that is,

and

6*c* ft
6*6

+a,6 6x+-

(81)

(82)

(83)
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In this case, instead of the integration constants ao and a\,

the two new integration constants A and B can be introduced

by the equations

and ail~AB]

hence,

A ciQ+aib , D ao-ai6
A= 2" and Bes ~

}

and, substituting these into equation (83), gives,

.- +.... . (84 )

The first series, however, from (56), for n==6 is e
+bx

,
and

the second series from (56), for n~~b is
~~ te

.

Therefore, the infinite series (83) is,

...... (85)

that is, it is the sum of two exponential functions, the one with

a positive, the other with a negative exponent.

Hence, the differential equation,

S-*' ........ (76)

is integrated by the function,

>, ...... (86)

where,

6=Va. ....... (87)

However, if a is a negative quantity, 6Va is imaginary,

and can be represented by

6-Jc, ........ (88)

where

c
2 =-<z ........ (89)

In this case, equation (86) assumes the form,

**', ...... (90)
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that is,
if in the differential equation (76) a is a positive quantity,

=
-f-fr

2
,
this differential equation is integrated by the sum of

the two exponential functions (86); if, however, a is a negative

quantity, =-c
2

;
the solution (86) appears in the form of exponen-

tial functions with imaginary exponents (90).

58. In the latter case, a form of the solution of differential

equation (76) can be derived which does not contain the

imaginary appearance, by turning back to equation (80), and

substituting therein a= -c2
,
which gives,

(91)

C
2X2

or, writing" 1 = OQ and B- -

,

,

+JJ --sr +-T +... .

The solution then is given by the sum of two infinite series,

thus,

and

as

. . (93)

(94)

In the w-series, a change of the sign of x does not change

the value of w,

u(~cx)=u(+cx)....... (95)

Such a function is called an even function.
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In the v-sorics, a change of the sign of x reverses the sign

of v, as seen from (93);

(96)

Such a function is called an odd function.

It can be shown that

and v(cx)-mcx] , . . (97)

hence,

t/=A cos c+#sin a, ..... (98)

where A and B are the integration constants, which are to be

determined by the terminal conditions of the physical problem,

Therefore, the solution of the differential equation

has two different forms, an exponential and a trigonometric.

If it is positive,

r^2
2/,
...... (100)

it is:

**, ..... (101)

If a negative,

It is:

y-A cos cx+B sin a...... (103)

In the latter case, the solution (101) would appear as ex-

ponential function with imaginary exponents;

y^Ae+fc+Be-te ..... (104)

As (104) obviously must be the same function as (103), it

follows that exponential functions with imaginary exponents

must be expressible by trigonometric functions.
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5Q. The exponential functions and the trigonometric func-

tions, according to the preceding discussion, are expressed by

the infinite series,

v2 >v3 v4
2*5

H?+jr+--" }.
. . (105)

r

"l
+
FiL

+ ~'"

Therefore, substituting ju for x,

7/2 -7/3 ^4 ^5 y6 _'^7

/ 'li
2 W4

li
6

\ / U3 U5 U7

However, the first part of this series is cos u, the latter part

sin u, by (105); that is,

Ju =cos u+j sin u (106)

Substituting -u for +u gives,

-?"=cosu-jsin'u (107)

Combining (106) and (107) gives,

and

sin w=-

.... (108)

2/ 'J

Substituting in (106) to (108), jv for u, gives,

e-^co

and,
.... (109)
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Adding and subtracting gives respectively,

cos/y- j

and '[.... (110)

sin

jv^y-
By these equations, (106) to (110), exponential functions

with imaginary exponents can be transformed into trigono-

metric functions with real angles, and exponential functions

with real exponents into trignometric functions with imaginary

angles, and inversely.

Mathematically, the trigonometric functions thus do not

constitute a separate class of functions, but may be considered

as exponential functions with imaginary angles, and it can be

said broadly that the solution of the above differential equa-

tions is given by the exponential function, but that in this

function the exponent may be real, or may be imaginary, and

in the latter case, the expression is put into real form by intro-

ducing the trigonometric functions.

EXAMPLE 1.

60, A condenser (as an underground high-potential cable)

of 20 mf. capacity, and of a voltage of eo
=

10,000, discharges

through an inductance of 50 mh, and of negligible resistance!

What is the equation of the discharge current?

The current consumed by a condenser of capacity C and

potential difference e is proportional to the rate of change

of the potential difference, and to the capacity; hence, it is

de

C-p,andthe current from the condenser; or, its discharge
at

current, is

The voltage consumed by an inductance I is proportional

to the rate of change of the current in the inductance, and to the

inductance; hence,
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Differentiating (112) gives,

fo
T
fi

dt~ cF

and substituting this into (111) gives,

'-- ci r
> S-^ <113)

as the differential equation of the problem.

This equation (1131 is the same as (102), for c
2

=77j,
thus

is solved by the expression,

and the potential difference at the condenser or at the inductance

is, by substituting (114) into (112),

These equations (114) and (115) still contain two unknown

constants, A and B, which have to be determined by the terminal

conditions, that
is, by the known conditions of current and

voltage at some particular time. ,

At the moment of starting the discharge; or, at the time

t-Qj the current is zero, and the voltage is that to which the

condenser is charged, that is, i=0, and e=eo.

Substituting these values in equations (114) and (115)

gives,

0=4 and eQ =J-7<B')

hence

and, substituting for A and B the values in (114) and (115),

gives

(116)

t

=eQ cos-
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Substituting the numerical values, e =
10,000 volts, C=20

mf. = 20 X 10- 6
farads, 1=50 mh.=O.Q5h. gives,

|C_ 9 -_
L~

' " an(

hence,

i= 200 sin 1000 J and e =10,000 cos 1000 f.

6 1. The discharge thus is alternating. In reality, clue to

the unavoidable resistance in the discharge path, the alterna-

tions gradually die out, that is, the discharge is oscillating.

The time of one complete period is given by,

1000 =2~; or, t
Q
=~

Hence the frenquency,

y= = =1 59 cycles per second.

As the circuit in addition to the inductance necessarily

contains resistance r, besides the voltage consumed by the

inductance by equation (112), voltage is consumed by the

resistance, thus

e
p -ri, (117)

and the total voltage consumed by resistance r and inductance

L, thus is

e="+Ll (
-
118 >

'

Differentiating (118) gives,

^=r|+lf, rtl9)

and, substituting this into equation (111), gives,

as the differential equation of the problem. .

This differential equation is of the more general form, (22),

62. The more general differential equation (22),

J2, Jn ,

\ (121)
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can, by substituting,

y+\-',
........ (122)

which gives

dy dz

dTrf?

be transformed into the somewhat simpler form,

~+2c^+a3=G....... (123)
dx2 dx

^

It may also be solved by the method of indeterminate

coefficients, by substituting for z an infinite series of powers of

x, and determining thereby the coefficients of the series,

As, however, the simpler forms of this equation were solved

by exponential functions, the applicability of the exponential

functions to this equation (123) may be directly tried, by the

method of indeterminate coefficients. That is, assume as solu-

tion an exponential function,

2 = le- to
,

. . . . (124)

where A and 6 are unknown constants. Substituting (124)

into (123), if such values of A and 6 can be found, which make

the substitution product an identity, (124) is a solution of

the differential equation (123).

From (124) it follows that,

f=-6A
- b

*; and ~=VAe-**,. . (125)
dx

;

d2x

and substituting (124) and (125) into (123), gives,

=0..... (126)

As seen, this equation is satisfied for every value of x
}
that

is, it is an identity, if the parenthesis is zero, thus,

6
2
+2cfc+a=0, ..... (127)

and the value of 6, calculated by the quadratic equation (127) ;

thus makes (124) a solution of (123), and leaves A still undeter-

mined, as integration constant,
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From (127),

6=-cv^o; (128)

or, substituting,

vV^=p, (129)

into (128), the equation becomes,

6=-cp (130)

Hence, two values of b exist,

bi=-c+p and fc2 =~c-;p, , . * (131)

and, therefore, the differential equation,

l5
+2cl +a* =o

> (132)

is solved by Aeb*'
} or, by Aeb

*, or, by any combination of

these two solutions. The most general solution is,

. . . (131)

that is,

As roots of a quadratic equation, 61 and 62 niay both be

real quantities, or may be complex imaginary, and in the

latter case, the solution (131) appears in imaginary form, and

has to be reduced or modified for use, so as to eliminate the

imaginary appearance, by the relations (106) and (107),

EXAMPLE.

63, Assume, in the example in paragraph 9, the discharge

circuit of the condenser of C=20 mf, capacity, to contain,

besides the inductance, L=0.05 h, the resistance, r=125 ohms.

The general equation of the problem, (120), dividing by

C L, becomes,

++ (132)
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This is the equation (123), for;

. , , . (133)

If p=Vc
2

~a, then

. . . (134)

and, writing

, (135)

and since

-j-10
and

^=2500,

s=75 and y=750.

The equation of the current from (131) then
is,

(136)

(137)

This equation still contains two unknown quantities, the inte-

gration constants AI and A2 ,
which arc determined by the

terminal condition: The values of current and of voltage at the

beginning of the discharge, or t=G,

This requires the determination of the equation of the

voltage at the condenser terminals. This obviously is the voltage

consumed by resistance and inductance, and is expressed by

equation (118),

M
(118)
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di

hence, substituting herein the value of i and -r
}
from equation

(137), gives

^Y^r^l +4^A^

(138)

and
; substituting the numerical values (133) and (136) into

equations (137) and (138), gives

and
?

(139)

At the moment of the beginning of the discharge, Z=0,

the current is zero and the voltage is 10
;000; that is,

j0; 0; e = 10,000 ...... (140)

Substituting (140) into (139) gives,

0=Ai+A 2
,

10,000 = HXUi 4 2542 ;

hence,

A2 -4i; 4i=133.3; 12
- -133.3.

Therefore, the current and voltage are,

'

. . . . (142)

The reader is advised to calculate and plot the numerical

values of i and 0, and of their two components, for,

*=0
; 0,2, 0.4, 0.6, 1, 1.2, 1.5, 2, 2.5, 3, 4, 5, 6X10~

3
sec.
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64, Assuming, however, that the resistance of the discharge

circuit is only r=80 ohms (instead of 125 ohms, as assumed

above ;

r
2 --^- in equation (134) then becomes -3600, and there-

(_/

fore: _ _
s-V-SeOO-COvCi^eoj,

and

p.^-600/.

The equation of the current (137) thus appears in imaginary

form,

i=B-mt{Aie+^
t +A 2rmi t

}. . . . (143)

The same is also true of the equation of voltage.

As it is obvious, however, physically, that a real current

must be coexistent with a real e.m.f., it follows that this

imaginary form of the expression of current and voltage is only

apparent, and that in reality, by substituting for the exponential

functions with imaginary exponents their trigononetric expres-

sions; the imaginary terms must eliminate, and the equation

(116) appear in real form.

According to equations (106) and (107),

cos 600^+? sin 600i;l

(144)

Substituting (144) into (143) gives,

. . (145)

where BI and #2 are combinations of the previous integration

constants A\ and A% thus,

J?i=At+l2 ,
and S2-jUi-^2). . . (146)

By substituting the numerical values, the condenser e.m,L,

given by equation (138), then becomes,

e=
-mt

{ (40+3Qj)4i(cos 600i+? sin 6K)

-f (40-30j)i2(cos 60W-/sin 600i) }

=r soo'l (40Bi +30 2)cos 600t + (40B2
-
30Bi) sin 600/J. (147)
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Since for =0, {==0 and e=10,000 volts (140), substituting

into (145) and (147),

0=Bi and 10,000 =40 Si +30 B2 .

Therefore,, Bi=0 and 5 2 =333 and, by (145) and (147),

. . (148)

e=10,000
- 800 '

(cos 600 * + 1.33 sin 600 1.
,

As seen
;
in this case the current i is larger, and current

and e.m.f. are the product of an exponential term (gradually

decreasing value) and a trigonometric term (alternating value) ;

that is, they consist of successive alternations of gradually

decreasing amplitude. Such functions are called oscillating

functions. Practically all disturbances in electric circuits

consist of such oscillating currents and voltages.

600*=27T gives, as the time of one complete period,

and the frequency is

T=|^=0.0105 sec.;

/= =95,3 cycles per sec.

In this particular case, as the resistance is relatively high,

the oscillations die out rather rapidly.

The reader is advised to calculate and plot the numerical

values of i and e
}
and of their exponential terms, for every 30

T T T
degrees, that is, for i=0, TT, 2y^, 3rr, etc., for the first two

periods, and also to derive the equations, and calculate and plot

the numerical values, for the same capacity, C=20 mf.
;
and

same inductance, L=0.05fe, but for the much lower resistance,

r=20 ohms.

65. Tables of e
+x and z~ x

,
for 5 decimals, and tables of

log e
+x

and log e~
x

,
for 6 decimals, are given at the end of

the book, and also a table of z~ x
for 3 decimals. For most

engineering purposes the latter is sufficient; where a higher

accuracy is required, the 5 decimal table may be used, and for
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highest accuracy interpolation by the logarithmic table may be

employed. For instance,

-136847_?

From the logarithmic table,

logs'
10

=5.657055,

log s-3
=8.697117,

logs-
-6

=9.739423,

logs-
-08

=9.965256,

(interpolated,

between log
- 4=

9.998263,

and logs-
0005

=9.997829) ?

added

log s-13 6847 = 4.056984 = 0.056984- 6.

From common logarithmic tables,

7 = 1.14021 XlO'6
.
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A. TRIGONOMETRIC FUNCTIONS.

66, For the engineer, and especially the electrical engineer,

a perfect familiarity with the trigonometric functions and

trigonometric formulas is almost as essential as familiarity with

the multiplication table. To use trigonometric methods

efficiently, it is not sufficient to understand trigonometric

formulas enough to be able to look them up when required,

but they must be learned by heart, and in both directions; that

is, an expression similar to the left side of a trigonometric for-

mula must immediately recall the right side, and an expression

similar to the right side must immediately recall the left side

of the formula.

Trigonometric functions are defined on the circle, and on

the right triangle.

Let in the circle, Fig. 28, the direction to the right and

upward be considered as positive, to the left and downward as

negative, and the angle a be counted from the positive hori-

zontal OA
}
counterclockwise as positive, clockwise as negative.

The projector
s of the angle a, divided by the radius, is

called sin a; the projection c of the angle a, divided by the

radius, is called cos a.

The intercept t on the vertical tangent at the origin A,

divided by the radius, is called tan a; the intercept ct on the

horizontal tangent at 5, or 90 deg., behind A, divided by the

radius, is called cot a.

Thus, in Fig. 28,

sina=-; cosa=-;

tana=-;
r'

(D
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In the right triangle, Fig. 29, with the angles a and ft

opposite respectively to the cathetes a and 6, and with the

hypotenuse c, the trigonometric functions are:

o .

sin a = cos/9==-; cos a^s
c

tan a = cot /5-r ; cot a
o

By the right triangle, only functions of angles up to 90 cleg.,

or -, can be defined, while by the circle the trigonometric
&

functions of any angle are given. Both representations thus

must be so familiar to the engineer that he can see the trigo-

FIG. 28. Circular Trigonometric

Functions.

FIG. 29. Triangular Trigono-

metric Functions.

nometric functions and their variations with a change of the

angle, and in most cases their numerical values, from the

mental picture of the diagram.

67. Signs of Functions. In the first quadrant, Fig. 28, all

trigonometric functions are positive.

In the second quadrant, Fig. 30, the sin a is still positive,

as s is in the upward direction, but cos a is negative, since c

is toward the left, and tan a and cot a also are negative, as t

is downward, and ct toward the left.

In the third quadrant, Fig. 31, sin a and cos a are both
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negative: s being downward, c toward the left; but tan a and

cot a are again positive ;
as seen from t and ct in Fig. 31.

FIG, 31. Third Quadrant.

In the fourth quadrant, Fig. 32, sin a is negative, as s is

downward, but cos a is again positive, as c is toward the right;

tan a. and cot a. are both

negative, as seen from t and

d in Fig. 32.

In the fifth quadrant all

the trigonometric functions

again have the same values

as in the first quadrant, Fig.

28, that
is, 360 deg., or 2*,

or a multiple thereof, can be

added to, or subtracted from

the angle a, without changing

the trigonometric functions,

but these functions repeat

after every 360 deg., or 2^;

that is, have lit or 360 deg. as their period.

FIG. 32. Fourth Quadrant.

SIGNS OF FUNCTIONS
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68. Relations between sin a and cos a. Between sin a and

cos a the relation,

exists; hence,

sin a = cos
2

cos a

(4a)

Equation (4) is one of those which is frequently used in

both directions. For instance, 1 may be substituted for the

sum of the squares of sin a and cos a, while in other cases

sin
2 a +cos2 a may be substituted for 1. For instance,

1 sin2 a + cos
2 a /sincA--= -

Relations between Sines and Tangents.

tan a=-

cot a

hence

tana =

cos a:

sin a ;

"

tan a
'

1

cot a'

(5)

(Sa)

As tan a and cos a are far less convenient for trigonometric

calculations than sin a and cos a, and therefore are less fre-

quently applied in trigonometric calculations, it is not neces-

sary to memorize the trigonometric formulas pertaining to

tan a and cot ^ but where these functions occur, sin a and

and cos a are substituted for them by equations (5), and the

calculations carried out with the latter functions, and tan a

or cot a resubstituted in the final result, if the latter contains

sin a ., . ,

,
or its reciprocal.

cos a

In electrical engineering tan a or cot a frequently appears

as the starting-point of calculation of the phase of alternating

currents. For instance, if a is the phase angle of a vector
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quantity, tan a Is given as the ratio of the vertical component
over the horizontal component, or of the reactive component
over the power component.

In this case, if

sma = ===, and cosa(

=-^===^; . (5ft)

or, if

coU4,

sina!= _
--, and cos a =-7===:. . . (5c)

The secant functions, and versed sine functions are so

little used in engineering, that they are of interest only as

curiosities, They are defined by the following equations :

1

sec OL--
cos a

1

cosec a=- .

sin a

sinvers a = 1 -sin a,

cosversa=l-cos a,

69, Negative Angles. From the circle diagram of the

trigonometric functions follows, as shown in Fig. 33, that when

changing from a positive angle, that is, counterclockwise

rotation, to a negative angle, that is, clockwise rotation, s, t,

and ct reverse their direction
,
but c remains the same; that is,

COS (~a}= +COS a,

tan (-) = -tan a,

cot (~a)
= -cota

;

cos a thus is an
"
even function/' while the three others are

"
odd functions/'
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Supplementary Angles. From the circle diagram of the

trigonometric functions follows, as shown in Fig. 34, that by

changing from an angle to its supplementary angle, s remains

in the same direction, but c, t,
and ct reverse their direction,

and all four quantities retain the same numerical values, thus,

sin ^-aj = +sm a,

cos (&-)- cos a,

tan (7t~~a)
= tan a,

cot (TT a) =

FIG. 33. Functions of Negative FIG. 34 Functions of Supplementary

Complementary Angles. Changing from an angle a to its

complementary angle 90 -a, or
^ a, as seen from Fig. 35,
2

the signs remain the same, but s and c,
and also t and ct exchange

their numerical values, thus,

/* \ i
sinhr-a =cosa,

Vs /

tanj- =

Cot(^-a)=tanQ:.

(3)



70. Angle (a;r). Adding, or subtracting n to an angle a,

gives the same numerical values of the trigonometric functions

FIG. 35. Functions of Complemen- FIG. 36. Functions of Angles Plus

tary Angles. or Minus TT.

as a, as seen in Fig. 36, but the direction of s and c is reversed,

while t and ct remain in the same direction, thus,

sin (a7r)=-sin a,
'

PiG. 37. Functions of Angles+ -^.
FIG. 38. Functions of Angles Minus .

Angle(a^V Adding ^,
or 90 deg. to an angle a, inter-

changes the functions, s and c,
and t and d, and also reverses
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the direction of the cosine, tangent, and cotangent, but leaves

the sine in the same direction, since the sine is positive in the

second quadrant, as seen in Fig. 37.

Subtracting -j,
or 90 deg from angle a, interchanges the

functions, s and c, and t and ck, and also reverses the direction,

except that of the cosine, which remains in the same direction;

that is,
of the same sign, as the cosine is positive in the first

and fourth quadrant, as seen in Fig. 38. Therefore,

cos(a+)
= -

\
--'

/ ^
tan I a

-f^
=" -cot a,

cot ( a -H 1
= -tan

,

sm (a-] = -

cos a-r-=

tan a- = -

(10)

(ID

cot \a~ 1
= -tan a,

\ ^/

Numerical Values. From the circle diagram, Fig 28, etc.,

follows the numerical values:
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71. Relations between Two Angles. The following relations

are developed in text-books of trigonometry:

sin (a -I- ft =sm a cos /3+cos a sin ft

sin (a -ft =sin a cos /9-cos a sin ft

cos (a +/?)
= cos a cos /9-sin a sin ft

cos (a-/9) =cos a cos /?+sin a sin ft .

Herefrom follows, by combining these equations (13) in

(13)

pairs:

cos a cos /?= Jf cos (a +/?) +cos (a-

sin a sin /?=?{cos (a-ft-cos (a+

sin a cos/?=4 {sin (a+ft+sin (a

cos a sin/

(14)

By substituting a\ for (a+/?), and ft for (a-/?) in these

equations (14), gives the equations,

(15)

smaH-sLa/J,- 2sin^icos^^

sin ai sin

cos a1+ cos ft

cos ai-cos ft
= -2 sin sn

These three sets of equations are the most important trigo-

nometric formulas. Their memorizing can be facilitated by

noting that cosine functions lead to products of equal func-

tions, sine functions to' products of unequal functions, and

inversely, products of equal functions resolve into cosine,

products of unequal functions into sine functions. Also cosine

functions show a reversal of the sign, thus: the cosine of a

sum is given by a difference of products, the cosine of a differ-

ence by a sum, for the reason that with
increasing angle

the cosine function decreases, and the cosine of a sum of angles

thus would be less than the cosine of the single angle.
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Double Angles, From (13) follows, by substituting a for
/?

:

sin 2a= 2 sin a cos a,

cos 2a=cos2 a-shi2
?

=2 cos
2 a 1,

= 1-2 sin
2
a.

Herefrom follow

. , 1-cos2 a

(16)

and cos
2 a =

l+COS2 Ct

(16a)

72. Differentiation.

-r (si

-7- ( cos x)
= - sins-

(17)

The sign of the latter differential is negative, as with an

increase of angle a, the cos a decreases,

Integration.

S<

/
flerefrom follow the definite integrals:

Jgj
n /flj./tV^-n. 1

Jo

^ a

p

(18)

(18a)

JC

+ JT

cos fa+ a)da= - 2 sin (c 4- a) ;

. . (186)
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f
1C

r

r

(18c)

=+1;

+1.

(18$

73. Binomial. One of the most frequent trigonometric

operations in electrical engineering is the transformation of the

binomial, a cos a +6 sin a, into a single trigonometric function,

by the substitution, a=c cos p and 6=c sin p; hence,

?), - (19)

:;.... (20)

where

and

or, by the transformation, a=c sin q and 6==c cos q,

a cos a+frsin a=csin (a -!-), . .

where

c=\/a2
+?)

2 and tan^=r.

74. Polyphase Relations.

(21)

(22)

(23

where m and n are integer numbers.

Proof. The points on the circle which defines the trigo-

nometric function, by Fig.. 28, of the angles (ct
+a,-^\,

2.
/ 2mu\ ,,

sm(a+a =>
\ n /
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are corners of a
regular polygon, inscribed in the circle and

therefore having the center of the circle as center of gravity.

For instance
;
for n = 7, m=2, they are shown as PI, P^ . . . P7,

in Fig. 39. The cosines of these angles are the projections on

the vertical, the sines, the projections on the horizontal diameter,

and as the sum of the projections of the corners of any polygon,

FIG. 39. Polyphase Relations. FIG. 40. Triangle.

on any line going through its center of gravity, is zero, both

sums of equation (23) are zero.

^A / 2mt7r\ / _ 2mwr\ n
> cos (a+a -I cos (a+6

-
)

= cos (a-6),

i
\ / \ n

/
&

^A . / 2mix\ . /
7 2mix\ n

, 7 ,

> sin a+a -
]
sm a+o - )=^cos (ao),

* \
n J \ n^5

.

sm (a:+a
, . . ,.

cos [a+b
-

1=^ sm (a-o).

(24)

These equations are proven by substituting for the products

the single functions by equations (14), and substituting them

in equations (23).

75. Triangle. If in a triangle a, & and
7-

are the angles;

opposite respectively to the sides a, b, c, Fig. 40, then,

mp+mr=&+b+c, .... (25)

i i i i i i i i i i i i
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or

. ab sin r
Area= -

c
2
sin sin ,

sin/-

(27)

B. TRIGONOMETRIC SERIES.

76. Engineering, phenomena usually are either constant,

transient, or periodic. Constant, for instance, is the terminal

voltage of a storage-battery and the current taken from it

through a constant resistance. Transient phenomena occur

during a change in the condition of an electric circuit, as a

change of load; or, disturbances entering the circuit from the

outside or originating in it, etc. Periodic phenomena are the

alternating currents and voltages, pulsating currents as those

produced by rectifiers, the distribution of the magnetic flux

in the air-gap of a machine, or the distribution of voltage

around the commutator of the direct-current machine, the

motion of the piston in the steam-engine cylinder, the variation

of the mean daily temperature with the seasons of the year, etc.

The characteristic of a periodic function, y=f(x)j is, that

at constant intervals of the independent variable x
}

called

cycles or periods, the same values of the dependent variable y

occur. *

Most periodic functions of engineering are functions of time

or of space, and as such have the characteristic of univalence;

that is, to any value of the independent variable x can corre-

spond only one value of the dependent variable y. In other

words, at any given time and given point of space, any physical

phenomenon can have one numerical value only, and obviously,

must be represented by a univalent function of time and space.

Any univalent periodic function,

w _ ffr\ /i \

i/-/W; UJ
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can be expressed by an infinite trigonometric series, or Fourier

series, of the form,

.
;
.... (2)

or, substituting for convenience, cx=Q, this gives

m30+...; ..... (3)

or, combining the sine and cosine functions by the binomial

(par. 73),

where

1 O
tan/Jn =--;

L*7l

or tan j^=r-.

... ,.

C3 sn - ^

(5)

The proof hereof is given by showing that the coefficients

an and & n of the series (3) can be determined from the numerical

values of the periodic functions (1), thus,

Since, however, the trigonometric function, and therefore

also the series of trigonometric functions (3) is univalent
7

it

follows that the periodic function (6), y=/o(0), must be uni-

valent, to be represented by a trigonometric series.

77. The most important periodic functions in electrical

engineering are the alternating currents and e.m.fs. Usually

they are, in first approximation, represented by a single trigo-

nometric function, as :

or,

that is, they are assumed as sine waves.
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Theoretically, obviously this condition can never be perfectly

attained, and frequently the deviation from pine shape is suffi-

cient to require practical consideration, especially in those cases,

where the electric circuit contains electrostatic capacity, as is

for instance, the case with long-distance transmission lines,

underground cable systems, high potential transformers, etc.

However, no matter how much the alternating or other

periodic wave differs from simple sine shape that is, however

much the wave is
"
distorted," it can always be represented

by the trigonometric series (3).

As illustration the following applications of the trigo-

nometric series to engineering problems may be considered :

(A] The determination of the equation of the periodic

function; that is, the evolution of the constants an and bn of

the trigonometric series, if the numerical values of the periodic

function are given. Thus, for instance, the wave of an

alternator may be taken by oscillograph or wave-meter, and

by measuring from the oscillograph, the numerical values of

the periodic function are derived for every 10 degrees, or every

5 degrees, or every degree, depending on the accuracy required.

The problem then is,
from the numerical values of the wave,

to determine its equation. While the oscillograph shows the

shape of the wave, it obviously is not possible therefrom to

calculate other quantities, as from the voltage the current

under given circuit conditions, if the wave shape is not first

represented by a mathematical expression. It therefore is of

importance in engineering to translate the picture or the table

of numerical values of a periodic function into a mathematical

expression thereof.

(B) If one of the engineering quantities, as the e.m.f. of

an alternator or the magnetic flux in the air-gap of an electric

machine, is given as a general periodic function in the form

of a trigonometric series, to determine therefrom other engineer-

ing quantities, as the current, the generated e.m.f., etc.

A. Evaluation of the Constants of the Trigonometric Series from

the Instantaneous Values of the Periodic Function.

78. Assuming that the numerical values of a univalent

periodic function 2/=/o(0) are given; that
is, for every value

of 6, the corresponding value of y is known, either by graphical

representation, Fig. 41; or, in tabulated form, Table I, but
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the equation of the periodic function is not known. It can be

represented in the form,

y=ao+fli cos 0+a2 cos 20+ a3 cos 30+ .. +an cos n0 + . . .

+61 sin 0+6 2 sin 20+65 sin 30 + . .. +bn sin n0+. . .
, (7)

and the problem now is, to determine the coefficients ao, ai,

FIG. 41. Periodic Functions.

TABLE L

Integrate the equation (7) between the limits and 2?r;

rsi

rz* ri f^
ydQ=aQ dO+ai cos 0d0+a2 cos20d0+. . .

Jo Jo Jo

+an ( cosn0d0+...+Z>i
I

sin0<W+
Joo

/*2ff p
sin20<W+...+&J

Jo Jo

-o
/2s

o / /o

+an / T . . . V]

ft /o / /o

-fe,/^/
2
*^ ~& /CQSn0/

2ff

7 w /o

"
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All the integrals containing trigonometric functions vanish,

as the trigonometric function has the same value at the upper

limit 2ft as at the lower limit 0, that is,

/cos nd ft* 1 AX

/ /
=
-(cos 2^- cos 0)=0;

/ n /o n

/sin nd /
2*

1 ,

n2*-sinO)=0,
n /o n

and the result is

rJo
hence

1

ydd is an element of the area of the curve y, Fig 41
;
and

rydO
thus is the area of the periodic function y, for one

period; that is,

where .A = area of the periodic function y=fo(6) }
for one period;

that is, from 0=0 to tf=27r.

2?r is the horizontal width of this area A, and ~ thus is

In

the area divided by the width of it; that
is,

it is the average

height of the area A of the periodic function y, or, in other

words, it is the average value of y. Therefore,

<zo=avg. (y}$* (10)

The first coefficient, % thus, is the average value of the

instantaneous values of the periodic function y:
between tf=0

and #=2*.

Therefore, averaging the values of y in Table I, gives the

first constant ao.

79. To determine the coefficient an , multiply equation (7)

by cos n6j and then integrate from to 2?:
?
for the purpose of

making the trigonometric functions vanish. This gives
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p* p* pr
2/
cos KW = a 1 cos nOdd -\-a\\ cos ntf cos ft/0 +

Jo Jj Jo

+
,jf,

f2*

+61 <

Jo

/"~

+&)"'Jo

Hence, by the trigonometric equations of the preceding

section :

r* - r* r\
Jo Jo Jo

fo

"K

J[cos (7i+2)^+ cos (w-2"

ps

+an 1
Jo

T2r

J[ai

Jo

pJ isi
Jo

+6

All these integrals of trigonometric functions give trigo-

nometric functions, and therefore vanish between the limits

and 2;r, and there only remains the first term of the integral

multiplied with a
tt ,

which does not contain a trigonometric

function, and thus remains finite:

f
2 "

1 ^ /*Y"
On I 9 ^-oJs- =an7T,

Jo ^ \^/o
and therefore,

I
2

i P'
On=-| y

71 Jo

hence

ycosnftW........ (11)
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If the instantaneous values of y are multiplied with i

and the product yn =ycosnQ plotted as a curve, z/cosnW is

an element of the area of this curve, shown for %=3 in Fig, 42,

and thus I ^ eos nW is the area of this curve; that is,

(12)

FIG. 42. Curve of y cos 30.

where An is the area of the curve 2/cos n&, between 0=0 and

6=2*.

A
As 2?: is the width of this area A n ,

~
is the average height

of this area; that is, is the average value of y cos n^ and -An

thus is twice the average value of y cos n#; that is,

FIG. 43. Curve of y sin 30.

The coefficient an of cos nQ is derived by multiplying all

the instantaneous values of y by cos n0, and taking twice the

average of the instantaneous values of this product y cos n6.
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80. &n is determined in the analogous manner by multiply-
ing y by sin nO and

integrating from to 2*
j by the area of the

curve y sin n0, shown in Fig. 43, for n=3,

r~ r

p* p,
ysmnOdd^ao] smn6dd+ai\ sin nd cos Odd

Jo Jo Jo

p,
sin n6 cos 2M^+. . . 4-a I sin n6 cos nWtf+

sin
2
nfti0-K..

2?r

ra

+5 n si

Jo

p
=ao s

^o

r&
+a2 l ^sin(?z+2)^+sm(^-2

T 2!r

+an Jsin2
Jo

-f 62 i[cos (n

Jo

p*
4-6J |[l-

c/O

=5^ I }^=6n7r;

70

hence,

1 P*
6B
=-

ysmnfidQ ....... (14)
^Jo

=-^n
;

, .......... (15)

where An
f

is the area of the curve yn'=y sin n6. Hence,

6tt =2avg, (yannSJo
2

', ..... (16)
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and the coefficient of sin nO thus is derived by multiplying the

instantaneous values of y with sin n6, and then averaging, as

twice the average of y sin nO.

81. Any univalent periodic function, of which the numerical

values y are known, can thus be expressed numerically by the

eqiiation ?

where the coefficients a
, ai, 02,

as the averages:

avg. (ycos tf)

a2 =2 avg. (y cos 20) <)

2

*; 63=2 avg.

on =2 avg. (y cos nff)*; 6%=2 avg. (y sin

..., , (17)

i
; &2 ,

are calculated

. (18)

Hereby any individual harmonic can be calculated, without

calculating the preceding harmonics.

For instance, let the generator c.m.f. wave, Fig. 44, Table

II, column 2, be impressed upon an underground cable system

FIG. 44. Generator e.m.f . wave.

of such constants (capacity and inductance), that the natural

frequency of the system is 670 cycles per second, while the

generator frequency is 60 cycles. The natural frequency of the
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circuit is then close to that of the llth harmonic of the generator

wave, 660 cycles, and if the generator voltage contains an

appreciable llth harmonic, trouble may result from a resonance

rise of voltage of this frequency; therefore, the llth harmonic

of the generator wave is to be determined, that is, an and &n

calculated, but the other harmonics are of less importance.

TABLE II

In the third column of Table II thus are given the values

of cos 116, in the fourth column sin 110, in the fifth column

y cos 110, and in the sixth column y sin 110. The former gives

as average +1 915, hence on= +3.83, and the latter gives as

average -1.655, hence &n = -3.31, and the llth harmonic of

the generator wave is

an cos 110 fbn sin 110=3.83 cos 110-3.31 sin 110

=5.07 cos (110 +41) ,
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hence, its effective value is

5.07

while the effective value of the total generator wave, that

is, the square root of the mean squares of the instanta-

neous values y, is

thus the llth harmonic is 11.8 per cent of the total voltage,

and whether such a harmonic is safe or not, can now be deter-

mined from the circuit constants, more particularly its resist-

ance.

82. In general, the successive harmonics decrease; that
is,

with increasing n, the values of an and bn become smaller, and

when calculating an and ln by equation (18), for higher values

of n they are derived as the small averages of a number of

large quantities, and the calculation then becomes incon-

venient and less correct.

Where the entire series of coefficients an and l)n is to be

calculated, it thus is preferable not to use the complete periodic

function y t
but only the residual left after subtracting the

harmonics which have already been calculated; that
is, after

a has been calculated, it is subtracted from y}
and the differ-

ence, yi=*ydQj is used for the calculation of ai and 6j.

Then ai cos 0+&isin 6 is subtracted from yi, and the

difference,

2/2 =l/i-fci cos

is used for the calculation of a^ and & 2 -

Then a% cos 26 +63 sin 20 is subtracted from yz ,
and the rest,

2/3,
used for the calculation of as and

fyj, etc.

In this manner a higher accuracy is derived, and the calcu-

lation simplified by having the instantaneous values of the

function of the same magnitude as the coefficients an and &.

As illustration, is given in Table III the calculation of the

first three harmonics of the- pulsating current, Fig. 41, Table I:
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83. In electrical engineering, the most important periodic

functions are the alternating currents and voltages. Due to

the constructive features of alternating-current generators,

alternating voltages and currents are almost always symmet-
rical waves; that

is,
the periodic function consists of alternate

half-waves, which are the same in shape, but opposite in direc-

tion, or in other words, the instantaneous values from 180 deg.

to 360 deg. are the same numerically, but opposite in sign,

from the instantaneous values between to 180 deg., and each

cycle or period thus consists of two equal but opposite half

cycles, as shown in Fig. 44. In the earlier clays of electrical

engineering, the frequency has for this reason frequently been

expressed by the number of half-waves or alternations.

In a symmetrical wave, those harmonics which produce a

difference in the shape of the positive and the negative half-

wave, cannot exist; that is,
their coefficients a and 6 must be

zero. Only those harmonics can exist in which an increase of

the angle 6 by 180 cleg ,
or

TT,
reverses the sign of the function.

This is the case with cos nO and sin nO, if n is an odd number.

If, however, n is an even number, an increase of by r, increases

the angle n6 by 2~ or a multiple thereof, thus leaves cosntf

and sin nO with the same sign. The same applies to o . There-

fore, symmetrical alternating waves comprise only the odd

harmonics, but do not contain even harmonics or a constant

term, and thus are represented by

y=ai cos 8 +a3 cos 3fl +a6 cos 50 -K . .

in50+ ,, . . (19)

When calculating the coefficients &n and ln of a symmetrical

wave by the expression (18), it is sufficient to average from

to r.]
that is,

over one half-wave only. In the second half-wave,

cos n6 and sin nQ have the opposite sign as in the first half-wave,

if n is an odd number, and since y also has the opposite sign

in the second half-wave, 2/cosft# and y&mnO in the second

half-wave traverses again the same values, with the same sign,

as in the first half-wave, and their average thus is given by

averaging over one half-wave only.

Therefore, a symmetrical univalent periodic function, as an
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alternating voltage and current usually is
}
can be represented

by the expression,

2/=ai cos 0+a<j cos 3 0+as cos 5 0+a7 cos 70+,. .

+&isin 0+6 3 sin 3 0+i 5 sin5 0+b7 sin7 +...; (20)

where,

GI -.2 avg (y cos 0) *; 6i
= 2 avg. (y sin 0V;

3=2 avg (y cos 30
) ~; 63=2 avg. (y sin 30J

37

;

. (21)
as =2avg (2;

cos 50^ &5 =2avg. (?/ sin 50)^;

G 7 =2 avg. (y cos 70)
r

;
67 =2 avg. (y sin 70)

ff

.

84. From 180 deg. to 360 cleg., the even harmonics have

the same, but the odd harmonics the opposite sign as from

to ISO deg. Therefore adding the numerical values in the

range from 180 cleg, to 360 cleg, to those in the range from

to 180 cleg., the odd harmonics cancel, -and only the even har-

monics remain. Inversely, by subtracting, the even harmonics

cancel, and the odd ones remain.

Hereby the odd and the even harmonics can be separated.

If 2/=y(0) are the numerical values of a periodic function

from to 180 deg., and y
f

=y(d+7i) the numerical values of

the same function from 180 deg. to 360 deg.,

*)}> '. . (22)

is a periodic function containing only the even harmonics, and

ft(S)**$\y(6)-y(0+*)\ ..... (23)

is a periodic function containing only the odd harmonics
;
that is :

j/i(0)=aicos 0-f-fls cos 304- a5 cos 50 + . ..

+&ism0+&oian30+&5sin50H-.,.; . . (24)

y<t(Q)
= ao+a2 cos 20+a4 cos 40 + . . .

+6 2 sin 20 4-d* sin 40+..., ...... (25)

and the complete function is

(26)
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By this method it is convenient to determine whether even

harmonics are present, and if they are present, to separate

them from the odd harmonics,

Before separating the even harmonics and the odd har-

monics, it is usually convenient to separate the constant term

GO from the periodic function y, by averaging the instantaneous

values of y from to 360 deg. The average then gives %
and subtracted from the instantaneous values of y, gives

o(*)-v(0)-ao ...... (27)

as the instantaneous values of the alternating component of the

periodic function; that is, the component y Q contains only the

trigonometric functions, but not the constant term. t/ is

then resolved into the odd series 3/1, and the even series
2/2-

85. The alternating wave y consists of the cosine components :

w(0)=ai cos 0+a2 cos 20+a3 cos 30+a4 cos 4#+. ,
., (28)

and the sine components

<0) = &i sin 6+1)2 sin 2tf +&3 sin 30 + 64 sin 4#+. . .; (29)

that is,

The cosine functions retain the same sign for negative

angles (-0), as for positive angles (
+ 0), while the sine functions

reverse their sign; that is,

u(-6)=+u(8) and v(-6) = -v(d). , . . (31)

Therefore, if the values of yQ for positive and for negative

angles 8 are averaged, the sine functions cancel, and only the

cosine functions remain, while .by subtracting the values of

2/0
for positive and for negative angles, only the sine functions

remain; that is,

t+-tf-2u(0
..... (32)

hence, the cosine terms and the sine terms can be separated

from each other by combining the instantaneous values of yQ

for positive angle and for negative angle (-0), thus;
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Usually, before separating the cosine and the sine terms,

u and v. first the constant term a
Q

is separated, as discussed

above; that is, the alternating function
/0
=
2/-a usec^ ^

the general periodic function y is used in equation (33), the

constant term a of this periodic function appears in the cosine

term u
}
thus:

while v(0) remains the same as when using yQ
.

86. Before separating the alternating function
j/

into the

cosine function u and the sine function v, it usually is more

convenient to resolve the alternating function yQ into the odd

series yi, and the even series y^ }
as discussed in the preceding

paragraph, and then to separate y\ and y2 each into the cosine

and the sine terms :

(34)

(35)

In the odd functions u\ and v\, a change from the negative

angle (- 6) to the supplementary angle (x 6) changes the angle

of the trigonometric function by an odd multiple of x or 180

cleg., that is, by a multiple of 2/r or 360 cleg., plus 180 cleg.,

which signifies a reversal of the function, thus :

(36)

However, in the even functions wg and ^2 a change from the

negative angle ( 0) to the supplementary angle (z0), changes

the angles of the trigonometric function by an even multiple

of x\ that is, by a multiple of 2^ or 360 deg ; hence leaves

the sign of the trigonometric function unchanged, thus :

(37)
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To avoid the possibility of a mistake, it is preferable to use

the relations (34) and (35\ which are the same for the odd and

for the even series.

87. Obviously, in the calculation of the constants an and

5 n ,
instead of averaging from to ISO deg., the average can

be made from -90 deg, to +90 deg In the cosine function

u(6}, however, the same numerical values repeated with the

same signs, from to -90 deg., as from to +90 deg., and

the multipliers cos n6 also have the same signs and the same

numerical values from to -90 deg., as from to +90 deg.

In the sine function, the same numerical values repeat from

to -90 deg., as from to +90 deg., but with reversed signs,

and the multipliers sin nO also have the same numerical values,

but with reversed sign, from to -90 deg., as from to +90

deg. The products u cos nO and v sin nd thus traverse the

same numerical values with the same signs, between and

-90 deg., as between and +90 deg., and for deriving the

averages, it thus is sufficient to average only from to -, or

90 deg.; that is, over one quandrant.

Therefore, by resolving the periodic function y into the

cosine components u and the sine components v, the calculation

of the constants an and b n is greatly simplified; that is, instead

of averaging over one entire period, or 360 deg., it is necessary

to average over only 90 deg., thus:

ai=2 avg. (ui cos 0)o
2

; fri=2 avg. (vi sin 0)o
2

;

K r

d2=2 avg (u% cos 20)o
2

;
62=2 avg. fa sin 20)o

2

s

as
= 2 avg. fa cos 30V ; ^3

= 2 avg. fa sin 3#)o
2

; (W\<~> / u .

^VW/^
JT JT

a4=2 avg. (m cos 4#)
~2

;
?>4 =2 avg. (0 4 sin 40)o^ ;

K n

as
= 2 avg. (u$ cos 50)0^; ^5=2 avg. (ys sin 5&)ifi ,

etc. etc.

where u\ is the cosine term of the odd function y\] u2 the

cosine term of the even function y2 ; ws is the cosine term of

the odd function, after subtracting the term with cos 0; that is,

u$=uiai cos Q,
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analogously, u^ is the cosine term of the even function, after

subtracting the term cos 26]

U4:~U2-d2 COS 26,

and in the same manner,

115=1130,3 cos 30,

'M6
= U4 fl4COS 40,

and so forth; v\ } -0% v$, v*, etc., are the corresponding sine

terras,

When calculating the coefficients an and bn by averaging over

90 deg., or over 180 deg. or 360 deg., it must be kept in mind

that the terminal values of y respectively of u or v, that is,

the values for 0=0 and 0=90 deg. (or 0=180 deg. or 360

deg. respectively) are to be taken as one-half only, since they

are the ends of the measured area of the curves an cos nd and

6n sin n8
}
which area gives as twice its average height the values

an and bn ,
as discussed in the preceding.

In resolving an empirical periodic function into a trigono-

metric series, just as in most engineering calculations, the

most important part is to arrange the work so as to derive the

results expeditiously and rapidly, and at the same time

accurately. By proceeding, for instance, immediately by the

general method, equations (17) and (18), the work becomes so

extensive as to be a serious waste of time, while by the system-

atic resolution into simpler functions the work can be greatly

reduced.

88. In resolving a general periodic function y(0) into a

trigonometric series, the most convenient arrangement is;

1. To separate the constant term %, by averaging all the

instantaneous values of y(8) from to 360 deg. (counting the

end values at 0=0 and at 0=360 deg. one half, as discussed

above) :

flo-avg. {0(0)10* ...... (10)

and then subtracting a from y(6), gives the alternating func-

tion,



2. To resolve the general alternating function ya (8) into

the odd function t/i(fl),,and the even function j/3 (0),

s)}; . . . . (23)

l

..... 122)

3. To resolve y\(ff) gnd y2 (0}) into the cosine terms u and

the sine terms v,

,. . . . (34)

(35)

4. To calculate the constants ai, a^ u3 . ..; 5i, 63, 63...

by the averages,

an =2avg.(ucosfl0) 2";

6 B =2avg. (ysin ?i$)
2

.

If the periodic function is known to contain no even har-

monics, that is, is a symmetrical alternating wave, steps 1 and

2 are omitted.

Sep.

-10'

FIG. 45. Mean Daily Temperature at Schenectady.

89. As illustration of the resolution of a general periodic

wave may be shown the resolution of the observed mean daily

temperatures of Schenectady throughout the year, as shown

in Fig. 45, up to the 7th harmonics *

* The numerical values of temperature cannot claim any great absolute

accuracy, as they are averaged over a relatively small number of years only,

and observed by instruments of only moderate accuracy. For the purpose

of illustrating the resolution of the empirical curve into a trigonometric

series, this is not essential, however,
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TABLE IV
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TABLE V.
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TABLE VIII.

COSIXE SERIES u,.

TABLE IX.

SINE SERIES *
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Table IV gives the resolution of the periodic temperature

function into the constant term ao, the odd series y\ and the

even series y%.

Table V gives the resolution of the series y\ and 2/2 into

the cosine and sine series Wj, vi, u^ v%.

Tables VI to IX give the resolutions of the series u\, Vi, M2,

?;2, and thereby the calculation of the constants an and bn .

90. The resolution of the temperature wave, up to the

7th harmonic, thus gives the coefficients:

a =+8.75;

a :
= -

13.28; ft^-3.33;

fl2
=
-0.001; 6 2

=
-0.602;

a3
-
-0.33; 63

=
-0.14;

a4= -0.154; 6 4
=

+0.386;

a5 =+0014; 65
=
-0.090;

a6 =4-0100; 66
= -

0.154;

a7 =-0022; 67
=
-0,082;

or, transforming by the binomial, ancosft0+&nsinn0=cncos

Of^j by substituting cn=Vau
2 +5n

2
andtan^u

=
gives r

d=-13.69; n=+14.15; or ri=+14.15;

c2=-0.602; ^-+89.9, or ^=+44.95+ 180n;

c3=+0.359; ra=-23.0; or 2=~7
o

c4=-0.416; 7-468.2; or
^-17.05+90w=+72.95+90m;

cs=+0.091; f5=-81.15 ;
or ^

5
=~16.2

o

c6=+0184; r6=-57.0; or
^=~9.5

c7=-0.085; r

where n and m may be any integer number.
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Since to an angle fn , any multiple of 2~ or 360 cleg, may
3f)0 Tn

be added, any multiple of

'

may be added to the angle ,

71 %

and thus the angle may be made positive, etc.
11

91. The equation of the temperature wave thus becomes:

0=8.75-13.69 CGS (0-14.15)-0.602 cos 2(0-44.95)

-0.359 cos 3(0-52.3) -0.416 cos 4(0-72.95)

-0.091 cos 5(0-19.77) -0,184 cos 6(0-20.5)

-0.085 cos 7(0-10.7); (a)

or, transformed to sine functions by the substitution,

cos w=-sin (w-90):

y= 8.75 +13.69 sin (0-104.15) +0.602 sin 2(0-89.95)

+0.359 sin 3(0-82.3) +0.416 sin 4(0-95.45)

+0.091 sin 5(0- 109.77) +0.184 sin 6(0-95.5)

+0.085 sin 7(0-75). (6)

The cosine form is more convenient for some purposes,

the sine form for other purposes.

Substituting 0=0-14.15; or, =0-104.15, these two

equations (a) and (6) can be transformed into the form,

2/=a75-13.69cosj9-O.G2cos2f/5-30.S)-0.359cos3y-38.15 )

-0.416 cos 4(0-58.8)-0.091 cos 5(0-5.6)

-0.184 cos 6(0-6.35)-0 085 cos 7(0-48.0), (c)

and

3/-8.75+13.69 sin +0.602 sin 2(W4.2)+0.359 sin 3(3+21.85)

+0.416 sin 4(^+8.7) +0.91 sin 5(3-5.6)

+0.184 sin 6(3+8.65) +0.085 sin 7(3+29.15). (d)

The periodic variation of the temperature j/,
as expressed

by these equations, is a result of the periodic variation of the

thermomotive force; that
is,

the solar radiation. This latter
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IP a minimum on Dec. 22cl, that is, 9 time-degrees before the

zero of 0, hence may be expressed approximately by;

or substituting ft respectively d for 0:

(/9+23.15 )

(+23.15).

This means: the maximum of y occurs 23.15 deg. after the

maximum of z] in other words, the temperature lags 23.15 deg.,

or about J period, behind the thermomotive force.

Near =0, all the sine functions in (d) are increasing; that

is, the temperature wave rises steeply in spring.

Near =1SO cleg., the sine functions of the odd angles are

decreasing, of the even angles increasing, and the decrease of

the temperature wave in fall thus is smaller than the increase

in spring.

The fundamental wave greatly preponderates, with ampli-

tude ci= 13.69.

In spring, for #= 14.5 deg., all the higher harmonics

rise in the same direction, and give the sum 1.74, or 12.7

per cent of the fundamental. In fall, for =-14.5+7r, the

even harmonics decrease, the odd harmonics increase the

steepness, and give the sum -0.67, or -4.9 per cent.

Therefore, in spring, the temperature rises 12.7 per cent

faster, and in autumn it falls 4.9 per cent slower than corre-

sponds to a sine wave, and the difference in the rate of tempera-

ture rise in spring, and temperature fall in autumn thus is

12.7 +4.9 =17.6 per cent.

The maximum rate of temperature rise is 90-14.5=75.5

deg. behind the temperature minimum, and 23.15+75.5=98.7

deg. behind the minimum of the thermomotive force.

As most periodic functions met by the electrical engineer

are symmetrical alternating functions, that is, contain only

the odd harmonics, in general the work of resolution into a

trigonometric series is very much less than in above example.

Where such reduction has to be carried out frequently, it is

advisable to memorize the trigonometric functions, from 10

to 10 deg., up to 3 decimals; that is, within the accuracy of

the slide rule, as thereby the necessity of looking up tables is
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eliminated and the work therefore done much more expe-

ditiously. In general, the slide rule can be used for the calcula-

tions.

As an example of the simpler reduction of a symmetrical

alternating wave, the reader may resolve into its harmonics,

up to the 7th, the exciting current of the transformer, of which

the numerical values are given, from 10 to 10 deg. in Table X,

C. REDUCTION OF TRIGONOMETRIC SERIES BY POLY-

PHASE RELATION.

92. In some cases the reduction of a general periodic func-

tion, as a complex wave, into harmonics can be carried out

in a much quicker manner by the use of the polyphase equation,

Chapter III, Part A (23). Especially is this true if the com-

plete equation of the trigonometric series, which represents the

periodic function, is not required, but the existence and the

amount of certain harmonics are to be determined, as for

instance whether the periodic function contain even harmonics

or third harmonics, and how large they may be.

This method does not give the coefficients an , *bn of the

individual harmonics, but derives from the numerical values

of the general wave the numerical values of any desired

harmonic. This harmonic, however, is given together with all

its multiples; that is, when separating the third harmonic,

in it appears also the 6th, 9th, 12th, etc.

In separating the even harmonics yz from the general

wave y}
in paragraph. 84, by taking the average of the values

of y for angle d, and the values of y for angles (0+?r), this

method has already been used.

Assume that to an angle there is successively added a

constant quantity a, thus: 6] 9+a; #+2a; fl+3a; 0-f-k,

etc., until the same angle 8 plus a multiple of 2?r is reached;

0+M=0-{-2m7r; that
is, a=

; or, in other words, a is

l/?i of a multiple of 2^. Then the sum of the cosine as well

as the sine functions of all these angles is zero :

cos 0+cos (0+a)+cos (0+2a)+cos (0+3a)+. . .

+eos(0+[n-l]a)=0; (1)
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sin 0+sin (0+a) +sin (fl+2a) +sin (0+3a) +. . .

where

na=2m~ (3)

These equations (1) and (2) hold for all values of a, except for

a =2-. For a =2^ obviously all the terms of equation (1) or

(2) become equal, and the sums become n cos 6 respectively

n sin 0.

Thus, if the series of numerical values of y is divided into

n successive sections, each covering degrees, and these

sections added together,

9r\ / 'V\

(4)

In this sum, all the harmonics of the wave y cancel by equations

(1) and (2), except the nth harmonic and its multiples,

an cos nO+bn sin nO; a% n cos 2n0+&2 sin 2n0, etc.

in the latter all the terms of the sum (4) are equal; that is,

the sum (4) equals n times the nth harmonic, and its multiples.

Therefore, the nth harmonic of the periodic function y } together

with its multiples, is given by

(5)

For instance, for w=2,

gives the sum of all the even harmonics; that is, gives the

second harmonic together with its multiples, the 4th, 6th, etc.,

as seen in paragraph 7, and for, ft =3,

2/3
=
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gives the third harmonic, together with its multiples, the 6th,

9th, etc.

This method does not give the mathematical expression

of the harmonics, but their numerical values. Thus, if the

mathematical expressions are required, each of the component

harmonics has to be reduced from its numerical values to

the mathematical equation, and the method then offers no

advantage.

It is especially suitable, however, where certain classes of

harmonics are desired, as the third together with its multiples.

In this case from the numerical values the effective value,

that is, the equivalent sine wave may be calculated.

93. As illustration may be investigated the separation of

the third harmonics from the exciting current of a transformer.

TABLE X

In table X A, are given, in columns 1, 3, 5, the angles 6,

from 10 deg. to 10 deg., and in columns 2, 4, 6, the correspond-

ing values of the exciting current i, as derived by calculation

from the hysteresis cycle of the iron, or by measuring from "the
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photographic film of the oscillograph. Column 7 then gives

one-third the sum of columns 2, 4, and 6, that is, the third har-

monic with its overtones, {3 .

To find the 9th harmonic and its overtones ig, the same

method i? now applied to t'3 ,
for angle 30. This is recorded

in Table X B.

In Fig. 46 are plotted the total exciting current i, its third

harmonic 4, and the 9th harmonic {9.

This method has the advantage of showing the limitation

of the exactness of the results resulting from the limited num-

FIG. 46.

her of numerical values of i, on which the calculation is based.

Thus, in the example, Table X, in which the values of i are

given for every 10 deg., values of the third harmonic are derived

for every 30 deg., and for the 9th harmonic for every 90 deg.;

that is,
for the latter, only two points per half wave are deter-

minate from the numerical data, and as the two points per half

wave are just sufficient to locate a sine wave, it follows that

within the accuracy of the given numerical values of i, the

9th harmonic is a sine wave, or in other words, to determine

whether still higher harmonics than the 9th exist, requires for

i more numerical values than for every 10 deg.

As further practice, the reader may separate from the gen-

PROPERTY OF
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eral wave of current, I Q in Table XI, the even harmonics

by above method,

and also the sum of the odd harmonics, as the residue,

then the odd harmonics ii may be separated from the third

harmonic and its multiples,

and in the same manner -13 may be separated from its third

harmonics; that is,
? 9 .

Furthermore, in the sum of even harmonics, iz may again

be separated from its second harmonic, i, and its multiples,

and therefrom, is, and its third harmonic, 1 6 ,
and its multiples,

thus giving all the harmonics up to the 9th, with the exception

of the 5th and the 7th. These latter two would require plotting

the curve and taking numerical values at different intervals,

so as to have a number of numerical values divisible by 5 or 7.

It is further recommended to resolve this unsymmetrical

exciting current of Table XI into the trigonometric series by

calculating the coefficients a n and 6, up to the 7th, in the man-

ner discussed in paragraphs 6 to 8.

TABLE XI
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D. CALCULATION OF TRIGONOMETRIC SERIES FROM

OTHER TRIGONOMETRIC SERIES.

94, An hydraulic generating station has for a long time been

supplying electric energy over moderate distances, from a num-

ber of 750-kw. 4400-volt 60-cycle three-phase generators. The

station is to be increased in size by the installation of some

larger modern three-phase generators, and from this station

6000 kw. are to be transmitted over a long distance transmis-

sion line at 44,000 volts, The transmission line has a length

of 60 miles, and consists of three wires No. B. & S. with 5

ft. between the wires.

The question arises, whether during times of light load the

old 750-kw. generators can be used economically on the trans-

mission line. These old machines give an electromotive force

wave, which, like that of most earlier machines, differs con-

siderably from a sine wave, and it is to be investigated, whether,

due to this wave-shape distortion, the charging current of the

transmission line will be so greatly increased over the value

which it would have with a sine wave of voltage, as to make

the use of these machines on the transmission line uneconom-

ical or even unsafe.

Oscillograms of these machines, resolved into a trigonomet-

ric series, give for the voltage between each terminal and the

neutral, or the Y voltage of the three-phase system, the equa-

tion;

e=6o{sin 9-0.12 sin (30-2.3)-0 23 sin (59-1.5)

+0.13 sin (79-6.2)). . (1)

In first approximation, the line capacity may be considered

as a condenser shunted across the middle of the line; that is,

half the line resistance and half the line reactance is in series

with the line capacity,

As the receiving apparatus do not utilize the higher har-

monics of the generator wave, when using the old generators,

their voltage has to be transformed up so as to give the first

harmonic or fundamental of 44
3
QOO volts.

44,000 volts between the lines (or delta) gives 44,000
- V% =

25,400 volts between line and neutral. This is the effective
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value, and the maximum value of the fundamental voltage

wave thus is: 25,400x^2=36,000 volts, or 36 kv.; that is,

eo=36, and

e=36|sin 0-0.12 sin (3tf-2.3)-0.23 sin (50-1.5)

+0.13 sin (79-6. 2) j,
. (2)

would be the voltage supplied to the transmission line at the

high potential terminals of the step-up transformers.

From the wire tables, the resistance per mile of No. B. & S.

copper line wire is r =0.52 ohm,

The inductance per mile of wire is given by the formula:

I =0.74151og7+0.0805mh, .... (3)
Lf

where ls is the distance between the wires, and lr the radius of

the wire.

In the present case, this gives 19
= 5 ft. = 60 in, l

r
=0 , 1625 in.

Lo= 1.9655 mL, and, herefrom it follows that the reactance, at

/= 60 cycles is

TO =2^/L
= 0.75 ohms per mile (4)

The capacity per mile of wire is given by the formula:

n -0408
t m

C = r-mf.; (5)

log?
i>

hence, in the present case, Co =0,0159 mf., and tho condensive

reactance is derived herefrom as:

ohms; .... (6)

60 miles of line then give the condensive reactance,

30 mileSj or half the line (from the generating station to the

middle of the line, where the line capacity is represented by a

shunted condenser) give: the resistance, r=30r =46.6 ohms
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the inductive reactance, 2=30io=22.5 ohms, and the equiva-

lent circuit of the line now consists of the resistance r,
inductive

reactance x and condensive reactance xc ,
in series with each

other in the circuit of the supply voltage e.

95. If i= current in the line (charging current) the voltage

consumed by the line resistance r is ri.

The voltage consumed by the inductive reactance x is
Xj--

the voltage consumed by the condensive reactance xc is xc \ id6,

and therefore,

di

(7)

Differentiating this equation, for the purpose of eliminating

the integral, gives

or

The voltage e is given by (2), which equation, by resolving

the trigonometric functions, gives

e-36 sin 0-4.32 sin 30-8.28 sin 50+4.64 sin 70

+0,18 cos 30+0. 22 cos 50-0, 50 cos 70; . (9)

hence, differentiating,

de

^-36 cos 0-12.96 cos 30-41.4 cos 50+32.5 cos 70
do

-0.54sin30~l.lsin50+3.5sm70. . (10)

Assuming now for the current i a tiigonometric series with

indeterminate coefficients,

i=a\ cos +a3 cos 30 +a 5 cos 50 +a7 cos 70

-f &! sin +&3 sin 30 +&5 sin 50 +67 sin 70
7

. (11)
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substitution of (10) and (11) into equation (8) must give an

identity, from which equations for the determination of a n and

6n are derived; that is, since the product of substitution must

be an identity, all the factors of cos 6, sin 0, cos 30, sin 30,

etc., must vanish, and this gives the eight equations :

36 =2770ai+ 15.66J- 22 5ai;

=2770^- lo.Gai- 22.56i;

-12.96=2770a3 + 4fi.8&3
- 202. 5a3 ;

- 0.54=277063
- 46.8a3

- 202. 5&3 ;

-41.4 =2770a5 + 7S65
- 562. 5a5 :

- 1.1 -277065
- 78a5

- 56.2565 ;

32.5 =2770a7 + 109.2&7-1102.5a7 ;

3.5 =277067
- 109. 2a 7

- 11Q2.567 .

Resolved, these equations give

ai= 13.12;'

61= 0.07;

3=- 5.03;

63
= - 0.30;

65
=-

1.15;

a 7
=

19.30;

67 - 3.37;

hence,

{=13. 12 cos 0-5. 03 cos 30-18. 72 cos 50+19.30 cos 70

+0,07 sin 0-0.30 sin 30-1. 15 sin 50+3. 37 sin 70

= 13.12 cos (0-0.3)-5.04 cos (30-3.3)

-18. 76 cos (50-3. 6) +19. 59 cos (70-9.9).

(12)

(13)

.(14)
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*

96. The effective value of this current is given as the square

root of the sum of squares of the effective values of the indi-

vidual harmonics, thus :

am,

As the voltage between line and neutral is 25,400 effective,

this gives Q= 25,400X21. 6 =540,000 volt-amperes, or 540 k\>

amp. per line, thus a total of 3Q=1620 kv.-amp. charging cur-

rent of the transmission line, when using the e.ra.f. wave of

these old generators.

It thus would require a minimum of 3 of the 750-kw.

generators to keep the voltage on the line, even if no power

whatever is delivered from the line.

If the supply voltage of the transmission line were a perfect

sine wave, it would, at 44,000 volts between the lines, be given

by

ei=36sin 6, (15)

which is the fundamental, or first harmonic, of equation (9).

Then the current i would also be a sine wave, and would be

given by

. ii-ai cos 6+bi&m 0,

=13.12 cos 0+0.07 sin 0,

=13.12 cos (0-0.3),

(16)

and its effective value would be

13 1

/! -^=9.3 amp (17)

This would correspond to a kv.-amp. input to the line

3Qi=3 X25.4X9.3=710 kv.-amp.

The distortion of the voltage wave, as given by equation (1),

thus increases the charging volt-amperes of the line from 710
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kv.-amp. to 1620 kv.-amp. or 2.28 times, and while with a sine

wave of voltage, one of the 750-kw. generators would easily be

able to supply the charging current of the line, due to the

FIG. 47.

wave shape distortion, more than two generators are required,

It would, therefore, not be economical to use these generators

on the transmission line, if they can be used for any other

purposes, as shortrdistance distribution.

FIG. 48.

In Figs. 47 and 48 are plotted the voltage wave and the

current wave, from equations (9) and (14) repsectively, and
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the numerical values, from 10 deg. to 10 cleg., recorded in

Table XII.

In Figs, 47 and 48 the fundamental sine wave of voltage

and current are also shown. As seen, the distortion of current

is enormous, and the higher harmonics predominate over the

fundamental Such waves are occasionally observed as charg-

ing currents of transmission lines or cable systems,

97. Assuming now that a reactive coil is inserted in series

with the transmission line, between the step-up transformers

and the line, what will be the voltage at the terminals of this

reactive coil, with the distorted wave of charging current

traversing the reactive coil, and how does it compare with the

voltage existing with a sine wave of charging current?

Let L- inductance, thus x=2nfL= reactance of the coil,

and neglecting its resistance, the voltage at the terminals of

the reactive coil is given by

Substituting herein the equation of current, (11), gives

e
f

=x\ai sin #+3as sin 3#+5as sin 50+7a7 sin 76

-61 cos 0-363 cos30-565 cos50-767 cosTtf
j ;

hence, substituting the numerical values (13),

e^sf 13.12 sin 0-15.09 sin 30-93.6 sin 50+135.1 sin 70
'

-0.07 cos 0+0,90 cos 30+5.75cos 50-23.6 cos70}

=x{ 13.12 sin (0-0.3)-15.12sin (30-3.3)

-93.8 sin (50-3.6) +139.1 sin (70-9.9) |.

This voltage gives the effective value

(19)

(20)

E'=r\/i(13.12
2 +15.122 +93.82 +139.12

i
-1

while the effective value with a sine wave would be from (17) ;

hence, the voltage across the reactance z has been increased

12.8 times by the wave distortion.
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The instantaneous values of the voltage e
f
are given in the

last column of Table XII, and plotted in Fig. 49, for 2 = 1.

As seen from Fig. 49, the fundamental wave has practically

FIG. 49

vanished, and the voltage wave is the seventh harmonic, modi-

fied by the fifth harmonic.

TABLE XII



CHAPTER IV.

MAXIMA AivD MINIMA.

98. In engineering investigations the problem of determin-

ing the maxima and the minima, that is, the extrema of a

function, frequently occurs. For instance, the output of an

electric machine is to be found, at which its efficiency is a max-

imum, or, it is desired to determine that load on an induction

motor which gives the highest power-factor; or, that voltage

xS

FIG. 50. Graphic Solution of Maxima and Minima.

which makes the cost of a transmission line a minimum; or,

that speed of a steam turbine which gives the lowest specific

steam consumption, etc.

The maxima and minima of a function, y=f(x), can be found

by plotting the function as a curve and taking from the curve

the values x, y}
which give a maximum or a minimum. For

instance, in the curve Fig. 50, maxima are at PI and P%, minima

at PS and P. This method of determining the extrema of

functions is necessary, if the mathematical expression between

147
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x and
y, that is,

the function y=f(x), Is unknown, or if the

function y-f(x) is so complicated, as to make the mathematical

calculation of the extrema impracticable. As examples of

this method the following may be chosen;

FIG. 51. Magnetization Curve.

Example i. Determine that magnetic density (B, at which

the permeability /*
of a sample of iron is a maximum. The

relation between magnetic field intensity 3C, magnetic density

fli and permeability ft cannot be expressed in a mathematical

equation, and is therefore usually given in the form of an

FIG. 52. Permeability Curve,

empirical curve, relating (B and 3C
;
as shown in Fig. 51. From

this curve, corresponding values of (8 and 3C are taken, and their
/D

ratio, that is, the permeability ju=-, plotted againstCB as abscissa.
JC

This is done in Fig. 52. Fig. 52 then shows that a maximum
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occurs at point jvx , for <B=10.2 kilolines, /t =1340, and minima

at the starting-point P2 ,
for (B=0, /t=370, and also for (B =00,

where by extrapolation /i=l.

Example 2. Find that output of an induction motor

which gives the highest power-factor. While theoretically

an equation can be found relating output and power-factor

of an induction motor, the equation is too complicated for use.

The most convenient way of calculating induction motors is

to calculate in tabular form for different values of slip $, the

torque, output, current, power and volt-ampere input, efficiency,

power-factor, etc., as is explained in
"
Theoretical Elements

of Electrical Engineering/' third edition, p. 363. From this

FIG. 53, Power-factor Maximum of Induction Motor.

table corresponding values of power output P and power-

factor cos & are taken and plotted in a curve, Fig. 53, and the

maximum derived from this curve is ?=4120, cos 0=0.904,

For the purpose of determining the maximum, obviously

not the entire curve needs to be calculated, but only a short

range near the maximum. This is located by trial Thus

in the present instance, P and cos 6 are calculated for $=0,1

and s = 0.2. As the latter gives lower power-factor, the maximum

power-factor is below $=0.2. Then s=0.05 is calculated and gives

a higher value of cos 6 than $=0.1; that is,
the maximum is

below $=0.1. Then $=0.02 is calculated, and gives a lower

value of cos 6 than s=0.05. The maximum value of cos 6

thus lies between $=0.02 and $=0.1, and only the part of the

curve between $=0.02 and $==0.1 needs to be calculated for

the determination of the maximum of cos 0, as is done in Fig. 53.

99. When determining an extremum of a function y=f(x).

by plotting it as a curve, the value of z, at which the extreme
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occurs, is more or loss inaccurate, since at the extreme the

curve is horizontal. For instance, in Fig. 53, the maximum

of the curve is so fiat that the value of power P, for which

cos 9 became a maximum, may be anywhere between P=4000

and ?=4300, within the accuracy of the curve.

In such a case, a higher accuracy can frequently be reached

by not attempting to locate the exact extreme, but two points

of the name ordinate, on each side of the extreme, Thus in

Fig. 58 the power PO, at which the maximum power factor

cos = 0.904 is reached, is somewhat uncertain. The value of

power-factor, somewhat below the maximum, cos (9=0.00,

is reached before the maximum, at PI =3400, and after the

maximum, at ?% - 4840. The maximum then may be calculated

as half-way between PI and P*, that is, at Po=J{Pi+P2} =:

4120 watts.

This method gives usually more accurate results, but is

based on the assumption that the curve is symmetrical on

both sides of the extreme, that is, falls off from the extreme

value at the same rate for lower as for higher values of the

abscissa?. THiere this is not the case, this method of inter-

polation does not give the exact maximum.

Example 3, The efficiency of a steam turbine nozzle,

that is, the ratio of the kinetic energy of the steam jet to the

energy of the steam available between the two pressures between

which the nozzle operates, is given in Fig. 54, as determined by

experiment. As abscissas are used the nozzle mouth opening,

that is, the widest part of the nozzle at the exhaust end, as

fraction of that corresponding to the exhaust pressure, wrhile

the nozzle throat, that is, the narrowest part of the nozzle, is

assumed as constant. As ordinates are plotted the efficiencies.

This curve is not symmetrical, but falls off from the maximum,
on the sides of larger nozzle mouth, far more rapidly than on

the side of smaller nozzle mouth. The reason is that with

too large a nozzle mouth the expansion in the nozzle is earned

below the exhaust pressure p2 ,
and steam eddies are produced

by this .overexpansion.

The maximum efficiency of 94.6 per cent is found at the point
P

,
at which the nozzle mouth corresponds to the exhaust

pressure. IF, however, the maximum is determined as mid-

way between two points PI and P2 ,
on each side of the maximum,
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at which the efficiency is the same, 93 per cent, a point P</ is

obtained, which lies on one side of the maximum.

With unsymmetrical curves, the method of interpolation

thus does not give the exact extreme. For most engineering

purposes this is rather an advantage. The purpose of deter-

mining the extreme usually is to select the most favorable

operating conditions. Since, however, in practice the operating

conditions never remain perfectly constant, but vary to some

extent, the most favorable operating condition in Fig, 54 is

not that where the average value gives the maximum efficiency

90^-

88-J

06 0.8

Nozzle Opening
09 10 11

FIG. 54. Steam Turbine Nozzle Efficiency; Determination of Maximum.

(point PO), but the most favorable operating condition is that,

where the average efficiency during the range of pressure, occurr-

ing in operation, is a maximum.

If the steam pressure, and thereby the required expansion

ratio, that is, the theoretically correct size of nozzle mouth,

should vary during operation by 25 per cent from the average,

when choosing the maximum efficiency point PO as average,

the efficiency during operation varies on the part of the curve

between PI (91.4 per cent) and P2 (85.2 per cent), thus averaging

lower than by choosing the point P '(6.25 per cent below PO)

as average. In the latter case, the efficiency varies on the

part of the curve from the Pi'(90.1 per cent) to P/(90.1 per

cent), (Fig. 55.)
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Thus in apparatus design, when determining extrema of

a function y=f(x)j to select them as operating condition,

consideration must be given to the shape of the curve, and

where the curve is unsymmetrical, the most efficient operating

point lies not at the extreme, but on that side of it at which

the curve falls off slower, the more so the greater the range of

variation
is, which may occur during operation. This is not

always realized.

loo. If the function y=f(x) is plotted as a curve, Fig.

50, at the extremes of the function, the points PI, P2 , Pg, P*

of curve Pig. 50, the tangent on the curve is horizontal, since

94-

8h

0.7

Nozzle Qpenin!

i
oi9 I "IP n 12

FIG. 55. Steam Turbine Nozzle Efficiency; Determination of Maximum.

at the extreme the function changes from rising to decreasing

(maximum, PI and P2), or from decreasing to increasing (min-

imum, PS and P4), and therefore for a moment passes through
the horizontal direction.

In general, the tangent of a curve, as that in Fig. 50, is the

line which connects tv\o points P
;
and P}

of the curve, which

are infinitely close together, and, as seen in Fig. 50, the angle

8, which this tangent P'P" makes with the horizontal or J-axis,

thus is given by:

=

P'Q
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At the extreme, the tangent on the curve is horizontal;
that is, 4#=0, and

; therefore, it follows that at an extreme

of the function,

2/-M ........ (1)

The reverse, however, is not
necessarily the case; that is,

if at a point z, y :

-^=0,
this point may not be an extreme;

that is, a maximum or minimum, hut may be a horizontal

inflection point, as points P5 and P6 are in Pig." 50.

With increasing x
}
when passing a maximum (Pi and P

2;

Fig. 50), y rises, then stops rising, and then decreases again.
Men passing a minimum (P3 and P4) y decreases, then stops

decreasing, and then increases again. When passing a horizontal

inflection point, y rises, then stops rising, and then starts rising

again, at P5 ,
or y decreases, then stops decreasing, but then

starts decreasing again (at P6).

The points of the function y=f(x), determined by the con-

dition, ^=0,
thus require further investigation, whether they

represent a maximum, or a minimum, or merely a horizontal

inflection point.

This can be done mathematically: for increasing x, when

passing a maximum, tan 6 changes from positive to negative;

that is, decreases, or in other words, -7- (tan 0)<0. Since

tan =-7-, it thus follows that at a maximum j| < 0. Inversely,

at a minimum tan 6 changes from negative to positive, hence

d d2y
increases, that

is, -r; (tan #)>0; or, -^2
> 0. When passing

a horizontal inflection point tan 6 first decreases to zero at

the inflection point, and then increases again; or, inversely,

tan 8 first increases, and then decreases again, that
is, tan 6=

T- has a maximum or a minimum at the inflection point, and

therefore, -r- (tan 6)
=
ji^O at the inflection point.
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In engineering problems the investigation, whether the

rfv

solution of the condition of extremes, i
L

l

=
0, represents a

minimum, or a maximum
,
or an inflection point, is rarely

required, but it is almost always obvious from the nature of

the problem whether a maximum of a minimum occurs, or

neither.

For instance, if the problem is to determine the speed at

which the efficiency of a motor is a maximum, the solution

speed =0, obviously is not a maximum but a mimimum, as at

zero speed the efficiency is zero. If the problem is, to find

the current at which the output of an alternator is a maximum,
the solution i=0 obviously is a minimum, and of the other

two solutions, i\ and i^ the larger value, 12, again gives a

minimum, zero output at short-circuit current, while the inter-

mediate value i\ gives the maximum.

101. The extremes of a function, therefore, are determined

by equating its differential quotient to zero, as is illustrated

by the following examples:

Example 4. In an impulse turbine, the speed of the jet

(steam jet or water jet) is $j. At what peripheral speed $2 is

the output a maximum.

The impulse force is proportional to the relative speed of

the jet and the rotating impulse wheel; that is, io (S\-S2}.

The power is impulse force times speed $2; hence,

(3)

and is an extreme for the value of $>, given by -TT =0; hence,

Si-2S2 =0 and S2 =3; ..... (4)

that is, when the peripheral speed of the impulse wheel equals

half the jet velocity.

Example 5. In a transformer of constant impressed

e,m.f, 60== 2300 volts; the constant loss, that is, loss which

is independent of the output (iron loss), is P^500 watts. The

internal resistance (primary and secondary combined) is r=20
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ohms. At what current i is the efficiency of the transformer

a maximum; that is, the percentage loss, /, a minimum?

The loss is P=/J
l
+ri

2 =500+2Ch'2 (5)

The power input is PI =ei=2300i; . . (6)

hence, the percentage loss is,

P Pi+n2

* =
p~

=
>

- - (7)

and this is an extreme for the value of current
i, given by

hence,

or,

/Pi
Pt -rf2 = and i=J = 5 amperes, ... (8)

and the output is Po=ei=ll,500 watts. The loss is,
P=P

t
+

n2 =2P
{
=1000 watts; that is, the i

2
r loss or variable loss, is

equal to the constant loss ?
t
-. The percentage loss is,

>l=|-= ^=0.087=8.7 percent,
I &

and the maximum efficiency thus is,

1-^-0.913=91.3 per cent.

102. Usually, when the problem is given, to determine

those values of x for which y is an extreme, y cannot be expressed

directly as function of
, y=f(x), as was done in examples

(4) and (5), but y is expressed as function of some other quan-

ties, y=f(u, v..)j and then equations between u, v . . and x

are found from the conditions of the problem, by which expres-

sions of x are substituted for u, v .
.,

as shown in the following

example:

Example 6. There is a constant current iQ through a cir-

cuit containing a resistor of resistance TO. This resistor TO
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is shunted by a resistor of resistance r. What must be the

resistance of this shunting resistor r,
to make the power con-

sumed in r, a maximum? (Fig. 56.)

let i be the current in the shunting resistor r. The power

consumed in r then is,

P=rP (9)

The current in the resistor TO is io-i, and therefore the

voltage consumed by r is roft'o-0; an(^ ^G vo^a e consumed

by r is ri, and as these two voltages must be equal, since both

r

FIG. 56, Shunted Resistor.

resistors are in shunt with each other, thus receive the same

voltage,

and, h^refrom, it follows that,

. r .

Substituting this in equation (9) gives,

p ^_"X'-*

and this power is an extreme for -r-=0; hence:

hence,

r=r
; ........ (12)

that
is,

the power consumed in r is a maximum, if the resistor

r of the shunt equals the resistance ro.
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Tho current in r then
is, by equation (10),

Hf-
and the power is,

p __ ro?Q
2

"T"

103. If, after the function y=f(x) (the equation (11) in

example (6)) has been derived, the differentiation ~=0 is

immediately carried out, the calculation is very frequently
much more complicated than necessary. It is, therefore,

advisable not to differentiate immediately, but first to simplify

the function y=f(x\
If y is an extreme, any expression differing thereform by

a constant term, or a constant factor, etc., also is an extreme.

So also is the reciprocal of y, or its square, or square root, etc.

Thus, before differentiation, constant terms and constant

factors can be dropped, fractions inverted, the expression

raised to any power or any root thereof taken, etc.

For instance, in the preceding example, in equation (11),

the value of r is to be found, which makes P a maximum,

If P is an extreme,

r

which differs irom P by the omission of the constant factor

roV, also is an extreme.

The reverse of y^

is also an extreme. (2/2 is a minimum, where y\ is a maximum,
and inversely.)

Therefore, the equation (1 1) can be simplified to the form ;
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and, leaving out the constant term 2r
0} gives the final form,

*-r+ (13)

This differentiated gives,

hence,

r=r .

104. Example 7. From a source of constant alternating

e.m.f.
e, power is transmitted over a line of resistance TO and

reactance XQ into a non-inductive load. What must be the

resistance r of this load to give maximum power?

If i- current transmitted over the line, the power delivered

at the load of resistance r is

P=rP (14)

The total resistance of the circuit is r-fr
;

the reactance

is XQ; hence the current is

(15)

and, by substituting in equation (14), the power is

if P is an extreme, by omitting e
2 and inverting,

is also an extreme, and likewise,

is an extreme.
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Differentiating, gives:

y2 _~ l
d7~ ~~>

r=\/
f7Tz7. ....... (17)

Wherefrom follows, by substituting in equation (16),

(r +Vr 2
+:ro

2
)

2
+;co

2

(13)

Very often the function y=f(x) can by such algebraic

operations, which do not change an extreme, be simplified to

such an extent that differentiation becomes entirely unnecessary,

but the extreme is immediately seen; the following example

will serve to illustrate:

Example 8. In the same transmission circuit as in example

(7) ;
for what value of r is the current i a maximum?

The current i is given, by equation (15),

Dropping e and reversing, gives,

Squaring, gives,

dropping the constant term z 2
gives

2/3
=
(r+r )

2
; (19)

taking the square root gives
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dropping the constant term TO gives

y5 -r; (20)

that is, the current i is an extreme, when
35/5
= r is an extreme,

and this is the case for r=0 and r= GO : r=0 gives,

(21)

as the maximum value of the current, and r = co gives

as the minimum value of the current.

With some practice, from the original equation (1), imme-

diately, or in very few steps, the simplified final equation can

be derived.

105. la the calculation of maxima and minima of engineer-

ing quantities x
1 y, by differentiation of the function y=f(x),

it must be kept in mind that this method gives the values of

x, for which the quantity y of the mathematical equation y =f(x)

becomes an extreme, but whether this extreme has a physical

meaning in engineering or not requires further investigation;

that is, the range of numerical values of x and y is unlimited

in the mathematical equation, but may be limited in its engineer-

ing application. For instance, if x is a resistance, and the

differentiation of yf(x) leads to negative values of x, these

have no engineering meaning; or, if the differentiation leads

to values of x
} which, substituted in y=f(x), gives imaginary, or

negative values of y, the result also may have no engineering

application. In still other cases, the mathematical result

may give values, which are so far beyond the range of indus-

trially practicable numerical values as to be inapplicable.

For instance :

Example 9. In example (8), to determine the resistance

r, which gives maximum current transmitted over a trans-

mission line, the equation (15),
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immediately differentiated, gives as condition of the extremes:

*
= 2fr+r )

dr
2!(r+ro)

2
+2o

2
}v>+r )

2 +tf
'

hence, either r+r =0; (22)

or, (r +ro)
2 +o2 =oo (23)

the latter equation gives r = x; hence i=0, the minimum value

of current.

The former equation gives

r=~r
, .

. (24)

as tne value of the resistance, which gives maximum current,

and the current would then be, by substituting (24) into (15),

i=- (25)
20

^ '

The solution (24), however, has no engineering meaning,

as the resistance r cannot be negative.

Hence, mathemetically, there exists no maximum value

of i in the range of r which can occur in engineering, that is,

within the range, 0< r< oo.

In such a case, where the extreme falls outside of the range

of numerical values, to which the engineering quantity is

limited, it follows that within the engineering range the quan-

tity continuously increases toward one limit and continuously

decreases toward the other limit, and that therefore the two

limits of the engineering range of the quantity give extremes.

Thus r^=0 gives the maximum, r =00 the minimum of current.

106. Example 10. An alternating-current generator, of

generated e.m.f. e=2500 volts, internal resistance r =0.25

ohms, and synchronous reactance o=10 ohms, is loaded by

a circuit comprising a resistor of constant resistance r=20

ohms, and a reactor of reactance x in series with the resistor

r. What value of reactance x gives maximum output?

If i= current of the alternator, its power output is

p=n-2=20f; (26)
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the total resistance is r+r = 20.25 ohms; the total reactance

is j+ro=10+x ohms, and therefore the current is

(27)

and the power output, by substituting (27) in (26), is

P
2QX25QQ2

(rW) + (x+;ro)
2

20.25
2 + (10-fx)

2<
' '

l j

Simplified, this gives

(29)

hence,

and

z=- = -10ohms; (30)

that is, a negative, or condensive reactance of 10 ohms. The

power output would then be, by substituting (30) into
(28),

If, however, a condensive reactance is excluded, that is,

it is assumed that E >0
7
no mathematical extreme exists in the

range of the variable x, which is permissible, and the extreme

is at the end of the range, 3=0, and gives

=245kw (32)

107. Example n. In a 500-kw. alternator, at voltage

e=2500
;
the friction and windage loss is Pw=6 kw., the iron

loss ^=24 kw., the field excitation loss is P
y
=6 kw., and the

armature resistance r=0.1 ohm, At what load is the efficiency

a maximum?
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The sum of the losses is:

P=P
tt
+P

1 +P/+n^36,000+0:ii
3

. . . (33)

The output is

P =ei=2500i; ....... (34)

hence, the efficiency is

p o * 25QOJ

3()GOO+2500t+0.1i;
3 '

or, simplified,

hence,

and,

and the output, at which the maximum efficiency occurs, by

substituting (36) into (34), is

P^-1500 kw.,

that
is, at three times full load.

Therefore, this value is of no engineering importance, but.

means that at full load and at all practical overloads the

maximum efficiency is not yet reached, but the efficiency is

still rising.

108. Frequently in engineering calculations extremes of

engineering quantities are to be determined, which are func-

tions or two or more independent variables. For instance,

the maximum power is required which can be delivered over a

transmission line into a circuit, in which the resistance as well

as the reactance can be varied independently. In other

words, if

y=Mi>) ...,,.. (37)
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is a function of two independent variables u and
7?, such a

pair of values of u and of v is to be found, which makes y a

maximum, or minimum.

Choosing any value wo, of the independent variable u,

then a value of v can be found, which gives the maximum (or

minimum) value of y, which can be reached for U=UQ. This

is clone by differentiating y=f(uo }v) ;
over v, thus:

dv

From this equation (38), a value,

is derived, which gives the maximum value of y, for the given

value of WQ, and by substituting (39) into (38),

is obtained as the equation, which relates the different extremes

of y, that correspond to the different values of w
,
with UQ.

Herefrom, then, that value of UQ is found which gives the

maximum of the maxima, by differentiation;

Geometrically, y=f(ufl) may be represented by a surface

in space, with the coordinates y } u, v. y =f(uQ,v), then, represents
the curve of intersection of this surface with the plane WQ =

constant, and the differentation gives the maximum point
of this intersection curve. y=/2(w ) then gives the curve

in space, which connects all the maxima of the various inter-

sections with the WQ planes, and the second differentiation

gives the maximum of this maximum curve y=/2(uo), or the

maximum of the maxima (or more correctly, the extreme of

the extremes).

Inversely, it is possible first to differentiate over u, thus,

(42)
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and thereby get

....... (43)

as the value of u, which makes y a maximum for the given

value of V = VQ }
and substituting (43) into (42) ,

y=/4W ;
...... . (44)

is obtained as the equation of the maxima, which differentiated

over VQ, thus,

f45)

gives the maximum of the maxima,

Geometrically, this represents the consideration of the

intersection curves of the surface with the planes v= constant.

The working of this will be plain from the following example ;

109. Example 12. The alternating voltage e= 30,000 is

impressed upon a transmission line of resistance ro=20 ohms

and reactance XQ=50 ohms.

What should be the resistance r and the reactance x of the

receiving circuit to deliver maximum power?

Let i= current delivered into the receiving circuit. The

total resistance is (r+r ); the total reactance is (B+XO); hence,

the current is

i=
,

e -...... (46)

V(r+r )
2
-Kz-f-o)

2

The power output is

P=n2; ....... (47)

hence, substituting (46), gives

(a) For any given value of r, the reactance x
}
which gives

HP
maximum power, is derived by -p-0.

P simplified, gives yi
=

(o;+xo)
2

; hence,

o)=0 and x=~x
]

. . . (49)
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that is, for any chosen resistance r, the power is a maximum,

if the reactance of the receiving circuit is chosen equal to that

of the line, but of opposite sign, that is,
as condensive reactance.

Substituting (49) into (48) gives the maximum power

available for a chosen value of r,
as :

or, simplified,

Hro)
2

,
'<?.

^2=
_ anc|

2/3
= r+ ,

r I

hence,

CM/3 . TQ i tKi\
-r=l r and T=TQ. . , , . (ol)
dr r

and by substituting (51) into (50), the maximum power is,

(6) For any given value of i, the resistance r, which gives

. . . dP
nmaximum power, is given by -r- =U.

P simplified gives,

-

-r- = 1 + r,

ar r-

which' is
J

the value of r, that for any given value of x, gives

maximum power, and this maximum power by substituting

(53) into (48) is,
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which is the maximum power that can be transmitted into a

receiving circuit of reactance x.

The value of x, which makes this maximum power PO the

highest maximum, is given by -r~ =0.

PO simplified gives

and this value is a maximum for (s-f o)=0; that is, for

=-^o (55)

NOTE. If x cannot be negative, that is, if only inductive

reactance is considered, 2=0 gives the maximum power, and

the latter then is

/

PL rnfl.x

the same value as found in problem (7), equation (18).

Substituting (55) and (54) gives again equation (52), thus,

P *-
mal

4r
*

no. Here again, it requires consideration, whether the

solution is practicable within the limitation of engineering

constants.

"With the numerical constants chosen, it would be

-z- =750 amperes,
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and the voltage at the receiving end of the line would be

e' ={Vr2+z2 - 750V202 + 50
2

=40,400 volts;

that is, the voltage at the receiving end would be far higher

than at the generator end, the current excessive, and the efficiency

of transmission only 50 per cent. This extreme case thus is

hardly practicable, and the conclusion would be that by the

use of negative reactance in the receiving circuit, an amount

of power could be delivered, at a sacrifice of efficiency, far

greater than economical transmission would permit.

In the case, where capacity was excluded from the receiv-

ing circuit, the maximum pow
rer was given by equation (56) as

in. Extremes of engineering quantities , y, are usually

determined by differentiating the function,

y=f(x), ....... (57)

and from the equation,

deriving the values or x, which make y an extreme.

Occasionally, however, the equation (58) cannot be solved

for x
}
but is either of higher order in x

f
or a transcendental

equation. In this case, equation (58) may be solved by approx-

imation, or preferably, the function,

-I ........ w
is plotted as a curve, the values of x taken, at which 2=0,
that is, at which the curve intersects the J-axis. For instance :

Example 13. The e.m.f. wave of a three-phase alternator,

as determined by oscillograph, is represented by the equation,

e=36000(sin 0-0.12 sin (30-2.3) -23 sin (59-1,5) +

0.13 sin (79- 6.2)}...... (60)
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This alternator, connected to a long-distance transmission line,

gives the charging current to the line of

i= 13.12 cos (0-0.3)-5.04 cos (30-3.3)-18.76 cos (50-3.6)

+19,59 cos (70- 9.9) .... (61)

(see Chapter III, paragraph 95).

What are the extreme values of this current, and at what

phase angles 6 do they occur?

The phase angle d, at which the current i reaches an extreme

value, is given by the equation

(62)

FIG 57.

Substituting (61) into
(62) gives,

s~U- 13.12 sin (0-0,3) +15.12 sin (35-3.3) +93.8 sin
O/U

(50-3.6) -137.1 sin (79-9.9) =0. . . . (63)

This equation cannot be solved for 6, Therefore z is

plotted as function of 6 by the curve, Fig. 57, and from this

curve the values of 6 taken at which the curve intersects the

zero line, They are:

fl-l; 20; 47 78; 104; ,135; 162.
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For these angles 8, the corresponding values of i are calculated

by equation (61), and are;

{ =+9; _i; +39; _3Q; +30; -42; +4 amperes.

The current thus has during each period 14 maxima, of

which the highest is 42 amperes.

112. In those cases, where the mathematical expression

of the function y=f(x) is not known, and the extreme values

therefore have to be determined graphically, frequently a greater

accuracy can be reached by plotting as a curve the differential

of y=f(x) and picking out the zero values instead of plotting

y=f(x)j and picking out the highest and the lowest points.

If the mathematical expression of y=f(x) is not known, obvi-

ously the equation of the differential curve z= (64) is usually
ax

not known either. Approximately, however, it can fre-

quently be plotted from the numerical values of y=f(x), as

follows:

If 1, 9, ^3 ... are successive, numerical values of r,

and yi, y*, 2/3
... the corresponding numerical values of y,

approximate points of the differential curve z=-r are given
QiX

by the corresponding values:

asordinates:
;

1
;
M...

a:2 -xi
7

x8-j2 J4-X3

113. Example 14, In the problem (1), the maximum permea-

bility point of a sample of iron, of which the (B,
3C curve is given

as Fig. 51; was determined by taking from Fig. 51 corresponding
/n

values of (B and 3C, and plotting //=-, against (B in Fig. 52.
JL

A considerable inaccuracy exists in this method, in locating

the value of (B, at which p is a maximum, due to the flatness

of the curve, Fig. 52.
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The successive pairs of corresponding values of (B and 3C,

as taken from Fig. 51 are given in columns 1 and 2 of Table I.

TABLE I.

In the third column of Table I is given the permeability,

(R

/=-, and in the fourth column the increase of permeability,
uC

per &=1, ^; the last column then gives the value of <B, to

which J/* corresponds.

In Fig. 58, values 4/t are plotted as ordinates, with (B as

abscissas. This curve passes through zero at (B=9.95.

The maximum permeability thus occurs at the approximate

magnetic density (B=9.95 kilolines per sq.cm., and not at (B=

10 2, as was given by the less accurate graphical determination

of Fig. 52, and the maximum permeability is ^=1340.

As seen, the sharpness of the intersection of the differential

curve with the zero line permits a far greater accuracy than

feasible by the method used in instance (1).

114. As illustration of the method of determining extremes,

some further examples are given below:



172 ENGINEERING MATHEMATICS.

Example 15. A storage battery of n=80 cells is to be

connected so as to give maximum power in a constant resist-

ance r=0.1 ohm. Each battery cell has the e.mf. 60=2.1

volts and the internal resistance r =0.02 ohm. How must

the cells be connected?

Assuming the cells are connected with x in parallel, hence

n- m series. The internal resistance of the battery then is
x

n
-TO

==
ohms, and the total resistance of the circuit is ~ro 4- r.

X X" X"

Kilo

11 13

-W

FIG. 58. First Differential Quotient of (B,/i Curve

The e.m.f. acting on the circuit is -e
Q} since -

cells of e.m.f.
x x

tfo are in series. Therefore, the current delivered by the battery

and the power which this current produces in the resistance

r,is,
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This is an extreme, if

is an extreme, hence,

and

that is,
=J =4 cells are connected in multiple, and

n jra* _ .. .

~=\\ =20 cells in series.
x \r

115. Example 16, In an alternating-current transformer the

loss of power is limited to 900 watts by the permissible temper-

ature rise. The internal resistance of the transformer winding

(primary, plus secondary reduced to the primary) is 2 ohms,

and the core loss at 2000 volts impressed, is 400 watts, and

varies with the 1.6th power of the magnetic density and there-

fore of the voltage, At what impressed voltage is the output

of the transformer a maximum?

If e is the impressed e.m.f. and i is the current input, the

power input into the transformer (approximately, at non-

inductive load) isP=ei.

If the output is a maximum, at constant loss, the input P

also is a maximum. The loss of power in the winding is

h2 =2i2 .

The loss of power in the iron at 2000 volts impressed is

400 watts, and at impressed voltage e it therefore is

\2ooo;
x400

'

and the total loss in the transformer, therefore, is
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herefrom, it follows that,

i=J4oO-200(
e

and, substituting, into P-er.

\Te

Simplified, this gives,

M
y-'}*

2000 1<6)

and, differentiating,

de
"

2000 1 '6
~ u

>

and

/ ? V'6

(__j =1.95.

Hence,

^-1.15 and e=2300 volts,

which, substituted, gives

.l
)5-32.52 kw.

116, Example 17. In a 5-kw. alternating-current transformer,

at 1000 volts impressed, the core loss is 60 watts, the $r loss

150 watts. How must the impressed voltage be changed,

to give maximum efficiency, (a) At full load of 5-kw; (6) at

half load?

The core loss may be assumed as varying with the 1.6th

power of the impressed voltage. If e is the impressed voltage,

5000. ^ , ,, 1M . . . 2500. ,

l =- ls ^e current at full load, and i\
=- is the current at

e e

half load, then at 1000 volts impressed, the full-load current is

5000-=5 amperes, and since the i
2
r loss is 150 watts, this gives
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the internal resistance of the transformer as r=6 ohms, and

herefrom the i
2
r loss at impressed voltage e is respectively,

.. 150 XlO6
. .. 37.5 X106

nz- _ anc[ nj
2 = - watts.

Since the core loss is 60 watts at 1000 volts, at the voltage e

it is

The total loss, at full load, thus is

y-
6 +150xlQ6

oy $ '

.and at half load it is

16
37.5 X106

+
7~#~'

Simplified, this gives

vl-6

hence, differentiated,

#'6 =3.125X106 X10001 -6 =3.125X101()8
;

e
3- 6 -0.78125Xl06 Xl000 1 -6 =0.78125Xl010 -8

;

hence, e = 1373 volts for maximum efficiency at full load.

and e=938 volts for maximum efficiency at half load.

117. Example 18. (a) Constant voltage e=1000 is im-

pressed upon a condenser of capacity (7=10 mf., through a

reactor of inductance L=100 mh., and a resistor of resist-

ance r=40 ohms. What is IV maximum value of the charg-

ing current?
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(5) An additional resistor of resistance r' = 210 ohms is

then inserted in series, making the total resistance of the con-

denser charging circuit, r=250 ohms. What is the maximum

value of the charging current?

The equation of the charging current of a condenser, through

a circuit of low resistance, is (" Transient Electric Phenomena

and Oscillations," p. 61):

where

and the equation of the charging current of a condenser, through

a circuit of high resistance, is (" Transient Electric Phenomena

and Oscillations," p, 51),

c
I -^ -&l=~->t

2L _ 2L

where

4L

Substituting the numerical values gives:

(a) i=10.2 -200'
sin

(5) i=M7\

Simplified and differentiated, this gives:

di\

(a) ^=ir= 4^ cos 980^-sin 980^=0;w

hence tan980f=4.9

980^=68.5 =1.20

1.2

^'

(5)
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hence,

1500^ ~-s- =
1.38,

log e
?

= 0.00092 sec.,

and, by substituting these values of t into the equations of the

current, gives the maximum values:

120+ns

(a) i=10e 49 =7.83r-84fl =7.83X0.53 M
amperes;

that
is,

an infinite number of maxima, of gradually decreasing

values: +7.83; -4.15; +.2.20; -1.17 etc.

(6) i=6.667(--
46- s-1 -8

*) =3.16 amperes.

118. Example 19, In an induction generator, the fric-

tion losses are Py=100 kw.; the iron loss is 2000 kw. at the ter-

minal voltage of e=4 kv., and may be assumed as proportional

to the 1.6th power of the voltage; the loss in the resistance

of the conductors is 100 kw. at i= 3000 amperes output, and may
be assumed as proportional to the square of the current, and

the losses resulting from stray fields due to magnetic saturation

are 100 kw. at 6=4 kv., and may in the range considered be

assumed as approximately proportional to the 3.2th power

of the voltage. Under what conditions of operation, regard-

ing output, voltage and current, is the efficiency a maximum?

The losses may be summarized as follows:

Friction loss, P/= 100 kw.
;

/\l-6
Iron loss,

/
e
\3-2

Saturation loss, P5

-100^J ;

hence the total loss is ?L=P/+P+PC +P,

f M 1 ' 6
/ i

'

=100 1+2 j +^
[

Y / \OUUU,
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The output is P=ei; hence, percentage of loss is

r /A 1 * 6 / i \
2 /e

,
P.

1QQ
|

1+2
(4) n3QQQH-

A~p a

The efficiency is a maximum, if the percentage loss 1 is a

minimum. For any value of the voltage e, this is the case

at the current i, given by jr=0:
hence, simplifying and differ-

entiating A,

30002 '

then, substituting i in the expression of 1, gives

\l-6

Hi
and A is an extreme, if the simplified expression,

1 2 1
1___I__1_/>1'2

^ 1> M 43
' 2

is an extreme, at

08
hence, 2 + r

henre, IT I

=T-^
and <?=5.50kv.,

and, by substitution the following values are obtained : A = 0.0323;

efficiency 96.77 per cent; current i=8000 amperes; output

P=44,000kw.

119. In all probability, this output is beyond the capacity

of the generator,' as limited by heating. The foremost limita-

tion probably will be the 9t heating of the conductors; that
is,
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the maximum permissible current will be restricted to, for

instance, ^=5000 amperes.

For any given value of current
i,

the maximum efficiency,

that is, minimum loss, is found by differentiating,

\1.B / / \2 / \3-2l

,l
= ~

over
e, thus:

de~

Simplified, ^ gives

1 f

hence, differentiated, it gives

de *H \3000/ J

T
4>

\l-6

1.2 2.261 '2
Aj L. (]

,11 M'4 T 132
U

J

V4/ 11

Fort =5000, this gives;

(7) =1.065 and e=4.16kv.;
\4/

hence,

1= 0.0338, Efficency 96.62 per cent, Power P=20,800 kw.

Method of Least Squares.

120. An interesting and very important application of the

theory of extremes is given by the method of least squares, which

is used to calculate the most accurate values of the constants

of functions from numerical observations which are more numei-

ous than the constants.

If y=f(x), ......... (1)
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is a function having the constants a, 6, c . . . and the form of

the function (1) is known, for instance,

and the constants a b, c are not known, but the numerical

values of a number of corresponding values of x and y are given,

for instance, by experiment, x\, x%, x^ 2:4 ... and y\, 2/2, #3, 2/4 >

then from these corresponding numerical values xn and y n

the constant? a, 6, c . . , can be calculated, if the numerical

values, that is, the observed points of the curve, are sufficiently

numerous.

If less point* Xi y\, z2 , 2/2
are observed, then the equa-

tion (1) has constants, obviously these constants cannot be

calculated, as not sufficient data are available therefor.

If the number of observed points equals the number of con-

stants, they are just sufficient to calculate the constants. For

instance, in equation (2), if three corresponding values x\, y\,

^2, 2/2; ^3, 2/3 arc observed, by substituting these into equation

(2), three equations are obtained:

which are just sufficient for the calculation of the three constants

a, 6, c.

Threo observations would therefore be sufficient for deter-

mining three constants, if the observations were absolutely

correct. This, however, is not the case, but the observations

always contain errors of observation, that is, unavoidable inac-

curacies, and constants calculated by using only as many
observations as there are constants, are not very accurate.

Thus, in experimental work, alwayb more observations

are made than just necessary for the determination of the

constants, for the purpose of getting a higher accuracy. Thus,

for instance, in astronomy, for the calculation of the orbit of

a comet, less than four observations are
theoretically sufficient,

but if possible hundreds are taken, to get a greater accuracy
in the determination of the constants of the orbit.
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If, then, for the determination of the constants a, b, c of

equation (2), six pairs of corresponding values of x and y were

determined, any three of these pairs would be sufficient to

give a, b, c, as seen above, but using different sets of three

observations, would not give the same values of a, 6, c (as it

should, if the observations were absolutely accurate), but

different values, and none of these values would have as high

an accuracy as can be reached from the experimental data,

since none of the values uses all observations,

HI - If v=M ....... (i)

is a function containing the constants a, b, c . .

,,
which are still

unknown, and x\
} ?/i; 2 , y^ 3,1/3; etc., are corresponding

experimental values, then, if these values were absolutely cor-

rect, and the correct values of the constants a, 6, c . . . chosen,

2/i -/fai) woulrj be true; that
is,

-
2/2
=

0, etc.

. (5)

Due to the errors of observation, this is not the case, but

even if a, b, c . are the correct values,

yi *f(xi\ etc.; (6)

that
is,

a small difference, or error, exists, thus

. . . . (7)
-

3/2=1*2, etc.:
j

If instead of the correct values of the constants; a, b, c . .
,

other values were chosen, different errors #i, d% . . would

obviously result.

From probability calculation it follows, that, if the correct

values of the constants a, b, c . . . are chosen, the sum of the

squares of the errors,

(8)

is less than for any other value of the constants a, b,
c . ,

., that

is, it is a minimum.
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122. The problem of determining
1

the constants c, ft,
c. .

,

thus consists in finding' a set of constants, which makes the

sum of the square of the errors J a minimum; that is,

2-5f)2 =minimum, ..... (9)

is the requirement, which gives the most accurate or most

probable set of values of the constants a, fc,
c . . .

Since by (7), d=f(x}-y, it follows from 9) as the condi-

tion, which gives the most probable value of the constants

fl,6,c.,.;

2-S{/(r)-?/!
2 =mmimum; .... (10)

that
is, the least sum of the squares of the errors gives the most

probable value of the constants a, fo, c . .

To find the values of a, 6, c ,
,
which fulfill equation (10),

the differential quotients of (10) are equated to zero, and give

dz

This gives as many equations as there are constants a, &/ .
,

and therefore just suffices for tueir calculation, and the values

so calculated are the most probable, that is, the most accurate

values.

Where extremely high accuracy is required, as for instance

in astronomy when calculating from observations extending

over a few months only, the orbit of a comet which possibly

lasts thousands of years, the method of least squares must bo

used, and is frequently necessary also in engineering, to get

from a limited number of observations the highest accuracy

of the constants.

123. As instance, the method of least squares may be applied

in separating from the observations of an induction motor,

when running light, the component losses, as friction, hysteresis,

etc.
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In a 440-volt 50-h.p. induction motor, when running light,

that
is, without load, at various voltages, let the terminal

voltage e, the current input i, and the power input p be observed

as given in the first three columns of Table I:

TVBLE I

The power consumed by the motor while running light

consists of: The friction loss, which can be assumed as con-

stant, a; the hysteresis loss, which is proportional to the 1.6th

power of the magnetic flux, and therefore of the voltage, &e
1<c

;

the eddy current losses, which are proportional to the square

of the magnetic flux, and therefore of the voltage, ce
2

;
and the fir

loss in the windings. The total power is,

(12)

From the resistance of the motor windings, r=0.2 ohm,

and the observed values of current i, the i
2r loss is calculated,

and tabulated in the fourth column of Table I, and subtracted

from p, leaving as the total mechanical and magnetic losses the

values of po given in the fifth column of the table, which should

be expressed by the equation:

(13)

This leaves three constants, a, &, c,
to be calculated.

Plotting now in Fig. 59 with values of e as abscissas, the

current i and the power p$ give curves, which show that within

the voltage range of the test, a change occurs in the motor,
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as indicated by the abrupt rise of current and of power beyond

473 volts. This obviously is due to beginning magnetic satura-

tion of the iron structure. Since with beginning saturation

a change of the magnetic distribution must be expected, that

is, an increase of the magnetic stray field and thereby increase

of eddy current losses, it is probable that at this point the con-

100 200 300

X^o

Volt

600

-70-7000

60-6000

50-5000

700

40-4000

30-3000

iO--2000

-1000

FIG. 59. Excitation Power of Induction Motor.

stants in equation (13) change 3
and no set of constants can be

expected to represent the entire range of observation. For

the calculation of the constants in (13), thus only the observa-

tions below the range of magnetic saturation can safely be used,

that is, up to 473 volts.

From equation (13) follows as the error of an individual

observation of e and po:

. (14)
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hence,

thus :

i

1 6 +ce2

-^o
2H minimum, . (15)

Pol-0;

and, if rz- is the number of observations used (n = 6 in this

instance, from e=14S to e473), this gives the following

equations;

. . (17)

Substituting in (17) the numerical values from Table I gives,

a + 11.7H03 +126cl03 = 1550,
}

. . (18)

a+15.1HOH170cl03 =1880
7 j

hence,

and

(19)

(20)

The values of po }
calculated from equation (20), are given

in the sixth column of Table I, and their differences from the

observed values in the last column. As seen, the errors are in

both directions from the calculated values, except for the three

highest voltages, in which the observed values rapidly increase

beyond the calculated, due probably to the appearance of a
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loss which does not exist at lower voltages the eddy currents

caused by the magnetic stray field of saturation.

This rapid divergency of the observed from the calculated

values at high voltages shows that a calculation of the constants,

based on all observations, would have led to wrong values,

and demonstrates the necessity, first, to critically review series

of observations, before using them for deriving constants, so

as to exclude constant errors or unidirectional deviation. It

must be realized that the method of least squares gives the most

probable value, that is, the most accurate results derivable

from a series of observations, only so far as the accidental

errors of observations are concerned, that is, such errors which

follow the general law of probability. The method of least

squares, however, cannot eliminate constant errors, that is,

deviation of the observations which have the tendency to be

in one direction, as caused, for instance, by an instrument reading
too high, or too low, or the appearance of a new phenomenon
in a part of the observation, as an additional loss in above

instance, etc. Against such constant errors only a critical

review and study of the method and the means of observa-

tion can guard, that is, judgment, and not mathematical

formalism.



CHAPTER V.

METHODS OF APPROXIMATION

124. The investigation even of apparently simple engineer-

ing problems frequently leads to expressions which are so

complicated as to make the numerical calculations of a series

of values very cumbersomrie and almost impossible in practical

work. Fortunately in many such cases of engineering prob-

lems, and especially in the field of electrical engineering, the

different quantities which enter into the problem are of very

different magnitude Many apparently complicated expres-

sions can fiequently be greatly simplified, to such an extent as

to permit a quick calculation of numerical values, by neglect-

ing terms which are so small that their omission has no appre-

ciable effect on the accuracy of the result; that is, leaves the

result correct within the limits of accuracy required in engineer-

ing, which usually, depending on the nature of the problem,

is not greater than from 1 per cent to 1 per cent.

Thus, for instance, the voltage consumed by the resistance

of an alternating-current transformer is at full load current

only a small fraction of the supply voltage, and the exciting

current of the transformer is only a small fraction of the full

load current, and, therefore, the voltage consumed by the

exciting current in the resistance of the transformer is only

a small fraction of a small fraction of the supply voltage, hence,

it is negligible in most cases, and the transformer equations are

greatly simplified by omitting it. The power loss in a large

generator or motor is a small fraction of the input or output,

the drop of speed at load hi an induction motor or direct-

current shunt motor is a small fraction of the speed, etc., and

the square of this fraction can in most cases be neglected, and

the expression simplified thereby.

Frequently, therefore, in engineering expressions con-

taining small quantities, the products, squares an'd higher
187
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powers of such quantities may be dropped and the expression

thereby simplified; or, if the quantities are not quite as small

as to permit the neglect of their squares, or where a high

accuracy is required, the first and second powers may be retained

and only the cubes and higher powers dropped.

The most common method of procedure is, to resolve the

expression into an infinite series of successive powers of the

small quantity, and then retain of this series only the first

term, or only the first two or three terms, etc., depending on the

smallness of the quantity and the required accuracy.

125. The forms most frequently used in the reduction of

expressions containing small quantities are multiplication and

division, the binomial series, the exponential and the logarithmic

series, the sine and the cosine series, etc.

Denoting a small quantity by s, and where several occur,

by $1, s>2, 53 ... the following expression may be written:

and, since Si<s2 is small compared with the small quantities

,si and s2 , or, as usually expressed, SiS2 is a small quantity of

higher order (in this case of second order), it may be neglected,

and the expression written:

(1)

This is one of the most useful simplifications: the multiplica-

tion of terms containing small quantities is replaced by the

simple addition of the small quantities.

If the small quantities $1 and 52 are not added (or subtracted)

to 1, but to other finite, that
is, not small quantities a and &,

a and b can be taken out as factors, thus,

where and -r must be small quantities.

As seen, in this case, Si and .93 need not necessarily be abso-

lutely small quantities, but may be quite large, provided that

a and b are still larger in magnitude; that is, Si must be small

compared with a, and s2 small compared with b. For instance,
'
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in astronomical calculations the mass of the earth ^which

absolutely can certainly not be considered a small quantity)

is neglected as small quantity compared with the mass of the

sun. Also in the effect of a lightning stroke on a primary

distribution circuit, the normal line voltage of 2200 may be

neglected as small compared with the voltage impressed by

lightning, etc.

126. Example. In a direct-current shunt motor, the im-

pressed voltage is e = 125 volts; the armatine resistance is

r =0.02 ohm; the field resistance is ri=50 ohms
;
the power

consumed by friction is p/-300 watts, and the power consumed

by iron loss is ^=400 watts. What is the power output of

the motor at iQ
=

50, 100 and 150 amperes input?

The power produced at the armature conductors is the

product of the voltage e generated in the armature conductors,

and the current i through the armature, and the power output

at the motor pulley is,

p=ei-pr pi ...... (3)

The current in the motor field is
;
and the armature current

TI

therefore is,

i-i'o ,
....... (4)

where is a small quantity, compared with / .

TI

The voltage consumed by the armature resistance is m,
and the voltage generated in the motor armature thus is:

(5)

where rtfi is a small quantity compared with e,i.

Substituting herein for i the value (4) gives,

Since the second term of (6) is small compared with <? 0j

and in this second term, the second term is small com-

pared with i
U;

it can be neglected as a small term of higher
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order; that is, as small compared with a small term, and

expression (6) simplified to

e = eo-rQ i(} (7)

Substituting (4) and (7) into (3) givey,

Expression (8) contains a product of two terms with small

quantities, which can be multiplied by equation (1), and thereby

gives,

VU"U ' U"U fj ft \v f

Substituting the numerical values gives,

p=125io-0.02i
2-562.5-300-400

= 125i - 0.02i 2- 1260 approximately ;

thus, for i =50, 100, and 150 amperes; p=4940, 11,040, and

17,040 watts respectively.

127. Expressions containing a small quantity in the denom-

inator are frequently simplified by bringing the small quantity

in the numerator, by division as discussed in Chapter II para-

graph 39, that is, by the series,

1
- =! :F^+.r2:F^-hJ4Ta 5

-f (101
L

'
\ '

which series, if x is a small quantity s, can be approximated

by:

1

T+s
~'



METHODS OF APPROXIMATION.

or, where a greater accuracy is required,

1 .

191

1

(12)

By the same expressions (11) and (12) a small quantity

contained in the numerator may be brought into the denominator

where this is more convenient, thus :

(13)

More generally then, an expression like
,
where s is

small compared with a, may bo simplified by approximation to

the form,

b b b(^ 8\

^r9

-
/ cA-^i 1^/; U4)

u
fl

-

or, where a greater exactness is required, by taking in the second

term,

& &M - -
I \IL I

as a\ a
" (15)

128. Example. What is the current input to an induction

motor, at impressed voltage eo and slip s (given as fraction ot

synchronous speed) if TQ-JXQ is the impedance of the primary

circuit of the motor, and ri-jxi the impedance of the secondary

circuit of the motor at full frequency, and the exciting current

of the motor is neglected; assuming s to be a small quantity;

that is, the motor running at full speed?

Let E bo the e.m.f. generated by the mutual magnetic flux,

that is, the magnetic flux which interlinks with primary and

with secondary circuit, in the primary circuit. Since the fre-

quency of the secondary circuit is the fraction s of the frequency
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of the primary circuit, the generated e.m.f. of the secondary

circuit is sE.

Since x\ is the reactance of the secondary circuit at full

frequency, at the fraction s of full frequency the reactance

of the secondary circuit is sxi, and the impedance of the sec-

ondary circuit at slip s, therefore, is ri-jsxij hence the

secondary current is,

r &

If the exciting current is neglected, the primary current

equal? the secondary current (assuming the secondary of the

same number of turns as the primary, or reduced to the same

number of turns); hence, the current input into the motor is

Z--4-........ (16)
n-]sxi

J

The second term in the denominator is small compared

with the first term, and the expression (16) thus can be

approximated by'

(17)

The voltage E generated in the primary circuit equals the

impressed voltage eQ ,
minus the voltage consumed by the

current 7 .in the primary impedance; r -j> thus is

5-6 -7(r -pa)...... (18)

Substituting (17) into (18) gives

+}^)
..... (19)

In expression (19), the second term on the right-hand side,

which is the impedance drop in the primary circuit, is small

compared with the first term e
0j and in the factor (1+y

of this small term, the small term
j can thus be neglected
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as a small term of higher order, and equation (19) abbreviated

to

From (20) it follows that

and from (13),

(21)

Substituting (21) into (17) gives

r

'"

and from (1),

(22)

If then, /oo^'io+jV is the exciting current, the total

current input into the motor is, approximately,

129. One of the most important expressions used for the

reduction of small terms is the binomial series:

If .r is a small term s
;
this gives the approximation,

........ (25)
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or, using the second term also, it gives

(ls)
n-lns + ~ s

2
(26)

In a more general form, this expression givey

(a ,V.-.(l4)^l?Wc. . . (27)

By the binomial, higher powers of terms containing small

quantities, and, assuming n as a fraction, roots containing

small quantities, can be eliminated: for instance,

s

a

1

( ,)- a-l (1T-n .

v(as)

One of the most common uses of the binomial series is for

the elimination of squares and square roots, and very fre-

quently it can be conveniently applied in mere numerical calcu-

lations; as, for instance,

=40,400;

1 \ 2 / 1 \
9Q02-.O.Q2 1 ___ a-QOflh l-QOn-fi' oU

300/ \ 1507
b

0(l -0.02)2 = 10(1 -0.01)=9.99;
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130. Example i. If r is the resistance; x the reactance of an

alternating-current circuit with impressed voltage e,
the

current is

If the reactance x is small compared with the resistance r,

as is the case in an incandescent lamp circuit, then,

If the resistance is small compared with the reactance, as

is the case in a reactive coil, then,

-
2\x

Example 2. How does the short-circuit current of an

alternator vary with the speed, at constant field excitation?

When an alternator is short circuited, the total voltage

generated in its armature is consumed by the resistance and the

synchronous reactance of the armature..

The voltage generated in the armature at constant field

excitation is proportional to its speed. Therefore, if e is the

voltage generated in the armature at some given speed $
0;

for instance, the rated speed of the machine, the voltago

generated at any other speed S is

-1
"So

'
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O

or. if for convenience, the fraction -5- is denoted bv a, then
oo

S
i

ct=7r and e=oe
,

00

where a is the ratio of the actual speed, to that speed at which

the generated voltage is eo-

If r is the resistance of the alternator armature, XQ the

synchronous reactance at speed So, the synchronous reactance

at speed S is x=axi), and the current at short circuit then is

Usually r and XQ are of such magnitude that r consumes

at full load about 1 per cent or less of the generated voltage,

while the reactance voltage of x is of the magnitude of from

20 to 50 per cent. Thus r is small compared with x
0;
and if

a is not very small, equation (29) can be approximated by

(m

Then if io=20r, the following relations exist;

a= 0.2 0.5 1.0 2.0

z=-X0.9688 0.995 0.99875 0.99969

That is, the short-circuit current of an alternator is practi-

cally constant independent of the speed, and begins to decrease

only at very low speed? .

131. Exponential functions, logarithms, and trigonometric

functions are the ones frequently met in electrical engineering.

The exponential function is defined by the series,

e
j:=lz+|++ (31)
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and, if x is a small quantity, s,
the exponential function, may

be approximated by the equation,

^-lis; (32)

or, by the more general equation,

-=las-; (33)

and, if a greater accuracy is required, the second term may
be included, thus,

^1 8 +^ (34)

and then

(2o2QrS

." 7

The logarithm is defined by log> := I
; hence,

Resolving ^ ;
into a series, by (10), and then integrating,

J- i-E

gives

log* (lx)=
|(iT

J+z^ffH. -)ic

T2 T3 r4 r5

-'-||-T4- (36)

This logarithmic series (36) leads to the approximation,

log, (1 s)=5; (37)

or, including the second term, it given

log (ls)=s-s2
, (38)

and the more general expression is, respectively,
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and, more accurately,

S o2

loge(as)=loga--^ (40)

Since logio N=logio Xlog iV=0.4343 Iog5 N, equations (39)

and (40) may be written thus,

logio (I s)~ 0.4343*; .

logio(as)
=

logio a 0.4343- r

132. The trigonometric functions are represented by the

infinite series ;

/v2 y4 yG

X7
(42)

which when s is a small quantity, may be approximated by

cos s=l and sin s=s; . . . . (43)

or, they may be represented in closer approximation by

(44)

or, by the more general expressions,

cos as =1 and

siii as= as and
fl
3

;

6 /'

(45)

133. Other functions containing small terms may frequently

be approximated by Taylor's series, or its special case,

MacLaurin's series,

MacLaurin's series is written thus:

...,. (46)



METHODS OF APPROXIMATION, 199

where /', /", /"', etc., are respectively the first, second, third,

etc., differential quotient of/; hence,

(47)

/(aa)=/(0)+os/'(0).

Taylor's series is written thus,

f(b +x) =/(&) +xf(b]
+|/"(&)

+/"'(

and leads to the approximations :

. (48)

Many of the previously discussed approximations can be

considered as special cases of (47) and (49).

134. As seen in the preceding, convenient equations for the

approximation of expressions containing small terms are

derived from various infinite series, which are summarized

below ;

.t
2 x4 x6

=

E
+n + '"

;

^3 .r
5

,r
7

f(x) =/(0) +af(0) +-/"(0) +fr/'"(0) +. . .
;

(50)
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The first approximations, derived by neglecting all higher

terras but the first power of the small quantity x=s in these

series, arc :

r 1
L~2j

-

2'

[4

- (51)

and, in addition hereto is to be remembered the multiplication

rule,

(I$i)(ls3)-l*i2;

135. The accuracy of the approximation can be estimated

by calculating the next, term beyond that which is used.

This term is given in brackets in the above equations (50)

and (51).

Thus, when calculating a series of numerical values by

approximation, for the one value, for which, as seen by the

nature of the problem, the approximation is least close, the

next term is calculated, and if this is less than the permissible

limits of accuracy, the approximation is satisfactory.

For instance, in Example 2 of paragraph 130, the approxi-
mate value of the short-circuit current was found in (30), as

. I

,
1

*
U-2
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The next term in the parenthesis of equation (30), by the

71(71!)
binomial, would have been +

5
s
2

; substituting n = -\]

I r \ 2 3 / r Y
s =

)
. the next becomes +H . The smaller the a. the

\a,ro/ 8 \axo/
'

less exact is the approximation.

The smallest value of
a, considered in paragraph 130, was

a-0,2. For i 20r, this gives +'( ) =0.00146, as the
o \axQj

value of the first neglected term, and in the accuracy of the

result this is of the magnitude of
-
XO.OOU6, out of - X 0.9688,

#o o

the value given in paragraph 130; that is, the approximation

gives the result correctly within AQ^A -0.0015 or within one-

sixth of one per cent, which is sufficiently close for all engineer-

ing purposes, and with larger a the values are still closer

approximations,

136. It is interesting to note the different expressions,

which are approximated by (1+s) and by (1-s). Some of

them are given in the following;

__
1-hs'

1-1
n

-
nj
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VI -2s;
1

VI -His;

1

Vl^s'

jns

l-2

T+ns'

I l+ms J l-ffls
n\

j j-
T

r-;

etc. etc.

2-t-;

1+log.fl+a);

etc.

1-fsins;

1+nsin-;

1-log.n+s);

etc.

1-sins;

-;
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1-f-sinns;
n

1 sinns;

COB V2s;

etc.

cosv-^;

etc.

137. As an example may be considered the reduction to its

simplest form, of the expression:

F=-

then,

?!! Si

,.-1+2-;

cossrr
a \ a

2
. i

o+2i-a 1+2- ;

OoAl/2
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hence,

138. As further example may be considered the equations

of an alternating-current electric circuit, containing distributed

resistance, inductance
; capacity, and shunted conductance, for

instance, a long-distance transmission line or an underground

high-potential cable.

Equations of the Transmission Line.

Let I be the distance along the line, from some starting

point; E, the voltage; I, the current at point I, expressed as

vector quantities or general numbers; Z -=r -/i ;
the line

impedance per unit length (for instance, per mile); FO=</O $o
= line admittance, shunted, per unit length; then, r is the

ohmie effective resistance; .TO, the self-inductive reactance;

60, the condensive susceptance, that is, wattless charging

current divided by volts, and <?o= energy component of admit-

tance, that is, energy component of charging current, divided

by volts, per unit length, as, per mile.

Considering a line element dl, the voltage, dE, consumed

by the impedance is ZQIdl}
and the current, dl, consumed by

the admittance is F M; hence, the following relations may be

written:

(1)

(2)
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Differentiating (1), and substituting (2) therein gives

and from (1) it follows that,

,

1=7- -F*

/o w

(3)

l4)

Equation (3) is integrated by

E = At

and (5) substituted in (3) gives

JJ=

hence, from (5) and (4), it follows

Next assume

I -I?, the entire length of line;

Z^ZQ, the total line impedance;

and Y= kYo, the total line admittance;

then, substituting (9) into (7) and (8), the following expressions

are obtained ;

as the voltage and current at the generator end of the line,

139. If now $o and /o respectively are the current and

voltage at the step-down end of the line, for Z=0, by sub-

stituting Z=0 into (7) and (8),
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Substituting in (10) for the exponential function, the series,

== ZY ZYVZY 7?T-_ ___

and arranging by (li+A2 ) and (Ai-* AZ), and substituting

herefor the expressions (11), gives

L ZY

(13)

ZY

When 2 = -Zo, that is, for J?o and /o at the generator side, and

E\ and /i at the step-down side of the line, the sign of the

second term of equation (13) merely reverses.

140. From the foregoing, it follows that, if Z is the total

impedance; Y, the total shunted admittance of a transmission

line, *J?o and /o, the voltage and current at one end; E\ and Ji,

the voltage and current at the other end of the transmission

line; then,

where the plus sign applies if E
Q)

7 is the step-down end,

the minus sign, if E
,
7 is the step-up end of the transmission

line.

In practically all cases, the quadratic term can be neglected,

and the equations simplified, thus,

ZY]
|

27

and the error made hereby is of the magnitude of less than
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Except in the case of very long lines, the second term of

Uie second term can also usually be neglected ;
which gi

,
. . . . (16)

Zlf

and the error made hereby is of the magnitude of less than
o

of the line impedance voltage and line charging current.

141. Example. Assume 200 miles of 60-cycle line, on non-

inductive load of u
=
100,000 volts; and 'io

= 100 amperes.

The line constants, as taken from tables are =104 140/ ohms

and F=-0.0013/ ohms; hence,

ZY=- (0.182 +0.136?);

fli
=
100000(1

- 0.091 - 0.068$ + 100 (104
- 104 j)

= 101400- 20800
],

in volts;

1 1
=

100(1
- 0.091 - 0.068;)

-
0.0013/+ 100000

=91-136.8], in amperes.

_ . zy 0.174 XO.QQ13 0.226 nnQQThe error is -yr- =7 =-0,038,oob
Neglecting the second term of #i ; 2/0=17,400, the error is

0,038X17400-660 volts =0.6 per cent.

Neglecting the second term of /i, yEQ =130, the error is

0.038 X 130- 5 amperes
= 3 per cent.

"

Although the charging current of the line is 130 per cent

of output current, the error in the current is only 3 per cent.

Using the equations (15), which are nearly as simple, brings

z2?/
2

0.2262

the error down to
-^7-= ^j-= 0.0021

;
or less than one-quarter

per cent.

Hence, only in extreme cases the equations (14) need to be

zV4

used. Their error would be less than ^=3.6X10~
6

,
or one

three-thousandth per cent.
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The accuracy of the preceding approximation can be esti-

mated by considering the physical meaning of Z and Y: Z
is the line impedance; hence Zj the impedance voltage, and

zi

u-p, the impedance voltage of the line, as fraction of total

voltage; 7 is the shunted admittance; hence YE the charging

YE
current, and r= r-, the charging current of the line, as fraction

of total current.

Multiplying gives uv=ZY'}
that is, the constant ZY is the

product of impedance voltage and charging current, expressed

as fractions of full voltage and full current, respectively. In

any economically feasible power transmission, irrespective of

its length, both of these fractions, and especially the first,

must be relatively small, and their product therefore is a small

quantity, and its higher powers negligible.

In any economically feasible constant potential transmission

line the preceding approximations are therefore permissible.



CHAPTER VI

EMPIRICAL CURVES.

A. General.

142. The results of observation or tests usually are plotted

in a curve. Such curves, for instance, are given by the core

loss of an electric generator, as function of the voltage; or,

the current in a circuit, as function of the time, etc. When

plotting from numerical observations, the curves are empirical,

and the first and most important problem which has to be

solved to make such curves useful is to find equations for the

same, that is, find a function, y=f(x\ which represents the

curve. As long as the equation of the curve is not known its

utility is very limited. While numerical values can be taken

from the plotted curve, no general conclusions can be derived

from it, no general investigations based on it regarding the

conditions of efficiency, output, etc. An illustration hereof is

afforded by the comparison of the electric and the magnetic

circuit. In the electric circuit, the relation between e.m.f. and
a

current is given by Ohm's law, i=-, and calculations are uni-

versally and easily made. In the magnetic circuit, however,

the term corresponding to the resistance, the reluctance, is not

a constant, and the relation between m.m.f. and magnetic flux

cannot be expressed by a general law, but only by an empirical

curve, the magnetic characteristic, and as the result, calcula-

tions of magnetic circuits cannot be made as conveniently and

as general in nature as calculations of electric circuits.

If by observation or test a number of corresponding values

of the independent variable x and the dependent variable y are

determined, the problem is to find an equation, t/=/(z), which

represents these corresponding values: x\, x^ fy ... xn,
and

yi, 2/2, #3 Vn, approximately, that is, within the errors of

observation.

209
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The mathematical expression which represents an empirical

curve may be a rational equation or an empirical equation.

It is a rational equation if it can be derived theoretically as a

conclusion from some general law of nature, or as an approxima-

tion thereof, but is an empirical equation if no theoretical

reason can be seen for the particular form of the equation.

For instance, when representing the dying out of an electrical

current in an inductive circuit by an exponential function of

time, we have a rational equation: the induced voltage, and

therefore, by Ohm's law, the current, varies proportionally to the

rate of change of the current, that is, its differential quotient,

and a? the exponential function has the characteristic of being

proportional to its differential quotient, the exponential function

thus rationally represents the dying out of the current in an

inductive circuit. On the other hand, the relation between the

loss by magnetic hysteresis and the magnetic density : W= yj(B
1>6

,

is an empirical equation since no reason can be seen for this

law of the 1.6th power, except that it agrees with the observa-

tions.

A rational equation, as a deduction from a general law of

nature, applies universally, within the range of the observa-

tions as well as beyond it, while an empirical equation can with

certainty be relied upon only within the range of observation

from which it is derived, and extrapolation beyond this range

becomes increasingly uncertain. A rational equation there-

fore is far preferable to an empirical one. As regards the

accuracy of representing the observations, no material difference

exists between a rational and an empirical equation. An

empirical equation frequently represents the observations with

great accuracy, while inversely a rational equation usually

does not rigidly represent the observations, for the reason that

in nature the conditions on which the rational law is based are

rarely perfectly fulfilled, For instance, the representation of a

decaying current by an exponential function is based on the

assumption that the resistance and the inductance of the circuit

are constant, and capacity absent, and none of these conditions

can ever be perfectly satisfied, and thus a deviation occurs from

the theoretical condition, by what is called
"
secondary effects."

143. To derive an equation, which represents an empirical

curve, careful consideration should first be given to the physical
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nature of the phenomenon which is to be expressed, since

thereby the number of expressions which may be tried on the

empirical curve is often greatly reduced. Much assistance is

usually given by considering the zero points of the curve and

the points at infinity. For instance, if the observations repre-

sent the core loss of a transformer or electric generator, the

curve must go through the origin, that is, ?/=0 for x=Q
}
and

the mathematical expression of the curve y=f(x) can contain

no constant term. Furthermore, in this case, with increasing #,

y must continuously increase, so that for x= GO, y= oo. Again,

if the observations represent the dying out of a current as

function of the time, it is obvious that for a; =00, i/=0. In

representing the power consumed by a motor when running

without load, as function of the voltage, for x=Q
} y cannot be

=0, but must equal the mechanical friction, and an expression

like y= Ax? cannot represent the observations, but the equation

must contain a constant term.

Thus, first, from the nature of the phenomenon, which is

represented by the empirical curve, it is determined

(a) Whether the curve is periodic or non-periodic.

(b) Whether the equation contains constant terms, that is,

for =0, t/7^0, and inversely, or whether the curve passes

through the origin; that is, j/=0 for #=0, or whether it is

hyperbolic; that is, y= oo for 2=0, or JC-QO for y-0.

(c) What values the expression reaches for oo. That is,

whether for x=oo, y=, or y=0, and inversely.

(d) Whether the curve continuously increases or decreases, or

reaches maxima and minima

(e) Whether the law of the curve may change within the

range of the observations, by some phenomenon appearing in

some observations which does not occur in the other. Thus,

for instance, in observations in which the magnetic density

enters, as core, logs, excitation curve, etc., frequently the curve

law changes with the beginning of magnetic saturation, and in

this case only the data below magnetic saturation would be used

for deriving- the theoretical equations, and the effect of magnetic

saturation treated as secondary phenomenon. Or, for instance,

when studying the excitation current of an induction motor,

that is,
the current consumed when running light, at low

voltage the current may increase again with decreasing voltage,
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instead of decreasing, as result of the friction load, when the

voltage is so low that the mechanical friction constitutes an

appreciable part of the motor output. Thus, empirical curves

can be represented by a single equation only when the physical

conditions remain constant within the range of the observations.

From the shape of the curve then frequently, with some

experience, a guess can be made on the probable form of the

equation which may express it. In this connection, therefore,

it is of the greatest assistance to be familiar with the shapes of

the more common forms of curves, by plotting and studying

various forms of equations y=f(x).

By changing the scale in which observations are plotted

the apparent shape of the curve may be modified, and it is

therefore desirable in plotting to use such a scale that the

average slope of the curve is about 45 deg. A much greater or

much lesser slope should be avoided, since it does not show the

character of the curve as well.

B. Non-Periodic Curves.

144. The most common non-periodic curves are the potential

series, the parabolic and hyperbolic curves, and the exponential

and logarithmic curves.

THE POTENTIAL SERIES.

Theoretically, any set of observations can be represented

exactly by a potential series of any one of the following forms :

.

-

. . . . (1)

o++++...; ...... (3)

d\ &2 &3

if a sufficiently large number of terms are chosen,

For instance, if n corresponding numerical values of x and y
are given, x

i} y\] x2 , y^; ... xn , yn > they can be represented
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by the series (1), when choosing as many terms as required to

give n constants a:

By substituting the corresponding values xi, y\] xz , y2 ,
. .

into equation (5), there are obtained n equations, which de-

termine the n constants a
, ai, 02, . . . aB-i.

Usually, however, such representation is irrational, and

therefore meaningless and useless.

TABLE I.

Let, for instance, the first column of Table I represent the

A

voltage, TnjpE;
in- hundreds of volts, and the second column

the core loss, p^y, in kilowatts, of an 125-volt 100-h.p. direct-

current motor. Since seven sets of observations are given,

they can be represented by a potential series with seven con-

stants, thus,

.... (6)

and by substituting the observations in (6), and calculating the

constants a from the seven equations derived in this manner,

there is obtained as empirical expression of the core loss of

the motor the equation,

y--0.5+2a;4-2.5^-1.5a?+Ux*-2
5+A . (7)

This expression (7), however, while exactly representing

the seven observations, has no physical meaning, as easily

seen by plotting the individual terms. In Fig. 60, V appears



214 ENGINEERING MATHEMATICS.

as the resultant of a number of large positive and negative

terms. Furthermore, if one of the observations is omitted,

and the potential series calculated from the remaining six

values, a series reaching up to x5 would be the result, thus,

.... (8)

__0,2 (U
| 0.6

-0.5

1.3 [ 14

FIG. 60. Terms of Empirical Expression of Excitation Power.

but the constants a in (8) would have entirely different numer-

ical values from those in (7), thus showing that the equation

(7) has no rational meaning.

145- The potential series (1) to (4) thus can be used to

represent an empirical curve only under the following condi-

tions:

1. If the successive coefficients ao, % 02, . . . decrease in

value so rapidly that within the range of observation the

higher terms become rapidly smaller and appear as mere

secondary terms.
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2. If the successive coefficients a follow a definite law,

indicating a convergent series which represents some other

function, as an exponential, trigonometric, etc.

3. If all the coefficients, a, are very small, with the exception

of a few of them, and only the latter ones thus need to be con-

sidered.

TABLE II.

For instance, let the numbers in column 1 of Table II

represent the speed j of a fan motor, as fraction of the rated

speed, and those in column 2 represent the torque y, that is,

the turning moment of the motor, These values can be

represented by the equation,

In this case, only the constant term and the terms with

x2 and x3 have appreciable values, and the remaining terms

probably are merely the result of errors of observations, that is,

the approximate equation is of the form,

Using the values of the coefficients from (9), gives

(10)

(11)

The numerical values calculated from (11) are given in column

3 of Table II as y', and the difference between them and the

observations of column 2 are given in column 4, as y\,
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The values of column 4 can now be represented by the same

form of equation, namely,

(12)

in which the constants \ 62 , 63 are calculated by the method

of least squares, as described in paragraph 120 of Chapter IV,

and give

2/i =0.031 -0.093i
2
-f0.07f>r

3
(13)

Equation (13) added to (11) gives the final approximate

equation of the torque, as,

i/o=0.53H-2.407,T
2 ~0.224i3

. . . . (14)

The equation (14) probably is the approximation of a

rational equation, since the first term, 0.531, represents the

bearing friction; the second term, 2.407#2 (which is the largest),

represents the work done by the fan in moving the air, a

resistance proportional to the square of the speed, and the

third term approximates the decrease of the air resistance due

to the churning motion of the air created by the fan.

In general, the potential series is of limited usefulness; it

rarely has a rational meaning and is mainly used, where the

curve approximately follows a simple law, as a straight line,

to represent by small terms the deviation from this simple law,

that is, the secondary effects, etc, Its use, thus, is often

temporary, giving an empirical approximation pending the

derivation of a more rational law.

The Parabolic and the Hyperbolic Curves.

146. One of the most useful classes of curves in engineering

are those represented by the equation,

y=a^' f"\f\\u '
l
i0/

or, the more general equation,

-&-a(i-c)* (16)

Equation (16) differs from (15) only by the constant terms &

and c; that is,
it gives a different location to the coordinate
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center, but the curve shape is the same, so that in discussing

the general shapes, only equation (15) need be considered,

If n is positive, the curves y=ax
n

are parabolic curves,

passing through the origin and increasing with increasing x.

Itn>l,y increases with increasing rapidity, \tn<l,y increases

with decreasing rapidity.

If the exponent is negative, the curves y=ax~
n= are

x

hyperbolic curves, starting from 2/=oo for x=0, and decreasing

to 2/=0 for x= oo.

ft -1 gives the straight line through the origin, rc=0 and

ft=00 give, respectively, straight horizontal and vertical lines.

Figs. 61 to 71 give various curve shapes, corresponding to

different values of n.

Parabolic Curves,

Fig. 61. n=2; y=x
2

i
the common parabola.

Fig. 62. n= 4
; y

= x*
;

the biquadratic parabola.

Fig, 63, w8; y=x*.

Fig. 64. n= }; y= V^; again the common parabola.

Fig. 65. n= J; y=* $x\ the biquadratic parabola.

Fig. 66. n=4; y=<^

Hyperbolic Curves.

Fig. 67. n= -1; 2/=-; the equilateral hyperbola.

Fig. 68. n=-2; y-?

Fig. 69. n=-4; y-^.

Fig. 70. n
? ; ^.

Fig. 71. n
; y--.
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FIG, 64 Parabolic Curve. j/=v7.

1,0-

0,4 06 1,0 Iff 14 18 18 2.0

FIG. 65 Parabolic Curve.
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-to-

0:6-

0-2-

0,2 | 0,4 I 0,6 I 0,8 I 1,0 I l|8 I

1,4
I 1.6 I ..1.8

FIG. 66. Parabolic Curve.

ao-

08 1{6 I 2,0 3,2 I

3.6

FIG. 67. Hyperbolic Curve (Equilateral Hyperbola), ?/=-,
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**

ta-

0:8"

0:4-

0-4 0,8 1.2 1.6 2.0 2.4 2.8

G. 68. Hyperbolic Curve. y=-$.

4.0 4.4

2.0--

M-

0.4 0.8 1.2 1.6 2.0 '2.4 2.8 ,4,0 U

FIG. 69. Hyperbolic Curve, y--{
,
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0,4 08 12 16 20 2,4 38 32 3.6 40 4,

FIG. 70, Hyperbolic Curve, y= -

I I Qtf I 0,8 I 1,2 I 1, | 2|0 ( 2) |
2

T
8

[ 8J8 I 3J6 I 40 A,

FIG. 71. Hyperbolic Curve, y .
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In Fig. 72, sixteen different parabolic and hyperbolic curves

are drawn together on the same sheet, for the following values;

n=l, 2, 4, 8,
oo

; }, J, }, 0; -1
7 -2, -4, -8; -J, -J, -|.

147. Parabolic arid hyperbolic curves may easily be recog-

nized by the fact that ifx is changed by a constant factor, y also

changes by a constant factor.

Thus, in the curve y=x
2

> doubling the x increases the y

fourfold; in the curve y-x
1 ' 5

*, doubling the x increases the y

threefold, etc.; that
is,

if in

-=
constant, for constant q, , . , (17)

the curve is a parabolic or hyperbolic curve, y=ax
n

,
and

If q is nearly 1, that is,
the x is changed onjy by a small

value, substituting j-l+s, where s is a small quantity,, from

equation (18),

hence,

ar)-7w; ..... (19)

that is, changing x by a small percentage sx, y changes by a pro-

portional small percentage nsy.

Thus/ parabolic and hyperbolic curves can be recognized by

a small percentage change of x, giving a proportional small

percentage change of yf
and the proportionality factor is the

exponent %; or, they can be recognized by doubling x and

seeing whether y hereby changes by a constant factor.

As illustration are shown in Fig. 73 the parabolic curves,

which, for a doubling of
ar,

increase y: 2, 3, 4, 5, 6, and 8 fold.

Unfortunately, this convenient way of recognizing parabolic

and hyperbolic curves applies only if the curve passes through

the origin, that is, has no constant term. If constant terms

exist, as in equation (16), not x and y, but (x-c) and (y-b)

follow the law of proportionate increases, and the recognition
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becomes more difficult; that
is, various values of c and of

are to be tried to find one which gives the proportionality.

M W 0.6 0.8 1,0 1.

FIG. 72. Parabolic and Hyperbolic Curves. y=x*,

148. Taking the logarithm of equation (15) gives

log i/
=
log a +7i log #; , , ,

1.4 18

(20)
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that
is,

a straight line ; hence, a parabolic or hyperbolic curve can

be recognized by plotting the logarithm of y against the loga-

rithm of x. If this gives a straight line, the curve is parabolic

or hyperbolic, and the slope of the logarithmic curve, tan 0=n,
its the exponent.

0.2 (U 0.6 0.8 1.0 1,2

FIG. 73 Parabolic Curves, y*z

U 1,6

This again applies only if the curve contain no constant

twin If constant lenns exist, the logarithmic line is curved

Therefore, by trying different constants c and 5
;
the curvature

of the logarithmic line changes, and by interpolation such

constants can be found, which make the logarithmic line straight,

and in this way, the constants c and b may be evaluated. If

only one constant exist, that is, only b or only c, the process is

relatively simple, but it becomes rather complicated with both
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constants. This fact makes it all the more desirable to get

from the physical nature of the problem some idea on the

existence and the value of the constant terms.

Exponential and Logarithmic Curves.

149. A function, which is very frequently met in electrical

engineering, and in engineering and physics in general, is the

exponential function,

y=at
nx

, (21)

which may be written in the more general form,

(22)

Usually, it appears with negative exponent, that
is,

in the

form,

y=ar** (23)

Fig 74 shows the curve given by the exponential function

(23)fora=l; wl;thatis,

(24)

as seen, with increasing positive x, y decreases to at x= + oo,

and with increasing negative x, y increases to oo at x= - co.

The curve, y=
+

*, has the same shape, except that the

positive and the negative side (right and left) are
interchanged.

Inverted these equations (21) to (24) may also be written

thus,

,tV
(25)

that is, as logarithmic curves.
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150. The characteristic of the exponential function (21) is,

that an increase ofx by a constant term increases (or, in (23)

and (24), decreases) y ly a constant factor.

Thus, if an empirical curve, y=f(z), has such characteristic

that

=
constant, for constant q, , , , (26)

A*)

0.6

2,0-

0,5}

-2.0 -1.6 -1.2 -0.8 -0,4 0.4 0.8

FIG. 74. Exponential Function.
j/

1.6 2.0

tho curve is an exponential function; y=as
nx

}
and the following

equation may be written:

(27)

Hereby the exponential function can easily be recognized,

and distinguished from the parabolic curve; in the former a

constant term, in -the latter a constant factor of x causes a

change of y by a constant factor.

As result hereof, the exponential curve with negative

exponent vanishes, that is, becomes negligibly small, with far

greater rapidity than the hyperbolic curve, and the exponential
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function with positive exponent reaches practically infinite

values far more rapidly than the parabolic curve 1

. This is

illustrated in Fig. 75, in which are shown superimposed

the exponential curve, y=~ x
,
and the hyperbolic curve,

9 4

2/= TTFT? w^k c incides with, the exponential curve

(JJ+1.55J"
1

at 3=0 and at x-1.

Taking the logarithm of equation (21) gives log j^ log a +

T&log Sj
that is, logy is a linear function of x, and plotting

log y against x gives a straight line. This is characteristic of

-0:8

\\

0:4-

0.4 0,8 12 1,6 2.0 2.4 2.8 3,2 3.6 4.0

FIG 75 Hyperbolic and Exponential Curved Comparison,

the exponential functions, and a convenient method of recog-

nizing them.

However, both of these characteristics apply onlv if x and y
contain no constant terms. With a single exponential function,

only the constant term of y needs consideration, as the constant

term of x may be eliminated. Equation (22) may be written

thus:

~4ffM
, (28)

where A~arc
is a constant.

An exponential function which contains a constant term b

would not give a straight line when plotting log y against x,
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but would give a curve. In this case then log (y-~V) would be

plotted against x for various values of 6, and by interpolation

that value of b found which makes the logarithmic curve a

straight line,

151. While the exponential function, when appearing singly,

is easily recognized, this becomes more difficult with com-

FIG. 76. Exponential Functions,

binations of two exponential functions of different coefficients

in th(^ exponent, thus,

..... (29)

since for the various values of a*, a
2j ci, c

2; (luitc a number of

various forms of the function appear.

As such a combination of two exponential functions fre-

quently appears in engineering, some of the characteristic forms

are plotted in Fign. 70 to 78,
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FIG. 77. Exponential Functions.

Fig. 76 gives the following combinations of e~ x and

(1) y= e
-* + Q.5 e

-*x.

(2) y=e-*4-0.2fi-2*;

(3) 2/=e^;

(4) ye~*-0.2e-2
*;

(5) y aBe-_0.5e-2
*;

(6) y^e-^^-O-Sfi-
2
*;

(7) y= -*~ -**.

(8) y=e-^1.5s-3'.
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FIG. 78. Hyperbolic Functions.

Fig. 77 gives the following combination of e~ x and e~Wx ;

(1) y-e-a+O.Sr
10

*;

(2) J-r;

(3) ?/
- -^-0,lr10a:

;

(4) i,/
e-*-0.5e- 10

*;

(5) y-r^-s-
1

^;

(6) y-e-*-1.5r
10

*.

Fig,
78 gives the hyperbolic functions as combinations of

+a"and r*thus,

2/=sinh aj-K 6
"
1"*- 6
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C. Evaluation of Empirical Curves,

152. In attempting to solve the problem of finding a mathe-

matical equation, y
ss
f(x) )

for a series of observations or tests,

the corresponding values of x and y are first tabulated and

plotted as a curve.

From the nature of the physical problem, which is repre-

sented by the numerical values, there are derived as many
data as possible concerning the nature of the curve and of the

function which represents it, especially at the zero values and

the values at infinity. Frequently hereby the existence or

absence of constant terms in the equation is indicated.

The log x and log y are tabulated and curves plotted between

Xj y, log ,r, log y, and seen, whether some of these curves is a

straight line and thereby indicates the exponential function, or

the parabolic or hyperbolic function.

If cross-section paper is available, having both coordinates

divided in logarithmic scale, and also cross-section paper having

one coordinate divided in logarithmic, the other in common

scale, the tabulation of log x and log y can be saved and x

and y directly plotted on these two forms of logarithmic cross-

section paper.

If neither of the four curves: x, y] x, log y; log x, y] log x}

log?/ is a straight line, and from the physical condition the

absence of a constant term is assured, the function is neither

an exponential nor a parabolic or hyperbolic. If a constant

term is probable or possible, curves are plotted between
.r,

yb, logz, log (yb) for various values of &, and if hereby

one of the curves straightens out, then, by interpolation,

that value of b is found, which makes one of the curves a straight

line, and thereby gives the curve law. In the same manner,
if a constant term is suspected in the x, the value (x-c) is

used and curves plotted for various values of c. Frequently the

existence and the character of a constant term is indicated by
the shape of the curve; for instance, if one of the curves plotted

between x, y} log x} log y approaches straightness for high, or for

low values of the abscissas, but curves considerably at the

other end, a constant term may be suspected, which becomes

less appreciable at one end of the range. For instance, the

effect of the constant c in (x-c) decreases with increase of x.
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Sometimes one of the curves may be a straight line at one

end, but curve at the other end This may indicate the presence

of a term, which vanishes for a part of the observations. In

this case only the observations of the range which gives a

straight line are used for deriving the curve law, the curve

calculated therefrom, and then the difference between the

calculated curve and the observations further investigated.

Such a deviation of the curve from a straight Ibe may also

indicate a change of the curve law, by the appearance of

secondary phenomena, as magnetic saturation, and in this case,

an equation may exist only for that part' of the curve where the

secondary phenomena are not yet appreciable.

If neither the exponential functions nor the parabolic and

hyperbolic curves satisfactorily represent the observations,

further trials may be made by calculating and tabulating
-

II T W
and -j and plotting curves between x, y, -, -. Also expressionsx y x

2
,
and (--a)

2
+%--c)

2
, etc., may be studied.

Theoretical reasoning baaed on the nature of the phenomenon

represented by the numerical data frequently gives an indi-

cation of the form of the equation, which is to be expected,

and inversely, after a mathematical equation has been derived

a trial may bo made to relate the equation to known laws and

thereby reduce it to a rational equation.

In general, the resolution of empirical data into a mathe-

matical expression largely depends on trial, directed by judg-

ment based on the shape of the curve and on a knowledge of

the curve shapes of various functions, and only general rules

can thus be given.

A number of examples may illustrate the general methods of

reduction of empirical data into mathematical functions.

153. Example 1. In a 118-volt tungsten filament incan-

descent lamp, corresponding values of the terminal voltage e

and the current i are observed, that is, the so-called
"
volt-

ampere characteristic
"

is taken, and therefrom an equation for

the volt-ampere characteristic is to be found,

The corresponding values of 6 and i are tabulated in the

first two columns of Table III and plotted as curve I in Fig. 79.

In the third and fourth column of Table III are given log e
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and logi. In Fig, 79 then are plotted e, log^;
as curve II:

log e, i,'as curve III; log <?, log i
}
as curve IV.

As seen from Fig. 79, curve IV is a straight line, that is,

log i = A + n log e; or, i= aen
,

which is a parabolic curve

0.3 (W 0.6 0.8 10 1,8 1,* 1.6 1.8 2:0 8.2
2.4=Zo00

"100

""

120 ItjO lE"

X

W

i

9L5

ft!4

<f.3

9.2

9.1

0.45 S.&

0.40 E.S

0.35 8.7

0.30 is

0.25 8,5

OJO 8.4

0.15 8

0.10 8.2

0.05 8.L

FIG. 79. Investigation of Yolt-ampere Characteristic of Tungsten Lamp
Filament,

The constants a and n may now be calculated from the

numerical data of Table III by the method of least squares,

as discussed in Chapter IV, paragraph 120. While this method

gives the most accurate results, it is so laborious as to be seldom
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used in engineering; generally, values of the constants a

and n
} sufficiently accurate for most practical purposes, are

derived by the following method:

TABLE III.

VOLT-AMPERE CHARACTERISTIC OF 118-VOLT TUNGSTEN LAMP,

loge log i 8 211 +06 log e

2

4

8

16

25

50

64

100

125

150

180

200

218

0.0245

037

0568

0-0855

1125

1295

0-1715

0-200

2605

2965

3295

0-8635

3865

407

301

0-602

0-903

1 204

1-398

1 505

1 699

L806

2-000

2 097

2-176

2 255

2-301

2-388

3.568

-754

8 932

9-051

.112

.234

9.801

9-416

472

9 518

9-561

9-587

'5 610

5 572

8-753

I 933

9 050

9 114

5 295

9-411

9-469

5 518

9-564

5 592

614

-0.003

-0 004

+0-001

-o.ooi

+ 0-001

-0 002

+0 004

+0-006

+ 005

+ 003

-0 003

-0 005

-0-004

^7= 7-612

S'7- 14-978

3-040

6.465

avg. Q.003 =0-7 per ceat

A* 7 361

4-425 _

214- 22 585

0-6X22 585

4.425

0.6011^0-6

g-505

13 551

^ = 8,505-13.551 = 4 954

4-954-14- 3 211

log i- 8- 211 + 0-6 log fl and i=0.01625fos

The fourteen sets of observations are divided into two

groups of seven each, and the sums of log e and log i formed,

They arc* indicated as 7 in Table III

Then subtracting the two groups 27 from each other,

eliminates A, and dividing the two differences 4, gives the

exponent, w =0.6011; this is so near to 0,6 that it is reasonable

to assume that n=0.6, and this value then is used.



236 ENGINEERING MATHEMATICS.

Now the sum of all the values of log e is formed, given as

S14 in Table II
;
and multiplied with ft =0.6, and the product

subtracted from the sum of all the log i, The difference J

then equals 144, and, divided by 14, gives

hence, a -0.01625, and the volt-ampere characteristic of this

tungsten lamp thus follows the equation,

log i -8.211 +0.6 log e;

From e and i can be derived the power input p=eij and the

resistance r~:

T
0.01625'

and, eliminating e from these two expressions, gives

that is, the power input varies with the fourth power of the

resistance.

Assuming the resistance r as proportional to the bbsolute

temperature T, and considering that the power input into the

lamp is radiated from it, that
is,

is the power of radiation P
r}

the equation between p and r also is the equation between Pr

and T, thus,

that is,
the radiation is proportional to the fourth power of the

absolute temperature. This is the law of black body radiation,

and above equation of the volt-ampere characteristic of the

tungsten lamp thus appears as a conclusion from the radiation

law, that is, as a rational equation.

154. Example 2. In a magnetite arc, at constant arc length,

the voltage consumed by the arc, e, is observed for different
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values of current i. To find the equation of the volt-ampere

characteristic of the magnetite arc;

TABLE IV.

VOLT-AMPERE CHARACTERISTIC OF MAGNETITE ARC.

log i log e log (c 40) (e-SO) log (e- 30)

9 699

0-000

0-301

0-602

903

1-079

2 204

2-079

1-973

1-875

1-792

1-748

120

80

54

35

22

16

2-079

1-903

1 732

1 544

1-342

1 204

130

90

64

45

32

26

2 114

1 954

1 806

1.653

1 505

1 415

158

120 4

56-2

-2
+ 4

fO 2

+ 2

-V3-0 000...-

-3=2.584 .

4= 2- 584...

^6-2584

5 874

4 573

-1301

-1 301

2 584

2-584X-0-5

-0 5034~~0 5"

10447

-1 292

J= 11 739

11 739^6= 1 956

log (-30)-l. 958-0. Slog t

e-30 =90.4i-' s and e
90 4

The first four columns of Table IV give i, e, log i, log e.

Fig. 80 gives the curves: i, e, as I; i
} loge, as II; logi, e, as

III; log i, log e
}
as IV.

Neither of these curves is a straight line. Curve IV is

relatively the straightest, especially for high values of e. This

points toward the existence of a constant term. The existence

of a constant term in the arc voltage, the so-called
"
counter

e.m.f. of the arc
"

is physically probable. In Table IV thus

are given the values (6-40) and log (e-40), and plotted as

curve V. This shows the opposite curvature of IV. Thus the

constant term is less than 40. Estimating by interpolation, and

calculating in Table IV (-30) and log (e- 30), the latter,

plotted against log i gives the straight line VL The curve law

thus is
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Proceeding in Table IV in the same manner with logi

and log (e-30) as was done in Table III with log e and logi,

gives

n= -0.5; 4 -log a= 1.956; and a = 90.4;

160-

15C

140
J

WO-

100-

90-

S8-

\

_L

logi
Q..4 T

" I 10

-I-V-

VI

-2.-1

2:0-

FIG. 80. Investigation of Volt-ampere Characteristic of Magnetite Arc,

hence

log 0-30) -1.956-0,5 log i;
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which is the equation of the magnetite arc volt-ampere charac-

teristic.

155. Example 3. The change of current resulting from a

change of the conditions of an electric circuit containing resist-

ance, inductance, and capacity is recorded by oscillograph and

gives the curve reproduced as I in Fig, 81. From this curve

FIG, 81 . Investigation of Curve of Current Change in Electric Circuit.

are taken the numerical values tabulated us t and i in the first

two columns of Table V. In the third and fourth columns are

given log and logi, and curves then plotted in the usual

manner. Of these curves only the one between t and logi

is shown, as II in Fig. 81, since it gives a straight line for the

higher values of t. For the higher values of
t, therefore,

logi=A-6i; or, i=as'nt '

}

that is, it is an exponential function.
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TABLE V.

TRANSIENT CURRENT CHARACTERISTICS.

2-50

0-1248!

0.

42-58

log*

2 10

i 9 000

5 SOI

5 602

82 00

1.21-36

1.60.90

2-00-58

9 903

079

301

398

20 477

322

0394

0425

412

0-301

134

9 954

9 763

5 531

301

4 94

3 98

3-21

1.36

89

0-58

34

20

2 84

1

1 32

09

-0-01

461

292

0.121

9-799
"

954

2-85

1-94

1.32

0-61

0-13

03

0.01

2 09

2-50

1 96

1 33

0-88

58

0-34

20

~0 01

+0 02

+ 02

-0-04

-0 03

-0 0:

=4-8 23 = 9 851

_-!., LHi= 950
3 3

22 =5-5

j 832
9-416

J~l 15 J-0 534

1 15 Xlog =0-499; n=-l 07

=10 3

10- 3Xlog j

25=5-6

4-473X-M07 =-4784

^ = 3 467

3.467^5=0 693

log ii=0 693-1

22=0-1 0753

22=0 6 9 920

-< = 5 -0 833

0-5Xlog e=0 217

24 = 7 653

0-7Xlog=0 304

0-304X-3.84=-l 167

^= 1820

1-820-4=0,455

logza^o 455-3 84*log

To calculate the constants a and n, the range of values is

used
;
in which the curve II is straight; that is, from ^1.2

to i=3. As these are five observations, they are grouped in two

pairs, the first 3, and the last 2, and then for t and log i, one-

third of the sum of the first 3, and one-half of the sum of the

last 2 are taken, Subtracting, this gives,

^=1.15; 4 log i= -0.534.

Since, however, the equation, i=ae~nt
,
when logarithmated,

gives

thus
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it is necessary to multiply At by log
*= 0.4343 before dividing it

into log i to derive the value of n. This gives w= 1.07.

Taking now the sum of all the five values of t
} multiplying by

log e, and subtracting from the sum of all the five values of

log?;, 5A= 3,467; hence,

A=log<z=0.693,

and

log ii =0.693- l.OTMoge;

The current i\ is calculated and given in the sixth column

of Table V, and the difference i'=A=ii-i in the seventh

column. As seen, from =1,2 upward, i\ agrees with the'

observations. Below =1.2, however, a difference i
f

remains,

and becomes considerable for low values of L This difference

apparently is due to a second term, which vanishes for higher

values of t. Thus, the same method is now applied to the

term if] column 8 gives logi', and in curve III of Fig. 81 is
1

plotted logi' against t. This curve is seen to be a straight'

line, that is,
1/ is an exponential function of t,

Resolving i
f
in the same manner, by using the first four

points of the curve, from tf=0 to 2=0,4, gives

log i2 =0.455-3.84* logs;

fe-2.8

and, therefore,

is the equation representing the current change.

The numerical values are calculated from this equation

and given under ie in Table V, the amount of their difference

from the observed values are given in the last column of this

table.

A still greater approximation may be secured by adding

the calculated values of i% to the observed values of i in the

last five observations, and from the result derive a second

approximation of ii t
and by means of this a second approxi-

mation of ^2.



242 ENGINEERING MATHEMATICS.

156. As further example may be considered the resolution

of the core loss curve of an electric motor, which had been

expressed irrationally by a potential series in paragraph 144

and Table I.

TABLE VI.

CORE LOSS CURVE.

The first two columns of Table VI give the observed values

of the voltage e and the core loss Pi in kilowatts. The next

two columns give log e and log P* Plotting the curves shows

that loge, log?< is approximately a straight line, as seen in

Fig. 82, with the exception of the two highest points of the

curve,

Excluding therefore the last two points, the first five obser-

vations give a parabolic curve.

The exponent of this curve is found by Table VI as

w 1,598; that
is, with sufficient approximation, as fl=1.6.

To see how far the observations agree with the curve, as

given by the equation,

in the fifth column 1,6 log e is recorded, and in the sixth column,
A = log a

=
log Pi- 1.6 loge. As seen, the first and the last

two values of A differ from the rest. The first value corre-



EMPIRICAL CURVES. 243

spends to such a low value of Pt as to lower the accuracy of

the observation. Averaging then the four middle values,

gives .4=7.282; hence,

log P 7.282 +1.6 log e,

Pi=1.914e
L6 - in watts.

1,6 1.7 1,8 1.9 2.0 2.1 2.2

FIG, 82. Investigation of Cuvres.

This equation is calculated, as Pc ,
and plotted in Fig. 82.

The observed values of Pi are marked by circles. As seen,

the agreement is satisfactory, with the exception of the two

highest values, at which apparently an additional loss appears,

which does not exist at lower voltages, This loss probably is

due to eddy currents caused by the increasing magnetic stray

field resulting from magnetic saturation.
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157. As a final example may be considered the resolution

of the magnetic characteristic, plotted as curve I in Fig, 83,

and given in the first two columns of Table VII as 3C and ($>.

TABLE VIL

MAGNETIC CHARACTERISTIC.

Plotting 3C, (B, log 3C, log (B against each other leads to no

results, neither does the introduction of a constant term do

this. Thus in the fifth and sixth columns of Table VII are
/D rtn

calculated and
,
and are plotted against 3C and against (B.

rm

Of these four curves, only the curve of against 3C is shown

in Pig. 83, as II, This curve is a straight line with the exception

of the lowest values; that is,
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Excluding the three lowest values of the observations, as

not lying on the straight line, from the remaining eight values,
as calculated in Table VII, the following relation may be

derived,

-r =0.211 +0.0507 ft,

ftQ-

30

FIG. 83. Investigation of Magnetization Curve.

and herefrom,

_
0.211+0.0507 S

is the equation of the magnetic characteristic for values of 3C

from eight upward.

The values calculated from this equation are given as &
c

in Table VII,
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Iff

The difference between the observed values of, and the
UJ

value given by above equation, which is appreciable up to

3C-6, could now be further investigated, and would be found

to approximately follow an exponential law.

D. Periodic Curves.

158. All periodic functions can be expressed by a trigo-

nometric series, or Fourier series, as has been discussed in

Chapter III, and the methods of resolution and arrangements

devised to carry out the work rapidly have also been dis-

cussed in Chapter III.

The resolution of a periodic function thus consists in the

determination of the higher harmonics, which are super-

imposed on the fundamental wave.

As periodic curves are of the greatest importance in elec-

trical engineering, in the theory of alternating-current phe-

nomena, a familiarity with the wave shapes produced by the

different harmonics is desirable. This familiarity should be

sufficient to enable one to judge immediately from the shape

of the wave, as given by oscillograph, etc., which harmonics

are present.

The effect of the lower harmonics, such as the third, fifth,

seventh, etc. (or the second, fourth, etc., where present), is

to change the shape of the wave, make it differ from sine

shape, and in the
"
Theory and Calculation of Alternating-

current Phenomena," 4th. Ed., Chapter XXX, a number of

characteristic distortions, such as the flat top, peaked wave, saw

tooth, double and triple peaked, sharp zero, flat zero, etc., have

been discussed with regard to the harmonics that enter into

their composition.

159. High harmonics do not change the shape of the wave

much, but superimpose ripples on
it, and by counting the

number of ripples per half wave, or per wave, the order of the

Harmonic can rapidly be determined. For instance, the wave

shown in Fig. 84 contains mainly the eleventh harmonic, as

there are eleven ripples per wave (Fig. 84).

Very frequently high harmonics appear in pairs of nearly
the same frequency and intensity, as an eleventh and a thir-
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teenth harmonic, etc, In this case, the ripples in the wave

shape show maxima, where the two harmonics coincide, and

nodes, where the two harmonics are in opposition, The

presence of nodes makes the counting of the number of ripples

per complete wave more difficult. A convenient method of

procedure in this case is, to measure the distance or space

FIG. 84. Wave in which Eleventh Harmonic Predominates.

between the maxima of one or a few ripples in the .range where

they are pronounced, and count the number of nodes per

cycle. For instance, in the wave, Fig. 85, the space of two

ripples is about 60 deg,, and two nodes exist per complete

360
wave. 60 deg. for two ripples, gives 2X= 12 ripples per

ou

FIG. 85. Wave in which Eleventh -and Thirteenth Harmonics Predominate.

complete wave, as the average frequency of the two existing

harmonics, and since these harmonics differ by 2 (since there

are two nodes), their order is the eleventh and the thirteenth

harmonics.

This method of determining two similar harmonics, with a

little practice, becomes very convenient and useful, and may
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frequently be used visually also, in determining the frequency

of hunting of synchronous machines, etc. In the phenomenon
of hunting, frequently two periods are superimposed, forced

frequency, resulting from the speed of generator, etc., and the

natural frequency of the machine. Counting the number of

impulses, /, per minute, and the number of nodes, n, gives the

two frequencies :/+- and/ ;
and as one of these frequencies

2i 2i

is the impressed engine frequency, this affords a check.

Not infrequently wave-shape distortions are met, which

are not due to higher harmonics of the fundamental wave,

but are incommensurable therewith. In this case there are

two entirely unrelated frequencies. This, for instance, occurs

in the secondary circuit of the single-phase induction motor;
two sets of currents, of the frequencies / and (2ffs) exist

(where / is the primary frequency and / the frequency of

slip). Of this nature, frequently, is the distortion produced by

surges, oscillations, arcing grounds, etc., in electric circuits;

it is a combination of the natural frequency of the circuit

with the impressed frequency. Telephonic currents commonly
show such multiple frequencies, which are not harmonics of

each other.



CHAPTER VII.

NUMERICAL CALCULATIONS.

160. Engineering work leads to more or less extensive

numerical calculations, when applying the general theoretical

investigation to the specific cases which are under considera-

tion. Of importance in such engineering calculations are;

(a) The method of calculation.

(6) The degree of exactness required in the calculation.

(c) The intelligibility of the results,

(d) The reliability of the calculation.

a. Method of Calculation.

Before beginning a more extensive calculation, it is desirable

carefully to scrutinize and to investigate the method, to find

the simplest way, since frequently by a suitable method and

system of calculation the work can be reduced to a small frac-

tion of what it would otherwise be, and what appear to be

hopelessly complex calculations may thus be carried out

quickly and expeditiously by a proper arrangement of the

work. The most convenient way usually is the arrangement
in tabular form.

As example, consider the problem of calculating the regula-

tion of a 60,000-volt transmission line, of r=60 ohms resist-

ance, x= 135 ohms inductive reactance, and fe 0.0012 conden-

sive susceptance, for various values of non-inductive, inductive,

and condensive load.

Starting with the complete equations of the long-distance

transmission line, as given in "Theory and Calculation of

Transient Electric Phenomena and Oscillations," Section III,

paragraph 9
;
and considering that for every one of the various

power-factors, lag, and lead, a sufficient number of values

249
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have to be calculated to give a curve, the amount of work

appears hopelessly large.

However, without loss of engineering exactness, the equa-

tion of the transmission line can be simplified by approxima-

tion, as discussed in Chapter V, paragraph 123, to the form,

1+

ZY_

ZY
(1)

where EQ, /o are voltage and current, respectively at the step-

down end, Ei, l\ at the ^tep-up end of the line; and

JJ=r-j;c=60 135f is the total line impedance;

Y=g- jb= -0.0012/ is the total shunted line admittance.

Herefrom follow the numerical values :

(60-135/)(-0.0012j),

i-t-

l-0.036/-0.08l=0.919-0.036j;

ZY
1+ -1-0,012^-0.027=0.973-0.012?;

7Y]
1 +_ =(60-135f)(0.973-0.012/)

=
S8.4-0.72j- 131.1J

- 1.62 = 56.8- 131.8?;

(ZY]l+-^-U(-0.0012j)(0,973-0.012j)
=
-0.001168/-0.0000144* (-0.0144- 1.168j)10-

2

hence, substituting in (1), the following equations may be

written:

Ii
-
(0.919-0.036j)/

-
(0.0144 +1.

4+5; 1

>10-*~ C-D. (2)
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161. Now the work of calculating a series of numerical

values is continued in tabular form, as follows:

1. 100 PER CENT POWER-FACTOR.

J?o=60 kv at step-down end of line

A = (0 919-0 036;')# =55 1-2 2; kv
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2. 90 PER CENT POWER-FACTOR, LAG.

cos 0=09; sin0=Vl-0.92
=0.436;

j
sin 0)

=
i (0 9+0.436j);

Si = (0.919- 0.03Gj> + (56.8- 131.8/K0.9 +0.436j>o

=
(0.919- 0.036j>o + (108.5

-
93.8/H

= 4 + '

:

/i
=
(0.919-0.036j)(0.9 +0.436j)io- (0.0144 +U

'

=
(0.843 +0.366j>

-
(0.0144 +1.168j> 10-3=C/

-D,

and now the table is calculated in the same manner as under 1.

Then corresponding tables are calculated, in the same

manner, for power-factor, =0.8 and =0.7, respectively, lag,

and for power-factor -0.9, 0.8, 0,7, lead; that is,
for

cos 0+] sin 0=0.8 +0.6]';

0.7+0.714]';

0.9-0.436]';

0.8-0.6]';

0.7-0.714].

Then curves are plotted for all seven values of power-factor,

from 0.7 lag to 0.7 lead.

From these curves, for a number of values of i
,
for instance,

to =20, 40, 60, 80, 100, numerical values of ii, e^ cos Q, aro

taken, and plotted as curves, which, for the same voltage

ei
= 60 at the step-up end, give i\ } eo, and cos 6, for the same

value IQ, that is, give the regulation of the line at constant

current output for varying power-factor.

b. Accuracy of Calculation.

162. Not all engineering calculations require the same

degree of accuracy. When calculating the efficiency of a large

alternator it may be of importance to deteimine whether it is

97.7 or 97.8 per cent, that is, an accuracy within one-tenth

per cent may be required; in other cases, as for instance,

when estimating the voltage which may be produced in an

electric circuit by a line disturbance, it may be sufficient to
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determine whether this voltage would be limited to double

the normal circuit voltage, or whether it might be 5 or 10

times the normal voltage.

In general, according to the degree of accuracy, engineering

calculations may be roughly divided into three classes:

(a) Estimation of the magnitude of an effect; that is,

determining approximate numerical values within 25, 50, or

100 per cent. Very frequently such very rough approximation

is sufficient, and is all that can be expected or calculated.

7

20 40

1001.00

0.60

OJfl

0,20

100 I 1%)

FIG. 86- Transmission Line Characteristics.

For instance, when investigating the short-circuit current of an

electric generating system, it is of importance to know whether

this current is 3 or 4 times normal current, or whether it is

40 to 50 times normal current, but it is immaterial whether

it is 45 to 46 or 50 times normal. In studying lightning

phenomena, and, in general, abnormal voltages in electric

systems, calculating the discharge capacity of lightning arres-

ters, etc., the magnitude of the quantity is often sufficient. In
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calculating the critical speed of turbine alternators, or the

natural period of oscillation of synchronous machines
;

the

same applies, since it is of importance only to see that these

speeds are sufficiently remote from the normal operating speed

to give no trouble in opeiation.

(6) Approximate calculation, requiring an accuracy of one

or a few per cent only; a large part of engineering calcu-

lations fall in this class, especially calculations in the realm of

design. Although, frequently, a higher accuracy could be

reached in the calculation proper, it would be of no value,

since the data on which the calculations are based are sus-

ceptible to variations beyond control, due to variation in the

material, b the mechanical dimensions, etc.

Thus, for instance, the exciting current of induction motors

may vary by several per cent, due to variations of the length

of air gap, so small as to be beyond the limits of constructive

accuracy, and a calculation exact to a fraction of one per cent,

while theoretically possible, thus would be practically useless,

The calculation of the ampere-turns required for the shunt

field excitation, or for the series field of a direct-current

generator needs only moderate exactness, as variations in the

magnetic material, in the speed regulation of the driving

power, etc., produce, differences amounting to several per

cent.

(c) Exact engineering calculations, as, for instance, the

calculations of the efficiency of apparatus, the regulation of

transformers, the characteristic curves of induction motors,

etc. These are determined with an accuracy frequently amount-

ing to one-tenth of one per cent and even greater.

Even for most exact engineering calculations, the accuracy

of the slide rule is usually sufficient, if intelligently used, that

is, used so as to get the greatest accuracy. Thus, in dividing,

for instance, 297 by 283 by the slide rule, the proper way is

to divide 297-283=14 by 283, and to add the result to 1.

This gives a greater accuracy than direct division. For accu-

rate calculations, preferably the glass slide should not be used,

but the result interpolated by the eye.

163. While the calculations are unsatisfactory, if not carried

out with the degree of exactness which is feasible and desirable,

it is equally wrong to give numerical values with a number of
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ciphers greater than the method or the purpose of the calcula-

tion warrants. For instance, if in the design of a direct-current

generator, the calculated field ampere-turns are given as 9738
;

such a numerical value destroys the confidence in the work of

the calculator or designer, as it implies an accuracy greater

than possible., and thereby shows a lack of judgment.

The number of ciphers in which the result of calculation is

given should signify the exactness, In 'this respect two

systems arc in use:

(a) Numerical values are given with one more decimal

than warranted by the probable error of the result; that is,

the decimal before the last is correct, but the last decimal may
be wrong by several units. This method is usually employed
in astronomy, physics, etc.

(6) Numerical values are given with as many decimals as

the accuracy of the calculation warrants; that is, the last

decimal is probably correct within half a unit. For instance,

an efficiency of 86 per cent means an efficiency between 85.5

and 86.5 per cent; an efficiency of 97,3 per cent means an

efficiency between 97.25 and 97.35 per cent, etc. This system

is generally used in engineering calculations, To get accuracy

of the last decimal of the result, the calculations then must

be carried out for one more decimal than given in the result.

For instance, when calculating the efficiency by adding the

various percentages of losses, data like the following may be

given :

Core loss 2.73 per cent

i*r 1.06 .

Friction 0.93
"

Total 172
"

Efficiency 100-4.72-95.38

Approximately 95.4
"

It is obvious that throughout the same calculation the

same degree of accuracy must be observed.

It follows herefrom that the values:

2J; 2.5; 2.50; 2.500,
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while mathematically equal, are not equal in their meaning as

an engineering result :

2.5 means between 2.45 and 2.55;

2.50 means between 2.495 and 2.505;

2.500 means between 2.4995 and 2.5005;

while 2^ gives no clue to the accuracy of the value.

Thus it is not permissible to add zeros, or drop zeros at

the end of numerical values, nor is it permissible, for instance,

to replace fractions as 1/16 by 0,0625, without changing the

meaning of the numerical value, as regards its accuracy.

This is not always realized, and especially in the reduction of

common fractions to decimals an unjustified laxness exists

which impairs the reliability of the results. For instance, if

in an arc lamp the arc length, for which the mechanism is

adjusted, is stated to be 0,8125 inch, such a statement is

ridiculous, as no arc lamp mechanism can control for one-tenth

as great an accuracy as implied in this numerical value: the

value is an unjustified translation from 13/16 inch.

The principle thus should be adhered to, that all calcula-

tions are carried out for one decimal more than the exactness

required or feasible, and in the result the last decimal dropped;

that is, the result given so that the last decimal is probably

correct within half a unit.

c. Intelligibility of Engineering Data.

164, In engineering calculations the value of the results

mainly depends on the information derived from them, that is,

on their intelligibility. To make the numerical results and

their meaning as intelligible as possible, it thus is desirable,

whenever a series of values are calculated, to carefully arrange

them in tables and plot them in a curve or in curves. The

latter is necessary, since for most engineers the plotted curvo

gives a much better conception of the shape and the variation

of a quantity than numerical tables.

Even where only a single point is required, as the cpre

loss at full load, or the excitation of an electric generator at

rated voltage, it is generally preferable to calculate a few
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VbltS
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100

points near the desired value, so as to get at least a short piece
of curve including the desired point.

The main advantage, and foremost purpose of curve plotting
thus is to show the shape of the function, and thereby give

a clearer conception of it
;

but for recording numerical

values, and deriving numer-

ical values from it, the plotted

curve is inferior to the table,

due to the limited accuracy

possible in a plotted curve,

and the further inaccuracy

resulting when drawing a

curve through the plotted cal-

culated points. To some

extent, the numerical values

as taken from a plotted curve,

depend on the particular

kind of curve rule used in

plotting the curve.

In general, curves arc used for two different purposes, and

on the purpose for which the curve is plotted, should depend

the method of plotting, as the scale, the zero values, etc,

When curves are used to

illustrate the shape of the

function, so as to show how

much and in what manner a

quantity varies as function

of another, large divisions of

inconspicuous cross-section-

ing are desirable, but it is

essential that the cross-

sectioning should extend to

the zero values of the func-

tion, even if the numerical

04 06 08 10

FIG. 87, Compounding Curve.
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so

FIG. 88. Compounding Curve.

values do not extend

far, since otherwise a wrong

impression would be con-

ferred. As illustrations are plotted in Figs. 87 and 88, the

compounding curve of a direct-current generator. The arrange-
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merit in Fig. 87 is correct
;

it shows the relative variation

of voltage as function of the load. Fig. 88
;

in which the

cross-sectioning does not begin at the scale zero, confers the

FIG. 89 Curve Plotted to show Characteristic Shape.

FIG. 90. Curve Plotted for Use as Design Data

wrong impression that the variation of voltage is far greater

than it really is.

When curves are used to record numerical values and

derive them from the curve, as, for instance, is commonly the
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case with magnetization curves, it is unnecessary to have the zero

of the function coincide with the zero of the cross-sectioning, but

rather preferable not to have it so, if thereby a better scale of

the curve can be secured. It is desirable, however, to use suffi-

ciently small cross-sectioning to make it possible to take

numerical values from the curve with good accuracy. This is

illustrated by Figs. 89 and 90. Both show the magnetic charac-

teristic of soft steel, for the range above (B=8000, in which it is

usually employed. Fig. 89 shows the proper way of plotting

for showing the shape of the function, Fig. 90 the proper way of

plotting for use of the curve to derive numerical values therefrom.

\

\

\

S
in

FIG. 91. Same Function Plotted to Different Scales; I is correct.

165. Curves should be plotted in such a manner as to show

the quantity which they represent, and its variation, as well as

possible. Two features are desirable herefor:

1. To use such a scale that the average slope of the curve,

or at least of the more important part of
it,

does not differ

much from 45 deg. Hereby variations of curvature are best

shown. To illustrate this, the exponential function y=c~
x

is

plotted in three different scales, as curves I, II, III, in Fig. 91.

Curve I has the proper scale. '

2. To use such a scale, that the total range of ordinates is

not much different from the total range of abscissas. Thus

when plotting the power-factor of an induction motor, in

Fig, 92, curve I is preferable to curves II or III.
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These two requirements frequently are at variance with

each other, and then a compromise has to be made between

them, that is, such a scale chosen that the total ranges of the

two coordinates do not differ much, and at the same time

the average slope of the curve is not far from 45
cleg. This

usually leads to a somewhat rectangular area covered by the

curve, as shown, for instance, by curve I, in Fig. 91.

In curve plotting, a scale should be used which is easily

read, Hence, only full scalc
;
double scale, and half scald

should be used. Triple scale and one-third scale are practically

unreadable, and should therefore never be iml. Quadruple

FIG. 92. Same Function Plotted to Different Scales; I is Correct,

scale and quarter scale are difficult to read and therefore unde-

sirable, and are generally unnecessary, since quadruple scale

is not much different from half scale with a ten times smaller

unit, and quarter scale not much different from double scale

of a ten times larger unit.

166. Any engineering calculation on which it is worth

while to devote any time, is worth being recorded with suffi-

cient completeness to be generally intelligible. Very often in

making calculations the data on which the calculation is based,

the subject and the purpose of the calculation are given incom-

pletely or not at all, since they are familiar to the calculator at

the time of calculation, The calculation thus would be unin-
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tclligiblo to any other engineer, and usually becomes unintelli-

gible even to the calculator in a few weeks,

In addition to the name and the date, all calculations should

be accompanied by a complete record of the object and purpose

of the calculation, the apparatus, the assumptions made, the

data used, reference to other calculations or data employed,

etc., in short, they should include all the information required

to make the calculation intelligible to another engineer without

further information besides that contained in the calculations,

or in the references given therein. The small amount of time

and work required to do this is negligible compared with the

increased utility of the calculation.

Tables and curves belonging to the calculation should in

the same way be completely identified with it and contain

sufficient data to be intelligible.

d. Reliability of Numerical Calculations.

167. The most important and essential requirement of

numerical engineering calculations is their absolute reliability.

When making a calculation, the most brilliant ability, theo-

retical knowledge and practical experience of an engineer are

made useless, and even worse than useless, by a single error in

an important calculation.

Reliability of the numerical calculation is of vastly greater

importance in engineering than in any other field. In pure

mathematics an error in the numerical calculation of an

example which illustrates a general proposition, does not detract

from the interest and value of the latter, which is the main

purpose; in physics, the general law which is the subject of

the' investigation remains true, and the investigation of interest

and use, even if in the numerical illustration of the law an

error is made. With the most brilliant engineering design,

however, if in the numerical calculation of a single structural

member an error has been made, and its strength thereby calcu-

lated wrong, the rotor of the machine flies to pieces by centrifugal

forces, or the bridge collapses, and with it the reputation of the

engineer. The essential difference between engineering and

purely scientific caclulations is the rapid check on the correct-

ness of the calculation, which is usually afforded by the per-
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formance of the calculated structure but too late to correct

errors.

Thus rapidity of calculation, while by itself useful, is of no

value whatever compared with reliability that is, correct-

ness.

One of the first and most important requirements to secure

reliability is neatness and care in the execution of the calcula-

tion. If the calculation is made on any kind of a sheet of

paper, with lead pencil, with frequent striking out and correct-

ing of figures, etc., it is practically hopeless to expect correct

results from any more extensive calculations. Thus the work

should be done with pen and ink, on white ruled paper; if

changes have to be made, they should preferably be made by

erasing, and not by striking out. In general, the appearance of

the work is one of the best indications of its reliability. The

arrangement in tabular form, where a series of values are calcu-

lated, offers considerable assistance in improving the reliability.

168. Essential in all extensive calculations is a complete

system of checking the results, to insure correctness.

One way is to have the same calculation made independently

by two different calculators, and then compare the results.

Another way is to have a few points of the calculation checked

by somebody else. Neither way is satisfactory, as it is not

always possible for an engineer to have the assistance of another

engineer to check his work, and besides this, an engineer should

and must be able to make numerical calculations so that he can

absolutely rely on their correctness without somebody else

assisting him.

In any more important calculations every operation thus

should be performed twice, preferably in a different manner.

Thus, when multiplying or dividing by the slide rule, the multi-

plication or division should be repeated mentally, approxi-

mately, as check; when adding a column of figures, it should be

added first downward, then as check upward, etc.

Where an exact calculation is required, first the magnitude
of the quantity should be estimated, if not already known,
then an approximate calculation made, which can frequently

be done mentally, and then the exact calculation; or, inversely,

after the exact calculation, the result may be checked by an

approximate mental calculation.
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Where a series of values is to be calculated, it is advisable

first to calculate a few individual points, and then, entirely

independently, calculate in tabular form the series of values
,

and then use the previously calculated values as check. Or,

inversely, after calculating the series of values a few points

should independently be calculated as check.

When a series of values is calculated, it is usually easier to

secure reliability than when calculating a single value, since

in the former case the different values check each other. There-

fore it is always advisable to calculate a number of values,

that is, a short curve branch, even if only a single point is

required. After calculating a series of values, they are plotted

as a curve to see whether they give a smooth curve. If the

entire curve is irregular, the calculation should be thrown away,

and the entire work done anew, and if this happens repeatedly

with the same calculator, the calculator is advised to find

another position more in agreement with his mental capacity.

If a single point of the curve appears irregular, this points to

an error in its calculation, and the calculation of the point is

checked; if the error is not found, this point is calculated

entirely separately, since it is much more difficult to find an

error which has been made than it is to avoid maldng an

error.

169. Some of the most frequent numerical errors are:

1. The decimal error, that
is,

a misplaced decimal point.

This should not be possible in the final result, since the magni-

tude of the latter should by judgment or approximate calcula-

tion be known sufficiently to exclude a mistake by a factor 10.

However, under a square root or higher root, in the exponent

of a decreasing exponential function, etc., a decimal error may
occur without affecting the result so much as to be immediately

noticed. The same is the case if the decimal error occurs in a

term which is relatively small compared with the other terms,

and thereby does not affect the result very much. For instance,

in the calculation of the induction motor characteristics, the

quantity r-p +s2
xi

2
appears, and for small values of the slip s,

the second term s%i
2

is small compared with rf, so that a

decimal error in it would affect the total value sufficiently to

make it seriously wrong, but not sufficiently to be obvious.

2. Omission of the factor or divisor 2.
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3, Error in the sign, that is, using the plus sign instead of

the minus sign, and inversely. Here again, the danger is

especially great, if the quantity on which the wrong sign is

used combines with a larger quantity, and so does not affect

the result sufficiently to become obvious.

4. Omitting entire terms of smaller magnitude, etc.
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NOTES ON THE THEORY OF FUNCTIONS.

A. General Functions.

170. The most general algebraic expression of powers of

x and y,

Or=0, .... (1)

is the implicit analytic function. It relates y and x so that to

every value of x there correspond n values of y, and to every

value of y there correspond m values of x, if m is the exponent

of the highest power of a; in (1).

Assuming expression (1) solved for y (which usually cannot

be carried out in final form, as it requires the solution of an

equation of the nth order in y, with coefficients which are

expressions of x) }
the explicit analytic function,

is obtained. Inversely, solving the implicit function (1) for

x, that .is, from the explicit function (2), expressing x as

function of y, gives the reverse function of (2); that is

x-fity)........ (3)

In the general algebraic function, in its implicit form (1),

or the explicit form (2), or the reverse function (3), x and y

are assumed as general numbers; that is, as complex quan-

tities; thus,
'

(4)

and likewise are the coefficients a o, oi o,nm .

265
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If all the coefficients a are real, and x is real, the corre-

sponding n values of y are either real, or pairs of conjugate

complex imaginary quantities : y\ +jy% and 2/1-^2.

171. For n=l, the implicit function (1), solved for y, gives

the rational function,

--,

^

and if in this function (5) the denominator contains no x
}
the

integer function, .

is obtained.

For n=2, the implicit function (1) can be solved for y as a

quadratic equation, and thereby gives

^

,-
;(7)y

~
2(0,0+^ + 0^'

that is, the explicit form (2) of equation (1) contains in this

case a square root.

For n>2, the explicit form y~f(x) either becomes very

complicated, for n=3 and ft=4
;

or cannot be produced in

finite form, as it requires the solution of an equation of more

than the fourth order. Nevertheless, y is still a function of

x, and can as such be calculated by approximation, etc.

To find the value yi, which by function (1) corresponds to

x=xij Taylor's theorem offers a rapid approximation. Sub-

stituting xi in function (1) gives an expression which is of

the nth order in y, thus: Ffaiy), and the problem now is to

find a value yi, which makes

However,

where h=yi-y is the difference between the correct value

and any chosen value y.
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Neglecting the higher orders of the small quantity A, in

(8), and considering that F(xi,yi) =0, gives

dy

and herefrom is obtained yi=y+h, as first approximation.

Using this value of y\ as y in (9) gives a second approximation,

which usually is sufficiently close.

172. New functions arc defined by the integrals of the

analytic functions (1) or (2), and by their reverse functions.

They are called Abelian integrals and Abelian functions,

Thus in the most general case (1), the explicit function

corresponding to (1) being

the integral,

(2)

then is the general Abeliau integral, and its reverse function,

the general Abelian function.

(a) In the case, n=l, function (2) gives the rational function

(5), and its special case, the integer function (6).

Function (6) can be integrated by powers of x. (5) can be

resolved into partial fractions, and thereby leads to integrals

of the following forms :

(1)

(4)

dx

(10)
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Integrals (10), (1), and (3) integrated give rational functions,

(10), (2) gives the logarithmic function log (a?- a), and (10), (4)

the arc function arc tan i.

As the arc functions are logarithmic functions with complex

imaginary argument, this case of the integral of the rational

function thus leads to the logarithmic function, or the loga-

rithmic integral, which in its simplest form is

fix
2= I

=

J *
:, "(in

and gives as its reverse function the ex-ponentid function,

x-f (12)

It is expressed by the infinite series,

$ ^

as seen in Chapter II, paragraph 53.

173. 6. In the case, n==2, function (2) appears as the expres-

sion (7),
which contains a square root of some power of x. Its

first part is a rational function, and as such has already been

discussed hi a. There remains thus the integral function,

..

dr. ... 14)

This expression (14) leads to a series of important functions.

(1) For 39= lor 2,

dx (15)

By substitution, resolution into partial fractions, and

separation of rational functions, this integral (11) can be

reduced to the standard form,

In the case of the minus sign, this gives

dx
==arcsmx

; (17)
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and as reverse functions thereof, there are obtained the trigo-

nowetnc functions.

(18)

= = -
log {

Vl+i2- x
}

= arc sinh x
t

, (19)

In the case of the plus sign, integral (16) gives

dx

and reverse functions thereof are the

_
1 1 + 2= cosh ?.

(20)

The trigonometric functions are expressed by the series ;

06

,
. . . . (21)

as seen in Chapter II, paragraph 58.

The hyperbolic functions, by substituting for s
+r and r*

the series (13), can be expressed by the series:

sinh z=*+ +-++.
. . . . (22)

174. In the next case, p=3 or 4,

/Vfro+frioH

"J * CQ+CI,
x, . . (23)

already leads beyond the elementary functions, that is, (23)

cannot be integrated by rational, logarithmic or arc functions,
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but gives a new class of functions, the elliptic integrals, and

their reverse functions, the elliptic functions, so called, because

they bear to the ellipse a relation similar to that, which the

trigonometric functions bear to the circle and the hyperbolic

functions to the equilateral hyperbola.

The integral (23) can be resolved into elementary functions,

and the three classes of elliptic integrals :

dx

xdx

dx

. . . . (24)

(These three classes of integrals may be expressed in several

different forms.)

The reverse functions of the elliptic integrals are given by

the elliptic functions:

c=sin am(u,c}'}

(25)

cPx=dam(u, c);

known, respectively, as sine-amplitude, cosine-amplitude, delta-

amplitude.

Elliptic functions are in some respects similar to trigo-

nometric functions, as is seen, but they are more general,

depending, as they do, not only on the variable x
}
but also on

the constant c. They have the interesting property of being

doubly periodic. The trigonometric functions are periodic, with

the periodicity 2n, that is, repeat the same values after every

change of the angle by 2?r. The elliptic functions have two

periods pi and p2 ,
that

is,

sin am(u+npi +mp2) c) =sin am(u, c), etc.; . (26)

hence, increasing the variable u by any multiple of either

period pi and p^ repeats the same values.
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The two periods are given by the equations,

PI- C-
Jo 2

732
= I

Ji 2Vi(l

(27)

175* Elliptic functions can be expressed as ratios of two

infinite series, and these series, which form the numerator and

the denominator of the elliptic function, are called thda func-

tions and expressed by the symbol 6, thus

sn

fi

i ^te

cos am(u, c)

m
Jpi/ .

KU
@

%-

\2pi/

. (28)

and the four functions may be expressed by the series;

(x) =1 -2$ cos 2^+2^ cos 4x -2#
9
cos fe+ -. . .

;

sn -
s n ~

, (29)

\vhere

.

and a=j7r .

Pi
(30)

In the case of integral function (14), where p>4, similar^

integrals and their reverse functions appear, more complex
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than the elliptic functions, and of a greater number of periodici-

ties. They are called hyperelliptic integrals and hyperelliptic

functions, and the latter are again expressed by means of auxil-

iary functions, the hyperelliptic
6 functions.

176. Many problems of physics and of engineering lead to

elliptic functions, and these functions thus are of considerable

importance. For instance, the motion of the pendulum is

expressed by elliptic functions of time, and its period thereby

is a function of the amplitude, increasing with increasing ampli-

tude; that is,
in the so-called "second pendulum/' the time of

one swing is not constant and equal to one second, but only

approximately so. This approximation is very close, as long

as the amplitude of the swing is very small and constant, but

if the amplitude of the swing of the pendulum varies and

reaches large values, the time of the swing, or the period ot

the pendulum, can no longer be assumed as constant and an

exact calculation of the motion of the pendulum by elliptic

functions becomes necessary.

In electrical engineering, one has frequently to deal with

oscillations similar to those of the pendulum, for instance,

in the hunting or surging of synchronous machines. In

general, the frequency of oscillation is assumed as constant,

but where, as in cumulative hunting of synchronous machines,

the amplitude of the swing reaches largo values, an appreciable

change of the period must be expected, and where the hunting

is a resonance effect with somo other periodic motion, as the

engine rotation, the change cf frequency with increase of

amplitude of the oscillation breaks the complete resonance and

thereby tends to limit the amplitude of the swing.

177. As example of the application of elliptic integrals, may
be considered the determination of the length of the arc of an

ellipse.

Let the ellipse of equation

x2 f
^2^p

=
lj ....... (31)

be represented in Fig. 93, with the circumscribed circle,

(32)
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To every point P=x, y of the ellipse then corresponds a

point PI=X, j/i
on the circle, which has the same abscissa x,

and an angle 0=AOP\.
The arc of the ellipse, from A to P, then is given by the

integral,

where

r (l
=a I

J 2^(1
=, .... (33)

^F^, . . . (34)

is the eccentricity of the ellipse
1

.

Rectification of Ellipse.

Thus the problem leads to an elliptic integral of the first

and of the second class.

For more complete discussion of the elliptic integrals and

the elliptic functions, rcierence must be made to the text-books

of mathematics.

B. Special Functions.

178. Numerous special functions have been derived by the

exigencies of mathematical problems, mainly of astronomy, but

iu the latter decades also of physics and of engineering. Some

of them have already been discussed as special cases of the

general Abelian integral and its reverse function, as the expo-

nential, trigonometric, hyperbolic, etc., functions.
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Functions may be represented by an infinite series of terms;

that is, as a sum of an infinite number of terms, which pro-

gressively decrease, that is, approach zero. The denotation of

the terms is commonly represented by the summation sign S.

Thus the exponential functions may be written, when

defining,

|0~1; |n-

as

T

(35)

vj

which means, that terms are to be added for all values of n

from n=Qto n=cc.

The trigonometric and hyperbolic functions may be written

in the form:

I 12. H o
'

|2n+l
'

* ww

v>2 /p4 <v6 QQ 3*

1+ 5+^+...-2-^-;
. . . (38)

Functions also may be expressed by a series of factors;

that is, as a product of an infinite series of factors, which pro-

gressively approach unity. The product scries is commonly

represented by the symbol .

Thus, for instance, the sine function can be expressed in the

form,

2 2 ** 2

(40)

I79 Integration of known functions frequently leads to new
functions. Thus from the general algebraic functions were
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derived the Abelian functions. In physics and in engineering,

integration of special functions in this manner frequently leads

to new special functions.

For instance, in the study of the propagation through space,

of the magnetic field of a conductor, in wireless telegraphy,

lightning protection, etc., we get new functions. If i=f(t)

is the current in the conductor, as function of the time
t,

at a

distance x from the conductor the magnetic field lags by the

time h=-, where S is the speed of propagation (velocity of
JO

light). Since the field intensity decreases inversely propor-

tional to the distance x
}
it thus is proportional to

and the total magnetic flux then is /

ydx

-f-
(42)

If the current is an alternating current, that is, f(t) a

trigonometric function of time, equation (42) leads to the

functions,

*-f-

/COS

X .

dx.
i

"sin x .

IX]

(43)

If the current is a direct current, rising as exponential

function of the time, equation (42) leads to the function,

/V<fc
0= I .

J *
(44)'
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Substituting in (43) and (44), for sinz, cos 2,
e* their

infinite series (21) and (13), and then integrating, gives the

following :

sin x

"3|3"

x2 x*
, (45)

For further discussion of these functions see "Theory and

Calculation of Transient Electric Phenomena and Oscillations,"

Section IE, Chapter VIII.

i8tf. If 2/=/(:r) is a function of x
}
and z= \ f (x)dx**<j>(x)

P
its integral; the definite integral, Z= I f(x)dx, is no longer

Ja

a function of x but a constant,

For instance, if y-c(x-n}
2

}
then

and the definite integral is

r, PZ=
\ c(x-n)

2dx :

Ja *3
l

This definite integral does not contain x, but it contains

all the constants of the function f(x), thus is a function of

these constants c and n, as it varies with a variation of these

constants.

In this manner new functions may be derived by definite

integrals.

Thus, if

y-/(x,tt,i>...) (46)

is a function of x, containing the constants w, v . , ,
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The definite integral,

tt, ...)&, ..... (47)

is not a function of x, but still is a function of u, v . , .
,
and

may be a new function.

181. For instance, let

S^e-'a*-
1

;
....... (48)

then the integral,

(49)

is a new function of u, called the gamma function,

Some properties of this function may be derived by partial

integration, thus:

......... (50)

if n is an integer number,

r(u)
=
(u-l)(u-2)...(u-n)r(u-n\ , , (51)

and since

f(l)=l, ............ (52)

if u is an integer number, then,

r(w)
=
|u-l.

.......... (53)

C. Exponential, Trigonometric and Hyperbolic Functions.

(a)
FUNCTIONS OF REAL VABIABLES.

182. The exponential, trigonometric, and hyperbolic func-

tions are' defined as the reverse functions of the integrals,

and; x=*eu .......... (55)

C dx
5. u- I r --^arcsina;; ....... (56)

J-vl-z2
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and: x=sinw, .......... (57)

c.

vl-fx2

u frt\\
x= -

-sinhw; , . . , (GO)

coshu..... (61)

From (57) and (58) it follows that

sin
2 u+cos2 u=l....... (62)

From (60) and (61) it follows that

cos
2 te-sin 2^=1...... (63)

Substituting (-#) for z in (56), gives (w) instead of u,

and therefrom,

...... (64)

Substituting (~w) for u in (60), reverses the sign of x,

that is,

, k . (65)

Substituting (-x) for 2 in (58) and (61), does not change

the value of the square root, that is,

cos ~tt=c

cosh (-u)~ cosh u, , , . . . (67)

Which signifies that cos u and cosh u are even functions, while

sin u and sinh u are odd functions.

Adding and subtracting (60) and (61), gives

(68)
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(&) FUNCTIONS or IMAGINARY VARIABLES.

183. Substituting, in, (56) and (59), x= -jy, thus y=jx, gives

/T+?'

dy ,__
?

hence.ju

-72=cosw . . . (70)

Resubstituting x in both

sinhfu ^-r^
"

]
\ *

v^-x2
=cosw=coshftt vT+;r2=eoshw=

g-

-f f
j =cos)'w. , (72)

4

Adding and subtracting,

eH=eos uj sin w^cosh fusiuh JM

and = cosh ttsinhtt- cos jwT} sin fw, . . (73)

(c) FUNCTIONS OF COMPLEX VARIABLES

184. It is;

'=eu (cosflfsinfl); . . * (74)
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sin (up) =sin u cos jv cos u sin jv

=sinMcoshvjcosMsinhi>
=

sinwf-y-cosw;

cos (u ju)
= cos u cos pT sin it sin p

= cos u coshwTfsin ?^sirih?; =
^ coswT?' 2~~

smU
'
:

sinh(wp)= ^
=

2"~
cosi; ?

2
^^

= sinh u cos v j cosh w sin v;

.

cosh(Mp)=
-

5
-- = cosvij 5

smv

= cosh w cos v
j sinh u sin u

;

(75)

(76)

(77)

(78)

etc.

RELATIONS.

185. From the preceding equations it thus follows that the

three functions, exponential; trigonometric, and hyperbolic,

are so related to each other, that any one of them can be

expressed by any other one, so- that when allowing imaginary

and complex imaginary variables, one function is sufficient.

As such, naturally, the exponential function would generally

be chosen,

Furthermore, it follows, that all functions with imaginary

and complex imaginary variables can be reduced to functions

of real variables by the use of only two of the three classes

, of functions. In this case, the exponential and the trigono-

metric functions would usually be chosen.

Since functions with complex imaginary variables can be

resolved into functions with real variables, for their calculation

tables of the functions of real variables are sufficient.

The relations, by which any function can be expressed by

any other, are calculated from the preceding paragraph, by
the following equations :
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cosh u sinh u= (x

UJ '

1 ^ s" (cos
>uj sin a),

sinh m SJM
~

3

'

n-
r-

1 =^
p-i ;

1 2?
?

sin

. . . . , .

sin
;/t>
=

? sinn r =
j

sin (u ;?;) =sin u cosh ?> / cos ti sinh v

^ sin uj -^
cos w;

cos n = cosh ju ^ ;

cos p = cosh v =

cos (w jv) cos u cosh v=F j sin w sinh v

v-~ v
.

v--f
,= ~ COS 'ZiT 2 T>

sln w
j

sinh p j sin ?i r
;

sinh (ujv) =sinh w cos v j cosh ^ sin v

cos sm

cosh u = cos in ;

cosh p= cos v=-5 5

cosh (ujv) =cosh w cos vj sinh w sin v

cos sin

281

. (6)



282 ENGINEERING MATHEMATICS.

And from (6) and (d), respectively (c) and (e), it follows that

sinh (u 4-p)
=

/ sin (v- ju)
=

j sin (

Tables of the exponential functions and their logarithms,

and of the hyperbolic functions with real variables, are given

in the following Appendix B,
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TWO TABLES OF EXPONENTIAL AND HYPERBOLIC
FUNCTIONS.

TABLE I.

-*
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TABLE II.

EXPONENTIAL AND HYPERBOLIC FUNCTIONS.

-2 71S282~2 7183, log =0 4342945-0 4343

434 435

0.1

0.2 87

0.3 130 130

4 174 174

5217

6 261 261

7 304 304

8 347 348

9 391 391

1.0434435

1.001000494, r' ool =0 99900049.
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TABLE II Continued,

EXPONENTIAL AND HYPERBOLIC FUNCTIONS.
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INDEX.

Abehan integrals and functions, 276.

Absolute number, 4.

value of fractional expression, 49.

of general number, 30.

Accuracy of approximation estimated

200.

of transmission line equations,
20S.

of calculation, 252.

of curve equation, 210.

Addition, 1.

of general number, 28.

and subtraction of trigonometric

functions, 102.

Algebra of general number or com-

plex quantity, 25.

Algebraic expression, 265.

function, 265.

Alternating current and voltage vec-

tor, 41.

functions, 117, 125.

waves, 117, 125.

Alternations, 117.

Alternator short circuit current^

approximated, 195.

Analytical calculation of extrema,
152.

function, 265.

Angle, see also Phase angle.

Approximate calculation, 254.

Approximations giving (1+s) and

(1-s), 201.

of infinite series, 53,

methods of, 187.

Arbitrary constants of series, 69, 79.

Area of triangle, 106.

Arrangement of numerical calcula-

tions, 249.

B

Base of logarithm, 21.

Binomial series with small quantities,

193.

theorem, infinite series, 59.

of trigonometric function, 104.

Biquadratic parabola, 219.

Calculation, accuracy, 252.

checking of, 262.

numerical, 249.

reliability, 261.

Capacity, 65.

Change of curve law, 211, 233.

Characteristics of exponential curves,
227

of parabolic and hyperbolic curves,
223.

Charging current maximum of con-

denser, 176.

Checking calculations, 262.

Ciphers, number of, in calculations,

255.

Circle defining trigonometric func-

tions, 94.

Coefficients, unknown, of infinite

series, 60.

Combination of exponential functions,

229.

of general numbers, 28

of vectors, 29.

Comparison of exponential and hyper-
bolic curves, 228.

Complex imaginary quantities, see

General number,

quantity, 17

algebra, 27.

see General number.
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Complementary angles in trigono-

metric functions, 99.

Conjugate numbers, 31,

Constant, arbitrary of series, 60, 79.

errors, 186.

factor with parabolic and hyper-

bolic curves, 223.

phenomena, 106.

terms of curve equation, 211.

of empirical curves, 232.

in exponential curves, 228.

with exponential curves, 227.

in parabolic and hyperbolic

curves, 225.

Convergency determinations of series,

57.

of potential series, 215.

Convergent series, 56.

Coreloss by potential series, 213.

curve evaluation, 242.

Cosecant function, 98.

Cosh function, 276.

Cosine-amplitude, 270.

function, 94.

components of wave, 121, 125.

scries, 82.

versus function, 98.

Cotangent function, 94.

Counting, 1.

Current change curve evaluation, 239.

input of induction motor, approxi-

imated, 191.

maximum of alternating trans-

mission circuit, 159.

of distorted voltage wave, 169.

Curves, checking calculations, 263.

empirical, 209.

law, change, 233.

rational equation, 210.

use of, 257.

D

Data on calculations and curves, 261.

derived from curve, 258.

Decimal error, 263.

number of, in calculations, 255.

Definite integrals of trignometric

functions, 103.

Degrees of accuracy, 253.

Delta-amplitude, 270.

Differential equations, 64.

of electrical engineering, 65, 78,

Differential equations of second order,

78.

Differentiation of trigonometric func-

tions, 103.

Distorted electric waves, 108

Distortion of wave, 139.

Divergent series, 56.

Division, 6

of general number, 42.

with small quantities, 100.

Double angles in trigonometric func-

tions, 103.

peaked wave, 246.

periodicity of elliptic functions, 270.

scale, 260.

E

,21.

Efficiency maximum of alternator,

162.

of impulse turbine, 154.

of induction generator, 177.

of transformer, 155, 174.

Electrical engineering, differential

equations, 65, 78, 80.

Ellipse, length of arc, 272.

Elliptic integrals and functions, 270.

Empirical curves, 209,

evaluation, 232,.

equation of curve, 210,

Engineering, deffcroiitial equations,

65, 78, 86.

Equilateral hyperbola, 217.

Errors, constant, 186.

numerical, 263.

of observation, 180.

Estimate of accuracy of approxima-

tion, 200.

Evaluation of empirical curves, 232.

Even functions, 81, 98,- 276,

periodic, 122.

harmonics, 117,

separation, 120, 125, 134.

Evolution, 9.

of general number, 44,

of series, 70.

Exact calculation, 254.

Exciting current of transformer,

resolution, 137.

Explicit analytic function, 205.

Exponent, 9.

Exponential Curves, 226.

forms of general number, 50,
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Exponential functions, 52, 268, 275

with small quantities, J96.

tables, 283, 284, 285.

scries, 71.

anil trignometrie functions, rela-

tion, <S3,

Extrapolation on curve, limitation,

210.

Extrcma, 147.

analytic determination, 152.

graphical construction of differen-

tial function, 170

graphical determination, 147, 150,

IBS.

with intermediate variables, 155

with several variables, 163.

simplification ot function, 157

Factor, constant, with parabolic and

hyperbolic curves, 228.

Fan motor torque by potential aeries,

215.

Flat top wave, 24G

zero waves, 240

Fourier series, sec Trigonometric

aericH.

Fraction, 8.

as Hi'rios, 52.

Fractional exponents, 11, 44.

expressions of general number, 40.

Full scale, 260.

Functions, theory of, 265.

Gamma function, 275.

General number, 1, 16.

algebra, 25.

exponential forms, 50.

reduction, 4$.

Graphical determination of cxtrema,

147, 150, 168.

Half angles in trigonometric func-

tions, 103.

Half waves, 117.

Half scale, 260.

Harmonics, even, 117.

odd, 117.

of trigonometric series,
114,

two, in wave, 246.

High harmonics in wave shape, 246.

Hunting of synchronous machines,

248.

Hyperbola, arc of, 61.

equilateral, 217

Hyperbolic curves, 216.

functions, 275

curve shape, 231.

Tables, 2S4, 285.

integrals and functions, 269

Hyperelliptic integrals aud functions,

272

I

Imaginary number, 26.

quantity, see Quadrature number.

Incommensurable waves, 248

Indeterminate coefficients, method,

71.

Indeterminate coefficients of infinite

series, 60.

Individuals, 8.

Inductance, 65

Infinite scries, 52.

valuea of curves, 211.

of empirical curves, 232.

Inflection points of curves, 153.

Impedance vector, 41

Implicit analytic function, 265.

Integral function, 266.

Integation constant of scries, 69, 70

of differential equation, 65.

by infinite series, 60.

of trigonometric functions, 103,

Intelligibility of calculations, 256.

Intercepts, defining tangent and co-

tangent functions, 94.

Involution, 9.

of general numbers, 44,

Irrational numbers, 11.

Irrationality of representation by

s,
213.

Least squares, method of, 179, 186.

Limitation of mathematical represen-

tation, 40.

of method of least squares, 186.

of potential series, 216.
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Limiting value of infinite series, 54.

Linear number, 33.

see Positive and negative number.

Line calculation, 249.

equations, approximated, 204.

Logarithm of exponential curve, 228.

as infinite series, 63.

of parabolic and hyperbolic curves,

225.

with small quantities, 197.

Logarithmation, 20.

of general numbers, 51.

Logarithmic curves, 226.

functions, 268

paper, 232.

Loss of curve induction motor, 183.

M

Magnetite arc, volt-ampere character-

istic, 237.

Magnetite characteristic, evaluation,

244.

Magnitude of effect, determination,

253.

Maximum, see Extremum.

Maxima, 147.

McLaurin's series with small quan-

tities, 198.

Mechanism of calculating empirical

curves, 235,

Methods of calculation, 249.

of indeterminate coefficients, 71.

of least squares, 179, 186.

Minima, 147.

Minimum, see Extremum.

Multiple frequencies of waves, 248

Multiplicand, 39.

Multiplication, 6.

of general numbers, 39.

with small quantities, 188.

of trigonometric functions, 102.

Multiplier, 39.

N

Negative angles in trigonometric

functions, 98.

exponents, 11.

number, 4.

Nodes in wave sharje, 247.

Non-periodic curves, 212.

Nozzle efficiency, maximum, 150.

Number, general, 1.

Numerical calculations, 240

values of trigonometric functions,

101.

Observation, errors, ISO.

Odd functions, 81, 98, 276.

periodic, 122.

harmonics in symmetrical wave,

117.

separation, 120, 125, 134

Omissions in calculations, 263.

Operator, 40

Order of small quantity, 188.

Oscillating functions, 92.

Output, see power.

ff and
~

added and subtracted in

trigonometric function, 100.

Parabola, common, 218.

Parabolic curves, 216

Parallelogram law of general numbers

.28.

of vectors, 29.

Peaked wave, 246.

Pendulum motion, 272.

Percentage change of parabolic and

hyperbolic curves, 223.

Periodic curves, 246.

decimal fraction, 12.

phenomena, 106.

Periodicity, double, of elliptic func-

tions, 270.

of trigonometric functions, 96,

Permeability maximum, 14S, 170.

Phase angle of fractional expression,

49.

of general number, 28.

Plain number, 32.

see General number.

Plotting of curves, 212.

proper and improper, 259.

of empirical curve, 232.

Polar co-ordinates of general number,

25, 27.

expression of general number, 25,

27, 38, 43, 44, 48.

Polyphase relation, reducing trigo-

nometric series, 134.

of trigonometric functions, 104,

system of points or vectors, 46.
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Positive number, 4.

Potential series, 52, 212.

Power factor maximum of induction

motor, 149.

maximum of alternating trans-

mission circuit, 158

of generator, 161.

of shunted resistance, 155.

of storage battery, 172,

of transformer, 173

of transmission line, 165.

not vector product, 42.

of shunt motor, approximated, 189.

with small quantities, 194.

Probability calculation, 181.

Product series, 274.

of trigonometric functions, 102.

Projection, defining cosine function,

94.

Projector, defining sine function, 94.

Quadrants, sign, of trigonometric

functions, 96.

Quadrature numbers, 13.

Quarter scale, 260.

Quaternions, 22.

R

Radius vector of general number, 28.

Range of convergency of series, 56.

Rational equation of curve, 210.

function, 266

Rationality of potential SGriea, 214.

Real number, 26.

Rectangular co-ordinates of general

number, 25.

Reduction to absolute values, 48.

Relations of hyperbolic, trigono-

metric and exponential func-

tions, 280.

Relativcness of small quantities, 188.

Reliability of numerical calculations,

261.

Resistance, 65

Resolution of vectors, 29.

Reversal by negative unit, 14.

Reverse function, 265.

Right triangle defining trigonometric

functions, 94.

Ripples in wave, 45.

Roots of general numbers, 45.

"with small quantities, 194.

of unit, 18, 19, 46.

Rotation by negative unit, 14.

by'quadrature unit, 14.

Saw-tooth wave, 246.

Scalar, 26, 28, 30.

Scale in curve plotting, proper and

improper, 259, 212.

full, double, half, etc., 260.

Secant function, 98.

Secondary effects, 210.

phenomena, 233.

Series, exponential, 71.

infinite, 52.

trigonometric, 106.

Shape of curves, 212.

proper in plotting, 259.

of exponential curve, 226, 229.

of function, by curve, 257.

of hyperbolic functions, 231.

of parabolic and hyperbolic curves,

217.

Sharp zero wave, 246.

Short circuit current of alternator,

approximated, 195.

Sign error, 264.

of trigonometric functions, 95.

Simplification by approximation, 187.

Sine-amplitude, 270.

component of wave, 121, 125.

function, 94.

series, 82.

versus function, 98.

Sinn function, 276.

Slide rule accuracy, 254.

Small quantities, approximation, 187,

Squares, least, method of, 179, 186.

Special functions, 273.

Steam path of turbine, 33.

Subtraction, 1.

of general number, 28.

of trigonometrie functions, 102.

Summation series, 274.

Surging ofsynchronousmachines, 272.

Supplementary angles in trigonomet-

ric functions, 99.

Symmetrical curve maximum, 150.

periodic function, 117.

wave, 117.
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Tabular form of calculation, 249.

Tangent function, 94.

Taylor's series with small quantities,

199.

Temperature wave, 131.

Temporaryuse of potential series, 216.

Terminal conditions of problem, 69.

Terms, constant, of empirical curves,
232.

in exponential curve, 22S.

with exponential curve, 227.

in. parabolic and hyperbolic

curves, 225.

of infinite series, 53.

Theorem, binomial, infinite series,

59

Thermomotive force wave, 133.

Theta functions, 271. &
Third harmonic, separation, 136.

Torque of fan motor by potential

series, 215.

Transient current curve, evaluation,
239.

phenomena, 106.

Transmission line calculation, 249.

equations, approximated, 204.

Triangle, defining trigonometric func-

tions, 94.

trigonometric relations, 106.

Trigonometric and exponential func-

tions, relation, 83.

functions, 94, 275.

series, 82.

with small quantity, 198.

integrals and functions, 269.

Trigonometric series, 106.

calculation, 114, 116, 139.

Triple harmonic, separation, 136.

peaked wave, 246.

scale, 260.

Tungsten filament, volt-ampere char-

acteristic, 233.

Turbine, steam path, 33.

U
IMvalent functions, 106.

Unsymmetric curve maximum, 151.

wave, 138.

Values of trigonometric functions,
101.

Vector analysis, 32.

multiplication, 39.

quantity, 32.

see General number,

representation by general number,
29.

Velocity diagram of turbine steam

path, 34.

functions of electric field, 275.

Versed sine and cosine functions, 98.

Volt-ampere characteristic of magnet-
ite arc, 237.

of tungsten filament, 233.

Zero values of curve, 211.

of empirical curves, 232.
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