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PREFACE.

Taz following work embodies the subject-matter of a lecture
course which I have given to the junior and scnior clectrical
engincering students of Union University for a number of
years.

It is gencrally conceded that a fair knowledge of mathe-
matics is necessary to the engineer, and especially the clectrical
engineer.  For the latter, however, some branches of mathe-
maties are of fundamental importance, as the algebra of the
general number, the exponential and trigonometric series, cte.,
which are seldom adequatcly treated, and often not taught at
all in the usual text-books of mathematics, or in the college
course of analytic geometry and caleulus given to the engineer-
ing students, and, therefore, electrical engineers often possess
little knowledge of these subjects. As the result, an electrical
engincer, even if he possess a fair knowledge of mathematics,
may often find difficulty in dealing with problems, through lack
of familiarity with these branches of mathematics, which have
become of importance in electrical engincering, and may also
find difficulty in looking up information on these subjects.

In the same way the college student, when beginning the
study of clectrical engineering theory, after completing his
general course of mathematics, frequently finds himself sadly
deficient in the knowledge of mathematical subjects, of which
a complete familiarity is required for effective understanding
of electrical cngincering theory.. It was this experience which
led me some years ago to start the course of lectures which
is reproduced in the following pages. I have thus attempted to
bring together and diseuss explicitly, with numerous practical
applications, all those branches of mathematics which are of
special importance to the electrical engineer. Added thereto
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vi PREF.ACE.

arc a number of subjeets which experience has shown me
to be important for the effective and expeditious exceution of
clectrical engineering caleulations.  Mere theorctical knowledge
of mathematics is not sufficient for the engineer, but it must
be accompanied by ability to apply it and derive results—to
carry out numerical caleulations. It s not sufficient 1o know
how a phenonienon oecurs, and low it may be caleulated, but
very often there is a wide gap between this knowledge and the
ability to carry out the caleulation; indeed, frequently an
attempt to apply the theoretical knowledge to derive numerical
results leads, even in gimple problems, to apparently hopeless
complication and almost endless caleulation, so that all hope
ol getting reliable results vanishes. Thus considlerable space
has been devoted to the discussion of methods of caleulation,
the use of curves and thelr evaluation, and other kindred
subjects requisite for effective engineering work.

Thus the following work is not intended as a complete
eourse in mathematics, but as supplementary to the gencral
college course of mathematics, or to the gencral knowledge of
mathematics which ¢very engineer and really every cducated
man should possess.

In ilustrating the mathematical discussion, practical
examples, usually taken from the field of eloctrical engineer-
ing, have been given and discussed. These are sufficiently
numerous that any example dealing with a phenomenon
with which the reader is not yel familiar may be omitted and
taken up at a later time.

As appendix s given a descriptive outline of the intro-
duction to the theory of functions, since the electrical engincer
should be familiar with the gencral relations belween the
different functions which he mects.

In relation to “ Theoretical Elements of Electrical Engincer-
ing,” “Theory and Calculation of Alternating Current Phe-
nomena,” and “ Theory and Caleulation of Transient Elcctric
Phenomena,” the following work is intended as an introduction
and explanation of the mathematical side, and the most cfficient
method of study, appears to me, to start with “ Electrical
Enginecring Mathematics,” and after ontering its thind
chapter, to take up the reading of the first seetion of “ Theo-
retieal Elements,” and then parallel the study of “ Electrical
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Engineering Mathematics,” *“ Theoretical Elements of Electrical
Enginecring,” and “ Theory and Caleulation of Alternating
Current Phenomena,” together with selected chapters from
“Theory and Calculation of Transient Electric Phenomena,”
and after this, once more systematically go through all four
hooks, -
CHarLEs P, STEINMETZ.
Scunnecrany, N. Y.,
December, 1910,
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ENGINEERING MATHEMATICS.

CHAPTER 1.

THE GENERAL NUMBER.

A. THE SYSTEM OF NUMBERS.
Addition and Subtraction.

1. From the operation of counting and measuring arose the
art of figuring, arithmetic, algebra, and finally, more or less,
the entire structure of mathematics.

During the development of the human race throughout the
ages, which is repeated by every child during the first years
of life, the first conceptions of numerical values were vague
and crude: many and few, hig and little, large and small.
Later the ability to count, that is, the knowledge of numbers,
developed, and last of all the ability of measuring, and even
up to-day, measuring is to a considerable extent done by count-
ing: steps, knots, etc.

From counting arose the simplest arithmetical operation—
.addition. Thus we may count a bunch of horses:

1) 2) 31 4) 5’

and then count a second bunch of horses,

now put the second bunch together with the first one, into one
bunch, and count them. That is, after counting the horses
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of the first bunch, we continue to count those of the second

buneh, thus:
1; 2: 3; 4) 5:—61 7: 87

which gives addition,

5+3=8;
or, in general,

atb=c.

We may take away again the second bunch of horses, that
means, we count the entire bunch of horses, and then count
off those we take away thus:

1,2 34,5 6,7 87,6, 5;
which gives subtraction,

or, in general,

The reverse of putting a group of things together with
another group is to take a group away, thercfore subtraction
is the reverse of addition.

2. Immediately we notice an essential difference hetween
addition and subtraction, which may be illustrated by the
following examples:

Addition: 5 horses+3 horses gives 8 horses,
Subtraction: 5 horses —3 horses gives 2 horseg,
Addition: 5 horses+7 horses gives 12 horses,
Subtraction: 5 horses—7 horses is impossible.

From the above it follows that we can always add, but we
cannot always subtract; subtraction is not always possible;
it is not, when the number of things which we desire to sub-
tract is greater than the number of things from which we
desire to subtract.

The same relation obtains in measuring; we may measure
a distance from a starting point 4 (Fig. 1), for instance in steps,
and then measure & second distance, and get the total distance
from the starting point by addition: 5 steps, from 4 to B,
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then 3 steps, from b5 to C, gives the distance from 4 to 0, as
8 steps.

5 steps+3 steps=8 steps;

[@X: T}

Fra. 1. Addition.

or, we may step off a distance, and then step back, that s,
subtract another distance, for instance (Fig. 2),

5 steps —3 steps=2 steps;

that is, going 5 steps, from A to B, and then 3 steps back,
from B to C, brings us to C, 2 steps away from 4.

—
e
o1 28 45
A ¢ 3B

Fic. 2. Subtraction.

Trying the case of subtraction which was impossible, in the
example with the horses, 5 steps 7 steps=? We go from the
starting point, 4, 5 steps, to B, and then step back 7 steps;
here we find that sometimes we can do it, sometimes we cannot
do it; if back of the starting point 4 is a stone wall, we cannot
step back 7 steps. If A is a chalk mark in the road, we may
step back beyond it, and come to C'in Fig. 3, In the latter case,

R —
1 1 2 3 4

I2Y 2
>P
¢

Fia. 3. Subtraction, Negative Result.

at C we are again 2 steps distant from the starting point, just
as in Fig. 2. That is,

5-3=2 (Fig. 2),
5-7=2 (Fig. 3).

In the case where we can subtract 7 from 5, we get the same
distance from the starting point as when we subtract 3 from 5,
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but the distance AC in Fig. 3, while the same, 2 steps, as
in Fig. 2, is different in character, the one is toward the left,
the other toward the right. That means, we have two kinds
of distancc units, those 1o the right and those to the left, and
have to find some way to distinguish them. The distance 2
in Fig. 3 is toward the left of the starting point 4, that is,
in that direction, in which we step when subtracting, and
it thus appears natural to distinguish it from the distance
2 in Fig. 2, by calling the former —2, while we call the distance
ACin Fig. 2: +2, sinee it is in the dircction from A, in which
we step in adding.

This leads to a subdivision of the systen of absolute numbers,

1,23...
into two classes, positive numbers,
+1, 42, 43, ...:
and negative numbers,
-1, =2, =3, ...

and by the introduction of negative numbers, we can always
carry out the mathematical operation of subtraction:

c—b=aq,

and, if b is greater than ¢, o merely becomes & negative number.

3. We must therefore realize that the negative number and
the negative unit, -1, is a mathematical fiction, and not in
universal agreement with experience, as the ahbsolute number
found in the operation of counting, and the negative numiber
does not always represent an cxisting condition in practical
experience.

In the application of numbers to the phenomena of nature,
we sometimes find conditions where we can give the negative
number a physical meaning, expressing a relation as the
reverse to the positive number; in other cases we cannot do
this. For instance, 5 horses —7 horses= -2 horses has no
physical meaning. There exist no negative horses, and at the
best we could only express the relation by saying, 5 horseg =7
horses is impossible, 2 horses are missing.
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In the same way, an illumination of 5 foot-candles, lowered
by 3 foot-candles, gives an illumination of 2 foot-candles, thus,

5 foot-candles —3 foot-candles=2 foot-candles.

If it is tried to lower the illumination of 5 foot-candles by 7
foot-candles, it.will be found impossible; there cannot be a
negative illumination of 2 foot-candles; the limit is zero illumina-
tion, or darkness

From a string of 5 feet length, we can cut off 3 feet, leaving
2 feet, but we cannot cut off 7 feet, leaving ~2 feet of string.

In these instances, the negative number is meaningless,
a mere imaginary mathematical fiction.

If the temperature is 5 deg. cent. above freezing, and falls
3 deg., it will be 2 deg. cent. above freezing  If it falls 7 deg
it will be 2 deg. cent. below freezing. The one case is just as
real physically, as the other, and in this instance we may
cexpress the relation thus:

+5 deg. cent. =3 deg. cent. = +2 deg. cent
+5 deg cent. -7 deg. cent.= -2 deg. cent.;

that is, in temperature measurcments by the conventional
temperature scale, the negative numbers have just as much
physical existence as the positive numbers.

The same is the case with time, we may represent future
time, from the present as starting point, by positive numbers,
and past time then will be represented by negative numbers.
But we may cqually well represent past time by positive num-
bers, and future times then appear as negative numbers. In
this, and most other physical applications, the negative number
thus appears equivalent with the positive number, and inter-
changeable: we may choose any direction as positive, and
the roverse direetion then is negative. Mathematically, how-
ever, a ifference exists between the positive and the negative
number, the positive unit, multiplied by itself, remains a pos-
itive unit, but the negative unit, multiplied with itself, does
not remain a negative unit, but becomes positive:

(+D)x(+1)=(+1);
(=1)x(~=1)=(+1), and not =(-1).
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Starting from 5 deg. northern latitude and going 7 deg.
south, brings us to 2 deg. southern latitude, which may he

expresses thus,
+5 deg. latitude -7 deg. latitude= —2 deg. latitude.

Therefore, in all cases, where there are two opposite dirce-
tions, right and left on a line, north and south lafitude, east
and west longitude, future and past, assets and liabilitics, cte.,
there may be application of the negative number; in other cases,
where there is only one kind or dircetion, counting horses,
measuring illumination, ete., there is mo physical meaning
which would be represented by a negative number. There
aze still other cases, where a meaning may sometimes be found
and sometimes not; for instance, if we have 5 dollars in our
pocket, we cannot take away 7 dollars; il we have 3 dollars
in the bank, we may be able to draw out 7 dollars, or we may
not, depending on our eredit. In the first case, 5 dollars -7
dollars is an impossibility, while the second case 5 dollars =7
dollars=2 dollars overdraft.

In any case, however, we must realize that the negative
number is not a physical, but a mathematical conception,
which may find a physical representation, or may not, depend-
ing on the physical conditions to which it is applied. The
negative number thus is just as imaginary, and just as real,
depending on the case to which it is applied, as the imaginary
number v/ ~1, and the only difference is, that we have become
familiar with the negative number at an carlier age, where we
wera less critical, and thus have taken it for granted, hocome
familiar with it by use, and usually do not realize thas it is
o mathematical conception, and not a physical reality. When
we first learned it, however, it was quite a step to become
accustomed to saying, 5~7=—2, and not simply, 5-7 is
impossible.

Multiplication and Division.

4. If we have a bunch of 4 horses, and another bunch of 4
horses, and still another bunch of 4 horses, and add together
the three bunches of 4 horses each, we get,

4 horses +4 horses +4 harses =12 horses;



THE GENERAL NUMBER. 7

or, as we express it,
3 X4 horses=12 horses.

The operation of multiple addition thus leads to the next
operation, multiplication. Multiplication is multiple addi-
tion,

bXa=c,

thus means
e+atat... (bterms)=c.

Just like addition, multiplication can always be carried
out. )

Three groups of 4 horses each, give 12 horses. Inversely, if
we have 12 horscs, and divide them into 3 equal groups, each
group contains 4 horses. This gives us the reverse operation
of multiplication, or diwston, which is written, thus:

12 horses

3 =4 horses;

ar, in general,
‘.
5=
If we have a bunch of 12 horses, and divide it into two equal
groups, we get 6 horses in each group, thus:

12 horses
5——="6 horses,

if we divide unto 4 equal groups,

2 horses
1 eres=3 horses.

If now we attempt to divide the bunch of 12 horses into 5 equal
groups, we find we cannot do it; if we have 2 horses in each
group, 2 horses are left over; if we put 3 horses in each group,
we do not have enough to make 5 groups; that is, 12 horses
divided by 5 is impossible; or, as we usually say; 12 horses
divided by 5 gives 2 horses and 2 horses left over, which is
written,

% =2, remainder 2.
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Thus it is seen that the reverse operation of multiplication,
or division, cannot always he carried out.

5. If we have 10 apples, and divide them into 3, we get 3
apples in each group, and onc apple left over.

10 .
§=3, remainder 1,
we may now cut the left-over apple into 3 cqual parts, in which
case,

10 1,

3= 3+ 3= 33

In the same manncr, if we have 12 apples, we can divide

into 3, by cutting 2 apples each into 5 cqual picees, and get
in each of the 5 groups, 2 apples and 2 picces.

To be able to carry the operation of division through for
all numerical values, makes it necessary to infroduce a new
unit, smaller than the original unit, and derived as a part of it.

Thus, if we divide a string of 10 feet length into 3 cqual
parts, cach part contains 3 feet, and 1 foot is left over. One
foot is made up of 12 inches, and 12 inches divided into 3 gives
4 inches; hence, 10 fect divided by 3 gives 3 feet 4 inches,

Division leads us to a new form of numbers: the fraction,

The fraction, however, is just as much a mathematical con-
ception, which sometimes may he applicable, and sometimes
not, as the negative numher. In the above instance of 12
horses, divided into 5 groups, it is not applicable.

12 horses
5

is impossible; we cannot have fractions of horses, and what
we would get in this attempt would be 5 groups, cach com-
prising 2 horses and some pieces of carcass.

~ Thus, the mathematical conception of the fraction is ap-
plicable to those physical quantities which can be divided into
smaller units, but is not applicable to those, which are indi-
visible, or individuals, as we usually call them,

=22 horses
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Involution and Evolution.

6. If we have a product of several equal factors, as,

X4X4=64,
it is written as, 4$3=04;
or, in general, a=c.

The operation of multiple multiplication of equal factors
thus leads to the next algebraic operation—involution just as
the operation of multiple addition of equal terms leads to the
operation of multiplication.

The operation of involution, defined as multiple multiplica-
tion, requires the exponent b to be an integer number; b is the
number of factors.

Thus 4-2 has no immediate meaning; it would by definition
be 4 multiplied (-3) times with itself.

Dividing continuously by 4, we get, 48 +4=45;, 45+4=44
44 +4=43; etc., and if this successive division by 4 is carried
still further, we get the following series:

43 4xix4
= = =42
Z I 4x4 4
42 4x4
S A =4t
™70 4 4
41 4
——— E = 0
11 ! 4
40 1 1
I —_ —4-1
71T T 4
4-1 1 1 1
——— . =42
4—4'4 4x4 4 42
4-2 1 1 1
——— - iy [
et TmoatE
. 1
or, in general, a—b=a,
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Thus, powers with negative exponcnts, as ¢~ are the
) 1
reciprocals of the same powers with positive exponents: -3.
7. From the definition of involution then follows,
CLb Xt = ab+n)
because a* means the product of b equal factors a, and a* the
product of » equal factors g, and o Xa™ thus is product hav-
ing b+n equal factors a. For instance,
43%42= (4 X4 X4) X (4 X4) =4
The question now arises, whether by multiple involution
we can reach any further mathematical operation. For instance,
wp=1,
may be written,
(@R =43%43
~(AXAX4) X (4X4XL);
=46;
and in the same manner,
(ab)n - abn;
that is, a power o? is raised to the n® power, by multiplying
its exponent. Thus also,
(@r=(a");
that is, the order of involution is immaterial.

Therefore, multiple involution leads to no further algcbraie

operations.
8. =64,

that is, the product of 3 equal factors 4, gives 64.

Inversely, the problem may be, to resolve 64 into a product
of 3 equal factors. Each of the factors then will be 4. This
reverse operation of involution is called evolution, and is written

thus,
Vod=4;

Ve=a.

or, more general,
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T N
/¢ thus is defined &s that number a, which, raised to the power
b, gives ¢; or, in other words,

(e =c.

Involution thus far was defined only for integer positive
and negative exponents, and the question arises, whether powers

1 n
with fractional exponents, as ¢b or ¢?, have any meaning.
Wiiting,

1\ b 1
%) =T =gl=,
1
it is seen that ¢b is that number, which raised to the power b,

1
gives ¢; that is, ¢8 is \b/c_, and the operation of evolution thus
¢an be expressed as involution with fractional exponent,

1
b=\,
and

o,

and

Obviously then,

Irrational Numbers.

9. Involution with integer exponents, as 4°=64, can always
be carried out. In many cases, evolution can also be carried

out. For instance,
/b4=4,

’{H=2;
while, in other cases, it cannot be carried out. For instance,

=2,
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Attempting to caleulate 42, we get,
B=14142135. ..,

and find, no matter how far we carry the caloulation, we never
come to an end, but get an endless decimal fraction; that is,
1o number exists in our system of numbers, which can express
{2, but we can only approximate it, and carry the approxima-
tion to any desired degree; some such numbers, as 7, have been
caleulated up to several hundred decimals.

Such mumbers as 2, which cannot be expressed in any
finite form, but merely approximated, are called drrational
numbers. The name is just as wrong as the name negative
number, or imaginary number. There is nothing irrational
about {2. If we draw a square, with 1 foot as side, the length
of the diagonal is 42 feet, and the length of the diagonal of
a square obviously is just as rational as the length of the sides.

Trrational numbers thus are those real and existing numbers,
which cannot be expressed by an integer, or a fraction or finite

decimal fraction, but give an endless ecunal fraction, which
(loes not repeat.

Endless decimal fractions frequently are met when express-
ing common fractions as decimals. These decimal representa-
tions of common fractions, however, arc periodic decimals,
that is, the numerical values periodically repeat, and in this
respect are different from the irrational number,and can, due
to their periodic nature, be converted into a finite common
fraction. For instance, 2.1387387. . ..

Let
= 21387387...;
then,
1000 =2138.7387387. . . .,
subtracting,
999 =2136.6
Hence,

_21366 21366 1187 77

999 9990 ~ 555 5a5'
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Quadrature Numbers,

10. The following equation,

+d=(+2),
may be written, since,
(+2) X (+2)=(+4);
but also the equation,

may be written, since
(=2)+ (=2 =(+4).

Therefore, 4+4 has two values, (+2) and (=2), and in
evolution we thus first strike the interesting feature, that one
and the same operation, with the same numerical values, gives
several different results.

Since all the positive and negative numbers are used up
as the square roots of positive numbers, the question arises,
What is the square root of a negative number? For instance,
474 cannot be —2,as —2 squared gives 4, nor can it be +2.

==X (=1)=+24-1, and the question thus re-
solves itself into: What is {—1?

- We have derived the absolute numbers from experience,
for instance, by measuring distances on a line Fig. 4, from a
starting point 4.

-5 -4 -8 =2 -1 0 41 42 43 44 45
i B Bt Gt —
C A B

Fic 4 Negative and Positive Numbers.

Then we have seen that we get the same distance from A,
twice, once toward the right, once toward the left, and this
has led to the subdivision of the numbers into positive and
negative nurmbers. Choosing the positive toward the right,
in Fig. 4, the negative number would be toward the left (or
inversely, choosing the positive toward the left, would give
the negative toward the right).

If then we take a number, as +2, which represents a dis-
tance AB, and multiply by (1), we get the distance AC= -2
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in opposite direction from A, Inversely, if we take AC=-2,
and multiply by (=1), we get AB=+2; that is, multiplica-
tion by (—1) reverses the direction, turns it through 180 deg.

TF we multiply +2 by /=1, we get +2v'—1, a quantily
of which we do not yet know the meaning. Multiplying ouce
more by V=1, we get 19X/ TIXV =1=-2; that Is,
multiplying a number +2, twice by v/ 1, gives a rotation of
180 deg., and multiplication by v/ "~1 thus means rotation by
half of 180 deg.; or, by 90 deg., and +2v/=1 thus is the dis-

=

F16. 5,

tance in the direction rotated 90 deg. from +2, or in quadrature
direction AD in Fig. 3, and such numbers as +94/ =1 thus
are quadrature numbers, that is, represent direction not toward
the Tight, as the positive, nor toward the left, as the negative
numbers, but upward or downward.

For convenience of writing, v/ —1 is usually denoted hy
the letiter .

11. Just as the operation of subtraction introduced in the
negative numbers a new kind of numbers, having a direction
180 deg. different, that is, in opposition to the positive num-
bers, so the operation of cvolution introduces in the quadrature
number, as 2j, & new kind of number, having & direction 90 deg.
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different; thatis, at right angles to the positive and the negative
numbers, as illustrated in Fig. 6.

Ag seen, mathematically the quadrature number is just as
real as the negative, physically sometimes the negative number
has a meaning—if two opposite directions exist—; sometimes it
has no meaning—where one direction only exists. Thus also
the quadrature number sometimes has a physical meaning, in
those cases where four directions exist, and has no meaning,
in those physical problems where only two directions exist.

,*j
..+4j
143
149

.+]‘

TE b b o1 0] 1 45 w5

=j
Fic. 6.

For instance, in problems dealing with plain geometry, as in
electrical engineering when discussing alternating currert
vectors in the plane, the quadrature numbers represent the
vertical, the ordinary numbers the horizontal direction, and then
the one horizontal direction is positive, the other negative, and
in the same manner the one vertical direction is positive, the
other negative. Usually positive is chosen to the right and
upward, negative to the left and downward, as indicated in
Fig. 6. In other problems, as when dealing with time, which
has only two directions, past and future, the quadrature num-
bers are not applicable, but only the positive and negative
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numbers. In still other problems, as when dealing with illumi-
nation, or with individuals, the negative numbers are not
applicable, but only the absolute or positive numbers.

Just as multiplication by the negative unit (—1) means
rotation by 180 deg., or reverse of direction, so multiplication
by the quadrature unit, j, means rotation by 90 deg,, or change
from the horizontal to the vertical dircction, and inversely.

General Numbers.

12. By the positive and negative numbers, all the points of
a line could be represented numerically as distances from a
chosen point 4.

Fic. 7. Simple Vector Disgram.

By the addition of the quadraturc numbers, all points of
the entire plane can now be represented as distances from
chosen coordinate axes z and y, that is, any point P of the
plane, Fig. 7, has a horizontal distance, 0B=+3, anl a
vertical distance, BP=+2j, and thercfore is given by a
combination of the distances, 0B=+3 and BP=+2/. For
convenience, the act of combining two such distances in quad-
rature with each other can be expressed by the plus sign,
and the result of combination thereby expressed by 0B +BP
=3+2
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Such a combination of an ordinary number and a quadra-
turc number is called a general number or a compler quantity.

The quadrature number b thus enormously extends the
field of usefulness of algebra, by affording a numerical repre-
sentation of two-dimensional systems, as the plane, by the
general number a+5b. They are cspecially uscful and impor-
tant in clectrical engincering, as most problems of alternating
currents lead to vector representations in the plane, and there-
fore can be represented by the gencral number ¢-+7b; that is,
the combination of the ordinary number or horizontal distance
a, and the quadrature number or vertical distance 5b.

N

Fi6. 8. Vector Diagram.

Analytically, points in the plane are represented by their
two coordinates: the horizontal coordinate, or abscissa z, and
the vertical coordinate, or ordinate y. Algebraically, in the
general number a+b both coordinates are combined, o being
the 2 coordinate, b the y coordinate.

Thus in Fig. 8, coordinates of the points are,

P =43, y=+2 Py: z=+43 y=-2,
Py: z==3, y=+2 Pyz=-3 y=-2
and the points are located in the plane by the numbers:
P,=342 P;=3-2 Py=-3+2 P;=-3-2
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13. Since already the square root of negative numbers has
extended the system of numbers by giving the quadrature
number, the question arises whether still further cxtensions
of the system of numbers would result from higher roots of
negative quantitics.

For instance,

{=1=?

The meaning of ¥—1 we find in the same mauner as that
of {=1.

A positive number @ may be represented on the horizontal
axis as P.

Multiplying a by =1 gives a4/~1, whose meaning we do
not yet know. Multiplyingagain and again by =1, wo get, after
four multiplications, a(4—1)t= ~a; that is, in four steps we
have been carried from a to —a, a rotation of 180 deg., and
=1 thus means a rolation of lZ—q=45 deg., therefore, a4 ~1
is the point Py in Fig. 9, at distance o from the coordinate
center, and under angle 45 deg., which has the coordinates,

a a. .
T=— and y=—=i; or, is represented by the general number,
A2 V2

P 1=0 ‘\‘/'5
=1, however, may also mean a rotation by 135 deg. to Py,
since this, repeated four times, gives 4x135=540 deg,,
or the same as 180 deg., or it may mean a rotation by 225 deg.
or by 315 deg.  Thus four points exist, which represent a4 —1;
the points: ©

Pt Pl
~1- +1-9
P e

Therefore, §—1 is still a general number, congisting of an
ordinary and a quadrature number, and thus does not extend
our system of numbers any further.



THE GENERAL NUMBER. 19

_In the same manrer, /41 can be found; it is that number,
which, multiplied » times with itself, gives +1. Thus it repre-

. 360 .
sents & rotation by - deg., or any multiple thereof; that is,

. . 360
the z coordinate is cos qX-TT, the ¥ coordinate sin qx§6—0,
n
and,

i
V+1=cos q><3—ng+j sin qxg—gg,

where ¢ Is any integer number.

A
P, Py
a 1)
185°
\ q45° N
995° e p 7
315
a A
Py P

Fia. 9, Vector Diagram m‘j—:i.

There are therefore n different values of %/ +1, which lie
equidistant on a circle with radius 1, as shown for n=9 in
Fig. 10.

14. In the operation of addition, a+b=c, the problem is,
a and b being given, to find c.

The terms of addition, o and b, are interchangeable, or
equivalent, thus: a+b=b+a, and addition therefore has only
one reverse operation, subtraction; ¢ and b being given, o is
found, thus; a=c¢—b, and ¢ and a being given, b is found, thus:
b=c—q. Bither leads to the same operation—subtraction.

The same is the case in multiplication; aXb=c. The
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factors ¢ and b arc interchangeable or equivalent; aXb=bXa
N c. ¢

and the reversc operation, division, =75 the same as b=;.

In involution, however, ab=c, the two numbers a and b
arc not interchangeable, and o is not equal to d°. For instance
43=64 and 3*=81.

Therefore, involution hag two reverse eperations:

(a) ¢ and b given, o to be found,

)
a=n'c;
or cvolution,

F1a.10. Points Determined by VL.

(b) ¢ and a given, b to be found,

b=log, ¢;
or, logarithmation.

Logarithmation.

15. Logarithmation thus is one of the reverse operations
of involution, and the logarithm is the exponent of involution.

Thus & logarithmic expression may be changed to an cx-
ponential, and inversely, and the laws of logarithmation are
the laws, which the exponents obey in involution.

1. Powers of equal base are multiplied by adding the
exponents: a*Xan=a**,  Therefore, the logarithm of a
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product is the sum of the logarithms of the factors, thus log, ¢ Xd
=log, ¢ +log, d.

2. A power is raised to a power by multiplying the exponents:
(=g,

Therefore the logarithm of & power is the exponent times
the logarithm of the hase, or, the number under the logarithm
is raised to the power #, by multiplying the logarithm by n:

log, ¢»=n log, ¢,

log, 1=0, because a®=1. If the base a >1, log, ¢ is positive,
if ¢>1, and is negative, if ¢<1, but >0. The reverse is the
case, if o<1, Thus, the logarithm traverses all positive and
negative values for the positive values of ¢, and the logarithm
of a negative number thus can be neither positive nor negative.

log, (~¢)=log, ¢+logs (—1), and the question of finding
the logarithms of negative numbers thus resolves itself into
finding the value of log, (—1).

There are two standard systems of logarithms one with
the base e=2.71828.. % and the other with the base 10 is
used, the former in algebraic, the latter in numerical caleula-
tions. Logarithms of any base a can easily be reduced to any
other base.

For instance, to reduce b=log, ¢ to the base 10: b=log, ¢
means, in the form of involution: a®=¢. Taking the logarithm
hereof gives, b logip a=logio ¢, hence,

logyp ¢ logio ¢
= ; log, ¢= .
logio @ logio a

Thus, regarding the logarithms of negative numbers, we need
to consider only logio (—1) or log, (~1).

It jz=log, (=1), then &= —1,
and since, as will be seen in Chapter II,
. #F=cos 2+ sin z,
it follows that,

cosz+jsin g = -1,

* Regarding ¢, see Chapter IT, p. 71.
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Hence, z=n, or an odd multiple thercof, and
loge( =1 =jz(2n+1),

where n is any integer number.
Thus logarithmation also leads to the quadrature number
i, but to no further extension of the system of numbers.

Quaternions.

16. Addition and subtraction, multiplication and division,
involution and evolution and logarithmation thus represent all
the algebraic operations, and the system of numbers in which
all these operations can be carried out under all conditions
is that of the general number, a+gb, comprising the ordinary
number ¢ and the quadrature number 5. The number « as
well as b may be positive or negative, may be integer, fraction
or irrational.

Since by the infroduction of the quadrature number jb,
the application of the system of numbers was extended from the
line, or more gencral, onc-dimensional quantity, to the planc,
or the two-dimensional quantity, the question arises, whether
the system of numbers could be still further extended, into
three dimensions, so as to represent space geometry. While
in eloctrical cngincering most problems lead only to plain
figures, vector diagrams in the plane, occasionally space figures
would be advantageous if they could be expressed algebra-
ically. Especially in mechanies this would be of importance
when dealing with forees as vectors in spacc.

In the quaternion caleulus methods have heen devised to
deal with spacc problems. The quatcrnion caleulus, however,
has not yet found an engincering application comparable with
that of the general number, or, as it is frequently called, the
complez quantity. The reason is that the quaternion is not
an algebraic quantity, and the laws of algebra do not uniformly
apply to it.

17. With the rectangular coordinate system in the planc,
Fig. 11, the z axis may represent the ordinary numbers, the y

axis the quadrature numbers, and multiplieation by j=" -1
represents rotation by 90 deg. For instance, if Py is a point
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a+7b=3+2fs, the point Py, 90 deg. away from P, would
be:
Py=iP=j(a+b) =13 +2j)= -2+3],

To extend into space, we have to add the third or z axis,
as shown in perspective in Fig. 12. Rotation in the plane zy,
by 90 deg., in the direction +z to +y, then means multiplica-
tion by 4. In the same manner, rotation in the yz plane, by
90 deg., from +y to +z, would be represented by multiplica-

#i
by

Bej Py

4 0"’=j

o
/Y

<
F1e. 11. Vectors in 2 Plane.

tion with A, and rotation by 90 deg. in the 2z plane, from +2
to +2 would be presented by £, as indicated in Fig. 12.

Al three of these rotors, 7, b, k, would be v/—1, since each,
applied twice, reverses the direction, that is, represents multi-
plication by (~1).

As seen in Fig. 12, starting from +z, and going to +y,
then to +¢, and then to +z, means successive multiplication
by §, h and k, and since we come back to the starting point, the
total operation produces no change, that is, represents mul-
tiplication by (+1). Hence, it must be,

o= +1.
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Algebraically this is not possible, sinee each of the three quan-

tities is /=1, and vV =I1XV=1xV —=1=-v=1, and not
(+1).

+y
A

-2

bat’s +2

+2
~y

Fie. 12, Vectors in Space, fhk=+1,

If we now proceed again from z, in positive rotation, but
first turn in the 2z plane, we reach by multiplication with %
the negative 2 axis, ~, as seen in Fig. 13. Further multiplica-

+y
A

~2
h

I

+z
=y

Fra. 13, Vectors in Space, khj=~1.

tion by A brings us to +, and multiplication by § to —z, and
in this case the result of the three successive rotations by
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90 deg,, in the same direction as in Fig. 12, but in a different
order, is a reverse; that is, represents (—1). Therefore,

khj= -1,
and hence,
jhk= —khj.

Thus, in vector analysis of space, we see that the fundamental
law of algebra,
aXb=bXa,

does not apply, and the order of the factors of a product is
not immaterial, but by changing the order of the factors of the
product shk, its sign was reversed. Thus common factors
cannot be canceled as in algebra; for instance, if in the correct
expression, jhk="Fkhj, we should cancel by, % and k, as could be
done in algebra, we would get +1= —1,which is obviously wrong.

For this reason all the mechanisms devised for vector analysis
in space have proven more difficult in their application, and
have not yet heen used to any great extent in engineering
practice.

B. ALGEBRA OF THE GENERAL NUMBER, OR COMPLEX
QUANTITY.

Rectangular and Polar Coordinates.

18. The general number, or complex quantity, a+3b, is
the most general expression to which the laws of algebra apply.
It therefore can be handled in the same manner and under
the same rules as the ordinary number of elementary arithmetic.
The only feature which must be keptin mind is that j2= —1,and
where in multiplication or other operations j2 occurs, it is re-
placed by its value, —1. Thus, for instance,

(a+3b)(c+]d) =ac+jad +7bc +§%bd
=ac¢+jad +7bc ~bd
=(ac —bd) +7(ad +be).
Herefrom it follows that all the higher powers of j can be
eliminated, thus:
o TR Tt Taber
j5= +j: j6= -1, .77= —j} j8= +1
P=4g ... ete

)
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In distinction from the general number or complex quantity,
the ordinary numbers, +a¢ and —q, are occasionally called
scalars, o real numbers. The general number thus consists
of the combination of & scalar or real number and a quadrature
number, or imaginary number.

Since a quadrature number cannot be equal to an ordinary
number it follows that, if two gencral numbers are equal,
their real components or ordinary numbers, as well as their
quadrature numbers or imaginary components must be equal,
thus, if

a+ih=c+id,
then,
e=c¢ and b=d.

Every equation with general numbers thus can he resolved

into two equations, onc containing only the ordinary numbers,
the other only the quadrature numbers. For instance, if

T+jy=5-3],
then,
=5 and y=-3.

19. The best way of getting a conception of the gencral
number, and the algebraic operations with it, is to consider
the gencral number as representing a point in the plane. Thus
the general number a+7b=0+2.5] may be considered as
representing a point P, in Fig. 14, which has the horizontal
distance from the y axis, OA=BP=a=0, and the vertical
distance from the z axis, 0B=AP=b=235.

The total distance of the point P from the coordinate center
0 then is

0P =V 042+ AP2=/G 2.5
Vi 1B=65,

and the angle, which this distance OP makes with the z axis,
is given by

tan 0=
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Instead of representing the general number by the two
components, @ and b, in the form a+b, it ean also be repre-
sented by the two quantities:

The distance of the point P from the center O,

c=Va+b?

and the angle between this distance and the z axis,

tan 0=-b—.
o

Ly

Fic. 14, Rectaagular and Polar Coordinates,

Then referring to Fig. 14,

a=ccos 0 and b=csind,

and the general number a+7b thus can also be written in the
form,
ccos 0 +jsin 6).

The form a+jb expresses the general number by its
rectangular components o and b, and corresponds to the rect-
angular coordinates of analytic geometry; a is the « coordinate,
b the y coordinate.

The form ¢(cos 647 sin 8) expresses the general number by
what may be called its polar components, the radius ¢ and the
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angle 6, and corresponds to the polar coordinates of analytic
geometry. ¢ is frequently called the radius vector or scalar,
0 the phase angle of the gencral number.

While usually the rectangular form a+b is more con-
venient, sometimes the polar form ¢(cos 0+ sin 6) is preferable,
and trangformation from one form to the other therefore fre-
quently applied.

Addition and Subtraction.

20. If 0y +7by=6+2.5 7 is represented by the point Py;
this point is reached by going the horizontal distance a;=0
and the vertical distance by =2.5. If ag+7ba=3+47 is repre-
sented by the point Ps, this point is reached by going the
horizontal distance az=3 and the vertical distance by=4.

The sum of the two general numbers (@ +7b1) + (a2 +1b2) =
(6+2.57) +(3+47), then is given by point Po, which is reachod
by going a horizontal distance cqual to the sum of the hor-
izontal distances of P; and Ps: ao=01+0=6+3=9, and a
vertical distance equal to the sum of the vertical distances of
P, and Py: bo=by+by=2.5+4=6.5, hence, is given by the
general number

ao+bo= (a1 +0z) +(b1 +b)
=0+6.5].
Geometrically, point Py is derived from points Py and Py

by the diagonal OP, of the parallclogeam OP,PoPs, constructed

with OP, and OP; as sides, as scen in Fig. 13,
Herefrom it follows that addition of general numbers
Tepresents geometrical combination by the parallelogram law.
Inversely, if Py represents the number

o +]7?0 =0+ (J5],
and P represents the number
a1 +7b=6+2.5],

the difference of these numbers will be represented by a point
P,, which is reached by going the difference of the horizontal
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distances and of the vertical distances of the points Py and
Py. P, thus is represented by

a:=ay -G1=9 —6=3,
and
by=bo—by=65-25=41

Therefore, the difference of {he two general numbers (ao +jbo)
and (ay +7b;) is given by the general number:
ao +jb2= (Ulo —(11) +](b0 —bl)
=3+4j,
as scen in Fig. 15.

2 P,

ay Pz

Fre. 15, Addition and Subtraction of Vectors.

This difference ag+7bs is represented by one side OP, of
the parallelogram OP1PoPs, which has OP; as the other side,
and 0P, as the diagonal.

Subtraction of general numbers thus geometrically represents
the resolution of a vector OP; into two components 0P; and
OP,, hy the parallelogram law.

Herein lies the main advantage of the use of the general
number in engineering caleulation: If the vectors are represented .
by general numbers (complex quantities), combination and
resolution of vectors by the parallelogram law is carried out by
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simple addition or subtraction of their general numerical values,
that is, by the simplest operation of algebra.

21. General numbers are usually denoted by capitals, and
their rectangular components, the ordinary number and the
quadrature number, by small letters, thus:

A=ay+jas;

the distance of the point which represents the general number A
from the coordinate center is called the absolute value, radius
or scalar of the gencral number or complex quantity. It is
the vector o in the polar representation of the general number:

A=afcos 0+] sin 0),

and is given by a="0,> + 22
The absolute value, or sealar, of the general number is usually
also denoled by small letters, but sometimes by capitals, and
in the latter case it is distinguished from the general number by
using a different type for the latter, or underlining or dotting
it, thus:
A=o+jos;  or A=o+jo
or A=al+ja2; or A=ay+jay
o=VoZ+a? or A=Voi+a?,
and a1 +Hjoe=0(cos 0+7sin 6);
or ay +jag=A(cos 0+7 sin 0).
22, The absolute value, or scalar, of & general number is
always an absolute number, or positive, that is, the sign of the

rectangular component is represented in the angle 6. Thus
referring to Fig. 16,

A=ay+jas=1+3];
gives, a=Vo i ta?=5;
tan §=4=0.75;
0=37 deg.;
and A=5 (cos 37 deg. +7sin 37 deg).
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The expression
4=(11 +jao=4-3]
gives

a=Va?+az*=5;

3
tan 0= ——=-(0.75;
an 7 0.75;

6=—37deg; or =180-37=143 deg.

4

=443 =4 +4 4+ 3
5 5 .
+3j ] H
=% A N[
-1-3 -4 YR

Trc. 16. Representation of General Numbers.

Which of the two values of 4 is the correct one is seen from
the condition a,=a cos 6. As g; is positive, +4, it follows
that cos 6 must be positive; cos (—37 deg.) is positive, cos 143
deg. is negative; hence the former value is correct:

A=5{cos(—37 deg) +7 sin(—37 deg.)}
=5(cos 37 deg. —7 sin 37 deg.).
Two such general numbers as (443j) and (4-3), or,

in general,
(a+) and (e~

are called conjugate numbers. Their product is an ordinary
and not a general number, thus: (a+)(@—7b)=a?+b2
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The expression
A=y +jo,=-443]
gives

a= \/a12+a22=5;
3
tan 0= 1T -0.75;

0= -37 deg. or =180-37=143 deg;

but sinee ay=a cos § is negative, —4, cos 0 must be negative,
hence, =143 deg. is the correct value, and

A=>5(cos 143 deg. +{sin 143 deg.)
=5(—cos 37 deg. +7 sin 37 deg.)

The expression
4=d1 +].(L2 =—4 "3]

gives

a=Va?+a:*=5;
0=37deg,; or =180+37=217 deg.;

but since a1=a cos § is negative, —4, cos  must be negative,
hence §=217 deg. is the correct value, and,

A =5 (cos 217 deg. +7 sin 217 deg.)
=5(— cos 37 deg. — sin 37 deg.)

The four general numbers, +4+3j, +4-3j, —4+3j, and
-4 -3;, have the same absolute value, 5, and in their repre-
sentations as points in & plane have symmetrical locations in
the four quadrants, as shown in Fig. 16.

As the general number A=¢;+jay finds its main usc in
representing vectors in the plane, it very frequently is called
a vector quantity, and the algebra of the general number is
spoken of as vector analysts.

Since the general numbers 4=a;+ju2 can be made to
represent the points of a plane, they also may be called plane
numbers, while the positive and negative numbers, +-a and —g,
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may be called the linear numbers, as they represent the points
of a line,

Example: Steam Path in a Turhine.

23. As an example of a simple operation with general num-
bers one may caleulate the steam path in a two-wheel stage
of an impulse steam turbine,

4y
A x
8

MM
@
DI

//

>t

F16. 17, Path of Steam in a Two-wheel Stage of an Tmpulse Turbine,

Let Fig, 17 represent diagrammatically a tangential seetion
through the bucket rings of the turbine wheels, W; and W,
are the two revolving wheels, moving in the direction indicated
by the arrows, with the velocity s=400 feet per sec. I are
the stationary intermediate buckets, which turn the exhaust
steam from the first bucket wheel W, back into the direction
required to impinge on the second bucket wheel Wy, The
steam jet issues from the expansion nozzle at the speed so=2200
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feet per sec., and under the angle 6p=20 deg., against the first
bucket wheel W.

The exhaust angles of the three successive rows of buckets,
W1, I, and W, are respectively 24 deg., 30 deg. and 45 deg.
These angles are calculated from the section of the bucket
¢xit required to pass the steam at its momentary velocity,
and from the height of the passage required to give no steam
eddies, in a manner which is of no interest here.

As frietion coefficient in the bucket passages may be assumed
k;=0.12; that is, the exit velocity is 1—k,=0.88 of the entrance
velocity of the steam in the buckets.

+

-y

Fra. 18. Vector Diagram of Velocities of Steam in Turbine.

Choosing then as z-axis the dircetion of the tangential
velocity of the turbine whecls, as y-axis the axial direction,
the velocity of the steam supply from the expansion nozzle is

represented in Fig. 18 by a vector 08, of length sp=2200 feet
per sec., making an angle 6p=20 deg. with the z-axis; hence,
can be cxpressed by the general number or vector quantity:
So=so (cos fo+7 sin fo)
=2200 (cos 20 deg. +j sin 20 deg.)
=2070 +7507 ft. per sec.

The velocity of the turbine wheel Wy is s =400 fect per sceond,

and represented in Fig. 18 by the vector 08, in horizontal
direction.



THE GENERAL NUMBER. 35

The relative velocity with which the steam enters the bucket
passage of the first turhine wheel W thus is:

Sl =$0 -8
= (2070 +7507) 400
=1670+7407 ft. per sec.

This vector is shown as 08, in Fig, 18.

The angle ), under which the steam enters the bucket
passage thus is given by

750
tan 01=I6—7[-)=0.450, as 0;=24.3 deg.

This angle thus has to be given to the front edge of the
buckets of the turbine wheel W1,

The absolute value of the relative velocity of steam jet
and turbine wheel Wy, at the entrance into the bucket passage,
is

81="/16702+75(2=1830 ft. per sec.

In traversing the bucket passages the steam velocity de-
creases by friction ete., from the entrance value s; to the
exit value

so=51(1 k) =1830X0.88=1610 ft. per sec.,

and since the exit angle of the bucket passage has been chosen
as 0,=24 deg., the relative velocity with which the steam
leaves the first bucket wheel Wy is represented by a vector
08, in Fig. 18, of length s,=1610, under angle 24 deg. The
steam leaves the first wheel in backward direction, as seen in
Fig. 17, and 24 deg. thus is the angle between the steam jet
and the negative z-axis; hence, f;=180 ~24=156 deg. is the
vector angle. The relative steam velocity at the exit from
wheel W, can thus be represented by the vector quantity

Sz=s2(cos 8+ sin f2)
=1610 (cos 156 deg. +{ sin 156 deg.)
= —1470+655 {.

Since the velocity of the turbine wheel Wy is s=400, the
velocity of the steam in space, after leaving the first turbine
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wheel, that is, the velocity with which the steam enters the
intermediate I, is

Ss=Sa+s
~ (1470 +6557) +400
= ~1070+655/,

and is represented by veetor OS; in Fig, 18.
The direction of this steam jet is given by
635
tan 03= _10—76= —0613,
as
6y=—31.6 deg.; or, 180-31.6=1484 deg.

The latter value is correct, as cos 03 is negative, and sin 83 is
positive.

The steam jet thus enters the intermediate under the angle
of 148.4 deg.; that s, the angle 180 —148.4 =31.6 deg. in opposite
direction. The buckets of the intermediate / thus must be
curved in reverse direction to those of the wheel W1, and must
be given the angle 31.6 deg. at their front edge.

The absolute value of the enirance velocity into the inter-
mediate [ is

$3="10702+055%=1255 ft. per sce.

In passing through the bucket passages, this velocity de-
ereascs by friction, to the value:

84=83(1 —k;) =1255X0.88 =1105 ft. per sec.,

and since the exit edge of the intermediate is given the angle:
04=30 deg., the exit velocity of the steam from the intermediate

is represented by the vector OSy in Fig. 18, of length s,=1105,
and angle 6, =30 deg., hence,

S4=1105 (cos 30 deg. +7 sin 30 deg.)
=055 + 5505 ft. per sec.

This is the velocity with which the steam jet impinges
on the second turbine wheel Wy, and as this wheel revolves
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with velocity =400, the relative velocity, that is, the velocity
with which the steam enters the bucket passages of wheel Wy, is,

F5=54—s
= (955 +5507) —400
=555 +5307 ft. per sec.;

and is represented by vector OS; in Fig, 18,
The direction of this steam jet is given by

5 =0.990, as 0;=44.8 deg.

550
tan 05=ggg

Therefore, the entrance edge of the buckets of the second
wheel W must be shaped under angle 6;=44.8 deg.
The absolute value of the entrance velocity is

85="/5552+5502="T80 ft. per sec.

In traversing the bucket passages, the velocity drops from
the entrance value S, to the exit valve,

se=55(1 —k;) =780 0.88 =690 ft. per sec.

Since the exit angles of the buckets of wheel W has been
chosen as 45 deg., and the exit is in backward direction, 5=
180 —45=135 deg., the steam jet velocity at the exit of the
bucket passages of the last wheelis given by the general number

S=s5(cos ds +7 sin 8)
=690 (cos 135 deg. +7 sin 135 deg.)
= —487 +487j ft. per sec.,

and represented by vector OSs in Fig. 18.

Since s=400 is the wheel velocity, the wvelocity of the
steam after leaving the last wheel W, that is, the “Jost”
or “rejected ”’ velocity, is

$r=85+s
" = (487 +4877) +400
= —87+487j ft. per sec.,

and is represented by vector 087 1in Fig. 18.
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The direction of the exhaust steam is given by,

4
tan 0= -—S?TL= 56, as 0;=180—80=100 deg,
and the absolute velocity is,

§7=/8T2 14872 =405 ft. per see.
Multiplication of General Numbers.

24. It A=ay+jes and B=by+jby, are two gencral, ol
plane numbers, their produet is given by multiplication, thus

AB = (CLl +ja:) fb1 +]bg)
=ob; +ja162 +jl12bl +j2a2b2;
and since 2= —
AB=(mby —aghy) +i(arbz+ 2 1),

and the produet can also be represented in the plane, by a point,

C=G1 +ng,
where,
C1 =Cle1 agbg,

and
o= 1Dy + asby.

For instance, 4 =2+{ multiplied by B=1+1.5] gives

0=2X1-1X1.5=0.5,

Lo=2X154+1xX1=4;
hence,

C=0.5+4],

as shown in Fig. 19.

25. The geometrical relation between the factors 4 and /
and the product C is better shown by using the polar expression
hence, substituling,

a1=acosa} and b1=bcosﬂ}

ay=a sin ¢ by=bsin f ]!
which gives
a=v a2+ b=vb2+by?

tan a="2 and fan =2 !
o 1
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the quantities may be written thus:

A=a(cos a+]sin a);
B=b(cos 3+jxin 3),
and then,
("=AB=ab(cos a+] sin a)(cos 3+ jin J)
=ab {(eos @ cos #~sin asin 3) +j(cos e sin § +sin a cos f)}
=ab {cos (a+f)+7sin (e + 7}

h

=X

Tra. 19. Multiplication of Vectors.

that is, two general numbers are multiplied by multiplying their
absolute values or vectors, a and b, and adding their phase angles
a and j.

Thus, to multiply the vector quantity, 4=ua;+jas=a (cos
a+7sin ) by B=b; +7ba=b (cos £+ sin f) the vector 04 in Fig.
19, which represents the general number 4, is increased by the
factor b=+/b;2+b2, and rotated by the angle 8, which is given

b
by tan ‘3=5‘£’_
1

Thus, a complex multiplier B turns the direction of the
multiplicand 4, by the phase angle of the multiplier B, and
increases the absolute value or vector of 4, by the absolute
value of B as factor.
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The multiplier B is occasionally called an operafor, as it
carries out the opemtlon of rotating the direetion and changing
the length of the multiplicand.

26, In multiplication, division and other algebraic opera-
tions with the representations of physical quantities (as alter-
nating currents, voltages, impedances, ete.) by mathematical
symbols, whethel ordinary numbers or general numbers, it
is necessary to consider whether the 1csu1t of the algebraic
operation, for instance, the product of two factors, has a
physical meaning, and if it has a physical meaning, whether
this meaning is such that the product can he represented in
the same diagram as the factors.

For instance, 3x4=12; but 3 horses X4 horses does not
give 12 horses, nor 12 hozbes2 but is physically meaningless.
However, 3 ft. x4 ft. =12 sq.ft. Thus, if the numbers represent

At
—t—t
0

E +

>
wee

Fia. 20.

horses, multiplication has no physical meaning. If they repre-
sent feet, the product of multiplication has & physical meaning,
but a meaning which differs from that of the factors. Thus,
if on the line in Fig. 20, 0A=3 feet, 0B=4 fect, the product,
12 square feet, v»hlle it has a physxcal meaning, cannot be
represented any more by a point on the same line; it is not
the point 0C'=12, because, if we expressed the distances 04
and OB in inches, 36 and 48 inches respectively, the produet
would be 36X48=1798 sq.in., while the distance OC would be
144 inches.

27. In all mathematical operations with physical quantities
it therefore is necessary to consider at every step of the mathe-
matical operation, whether it still has a physical meaning,
and, if graphical representation is resorted to, whether the
nature of the physical meaning is such as to allow graphical
representation in the same diagram, or not.

An instance of this general limitation of the application of
mathematics to physica: quantities occurs in the representation
of alternating current phenomena by general numbers, or
complex quantities.
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An alternating current can be represented by a vector 01
in a polar diagram, Fig. 21, in which one complete revolution
or 360 deg represents the time of one complete period of the

alternating current. This vector OI can be represented by a
general number,

I =11+,
where 4, is the horizontal, 75 the vertical component of the
current vector O,

N

23

Fre. 21. Current, EM F. and Impedance Vector Diagram.

In the same manner an alternating E.M.F. of the same fre-

quency can be represented by a vector OE in the same Fig, 21,
and denoted by a general number,

E=e;+jes.
An impedance can be represented by a generar number,
Z=r—jz,
where 7 is the resistance and  the reactance.
If now we have two impedances, 0Z; and 0Z,, Z; =1 —jx

and Z; =rp —{%s, their product Z; Z, can be formed mathema -
ically, but it has no physical meaning.



42 ENGINEERING MATHEMATICS.

If we have a current and a voltage, I =41+ iy and B =e; + e,
the product of current and voltage is the power P of the alter-
nating circuit.

The product of the two general numbers [ and E can be
formed mathematically, IE, and would represent a point €
in the vector plane Fig, 21. This point C, however, and the
mathematical expression IE, which represents it, docs not give
the power P of the alternating cireuit, since the power P is not
of the same frequency as [ and [, and therefore cannot be
represented in the same polar diagram Fig. 21, which represents
[eand E.

If we have a current [ and an impedance Z, in Fig. 21;
I=1+{iy and Z=r—{z, their product is a voltage, and as the
voltage is of the same frequency as the current, it can be repre-
sented in the same polar diagram, Fig. 21, and thus is given by
the mathematical product of ] and Z,

E: ZZ=<11 +‘ﬁ2) (r ‘"j.L‘),
=(iyr+153 ) +](lor —i12).

28. Commonly, in the denotation of graphical diagrams by
general numbers, as the polar diagram of alternating currents,
those quantities, which are vectors in the polar diagram, as the
current, voltage, ctc., are represented by dotted capitals: £ 1,
while those general numbers, as the impedance, admittanee, cte.,
which appear as operators, that is, as multipliers of one vector,
for instance the current, to get another vector, the voltage, arc
represented algebraically by capitals without dot: Z=r—jr=
impedance, ete.

This limitation of calculation with the mathematical repre-
sentation of physical quantitics must constantly be kept in
mind in all theoretical investigations.

Division of General Numbers.

20. The division of iwo gencral numbers, 4 =a;+jas and
I? =b1 +jb2, giVGS,
0= _‘i 0 +102
TR 0ygbe
This fraction contains the quadrature number in the numer-
ator as well as in the denominator. The quadrature number
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can be eliminated from the denominator by multiplying numer-
ator and denominator by the conjugate quantity of the denom-
inator, b;—jbs, which gives:

(a147a2) (b —1bo)  (aibi+asby) +j(ashy —t1ba)
(by+7ba) (b1 —1b2) bi+by?
mbi+ashy L aab —tbs

= b2 +by? ! bi2+bg? !

for instance,

oA 8425
T B 3+
_(6+25)(3-4)
- B+4)B3-4)
_8-16.5]
25
=1.12-0.66).

If desired, the quadrature number may be eliminated from
the numerator and left in the denominator by multiplying with
the conjugate number of the numerator, thus:

4 o8 +]‘(J;Q
C=F T
_(autios) (o —fo)
(b +1ba) (a1 =jo2)
o aite?
B (Cb1b1 +(lgb—2) +j(d1bg —agbl) !
for instance,
oA_0:25
TB 34y

_(6+2.57)(6-2.57)

T (3+49)(6-2.5)
29.75

T28+16.5

30. Just as in multiplication, the polar representation of
the general number in division is more perspicuous than eny
other.
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Let A=a(cos a+{sin &) be divided by B=b(cos 3+ sin g),
thus:

A alcos a+jsin )
‘"B bleos 8+jsin p)
a
)

(
(608 o +7 sin o) (cos §—7 sin f)
(e
{

08 847 sin 8)(cos §—7 sin B)
_af(cos a cos B+sin « sin §) +7(sin « cos f—cos a sin 3)}
b(cos® §+sin? f)

=%{cos (e=p)+7sin (=5}

That is, gencral numbers 4 and B are divided by dividing
their vectors or absolute values, @ and b, and subtracting their
phases or angles « and f.

Involution and Evolution of General Numbers.

31. Since involution is multiple multiplication, and evolu-
tion is involution with fractional exponents, both can be resolved
into simple expressions by using the polar form of the general
number.

If,

A=0;+joe=a(cos a+7sin a),
then
0=A4r=a"(cos na +{ sin na).
For instance, if
A=3+47=5(cos 53 deg.+j sin 53 deg.);
then,

C'=A*=5%cos 4X53 deg. +j sin 4X53 deg.)
=625(cos 212 deg. +7 sin 212 dog.)
=025( —cos 32 deg. —7 sin 32 deg.)
=625( —0.848 —0.530 j)
=-529-331 7.

If, A=a; +joe=a (cos ¢+{ sin a), then
n 1 1 a ®
U=\/Z=A"=a"<cos— +jsin —)
n n
= %(cos 24 isin _0_1>.
n n
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32. If, in the polar expression of 4, we increase the phase
angle a by 2z, or by any multiple of 2z: 2gz, where ¢ is any
integer number, we get the same value of 4, thus:

A =afcos(a+2¢r) +7 sin(a +2¢7)},

since the cosine and sinc repeat after every 360 deg, or 2=,
The nth root, however, is different:

¢+ 207
(=VA= \/_<cos T st na+r:q>

We hereby get n different valucs of ¢, for ¢=0,1, 2...n-1;
g=mn gives again the same as ¢=0. Since it gives

ot a
noom

+27;

]

that is, an increase of the phase angle by 360 deg., which leaves
cosine and sine unchanged.

Thus, the nth root of any general number has n different
values, and thess values have the same vector or absolute

n, . 2%
term ~/a, but differ from each other by the phase angle - and

its multiples.
For instance, let A=—520-331j=625 (cos 212 deg.+

7 sin 212 deg.) then,
12+ . 212436
= {i= 1‘/()_’2—5_<cos 2 ‘4360(‘] +{sin -; Oq)

5(cos 53 +7 sin 53) =344
5

I

=5(cos 143 +7 sin 143) =5(—cos 37 +jsin 37)=—4+3f
=5(cos 233 +7 sin 233) =5(—cos 53+ sin 63)= -3 +4;
=5(cos 323 +7sin 323) = 5(cos 37—7sin37) =4-3;
=5(cos 413+ sin 413)=5(cos 53+7sin 53) =3+4;

The 7 roots of a general number A a(cos a+7 sin «) differ
from each other by the phase angles , or 1/nth of 360 deg.,

and since they have the same absolute value Va, it follows, that
they are represented by n equidistant points of a circle with

radius Va, as shown in Fig. 22, for n=4, and in Fig. 23 for
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n=9. Such a system of n equal vectors, differing in phase from
each other by 1/nth of 360 deg., is called a polyphase system, or
an n-phase system. The n roots of the general number thus
give an n-phase system.

33. For instance, ¥/1=?

It A=0 (cos @+ sin @)=1, this means: a=1, a=0; and
hence,

r’ e
V1= (oa———~7qln-q—

Reg+lj
B=-443j

P45
Pe-g-4j

Fr6. 22. Roots of a General Number, n=4,

and the n Toots of the unit arc

q=0 \77]_=1;
360
g=1 oq——+ysm~n—
6
¢=2 cos"><—3f9+p r’><§—£)
300 .. 360

g=n-1 cos(n—l)-;b—+]s1 (n— 1)—n—

However,

360 360 < 360)
('osq——--{-y nq—-—- cos—-~+] 1n7z— ;
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n 3‘ ( . 3 )O
\/I < 0 Fn >

where ¢ may be any integer number.

One of these roots is real, for ¢=0, and is= +1.

If »is odd, all the -other roots arc general, or complei
numbers.

It n 15 an even number, a second root, for q—— is also real:

cos 180+ sin 180= -1.

P=VQ

T16.23. Roots of a Genéral Number, n=9,
If » is divisible by 4, two roots are quadrature numbers, and
. ” . 3n
are +j, forg=7, and —j, for =7
34. Using the rectangulal coordinate expression of the
general number, A =0+ Jas, the caleulation of the roots becomes
more comphcated For instance, given {/- ?
Let 0= d=c; +jes;
then, squaring, :
A= (1 +e0)%
hence, .
a1 +jos= (¢ —cs?) +27c1cn.

Since, if two general numbers are equal, their horizontal
and their vertical components must be equal, it is:

m=c?—c? and ay=2cico.
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Scuaring both equations and adding them, gives,

a19 +0122 = (C1Z+ng)2. s

Hence:

812 "ngE =Y CL];J +022,
and since e ==y
then, e2=1(Va2+alt+ay),
and e2=Y(Vo -2 ~ay).

Thus

a=y HValt+aelt+a)
and .

Cy= v H \/(1,12 ‘lez —ag!,
and

‘ﬂﬂ/%{ Vart+o2* +01] +j1/}{\/a12+022—a1},

which is a rather complicated expression.

35. When representing physical quantities by general
numbers, that is, complex quantities, at the end of the calcula-
tion the final result usually appears also as a general number,
or as a complex of general numbers, and then has to be reduced
to the absolute value and the phase angle of the physical quan-
tity. This is most conveniently done by reducing the general
numbers to their polar expression. For instance, if the result
of the calculation appears in the form,

(@1+jag) (b1 +D2)*V ey + e
(dx "}‘].dz)?’(ﬁ +j€2) ’

E =
by substituting
a=Vu?+ag’; tan a=££.

01

b=vhi102, tanﬁ=%;
1

and so on.

Be a(cos e+ sin a)b3(cos f+7sin §)*Velcos 7+sin )t
' d¥(cos 0+ sin 6)e(cos e+ sin <)

ab’vVe .
== (Cos{a+3f+7/2=20 - )+ sin (a+38+1/2-20 )}
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Therefore, the absolute value of a fractional expression is
the product of the absolute values of the factors of the numer-
ator, divided by the product of the absolute values of the
factors of the denominator.

The phase angle of a fractional expression is the sum of
the phase angles of the factors of the numerator, minus the sum
of the phase angles of the factors of the denominator.

For instance,

Re (3-4j22+2)¥ -2.5+6]
5(4+3))2V2
25(c0s307-+7sin 307)224/2(cosd54+7sind5) /6.5 (cos 1 14-+jsin114)3
- 125 (cos 37 +{sin 37)2v/2

— 4
=O.4\3/6.5{cos<2 X307 +45+%)— -2 ><37)

+isin <2><307+45+11—4—2><37)}

3
=0.4%/6.5{cos 263 4+ sin 263}
=(.746{ -0.122 —0.9927} = —0.091 —0.745.

36. As will be seen in Chapter II:

w2 ud ol
=1 +u+’7+|§ +E

I
cos = —B+|_4__’6+‘§

+...

. L
sin x=x—E+B~ﬁ+ -
Herefrom follows, by substituting, z=46, u=10,
cos §+jsin §=2",
and the polar expression of the complex quantity,
A=a(cos a4 sin a),
thus can also be written in the form,

A=a,
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where ¢ i3 the base of the natural logarithms,

1 11 ’
= ICRETRar =271828 ...
€ 1+1+B+E+E+.” I].S
Since any numher a can be expressed as a power of any
other number, one can substitute,

=&
a=¢e",

100'1
where ap=loge 4=y

10 &
e and the general number thus can
510 =

also be written in the form,
A =g 1—71;

that is the general number, or complex quantily, can be expressed
in the forms,
A=a 4]
=q(cos a+7 sin a)
=q¢ie=gmtia

The last two, or cxponential {orms, are rarely used, as they
are less convenient for algebraic operations. They are of
importance, however, since solutions of differential equations
frequently appear in this form, and then are reduced to the
polar or the rectangular form.

37. For instance, the differential equation of the distribu-
tion of alternating current in a flat conductor, or of alternating
magnetic flux in a fat sheet of iron, has the form:

2

and is integrated by y=A4¢"7%, where,
V=v=2i=£(1-
hence,
y=A15+(1—j)cx+A2€-(1—i)oz.
"This expression, reduced to the polar form, is

y=A1e7(cos cx ~j sin ¢x) +A2e™%(c0s ¢z +7 sin cx).
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Logarithmation.

38. In taking the logarithm of a general number, the ex-
ponential expression is most convenient, thus:

loge (a1 +)a2) =loge a(cos a+7 sin @)
=logeae™
=log. a+log:e™
=loge @ +ja;
or, if b=Dbase of the logarithm, for instance, b=10, it is:
log, (a1 +jae) =log, asi*=log, a+ja log, ¢
or, if b unequal 10, reduced to logio;

logie @ logio ¢
lOgm b ]a]Ogm b’

logy (a1 +jas)=



CHAPTER IL
POTENTIAL SERIES AND EXPONENTIAL FUNCTION.

A. GENERAL.

30. An expression such as
1

represents a fraction; that is, the result of division, and like
any fraction it can be caleulated; that ig, the fractional form
eliminated, by dividing the numerator by the denominator, thus:

1-z 1=14z+22+23+. ..
1=z
+z

22 —g3
+ a8

Hence, the fraction (1) can also be expressed in the form:
1
y=1—+—£=1+x+x2+r3+... N )]

This is an infinite serics of successive powers of x, or a poten~
tial series.
In the same manner, by dividing through, the expression

1
Y=11v @)
can be reduced to the infinite scries,
1
y=I—+-,—=1—x+a;2—:c3+ T ()|

52
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The infinite series (2) or (4) is another form of representa-
tion of the expression (1) or (3), just as the periodic decimal
fraction is another representation of ‘the common fraction
(for instance 0.6363. . ..=7/11).

40. As the series contains an infinite number of terms,
in calculating numerical values from such a series perfest
cxactness can never be reached; since only a finite number of
terme are caleulated, the result can only be an approximation.
By taking a sufficient number of terms of the series, however,
the approximation can, be made as close as desired; that is,
numerical values may be calculated as exactly as necessary,
so that for engineering purposes the infinite series (2) or (4)
gives just as exact numerical values as calculation by a finite
expression (1) or (2), provided a sufficient number of terms
arc used. In most engineering caleulations, an exactness of
0.1 per cent is sufficient; rarely is an exactness of 0.01 per cent
or even greater required, as the unavoidable variations in the
nature of the materials used in enﬁineering structures, and the
accuracy of the measuring instruments impose a lmnt on the
exactness of the result.

1

-0.5

For the value z=0.5, the expression (1) gives Y=105= %
while, its representation by the sexies (2) gives
y=1+0.5+0.2540.125+0.06256+0.03125+. .. (5)

and the successive approximations of the numerical values of
4 then are:

using one term:  y=1 =1; errort —1
O two terms: y=140.5 =13, S —0.5
£ three terms: y=1+0.5+0.25 =176 ¢ 025
““ four terms: y=1+40.5+0.25+0.125 =1875; ¢ —0125
“ five terms:  y=1+0.5+0254+0125+0.0625=19375 ° —0.0625

It is seen that the successive apprommaﬁons come closer and

closer to the correct value, y=2, but in this case always remain
below it; that is, the series (2) approaches its limit from below,
a8 shown in Fig. 24, in which the successive approximations
are marked by crosses.

For the value z=0.5, the approach of the successive
approximations to the limit is ratherslow, and to get an accuracy
of 0.1 per cent, that is, bring the error down to less than 0.002,
requires a considerable number of terms.
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Fof 2=0.1 the series (2) is
y=1+0.140.01+0.001+0.0001+... . . . (6)

and the suceessive approximations thus are

L y=1,
2 y=11;
3: y=111;
4; y=1111;
5. y=1.1111;
and as, by (1), the final or limiting value is
1 10
y=m=§"‘1.1111
T F
« & 50
t 3
__1
+ y—i:;{

F1c. 24, Direct Convergent Series with One-sided Approach.

the fourth approximation already brings the error well below
0.1 per cent, and sufficient accuracy thus is reached for most
engineering purposes by using four terms of the series.

41. The exprossion (3) gives, for =0.5, the value,

1
=——— == =(.6066
70530
Represented by series (4), it gives
y=1-05+025-0.125+0.0625-0.03125+ —. . ... 0
the successive approximations are;
Ist: y=1 =1; error: +0.333...
2d: y=1-0.5 =05 —0.666...
3d. y=1-0.5+0.25 =075 ¢ 40.0833...
dth: y=1-0.5+025-0125 =0.625; “  —0.04160 ..
5th: y=1-0.0+025-0.125+0.0625=0.6875; ‘°  -+0.020833...

As seen, the successive approximations of this serics come
closer and closer to the correct value y=0.6666. .., but in this
case are alternately above and below the correct or limiting
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value, that is, the series (4) approaches its limit from both sides,
as shown in Fig, 25, while the series (2) approached the limit
from below, and still other series may approach their limit
from above.

With such alternating approach of the series to the limit,
as exhibited by series (4), the limiting or final value is between
any two successive approximations, that is, the error of any
approximation js less than the difference between this and the
next following approximation.

42. Substituting z=2 into the expressions (1) and (2),
equation (1) gives

1
vyl
*
3
+ 5
S
t §
3
1
7J_l+:/(:

Tic. 25. Alternating Convergent Series.
while the infinite serics (2) gives
y=1+2-+4+8+16+32+.
and the successive approximations of the latter thus are
1; 3 7; 15 31 63..;
that is, the successive approximations do no approach closer
and closer to & final value, but, on the contrary, get further and
further away from each other, and give entirely wrong results.
They give increasing positive values, which apparently approach
w for the entire series, while the correct value of the expression,
by (1),is y=-1.
Therefore, for =2, the series (2) gives unreasonable results,
and thus cannot be used for caleulating numerical values.
The same is the case with the representation (4) of the
expression (3) for z=2. The expression (3) gives

y=1}_2=0‘3333 i
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while the infinite serics (4) gives
y=1-2+4-8+16-32+ ...,

and the suceessive approximations of the latier thus arc

1; =1; +3; =5 +11; -=21;..;
henee, while the suceessive values still are alternately above
and below the correct or limiting value, they do not approach
it with increasing closeness, but more and more diverge there-
from.

Such a series, in which the values derived by the calcula-
tion of more and more terms do not approach a final value
closer and closer, is called divergent, while a series is called
convergent if the successive approximalions approach a final
value with increasing closeness.

43. While a finite exprossion, as (1) or (3), holds good for
all values of z, and numerical values of it can be calculated
whatever may be the value of the independent variable z, an
infinite scries, as (2) and (4), frequently does not give a finite
result for every value of z, but only for values within a certain
range. For instance, in the above serics, for —1 <z<+1,
the serics is convergent; while for values of x outside of this
range the series is divergent and thus uscless.

When representing an expression by an infinite scries,
it thus is necessary to determine that the series is convergent;
that is, approaches with increasing number of terms a finite
limiting valuc, otherwise the serics cannot be used. Where
the scries is convergent within a certain range of z, diver-
gent outside of this range, it can be used only in the range of
convergency, bub outside of this range it cannot be used for
deriving numerical values, but some other form of representa-
tion has to be found which is convergent,

This can frequently be done, and the expression thus repre-
sentedd by one series in one range and by another series in

. . 1
another range. For instance, the expression (1), V=TI by

.. 1 oy
substituting, =, can be written in the form

14w
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and then developed into a scries by dividing the numerator
by the denominator, which gives

y=u—w+ud—uts, o

or, resubstituting z,
1

1 11
y=5_ﬁ+ﬁ_z_“+"" PN (8)

which is convergent for =2, and for z=2 it gives
¥y=0.5-0.25+0125-0.0625+... (9)
With the successive approximations:

05; 0.25; 0375; 03125...

which approach the final limiting value,
y=0333..

44. An infinite series can be used only if it is convergent.
Mathemetical methods exist for determining whether a series
is convergent or mot. For engineering purposes, however,
these methods usually are unnecessary; for practical use it
i not sufficient that a series be convergent, but it must eon-
verge so rapidly—that is, the successive terms of the scries
must decrease at such a great rate—that accurate numerical
results are derived by the calculation of only a very few terms;
two or three, or perhaps three or four. This, for instance,
is the case with the series (2) and (4) for z=0.1 or less. For
£=0.5, the series (2) and (4) are still convergent, as seen in
(5) and (7), but are useless for most engineering purposes, as
the successive terms decrease so slowly that a large number
of terms have to be caleulated to get accurate results, and for
such lengthy calculations there is no time in engincering work.
If, however, the successive terms of a series decrease at such
a rapid rate that all but the first few terms can be neglected,
the series is certain to be convergent.

In a series therefore, in which there is & question whether
it is convergent or divergent, as for instance the series

1111

1 .
+= 4=+ +x+... (divergent),

y=l+3+3+115 45
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or

1
y=1 —% J% -1 —:é— —i—. +... (convergent),

the matter of eonvergency is of little importance for engineer-
ing calculation, as the serics is uscless in any case; that is, does
not give accurate numerical results with a reasonably moderate
amount of calculation.

A series, to be usable for engincering work, must have
the successive terms decreasing at a very rapid rate, and if
this is the case, the series is convergent, and the mathematical
investigations of convergency thus usually hecomes unnceessary
in enginecring work.

45. Tt would rarely he advantageous to develop such simple
cxpressions as (1) and (3) into infinite serics, such as (2) and
(4), since the caleulation of numerical values from (1) and (3)
is simpler than from the series (2) and (4), even though very
few terms of the serics need to he used.

The use of the series (2) or (4) instead of the expressions
(1) and (3) therefore is advantageous only if these serics con-
verge so rapidly that only the first two terms are required
for numerical caleulation, and the third term is negligible;
that is, for very small values of x. Thus, for z=0.01, accord-
ing to (2), .

y=140.01+0.0001+. ..=1+0.01,

as the mext term, 00001, is already loss than 0.01 per cent of
the value of the total expression.
For very small values of z, therefore, by (1) and (2),

1
y=1~_7;==l+l’, N ¢ (1)!
and by (3) and (4),
1 ,
y=1—+’1‘:=1—15., e e e 1\11)

ana tnese expressions (10) and (11) are useful and very com-
monly used in enginecring calculation for simplifying work.
For instance, if 1 plus or minug a very small quantity appears
as factor in the denominator of an expression, it can he replaced
by 1 minus or plus the same small quantity as factor in the
numerator of the expression, and inversely.
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For example, if a direct-current receiving cireuit, of resist-
ance 7, is fed by a supply voltage ey over a line of low
resistance 79, what is the voltage e at the receiving circuit?

The total resistance is r+ro; hence, the current, i=ﬂe_%"
0

and the voltage at the receiving circuit is

r
e (12
e=ri=ey—— . (12)
If now 7y is small compared with 7, it is

1 7

€=€0_T=eo[1—‘£] PP (13)
14

2
As the next term of the series would be <r_:) , the error

2
made by the simpler expression (13) is less than (%9) . Thus,
if 7o is 3 per cent of 7, which is a fair average in interior light-
2
ing circuits, <Q> =0.032=0.0009, or less than 0.1 per cent;

hence, is usually neghglble

46 If an expression in its finite form is more complicated
and thereby less convenient for numerical calculation, as for
instance if it contains roots, development into an infinite series
frequently simplifies the calculation.

Very convenient for development into an infinite series
of powers or roots, is the binomsal theorem,

(Iu)r=1+nu+ (nl ])uzin(n—llz)]’(n—Z) W, ..

14
where 4y

|nj=1><2><3><...><m.

Thus, for instance, in an alternating-current circuit of
resistance , reactance , and supply voltage e, the current is,
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If this cireuit is practically non-induetive, as an incandescent
lighting cireuit; that is, if = is small compared with r, (15)
can ha written in the form,

et
T

and the square root can be developed by the binomial (14), thus,

r\? 1 .
u=\-);n= —g,and gives

44 £

In this series (17), if £=0.1r or less; that is, the reactance
is not more than 10 per cent of the resistance, the third term,

X

r

4
. g(;) , Is loss than 0.01 per cent; hence, negligible, and the

series is approximated with sufficient cxactness by the fst

two terms,
7\ 1/z\2
EEIIEE A

and equation (16) of the current then gives

i=—;[1—% (;H ....... (19)

This cxpression is simpler for numerical caleulations than
the expression (15), as it contains no square root.

47. Development into a series may become neccssary, if
further operations have to be carried out with an cxpression
for which the expression is not suited, or at least not well suited.
This is often the case where the expression has to be intograted,
since very few expressions can be infegrated.

Expressions under an integral sign therefore very commonly
have to he developed into an infinite series to carry out the
integration.

) =

1
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EXAMPLE 1.
Of the cquilateral hyperhola (Fig 26),

2Yy=a2, L. (20

the length L of the arc hetween z1=20 and z2=10a is to be
caleulated.

An clement df of the are is the hypothenuse of a right triangle
with dr and dy as cathetes. Tt, therefore, is,

d=~de2+dy?
dy)d e

=\/1 (d

&

o
ay=a \\5\‘
{0y g ) y
Fia. 26. Equilateral Hyperbola.
and from (20),
2 d a2
y== wd =5 22)
Substituting (22) in (21) gives,

dl\/1+ dx, R 2]

lence, the length L of the arc, from z; to a3 is,

z2 23 _F
L=\ d-= \/1+<—> de. . ... (24)
£ 'z X
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Substituting J= that is, dr=ady, also substituting

X To ’
2)1=E=2 and 7v2=z=]0,. . (28)

ve 1
=al:,fl+ﬁdz'. N )

The expression under the integral is inconvenient for integra-
tion; it is preferably developed into an infinite series, by the
binomial theorem (14).

“Write u=% and n=-1—, then

/ 1 5
214 8L3+lbv12 1"81)10+

5
L- af{ T T }d”

1 1 B 1 _
’><3><v4 TX8X1 11X16Xv12
1 )
TIXIBXE T

(o)A (1)
“ai(% T\ o) TE e oy

1/1 1
*m(aﬁ-m)~+~-}, (1)

and substituting the numerical values,

L= a{ (10-2) -1%(0.125—0.001)

av{l

1
-%(0.0078—-0)
=0{8 +0.0207 - 0.0001} =8.0206a.

176(0 0001 - )}

As seen, in this series, only the first two terms are appreciable
in value, the third term less than 0.01 per cent of the total,
and hence negligible, therefore the series converges very
rapidly, and numerical values can easily be calculated by it.
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For z; <2 a; that is, v <2, the series converges less rapidly,
and becomes divergent for 21 <a; or, v:<l. Thus this series
(17) is convergent for #>1, but near this limit of convergency
it is of no use for engincering calculation, as it does not converge
with sufficient rapidity, and it becomes suitable for cngineering
calculation only when »; approaches 2.

EXAMPLE 2.

48. log 1=0, and, therefore log (1+2) is a small quantity
if zis small. log (1+) shall therefore be developed in such
g series of powers of z, which permits its rapid caleulation
without using logarithm tables.

Itis

du

logu= %

then, substituting (1+x) for u gives,
log(l4+x)=|+— . . . .. (18)
From cquation (4)
1
—1—+—x=1—x+1‘3—23+, e
hence, substituted into (18),

log (1+1) =f(1 ~zpta -+, . . )dz

=fdx-fxdx+fx2dx—fx3dz+...
2 g o

=x—§+§—z+... O 19

hence, if z is very small, %2 is negligible, and, therefore, all
terms beyond the first are negligible, thus,

log (142)=2;. . . . . . . . (20)
while, if the second term is still appreciable in value, the more
complete, but still fairly simple expression can be used,

? z
=p——= —_ 9
log (1+2)=2 5 :c<1 2). N ]
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If instead of the natural logarithm, as used above, the
decimal logarithm is required, the following relation may be
applied:

logip a=logyoc loge a=0 4343 logea, . . (22

logio @ is expressed by loge a, and thus (19), (20) (21) assume
the form,

logip (L+1)=0 4343(1—?4—?—2 +... ); . (2)
or, approximately,
logo(1 +2) =0.4343z; (24)
or, more accurately,

logu (1+x)=0,4343x<1—g>. L. @)

B. DIFFERENTIAL EQUATIONS.

49. The representation by an infinite series is of special
value in those cases, in which no finite expression of the fune-
tion is known, as for instance, if the relation between z and y
is given by & differential equation.

Differential equations are solved by separating the variables,
that is, bringing the terms containing the one variable, y, on
one side of the equation, the terms with the other variable z
on the other side of the cquation, and then separately integrat-
ing both sides of the equation. Very rarely, however, is it
possible to separate the variables in this manner, and where
it cannot be done, usually no systematic method of solving the
differential equation cxists, but this has to be done by trying
different functions, until one is found which satisfies the
equation.

In electrical enginecring, eurrents and voltages are dealt
with as functions of time. The current and c.m.f. giving the
power lost in resistance are related to each other by Ohm’s
law. Current also produces a magnetic field, and this magnetic
field by its changes generates an c.m.f.—the em.f. of sclf-
inductance. In this case, em.f. is related to the change of
current; that is, the differential coefficient of the current, and
thus also to the differential coefficient of c.m.f., since the e.m.f.
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is related to the current by Ohm’s law. In a condenser, the
current and therefore, by Ohm’s law, the e.m.f., depends upon
and is proportional to the rate of change of the e.m.f. impressed
upon the condenser; that is, it is proportional to the differential
coefficient of e.m.f.

Therefore, in circuits having resistance and inductance,

~or resistance and capacity, a relation exists between currents

and c.m.fs., and their differential coefficients, and in circuits
having resistance, inductance and capacity, a double relation
of this kind exists; that is, a relation between current or e.m.f.
and their first and second differential coefficients.

The most common differential equations of electrical engineer-
ing thus are the relations between the function and its differential
coefficient, which in its simplest form is,

dy

d—x=y ....... (26)
or

dy .

oW @n

and where the circuit has capacity as well as inductance, the
second differential coefficient also enters, and the relation in
its simplest form is,

&
dg e @8)
or
dx
dx{,—ay, e e (29)

and the most general form of this most common differential
equation of electrical engineering then is,
dy oy
TEtlegtayTb=0. .. (30)
The differential equations (26) and (27) can be integrated
by separating the variables, but not so with equations (28),
(29) and (30); the latter require solution by trial.
50. The general method of solution may be illustrated with
the equation (26):

B8

=y ... ... . (20
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To determine whether this equation can be integrated by an
infinite series, choose such an infinite series, and then, by sub-
stituting it into equation (26), ascertain whether it satisfies
the equation (20); that is, makes the left side equal to the right
side for every value of z.

Let,

y=ao+amt+as? Fogrttat+... . . . (81)

be an infinite series, of which the coefficients o, a1, 0, as. . .

are still unknown, and by substituting (31) into the differential

equation (26), determine whether such values of these coefficients

can be found, which make the series (31) satisfy the equation (26).
Differentiating (31) gives,

%=a1+2agx+3a352+4a4x3+... L. (32
The differential equation (26) transposed gives,

&y

piaa i 0. . . ... .. (33)

Substltutmg (31) and (32) into (33), and arranging the terms
in the order of «, gives, .

(a1 60) + (2a2— 01)% + (303 — ag)a2
+(4a4 03)73 + (5as—ag) 2t +. . . (34

If then the abovc series (31) is & solution of the chfferentlal
equation (26), the expression (34) must be an identity; that i 1s,
must hold for every value of z.

It, however, it holds for every value of , it does o also
for =0, and in this case, all the terms except the first vanish,
and (34) becornes,

m—ao=0; or, m=00.. . . . . (3)

To make (31) a solution of the differential equation (a1 - ao)
must therefore equal 0. This being the case, the term (21—~ ao)
can be dropped in (34), which then becomes,

(2a2~a1)z + (Bas— )22 + (das—az)7d + (Bos— ezt +. . . =0;

or,
7{(2as—a1) + Baz—a2)z + (dag—az)22 +. . .} =0.
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Since this equation must hold for every value, of 2, the second
term of the equation must he zero, since the first term, z, is
not necegsarily zero. This gives,

(63— 1) + (Baz—ag)z+ (dag—ag)e2+. . =0.
As this equation holds for every value of z, it holds also for
z=0. In this case, however, all terms except the first vanish,
and,

Qo-a=0; . . . .. .. (36
hence,
M
a2=_—z,
and from (35);
%
a2=;

Continuing the same reasoning,
3(13 —We= 0, 4(14— Q= 0, ete.

Therefore, if an expression of successive powers of x, such as
(34), s an identity, that vs, holds for every value of x, then all
the coefficients of all the powers of © must separotely be zero*

Hence,

a—ay=0; or a1=q;
205—a;=0; or ag=%-1=%°;

4

S L
303—as=0; or as—3—~E7 R 1))
4a4~—3a3=0; or a4=af

ete., ete.

*The reader must reahze the difference between an expression (34), as
equation in , and as substitution product of & function; that is, an as
identity.

Regardless of the values of the coefficients, an expression (34) as equation
gives a number of separate values of z, the roots of the equation, which
make the left side of (34) equal zero, that is, solve the equation. If, however,
the infinite series (31) is & solution of the differential equation (26), then
the expression (34), which is the result of substituting (31) into (26), must
be correct not only for a limited number of values of z, which are the roots
of the equation, but for all values of z, that is, no matter what value is
chosen for z, the left side of (34) must always give the same result, 0, that
is, it must not be changedéw s change of z, or in other words, it must not

contain , hence all the coe cients of the powers of z must be zero.
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Therefore, if the coefficients of the series (31) are chosen
by cquation (37), this series satisfies the differential equation
(18); thatis,

. 22 23 ot
y=ao{l+x+§+E+E+...}. ... (38)

is the solution of the differential cquation,

dy
a Y

51. In the same manner, the differential cquation (27),

R )

is solved by an infinite series,
e=qptozt+ag?+as ..., . . ., (40)

and the coefficients of this series determined by substituting
(40 into (39), in the same manner as done above. This gives,

{0y~ aae) + (202~ agy)x + (33— aag) 12
+dag—az)z3+. . .=0, . (41)

and, as this equation must be an identity, all its coefficients
must be zero; that is,

m—acy=0: or a;=aay; ]

25}

209—aa,=0; or t2=t15=005;

~

3u3—aag=0; or a3=as§=ao’§; RN ()
o

d04—aa3=0; or ag=a3r=00r7;
4 3 ’ 4 34 0]4}

cte., ete.
and the solution of differential equation (39) is,
m] 1t S 4 S22
TR E

52. These solutions, (38) and (43), of the differential equa-
tions (26) and (39), are not single solutions, hut each contains
an infinite number of solutions, as it contains an arbitrary

(43)
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constant go; that is, a constant which may have any desived
numerical value.

This can easily be seen, since, if 2 is a solution of the dif-
ferential equation,

Zf_i =02,
then, any multiple, or fraction. of 2, bz, also is a solution of the
differential equation;
o)
sinee the b cancels.

Such & constant, ap, which is not determined by the coeffi-
cients of the mathematical problem, but is left arbitrary, and
requires for its determinations some further condition in
addition to the differential equation, is called an dnfegraiion
constant. It usually is determined by some additional require-
ments of the physical problem, which the differential equation
represents; that is, by a so-called terminal condition, as, for
instance, by having the value of y given for some particular
value of z, usually for z=0, or z=cc.

The differential equation,

d
d%=y; ........ (44)
thus, is solved by the function,
Y=aoYo, + - « . .« . . (45)
where,
12 23t
=l+e+stmtrt o, - . . (46)
i 1+x+2+|§+lf+ , (46)
and the differential equation,
Z—i=az, ......... 47
is solved by the function,
2=Aely . - e (48)

where,
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%o and 2o thus are the simplest forms of the solutions y and 2
of the differential equations (26) and (39).

53. It is interesting now to determine the value of 4. To
raise the infinite series (46), which represents y, to the nth
power, would obviously be a very complicated operation.

However,

and since from (44) o (51)

by substituting (51) into (50),

{fi; =mr . . . . (52)

hence, the same equation as (47), but with y» instead of 2.
Hence, if y is the solution of the differential equation,

d—flf=y’
then z=y* is the solution of the differential cquation (52),

T-=Nk,

dz

However, the solution of this differential equation from (47),
(48), and (49), is

2=Qon,
20—1+nx+m“ ’7;”3 oo
that is, if
| Yo= 1+x+ +I3
then,
To =1 =1+mc+”2””2 L . (59

BT

therefore the series y is raised to the nth power by multiply-
ing the variable z by n.
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Substituting now in equation (53) for n the value % gives

111
Yp® —1+1+ +lg }

that is, a constant numerical value. This numerical value
equals 2.7182828. . ., and is usually represented by the symbol «.
Therefore,

B (1))

1
Yoo =¢
hence,
rt .
Yp=e== 1+Jc+ +‘5+,4+ T 15
and

nAr2 713r3 nirt

2=yt = ()= o=l tnr +— i3 + n

+...; (36)

therefore, the infinite series, which integrates above differential
equation, is an exponential function with the base

e=27182818... . . . . .. (57)
The solution of the differential equation,
dy ,
i R (58)
thus is,
Y=, « . . . (59)
and the solution of the differential equation,
%=ay, B G )
is,
Y=, . . . . . . . (6])

where @, is an integration constant.

The exponential function thus is one of the most common
functions met in electrical engineering problems. ,

The above described method of solving a problem, by assum-
ing a solution in a form containing a number of unknown
coefficients, a, a1, @s. . ., substituting the solution in the problem
and thereby determining the coefficients, is called the method
of indeterminate coefficients, It is one of the most convenient
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and most {requently used methods of solving enginecring
problems,

EXAMPLE 1.

54. In a 4-pole 500-volt 50-kw. dircct-current shunt motor,
the resistance of the field eircuit, inclusive of field rheostat, is
230 ohms. Each field pole contains 4000 turns, and produces
at 500 volts impressed upon the field circuit, 8 megalines of
magnetic flux per pole,

What is the equation of the field current, and how much
time after closing the field switeh is required for the field cur-
rent to reach 90 per cent of its final value?

Let r be the resistance of the field cireuit, L the inductance
of the fleld circuit, and ¢ the field current, then the voltage
consumed in resistance is,

e, =71,

In general, in an electric circuit, the current produces a
magnetic field; that is, lines of magnetic flux swrrounding the
conductor of the current; or, it is usually expressed, inerlinked
with the current. This magnetic field changes with a change of
the current, and usually is proportional thereto. A change
of the magnetic field surrounding a conduetor, however, gen-
erates an e..f. in the conductor, and this e.m.f, is proportional
to the rate of change of the magnetic field; hence, is pro-
portional to the rate of change of the current, or to

g%’ with a proportionality factor L, which is called the induci-

ance of the cireuit. This counter-generated e.m.f, is in oppo-
. di
sition to the current, —L S and thus consumes sn em.f.,

+L%, which is called the em.f. consumed by self-<inductance,

or inductance e.m.f.

Therefore, by the inductance, L, of the field circuit, a voltage
is consumed which is proportional to the rate of change of the
field current, thus,

di

e,=La-t.
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Since the supply voltage, and thus the total voltage consumed
in the field circutt, is =500 volts,

i
= 1 [~ 9]
e=ri+L R (62)
or, rearranged,
di_e=ri
a L~
Substituting herein,
u=e=rl; ... ... .. (63)
hence,
@
gives,
du 1
EZ = -Z L (64)
This is the same differential equation as (39), with a=-—£,
and thercfore is integrated by the function,
u=aoa"%l;
therefore, resubstituting from (63),
e—ri=aoepft,
and
_I
¢=§+@5L, S )

This solution (65), still contains the unknown quantity ao;
or, the integration constant, and this is determined by know-
ing the current 4 for some particular value of the time ¢,

Before closing the field switch and thereby impressing the
voltage on the field, the field current obviously is zero. In the
moment of closing the field switch, the current thus is still
zero; that is,

i=0for t=0. . . . . . . (66)
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Substituting thesc values in (65) gives,

hence,

is the final solution of the differential equation (62); chat is,
it is the value of the field current, ¢, as function of the time, ¢,
after closing the field switch.

After infinite time, {=o0, the current 7 assumes the final
value 7o, which is given by substituting t=o0 into equation
(67), thus,

»

. ¢ 500
zo=;=72-5—0=2an1peres: ... (B8)

hence, by substituting (68) into (67), this equation can also be
written,

imip(1-e71")
(1Y), ... (69)

where 4=2 is the final value assumed by the field current.
The time ¢, after which the field current + has reached 90
per cent of its final value 4y, is given by substituting 7=0.97,
into (69), thus,
0.9iy =i, (1-7T%),
and

SIM=01
Taking the logarithm of both sides,
—!E tilog e=—1;

and
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55. The inductance L is calculated from the data given
in the problem. Inductance is measwred by the number of
interlinkages of the electric circuit, with the magnetic flux
produced by one absolute unit of current in the circuit; that
is, it equals the product of magnetic flux and number of turns
divided by the absolute current.

A current of i,=2 amperes represents 0.2 absolute units,
since the absolute unit of current is 10 amperes. The number
of field turns per pole is 4000; hence, the total number of turns
n=4X4000=16,000. The magnetic flux at full excitation,
or 7,=0.2 absolute units of current, is given as ¢ =8 X108 lines
of magnetic force. The inductance of the field thus is:

6
L =1Z.—(-p __160008(_5)(]_0_ =640 X 109 absolute units =640%,
o 2
the practical unit of inductance, or the henry (h) being 10°
absolute units.

Substituting L=040 r=250 and e=>500, into cquation (67)

and (70) gives
§=9(1— =05,

and
(40

M _sSSse. . ... (7
b=y~ 058 see ")

Therefore it takes about 6 sec. before the motor field has
reached 90 per cent of its final value.

The reader is advised to calculate and plot the numerical
values of 7 from equation (71), for
1=0, 0.1, 0.2, 0.4, 0.6, 08, 1.0, 1.5, 2.0, 3, 4, 5, 6, 8, 10 scc.

This calculation is best made in the form of a table, thus;

=03 = N (307 log ¢,

and,

loge  =0.4343;
hence,

0.39 loge =0.1694L;
and,

0= N (,16041.
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The values of e7® can also be taken directly from the
tables of the exponential function, at the end of the book.

~030; =
€ —030t |
¢ 01694 ~0.166¢4 —¢ | _
=N =7 Toodt EICEY
0.0 0 0 1 0 0
01 0 0170 0.9830-1 0.962 0.038 0076
0.2 0 0339 0.9661-1 0.925 0075 0 150
04 0 0678 0.9322-1 0.855 0.145 0.290
08 0 1016 0 8084-1 0.791 0.209 0 418
08 0.1355 0.8645-1 0.732 0.268 0 536
ete. oo P e P
. N O B R
EXAMPLE 2.

56. A condenser of 20 mf. capacity, is charged to a potential
of ¢,=10,000 volts, and then discharges through a resistance
of 2 megohms. What is the equation of the discharge current,
and after how long a time has
the voltage at the condenser
N dropped to 0.1 its initial value?

A condenser acts as a reser-
voir of electric energy, similar
to a tank as water reservoir.
If in a water tank, Fig, 27, 4
. 1 the sectional area of the tank,

¢, the height of water, or water
/  pressure, and water flows out
= of the tank, then the height e
decreases by the flow of water;
that is the tank empties, and
the current of water, 7, is proportional to the change of the

I

Fic. 27. Water Reservoir.

de

water level or height of water, = and to the area 4 of the

tank; that is, it is,

. de

——AZ 9

% Adt........(7~)

The minus sign stands on the right-hand side, as for positive

4; that is, out-flow, the height of the water decreases; that is,

de is negative.



POTENTIAL SERIES AND EXPONENTIAL FUNCTION. 77

In an clectric reservoir, the electric pressure or voltage e
corresponds to the water pressure or height of the water, and
to the storage capacity or sectional area 4 of the water tank
corresponds the electric storage capacity of the condenser,
called capacity C. The current, or, flow out of an electric

condenser, thus is,
==
The capacity of condenser s,
C'=20 mf =20 X 10~ farads,
The resistance of the discharge path is,
r=2X108 ohms;

hence, the current taken by the resistance, r, is

. €
1==
;
and thus
de e
_C@=ﬂ
and
de__1
a0t
Therefore, from (60) (61),
13
e=aye 01,

and for t=0, e=¢,=10,000 volts; hence

10000=ay, . . . . . .

and
t

e=eyc Or

=10,000e~0 %% yolts;

0.1 of the initial value:
e=0.1¢,,

is reached at:

'
t =1‘6§‘€=92 sec. .

(73)

(75)
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The reader is advised to calculate and plot the numerical
values of e, from equation (74), for
t=0; 2; 4; 6; 8; 10; 15; 20; 30; 40; 60; 80; 100: 150; 200 sec.

57. Wherever in an electric cireuit, in addition to resistance,
inductance and capacity both occur, the relations between
currents and voltages lead to an equation containing the second
differential coefficient, as discussed above.

The simplest form of such equation is:

gi—‘”fay‘ R

To integrate this by the method of indeterminate coefficients,
we assume as solution of the equation (76) the infinite series,

y=ap+ar+ar? +od ot L. L (T7)
in which the coefficients ao, a1, a2, 03, @4. .. are indeterminate.
Differentiating (67) twice, gives

2
j—xz=’_’ag+2x3a3x+3><4a4x2+4><5a5:r3+. ., . (78)

and substituting (77) and (78) into (76) gives theidentity,

202+2 X 3037 +3 X 4022 +4 X basad +. . .
=a(0o + mT +as22 0328 +. . .);

or, arranged in order of z,

(2a3—aag) +2(2 X 3az—aay) +22(3 Xday— aas)
+3(4Xbas—aag)+...=0. . . . . . . (79)

Since this equation (79) is an identity, the coefficients of
all powers of = must individually equal zero. This gives for
the determination of these hitherto indeterminate cocfficients
the equations,

03— aag=0;
2 X3a3—aa;=9;
3Xda,—aay=0;
1 X5as—aaz =0, cte,
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Therefore

0a, ar

Q=573 a3=|?;
. sy Gy0°, oy 002
UG=""5="%,
ExATE T
foe finn _@f . ags 63
STEXE |5 TOXTT [T
L g, o 307 mat,
IXET B TEx9T P

ete., ete.

Substituting these values in (77),

o 1+am2 +a2x4+a3xﬁ
el T
a2 a3x5 i

+a1{ax+ !3 ID *IZ +op.

(80)

In this case, two coefficients o and a; thus remain inde-
terminate, as was to be expected, as a differential equation
of second order must have two integration constants in its
most general form of solution.

Substituting into this equation,

b2=a;
that is,
b=va, ... .. ... (81)
2
%&% =+4b%, . . . .. (82)
and

[ b e b }
OTRTETE
b33 b5x5 i

+a1b{bz+ \5 +‘ +} (83)
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In this case, instead of the integration constants ao and ay,
the two new integration constants 4 and B can be introduced
by the equations

a=4+B and ab=4-B;
hence,

(lo+(11b ao“(llb
A=—-2—~— and B= 3

and, substituting these into equation (83), gives,

2m2 3 4.
y=4 { 1+b:c+b—x—+%3§—+§|4£+. . }

2
b2 B bt
+B { 1—bz+—i'2:—'E" +‘E'—+. . }

7

(84)

The first series, however, from (56), for n=b is ¢*%, and
the second series from (56), for n=—~b is e~%.
Therefore, the infinite series (83) is,

y=Aet4Bebe L, (85)

that is, it is the sum of two exponential functions, the one with
a positive, the other with a negative exponent.
Hence, the differential equation,

d*
Smw (76)
is integrated by the function,
y=dAet¥# 4Bt (36)
where,
b=a/o. . ... ... 87)

However, if a is a negative quantity, b=z is imaginary,
and can be represented by

where

In this case, equation (86) assumes the form,
y=Aetie L Beies (90)
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that is, if in the differential equation (76) o s a positive quantity,
= +b? this differential equation is integrated by the sum of
the two exponential functions (86); if, however, a is a negative
quantity, = —¢? the solution (86) appears in the form of exponen-
tial functions with imaginary exponents (90).

58. In the latter case, a form of the solution of differential
equation (76) can be derived which does not contain the
imaginary appearance, by turning back to equation (80), and
substituting therein o= —¢? which gives,

&2
a?g=—czy ..... .. O
? et (fad
y=0, 1~T T(—_|6—
8,88 ]
ETETE T
or, writing' A =ag and B=~a¢,
2 ot b
y=A[1—T+_|£——|§—+—“'}
3 ohrb
—t 2
+B{cx ; + B +] (92)

The solution then is given by the sum of two infinite series,
thus,
2?  clrt A8
u(c:c)=1——2—+—‘T—— ]§ +=...,

and .. (93
393 Spb
v(cx)=cx—% +c—3.:— -+...,
BB
as
y=Au(cx)+Bv(ez). . . . . . .. (94)

In the u-seris, & change of the sign of z does not change
the value of u,

w(—ez)=u(+ez). . . . . .. (95)

Such a function is called an even function.
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In the v-serics, a change of the sign of = reverses the sign
of v, as seen from (93):

v(—er)=—v(+cx). . . . . . (96)
Such a function is called an odd function.
1t can be shown that
ulex)=coscx and w(er)=simer; . . . (97)
hence,
y=Acoscx+Bsinez, . . . . . (98)

where 4 and B are the integration constants, which are to be
etermined by the terminal conditions of the physical problem.
Therefore, the solution of the differential equation
a2y

d—x§=ay, e (99)

has two different forms, an cxponential and a trigonometric.
If it is positive,

2
f—r%=+bzy, C . (100
it is:
y=Aet= Bk 0, (101)
If a negative,
d’)
ey L . (102)
it is:
y=Acoscz+Bsiner. . . . . . (103)

In the latter case, the solution (101) would appear as ex-
ponential function with imaginary exponents;

y=Aeti=yBemie (104)

As (104) obviously must be the same function as (103), it
follows that exponential functions with imaginary exponents
must be expressible by trigonometric functions.
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59. The exponertial functions and the trigonometric fune-
tions, according to the preceding discussion, are expressed by
the infinite series,

12 x3 14 x5
e-ltaig g g iE T
1— 12 t rﬁ
o8 7=1 H =+ (105)
; 73 f I’+
sinr=1— 3 I( J

Therefore, substituting ju for z,

2 43 u4 us 8

I
_M_QE‘?L_ oy
‘(‘2*1{@ - ~’<“*|§ b5_‘17_+"'>'

However, the first part of this series is cos u, the latter part
sin u, by (105); that is,

7
U=14ju—= |§ jEJr

d=cosu+jsinu . . . . . (106}

Substituting —u for +u gives,

e=cosu—jsmu. . . . . . (107
Combining (106) and (107) gives,
eHiu g -
cos u=—"5—",
and .. (108)

etiu_ o~
sm U= 2]. s

Substituting in (106) to (108), jv for u, gives,

¢70=cos Ju+jsin Jo
and, N )
cti=cos ju—7sin .
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Adding and subtracting gives respectively,

E+v+€—1)
2 )
and N ¢ 410))

& = o

o8 jo=

sin jv= o7

By these equations, (106) to (110), exponential functions
with imaginary exponents can be transformed into trigono-
metric functions with real angles, and exponential functions
with real exponents into trignometric functions with imaginary
angles, and inversely.

Mathematically, the trigonometric functions thus do not
constitute a separate class of functions, but may be considered
as exponential functions with imaginary angles, and it can be
sald broadly that the solution of the above differential equa-
tions is given by the exponential function, but that in this
function the exponent may be real, or may be imaginary, and
in the latter case, the expression is put into real form by intro-
ducing the trigonometric functions.

EXAMPLE 1.

60. A condenser (as an underground high-potential cable)
of 20 mf. capacity, and of a voltage of eo=10,000, discharges
through an inductance of 50 mh. and of negligible resistance,
What is the equation of the discharge current?

The current consumed by a condenser of capacity € and
potential difference e is proportional to the rate of change
of the potential difference, and to the capacity; hence, it is
Cde

d_t:
current, is

and the current from the condenser; or, its discharge

i==C%. . ... ... (1)

The voltage consumed by an inductance L is proportional
t0 the rate of change of the current in the inductance, and to the
inductance; hence,

A8 )
it
sl s:

(112)
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Differentiating (112) gives,
de %
A
and substituting this into (111) gives,
. @ a4 1,
1= —-CLE;,, or, Ej‘—“ —-EZ”L,

as the differential equation of the problem.

.. (113)

This equation (113) is the same as (102), for ¢?=-+, thus

'(J_L:
is solved by the expression,

1=Acosvm+BelnvLO o (114)

and the potential difference at the condenser or at the inductance
is, by substituting (114) into (112),

T i )
e_\/’ {BCOS\/LC Adh \/LC} - 1)

These equations (114) and (115) still contain two unknown
constants, 4 and B, which have to be determined by the terminal
conditions, that is, by the known conditions of current and
voltage at some partlcular time.

At the moment of starting the dlscharge or at the time
t=0, the current is zero, and the voltage is that to which the
condenser is charged, that is, 1=0, and e=ey.

Substituting these values in equations (114) and (115)

gives,
L
0=A4 and ey=4 JEB;

B=eo\/§7

and, substituting for A and B the values in (114) and (115),
gives

.0t }

=€ E sin '\7——&/ |

t
=¢ C0% ﬁ

hence

and .. (1)
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Substituting the numerical values, ¢,=10,000 volts, C=20
mf.=20X10-5 farads, L=>50 mh.=0.05h. gives,

£=o.oz and VCL=10"%;

1=200 sin 1000t and ¢=10,000 cos 1000 ¢.

61. The discharge thus is alternating. In reality, due to
the unavoidable resistance in the discharge path, the alterna-
tions gradually die out, that is, the discharge is oscillating.

The time of one complete period is given by,

hence,

2
10006, =2=; or, f =100
Hence the frenqueney,
1 1
f = ——Q@ =159 cycles per second.

As the circuit in addition to the inductance necessarily
contains resistance 7, besides the voltage consumed by the
inductance by equation (112), voltage is consumed by the

resistance, thus
‘ e=rl, . . . . . .. (117

and the total voltage consumed by resistance » and inductance
L, thus is

e=ri+Lad—§. ...... (118)
Differentiating (118) gives,

de di

a=7’a;+lz7ﬂ, ..... (119)

and, substituting this into equation (111), gives,
i+Cre L‘Lode . (120)

as the differential equation of the problem. o
This differential equation is of the more general form, (22).
62. The more general differential equation (22),

Py o dy
b 2+2c~(—i—+azy+b 0, .. ... (121)
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can, by substituting,

which gives
dy_ie
dr dr’
be transformed into the somewhat simpler form,

&z dz
e —+2 e, tae= =0 ... (123)

It may also be solved by the method of indeterminate
coefficients, by substituting for z an infinite series of powers of
, and determining thereby the coefficients of the series.

As, however, the simpler forms of this equation were solved
by exponential functions, the applicability of the exponential
functions to this equation (123) may be directly tried, by the
method of indeterminate coefficients. That is, assume as solu-
tion an exponential function,

r=Aemi= (124)

)

where A and b are unknown constants. Substituting (124)
into (123), if such values of A and b can be found, which make
the substitution product an identity, (124) is a solution of
the differential equation (123).

From (124) it follows that,

d—z——bAa"b” and Ei—~—b2Ae‘[”° .. {125)
dr ! d’r
and substituting (124} and (125) into (123), gives,
At (b2 +2b+a}=0. . . . . (126)

As seen, this equation is satisfied for every value of z, that
is, 1t Is an identity, if the parenthesis is zero, thus,

b2+bta=0, . . . . . (127)

and the value of b, calculated by the quadratic equation (127),
thus makes (124) a solutlon of (123), and leaves 4 still undster-
mined, as integration constant.
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From (127),
b=—ctVe—a; . . .. . (129
or, substituting,
Ve-a=p, . .. .. . (129)
into (128), the equation becomes,
b=—ckp. . . . . . (130)
Hence, two values of b exist,
bi=—c¢c+p and bo=—c-p, . . . (131)
and, therefore, the differential equation,
g;2+20d—z+az 0, . . ... (132)
is solved by Aé¥=; or, by A=, or, by any combination of
these two solutions. The most general solution is,
z=A1eP 4 Ayebe
that is,

Rl

y=A15(-—0+p)z + Agel=e=pa_— ]I
L SN e k1Y)

= {4 et P4 Ape P} ——

As roots of a quadratic equation, by and by may both be
real quantities, or may be complex imaginary, and in the
latter case, the solution (131) appears in imaginary form, and
has to be reduced or modified for use, so as to eliminate the
imaginary appearance, by the relations (106) and (107),

EXAMPLE.

63. Assume, in the example in paragraph 9, the discharge
circuit of the condenser of C=20 mf. capacity, to contain,
besides the inductance, L=0.05 &, the resistance, r=125 ohms.

The general equation of the problem, (120), dividing by
C L, becomes,

dzz rdz i

gt (132)
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This is the equation (123), for:

: . (1)
= (P
g=1, ¢ ) 10
If p=Vei—q, then
. \/<r>2 1
“N\2Z) CL
..... 134
Rl o
N T
and, writing
r2~—%= ,
s e (135)
8
P=§Z:
and since
]
=10 and —==2500,
’L C ', (136)
s=75 and p=T50. J
The equation of the current from (131) then is,
4 de r+s \l
= T +
e o (137)

-t ot 2|
=¢ 2L IA].E 2L +A25 2L }J

This equation still eontains two unknown quantities, the inte-
gration constants 4; and A, which are determined by the
terminal condition: The values of current and of voltage at the
beginning of the discharge, or {=0.

This requires the determination of the equation of the
voltage at the condenser terminals. - This obviously is the voltage
consumed by resistance and inductance, and is expressed by
equation (118),
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hence, substituting herein the value of 2 and from equagion

(137), gives

&

] Tty [ =g I8 _r_+_s]
o= r{Aln B4 Ay 2 }+L{ By 2Lt_.i42 le

T2
s J:_‘ T s,
=14[_ QALY W
5 A
r | 8 s
- TS +—t =3 —t
= 3’{ 5 ——Ae 21‘+—7)—"115 LWL L L. (139)

and, substituting the numerical values (133) and (136) into
equations (137) and (138), gives

G A e 500t 4, 20008
and, oL (139
6=100‘415_5002"?251'125'2000‘

At the moment of the beginning of the discharge, $=0,
the current is zero and the voltage is 10,000; that is,

1=0; i=0; ¢=10,000 . . . . . .(140)
Substituting (140) into (139) gives,

0=4; +A2, 10,000=100A1 +25A2;
hence,
Ag=—4,; 4;=1333; A=-1333.

Therefore, the current and voltage are,
§=133.3] ¢ =500t _ .~ 20001}

L, (142)
£=13,333: =500 3333, ~200% |

The reader is advised to calculate and plot the numerical
values of 7 and ¢, and of their two components, for,

£=0,0.2,04, 0.6,1,1.2,1.5,2, 2.5, 3, 4, 5, 6 X103 sec
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64. Assuming, however, that the resistance of the discharge
cireuit is only 7=80 ohms (instead of 125 ohms, as assumed
above:

4L .
72——67 in equation (134} then becomes —3600, and there-

fore: .
s=+/-3600=00+/—1=60;,
and
$§ .
p=§-L=6003.

The equation of the current (137) thus appears in imaginary
form,
,L'___E—SOOIiAl€+600it+A25-6007t’)_ L. (143)

The same is also true of the equation of voltage.

As it is obvious, however, physically, that a real current
must be coexistent with a real em.f., it follows that this
imaginary form of the expression of current and voltage is only
apparent, and that in reality, by substituting for the exponential
functions with imaginary exponents their trigononetric expres-
sions, the imaginary terms must eliminate, and the equation
(116) appear in real form.

Aceording to equations (106) and (107),

¢ F800% = cog 600t +7 sin 600¢;
=600t = gog B00{— g sin 600L. |
Substituting (144) into (143) gives,
i= =800 B, oos 6004+ Bysin 6008}, . . (145)

where B; and B, are combinations of the previous integration
constants 4; and 4s thus,

Bi=A41+4; and Bo=j(4d;—4s). . . (146)
By substituting the numerical values, the condenser e.m.f.,
given by equation (138), then becomes,
¢=¢~800¢{ (40 4+ 307) A1 (cos 600¢+7 sin 600¢)
+(40—307) 4 2(cos 600t—7 sin 600f) }
=¢78004 (40B, +30B5)cos 600t + (40By—30By) sin 6004},  (147)

C L. (144
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Since for =0, =0 and e=10,000 volts (140), substituting
into (145) and (147),

0=By and 10,000=40 B +30 B,.
Therefore, By=0 and B;=333 and, by (145) and (147),
1=333:800 gin 600 ¢;

.. (148)
¢=10,000e=83%% (cos 600 ¢+1.33 sin 600 ¢.

As seen, in this case the current ¢ is larger, and current
and e.m.f. are the product of an exponential term (gradually
decreasing value) and a trigonometric term (alternating value);
that is, they consist of successive alternations of gradually
decreasing amplitude. Such functions are called oscillating
functions. Practically all disturbances in electric circuits
consist of such oscillating currents and voltages.

600i =27 gives, as the time of one complete period,

P=2% 0010
=m=0. 105 see.;

and the frequency is

1
f=T =95.3 cycles per see.

In this particular case, as the resistance is relatively high,
the oscillations die out rather rapidly.

The reader is advised to caleulate and plot the numerical
values of ¢ and ¢, and of their exponential terms, for every 30
, 12, 17;, 3 7;, ete., for the first two
periods, and also to derive the equations, and calculate and plot
the numerical values, for the same capacity, C=20 mf,, and
same inductance, L=0.05h, but for the much lower resistance,
r=20 ohms.

65. Tables of ¢™® and 7%, for 5 decimals, and tables of
log ¢** and log 7% for 6 decimals, are given at the end of
the hook, and also a table of ¢=* for 3 decimals. For most
engineering purposes the latter is sufficient; where a higher
accuracy is required, the 5 decimal table may be used, and for

degrees, that is, for t=0
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highest accuracy interpolation by the logarithmic table may be
employed. For instance,
1368479

From the logarithmic table,
log 710 =35.657055,
log 73 =8.697117,
log 706 =9,739423,
log £70-08=9,965256,
interpolated,

log e=0:0017=9.098133 { between log ¢~0%01=9.998263,
and log ¢70005  =9.997829),

added
log ¢713 6847 = 4,056984 = 0.056984 — 6.

From common logarithmic tables,
£7136847 =1 14021 X108,



TRIGONOMETRIC SERIES,
A. TRIGONOMETRIC FUNCTIONS.

66. For the engineer, and especially the electrical engineer,
a perfect familiarity with the trigonometric functions and
trigonometric formulas is almost as essential as familiarity with
the multiplication table. To wuse trigonometric methods
efficiently, it is not sufficient to understand trigonometric
formulas enough to be able to look them up when required,
but they must be learned by heart, and in both directions; that
is, an expression similar to the left side of a trigonometric for-
mula must immediately recall the right side, and an expression
similar to the right side must immediately recall the left side
of the formula.

Trigonometric functions are defined on the cirele, and on
the right triangle.

Let in the circle, Fig. 28, the direction to the right and
upward be considered as positive, to the left and downward as
ncgative, and the angle o be counted from the positive hori-
zontal OA, counterclockwise as positive, clockwise as negative.

The projector s of the angle e, divided by the radius, is
called sin «; the projection ¢ of the angle e, divided by the
radius, is called cos a.

The intercept ¢ on the vertical tangent at the origin 4,
divided by the radius, is called tan «; the intcrcept cf on the
horizontal tangent at B, or 90 deg., behind 4, divided by the
radius, is called cot a.

Thus, in Fig. 28,

.8 3
sing=-; cose=-;
r T

1 ct
fana=-; coba=-
r r
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In the right triangle, Fig. 29, with the angles @ and §,
opposite respectively to the cathetes ¢ and b, and with the
hypotenuse ¢, the trigonometric functions are:

. @ . b
sin ¢ =cos §=Z; cos a=sin ,8=c—

tan a=cot ﬁ;%; cot a=tan,8=%.

By the right triangle, only functions of angles up to 90 deg.,
or ;, can be defined, while by the circle the trigonometric

functions of any angle are given. Both representations thus
must be so familiar to the engineer that he can see the trigo-

+
Bl . et )z
3 t «
o
0 ¢ A
¢
b
90° 8
- ‘ a
Fre. 28. Circular Trigonometric Fic. 29. Triangular Trigono-
Functions. metric Funetions.

nometric functions and their variations with a change of the
angle, and in most cases their numerical values, from the
mental picture of the diagram.

67. Signs of Functions. In the first quadrant, Tig. 28, all
trigonometric functions are positive.

In the second quadrant, Fig. 30, the sin « is still positive,
as § is in the upward direction, but cos a is negative, since ¢
is toward the left, and tan « and cot « also are negative, as ¢
is downward, and cf toward the left.

In the third quadrant, Fig. 31, sin « and cos @ are hoth
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negative: s being downward, ¢ toward the left; but tan « and
cot « are again positive, as seen from ¢ and ¢t in Fig. 31.

+ +
cf B ct
« £ ¢
s \ /
AL c .
¢ 0 N 0 A
s
t

Fie. 80. Second Quadrant.

Fr¢. 31, Third Quadrant.

In the fourth quadrant, Fig. 32, sin @ is negative, as s is

+
ct B

AR/

) +
Do
i

Fie. 32, Fourth Quadrant.

downward, but cos « is agam positive, as ¢ is toward the right;

tan « and cot a are hoth
negative, as seen from ¢ and
¢t in Fig. 32.

In the fifth quadrant all
the trigonometric functions
again have the same values
as in the first quadrant, Fig,
28, that is, 360 deg., or 2z,
or & multiple thereof, can be
added to, or subtracted from
the angle &, without changing
the trigonometric functions,
but these functions repeat
after every 360 deg., or 2r;

that is, have 2 or 360 deg. as their period.

SIGNS OF FUNCTIONS

Function Positive, Negative, ‘]
sin Istand 2d | 3d and 4th quadrant @)
cos @ 1st and 4th | 2d and 3d “
tan Istand 3d | 2d and 4th  «
cot Istand 3d | 2d and 4th J
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68. Relations between sin « and cos . Between sin & and
cos a the relation,
gn?ateosa=1, . . . . . . (4
exists; hence,

sina=\/1—cos2a,‘ (40)

cos @ =V1—gn?a.

Equation (4) is one of those which is frequently used in
both directions. For instance, 1 may be substituted for the
sum of the squares of sin @ and cos e, while in other cases
sin? @ +cos? @ may be substituted for 1.  For instance,

1 sinfa+tcos®a [sina

1 _siateofa (sma) o
c0s2 ¢ o0 @ (cos 2/ +1=tan?a+1.

Relations between Sines and Tangents.

sin
tan a= " ;
6);
oS &
cot a=-~—;
s«
hence
cot a= ; ]
tan « -
(5a)
1
tan o =—-.
cot a

As tan @ and cos « are far less convenient for trigonometric
calculations than sin @ and cos @, and therefore are less fre-
quently applied in trigonometric caleulations, it is not neces-
sary to memorize the trigonometric formulas pertaining to
tan @ and cot «, but where these functions occur, sin @ and
and cos a are substituted for them by equations (5), and the
calculations carried out with the latter functions, and tan e
or cot « resubstituted in the final result, if the latter containg

sine ..
~——, or its reciprocal.
cos a

D]

In electrical engineering tan a or cot a frequently appears
as the starting-point of caleulation of the phase of alternating
currents. For instance, if « is the phase angle of & vector
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quantity, tan o is given as the ratio of the vertical component
over the horizontal component, or of the reactive component
over the power component.

In this case, if

tanaz%,
a b
in @=——= =, (5
sin a T and cosa T (5b)
or, if
cota=(—ci-,
d ¢
sin a= = and coso=—=.. . (B
TVeid TVeLe &)

The secant functions, and versed sine [unctions are so
little used in engineering, that they are of interest only as
curiosities, They are defined by the following equations:

Sec a= s
COS

1
0sec o =-—o0,
sin @

sin vers a=1—sin a,
cos vers a=1-—cos a.

69. Negative Angles. From the circle diagram of the
trigonometric functions follows, as shown in Fig. 33, that when
changing from a positive angle, that is, counterclockwise
rotation, to a negative angle, that is, clockwise rotation, s, ¢,
and ¢t reverse their direction, but ¢ remains the same; that is,

sin (—a)=-sinaq, 3
cos (—a)=+cos a, (©)

tan (—a)=—tan o,
cob (—a)=—cot a,

cos @ thus is an “even function,” while the three others are
“odd functions.”
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Supplementary Angles. From the circle diagram of the
trigonometric functions follows, as shown in Fig. 34, that by
changing from an angle to its supplementary angle, s remains
in the same direction, but ¢, ¢, and ¢t reverse their direction,
and all four quantities retain the same numerical values, thus,

sin (z—a)=+¢in a,

¢os (r—a)=—cosa, 0
tan (z—a)=—tan a,
cot (z—a)=—cota
“+ ¥
o ¢ B ¢ N et B o
13
s IIS T+& .
#o e + I Nl A
O\~ |I ¢ 0 c -
8
1/t ¢
N N

Fr6. 33. Functions of Negative  Fic. 34 Functions of Supplementary
’ Angles. Angles.

Complementary Angles. Changing from an angle « to its

;i—a, as seen from Fig. 35,

the signs remain the same, but s and ¢, and also t and ¢t exchange
their numerical values, thus,

. [T
sin{ 5 —a ) =cos a,

complementary angle 90—a, or

N
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7o. Angle (a+7). Adding, or subtracting = to an angle a,
gives the same numerical values of the trigonometric functions

+ +
Bl et s B ct
v
i
O THT §
\\ A +' - C r/ \ X\m 1
Q c I 0 /¢ A
ls R\///
| =T

F1c. 35. Funetions of Complemen- Fic. 36. Functions of Angles Plus
tary Angles. or Minus 7.

as «, as seen in Fig. 36, but the direction of s and ¢ is reversed,
while £ and ¢f remain in the same direction, thus,
sin (@47)=—sin ¢,
cos (em)=—cos a, o
tan (a47)= +tana, |

cot (@ £7)= +cob a.

+ +
\ e [B et L, N B e |
t
b\ )
L . - .
¢ oN ¢ 5t ONges® JA
|s
A
t
;

\

TFig. 37. Functions of Angles+ % Fie. 38. Functions of Angles Minus g

Angle(a i%) Addmv 3 OF 90 deg. 10 an angle e, inter-

changes the functions, s and ¢, and ¢ and ¢f, and also reverses
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the direction of the cosine, tangent, and cotangent, but leaves
the sine in the same direction, since the sine is positive in the
second quadrant, as seen in Fig. 37.

Subtracting 5, or 90 deg from angle a, interchanges the

funetions, s and ¢, and ¢ and ¢f, and also reverses the direction,
except that of the cosine, which remains in the same direction;
that is, of the same sign, as the cosine is positive in the first
and fourth quadrant, as seen in Fig. 38.

. T
sin (a +§> =+008 @,

T .
€os <a +5 |=-snq,

. T~
sin (a7 |=—cos q,
€03 (a—%) = +5in «,
tan (a—%) =—Cot a,
-

Therefore,

(11)

Numerical Values. From the circle diagram, Fig 28, ete.,
follows the numerical values:

sin  0°=0

sin 30°=4%

sin 45°=1]f\/ p)

sin 60°=4V 3

sin 90°=1

sin 120°='}\/ 3
etc.

cos (°=1 tan  0°=0
cos 30°=4V/3 | tan 45°=1
cos 45°=1_r\/2_ tan 90°=o0

cos 60°=% tan 135°=~1

cos 90°=0 ete.
cos 120°=—%
ete.

cot 0°=co ]

cob 45°=1
cot 90°=0
cot 135°=—1

ete.

. (1)
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71, Relations between Two Angles. The following relations
are developed in text-books of trigonometry:

sin (e +f)=sin « cos B+cos @ sin §,

sin (@—p) =sin a cos f—cos a sin B,
c0s (a+8)=cos & cos f—sin « sin §,
eos (a—f)=cos a cos f+sin « sin B,

Herefrom follows, by combining these equations (I3) in
pairs:
cos a cos f=3%{cos (a+p) +co

(73
—
Q
E
= -

@0

(
sin @ sin f=*%{cos (a—F)—cos (

(@ +5)+sin (a—-p)},
¢0s @ sin f=}{sin (a+§)—sin (a—f)].

By substituting a; for («+8), and f; for (@—8) in these
equations (14), gives the equations,

. . ay+ o=
sin ap+sin 1= 2sin 12 ﬂl cos 12[92

sin « cos f=14{sin

. . Loar—p artf
sin ¢;—sin §;= 2sin ——)i ¢os Tﬂ’

1+1 =Py
o8 ar+00s f1= 2c0s—— i s —5—

=

e +b . o—f
€08 a1 —¢0s f1=—2 sin —5— sin ﬁ

These three sets of equations are the most important trigo-
nometric formulas. Their memorizing can be facilitated by
noting that cosine funetions lead to products of equal fune-
tions, sine functions to" produets of unequal functions, and
inversely, products of equal functions resolve into cosine,
products of unequal functions into sine functions. Also cosine
functions show a reversal of the sign, thus: the cosine of a
sum is given by a difference of products, the cosine of a differ-
ence by a sum, for the reason that with increasing angle
the cosine function decreases, and the cosine of & sum of angles
thus would be less than the cosine of the single angle.
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Double Angles. From (13) follows, by substituting « for §:

sin 2a =2 sin e cos ¢,

cos 2a=cos? a—sin? a,

16)
=2cos* a—1, (
=1-2sin?a.
Herefrom follow
. 1—cos? 1+cos?
sin® a = c‘oq oand eota= £l } . (16a)
2. Differentiation.
d .
T (sin 2)= +cos z,
J (17)
T (cos 1)=—sin .

The sign of the latter differential is negative, as with an
increase of angle a, the cos a decreases.

Integration.

fsin ada=—cosa, ]
(18)

fcos ade= +sina.

Herefrom follow the definite integrals:

- c+2:z' ]

f sin (a+0)da=0;
¢c+2r . '

f cos (@ +a)da=0;

+r
fc sin (a+a)da=2 cos (c+a);
g (18b)

ct+r .
f cos (@ +a)da=—2sin (c+a);
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+% )
f gin ada= !
3 O £

2

fcos ada=0;

o

f sineda= +1;
0

3

2
cosquda =
0

73. Binomial. One of the most frequent trigonometric
operations in electrical engineering is the transformation of the
binomial, & cos &+ sin @, into a single trigonometric function,
by the substitution, a=c cos p and b=csin p; hence,

acos a+bsina=ceos (a—p), . . . (19
where
b
e=Va2+b? and tan p==io e e (20)
or, by the transformation, a=csin ¢ and b=ccos g,
acos a+bsin a=csin (@+¢), . . . (21)
where
e=Va2+b? and tanq=%. . (22)
74. Polyphase Relations.
L ]
Z €08 < +aj:———) =0,
: (23
1

ffeees2) |

where m and n are integer numbers.
Progf. The points on the circle which defines the trigo-

nometric function, by Fig..28, of the angles (a+ai2mr)
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are corners of a regular polygon, inseribed in the circle and
therefore having the center of the circle as center of gravity.
For instance, for n="7, m=2, they arc shown as Py, P, ... Py,
in Fig. 39. The cosines of these angles are the projections on
the vertical, the sines, the projections on the horizontal diameter,
and as the sum of the projections of the corners of any polygon,

R

8y

S3

Fic. 39. Polyphase Relations. Fie. 40. Triangle.

on any line going through its center of gravity, is zero, both
sums of equation (23) are zero.
" 2miz min\ n
Z cos |a+at——) cos {a+bt——)=5cos (a—b),
- n n 2 .
L 2min\ 2mi
2 sin <a+ai——n§£) sin <a+bi$>=gcos (a—b), 124
1

< + 2mix b 2miz\ _n . (u=b)
ESln at+at ” cos (a+0+ n)~3 sin (& .

1

These equations are proven by substituting for the products
the single functions by equations (14), and substituting them
in equations (23).

75. Triangle. If in a triangle , 8, and y are the angles,
opposite respectively to the sides g, b, ¢, Fig. 40, then,

sin @+sin f+sin r=a+b+e, . . . . (25)

PR S A A A )
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e LB
=

2ab e (26)
or

¢*=a?+b2—2qb cos 7.
_absiny
2 R 1)

¢sin e sin 8
T sy J

Area

B. TRIGONOMETRIC SERIES.

76. Engineering. phenomena usually are either constant,
transient, or periodic. Constant, for instance, is the terminal
voltage of & storage-battery and the current taken from it
through a constant resistance. Transient phenomena occur
during a change in the condition of an electric circuit, as a
change of load; or, disturbances entering the circuit from the
outside or originating in it, etc. Periodic phenomena are the
alternating currents and voltages, pulsating currents as those
produced by rectifiers, the distribution of the magnetic flux
in the air-gap of a machine, or the distribution of voltage
around the commutator of the direct-current machine, the
motion of the piston in the steam-engine cylinder, the variation
of the mean daily temperature with the seasons of the year, etc.

The characteristic of a periodic function, y=f(z), is, that
at constant intervals of the independent wvariable z, called
eycles or periods, the same values of the dependent variable y
oceur. *

Most periodic functions of engineering are functions of time
or of space, and as such have the characteristic of univalence;
that is, to any value of the independent variable z can corre-
spond only one value of the dependent variable . In other
words, at any given time and given point of space, any physical
phenomenon can have one numerical value only, and obviously,
must be represented by & univalent function of time and space.

Any univalent periodic function,

y=f@), . . . . .. Y
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can be expressed by an infinite trigonometric series, or Fourier
series, of the form,

Y =0g+a1 €OS ¢ +ag cos 2cx +ag cos dex +. . ..
+bysin cr+basin 2ex+bgsinder+... ;L. . L. (2

=

or, substituting for convenience, cxr=0, this gives

Y=o+ ¢os 0 +as cos 26 +a3 cos 30+ .

+bysin 04basin 20+bssin 360+...; . . . . . (3)
or, combining the sine and cosine functions by the binomial
(par. 73),

y=0j+c1 ¢os (0—@1)+czcos(2«9—ﬁ2)+cscos(30—ﬁ3)+...} )
=ag+crsin (0+71) +easin (20+7) +ezsin (30 +73) +... ()

where
= ang‘}'bne;
bn
fan fn=0 e B
[
or tan m=p }

The proof hereot s given by showing that the coefficients
a, and b, of the series (3) can be defermined from the numerical
values of the periodic functions (1), thus,

y=f@=f). . . . . .. . @

Since, however, the trigonometric function, and therefore
also the series of trigonometric functions (3) is univalent, it
follows that the periodic function (6), y=£o(6), must be uni-
valent, to be represonted by & trigonometric series.

7. The most important periodic functions in electrical
engincering are the alternating currents and em.fs. Usually
they are, in first approximation, represented by a single trigo-
nometric function, as:

i=1g cos (0—w);
or,
e=eg sin (6—0);

that is, they are assumed as sine waves.
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Theoretically, obviously this condition can never be perfectly
attained, and frequently the deviation from sine shape is suffi-
clent to require practical consideration, especially in those cases,
where the electric circuit contains electrostatic capacity, as is
for instance, the case with long-distance transmission lines,
underground eable systems, high potential transformers, etc.

However, no matter how much the alternating or other
periodic wave differs from simple sine shape—that is, however
much the wave is “ distorted,” it can always be represented
by the trigonometric series (3).

As illustration the following applications of the trigo-
nometric series to engineering problems may be considered:

(4) The determination of the equation of the periodic
function; that is, the evolution of the constants a, and b, of
the trigonometric series, if the numerical values of the periodic
function are given. Thus, for instance, the wave of an
alternator may be taken by oscillograph or wave-meter, and
by measuring from the oscillograph, the numerical values of
the periodic function are derived for every 10 degrees, or every
5 degrees, or every degree, depending on the aceuracy required.
The problem then is, from the numerical values of the wave,
to determine its equation. While the oscillograph shows the
shape of the wave, it obviously is not possible therefrom to
caleulate other quantities, as from the voltage the current
under given circuit conditions, if the wave shape is not first
represented by a mathematical expression. It therefore is of
importance in enginecring to translate the picture or the table
of numerical values of & periodic function into a mathematical
expression thereof.

(B) If one of the engineering quantities, as the em.f. of
an alternator or the magnetic flux in the air-gap of an electric
machine, is given as a general periodic function in the form
of a trigonometric series, to determine therefrom other engineer-
ing quantities, as the current, the generated e.m.f., ete.

A. Evaluation of the Constants of the Trigonometric Series from
the Instantaneous Values of the Periodic Function.

78. Assuming that the numerical values of a univalent
periodic function y=fy(f) are given; that is, for every value
of 6, the eorresponding value of y is known, either by graphical
representation, Fig. 41; or, in tabulated form, Table I, but
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the equation of the periodic function is not known. It can be
represented in the form,

Y=00+a1 €08 0+ay cos 20 +az cos 30+ .. +ancosnl+. ..
+bysin 04Dy sin 26 +bssin 30+. . . +b, sinaf+..., (7)

and the problem now s, to determine the coefficients ao, a,
Qe b1, b2 e

Frc. 41. Periodic Functions.
TABLE I

0 y ¢ Y g ] 6 v

0 —-60 90 + 9 180 | +122 || 270 | +8
10 —-49 100 + 61 190 | +124 || 280 | +65
20 ~38 110 + 71 200 | +126 || 200 | 435
30 ~26 120 + 81 210 | +125 || 300 | 417
40 -12 130 + 90 220 | 4123 ) 310 0
50 0 140 + 99 20 | +120 || 320 -13
60 +11 150 +107 240 | 4116 || 330 | -26
70 +27 160 +114 260 | +110 || 340 | -38
80 +39 170 | +119 260 | 4100 || 350 —49
90 +50 180 1| +122 270 | 4 85 || 360 -60

Integrate the equation (7) between the limits 0 and 2z:

f ydf= aoj d0+a1fcos 0d0+aaf. cos 2040 +. .

anf cos nodf+. . . +b; f sin 6d0 +
0 0

+hy f Tsin20d6+. .. +b f snnédé+. ..

2 121:
—ao/ﬁ/ +a1/sm0/ +a2/51n20
+a,,/sm %0/2 —bl/cos 0/

27 2n
Sy f
2 /y n /g
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All the integrals containing trigonometric functions vanish,
as the trigonometric function has the same value at the upper
limit 27 as at the lower fimit 0, that is,

cosnf /% 1
/ / ==(cos 2nz—cos 0)=0;
nofy n

sinnd /& 1, .
/ /=—(sm 2nz—sin 0) =0,
n/y n

and the result is

" di=ay/ 0 -z=2za'
’fov Y 0 :/O 03

1 2
do=§%ﬂ ydﬁ. B ()]

ydd is an element of the area of the curve y, Fig 41, and

yd6 thus is the area of the periodic function y, for one

henee

4}
period; that is,

ao=7-A, (9)

where 4 =area of the periodic function y=/fo(6), for one period;
that is, from 6=0 to §=2x.

. . . A .
2z is the horizontal width of this arca 4, and 5= thus is

the area divided by the width of it; that is, it is the average
height of the area A of the periodic function y; or, in other
words, it is the average value of 4. Therefore,

w=avg. (Moo . . . . . . (10)

The first coefficient, ao, thus, is the average value of the
instantaneous values of the periodic function ¥, between =0
and =2z

Therefore, averaging the values of y in Table I, gives the
first constant ao.

70. To determine the coefficient a,, multiply equation (7)
by cos nd, and then integrate from 0 to 2z, for the purpose of
making the trigonometric functions vanish. This gives
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f ”y cos n0df=a, f " cos ndd MJIJW n cos 0d0 +
J J 0

+agj ‘hcos nd cos 2040 +. . . +anf‘lcos2 nfdf+. ..
o 0

2

+b1fﬂcos nfsin 6d6+b, f ) 'cos ndsin 20d0 +. . .
0 o

+b,,f-“eos nd sin nddi+. . .
[

Hence, by the trigonometric equations of the preceding
section:

£ Zﬁycosnﬁd0=ag J; 2ﬁ(}Osnf)aIﬁﬂzl {; 2é[cos(nﬂ)0+cos(n—1‘\(’7]df7
+ao L‘ 2ﬁ%[cos (n+2)0+cos (n—2)0)d0+. .
tan ﬁ N1+ cos 20000+ .
+h ﬁ " Jlsin (n+1)0sin (n—1)0)00
+by ozri[sin (n+2)6—sin (n—2)0ld0 +. ..
45, £ "y sin 2nfdi ..
All these ‘integrals of trigonometric functions give trigo-
nometric functions, and therefore vanish between the limits 0
and 27, and there only remains the first term of the integral

multiplied with a,, which does not contain a trigonometric
function, and thus remains finite:

Zwrl 6>23
o) zdi=anl5) =07
fo 2 <2 0o

J‘d .y cos n0df =ayr;

0

and therefore,

hence

1 (2= '
Qn== f yeosnbdd. . . . . . .. an
“ 0
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If the instantaneous values of y are multiplied with cos nf,

and the product 1, =y cos n8 plotted as a curve, y cos nfdd is
an element; of the area of this curve, shown for n=3 in Fig, 42,

and thus j“ y cos n6df is the area of this cur';fe; that is,
]

an="Am e e (12)

\/\/\ /\/\/\

AAVARYA

F1c. 42. Curve of y cos 36.

where A, is the area of the curve y cos nd, between 6=0 and
0=2r.

A,
As 27 is the width of this area A, 5~ 1s the average height

. .. 1
of this area; that is, is the average value of y cos nd, and -4,

thus is twice the average value of y cos n0; that is,

t=2avg (yeosnd)™. . . . . (13)

JaVA VA
AV \/ \/ NV R \/
FIlG. 43. Curve of y sin 36.

The coefficient a, of cosnf is derived by multiplying all
the instantaneous values of y by cos nf, and taking twice the
average of the instantaneous values of this product y cos nf.
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80. by is determined in the analogous manner by multiply-
ing y by sin 20 and integrating from 0 to 27 ; by the area of the
curve y sin nd, shown in Fig. 43, for n=3,

2 2z 27
f y sin n0d@ =aof sin nfdf+a, [ sin nf cos 4d6
o o o
2 27
+a2f sin nf cos 26d6+. . . +anf sinnf cos nfdf +. , .
o 0
2n 27
+b1f sin n0d0+bzf sin nf sin 2046 +. .
0 o
+b, f sinfdo+. .
0
2 2z
=aof sin n0d0+a1f #{sin (+1)0+sin (n—1)6]dA
0 0
+a2f-ﬂ%[sin (n+2)0 +sin (n—2)81d6 +. . .
0
o, f "ysin 9n0d0+. .
0
2
-(-blf Heos (m—1)8~cos (n+1)8]d8
0
+by | Heos (n—2)6—cos (n+ 2010+
0

2m
—l—bnf H{1—cos 2n0)d0 +...
0

-b, f 1d0=b,z;
0

hence,

1= .
bp== f ysinnfdd . . . . . ., (14y
T

T

where 4,15 the area of the curve y,'=ysin nf. Hence,
bu=2avg. (ysinnd)e™, . . . . . (16)
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and the coefficient of sin 70 thus is derived by multiplying the
instantaneous values of y with sin %6, and then averaging, as
twice the average of y sin nf.

81. Any univalent periodie function, of which the numerical
values y are known, can thus be expressed numerically by the
equation,

Y=ay+05 cos O+azcos 20+. . . +a,cosnl+. ..

40y 8in 0+bgsin 20+, . .40, sinnl+..., . (A7)

where the coefficlents ap, 01, as, . by, b2.. ., are caleulated
as the averages: .

gy=avg. (1),

a=2avg. (yeos 6),”;  by=2avg (ysin 6),”; ®)
=2 avg. (yeos 20),;  bo=2avg. (ysin 26),";
y=2avg, (yeosnf),”;  by=2avg. (ysinnf),”;
Hereby any individual harmonic can be caleulated, without
caleulating the preceding harmonies.
For instance, let the generator c.m.f. wave, Fig. 44, Table
II, column 2, be impressed upon an underground cable system

Fia. 44. Generator e.m.f. wave.

of such constants (capacity and induetance), that the natural
frequency of the system is 670 cycles per second, while the
generator frequency is 60 cycles. The natural frequency of the
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circuit is then close to that of the 11th harmonic of the generator
wave, 660 cycles, and if the generator voltage contains an
appreciable 11th harmonie, trouble may result from a resonance
rise of voltage of this frequency; therefore, the 11th harmonic
of the generator wave is to be determined, that is, a;; and by
calculated, but the other harmonics are of less importance.

Tase II
] y cos 116 sin 110 ‘ yeos 114 ysin 114
0 5 +1 000 0 +50 0

10 4 -0 342 +0 940 ~14 + 38
20 20 -0 766 -0 643 ~15 3 -129
30 22 +0 866 -0 500 +191 ~11 0
40 19 +0 174 +0 985 +33 +187
50 25 —-0.985 —-0.174 -24 6 - 4.3
60 29 +0 500 -0 866 +14 5 =21
70 29 +0 643 +0 766 +18 6 +22 2
80 30 -0 940 +0 342 -28 2 +10 3
90 38 0 —1 000 0 -380
100 46 +0 940 +0 342 +43 3 +15 7
110 38 —0.643 +0 766 ~24 4 +29 2
120 41 -0 500 —0 866 =205 =353
130 50 +0 985 -0 174 +49 2 - 87
140 32 -0 174 +0 985 -5.6 +315

150 30 -0 8366 —~0 500 -26 0
160 33 +0 766 -0 643 +25 3 ~150
170 7 +0.342 +0 940 +22 -213
180 -5 + 66
Total . . +34 5 -2 8

Divided by 9 .| +3.83=q, -3 3I=hy
. 1

In the third column of Table II thus are given the values
of cos 116, in the fourth column sin 116, in the fifth column
y cos 118, and in the sixth column y sin 116, The former gives
as average +1 915, hence ai1=+3.83, and the latter gives as
average —1.655, hence b;;=—331, and the 11th harmonic of
the generator wave is

g1 ¢0s 110 +byg sin 116=3.83 cos 116—3.31 sin 116
=5.07 cos (1104419,
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hence, its effective value is

0,
Vi e

while the effective value of the total generator wave, that
Is, the square root of the mean squares of the instanta-
neous values y, is

¢=30.5,

thus the 11th harmonic is 11.8 per cent of the total voltage,
and whether such a harmonic is safe or not, can now be deter-
mined from the circuit constants, more particularly its resist-
ance.

82. In general, the successive harmonics decrease; that is,
with increasing n, the values of @, and b, become smaller, and
when caleulating a, and b, by equation (18), for higher values
of n they are derived ag the small averages of a number of
large quantities, and the calculation then becomes incon-
venient and less correct.

Where the entire scries of coefficients a, and b, is to be
calculated, it thus is preferable not to use the complete periodic
function y, but only the resicual left after subtracting the
harmonics which have already heen caleulated; that is, after
@, has been calculated, it is subtracted from y, and the differ-
ence, Y1 =1— dq, is used for the calculation of a; and b;.

Then @y cos f+bysin 0 is subtracted from y;, and the
difference,

Ya=1:— (ay cos O+ sin 0)
=y— (ao+01 cos 0+by sin 6),

is used for the caleulation of ag and bs.

Then az cos 20 +bg sin 20 is subtracted from y,, and the rest,
ys, used for the caleulation of a; and bs, ete.

In this manner a higher accuracy is derived, and the caleu-
lation simplified by having the instantaneous values of the
function of the same magnitude as the coefficients a, and b,

As illustration, is given in Table IIT the calculation of the
first three harmonics of the pulsating current, Fig. 41, Table I:
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83. In electrical engineering, the most important periodic
functions are the alternating currents and voltages. Due to
the constructive features of alternating-current generators,
alternating voltages and currents are almost always symmet-
rical waves; that is, the periodic funetion consists of alternate
half-waves, which are the same in shape, but opposite in direc-
tion, or in other words, the instantaneous values from 180 deg.
to 360 deg. are the same numerically, but opposite in sign,
from the instantancous values between 0 to 180 deg., and each
cycle or period thus consists of two equal but opposite half
cycles, as shown in Fig. 44. In the earlier days of electrical
enginecring, the frequency has for this reason frequently been
expressed by the number of half-waves or alternations.

In a symmelrical wave, those harmonics which produce a
difference in the shape of the positive and the negative half-
wave, cannot exist; that is, their coefficients o and b must be
zero.  Only those harmonics can cxist in which an increase of
the angle 4 by 180 deg , or #, reverses the sign of the function.
This is the case with cos nd and sin nd, if 7 is an odd number.
If, however, n is an even number, an increase of 0 by = increases
the angle nf by 2= or a multiple thereof, thus leaves cosnf
and sin n0 with the same sign.  The same applies to a;.  There-
fore, symmetrical alternating waves comprise only the odd
harmonics, but do not contain even harmonics or a constant
term, and thus are represented by

y=ay cos 0 +as cos 30+as cos 50 +. . .
+bysin 04+bssin 30 +bs8in 56+ .. . . (19)

When calculating the coefficients a, and b, of a symmetrical
wave by the expression (18). it is sufficient to average from 0
to #; that is, over one half-wave only. Inthe second half-wave,
cos nd and sin 6 have the opposite sign as in the first half-wave,
if 7 is an odd number, and since ¥ also has the opposite sign
in the second half-wave, ycosnf and ysinnf in the second
half-wave traverscs again the same values, with the same sign,
as in the first half-wave, and their average thus is given by
averaging over one half-wave only.

Therefore, & symmetrical univalent periodie function, as an
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TABLE

) v = | yewt | ysno OGRSy
0 —-60 —111 —111 0 -84 | -7
10 —49 ~100 ~08 -17 -85 | —15
20 -38 -89 -8 -30 —383 -6
0 | -2 —T77 —67 -33 -7 +2
40 -12 -63 ~43 —40 72 9
50 0 -3l -33 -39 -63 12
60 +11 —40 ~20 -35 -52 12
70 27 -4 =5 -3 —40 16
80 39 —12 -2 -12 -% 14
90 50 -1 0 -1 -1 10
100 61 +10 -2 +10 +4 6
110 71 20 -7 +19 18 | +2
120 81 30 ~15 +26 32 | -2
130 90 - 39 -95 +30 45 | -6
140 9 48 | -37 31 58 | -10
150 107 56 -49 +98 67 | —11
160 114 63 —59 +22 | -12
170 119 68 —67 +12 s1 | -13
180 122 71 =71 0 84 | -13
190 124 73 ~-72 -13 85 | —12
200 126 75 -7l -% 83 | -8
210 125 74 ~64 -37 M -5
220 123 72 —55 —47 72 0
230 120 89 —44 -53 63 | +6
240 116 65 -32 -2 52 13
250 110 59 -9 —56 40 19
260 100 49 -9 —48 26 23
270 85 34 0 —34 1 2
280 65 +14 +2 —14 -4 18
200 35 ~16 -5 +15 18 | L2
300 +17 —34 -17 +30 -32 -2
310 0 —51 -33 +39 —-45 | -6
320 -13 —64 —49 +41 -5 | -6
| 330 -2 -75 ~65 +37 —67 -8
340 —38 -89 -84 +30 -75 | ~14
350 —49 -100 ~99 +17 -81 | -19

Total . .4+1826  Total ...... -1520 —204 Total .. ......
Divided Divided by Divided by 18

by 36 ...+50.7=a,| 18 ..... ~84.4=q, |—-11.3=b,
|
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111
neos | panzs SR oy | yeos3s | yesinge | o
- 0 15 | -12 -12 0 0
-4 -5 ~12 -3 -3 -1 10
-5 -1 -7 +1 0 +1 20
+1 +2 | -1 +3 0 +3 30
+2 +9 +4 +35 -2 +4 10
-2 +12 11 +1 -1 0 50
-8 +10 13 -1 +1 0 80
-12 +10 15 +1 -1 0 70
-13 +5 | 16 -3 +1 +2 80
-10 0 15 -5 0 +35 90
-6 -2 12 -6 - +5 100
-2 -1 7 -3 -4 49 110
+1 +2 +1 =3 -3 0 120
+1 +6 ~1 -2 -2 -1 130
-2 +10 -1 +1 0 +1 140
-5 |40 | -1 |42 0 42| 150
=4 +8& —15 +3 -1 +3 160
—12 —4 -16 +3 -3 +1 170
-13 0 | -15 +2 -2 0 180
~11 -4 -12 0 0 0 190
-6 -6 | -7 -1 0 -1 200
-2 B T Rt 0 -1 |20
0 0 +4 ~4 -2 -4 290
-1 +6 1 -5 -4 -2 230
-6 +11 13 0 0 0 240
15 | 412 15 +4 +4 +2 250
-2 +8 6 | 47 +3 +6 260
-2 0 15 +8 0 +8 270
~17 -8 12 +6 -3 | +5 280
-2 -1 7 -5 +4 -2 290
+1 +2 +1 -3 +3 0 300
+1 46 -4 -3 +2 +1 310
-1 46 -1 +5 -2 -4 320
—1 +7 -13 +5 0 -5 330
-1 +9 -15 +1 0 -1 340
-18 +6 -16 -3 -3 +1 350
—270 +120 Total . .. -33 +97
—150=g, +6.7=b, Divided by 18 . ~—18=q,| +1.5=b,
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alternating voltage and current usually is, can be represented
by the expression,
y=ay cog 0+as cos 3 0+ascos 5 0+aycos 7T0+.. .
+bysin 0+bzsin 3 0+bssin 5 0+0;8in 760 +...;  (20)
where,
m=2avg (yeos )3 bi=2ave (ysin 6)7; ]
as=2avg (ycos3l),”;  bsy=2avg (ysin30)7 J[
az=2avg (yoos 50),*,  bs=2avg. (y sin 50);7; e )
|

2avg. (yeos 70),7;  by=2avg. (ysin 76),~

1l

84. From 180 deg. to 360 deg., the even harmonics have
the same, but the odd harmonics the opposite sign as from 0
to 180 deg. Therefore adding the numerical values in the
range from 180 deg. to 360 deg. to those in the range from 0
to 180 deg., the odd harmonics cancel, and only the even har-
monics remain. Inversely, by subtracting, the even harmonics
cancel, and the odd ones remain.

Hereby the odd and the even harmonics can be separated.
It y=y(f) are the numerical values of a periodic function
from 0 to 180 deg., and y'=y(0+=) the numerical values of
the same function from 180 deg. to 360 deg.,

y(0)=3{y(@) +y(0+m)}, . . . . (22
is a periodic function containing only the even harmonics, and
H@O=HyO—y0+D] . . .. @)

isa periodic function containing only the odd harmonics; that is:

y1(0) =ay cos 0+az cos 30+ a5 cos 50+. ..
+bysin §+bg sin 3 0+bssin 50+...; . . (29)

yo() =ag+as cos 20+aq cos 46+. ..
+bysin 20+dssind0+..., . ... L. (25)

and the complete function is
YO =m0 +y:6). . . . . . (26)
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By this method it is convenient to etermine whether even
harmonics are present, and if they are present, to separate
them from the odd harmonies,

Before separating the even harmonics and the odd har-
monics, it is usually convenient to separate the constant term
ao from the periodic function y, by averaging the instantaneous
values of y from 0 to 360 deg. The average then gives a,
and subtracted from the instantancous values of y, gives

y0(0)=y(0)—a0 e e (27)
as the instantaneous values of the alternating component of the
periodic function; that is, the component 7, contains only the
trgonometric funetions, but not the constant term. y, is
then resolved into the odd series 41, and the even series ya.

85. The alternating wave y, consists of the cosine components:

u(0)=a1 cos 0+az cos 20+a; cos 30 +ay cos 40+..., (28)
and the sine components-
p(0)=by sin 0+bg sin 20+bs sin 30+ by sin 46+...; (29)
that is,
YoB)=u®)+(0). . . . . . . (30

The cosine functions retain the same sign for negative
angles (—6), as for positive angles(+8), while the sine functions
reverse their sign; that is,

w(—0=+u(f) and o(—=0)=—2). . . . (31)

Therefore, if the values of yp for positive and for negative
angles § are averaged, the sine functions cancel, and only the
cosine functions remain, while by subtracting the values of
¥, for positive and for negative angles, only the sine functions
remain; that is,

Yol0) +9o(—0) =2u(6),
(32)
Yo(0) —yo(— ) =20(6);
hence, the cosine terms and the sine terms can be separated
from each other by combining the instantaneous values of y,
for positive angle 0 and for negative angle (—6), thus:

u(6) =35 (0) +36(~6)}, }
o(60) =4 yy(6) = o~ O} |

(33)
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Usually, before scparating the cosine and the sine terms,
wand v; first the constant term ay is separated, as discussed
above; that is, the alternating hmetion y,=y—a, used. If
the general periodic function y is used in cquation (33), the
constant term a, of this periodic function appears in the cosine
term u, thus:

w() =3y +(—0)} =ap+a cos §+as cos 20 +ag cos-30+. -

while #(0) remains the same as when using .

86. Before separating the alternating function y, into the
cosine function 1 and the sine function », it usually is more
convenicnt to resolve the alternating funetion ¥, into the odd
series yy, and the even series ys, as discussed in the preceding
paragraph, and then to separate y; and ys cach into the cosine
and the sine terms:

u(8)=}{y1(0)+y1(—0)} =y cos 0+ ascos 30+ ascos50+. . . ] o
n(@) =% 0)-y(-0)}= b;sin0+bgsin36+bssin5ﬁ+...:J‘

us(0) =3 {yo(0) +ya(— 0) } =0 c0s 20 +agcos 40+. . -
. )
va(8) =%{y2(0) —ya(— 0)} =bo ¢in 20+bs sin 40+. ..

In the odd functions u; and vy, a change from the negative
angle (= &) to the supplementary angle (z—0) changes the augle
of the trigonometric function by an odd multiple of z or 180
deg., that is, by a multiple of 27 or 360 deg., plus 180 deg.,
which signifies a reversal of the function, thus:

w(8) =3y (0) =y (z— )},
vi(0) =31 (0) + (=D} |

However, in the even functions us and #s a change from the
negative angle (—f) to the supplementary angle (=— 1), changes
the angles of the irigonometric function by an even multiple
of 7; that is, by a multiple of 2z or 360 deg ; hence leaves
the sign of the trigonometric function unchanged, thus:

ua(8) = ${2(0) +yolz—0)1, }
19(8) ={yo(0) ~yalz— ). |

(37)
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To avoid the possibility of a mistake, it is preferable to use
the relations (34) and (35), which are the same for the odd and
for the cven series.

87. Obviously, in the calculation of the constants ¢, and
by, instead of averaging from 0 to 180 deg, the average can
be made from —90 deg. to +90 deg In the cosine function
u(0), however, the same numerical values repeated with the
same signs, from 0 to —90 deg., as from 0 to +90 deg., and
the multipliers cos n6 also have the same signs and the same
nunerical values from 0 to —90 deg., as from 0 to +90 deg.
In the sine function, the same numerical values repeat from 0
to —90 deg,, as from 0 to +90 deg., but with reversed signs,
and the multipliers sin %0 also have the same numerical values,
but with reversed sign, from 0 to —90 deg,, as from 0 to +90
deg. The products % cos nf and v sin nf thus traveise the
same numerical values with the same signs, between O and
—90 deg., as between 0 and +90 deg., and for deriving the

averages, it thus is sufficient to average only from 0 to %’ or
90 deg.; that is, over one quandrant.

Therefore, by resolving the periodic function y into the
cogine components % and the sine components v, the caleulation
of the constants a, and b, is greatly simplified; that is, nstead
of averaging over one entire period, or 360 deg., it is necessary
to average over only 90 deg., thus:

bi=2avg. (v sin 6)0%;

1;:[:4

1=2avg. (uy cos )

wlw
L\'.‘]‘l

ap=2avg (us cos 26) i ba=2avg. (vgsin 20)¢

Nla
NI‘I

ag=2 avg. (ug cos 30)2; bs=2avg. (v3sin 30) L)

xol:a

Sl

a4=2 avg. (uy cos 40)0 ba=2 avg. (v4sin 40),

N’la

as=2 avg (us cos 50)2; bs=2avg. (vs sin 58)q 5
cte. ete.

where uy is the cosine term of the odd function y1; ue the
cosine term of the even function y2; wus is the cosine term of
the odd function, after subtracting the term with cos 8; that is,

ug=uy—0ay €08 0,
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analogously, us is the cosine term of the even function, after
subtracting the term cos 24;

g =1g— g €08 20,
and in the same manner,

U=z —ag cos 30,
g =Tls— g CO% 40,

and so forth: vi, vs, v5, v4, etc., are the corresponding sine
terms.

When caleulating the coefficients a, and b, by averaging over
90 deg., or over 180 deg. or 360 deg., it must be kept in mind
that the terminal values of y respectively of u or v, that is,
the values for =0 and §=90 deg. (or 6=180 deg. or 360
deg. respectively) are to be taken as one-half only, since they
are the ends of the measured area of the curves a, cos nf and
b, sin 1, which area gives as twice its average height the values
ay, and by, as discussed in the preceding.

In resolving an empirical periodic function into & trigono-
metric series, just as in most engineering calculations, the
most important part is to arrange the work so as to derive the
results expeditiously and rapidly, and at the same time
accurately. By proceeding, for instance, immediately by the
general method, equations (17) and (18), the work becomes so
extensive as to be a serious waste of time, while by the system-
atic resolution into simpler functions the work can be greatly
reduced.

88. In resolving a general periodic function y(f) into a
trigonometric series, the most convenient arrangement is:

1. To separate the constant term g, by averaging all the
instantaneous values of y(6) from 0 to 360 deg. (counting the
end values at 0=0 and at §=360 deg. one half, as discussed
above):

a=ave. {yB)le®, . . . . .. (10)

and then subtracting a, from y(6), gives the alternating func-
tion, ‘

%o(0)=y(8) —a,.



2. To resolve the general alternating function y,(6) into
the odd function y1(f), .and the even function ys(6),

yil6) =3y, (O)-yob+2)t; . . . . (@)
yal0) =Hu () +y(0+2)1. . o . ()

3. To resolve 1(f) end y»(0)) into the cosine terms u and
the sine terms v,

w(0) =3y (0) +i(=0)4; J a4
ul®)=Hn@-n-0}; )
o(0) =3{ya(0) (= 0)1;

u() {y2(0) +y2(=0)} ]}(35)
Va(0) =3 {y(0) —ya( - 0)}- |

4. To caleulate the constants a, ¢s, as...; by, by, bs...
by the averages,

an=2avg. (u cos n)y2; I

(39)

e

ba=2avg. (vsin nd)y2. |

If the periodic function is known to contain no even har-
monics, that is, is & symmetrical alternating wave, steps 1 and
2 are omitted.

- N -
Nov. OJan. _ Feb, Apnl May July  Aug. Oct, Nov QmTan.
Dec. March June Sep, Dec

Fig. 45. Mean Daily Temperature at Schenectady.

89. As illustration of the resolution of a general periodic
wave may be shown the resolution of the observed mean daily
temperatures of Schenectady throughout the year, as shown
in Fig. 45, up to the 7th harmonics.*

*The numerical values of temperature cannot claim any great absolute
accuracy, as they are averaged over a relatively small number of years only,
and observed by instruments of only moderate accuracy. For the purpose
of illustrating the resolution of the empirical curve into a trigonometric
series, this is not essential, however.
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Tasre IV
@ 2 L w
f# v y—ao=yp | n | 2
Jm. 0| =-42 -1205 | ~13.10 +0 15
10| -47 -13.45 -13'55 +0 10
0| -352 ~13 05 -13 65 ~030
Feb. 30 54 1415 ~13 5 -0 60
0] =38 -125 -1235 -020
01 -26 -11.3 -1 -013
Mar. 60 | -18 -10.35 -975 -060
0] +02 ~ 85 - 765 —0 90
80| +18 - 60 - 605 -0 90
fpr. 90| 451 -36 - 3.3 -030
100 | +91 +035 -0.35 +0.70
10 | 4115 127 + 1.7 +100
May 120 | 4133 | 4435 +390 40 65
130 | 4132 | +6.45 +58 +0.60
M0 | 4T | $8% +815 4080
Jue 130 | 4192 | +104 | +1000 | 4035
60 | +195 | +1075 +10 80 -0 05
170 | $20.6 +11.85 $12.15 ~0.30
July 180 +22 0 +13 25
190 | 4224 | +1365
200 | +22.1 +13 35
Aug. 210 | 4217 L1295
20 | +209 +12.15
230 | +19.8 +11 05
Sept 240 +17 9 + 915
%0 | +15.5 +675
%0 | 4138 +5.15
Oct. 270 +11 8 + 305
8 | +98 + 1.0
20 |+ 8.0 - 075
Yov. 300 | + 5.5 - 3.5
30 |+ 3.5 - 5%
30 | + 1.4 - 7.3
Dec. 330 | - 1.0 -975
M0 | - 21 -10 85
30 | - 3.7 ~12.45
Total...... 315.1

Dividedby36 | 8 75=a,
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TaBLE V.
(1) (2) (3) 4 (5) ) (7
[ v ut n u uz [
-90 + 335 -0 30
-80 + 035 +0.70
=170 - 175 +1 00
—60 - 390 +0 65
—350 - 5.85 +0 60
—40 - 8.15 +0 80
-30 -10 10 +0 35
-20 —10 80 -0 05
-10 -12 15 -0 30
0 —13.10 | —13 10 0 +0.15 | 4015 0
+10 —-13 55 ) —1285 1 -0 70 +0 10 -0 10 +0.20
+20 -1365| -1223 | —-142 | —-030 | —-0.17 | -0 12
+30 —-13 55| —-1182 | -173 | —-060 | —012 | —0.47
+40 -12.35 | ~-1025| -210 | —-020 | +030 | —050
+50 —11.20| — 8.53| —267 | —0.15 | +022 | —0.37
+60 —~ 975 - 682 —-293 | —0.60 | +002 | —062
+70 — 765 —470] -295 | —090 ; +005 | ~095
+80 - 605 —-28 | —-3.20 | -090 | —0.10 | —080
+90 - 335 0 -335 ] -030 | -030 0
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Tasre VIII.
COSINE SERIES u,.

wle| & lwle! & |6l 6 soo|
# u uzcos 26 faaeos24)  uy usces 4 |agcosdhl  us
0 |40 15%(+013)| 0 |+0 151(+0 15)|-0 16/+0.31}3(+0 31)
10 |-0.10 =000 |, . {-010] —008 {—012/+002 +001
20 |-017 -0.13 -0.17] —003 |~003|-0.14 4007
30 |—012] -0.06 -0.12] +0 06 [+0.03-0 20| +0 20
40 140 300 +0.05 +030, -029 |+0 15/+0 15| —0 07
U (4022 -0.04 +0 22 —021 [+0.15(40 07 +0 03
60 |+0.02] —0.01 +002 —001 +0.08-0 08 —006
70 |+005 -0 04 +0 05 +001 |—003{+008f +0 04
80 |-010] +009 -010; —008 |0 124002 -001
90 |—0 30{1(+0.30)| 0 |—0 30{3(+0 30)|-0.16|—0.141(+0 14)
Total. . =001 -071 +0.44
Divided by
9.een -0.001 -0.079 +0 049
Multiplied
by2.... | =0 002 -0 158 +0.098
L =, =y =0y
Taprm IX
SINE SERIES 1,
n 2 (3) () (3) (6) 4] 8) @)
f 2 resin 24 | by sin 26 4 v4 5 48 | basin 46 v6 | vesin 64
0 0 0
10 | 40.20| 40.07| —0.20 | +-0.40| +0.26 | +0.22 | +-0.18 | +0.16
20 | -0.12]-0.08| —0.39 | 4+0.27 | +0.27 | +0.34 | —0.07 | —0.07
30 {-0.47]-0.41]-0.52| +0.05| +0.04| +0.30| —0.25 | +0
40 | -0.50] —-0.49| —0.59| +0.09 | +0.03 | +0.12 | —0.03 | +0.03
50 | -0.37]~0.36| —0.59 | +0.22 | —0.08 | —0.12 | +0.34 | —0.30
60 |—0.62]—0.54] —0.52| —0.10| +0.09| —-0.30| +0.20} 0
70 |1 -0.95]-0.61) —0.39] —0.56 | +0.55| —0.34| —0.22| —0.19
80 |-0.80}-0.27| —0.20{ —0.60! +0.39| +0.22| —0.38 | —0.33
90 0 0
Total.. ....|-2.69 +1.55 —0.70
Divided by 9(-0.30 +0.172 -0.078
Divided by 2/—-0.60 +0.344 —-0.156
b, =b, =b
]
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Table IV gives the resolution of the periodic temperature
function into the constant term gy, the odd series y; and the
cven series ¥s.

Table V gives the resolution of the series y1 and ys into
the cosine and sine series uj, v1, Us, va.

Tables VI to IX give the resolutions of the series us, v1, s,
u2, and thereby the caleulation of the constants a, and by.

go. The resolution of the temperature wave, up to the
7th harmonic, thus gives the coefficients:

ap= +8.75;

a=—13.28; bi=-3.33;

as=—0.001; be=—0.602;

az=—0.33; bs=—0.14;

as=—0.154; by=+0.386;

gs=+0014;  bs=—0.090;

as=+0 100; bs=—0.154;

ar=-0022; br=—0.082;
or, transforming by the binomial, a,cosnd+b,sinnf=c,cos
(n0—1,), by substituting c,=+a,2+b,? and tany, =—23 gives,
ao=+8.75; "
0=—13.69; 71=414.15° or n=+14.15%

er=—0802; 7o=+80.8°, or D'=+4495°+180n;

=+0350; 7a=—-23.0% or BT T4120n=+1123+120m;
c=—0416; 74=—68.2°, or %4=—17.05+90n=+72.95+90m;

¢s=+0.001; 75=—8L15°; or %5=—16.23+72n= +557T+Tom;
cs=+0.184; 76=—57.0°; or %?=-9.5+60n=+50.5+60m;

r=—0085; 7;=+75.0° or T—,;=+10.7+51.4n,

where n and m may be any integer number,
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Since to an angle n, any multiple of 2= or 360 deg. ma.y

be added, any multiple of 3—9 uay he added to the a,ncrle W

and thus the angle -, lay be made positive, etc.
or. The equation of the temperature wave thus becomes:
y=8.75—13.69 cos (f—14.15%)—0.602 cos 2(0—44.95°)
—0.359 cos 3(—52.3°)—0.416 cos 4(0—72.95°)
—0.091 cos 5(6—19.77°)~0.184 cog 6(6—-20.5°)
—0.085 cos T(0-10.7%); (a)

or, transformed to sine functions by the substitution,
cos w=—sin (w—90°):
y=8.75+13.09 sin (f—104.15°) +0.602 sin 2(6—89.95%)
+0.359 sin 3(—82.3°) +-0.416 sin 4(0—95.45°)
+0.091 sin 5(0—109.77°) +0.184 sin 6(0—95.5°)
+0.085 sin 7(0—T75%). ®)

The cosine form is more convenient for some purposes,
the sine form for other purposes.

Substituting f=0-14.15% or, 0=0-104.15°, these two
equations () and (b) can be transformed into the form,

y=8.75—13.69 cos §—0.62 cos2(3-30.8°)—0.359 cos 3(3—38.15°)
—0.416 cos 4(p—58.8°)—0.091 cos 5(3~5.6°)

—(.184 cos 6(8—6.35°)—0 085 cos 7(8—48.0°), ()
and

y=8.75+13.60 sin 5-+0.602 sin 2(9+14.2°)+0.350 sin 3(0-+21.85°)
+0.416 sin 4(5+8.7°) +0.91 sin 5(5~5.6%)
+0.184 sin 6(3 +8.65%) +0.085 sin 7(0+20.159). (@)

The periodic variation of the temperature y, as expressed
by these equations, is a result of the periodic variation of the
thermomotive force; that is, the solar radiation. This latter
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i# & minimum on Dec. 22d, that is, 9 time-degrees before the
zero of 0, hence may be expressed approximately by:

2=c—h cos (0+9°);
or substituting f respectively ¢ for 0:
z=c—P cos (8+23.15°)
=c+hsin (6+23.15°).

This means: the maximum of y oceurs 23.15 deg. after the
maximum of ¢; in other words, the temperature lags 23.15 deg.,
or about § period, behind the thermomotive force.

Near 0=0, all the sine functions in (d) are increasing; that
is, the temperature wave rises steeply in spring.

Near 0=180 deg., the sine functions of the odd angles are
decreasing, of the even angles inereasing, and the decrease of
the temperature wave in fall thus is smaller than the increase
in spring.

The fundamental wave greatly preponderates, with ampli-
tude ¢;=13.69.

In spring, for 6=—14.5 deg., all the higher harmonics
rise in the same direction, and give the sum 1.74, or 12.7
per cent of the fundamental. In fall, for §=—145+7, the
even harmonics decrease, the odd harmonics increase the
steepnoss, and give the sum —0.67, or —4.9 per cent.

Therefore, in spring, the temperature rises 12.7 per cent
faster, and in autumn it falls 4.9 per cent slower than corre-
sponds to a sine wave, and the difference in the rate of tempera-
ture rise in spring, and temperature fall in autumn thus is
12.7+4.9=17.6 per cent.

The maximum rate of temperature rise is 90—14.5=75.5
deg. behind the temperature minimum, and 23.15+75.5=98.7
deg. behind the minimum of the thermomotive force.

As most periodic functions met by the electrical engineer
are symmetrical alternating functions, that is, contain only
the odd harmonics, in general the work of resolution into a
trigonometric series is very much less than in above example.
Where such reduction bas to be carried out frequently, it is
advisable to memorize the trigonometric functions, from 10
to 10 deg., up to 3 decimals; that is, within the accuracy of
the slide rule, as thereby the necessity of looking up tables is
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climinated and the work therefore done much more expe-
ditiously. In general, the slide rule can he used for the caleula-
tions.

As an example of the simpler reduction of a symmetrical
alternating wave, the reader may resolve into its harmonies,
up to the 7th, the exciting current of the transformer, of which
the numerical values are given, from 10 to 10 deg. in Table X.

C. REDUCTION OF TRIGONOMETRIC SERIES BY POLY-
PHASE RELATION.

92. In some cases the reduction of a general periodic func-
tion, as a complex wave, into harmonics can be carried out
in a much quicker manner by the use of the polyphase equation,
Chapter III, Part A (23). Especially is this true if the com-
plete equation of the trigonometric series, which represents the
periodic function, is not required, but the existence and the
amount of certain harmonics are to be determined, as for
instance whether the periodic function contain even harmonics
or third harmonics, and how large they may he.

This method does not give the coefficients a,, b, of the
individual harmonics, but derives from the numerical values
of the general wave the numerical values of any desired
harmonic. This harmonic, however, is given together with all
its multiples; that is, when separating the third harmonic,
in it appears also the 6th, 9th, 12th, etc.

In separating the even harmonies y» from the general
wave ¥, in paragraph 84, by taking the average of the values
of y for angle 6, and the values of y for angles (6+=), this
method has already been used.

Assume that to an angle 0 there is successively added a
constant quantity a, thus: 6; 0+a; 0+2a; 0+30; 0+4a,
ete., until the same angle 6 plus & multiple of 27 is reached;

. 2mm .
f+na=0+2mz; that s, g=—-; or, in other words, ¢ is

1/n of a multiple of 2z. Then the sum of the cosine as well
as the sine functions of all these angles is zero:
cos -+cos (6+a) +cos (6+2a) +cos (§+3a)+. ..

teos ((+[n—1w)=0; . . . . . . (1)
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sin 0 +sin (ﬁ—i-a)-{-sin( +20 )+sm( 30)+. ..
+sin (0+n—1a)=0, . .. ... 2

where
ne=2mz . . . . . .. (3)

These cquations (1) and (2) hold for all values of a, except for
a=2z For a=2z obviously all the terms of equation (1) or
(2) become equal, and the sums become n cos 6 respectively
nsin 0,

Thus, if the series of numerical values of y is divided into

2=
n suceessive sections, each covering - degrees, and these

sections added together,

J(0)¢y<0+ )+y<0+9—)+y<0-r3—> '

+y<0+[n~1]:7%>, R £

In this sum, all the harmonics of the wave y cancel by equations
(1) and (2), except the nth harmomnie and its multiples,
@y c0s n0+by, sin n; ag, cos 2n0+bg, sin 2nf, cte.

in the latter all the terms of the sum (4) are equal; that is,
the sum (4) equals » times the nth harmonie, and its multiples.
Therefore, the #th harmonic of the periodic function y, together
with its multiples, is given by

1 o i 2z
yn(f?):ﬁ{y(a) +y<ﬁ 17)+y<0+25>+...+y<6+[n—1}ﬁ) } (5)
For instance, for n=2,

Y2=3{y@ +y0+n)},
gives the sum of all the even harmonics; that is, gives the
second harmonic together with its multiples, the 4th, 6th, etc.,
as seen in paragraph 7, and for, n=3,

1 s 4z
ys=§iy(0)+y<0+§> +y<0+—3~> }
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gives the third harmonie, together with its multiples, the 6th,
9th, ete.

This method does not give the mathematical expression
of the harmonicg, but their numerical values. Thus, if the
mathematical expressions are required, each of the eomponent
harmonies has to be reduced from its numerical values to
the mathematical equation, and the method then offers no
advantage.

It is especially suitable, however, where certain classes of
harmonics are desired, as the third together with its multiples.
In this case from the numerical values the effective value,
that is, the equivalent sine wave may be caleulated.

03. As illustration may be investigated the separation of
the third harmonics from the exciting current of a transformer.

TsBLE X
r
A

! f [
o @ | e w e ) Q)
[ 1 ]‘ g 1 I [ 1 n

|
0 | 42401 120 | 151 | 210 | 485 | +558
10 | 42001 130 | -165| 250 | +10 | +4.5
20 +i2 )| 10 ~-18 5 } 260 +11 +1.5
30 +4 || 130 -a1 270 +12 -1.7
0 | <15l w0 | —227 | W0 | L13 | -37
0 | -65) 10 | -2’7 ) 20 | +14 | -54
60 | -85 1| 180 | -2¢ | 300 | +151| —5.8

B
[} 3 ‘i [ ] [ 23 %
0 | +58 | 120 | =37 | 200 15 | +02
30 | +45 || 150 | —5.4 | 117 | 03
60 | +15 | 180 | -58 (| 30 | 437 | —0.2
|

In table X A, are given, in columns 1, 3, 5, the angles 6,
from 10 deg. to 10 deg., and in columns 2, 4, 6, the correspond-
ing values of the exciting current 4, as derived by calculation
from the hysteresis cycle of the iron, or by measuring from the
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photographic film of the oscillograph. Column 7 then gives
one-third the sum of columns 2, 4, and 6, that is, the third har-
monic with its overtones, .

To find the 9th harmonic and its overtones g, the same
method is now applied to 4, for angle 30. This is recorded
in Table X B.

In Fig. 46 are plotted the total exciting current 4, its third
harmonic 3, and the 9th harmonic 4.

This method has the advantage of showing the limitation
of the exactness of the results resulting from the limited num-

Fre. 46.

ber of numerical values of ¢, on which the calculation is based.
Thus, in the example, Table X, in which the values of 7 are
given for every 10 deg., values of the third harmonic are derived
for every 30 deg., and for the 9th harmonic for every 90 deg.;
that is, for the latter, only two points per half wave are deter-
minable from the numerical data, and as the two points per half
wave are just sufficient to locate a sine wave, it follows that
within the accuracy of the given numerical values of 4, the
9th harmonic is a sine wave, or in other words, to determine
whether still higher harmonies than the 9th exist, requires for
4 more numerical values than for every 10 deg.

As further practice, the reader may separate from the gen-

PRCFERTY OF
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eral wave of eurrent, 1o in Table XI, the even harmonics 1,
by above method,

=Yg #i+1pl1+180 deg )1,
and also the sum of the odil harmonies, as the residue,
i =lp—1a,

then the odd harmonies ¢ may be separated from the third
harmonic and its multiples,

13=310,(6) +11(0+120 deg.) +,(0+240 deg.)},

and in the same manner i3 may be separated from its third
harmonies; that is, 1.

Furthermore, in the sum of even harmonics, 73 may again
be separated from its sccond harmonie, 44, and its multiples,
and therefrom, g, and its third harmonic, 7, and its multiples,
thus giving all the harmonies up to the 9th, with the exception
of the 5th and the 7th. These latter two would require plotting
the curve and taking numerical values at different intervals,
50 as to have a number of numerical values divisible by 5 or 7.

It is further recommended to resolve this unsymmetrical
exciting current of Table XI into the trigonometric series by
calculating the coefficients a, and by, up to the 7th, in the man-
ner discussed in paragraphs 6 to $.

TasLr XTI

‘ !

0 | 20 [ ] 10 [ 20 ] 2

0 j +95.7 90 | -26.7 180 | —-34.3 270 | - 33
10 | +787 100 -27.3 190 -273 280 - 18
20 | 4537 110 | -281 200 | -168 20 (+12
30 | +237 120 -28.8 210 -11.3 300 + 47
40 | - 23 130 | —29.3 20 | - 83 310 | +107
50 | ~163 140 | -29.8 20 1 -73 320 | 4227
60 | -22°8 150 | =31 240 | -63 330 | +41.7
70 | -243 160 ~32.6 250 - 53 340 +65 7
80 E —-258 170 | -33 & 260 | —43 350 | 4857
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D. CALCULATION OF TRIGONOMETRIC SERIES FROM
OTHER TRIGONOMETRIC SERIES.

94. An hydraulic generating station has for a long time been
supplying electric energy over moderate distances, from a num-
ber of 750-kw. 4400-volt 60-cycle three-phase generators. The
station is to be increased in size by the installation of some
larger modern three-phase generators, and from this station
6000 kw. are to be transmitted over a long distance transmis-
sion line at 44,000 volts. The transmission line has a length
of 60 miles, and consists of three wires No. 0 B. & S. with 5
ft. between the wires.

The question arises, whether during times of light load the
old 750-kw. generators can be used economically on the trans-
mission line. These old machines give an electromotive force
wave, which, like that of most earlier machines, differs con-
siderably from a sine wave, and it is to be investigated, whether,
due to this wave-shape distortion, the charging current of the
transmission line will be so greatly increased over the value
which it would have with a sine wave of voltage, as to make
the use of these machines on the transmission line uneconom-
ical or even unsafe.

Oscillograms of these machines, resolved into & trigonomet-
ric series, give for the voltage between each terminal and the
neutral, or the Y voltage of the three-phase system, the equa-
tion: '

e=eyfsin 0—0.12 sin (30—2.3°)—0 23 sin (50—1.5°)
+0.13sin (70-6.2)}. . (1)

In first approximation, the line capacity may be considered
as a condenser shunted across the middle of the line; thatis,
half the line resistance and half the line reactance is in series
with the line capacity.

As the receiving apparatus do not utilize the higher har-
monics of the generator wave, when using the old generators,
their voltage has to be transformed up so as to give the first
harmonic or fundamental of 44,000 volts.

44,000 volts between the lines (or delta) gives 44,000 ~ V3=
25400 volts between line and neutral. This is the effective
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value, and the maximum value of the fundamental voltage
wave thus is: 25400X+V2=36,000 volts, or 36 kv.; that is,
eo=36, and

¢=36{sin 6-0.12 sin (30-2.3%)-0.23 sin (56~1.5°)
+0.13sin (70-6.2)}, . (@)

would be the voltage supplied to the {ransmission line at the
high potential terminals of the step-up transformers.

From the wire tables, the resistance per mile of No. 0 B. & 8.
coppet line wire is 70=0.52 ohm,

The inductance per mile of wire is given by the formula:

Lo=0.741510g%+0~0805mh, R 6 )]

where  is the distance between the wires, and [, the radius of
the wire.

In the present case, this givesl;=5 ft.=60 in. [,=0.16251n.
Ly=1.9655 mh., and, herefrom it follows that the reactance, at
=60 cycles is

19=2%Lo=0.75 chms permile. . . . . . )
The capacity per mile of wire is given by the formula:
.0408
Co=0 i mf; ... ... (5
log l—s

hence, in the present case, Co=0.0159 mf., and the condensive
reactance is derived herefrom as:

1
£m=%=166000 ohms; . . . . (6)

60 miles of line then give the condensive reactance,
Fo_omr .
=gy =2" 70 ohms;
30 miles, or half the line (from the generating station to the

middle of the line, where the line capacity is represented by a
shunted condenser) give: the resistance, r=30r,=16.6 ohms
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the inductive reactance, 2=301=22.5 ohms, and the equiva-
lent circuit of the line now consists of the resistance r, inductive
reactance = and condensive reactance r,, in series with each
other in the cireuit of the supply voltage e.

95. If 2= current in the line (charging current) the voltage
consumed hy the line resistance r is ri.

. . . d
The voltage consumed by the inductive reactance r is x d—;;

the voltage consumed by the condensive reactance . Is .rcf b,

and therefore,

di . -
6= r%Jrn.zfzdﬂ._ N

Differentiating this equation, for the purpose of eliminating
the integral, gives

de d @ )
FUR AT R |
or ]} .. (8)
de = di -
d& ....5@'1‘166 +27701, J

The wvoltage e is given by (2), which equation, by resolving
the trigonometric functions, gives

e=236sin —4.32 sin 30—8.28 sin 50+4.64 sin 76
+0.18 cos 36 +0.22 cos 50—-0.50 cos 76; . (9)

henee, differentiating,
g%=36 cos §—12.96 cos 30—41.4 cos 50 +32.5 cns 70
—0.54sin 30~1.1sin 50+3.5sin70. . (10)

Assuming now for the eurrent ¢ a t1igonometric series with
indeterminate coefficients,

1=ay cos 0 +az cos 30 +as cos 56 +ay cos 76
+by sin 0+b; sin 30 +b5 sin 50 +b7 sin 79, . (11)
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substitution of (10) and (11) into equation (8) must give an

identity, from which equations for the determination of a, and

bs are derived; that is, since the product of substitution must

be an identity, all the factors of cos 6, sin 4, cos 30, sin 36,
etc., must vanish, and this cives the eight equations:

36 =2TT0a, + 15.60;— 22 bay;

0 =2770b— 15.6a1— 22.5by;

—12.96=2770as + 46.8b3— 202.503;

- 054—':2770])3— 468(13— 2025b3¥

. (12)
—41.4 =2T7005+  78b;— 562.5a;:
— 1.1 =2770b5~  78az— 56.250s:
32.5 =277007 +109.2b; - 1102. 50z,
3.5 =2770h;~109.2a7; - 1102.50;. |
Resolved, these equations give
o= 13.12;
bi=  0.07;
o3=— 5.03;
b=~ 0.30;
T S (13)
5=— 1.15;
ar=19.30;
br= 3.37;
hence, ‘
1=13.12cos —5.03 cos 30— 18.72 cos 50 +19.30 cos 70
+0.07 sin 6—0.30 sin 36— 1.15 sin 50 +3.37 sin 79 ”
- (14)

=13.12 cos (6-0.3°)—5.04 cos (30—3.3°)
—18.76 cos (50~3.6) +19.59 eos (76—9.9°),
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“96. The effective value of this current is given as the square
100t of the sum of squares of the effective values of the indi-
vidual harmonics, thus:

Z%QJr 2?521.6 amp.

As the voltage hetween line and neutral is 25,400 effective,
ihis gives (=25400X21.6=>540,000 volt-amperes, or 540 kv.-
amp. per line, thus a total of 3¢=1620 kv.-amp. charging cur-
rent of the transmission line, when using the em.f. wave of
these old generators.

It thus would require a minimum of 3 of the 750-kw.
generators to keep the voltage on the line, even if no power
whatever is delivered from the line.

I the supply voltage of the transmission line were a perfect
sine wave, it would, at 44,000 volts between the lines, be given
by

e;=36sind, . . . . .. (15)

which is the fundamental, or first harmonic, of equation (9).
Then the current 7 would also be a sine wave, and would be
given by

. 11=@q cos 0+by sin 0, ]
=1312 cos 6+0.07sin 0, }, . . . (16)
=13.12 cos (6-—0.3)°, J

and its effective value would be

{)
Il=—1%=9.3 amp. . . . . . (1n

This would correspond to & kv.—émp. input to the line
3Q1=3X25.4%9.3="710 kv.-amp.

The distortion of the voltage wave, as given by equation (1),
thus increases the charging volt-amperes of the line from 710
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kv.-amp. to 1620 kv.-amp. or 2.28 times, and while with a sine
wave of voltage, one of the 750-kw. generators would easily be
able to supply the charging current of the line, due to the

[4

—15.6-1(99.57, 210
1=15.6-j(22.50-2010)

Fic. 47.

wave shape distortion, more than two generators are required.
It would, therefore, not be economical to use these generators
on the transmission line, if they can be used for any other
purposes, as short-distance distribution.

Fic. 48,

In Figs. 47 and 48 are plotted the voltage wave and the
current wave, from equations (9) and (14) repsectively, and
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the numerical values, from 10 deg. to 10 deg., recorded in
Table XII

In Figs. 47 and 48 the fundamental sine wave of voltage
and current are also shown. As seen, the distortion of current
is enormous, and the higher harmonics predominate over the
fundamental. Such waves are occasionally observed as charg-
ing currents of transmission lines or cable systems.

07. Assuming now that a reactive coil is inserted in series
with the transmission line, between the step-up transformers
and the line, what will be the voltage at the terminals of this
reactive coil, with the distorted wave of charging current
traversing the reactive coil, and how does it compare with the
voltage existing with a sine wave of charging current?

Let L=inductance, thus z=2rfL=reactance of the coil,
and neglecting its resistance, the voltage at the terminals of
the reactive coil is given by

i) .
¢ S=Iop o (18)

\Substituting herein the equation of current, (11), gives
! =1{ay sin §+3az sin 30 +5a; sin 50 +7ay sin 76 } )
—by cos 0—3b3 cos 30— 5bs cos 50—Tby cos 781
hence, substituting the numerical values (13),
¢/ =1{13.12 sin §—15.09 sin 30—93.6 sin 50 4-135.1 sin 70 1’
—0.07 cos 6-+0.90 cos 36-+5.75 cos 56— 23.6 cos 70} }
=2{13.12 sin (/—0.3°)—15.12sin (30—3.3°) {
938 sin (56—3.69) +139.1 sin (76-9.99)}. J
This voltage gives the effective value
V{1312 15122 +93.8 +180.12} = 1194z,
while the effective value with a sine wave would be from (17),
Ey'=3,=93z;

hence, the voltage across the reactance z has been increased
12.8 times by the wave distortion. :
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The instantaneous values of the voltage ¢’ are given in the
Iast column of Table XII, and plotted in Fig. 49, for z=1.
As seen from Fig. 49, the fundamental wave has practically

LS
T

F1a. 49

vanished, and the voltage wave is the seventh harmonic, modi-
fied by the fifth harmonie.

TasLr XII
8 e 1 4 9 e 1 o
0 |~0.10 |+ 8.67] — 17 90 | 2741 |— 415 —200
10 |+2.23 |4 5.30| + 46 || 100 | 3L.77 [+26.19| —106
20 | 3.74 |- 0.86] + 3 || 110 | 40.57 | +24.99| +119

30 747 |+ 7.39] +131 120 42.70 | — 8.10| +182
40 17.35 | 4+30.30| —116 130 33.14 + =38.79 + 93

50 | 31.70 | +38.58| + 36 140 18.03 | —36.65| — 96
60 | 42.06 |+15.66| +167 150 6.09 1+ —13.41] -138
70 | 40.33 | —-19.01| +139 160 2.88 |4+ 2431 - 31

80 | 32.87 | —29.13| - 54 170 197 | — 100 + 54

90 2741 | — 4.15) —200 | 180 |+4+0.10 | — 8.67| + 17




CHAPTER 1V,
MAXIMA AND MINIMA.

98. In engincering investigations the problem of determin-
ing the maxima and the minima, that is, the extrema of a
tunction, frequently oceurs. For instance, the output of an
electric machine is to be found, at which its efficiency is a max-
imum, or, it is desired to determine that load on an induction
motor which gives the highest power-factor; or, that voltage
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F1c. 50. Graphic Solution of Maxima and Minima.

which makes the cost of a transmission line a minimum; or,
that speed of a steam turbine which gives the lowest specific
steam consumption, ete.

The maxima and minima of a function, y=7(z), can be found
by plotting the function as a curve and taking from the curve
the values z, y, which give a maximum or a minimum. For
instanee, in the curve Fig. 50, maxima are at P; and Ps, minima
at P; and P, This method of determining the extrema of
functions is necessary, if the mathematical expression between

17
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z and y, that is, the function y={(z), is unknown, or if the
function y=f(z) is so complicated, as to make the mathematical
calculation of the extrema impracticable. As examples of
this method the following may be chosen:
3

16 /I)‘_ﬁ_.———
it L ‘
‘“ 7

U

S
Kilo-lines|
I~

) X

2 8 10 12 I 16 18 2 2 % 2% B 3
Fra. 51. Magnetization Curve.

Example 1. Determine that magnetic density @, at which
the permeability # of a sample of iron is a maximum. The
relation between magnetic field intensity 3, magnetic density
® and permeability ¢ cannot be expressed in a mathematical
equation, and is therefore usually given in the form of an

/l
1400 ]
L EmarN i

H200

A
H000 //
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3
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4 9 10 1l 1B 15

F16. 52. Permeability Curve.

empirical curve, relating ® and %, as shown in Fig. 51.  From
this curve, corresponding values of ® and 3¢ are taken, and their

. . - ®
ratio, that is, the permeability p =% plotted against® as abscissa.

This is done in Fig. 52. Fig. 52 then shows that & maximum
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oceurs at point ., for ®=10.2 kilolines, 2=1340, and minima
at the starting-point Py, for =0, =370, and also for ®=00,
where by extrapolation z=1.

Ezample 2. Find that output of an induction motor
which gives the highest power-factor. While theoretically
an equation can be found relating output and power-factor
of an induction motor, the equation is too complicated for use.
The most convenient way of caleulating induction motors is
to calculate in tabular form for different values of slip s, the
torque, output, eurrent, power and volt-ampere input, efficiency,
power-factor, ete., as is explained in “Theoretical Elements
of Electrical Engineering,” third edition, p. 363. From this

R Cos 6/

3l L o
//l' l‘\ g

0.8

0.5

\ 0.84 ¢

3 0.82
2000 3000 4000 5000 6000 Watts

Fre. 53. Power-factor Maximum of Induction Motor.

table corresponding values of power output P and power-
factor cos 0 are taken and plotted in a curve, Fig. 53, and the
maximum derived from this curve is P=4120, cos 6=0.904.

For the purpose of determining the maximum, obviously
not the entire curve nceds to be calculated, but only a short
range near the maximum. This is located by trial. Thus
in the present instance, P and cos 6 are calculated for s=0.1
and s=0.2. As the latter gives lower power-factor, the maximum
power-factor is below s=0.2. Then s=0.05is calculated and gives
a higher value of cos 0 than s=0.1; that is, the maximum is
below s=0.1. Then §=0.02 is calculated, and gives a lower
value of cos 8 than s=0.05. The maximum value of cos &
thus lies between s=0.02 and s=0.1, and only the part of the
curve between s=0.02 and s=0.1 needs to be caleulated for
the determination of the maximum of cos 0, asis done in Fig. 53.

9. When determining an extremum of a function y=F(z).
by plotting it as a curve, the value of z, at which the extreme
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oceurs, is more or less inaccurate, since at the extreme the
curve is horizontal. For instance, in Fig. 53, the maximum
of the curve is so flat that the value of power P, for which
cos 0 became a maximum, may he anywhere between P=4000
and P=4300, within the accuracy of the curve.

In such a case, a higher accuracy can frequently be reached
hy not attempting to locate the exact extreme, but two points
of the same ordinate, on each side of the extreme. Thus in
Fig. 58 the power Py, at which the maximum power factor
cos=0.904 is reached, is somewhat uncertain. The value of
power-factor, somewhat below the maximum, cos #=0.90,
is reached before the maximum, at Py=3400, and after the
maximum, at Py=4840. The maximum thenmay be calculated
as half-way between Py and Ps, that is, at Po=4{P1+Ps}=
4120 watts.

This method gives usually more accurate results, but is
based on the assumption that the curve is symmetrical on
hoth sides of the extreme, that is, falls off from the extreme
value at the same rate for lower as for higher values of the
abscissas. Where this is not the case, this method of inter-
polation oes not give the exact maximum.

Example 3. The efficiency of a steam turbine nozzle,
that is, the ratio of the kinetic cnergy of the steam jet to the
cnergy of the steam available between the two pressures between
which the nozzle operates, is given in Fig. 54, as determined by
experiment.  As abscissas are used the nozzle mouth opening,
that is, the widest part of the nozzle at the exhaust end, as
fraction of that corresponding to the exhaust pressure, while
the nozzle throat, that is, the narrowest part of the nozzle, is
assumed ag constant. As ordinates are plotted the efficiencics.
This curve is not symmetrical, but falls off from the maximum,
on the sides of larger nozzle mouth, far more rapidly than on
the side of smaller nozzle mouth. The reason is that with
too large & nozzle mouth the expansion in the nozgle is carried
below the exhaust pressure ps, and steam eddies are produced
by this overexpansion.

The maximum efficiency of 94.6 per cent is found at the point
Py, at which the nozzle mouth corresponds to the exhaust
pressure. If, however, the maximum is determined as mid-
way hetween two points Py and Py, on each side of the maximum,
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at which the efficiency is the same, 93 per cent, a point Py’ is
obtained, which lies on one side of the maximum.

With unsymmetrical curves, the method of interpolation
thus does not give the exact extreme, For most engineering
purposes this is rather an advantage. The purpose of deter-
mining the extreme usually is to select the most favorable
operating conditions. Since, however, in practice the operating
conditions never remain perfectly constant, hut vary to some
extent, the most favorable operating condition in Fig. 54 is
not that where the average value gives the maximum efficiency
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Frc. 54. Steam Turbine Nozzle Efficiency; Determination of Maximum.

(point Po), but the most favorahle operating condition is that,
where the average efficiency during the range of pressure, occurr-
ing in operation, is & maximum.

If the steam pressure, and thereby the required expansion
ratio, that is, the theoretically correct size of nozzle mouth,
should vary during operation by 25 per cent from the average,
when choosing the maximum efficiency point Py ag average,
the efficiency during operation varies on the part of the curve
between Py (91.4 per cent) and Py (85.2 per cent), thus averaging
lower than by choosing the point Py/(6.25 per cent below Py)
as average. In the latter case, the efficiency varies on the
part of the curve from the P1/(90.1 per cent) to Py/(90.1 per
cent), (Fig. 55.)
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Thus in apparatus design, when determining extrema of
& function y=f(r), to select them as operating condition,
consideration must be given to the shape of the curve, and
where the curve is unsymmetrical, the most efficient operating
point lies not at the cxtreme, but on that side of it at which
the curve falls off slower, the more so the greater the range of
variation is, which may ocew during operation. This is not
always realized.

100. If the function y=f(x) is plotted as a curve, Fig.
50, at the extremes of the function, the points Py, Ps, Ps, Py
of curve Fig. 50, the tangent on the curve is horizontal, since
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F1a. 55. Steam Turbine Nozzle Efficiency; Determination of Maximum,

at the extreme the function changes from rising to decreasing
(maximum, Py and Py), or from decreasing to increasing (min-
imum, Ps and Py), and therefore for a moment passes through
the horizontal direction.

In gencral, the tangent of & curve, as that in Fig. 50, is the
line which connects two points P’ and P” of the curve, which
are infinitely close together, and, as seen in Fig. 50, the angle
9, which this tangent P’P” makes with the horizontal or X-axis,
thus is given by:

PHQ dy

tan 0=Fé‘=d—x.
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At the extreme, the tangent on the curve is horizontal,
that is, £0=0, and, thercfore, it follows that at an extreme
of the function,

y=fo), . . ...

The reverse, however, is not necessarily the case; that is,
. . d -
if at a point z, ¥ : d—i=0, this point may not be an extreme;

that is, & maximum or minimum, but may be a horizontal
inflection point, as points Ps and Ps arc in Fig, 50.

With increasing «, when passing a maximum (P; and Py,
Fig. 50), y rises, then stops rising, and then decreases again,
When passing a minimum (P and Py) y decreases, then stops
decreasing, and then increases again. When passing a horizontal
inflection point, y rises, then stops rising, and then starts rising
again, at Ps, or y decreascs, then stops decreasing, but then
starts decreasing again (at Pg).

The points of the function y=f(z), determined by the con-
dition, g—g=0, thus require further investigation, whether they
represent & maximum, or & minimum, or merely a horizontal
inflection point.

This can be done mathematically: for inereasing «, when
passing & maximum, tan § changes from positive to negative;

. d .
that is, decreases, or in other words, e (tan 8)<0. Since

tan 0=% , it thus follows that at & maximum %{g <0. Inversely,

at a minimum tan 6 changes from negative to positive, hence
. d @ .
increases, that is, P2 (tan 8)>0; or, d_x%> 0. When passing

a horizontal inflection point tan 6 first decreases to zero at
the inflection point, and then increases again; or, inversely,
tan 0 first increages, and then decreases again, that is, tan 6=
dy
dz

therefore, (% (tan 6) =Z%=O at the inflection point.

has & maximum or & minimum at the inflection point, and
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In engineering problems the investigation, whether the
. e d
solution of the condition of extremes, EZ—; =0, represents &

mimimum, or & maximum, or an inflection point, is rarely
required, but 1t is almost always obvious from the nature of
the problem whethsr & maximum of a mmimum oceurs, or
neither.

For instance, if the problem is to determine the speed at
which the efficiency of a motor is a masimum, the solution
speed =0, obviously is not a maximum but a mimimum, as at
gero speed the efficlency is zero. If the problem is, to find
the current at which the output of an alternator is a maximum,
the solution =0 obviously is a minimum, and of the other
two solutions, 11 and s, the larger value, 7o, again gives a
minimum, zero output at short-cireuit current, while the inter-
mediate value 7 gives the maximum.

101. The extremes of a function, therefore, are determined
by equating its differential quotient 1o zero, as is illustrated
by the following examples:

Example 4. In an impulse turhine, the speed of the jet
(steam jet or water jet) is 8. At what peripheral speed S5 is
the output a maximum.

The impulse force is proportional to the relative speed of
the jet and the rotating impulse wheel; that is, to (8-S
The power is impulse foree times speed Ss; hence,

P=kSe(S-8), . . . . . .. ()
and is an extreme for the value of Ss, given by R =0; hence,

S1—2L9=0 and SQ=A':—1', s 4 e . (4)
that is, when the peripheral speed of the impulse wheel equals
half the jet velocity.

Example 5. In a transformer of constant impressed
en.f. e=2300 volts; the constant loss, that is, loss which
is independent of the output (iron loss), is P;=500 watts. The
internal reustance (primary and secondary combined) is r=20
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ohms. At what current 7 is the efficiency of the transformer
a naximum; that is, the pereentage loss, 4, a minimum?

The loss is P=P,+r2=5004+202. . . . . (5)
The power input is Py=er=23001; . . 6)
hence, the percentage loss is,
P Py .
BT Ta 0
and this is an extreme for the value of current ¢, given by
di
"
hence,
(Py+mPe—eil2r)
¢l o
or,

P,
P,—r2=0 and 1'=\/;=5amperes, R )}

and the output is Po=ei=11,500 watts. The lossis, P=P +
ri#=2P;=1000 watts; that is, the #r loss or variable loss, is
equal to the constant loss P, The percentage loss is,

P VPr

A B~ =(.087=8.7 per cent,

and the maximum efficiency thus is,

1-2=0.913=91.3 per cent.

102. Usually, when the problem is given, to determine
those values of x for which yis an extreme, y cannot be expressed
directly as function of z, y=f(z), as was done in examples
(4) and (5), but y is expressed as function of some other quan-
ties, y=f(u, v..), and then equations between u, v.. and z
are found from the conditions of the problem, by which expres-
sions of « are substituted for u, v. ., as shown in the following
example:

Example 6. There is a constant current 4 through a cir-
‘cult containing a resistor of resistance ro. This Tesistor ro
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is shunted by a resistor of resistance . What must be the
resistance of this shunting resistor r, to make the power con-
sumed in 7, & maximum? (Fig. 56.)
Tet 7 be the current in the shunting resistor . The power
consumed in 7 then is,
P=r2 . . ... ... 0

The current in the resistor ro is fo—1, and therefore the
voltage consumed by rq is rolio—1), and the voltage consumed
by 7 is ri, and as these two voltages must be equal, since both

I3
4y _ J\/\/\ %

i

r
Fr6. 56, Shunted Resistor.

resistors are in shunt with each other, thus receive the same
voltage,
Tf=7‘0(io-i),

and, herefrom, it follows that,

= P ¢ (1)}

r+rg

Substituting this in equation (9) gives,

and this power is an extreme for Z—T}LO; henee:

(T + 7’0)27'02!:02 - 7‘7’()27:022 (T + 7‘0) .
(r+rp)? o

hence,
S ¢ 1)

that is, the power consumed in 7 is a maximum, if the resistor
r of the shunt equals the resistance ro.
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The current in r then is, by equation (10),

and the power is,
T
103, If, after the function y=f(z) (the equation (11) in

example (6)) has been derived, the differentiation gLO is

immediately carried out, the caleulation is very frequently
much more complicated than necessary. It is, therefore,
advisable nof to differentiate 1mmedlately, but first to sunphfy
the function y=f(z).

If y is an extreme, any expression differing thereform by
a constant term, or a constant factor, etc., also is an extreme.
So also is the reciprocal of y, or its square, or square root, etc.

Thus, before differentiation, constant terms and constant
factors can be dropped, fractions inverted, the expression
raised to any power or any root thereof taken, ete.

For instance, in the preceding example, in equation (11),

TT02i02
T (rtrg)?

the value of r is to be found, which makes P a maximum,
If Pis an extreme,

_r
(r+ro)?
which differs rom P by the omission of the constant factor

1o%o?, also is an extreme.
The reverse of y,

=

(r +7g)?

y2= " y

is also an extreme. (y2 is a minimum, where 7, is & maximum,
and inversely.)
Therefore, the equation (11) can be simplified to the form

(rtm)?
oo

o
=r+2ro+%,
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and, leaving out the constant term 2rg, gives the final form,

B=rt L ()
This differentiated gives,

dy ¢

P

henee,
r=7o.

104. Example 7. From a source of constant alternating
em.f. e, power is transmitted over a line of resistance ro and
reactance ¥p into a non-inductive load. What must be the
resistance 7 of this load to give maximum power?

If 7=current transmitted over the line, the power delivered
at the load of registance r is

P=r . . . . .. .. (1)

The total resistance of the circuit is r+7p; the reactance
is 7o; hence the current is

. e -
fme—————, . . . .. (1)
N (o) o

and, by substituting in cquation (14), the power is
re?
P=——‘~—.)“——.,,.......
(7470 + 20" (6)
if P is an extreme, by omitting €® and inverting,
(r+7e)? +2¢®
r

Tn2 +1‘02
=r+2rg +—7—~,

Y=

is also an extreme, and likewise,

702 + 2
Y=t

is an extreme.



MAXIMA AND MINIMA. 159
Differentiating, gives:

CEy_Z_ 1 o+ -

Pl
r=vVTeEtt . L. . .. . (7)

Wherefrom follows, by substituting in equation (16),

Vg + e
(ro+Vro* + o)+ 202

— LW
Aro+Vred+1i?)

Very often the function y=f(z) can by such algebraic
operations, which do not change an extreme, be simplified to
such an extent that differentiation becomes entirely unnecessary,
but the extreme is immediately seen; the following example
will serve to illustrate:

Exzample 8. In the same transmission cireuit as in example
(7), for what value of r is the current 4 a maximum?

The current ¢ is given, by, equation (15),

e
VAol +pt

Dropping ¢ and reversing, gives,
=V P ted; '
Squaring, gives,
Yo=(r +70)2 +20%
dropping the constant term zo? gives
ys=(r +10)?; I ¢ 1)

taking the square root gives

Y4=T-+T0;
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dropping the constant term ro gives
Ys=T; « v o« o« o ... (20)

that is, the current ¢ is an extreme, when ys;=r is an extreme,
and this is the case for 7=0 and r=o0: r=0 gives,

e
=, . . . ... . (21)
V1o 4 2

as the maximum value of the current, and r=oo gives
1=0,

as the minimwin value of the current.

With some practice, from the original equation (1), imme-
diately, or in very few steps, the simplified final equation can
be derived.

105. In the caleulation of maxima and minima of engincer-
ing quantities x, ¥, by differentiation of the function y=/(z),
it must be kept in mind that this method gives the values of
z, for which the quantity y of the mathematical equation y=7£(z)
becomes an extreme, but whether this extreme has a physical
meaning in engineering or not requires further investigation;
that is, the range of numerical values of z and y is unlimited
in the mathematical equation, but may be limited in its engineer-
ing application. For instance, if = is a resistance, and the
differentiation of y=(z) leads to negative values of 2, these
have no engineering meaning; or, if the differentiation leads
to values of z, which, substituted in y=f(x), gives imaginary, or
negalive values of y, the result also may have no engineering
application. In still other cases, the mathematical result
may give values, which are so far beyond the range of indus-
trially practicable numerical values as to be inapplicable.
For instance :

Example 9. In example (8), to determine the resistance
r, which gives maximum current transmitted over a trans-
mission line, the equation (15),

. e
fm————
N +10)2 +ag?
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immediately differentiated, gives as condition of the extremes:

g_’bl__ 2(T+T0) .

dr 2{ (T+T0)2 +I02}\/(7‘ -H’g)z-!—,z‘? ’
hence, either r+re=0; . . . . . .. (2)
or, (r4r2+zd=c0 . . . . . . . (%)

the latter equation gives r=c0: hence 1=0, the minimum value
of current,
The former equation gives

T==T0 « « v .. (24)

as tne value of the resistance, which gives maximum current,
and the current would then be, by substituting (24) into (15),

?,='x—0...‘.....(25)

The solution (24), however, has no engineering meaning,
as the resistance r cannot be negative.

Hence, mathemetically, there exists no maximum value
of 4 in the range of r which can occur in engineering, that is,
within the range, 0< r< oo.

In such a case, where the extreme falls outside of the range
of pumerical values, to which the engineering quantity is
limited, it follows that within the engineering range the quan-
tity eontinuously increases toward one limit and continuously
decreases toward the other limit, and that therefore the two
limits of the engineering range of the quantity give extremes.
Thus r=0 gives the maximum, r=oo0 the minimum of current.

106, Example 10. An alternating-current generator, of
generated eam.f. e=2500 volts, internal resistance ro=0.25
ohms, and synchronous reactance zo=10 ohms, is loaded by
a cireuit comprising a resistor of constant resistance r=20
ohms, and a reactor of reactance z in series with the resistor
7. What value of reactance z gives maximum output?

If ¢=current of the alternator, its power output is

P=ri2=202; . . . . . . . (%)
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the total resistance 15 7+rg=20.25 chms; the total reactance
is z+2p=10 +x ohms, and therefore the current is

e

’L.=:‘—'-—‘___E~;; g e e (27)
V(r 412 + (2 +10)2
and the power output, by substituting (27) in (26), is
_ re? 20 X 25002 08)

rtrd) + @ta? 028 +(10 27
Simplified, this gives
=42+t . . . . . (29)

Yo=(z+10)%
hence,

d

<
[

l

=2(1+20)=0;

f=~1
=

and
z=—gp=—100hms; . . . . . (30)

that is, a negative, or condensive reactance of 10 ohms. The
power output would then he, by substituting (30) into (28),

re® 20 +2500°

P Trtr? | 20252

watts=305 kw. . . (31)

If, however, a condensive reactance is excluded, that is,
it is assumed that >0, no mathematical extreme exists in the
range of the variable z, which is permissible, and the extreme
is at the end of the range, z=0, and gives

TE?()2
107. Example 11. In a 500-kw. alternator, at voltage
€=2500, the friction and windage loss is P,=6 kw., the iron
loss P;=24 kw., the field excitation loss is P;=6 k., and the
armature resistance 7=0.1 ohm. At what load is the efficiency
a maximum?
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The sum of the losses is:

P=P,+P +P+r?=36000+0.022 . . . (33}

The output is
Po=e1=2500¢; . . . . . .. (34)
hence, the efficiency is
Py ¢ I R
TPyt P s Pyt PiA T S0 10500018 )
or, simplified,
P +P4P; .
7J1=‘“‘i‘"f+ ;
hence,
in_, PutPily
- 7
and, :
P,+P,+P 36
'i=\/ ’”+T+ f=\/5%0;)0=600 amperes, . (36)

and the output, at which the maximum efficiency occurs, by
substituting (36) into (34), is

P=¢i=1500 kw.,

that is, at three times full load.

Therefore, this value is of no engineering importance, but
means that at full load and at all practical overloads the
maximum efficiency is not yet reached, but the efficiency is
still rising.

108. Frequently in engineering calculations extremes of
engineering quantities are to be determined, which are fune-
tions or two or more independent variables. For instance,
the maximum power is required which can he delivered over a
transmission line into a circuit, in which the resistance as well
as the reactance can be varied independently, In other
words, if
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is a function of two independent variables u and v, such a
pair of values of u and of v is to be found, which makes y a
maximum, or minimum,

Choosing any value ug, of the independent variable v,
then a value of v can he found, which gives the maximum (or
minimum) value of y, which can be reached for u=1p This
is done by differentiating y=F(uo,), over v, thus:

df (up,r)
dv

=0,. . . ... . (38

From this equation (38), a value,

is derived, which gives the maximum value of y, for the given
value of ug, and by substituting (39) into (38),

y=folw), . . . . . . . (40)

is obtained as the equation, which relates the different extremes
of y, that correspond to the different values of wg, With .

Herefrom, then, that value of u is found which gives the
maximum of the maxima, by differentiation:

fa(uo)

duo

=0 . .. ... @D

Geometrically, y=F(x,u) may be represented by a surface
inspace, with the coordinates y, u, v. y=f(uov), then, represents
the curve of intersection of this surface with the plane uo=
constant, and the differentation gives the maximum poin
of this intersection curve. y=fa(uo) then gives the curve
in space, which connects all the maxima of the various inter-
sections with the wo planes, and the second differentiation
gives the maximum of this maximum curve y=F;(uy), or the
maxinum of the maxima (or more correctly, the extreme of
the extremes).

Tnversely, it is possible first to differentiate over u, thus,

df (u,v0)
o0 L Wy
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and thereby get
u=f32), « . . . . . . (43

as the value of u, which makes y a maximum for the given
value of v=vy, and substituting (43) into (42),

y=fulvo), . . . . .. . (&)

is obtained as the equation of the maxima, which differentiated
over vy, thus,

dfs(vo) .
—dvo——O,.......Ha)
gives the maximum of the maxima.
Geometrically, this represents the consideration of the
intersection curves of the surface with the planes v=constant.
The working of this will be plain from the following example:
109. Example 12, The alternating voltage e=30,000 is
impressed upon a transmission line of resistance r=20 ohms
and reactance 7o=>50 ohms,
What should be the resistance r and the reactance # of the
receiving circuit to deliver maximum power?
Let 7=current delivered into the receiving circuit. The
total resistance is (r-+7o); the total reactance is (z+2o); hence,
the current is

. e
= . ., . . 46
V(r+70)2 4+ (x +10)2 )

The power output is
P=r, . . . . ... 4
hence, substituting (46), gives
N v

G )

(a) For any given value of , the reactance z, which gives
. s dP

maximum power, is derived by =0
P gsimplified, gives y1=(x+%0)?; hence,

. '%=2($+$0)=0 and z=-zo; . . . (49)
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that is, for any chosen resistance 7, the power is a maximum,
if the reactance of the recciving circuit is chosen equal to that
of the line, but of opposite sign, that is, as condensive reactance.

Substituting (49) into (48) gives the maximum power
available for a chosen value of 7, as:

7é2 .
0 =m, ...... (DO)
or, simplified,
I 2 2
Yo= (TITO) and y3=r+r—:-;
hence,
dys . 1o _ .
ol and  r=ro, . . . . (3D
and by substituting (51) into (50), the maximum power is,
e?
Po= e v (52)

(b) For any given value of z, the resistance r, which gives

. o d
maximum power, is given by e =0.

P simplified gives,
(r+70)2+ (410
=
1o+ (2 +20)?
Yosrt—""—"7;

Hp_q TR

dr r
r=VIRt@tnf, ... . (53)

which- isthe value of r, that for any given value of 2, gives
maximum power, and this maximum power by substituting
(53) into (48) is,

P

dys 1 102+ (z+10)?

Vrd+ (z4+20)%2

- [ro+Vre? + (z+20) 2R + (2 +120)2
62
Aro+Vrd+ (@ +z0)t}

..... (54)
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which is the maximum power that can be transmitted into a
receiving circuit of reactance x.
The value of 2, which makes this maximum power P the

P
highest maximum, is given by %x—o =0.

Py simplified gives
. Ys=To+ Vi + (I +10)%;
Ya= \/WW§
Ys =102 + (£ +20)%;
Yo =(z+20)%;
Yo = (£ +20);
and this value is a maximum for (z+zo)=0; that is, for

e (55)

Norr. If z cannot be negative, that is, if only induetive
reactance is considered, =0 gives the maximum power, and
the latter then is
P, z

=—, . (56
¥ 2{T0+\/7‘02+1'02} ( )

the same value as found in problem (7), equation (18).
Substituting (55) and (54) gives again equation (52), thus,

&2

P max =Z{{]‘

110, Here again, it requires consideration, whether the
solution is practicable within the limitation of engineering
constants.

With the numerical constants chosen, it would be

2 300002
Pm“=z7‘{)=—@—=11,250 kW.,

e
4==—=750 amperes
¢ 27‘0 P !
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and the voltage at the receiving end of the line would be
¢/ =iV Lz =T50V 207 + 502 =40,400 volts;

that is, the voltage at the receiving end would be far higher
than at the generator end, the current excessive, and the efficiency
of transmission only 50 per cent. This extreme case thus is
hardly practicable, and the conclusion would be that by the
use of negative reaclance in the receiving cireuit, an amount
of power could be delivered, at a sacrifice of efficiency, far
greater than economical transmission would permit.

In the case, where capacity was excluded from the receiv-
ing circuit, the maximum power was given by equation (56) as

2
o <6100 k.

SR, —
Ao+ 1ot

11, Extremes of engincering quantities z, 9, are usually
determined by differentiating the function,

y=f@z), . . . . . . . (67

and from the equation,

e

=0, . . ... . (38)

deriving the values or , which make ¥ an extreme.

Oceasionally, however, the equation (58) cannot be solved
for z, but is either of higher order in z, or a transcendental
equation. In this case, equation (58) may be solved by approx-
imation, or preferably, the function,

is plotted as a curve, the values of # taken, at which z=0,
that is, at which the curve intersects the X-axis. For instance:

Example 13. The e.n.f. wave of a three-phase alternator,
as determined by oscillograph, is represented by the equation,

e=36000{sin 6—0.12sin (30— 2.3°) ~23 sin (50— 1.5°) +
0.13¢in (76-6.29%. . . . . . (60)
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This alternator, connected to a long-distance transmission line,
gives the charging current to the line of

§=13.12 cos (6—0.3°)—5.04 cos (36—3.3%)— 18.76 cos (56—3.6%)
+19.59 cos (76-999) . . . . (1)

(see Chapter I1T, paragraph 95).
What are the extreme values of this current, and at what
phase angles 6 do they oceur?
The phase angle 6, at which the current ¢ reaches an extreme
value, is given by the equation
&

3—05=0. ....... (62)

P16 57.
Substituting (61) into (62) gives,

2 =Z—25= —13.12sin (f-0.3°) +15.12 sin (36—3.3°) +93.8 sin

(56-3.6°)—137.1sin (74~9.9=0. . . . (63)

This equation cannot be solved for 8. Therefore z is
plotted as function of § by the curve, Fig, 57, and from this
curve the values of 6 taken at which the curve interseets the
zero line. They are:

0=1°; 20°; 47° 78°; 104°; 135°; 162°,



170 ENGINEERING MATHEMATICS.

For these angles §, the corresponding values of © are calculated
by equation (61), and are:

fo=+9; —1; +39; —30; +30; —42; +4amperes.

The current thus has during each period 14 maxima, of
which the highest is 42 amperes.

112. In those cases, where the mathematical expression
of the function y=f(z) is not known, and the extreme values
therefore have to be determined graphically, frequently a greater
accuracy can be reached by plotting as a curve the differential
of y=f(x) and picking out the zero values instead of plotting
y={(z), and picking out the highest and the lowest points.
If the mathematical expression of y=f(z) is not known, obvi-

ously the equation of the differential curve z=% (64) is usually

not known either. Approximately, however, it can fre-
quently be plotted from the numerical values of y=£(z), as
follows:

It 21,29, r3... are successive numerical values of z,

and  yi, Yo, ¥3. .. the corresponding numerical values of y,

approximate points of the differential curve z=% are given

by the corresponding values:

Ip+Ty X34l Igtay )
2 ] &) ) 2 LS )

as abscissas:

. =1 3— Y2 41—
as ordinates: 21 ; By ; it L
To—1I1 T3—ZLs L4— T3

113. Example 14, In the problem (1), the maximum permea-
- hility point of a sample of iron, of which the ®, 3¢ curve is given
as Fig. 51, was determined by taking from Fig. 51 corresponding

values of ® and %, and plotting /z=—:%, against ® in Fig. 52,

A considerable inaccuracy exists in this method, in locating
the value of ®, at which g is & maximum, due to the flatness
of the curve, Fig. 52.
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The successive pairs of corresponding values of  and ¢,
as taken from Fig. 51 are given in columns 1 and 2 of Table I.

Tapie 1.
® ®
Kilo Lines, & % p 8

0 0 370

1 176 570 +200 035
2 2.74 730 160 15
3 347 865 135 25
4 106 985 120 35
5 4.59 1090 105 45
6 510 1175 85 55
7 5 63 1245 70 65
8 6 17 1295 50 75
9 6 77 1330 35 85
10 747 1340 +10 95
11 833 1320 —20 10 5
12 9 60 1250 70 s
13 11 60 1120 130 125
14 15 10 ‘930 190 135
15 207 725 205 14.5

In the third column of Table I is given the permeability,

,u=% and in the fourth column the inerease of permeability,

per ®=1, 4p; the last column then gives the value of ®, to
which 4y corresponds.

In Fig. 58, values 4p are plotted as ordinates, with ® as
abscissas. This curve passes through zero at ®8=9.95.

The maximum permeability thus occurs at the approximate
magnetic density ®=9.95 kilolines per sq.cm., and not at ®=
102, as was given by the less accurate graphical determination
of Fig. 52, and the maximum permeability is po=1340.

As seen, the sharpness of the intersection of the differential
curve with the zero line permits a far greater accuracy than
feasible by the method used in instance (1).

114. As illustration of the method of determining extremes,
some further examples are given below:
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Example 15. A storage battery of n=80 cells is to be
connected so as to give maximum power in a constant resist-
ance r=0.1 ohm. Fach battery cell has the emf. ey=2.1
volts and the internal resistance ro=0.02 ohm. How must
the cells be connected?

Assuming the cells are connected with & in parallel, hence

7 I series. The internal resistance of the battery then is

n
20 n

0 . o
=7 ohms, and the total resistance of the circuit is Fotr

A

w"

N
AN

-4

4
/
/
— 54

o—%

R-| Kilo-lines \\

B

T
e
e

l =

[N

F1e. 58. First Differential Quotient of ®,x Curve

The em.f. acting on the eircuit is 7 since - cells of em.f.

€ are in series. Therefore, the current delivered by the battery
is, ‘
n
. 3%
1= ,

n
x—27‘0+1‘

and the power which this current produces in the resistance
i,
6,2

P=n7=—'n—“~2.
72 (;2 To +7‘)
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This is an extreme, if
nro
=— 41z
y=7t
is an extreme, hence,
dy nro
==
dz 12 =0,
and
nry
R

that is, 2=4 ﬁ%) =4 cells are connected in multiple, and

L /_——— 20 cclls in series.

z Nro

113. Example 16, In an alternating-current transformer the
loss of power is limited to 900 watts by the permissible temper-
ature rise. The internal resistance of the transformer winding
(primary, plus secondary reduced to the primary) is 2 ohms,
and the core loss at 2000 volts impressed, is 400 watts, and
varies with the 1.6th power of the magnetic density and there-
fore of the voltage. At what impressed voltage is the output
of the transformer a maximum?

If ¢ is the impressed e.m.f. and 1 is the current input, the
power input into the transformer (approximately, at non-
induetive load) is P=ei.

If the output is a maximum, at constant loss, the input P
also is a maximum. The loss of power in the winding is
=21

The loss of power in the iron at 2000 volts impressed is
400 watts, and at impressed voltage e it therefore is

¢ \18
<%m> X400,

and the total loss in the transformer, therefore, is

i}
=900;

1+
P,=22 +400<9000>
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herefrom, it follows that,

16.
0 'OO<>000>

and, substituting, into P=e1:

16
P=ey[450— _00(0000) .

Simplified, this gives,

and, differentiating,

dy 45 3.6¢%6
de 200016

e \16
—_— =193
(2000) 1.25.

=115 and e=2300 volts,

=0,

and

Hence,

‘?OOO
which, substituted, gives

P=2300v450—200 X1.25=32.52 kw.

116, Example 7. Ina 5-kw. alternating-current transformer,
at 1000 volts impressed, the core loss is 60 watts, the 2 loss
150 watts. How must the impressed voltage he changed,
to give maximum efficiency, (a) At full load of 5-kw; (b) at
half load?

The core loss may be assumed as varying with the 1.6th
power of the impressed voltage. If eis the impressed voltage,

250
1=¥Q is the currens at full load, and 4= %15 the cwrent at
half load, then at 1000 volts impressed, the full-load current is

50
SO =5 amperes, and since the 2 loss is 150 watts, this gives
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the internal resistance of the transformer as r=6 ohms, and
herefrom the i2r loss at impressed voltage ¢ is respectively,

5 1 6 ., ol 6

e 50 x10 q4 s 37 5>2<10

) and M=

watts.

Since the core loss is 60 watts at 1000 volts, at the voltage ¢
it is

1-6
P,=60x (1000> watts.
The total loss, at full load, thus is

16—I-150><106

o PP 60><<1000> —
and at half load it is

16 37.5%X108

Pr =P, +ri? —60><<1000) +—~—e~

Simplified, this gives
e \1'6
Y= <ﬁ)ﬁﬁ> +2.5%106Xe2,

1-6
y1=<10i00> +0.625X105Xe~2;
hence, differentiated,

i 6p—3
l.ﬁw—m@() e~3=();

10001 =~ 1.25X100xe3=0;

¢8=3.125 X108 X 100016 =3.125 X 1010 8;
+6=(.78125 X 108 X 100016 =0.78125 X 10108,
hence,  =1373 volts for maximum efficiency at full load.
and ¢=038 volts for maximum efficiency at half load.

117, Example 18. (a) Constant voltage €=1000 is im-
pressed upon a condenser of capacity C'=10 mf,, through a
reactor of inductance L=100 mh., and a resistor of resist-
ance r=40 ohms. What is the maximum value of the charg-
ing current?
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(b) An additional resistor of resistance r'=210 ohms is
then inserted in series, making the total resistance of the con-
denser charging civeuit, r=250 ohms. What is the maximum
value of the charging current?

The equation of the charging current of a condenser, through
a eireuit of low resistance, is (“Transient Electric Phenomena
and Oscillations,” p. 61):

. 2ef Iy
1==1¢ 2Ltsm-it},
g1

3L
7
=TT

and the equation of the charging current of a condenser, through
a circuit of high resistance, is (“ Transient Electric Phenomena
and Oscillations,” p. 51),

where

where

Substituting the numerical values gives:
(@) 1=10.2 ¢™20% sip 980 ¢;

(b) 1=0.667 ¢~ 500 ¢=2000¢}

Simplified and differentiated, this gives:

(@) z=%=4.9 cos 980¢—sin 980¢=0;
hence tan 980t=4.9
MW0t=68.5° =120
1.20+nz
=5 %¢

O =t g,
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hence, 1500t =4

log 4
log

£=0.00092 sec.,

and, by substituting these values of ¢ into the equations of the
cwrrent, gives the maximum values:

1500t =—2==1.38,

"0+n-

(@ 1=10e 29 =7.83¢084=783%0.53" amperes;

that is, an infinite number of maxima, of gradually decreasing
values: +7.83; —4.15; +.2.20; —1.17 ete.

)] 1=6.667(e~04— ¢~184)=3.16 amperes,

118. Example 19. In an induction generator, the fric-
tion losses are P;=100 kw.; the iron loss is 2000 kw. at the ter-
minal voltage of e=4 kv., and may be assumed as proportional
to the 1.6th power of the voltage; the loss in the resistance
of the conductorsis 100 kw. at 1==3000 amperes output, and may
be assumed as proportional to the square of the current, and
the losses resulting from stray fields due to magnetic saturation
are 100 kw. at e=4 kv., and may in the range considered be
agsumed as approximately proportional to the 3.2th power
of the voltage. Under what conditions of operation, regard-
ing output, voltage and current, is the efficiency a maximum?

The losses may be summarized as follows:

Friction loss, Py=100 kw.;
e\1'6

Tron loss, P;+200<4“) ;

i2r loss, P,= 100<3000)

.2
Saturation loss, Pi=100 G) :

hence the total loss is P =Py+P,+P,+P, ’

e\I6 [ 5 \2 /g\32)
=100{1+2(Z) +<3—0m> +<4—) ;L
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The output is P=ei; hence, percentage of loss is

S\ < i )2L<3>3~2]
&_100{14--(4—) ago0) T\r J
P .

el

A=

The efficiency is a maximum, if the percentage loss 4 is a
minimum. For any value of the voltage e, this is the case

d)
at the current 1, given bV —=0; hence, simplifying and differ-
entiating 4,

€>1~6 <€>3-2
i H?(Z i) 1

M =0

di 2 30002

N oA
1=3000. l—h?;(z) +<Z) ;

then, substituting 7 in the expression of 4, gives

1 e 16 e 32
P 2| — —
AT ”“(4) +<4> ’

and 1is an extreme, if the simplified expression,

1.2 1.,
Y=gt g T

is an extreme, at

dy 2 08 12

de. & 416€14+43290 ’
08 1.2
hence, 2+41 selt— B3 52=();
e\ 2
hence, <E) =13 and e=5.50 kv,,

and, by substitution the following values are obtained: 1= 0.0323;
efficiency 96.77 per cent; current 1=8000 amperes; output
P=44000 kw.

119. In all probability, this output is beyond the capacity
of the generator, as limited by heating. The foremost limita-
tion probably will be the 2 heating of the conductors; that s,
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the maximum permissible current will be restricted to, for
instance, ¢+=>5000 amperes.

For any given value of current 7, the maximum efficiency,
that is, minimum loss, is found by differcntiating,

100 1+9 E 1~6+ —L 2 E 3.2
. Az) Taon) T\1

er

over ¢, thus:

i
de
Simplified, 1 gives

21 9
2
i”(aooo) } b

hence, differentiated, it gives

dy 1 17\ 12 2.2
w*ﬂ”(m) }+W+W=°’
e\ B e\ 5 VL
<4 \1) =1 *\3000) |’

2
(e_)m — 3[04 455 — 0

i - 11 ’
For ©=5000, this gives:

0\ 16
<Z> =1.065 and e=4.16kv,;

hence,
1=0.0338, Efficency 96.62 per cent, Power P=20,800 kw.

Method of Least Squares.

120. An interesting and very important application of the
theory of extremes is given by the method of least squares, which
is used to caleulate the most accurate values of the constants
of funetions from numerical observations which are more numer-
ous than the constants.

If y=fl&), . . . . .. ... M
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is a function having the constants a, b, ¢. .. and the form of
the funetion (1) is known, for instance,

y=a+br+er, . . . . .. . ()

and the constants @ b, ¢ are not known, but the numerical
values of a number of corresponding values of z and y are given,
for instance, by experiment, 21, z2, Z3, T4 . . and 41, Y2, Y3, Ys. . . ,
then from these corresponding numerical values 2, and y,
the constants a, b, ¢... can be calculated, if the numerical
values, that is, the observed points of the curve, are sufficiently
NUMETOUS.

If less points 2y 4y, o, 2. . . are observed, then the equa-
tion (1) has constants, obviously these constants cannot be
calculated, as not sufficient data are available therefor.

If the number of observed points equals the number of con-
stants, they are just sufficient to calculate the constants. For
instance, in equation (2), if three corresponding values 1, y1;
s, Y2, T3, Y3 arc observed, by substituting these into equation
(2), three equations are obtained: )

Yr=a+bry +eri?: |

|
yg=a+b‘132+cl'z2:i» B ()]

Y3=03 +br+cry?, ‘
which are just sufficient for the calculation of the three constants
a, b, c.

Three observations would therefore be sufficient for deter-
mining three constants, if the observations were absolutely
correct. This, however, is not the case, but the observations
always contain errors of observation, that is, unavoidable inac-
curacies, and constants caleulated by using only as many
observations as there are constants, are not very accurate.

Thus, in experimental work, always more observations
are made than just necessary for the determination of the
constants, for the purpose of getting a higher accuracy. Thus,
for instance, in astronomy, for the calculation of the orbit of
a comet, less than four observations are theoretically sufficient,
but if possible hundreds are taken, to get a greater accuracy
in the determination of the constants of the orbit.
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If, then, for the determination of the constants g, b, ¢ of
cquation (2), six pairs of corresponding values of z and y were
determined, any three of these pairs would be sufficient to
give ¢, b, ¢, as scen above, but using different sets of three
observations, would not give the same values of a, b, ¢ (as it
should, if the observations were absolutely accurate), but
different values, and none of these values would have as high
an accuracy as can be reached from the experimental data,
since none of the values uses all ohscrvations.

121, If y=fe), . .. .. .. @D

is a function containing the constants a, , ¢ . . ., which are still
unknown, and o1, yi; s, Ye; s, Ys; ebe., are corresponding
experimental values, then, if these values were absolutely cor-
rect, and the correct values of the constants ¢, b, ¢ . .. chosen,
y=f(z;) would be true; that is,

fla) =y =0;
f@2)—ya=0, ete.

(5)

Due to the errors of observation, this is not the case, but
evenif @, b, ¢.  are the correct values,

yl;éf(xﬂ ete., ... L L. (6)

that is, a small difference, or error, exists, thus
f@)=p=0; ]

. %
J(@a) =y2=10s, ete.: |
If instead of the correct values of the constants, ¢, b, ¢.. ,
other values were chosen, different errors 8y, d,. . would
obviousty result.
From probability caleulation it follows, that, if the correct
values of the constants a, b, ¢. .. are chosen, the sum of the
scquares of the errors,

0202402+, . . L . L. (8)

is less than for any other value of the constants @, b, ¢.. ., that
is, it is & minimum.
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122. The problem of determining the constants @, b, ¢.. ,
thus consists in finding a set of constants, which makes the
sum of the square of the crrors ¢ a minimum; thatis,

= 392 =minimum, . )}

is the requirement, which gives the most accurate o most
probable set of values of the constants a, b, ¢.

Since hy (7), 0=f(z)—vy, it follows fxom L9) as the condi-
tion, which uwes the most probable value of the constants
a,bec.. .

z=Sif(r)—yP=winimum: . . . . (10)

that is, the least sum of the squares of the crvors gives the most
probable value of the constants a, b, ¢..

To find the values of @, b, ¢. , which fulfill equation (10),
the differential quotients of (10) are equated to zero, and give

Z e —ledfm

dz ) u’f i
%= {f(‘ﬂ /\ dh =0:

ZCZ Z{f(x) y}d () =0; ete.

This gives as many equations as therearc constants a, b,« .
and therefore just suffices for tneir caleulation, and the valucs
so caleulated are the most probable, that is, the most accurate
values.

Where extremely high accuracy is required, as for instance
in astronomy when calculating from observations cxtending
over a few months only, the orbit of a comet which possibly
lasts thousands of years, the method of least squares must be
used, and is frequently necessary also in engineering, to get
from a limited number of ohservations the highest aceuracy
of the constants.

123. Asinstance, the method of least squares may be applied
in separating from the observations of an induction motor,
when running light, the component losses, as friction, hysteresis,
ete.

‘ (11)
|
I
|
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In a 440-volt 50-h.p. induction motor, when running light,

that is, without load, at various voltages, let the terminal

voltage ¢, the current input 4, and the power input p be observed
as given in the first three columns of Tahle I:

Tipie 1
}

e 1 ] ‘ ¥ %) c:fluc g
148 8 790 | 13 780 746 + 32
220 1 920 24 900 962 - 62
320 19 1500 v2 1430 1382 + 48

|
410 23 1920 106 1810 1875 - 35
440 26 2220 135 2085 2058 + %
473 29 2450 ‘ 168 2280 2280 0
530 43 3700 | 370 3330 3080 + 250
640 56 5000 ’ 627 4370 3600 + 770
700 75 8000 . 1125 6875 4150 42725

The power consumed by the motor while running light
consists of: The friction loss, which can be assumed as con-
stant, a; the hysteresis loss, which is proportional to the 1.6th
power of the magnetic flux, and therefore of the voltage, be'-6;
the eddy current losses, which are proportional to the square
of the magnetic flux, and therefore of the voltage, ce?; and the 2r
loss in the windings. The total power is,

p=a+tbel e 4ri2. . L L L L (1)

From the resistance of the motor windings, r=0.2 ohm,
and the observed values of current ¢, the 42r loss is caleulated,
and tabulated in the fourth column of Table I, and subtracted
from p, leaving as the total mechanical and magnetic losses the
values of pp given in the fifth column of the table, which should
be expressed by the equation:

p=atbe et . . . . . . (13)

This leaves three constants, g, b, ¢, to be calculated.

Plotting now in Fig. 59 with values of ¢ as abscissas, the
current 7 and the power po give curves, which show that within
the voltage range of the test, a change occurs in the motor,
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as indicated by the abrupt rise of current and of power beyond
473 volts.  This obviously is due to heginning magnetic satura-
tion of the iron structure. Since with heginning saturation
a change of the magnetic distribution must he expected, that
is, an increase of the magnetic stray field and thereby increase
of eddy current losses, it is probable that at this point the con-

i D,

/ 7077000

‘ / 601-6000;

f {
/ 5015000

/{ ®

oy
7 3073000
Dy
> / (9/ ! —onlono
5
,/;{/ 161000
__/// e=1Volts

100200300400&[30600790

F16. 59. Excitation Power of Induetion Motor.

stants in equation (13) change, and no set of constants can he
expected to represent the entirc range of observation. For
the calculation of the constants in (13), thus only the observa-
tions below the range of magnetic saturation can safely be used,
that is, up to 473 volts.

From equation (13) follows as the error of an individual
ohservation of e and py:

o=a+beS+el—py;. . . . . L. (14)
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hence,

2= U0%= Za+be! 64 ce?—po?} =minimum,. (15)
thus:

“
da
&z

d‘—é}=2{a+be“"+ce'~’—pg}0‘“=0,’; N

d = Z{a+het 0 +ce— po} =0; }

dz : ,
7o Llatbett 4= pofe? =0, J
and, if n is the number of observations used (n=6 in -this
instance, from e=148 to ¢=473), this gives the following
cquations:

na+bZel0 +¢Ze2— Bpy=0; 1

0Zel0+bBe3 483 0= Selpp=0; . . (17)
ade®+b e} O +oZet— Xepy =0, !
Substifuting in (17) the numerical values from Table I gives,

a+11.7 b 103 +126 ¢ 103=1550,

a+14.6 b 103+163 ¢ 103=1830; L .. (18)
. a+15.1 b 103+170 ¢ 103=1880,
hence,
0=540; ]
b=325%107%, 4 . . . . . . (19)
e=5X1073, j
and
po=>540+0.0325 164000562 . . . . (20)

The values of po, calculated from equation (20), are given
in the sixth column of Table I, and their differences from the
observed values in the last column. As seen, the errors are in
hoth directions from the calculated values, exeept for the three
highest voltages, in which the observed values rapidly increase
beyond the caleulated, due probably to the appearance of a
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loss which does not exist at lower voltages—the eddy currents
cauged by the magnetic stray field of saturation.

This rapid divergency of the observed from the calculated
values at high voltages shows that a calculation of the constants,
based on all ohservations, would have led to wrong wvalues,
and demonstrates the necessity, first, to critically review series
of observations, before using them for deriving constants, so
as to exclude constant ersors or unidirectional deviation. It
must be realized that the method of least squares gives the most
probable value, that is, the most accurate results derivable
from a series of observations, only so far as the accidental
errors of observations are concerned, that is, such errors which
follow the general law of probability. The method of least
squares, however, cannot eliminate constant errors, that is,
deviation of the observations which have the tendency to be
in one direction, as caused, for instance, by an instrument reading
too high, or too low, or the appearance of a new phenomenon
in a part of the observation, as an additional loss in ahove
instance, etc. Against such constant errors only a critical
review and study of the method and the means of ohserva-
tion ecan guard, that is, judgment, and not mathematical
formalism.



CHAPTER V.
METHODS OF APPROXIMATION

124. The investigation even of apparently simple engineer-
ing problems frequently leads to expressions which are so
complicated as to make the numerical calculations of a serles
of values very cumbersonme and almost impossible in practical
work. Fortunatcly in many such cases of engineerng prob-
lems, and cspecially in the field of electrical engmeenng, the
different quantities which enter into the problem are of very
different magnitude Many apparently complicated expres-
sions can fiequently be greatly simplified, to such an extent as
to permit a quick calculation of numerical values, by neglect-
ing terms which are so small that their omission has no appre-
ciable effect on the accuracy of the result; that is, leaves the
result correct within the limits of accuracy required in engineer-
ing, which usually, depending on the nature of the problem,
is not greater than from 0 1 per cent to 1 per cent.

Thus, for instance, the voltage consumed by the resistance
of an alternating-current transformer is at full load current
only a small fraction of the supply voltage, and the exciting
current of the transformer is only a small fraction of the full
load current, and, therefore, the voltage consumed by the
exciting current in the resistance of the transformer is only
a small fraction of a small fraction of the supply voltage, hence,
it is negligible in most cases, and the transformer equations arc
greatly simplified by omitting it. The power loss in a large
generator or motor is a small fraction of the input or output,
the drop of speed at load in an induction motor or direct-
current shunt motor is a small fraction of the speed, ete., and
the square of this fraction can in most cases be neglected, and
the expression simplified thereby.

Frequently, therefore, in engineering expressions con-
taining small quantities, the products, squares and higher

187
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powers of such quantities may be dropped and the expression
thereby simplified; or, if the quantities are not quite as small
as to pemmit the neglect of their squares, or where a high
aceuracy is required, the first and second powers may e retained
and only the cubes and higher powers dropped.

The most common method of procedure is, to resolve the
expression into an infinite series of suceessive powers of the
small quantity, and then retain of this series only the first
term, or only the first two or three terms, ete., depending on the
smallness of the quantity and the required accuracy.

125. The forms most frequently used in the reduction of
expressions containing small quantitics are multiplication and
division, the binomialseries, the exponential and the logarithmic
series, the sine and the cosine series, ete,

Denoting a small quantity by s, and where several oceur,
by 1, 8, 85 . . . the following expression may be written:

(T£8)(1£89) =145 £52 818,

and, since 8;8; i3 small compared with the small quantities
s1 and sg, or, as usually expressed, 818> s a small quantity of
higher order (in this case of second order), it may be negleetod,
and the expression written:

(Tds)(lEs)=1ds$s. . . . . . . (1)

This is one of the most useful simplifications: the multiplica-
tion of terms containing small quantities is replaced by the
simple addition of the small quantities.

If the small quantities s; and 8 ave not added {or subtracted)
to 1, hut to other finite, that is, not small quantities ¢ and b,
aand b can he taken out as factors, thus,

(aisﬂ(bisg)=ab<1i%>< b> ab<1j: i;)) (2)

where 2 gnd 2 7 2 must be small quantities.

As seen, in this case, & and ss need not necessarily he ahso-
lutely small quantities, but may be quite large, provided that
a and b are still larger in magnitude; that is, s; must he small
compared with ¢, and s, small compared with b. For instance, '
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in astronomical calculations the mass of the earth (which
ahsolutely can certainly not be considered a small quantity)
is neglected as small quantity compared with the mass of the
sun. Also in the eftect of a lightning stroke on a primary
distribution civcuit, the normal line voltage of 2200 may be
neglected as small compared with the voltage impressed by
lightning, cte.

126, Example. In a direct-current shunt motor, the im-
pressed voltage is ep=125 volts; the armatute resistance is
r9=0.02 ohm; the field resistance is ry=>50 ohms, the power
consumed by frietion is py=300 watts, and the power consumed
by iron loss is p,=400 watts. What is the power output of
the motor at 4p=50, 100 and 150 amperes input?

The power produced at the armature conductors is the
product of the voltage e generated in the armature conductors,
and the current 7 through the armature, and the power output
at the motor pulley is,

p=e—p—p; . N )

. )
The eurrent in the motor field is =, and the armature current
"

therefore is,

.. &
1=lp—=, . . . . .. . @
Ty

€. . oy
where Tlsa small quantity, compared with 7.
1

The voltage consumed hy the armature resistance is re,
and the voltage generated in the motor armature thus is:

e=e—Tol, . . . . .. (5

where 7t Is a small quantity compared with e..
Substituting herein for 4 the value (4) gives,

6=€0—T0(i0—@>. e e e v e ((‘))

!
Since the second term of (6) is small compared with e,
e .
and in this second term, the second term T—O is small com-
1

pared with 4y, it can be neglected as a small term of higher
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order; that is, as small compared with a small term, and
expression (6) simplified to

€=€0—?"0l.(). Lo e e e (7)

Substituting (4) aud (7) into (3) gives,

p="(ey— roig)(zn——> =M

Tolo €0
“é{ﬂo(l——eo—><1 7'1'£0> —-0=P . . . )

Expression (8) contains a product of two terms with small
quantities, which can be multiplied by equation (1), and thereby

gives,

Substituting the numerical values gives,

p=125io—0.02p>— 562.5— 300— 400
=125iy—0.02¢2— 1260 approximately;

thus, for 4o=>50, 100, and 150 amperes; p=4940, 11,040, and
17,040 watts respectively.

127. Expressions containing a small quantity in the denom-
inator are frequently simplified by bringing the small quantity
in the numerator, by division as discussed in Chapter IT para-
graph 39, that is, by the series,

1
o =1Fz+2F B3 +rig54 .. .. (10)
which series, if = is a small quantity s, can be approximated
hy:

1
Tl

1
'f:‘s‘=l+8.
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or, where a greater accuracy is required,

1 5.
1+S !

1
— 2
1 148482
By the same expressions (11) and (12) a small quantity
contained in the numerator may be brought into the denominator
where this is more convenient, thus:

1
M=oy
13)

1
1—s=m, cte.

. . b .
More generally then, an expression like . where s is

«mall compared with @, may be simplified hy approximation to
the form,
b b b

8
m=—<-§=a<”a>~ e 1
a lia

or, where a greater exactness is required, by taking in the second
term,

b __b(l _8+_82> )
t—z—i_s-“a:Faa"""w)

128. Example. What is the current input to an induetion
motor, at impressed voltage eo and slip s (given as fraction of
synchronous speed) if 7o—jzo is the impedance of the primary
cireuit of the motor, and r; — jz; the impedance of the secondary
cireuit of the motor at full frequency, and the exciting current
of the motor is negleeted; assuming s to be a small quantity;
that is, the motor running at full speed?

Let E be the can.f. generated by the mutual magnetic flux,
that is, the magnetic flux which interlinks with primary and
with secondary circuit, in the primary circuit. Since the fre-
quency of the secondary circuit is the fraction sof the frequency
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of the primary cireuit, the generated em.f. of the secondary
cireuit is off.

Since z; is the reactance of the secondary cireuit at full
frequency, at the fraction s of full frequency the reactance
of the secondary circuit is sr3, and the impedance of the sec-
ondary circuit at slip s, therefore, is r1—jszi; henee the
secondary current is,

B

Cr—gsn

If the exciting current is neglected, the primary current
equals the secondary current (assuming the secondary of the
same number of turns as the primary, or reduced to the same
number of turns); hence, the current input into the motor is

sE

T T

(16)

The second term in the denominator is small compared
with the first term, and the expression (16) thus can be
approximated by

B B s ( , ,sxl). an

The voltage E generated in the primary circuit equals the
impressed voltage ¢, minus the voltage consumed by the
current I .in the primary impedance; ry—7o thus is

E=€0—.I(T‘0—j2'o), . . P (18)
Substituting (17) into (18) gives

E=en—s—(r0—]ro)<1+y£'>. oL (19
T T , :

In expression (19), the second term on the right-hand side,
which is the impedance drop in the primary eircuit, is small

compared with the first term o, and in the factor <1+ji:;]>
1

of this small term, the small term § %1 can thus be neglected
1
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as a small term of higher order, and equation (19) abbreviated
to

B
E=eo—§—(ro—]xo). O ()]
"
From (20) it follows that
1 +7’; (To—]'xo)
1
and from (13),

E=e {l—i(rrjzo) } ..... @21
Ty

Substituting (21) into (17) gives

and from (1),

r 1
Sy To . . Lot
=] == —— ", N
7‘1{ ! " } =)

If then, Top=to+fio’ is the exciting current, the total
current input into the motor is, approximately,

lo=1+Iw
seg ry L Totxil . ..

=—11+s ‘ oL (2
7'1{ +s‘r—1+]s o T+m+]@o (23)

129. One of the most important expressions used for the
reduction of small terms is the binorial series:

-1 - (n—-2
(lj;.t)"=1inx+n(‘n2 'xzin(n |3(n )

 1n=1n-2)(n-3) ,
T lé w

7

(24)

If z is a small term s, this gives the approximation,

(I+s)n=14ms; . . . . . . . . (2)
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or, using the second term also, it gives

1
(o=l s+ 0% ) (26)
In a more general form, this expression gives
s\n ns
n=qn —| =gn — |y efe. ..
(atsin=q (liﬂ) 1 <Iia>, efe @n

By the binomial, higher powers of terms containing small
quantities, and, assuming » as a fraction, roots containing
small quantities, can he eliminated; for instance,

1
Vats= (ais\n—an<li ) =\"/E<14_-;%);

11 ~1(1 s)"‘_l(l ns>.
@zor ”‘*‘( 9)—5_ ) =w\Tg)
ar ia

! =(a+s)” 'l"ﬂf%(lii)_;— L (1? 8)'
Vass) N of Y\ T/’

s 8l
Vo= ot =1 £2) =V 1429);

One of the most common uses of the binomial series is for
the climination of squares and square roots, and very fre-
quently it can he conveniently applied in mere numerical caleu-
lations; as, for instance,

{201)2= "00’(1 +7()T)) =40 OOO<1 '100> =40,400;

1 1
29.92=3 (1—306) 900( 150) 000—6=894;

_ 1
V09.8=10v1-0.02=10(1-0.02)z =10(1-0.01) =9.99;

1 1 1
r—-—l 03—(1_}_003)1/0 _I_OT%—OQS:B ete.
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130. Example 1. If r is the resistance, = the reaciance of an

alternating-current circuit with impressed voltage e, the
eurrent is

. 4

I the reactance « is small compared with the resistance 7,
as s the case in an incandescent lamp circuit, then,

If the resistance is small compared with the reactance, as
is the case in a reactive coil, then,

=§{1‘%<ET)} R

Example 2. How does the short-circuit current of an
alternator vary with the speed, at constant field excitation?

When an alternator is short circuited, the total voltage
generated in its armature is consumed by the resistance and the
synchronous reactance of the armature.,

The wvollage generated in the armature at constant field
excitation is proportional to its speed. Therefore, if ¢, is the
voltage generated in the armature at some given speed S,
for instance, the rated speed of the machine, the voltage
generated at any other speed S is

S

e=g3€o;
SO 05
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. . . 8.
or, if for convenience, the fraction ‘?O is denoted by @, then
4.

S
o=z and  e=aey,
peli)

where o is the ratio of the actual speed, to that speed at which
the generated voltage is ep.

If r is the resistance of the alternator armature, zo the
synchronous reactance at speed So, the synchronous reactance
at speed S is z=azy, and the current at short circuit then is

. (4 0eg
1= .=—/‘=. Ce e e (29)
V2 V24 arg?

Usually r and zp are of such magnitude that r consumes
at full load about 1 per cent or less of the generated voltage,
while the reactance voltage of zo is of the magnitude of from
20 to 50 per cent. Thus r is small compared with o, and if
a 1s not very small, equation (29) can be approximated by

L 30[1—%<T>2}. L)

r 2=IU E.I_o
aXo, 11+ E
0/.

Then if 2=20r, the following relations exist:

a= 02 0.5 1.0 20

z'=§><0.9688 0.99 099875 0.99969

That is, the short-circuit current of an alternator is practi-
cally constant independent of the speed, and begins to decrease
only at very low speeds.

131. Exponential functions, logarithms, and trigonometric
functions are the ones trequently met in electrical engineering.

The exponential function is defined by the serics,

72 g3 gt oS
eit:lierEiﬁJrEingr... )
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and, if  is a small quantity, s, the exponential function, may
be approximated hy the equation,

e o R (. )
or, by the more general cquation,
FB=14as; . . .. . (33

and, if a grealer accuracy i required, the second term may
be included, thus,

9

rolicks, ... .. (34
and then

252

E:‘:as:li.as-f——f)—. Ce e e (35)

The logarithm is defined by loge 1‘=J‘(—b—c; hence,

T

d
loge (14+2)= % 1—;%.

.1 . . .
Resolving o into a series, by (10), and then integrating,
gives
4 loge (1 42)= ;tf(l"f r+a2Fe . )de

I I I o .
=i'r—§i§_1i—g— .. Coe (3())

This logarithmic series (36) leads to the approximation,
loge (1+8)=4s; . . . . . @7
or, including the sccond term, it gives
loge (T4£8)=4s-¢% . . . . . ()

and the more general expression is, respectively,

loge (a+5)=log a(l iZ—) =log a+log (1:&2) =log aig, (39)
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and, more accurately,
2
log;(ais)=logai%—§§. N €11))

Since logio N =log:g ¢ Xloge N =0.4343 loge N, equations {39)
and (40) may be written thus,

logyo (1£8)= +0.4343s;

logio (a+58)=logig ai0.4343§ (41)

132. The trigonometric functions are represented by the
infinite series:
12 z4 28
EEF
23 :c5 7
13 L‘ l-y 'T- ey

cos r=1— +.o..
(42)

§in r=z——

which when s s a small quantity, may be approximated by
coss=1 and sins=s; . . . . (43

or, they may be represented in closer approximation by

§2
cos §=1~7;

. AN RN
sin s=s{ —¢ ;

or, by the more general expressions,
a%?
cosas=1 and eosos=1-—;
2 )
A (45)
sin as=as and sin as=as -5

133. Other functions containing small terms may frequently
be approximated by Taylor’s serics, or its special case,
MacLaurin’s series,

MacLaurin’s series is written thus:

Jix)=f(0)+2f"(0) +l%2f”(0) +%3f"’(0) oo, . (46)
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where /', f, "', etc., ave respectively the first, second, third,
ete., differential quotient of f; hence,

1(8)=£(0)+5"(0): ]
F(as)=f(0) +ag”(0). |

Taylor’s series is written thus,

.233
S, . (48)

i

2
Flo+2)=f15) 427’ +|%f"<b\ *

and leads to the approximations:
Jb£)=/0) +5"(0); 1
JO+as)=f()+asf"(b) j

Many of the previously discussed approximations can be
considered as special cases of (47) and (49).

134. As seen in the preceding, convenient equations for the
approximation of expressions containing small terms are
derived from various infinife series, which are summarized
below:

(49)

=1Fz+22F 3424 F. .

nin=1) (n—])(n—2) s )
|) 24 E r+...

(1+z)7=14nr+

1 r+ i +14
CETRT RS
2 43 4
loge (1 £1)= ix—%i%— %i. o
22 14 x'"’ (A0)
coszr=1- P 14 ]b :

I GO

sing=x- '§+— }/—Jr o

B

‘3 f’"(O) .

710) =/ 0)+70) +§f~< )+

f(bix) =f(b) ifl{f/ b) Pf//(b) Bfm(b) +.
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The first approximations, derived by neglecting all higher
terms but the first power of the small quantity z=s in these
series, are:

1 ae 9.
Tis‘lq:s’ [+¢%;
[ n(n—~1
(s =1ns; +n(n2 _)82];
[ ]
efi=]4s; <+—2—J;
loge (145) = +s; ,_;)_ :
5% (51)
cos s=1; [_72_ :
. 83-
sin 8=5; -5
.
118 =70) +5710); +?f~m)]‘
FbLs)<f(b) £s"(h); +'§f”(m] :

and, in addition hereto is to be remembered the multiplication
rule,
(Lts)(ltso)=lds148; [+0s9) . . (52)

135. The accuracy of the approximation can he estimated
by caleulating the next term beyond that which is used.
This term Is given in hrackets in the above equations (50)
and (51).

Thus, when caleulating a series of numerical values by
approximation, for the one value, for which, as seen by the
nature of the problem, the approximation is least close, the
next term is caloulated, and if this is less than the permissible
limits of accuracy, the approximation is satisfactory.

For instance, in Example 2 of paragraph 130, the approxi-
mate value of the short-cireuit current was found in (30), as

PR PRy AL
Txo |0 2\azy) |
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The next term in the parenthesis of equation (30), by the
n(n—1)

binomial, would have been +=—5 substituting n=—%;

2 < 4
s=<-r—> , the next becomes +3—<L> . The smaller the g, the
A & \axy

less exact is the approximation.
The smallest value of g, considered in paragraph 130, was

6=02. For zy=20r, this gives +2 <ax> =0.00146, as the
value of the first neglected term, and in the aceuracy of the
result this is of the magnitude of ><0 00146, out of — >< 0.9688,

the value given in paragraph 130 that is, the app10x1matlon
6

gives the result correctly within (())09680 =0.0015 or within one-
sixth of one per cent, which is sufficiently close for all engineer-
ing purposes, and with larger ¢ the values aic still closer
approximations.

136. It is interesting to note the different expressions,
which are approximated by (1+s) and by (1-s). Some of
them are given in the following:

1+s= 1-s=
1 1
1-¢ 148’
s\» s\"
(143 -
s\2 s\?
(”5)? <‘§>;
I 1
a\n' § n!
o-3) (+3)
n n
n n m n
1+PS l—ws .
=Ly Ly
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. 1+ms
\Vi- (n—m)s
ete.

e
2—¢7;
1+loge (1+8);
1—loge (1—3);

S
1+nloge (1 +ﬁ> ;

1- S):

+

P

1-nloge

l.‘/.)

1+loge

,

|_‘)...
C/.l

+

L‘/:l

l

|..x,_A

1- loge

L'/J

ete.

1+sin s;

.8
14nsin—;
n

V1-2s;
1

+28

<
—
Do

2— ¢,
1+loge (1-3);
1—loge (1+5);

1+n loge <1—%>;

8
1-nloge (1 +ﬁ);

1—s
1+loge iTs

1+s

1— ]Og; 1 S

ete.

1—sin s;

.S
l—nsmﬁ;
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1. 1.
14— sinns; 1—— sin ns;
n n
cos V' = 28; cos V'2s;

ete. ete.

137. As an example may be considered the reduction to its
simplest form, of the expression:
25 281

VaAlaFsodid—sin b5} face co? [

— ’
a—3S2 "
5—382((1 +281) { —aloge\/a_}_s }\ a—281

F=

then,

3 s 3
wl’(a+s1)3=(w+sl)3/*=ai<l+) af<1+%%>;

4—gin 632=4<1—%sm 632) =4<1—§ 59) :

98\ 12 8
NVa=281= 0,1/~<I—-——> =a1/2<1——1>;
i ‘ a
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henee,

s §
av2><a3/4<1 +§ 21 ><4<1—§sg> XaV/Ax (1 +2n—1) (1—2;‘)

K4

F= 31 0 &
(1~3s5) Xu 1+2’a—>(1 +s_»)><a1/-(1-—5)
3 S1 3 S &
3/2 g+ =9
_40 <1 +4 @ 3T T
B 1 &

138. As further example may be considered the equations
of an alternating-current electric cireuit, containing distributed
resistance, inductance, capacity, and shunted conductance, for
instance, a long-distance transmission line or an underground
high-potential cable.

Equations of the Transmission Line.

Let 1 be the distance along the line, from some starting
point; E, the voltage; I, the current at point I, expressed as
vector quantities or gemeral numbers; Zp=ro—jzy, the line
impedance per unit length (for instance, per mile); Yo=go— g
=line admittance, shunted, per unit length; then, rq is the
ohmic effective resistance; o, the self-inductive reactance;
bo, the condensive susceptance, that is, wattless charging
current divided hy volts, and go=energy component of admit-
tance, that is, energy component of charging current, divided
by volts, per unit length, as, per mile,

Considering & line element dl, the voltage, dF, consumed
by the impedance is Zo/dl, and the current, dI, consumed by
the admittance is YoEdl; hence, the following relations may be
written:

dE
it AR (V)

&

TRE L0
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Differentiating (1), and substituting (2) therein gives

piE =Z¢YoE, . . . . . .. (3
and from (1) it follows that,
I =Zl0 {% ....... ¢
Equation (3) is integrated by
E=4H . . . ... (5
and (5) substituted in (3) gives
B=+NZoYy, . ... .. (6)
henee, from (5) and (4), it follows
B=Ay VBT L fo VT L (M)
I= Z‘Y;';){{ile-'-\/mnl“AQE‘\/Z"YBIE ..... @&
Next assume
I=le, the entire length of line;
Z=1yZ,, the total line impedance; oo Q]

and Y'=1yY), the total line admittance; J
then, substituting (9) into (7) and (8), the following expressions
are obtained:

E1=.‘_11€+\/Z_?+A2€_m;

.. (10)
II:E{Als-(-\/ﬁ_AzE—\/ZY},

as the voltage and current at the generator cnd of the line,

139. If now Ey and Iy respectively are the current and
voltage at the step-down end of the line, for [=0, by sub-
stituting I=0 into (7) and (8),

Ai+4s=Ey;

78 B (11)
41—42=Io\/;,.
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Substituting in (10) for the exponential function, the series,

" IYWIT BY PYWIY |
27 =1 3 VT Z}i YG e e

2V 2V2
LI T

and arranging by (4,+4s) and (4;— 4s), and substituting
herefor the expressions (11), gives

2V2 272
Y
e (13)
2 ( 7Y 2y
heto {15 G R T |

When =1y, that is, for Boand Jo at the generator side, and
Eyand Iy at the step-down side of the line, the sign of the
second term of equation (13) merely reverses.

140. From the foregoing, it follows that, if Z is the total
impedance; Y, the total shunted admittance of a transmission
line, “Ey and o, the voltage and current at one end; Eyand [,,
the voltage and current at the other end of the transmission
line; then,

7 272 272
pomf+ 220 a1 220,
120 |’
INGAE v 2y | (14
11 Ig[l+—§-+ }iYEo{l-f— 1)0}

where the plus sign applies if By, o is the step-down end,
the minus sign, if Eq, [o is the step-up end of the transmission
line.

In practically all cases, the quadratic term can be neglected,
and the equations simplified, thus,

Z
- IO{HJ}M{H&(}’}

and the error made herehy is of the magnitude of less than =— 5T
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Except in the case of very long lincs, the second term of
the second term can also usually he neglected, which gives

71
E\=Eo(1 +T’> +21o;
) (16)

)

VA
L= ,10(1 +TY> +YE,, j

and the error made hereby is of the magnitude of less than %
of the line impedance voltage and line charging current.

141. Example. Assume 200 miles of 60-cyele line, on non-
inductive load of e,=100,000 volts; and =100 amperes.
The line constants, as taken from tables are Z=104—1407 chms
and ¥Y'=-0.0013; ohms; hence,

7Y =~ (0.182 +0.1367);

F1=100000(1-0.091—0.0687) +100(104—1047)
=101400—20800j, in volts;

[1=100(1—0.091 - 0.068;)—0.0013{ 4100000
=91-136.8;, in amperes.
2y 0.174%0.0013 0.226

The error is E=—“g—~__—6—=0'038'

Neglecting the second term of Ey, 2lo=17,400, the crror is
0.038 X 17400 =660 volts=0.6 per cent.

Neglecting the second term of Iy, yEo=130, the error is
0.038 X130 =5 amperes =3 per cent, -

Although the charging current of the line is 130 per cent
of output current, the error in the current is only 3 per cent.

Using the equations (15), which are nearly as simple, brings
~y- 0.2262

the error down to = E TSy

—7—=0.0021, or less than one-quacter

per cent.
Hence, only in extreme cases the equations (14) need to be

used. Their error would be less than #y8—3 6x1076, or one
three-thousandth per cent.
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The accuracy of the preceding approximation ean be osti-
mated by considering the physical meaning of Z and Y: Z
is the line impedance; hence ZJ the impedance voltage, and

Z . .
U= —EI, the impedance voltage of the line, as fraction of total

volta{ge; Y is the shunted admittance; hence YE the charging

. YE . . .
current, and v==7 the charging current of the line, as fraction

of total current.

Multiplying gives uv=ZY; that is, the constant ZY is the
product of impedance voltage and charging current, expressed
as fractions of full voltage and full current, respectively. In
any economically feasible power transmission, irrespective of
its length, both of these fractions, and especially the first,
must be relatively small, and their product therefore is a small
quantity, and its higher powers negligible.

In any economically feasible constant potential transmission
line the preceding approximations are therefore permissible.



CHAPTER VL
EMPIRICAL CURVES.

A. General.

142. The resulls of observation or tests usually are plotted
in a curve. Such curves, for instance, are given by the core
loss of an clectsic generator, as function of the voltage; or,
the current in a cireuit, as function of the time, ete. When
plotting from numerical observations, the curves are empirical,
and the first and most important problem which has to be
solved to make such curves useful is to find equations for the
same, that is, find a function, y=f(z), which represents the
curve. As long as the equation of the curve is not known its
utility is very limited. While numerical values can be taken
from the plotted curve, no gencral conclusions can be derived
from it, no general investigations based on it regarding the
conditions of efficiency, output, ete. An illustration hereof is
afforded by the comparison of the electric and the magnetic
circuit. In the electric circuit, the relation between e.m.f. and

o . e . .
current is given by Ohm’s law, = and calculations are uni-

versally and easily made. In the magnetic circuit, however,
the term corresponding to the resistance, the reluctance, is not
a constant, and the relation between m.m.f. and magnetic flux
cannot be expressed by a general law, but only by an empirical
curve, the magnetic characteristic, and as the result, calcula-
tions of magnetic circuits cannot be made as conveniently and
as general in nature as calculations of electric circuits.

If by observation or test a number of corresponding values
of the independent variable z and the dependent variable y are
determined, the problem is to find an equation, y=f(z), which
represents these corresponding values: 2y, 22, %3... Zs, and
Y1, Y2, Y3 - - - Yn, approximately, that is, within the errors of
observation.

209
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The mathematical expression which represents an empirical
curve may be a rational equation or an empirical equation.
It is & rational equation if it can be derived theoretically as a
conclusion from some general law of nature, or as an approxima-
tion thereof, but is an empirical equation if no theoretical
reason can be seen for the particular form of the cquation.
For instance, when representing the dying out of an electrical
carrent in an inductive circuit by an exponential function of
time, we have a rational equation: the induced voltage, and
therefore, by Ohm’s law, the current, varies proportionallyto the
rate of change of the current, that is, its differential quotient,
and as the exponential function has the characteristic of being
proportional to its differential quotient, the exponential funetion
thus rationally represents the dying out of the current in an
inductive cireuit. On the other hand, the relation between the
loss by magnetic hysteresis and the magnetic density; W=y5®,
is an empirical equation since no reason can be seen for this
law of the 1.6th power, except that it agrees with the observa-
tions.

A rational equation, as a deduction from a general law of
nature, applies universally, within the range of the observa-
tions as well as beyond it, while an empirical equation can with
certainty be relied upon only within the range of observation
from which it is derived, and extrapolation beyond this range
becomes increasingly uncertain. A rational equation there-
fore is far preferable to an empirical one. As regards the
accuracy of representing the observations, no material difference
exists between a rational and an empirical equation. An
empirical equation frequently represents the observations with
great accuracy, while inversely a rational equation usually
does not rigidly represent the observations, for the reason that
in nature the conditions on which the rational law is based are
rarely perfectly fulfilled. For instance, the representation of a
decaying current by an exponential function is based on the
assumption that the resistance and the inductance of the eircuit
are constant, and capacity absent, and none of these conditions
can ever be perfectly satisfied, and thus & deviation oceurs from
the theoretical condition, by what is called “ secondary effects.”

143. To derive an equation, which represents an empirical
curve, careful consideration should first be given to the physical
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nature of the phenomenon which is to be expressed, since
thereby the number of expressions which may be tried on the
empirical curve is often greatly reduced. Much assistance i
usually given by considering the zero points of the curve and
the points at infinity. For instance, if the observations repre-
sent the core loss of a transformer or electric generator, the
curve must go through the origin, that is, y=0 for z=0, and
the mathematical expression of the curve y=/(2) can contain
no constant term. Furthermore, in this case, with increasing ,
y must continuously increase, so that for z=0, y=00. Again,
if the observations represent the dying out of a current as
function of the time, it is obvious that for z=00, y=0. In
representing the power consumed by a motor when running
without load, as function of the voltage, for =0, y cannot bhe
=0, but must equal the mechanical friction, and an expression
like y=Aa® cannot represent the observations, but the equation
must contain a constant term.

Thus, first, from the nature of the phenomenon, which is
represented by the empirical curve, it is determined

(6) Whether the curve is periodic or non-periodic.

(b) Whether the equation contains constant terms, that is,
for =0, y0, and inversely, or whether the curve passes
through the origin: that is, y=0 for r=0, or whether it is
hyperbolic; that is, y= oo for =0, or =00 for y=0.

(c) What values the expression reaches for co. That i,
whether for = o0, y=00, or y=0, and inversely.

(d) Whether the curve contmuou\lv increases or decreases, or
reaches maxima and minima

(¢) Whether the law of the curve may change within the
range of the observations, by some phenomenon appearing in
some observations which does not occur in the other. Thus,
for instance, in observations in which the magnetic density
enters, as cove, loss, excitation curve, ete., frequently the curve
law changes with the beginning of magnetic saturation, and in
this case only the data below magnetic saturation would be used
for deriving the theoretical equations, and the effect of magnetic
saturation treated as secondary phenomenon. Or, for instance,
when studying the excitation current of an induction motor,
that is, the cwrent consumed when running light, at low
voltage the current may increase again with decreasing voltage,
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instead of decreasing, as result of the friction load, when the
voltage is so low that the mechanical friction constitutes an
appreciable part of the motor output. Thus, empirical curves
ran be represented by a single equation only when the physical
conditions remain constant within the range of the observations.

From the shape of the curve then frequently, with some
experience, a guess can be made on the probable form of the
equation which may express it. In this connection, therefore,
it is of the greatest assistance to be familiar with the shapes of
the more common forms of curves, by plotting and studying
various forms of equations y=f (2).

By changing the scale in which observations are plotted
the apparent shape of the curve may he modified, and it is
therefore desirable in plotting to use such a scale that the
average slope of the curve is about 45 deg. A much greater or
much lesser slope should be avoided, since it does not show the
character of the curve as well.

B. Non-Periodic Curves.

144. The most common non-periodic curves are the potential
series, the parabolic and hyperbolic curves, and the exponential
and logarithmic curves.

THE POTENTIAL SERIES.

Theoretically, any set of observations can be represented
exactly by a potential series of any one of the following forms:

y=totow+asr?+as® ... L L L L (1)
y=aizta? a4+ ;. oL L L L (2
ap s  ag .
y=ag+; +E +—I-3+. el e e . (3
ay Gz Q3
—E+E+:§+' 4)

if & sufficiently large number of terms are chosen.
For instance, if n corresponding numerical values of x and -
are given, Zi, Yi; 22, Y2; ...%n, Y they can be represented
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by the series (1), when choosing as many terms as required to
give 7 constants a:

Y=o +0z+a2+. . a7l . L L ()

By substituting the corresponding values z1, y1; s, 12, -
into equation (5), there are obtained # equations, which de-
termine the n constants ao, 01, g, . . . Gu_1.

Usually, however, such representation is irrational, and
therefore meaningless and useless.

TasLe I
IT:O=Z Pz=y -05 +2z | +25zx2| —152% | +1.5x4 | —2xF +28
0.4 | 063 | =05 +08|+04|~0.10] +0.04|~ 0.02] ©
06 | 136 | —05| 412 +0.9|-0.32|+0.19|~ 0 18]+ 0 05
08 | 218 | 05| 4+16|+16]-0.77|+0.61|— 0 65+ 0 26
10 [ 300 —0.5] 420} +25]|-1.50|+1.50|— 2 00|+ 1.00
12 | 3.93 | 05| +2.4 | +36{~2.59| +3.11 |- 4.9+ 2 89
14 16922 | —05| +28| +49|-4.12| +5.76|-10.76|+ 6.13
1.6 | 8.50 | —0.5| +3.2 | +6.4 | —6.14| +9.83 —20A97+1ﬁ

Let, for instance, the first column of Table I represent the
voltage, T§5=x’ in hundreds of volts, and the second column
the core loss, p;=y, in kilowatts, of an 125-volt 100-h.p. direct- '
current motor. Since seven sets of observations are given,
they can be represented by a potential series with seven con-
stants, thus,

y=aotox+aer?+.. . +agab, . . . . (6)

and by substituting the observations in (6), and calculating the
constants o from the seven equations derived in this manner,
there is obtained as empirical expression of the core loss of
the motor the equation,

y=—0.5+22+2.502- 1.5+ 1.5zt =208 +28. . (7)

This expression (7), however, while exactly representing
the seven observations, has no physical meaning, as easily
seen by plotting the individual terms. In Fig. 60, y appears
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as the resultant of a number of large positive and negative
terms, Furthermore, if one of the observations is omitted,
and the potential serics calculated from the remaining sit
values, a series reaching up to 25 would be the result, thus,

y=a0+(1123+02£2+...+(}5935, . e e s (8)
18
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Frc. 60. Terms of Empirical Expression of Excitation Power,

but the constants @ in (8) would have entively different numer-
ical values from those in (7), thus showing that the cquation
(7) has no rational meaning.

145. The potential series (1) to (4) thus can be used to
represent an empirical curve only under the following condi-
tions:

L. If the successive coefficients ag, a1, as, ... decrease in
value so rapidly that within the range of observation the
higher terms become rapidly smaller and appear as mere
secondary terms.
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2. If the successive coefficients o follow a definite law,
indicating a convergent series which represents some other
function, as an exponential, trigonometric, cte.

3. If all the coefficients, a, are very small, with the exception
of a few of them, and only the latter ones thus need to be con-
sidered.

TamLe 11

z y v un

04 0 088 001
06 135 134 001
08 1.9 104 002
10 272 70 002
12 362 2 59 0.03
14 463 59 004
16 576 3.65 011

For instance, let the numbers in column 1 of Table II
represent the speed r of a fan motor, as fraction of the rated
speed, and those in column 2 represent the torque y, that is,
the turning moment of the motor. These values can be
represented by the equation,

y=0.5 +0.022 +2.5:2—0.32% 4 0.015r+~0.02:5+0 0128, (9)

In this case, only the constant term and the terms with
72 and 78 have appreciable values, and the remaining terms
probably are merely the result of crrors of observations, that is,
the approximate equation is of the form,

y=ap+aa+asd. . . . . . . (10)

Using the values of the coefficients from (9), gives
y=05+252-032 . . . . . (1)
The numerical values calculated from (11) are given in column

3 of Table II as o/, and the difference between them and the
observations of column 2 are given in colimn 4, as y;.
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The values of column 4 can now be represented by the same
form of equation, namely,

y1=bo +bzx'~’+b3x3, ....... (12)

in which the constants bg, bs, b3 are calculated by the method
of least squares, as deseribed in paragraph 120 of Chapter IV,
and give

y1=0.031-0.093:2+0.07622, . . . . (13)

Equation (13) added to (11) gives the final approximate
equation of the torque, as,

Yo=0.531 +240722-0.2242% . . . (14)

The cquation (14) probably is the approximation of a
rational equation, since the first term, 0.531, represents the
bearing friction; the second term, 2.40722 (which is the largest),
represents the work done by the fan in moving the alr, a
resistance proportional to the square of the speed, and the
third term approximates the decrcase of the air resistance due
to the churning motion of the air created by the fan.

In general, the potential series is of limited usefulness; it
rarely has a rational meaning and is mainly used, where the
curve approximately follows a simple law, as & straight line,
to represent by small terms the deviation from this simple law,
that is, the secondary effects, ete. Its use, thus, is often
temporary, giving an empirical approximation pending the
derivation of a more rational law.

The Parabolic and the Hyperbolic Curves.

146. One of the most useful classes of curves in engineering
are those represented by the equation,

y=b=a(z—c)~. . . . . . . (16)

Equation (16) differs from (15) only by the constant terms b
and ¢; that is, it gives a different location to the coordinate
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center, but the curve shape is the same, so that in discussing
the general shapes, only equation (15) need be considered.

If » is positive, the curves y=aa" are parabolic curves,
passing through the origin and inereasing with increasing .
If n>1, y increases with increasing rapidity, if #<1, y increases
with decreasing rapidity.

If the exponent is negative, the curves y=ax'"=§; are

hyperbolic curves, starting from y=co for z=0, and decreasing
to y=0 for z= .
n=1 gives the straight line through the origin, n=0 and
n= 0 give, respectively, straight horizontal and vertical lines.
Figs. 61 to 71 give various curve shapes, corresponding to
different values of n.

Parabolic Curves.
Fig. 61. n=2; y=2% the common parabola.
Fig. 62. n=4; y=2% the biquadratic parahola.
Fig 63. n=8; y=28
Fig. 64. n=}; y= +/z; again the common parabola.
Tig. 65. n=1%; y= 4lz; the biquadratic parabola.
Fig. 66. n=%; y="1,

Hyperbolic Curves.

1 .
Fig. 67. n=-1; y =2 the equilateral hyperbola.
. 1
Fig. 68. n=-2; V=u
_ 1
Fig. 69. n=—4; V=

Fig. 70. n=—5;

Fig. 7. n=—7;
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In Fig. 72, sixtecn different parabolic and hyperholie curves
are drawn together on the same shect for the followinv valueq-
n=1,2,4,8 »; §§§0; -1, -2, -4 -8 y—f —

147. Parabolic and hyperboh( curves may easil y be recog-
nized by the fact that if = 4s changed by o constant fuctor, y also
changes by a constant factor.

Thus, in the curve y=u2, doubling the 2 increases the y
fourfold; in the curve y=21% doubling the r increases the y
threefold, ete.: that is, if in a curve,

y=f(z),
flgn)

——=constant, for constant ¢, . . . (17)

J@)
the curve is a parabolic or hyperbolie curve, y=az", and

/g (qr) a(qt)"

e

If ¢ is nearly 1, that is, the r is changed only by a small
value, suhstituting ¢=1+s, where 8 is a small quantity, from
equation (18),

fla+sr)
/)

=" . .. ... .. (18

=(l+s)*=1+ns;

hence,
fla+sn)=f@)=ns; . . . . . (19

that is, changing x by o small percentage sz, y changes by o pro-
portional smoll percentage nsy.

Thus, parabolic and hyperbolic curves can be recognized by
a small percentage change of z, giving a proportional small
pereentage ehange of y, and the proportionality factor is the
exponent n; or, they can be recognized by doubling # and
seeing whother 4 herehy changes by a constant factor.

As illustration are shown in Fig. 73 the parabolic curves,
which, for a doubling of «, increase y: 2,3, 4, 3, 6, and 8 fold.

Unfortunately, this convenient way of recognizing parabolic
and hyperbolic curves applies only if the curve passes through
the origin, that is, has no constant term. If constant {erms
¢xist, as in equation (16), not z and y, but (z—c) and (y—b)
follow the law of proportionate increases, and the recognition
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becomes more difficult; that is, various values of ¢ and of b
are to be tried to find one which gives the proportionality.
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148. Taking the Jogarithm of equation (15) gives
logy=loga+nlogz; . . . ., . (20)
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that is, a straight line: henee, a parabolic or hyperholic curve can
be recognized by plotting the logarithm of y against the loga-
rithm of r. If this gives a straight line, the curve iz parabolic
or hyperholic, and the slope of the logarithmic curve, tan 0=n,

iy the exponent.
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Tie. 73 Parabolic Curves. y=z».

This again applies enly if the curve contain no constant
term If constant {erms exist, the Jogarithunic line is curved.
Therelore, by trying different constants ¢ and 8, the curvature
of the logarithmic line changes, and by interpolation such
constants ean be found, which make the logarithmic line straight,
and in this way, the constants ¢ and b may be cvaluated. If
only one constant exist, that is, only b or only ¢, the process is
relatively simple, but it becomes rather complicated with both
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constants, This fact makes it all the more desirable to get
from the physical nature of the problem some idea on the
existence and the value of the constant terms.

Exponential and Logarithmic Curves.

149. A function, which is very frequently met in clectrical
engineering, and in engineering and physies in general, ix the
cxponential function,

y=a™, N 1]

which may be written in the more general form,
y=b=aerle=d 0 (29)

Usually, it appears with negative exponent, that is, in the

form,
y=as™. . .. (93)

Tig 74 shows the curve given by the exponential function
(23) for a=1; n=1; that i,

Yy=eTE 0 L L (M)

as seen, with increasing positive z, y decreases to 0 at z= + o,
and with increasing negative z, y increases to oo at 2= — co.
The eurve, y=¢*<, has the same shape, except that the
positive and the negative side (right and left) are interchanged.
Inverted these equations (21) to (24) may also be written
thus,

nr=log %;
n(z—c)=log —a——b;

y
nx=—log5;

z=—logy;
that is, as logarithmie curves,
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150. The characteristic of the exponential function (21) is,
that an increase of © by a constant term tncreases (or, in (23)
and (24), decreases) y by o constant factor.

Thus, if an cmpirical curve, y=/£(r), has such characteristic
that

flatg)

7 =constant, for constant ¢, . . . (20)
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T1e. 74. Exponential Function, y=e-.

the curve Is an exponential function, y=ae"2, and the following
equation may be written:

n(5+q)
f(.l)‘[") a¢ —— e e e (27)

O

Hereby the exponential function can easily be recognized,
and distinguished from the parabolic curve; in the former a
constant ferm, in-the latter a constant factor of z causes a
change of y by a constant factor.

As result hercof, the exponential curve with negative
¢xponent vanishes, that is, becomes negligibly small, with far
greater rapidity than the hyperbolic curve, and the exponenticl
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function with positive exponent reaches practically infinite
values far more rapidly than the parabolic curve. This is
illustrated in Fig. 75, in which are shown superimposed
the exponential curve, y=¢"%, and the hyperbolic curve,

y=ﬂﬁ5—5)2, which coincides with the exponential curve

at £=0and at z=1.

Taking the logarithm of equation (21) gives logy=loga+
nalog ¢, that is, logy I a linear function of z, and plotting
log v against = gives a straight line. This is characteristic of

10
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Fre 75 Hyperbolic and Exponential Curves (‘omparson,

the exponential functions, and a convenient method of recog-
nizing them,

However, both of these characteristics apply only if 2 and y
contain no constant terms,  With a single exponential function,
only the constant term of i needs consideration, as the constant
term of z may be eliminated. Equation (22) may be written
thus:

y— b= genz=2)
=g e

=A™, e e e e . (28)
where A=as~° s a constant.

An exponential function which contains & constant term b
would not give a straight line when plotting logy against z,
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but would give a curve. In this case then log (y—b) would be
plotted against # for various values of b, and by interpolation
that value of b found which makes the logarithmic curve a
straight line,

151, While the exponential function, when appearing singly,
is casily recognized, this beeomes more difficult with com-
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Fra. 76.  Exponential Functions,

binations of two exponential functions of different cocfficients
in the exponent, thus,

y=?15—°‘”ia25"“x, oL (29

since for the various values of ay, as, ¢1, ¢o, (quite a number of
various forms of the function appear.

As such a combination of two cxponential functions fre-
quently appears in engineering, some of the characteristic forms
are plotted in Figs. 76 to 78,
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Fre. 77. Exponential Functions.

Fig. 76 gives the following combinations of &=+ and =2

—

1) y=e=+0.5e722;
@) y=es+02e2
@) y=e5

(4) y=ez—02e22;
(B) y=eo—0.5:722;
(6) y=e"=—0.8c722;
(7) y=eo~c2s;
() y=e"r—15:20,
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coshm=}is+w—e_‘”} ol
sinhg =118 -c7] ;
§ b
Tﬁ)
/
]
|4
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Fie. 78. Hyperbolic Functions.

Fig. 77 gives the following combination of ¢~2 and ¢™0:

(1) y=e=+0.50s;
@ y=e5
3) y=e=—0.17102;
) y=e"==0.5¢7105;
5) y=eT-e0
) y=e"r—15¢710z,

Fig. 78 gives the hyperbolic functions as combinations of
et7and ¢ thus,

y=cosh z=H(e*e +579);

y=sinh g=}(ct2— ),
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C. Evaluation of Empirical Curves.

152, In attempting to solve the problen of finding a mathe-
matical equation, y=F (z), for a series of observations or tests,
the corresponding values of x and y are first tabulated and
plotted as a curve.

From the nature of the physical problem, which is repre-
sented by the numerical values, there are derived as many
data as possible concerning the nature of the curve and of the
funetion which represents it, especially at the zero values and
the values at infinity. Frequently hereby the existence or
absence of constant terms in the equation is indicated.

The log z and log y are tabulated and curves plotted between
z, 4, log 7, logy, and seen, whether some of these curves is a
straight line and thereby indicates the exponential function, or
the parabolic or hyperbolie funetion.

If cross-section paper is available, having both coordinates
divided in logarithmic scale, and also cross-section paper having
one coordinate divided in logarithmic, the other in common
scale, the tabulation of log z and log ¥ can be saved and z
and 3 directly plotted on these two forms of logarithmic cross-
section paper.

If neither of the four curves: z, y; =, logy; logz, y; logz,
gy is a straight line, and from the physical condition the
absence of a constant term is assured, the function is neither
an exponential nor a parabolic or hyperbolic. If a constant
term is probable or possible, ewves are plotted between 2,
y—0, log 7, log (y—b) for various values of b, and if hereby
one of the curves straightens out, then, by interpolation,
that value of b is found, which makes one of the curves a straight
line, and therehy gives the curve law. In the same manner,
if a constant term is suspected in the z, the value (z—¢) is
used and eurves plotted for various values of c.  Frequently the
existence and the character of a constant term is indicated by
the shape of the curve; for instance, if one of the curves plotted
between z, 3, log z, log y approaches straightness for high, or for
low values of the abseissas, but curves considerably at the
other end, a constant term may he suspected, which becomes
less appreciable at one end of the range. For instance, the
effect of the constant ¢ in (z—c¢) decreases with increase of z.
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Sometimes one of the cwrves may be a straight line at one
end, but curve at the other end.  This may indicate the presence
of a term, which vanishes for a part of the observations. In
this case only the observations of the range which gives a
straight line are used for deriving the curve law, the curve
caleulated therefrom, and then the difference hetween the
calculated curve and the observations further investigated.

Such & deviation of the curve from g straight line may also
indicate & change of the curve law, by the appearance of
sceondary phenomena, as magnetic saturation, and in this case,
an equation may exist only for that part of the curve where the
secondary phenomena are not yet appreciable.

If neither the exponential functions nor the parabolic and
hyperbolic curves satisfactorily represent the observations,

further trials may be made by calculating and tabulating %

Y ) z .
and i, and plotting curves between z, , —, v Also expressions
T I :

as 22+Dy?, and (z—a)2+h(y—c)?, cte., may be studied.

Theoretical reasoning based on the nature of the phenomenon
represented hy the numerical data frequently gives an indi-
cation of the form of the equation, which is to be cxpected,
and inversely, after a mathematical equation hag been derived
a trial may he made to relate the equation to known laws and
thereby reduce it to a rational equation.

In general, the resolution of empirical data into a mathe-
matical expression largely depends on trial, directed by judg-
ment based on the shape of the curve and on a knowledge of
the curve shapes of various functions, and only general rules
can thus be given.

A number of examples may llustrate the general methods of
reduction of empirical date into mathematical functions.

153. Example 1. In a 118-volt tungsten filament incan-
deseent lamp, corresponding values of the terminal voltage e
and the current 7 are observed, that is, the so-called “volt-
ampere characteristic ” is taken, and therefrom an equation for
the volt-ampere characteristic is to he found.

The corresponding values of e and ¢ are tabulated in the
first two columns of Table ITT and plotted as curve I in Fig. 79.
In the third and fourth column of Table IXI are given loge



234 ENGINEERING MATHEMATICS.

and log7. In Fig. 79 then ase plotted e, logs, as curve 1I:
log ¢, 3, as crve IIT; loge, log, as eurve IV. '
As seen from Fig, 79, curve IV is a straight line, that is,

lgi=A+nloge; or, i=ae
which is a parabolic curve
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Fic. 79. Investigation of Voli-ampere Characteristic of Tungsten Lamp
Filament.

The constants ¢ and % may now be caleulated from the
numericsl data of Table IIT by the method of least squares,
as diseussed in Chapter IV, paragraph 120. While this method
gives the most accurate results, it is so laborious as to be seldom
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used in engineering; generally, values of the constants a
and n, sufficiently accurate for most practical purposes, are
derived by the following method:

Tanie II1.
VOLT-AMPERE CHARACTERISTIC OF 118-VOLT TUNGSTEN LAMP.
|
13 1 log e log 4 g211+06loge 4
2 0.0245 0 301 §.802 §.389 ~0.008
4 0 087 0.602 3.568 g5 ~0 004
8 0 0568 0.903 §.754 §.758 +0.001
16 0.0855 1204 3 932 § 933 ~0.001
25 0 1125 1.308 3.0 3 050 +0.001
32 0 1295 1505 §.112 1 -0 002
50 0.1715 1689 3.984 3 280 +0 004
64 0.200 1.808 9.801 § 295 +0.006
100 0 2605 2.000 §.416 §.411 +0 005
125 0 2965 2 097 3472 3.489 +0 008
150 0 3295 2.176 § 518 3 518 0

180 08635 2 955 3.561 §.564 -0 003
200 0 3865 2.301 .57 § 592 -0 005
218 0 407 2.938 g 610 §.614 ~0.004
Y7="17.612 3.040 avg., +£0.008=0.7 per cent

37=14.973 8.465

4= 7361 4.425

= A5 gm0
7.361 F
314= 22 585 §.506
0-6X22 685 = 18 551
. 4=8.505—18.551="4 954
Z.954~1=  Foul
log+=§.211+0.6loge and ¢=0.01625¢"°

The fourteen scts of observations are divided into two
groups of seven each, and the sums of loge and log ¢ formed,
They are indicated as Z7 in Table IIL

Then subtracting the two groups 7 from cach other,
climinates A4, and dividing the two differences 4, gives the
exponent, n=0.6011; this is so near to 0.6 that it is reasonable
10 assume that n=0.6, and this value then is used.
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Now the sum of all the values of log e is formed, given as
%14 in Table II, and multiplied with n=0.6, and the produet
subtracted from the sum of all the log?. The difference J
then equals 144, and, divided by 14, gives

A=loga=8211;

henee, 2=0.01625, and the volt-ampere characteristic of this
tungsten lamp thus follows the equation,

log i=8.211+0.6 log ¢;

1001625605,
From ¢ and 7 can be derived the power input p=et, and the

resistance r=%;

p=0.01625¢"5;
Qo
"= 001625

and, eliminating e from these two expressions, gives
p=0.01625%*=1135r*x 1010,

that is, the power input varies with the fourth power of the
resistance.

Assuming the resistance r as proportional to the absolute
temperature T, and considering that the power input into the
lamp is radiated from it, that is, is the power of radiation P,
the equation between p and r also is the equation between P,
and T, thus,

P =kT4

that is, the radiation is proportional to the fourth power of the
absolute temperature. This is the law of black body radiation,
and above equation of the volt-ampere characteristic of the
tungsten lamp thus appears as a conclusion from the radiation
law, that is, as a rational equation.

154. Example 2. In a magnetite arc, at constant arc length,
the voltage consumed by the are, e, is observed for different
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values of eurrent ¢, To find the cquation of the volt-ampere
characteristic of the magnetite are:

Tarwe IV.
VOLT-AMPERE CHARACTERISTIC OF MAGNETITE ARC.

B ‘ 1
i e | loge | loge | (e—40) log (c~40)| (e=30) log (e—=380) e 4
0.5 160 | 9 699 | 2 204 | 120 2.079 130 2 114 158 -2
1 120 | 0.000 | 2.079 80 1.903 90 1 954 12041 +0 4
2 94 [ 0.301 | 1.978 54 1782 64 1 808 l 94 0
4 75 | 0.602 | 1.876 35 1 544 45 1.658 ; 75.2 | +0 2
8 62 | 0903 |1.792 22 1.342 82 15605 | 62 0
12 58 | 1.079 | 1.748 18 1204 26 1415 | 56.2| +02
|
23=0000.... . . AR .. . 5874
J3=0.584 . . . e .. 45878
4=2.584...... . . . —13801
a="2 30 g om0 s
2 584 =
28=2584. ..., . 10 447
2.584X—0.5 . . =—1202
4= 11 739

11 739~8= 1 956

log (¢e—30)=1.856—0.510g 1
90 4

80+4/7

¢~380 =90.4i—"5 and e=

The first four columns of Table IV give 1, ¢, logs, loge.
Fig. 80 gives the curves: 4, ¢, as I; 7, loge, as IT; logi, ¢, as
III; logi, loge, as IV.

Neither of these curves is a straight line. Curve IV is
relatively the straightest, especially for high values of e. This
points toward the existence of & constant term. The existence
of & constant term in the arc voltage, the so-called “ counter
en.f. of the arc” is physically probable. In Table IV thus
are given the values (e—40) and log (e~40), and plotted as
curve V. This shows the opposite curvature of IV. Thus the
constant term is less than 40.  Estimating by interpolation, and
caleulating in Table IV (e—30) and log (e—30), the latter,
plotted against log ¢ gives the straight line VL. The curve law
thus is

log (¢—30)=4 +alog i.
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Proceeding in Table IV in the same manner with loge
and log (e—30) as was dove in Table IIT with log ¢ and log?,
gives |
n=-05; A=loga=1.956; and a=904;
loqe
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F1c. 80. Investigation of Volt-ampere Characteristic of Magretite Are,

hence
log (¢—30)=1.956—0.5 log 1;

¢—30=00.4{-05;

=302
o=+
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which is the equation of the magnetite are volt-ampere charac-
teristic.

155. Example 3. The change of current resulting from a
change of the conditions of an electric circuit containing resist-
ance, inductance, and capacity is recorded by oscillograph and
gives the curve reproduced gs I in Fig. 81. From this curve

log

=3
&

F)
Y
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=
|_—1
&

11
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F1c. 81. Investigation of Curve of Current Change in Electric Circuit.

are taken the numerical values tabulated us ¢ and ¢ in the first
two columns of Table V. In the third and fourth columns are
given logt and logs, and curves then plotted in the usual
manner.  Of these eurves only the one between ¢ and logd
is shown, as II in Fig. 81, since it gives a straight line for the
higher values of t. For the higher values of 4, therefore,

logi=A-bt; or, i=ae™;

that is, it is an exponential function.
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Tasie V. )
TRANSIENT CURRENT CHARACTERISTICS.
7
n= _ 0= 1=
t v | dogt|logs | £ oae— 107 V=4 log?’ 0856384t u—u 4
0 |210] — |0822| 0 494 2840461 2.85 [208(-001
0.102.48/5000({0304| 01| ¢.44 1.98(0 292 1.94 | 2.50 |+0 02
0.2(266/3801/0425) 02| 398 182(0.121 1.2 [2¢86 0O
042.58/ 5602|0412 04/ 3.2 063/3.799| 0.681 |2860 +002
082 00/3903/0.301] 0.8 208 0098954 0.1 196 (—0.04
Toftssloomio1a| 12| 1.3 0 - 003 |1331-008
1.6/0.90/0.204 |G 95¢| 1.6 | 089 |—0.01] — 0.01 |0.88 {—0 02
20/0.58/0 8019 763 2.0 | 0.8 0 - - 058 0
2.50.34/0398 531 25 084 0 -~ - 0340
3.0(0 20/ 0 4779 301 3.0 020 0 - - 020/ 0
23 =4.8 23=9 851 J2=0.1 0753
48 §g51
—=1.§ ——=0050 Jo=08§ 9920
3 3
Jg =5.5 p=7 832 =05 —0833
55 3832 _
R S 0.5Xlog e=0 217
4=115 4=-0353¢ 7=-3.84
1 15Xlog e=0.499; n=—1 07
I4=07 0653
35 =103 5=5.683 0.7Xlog e=0 304
10.3Xlog e=4.478 0.304X —3.84=~1 187
4.473X—1.107 =—4 784 4=1'820
4=3 487 1.820—4=0.455
8.467~5=0 693
logu=0 698—1 07¢log ¢ log t2=0 455—3 84tlog
u=4 94¢—107 n=7 g5e—3 84t
ig=4 94e—10Ti—g g5e—3 84t

To caleulate the constants ¢ and », the range of valucs i
used, in which the eurve II is straight; that is, from t=12
to t=3. As these are five observations, they are grouped in two
pairs, the first 3, and the last 2, and then for ¢ and log 4, one-
third of the sum of the first 3, and one-half of the sum of the
lagt 2 are taken. Subtracting, this gives,

4=115; 4logi=—0.534.

Since, however, the equation, 1=a™", when logarithmated,

gives

thus

logi=log a—nt log ¢,
dlogi=—nlogedt,
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it is necessary to multiply 4¢ by log <=0.4343 before dividing it
into Jog % to derive the value of n. This gives n=1.07.

Taking now the surn of all the five values of ¢, multiplying by
log ¢, and subtracting from the sum of all the five values of
log 7, 54 =3.467; hence,

A=log a=0.693,
and
log 11 =0.693~1.07t log ¢
T1=4 94¢=10%

The current 71 s caleulated and given in the sixth column
of Table V, and the difference 7'=4=4;,—1 in the seventh
column. As scen, from {=1.2 upward, 9, agrees with the’
observations. Below t=1.2, however, a difference 1/ remams,
and becomes considerable for low values of £. This difference
apparently is due to a second term, which vanishes for higher
values of £ Thus, the same method is now applied to the
term +'; column 8 gives log’, and in curve IIL of Fig. 81 is’
plotted log ' against ¢ This curve is seen to be a straight
line, that is, ¢’ is an exponential function of ¢,

Resolving 4/ in the same manner, by using the first four
points of the curve, from ¢=0 to {=0.4, gives

log i=0.455—3.84t log ¢;
?:2 =2.85¢384

and, therefore,
G=11—19=4.94 ¢~107_0 85 ~384

is the equation representing the current change.

The numerical values are caleulated from this equation
and given ynder 4 in Table V, the amount of their difference
from the observed values are given in the last column of this
table.

A still greater approximation may be secured by adding
the calculated values of %3 to the observed values of 4 in the
last five observations, and from the result derive a second
approximation of 4, and by means of this a second approx1—
mation of 4.
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156, As further example may be considered the resolution
of the core loss curve of an electric motor, which had been
expressed irrationally by a potential series in paragraph 144
and Table L.

Tase VI
CORE LOSS CURVE.
e
e A=log Py
ik 4
Volts. Pi kw log e logP, |16loge —1gloze P,
40 063 | 1.802 | 3799 | 2.563 | 7.286 0.70 | -0 07
60 1.3 | 1778 | 0134 | 2.845 | 7.289 1.8¢ | +0 02

80 2.18 1903 | 0338 | 3.045 |7.293{ avg. | 2.12 | +0.08
100 800 | 2000 | 0477 | 3200 |7277{7.282| 308 | —008

120 3.8 | 2079 | 0594 | 3.3286 |7.268 4.05 | =012
140 6.92 | 2146 | 0794 | 3.484 |7 860 520 | +1.02
180 8.60 | 2.204 | 0934 | 3.5 |7.4on 6.43 | +2.18
53=5.283  0.271 log P;=7.282+1.6log e
Z3+3=1 761  0.080 P;=1.9146'", in watts

=407 101
I3~2=2 0395  0.5%
4=0.9785  0.445
S04 e
0 o788

n

The first two columns of Table VI give the observed values
of the voltage e and the core loss P; in kilowatts. The next
two columns give loge and log P;. Plotting the curves shows
that loge, log P; is approximately a straight line, as seen in
Fig. 82, with the exception of the two highest points of the
curve.

Excluding therefore the last two points, the first five obger-
vations give a parabolic curve.

The exponent of this curve is found by Table VI as
n=1.598; that is, with sufficient approximation, as n=1.6.

To see how far the observations agree with the curve, as
given by the equation,

P,=qet$

in the fifth column 1.6 log ¢ is recorded, and in the sixth column,
A=loga=log P;i~16loge. As seen, the first and the last
two values of A differ from the rest. The first value corre-
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sponds to such a low value of P, as to lower the accuracy of
the observation. Averaging then the four middle values,

gives A=7.282; hence,

log P;=7.282+1.6loge,
P;=1914¢'% in watts.

16 17 18 19 20 21 2.2

loglP: lOg € { Pl

A
iy
Ock B 23, 20|
Do
0:2: 0
;/ 7
0 // 50]
9:8 401
| /
ywq\ 3:0:
B N
A
4
o L w | o |61 | W]k

F1e. 82. Investigation of Cuvres,

This equation is calculated, as P, and plotted in Fig. 82.
The observed values of P; are marked by circles. As seen,
the agreement is satisfactory, with the exception of the two
highest values, at which apparently an additional loss appears,
which does not exist at lower voltages. This loss probably is
due to eddy cwrents caused by the increasing magnetic stray
field resulting from magnetic saturation.
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157, As a final example may be considered the resolution
of the magnetic characteristic, plotted as curve I in Fig. 83,
and given in the first two columns of Table VII as & and .
Tare VIL
MAGNETIC CHARACTERISTIC.

® . ® X
— = 4
i lalolies logdl | log B % 0 ®,
2 8.0 | 0.300 | 0477 | 15 0.867 | 6.4 | +3.4
4 84 | 0.602 | 0024 | 31 0476 | 97 | +18
6 1.2 | 0.778 | 104 | 1.867 | 0.5% | 116 | +0.4
8 130 | 09003 | 1114 | 1.65 | 0814 | 13.0 0
10 140 | 1.000 | 1148 | 1.40 | 075 | 188 | —0.1
18 154 | 1176 | 1188 | 1088 | 0074 | 1545 | +0.05
20 163 | 1301 | 1212 | 0815 | 1207 | 168 0
%0 172 | 1477 | 198 | 0578 | 1.7¢ | 178 | +0.1
40 17.8 | 1.602 | 1250 | 0445 | 2.5 | 178 0
60 185 | 1778 | L:%7 | 0.808 | 325 | 184 | -0l
80 188 | 1.908 | 1274 | 0235 | 4925 | 18.8 0
24=53 3.530
24=210 11.49
7.98
4=157 ——=0.050 8
T 7 79
Tg=068 15 020
263X0 0507=13 334
4= 1 688
1.686-6= 0 211
X d
—=0 211+ 0507 and B= ————r
8 0 211+0 05075C

Plotting 3¢, ®, log %, log ® against each other leads to no
results, neither does the introduction of a constant term do
this. Thus in the fifth and sixth columns of Table VII are

® X .
calculated — and & and are plotted against % and against @.

x
Of these four curves, only the curve of 0 against % is shown

in Fig. 83,asII. This curve is a straight line with the exception
of the lowest values; that is,

X
a=a+b5(3.
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Ex‘cluding the three lowest values of the observations, as
not lying on the straight line, from the remaining eight values,
as caleulated in Table VII, the following relation may be
derived,

=0.211+0.0507 &,

els

II

.
ol

= B

F2:5

120

i(llo mesSa

X
2 30 40 i) 60 0 ]

=

F1c. 83. Investigation of Magnetization Curve.

and herefrom,
3
B
0.211+0.0507 %

is the equation of the magnetic characteristic for values of 3
from eight upward.

The values caleulated from this equation are given as @,
in Table VIL
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: Y
The difference hetween the observed values of & and the

value given by above equation, which is appreciable up to
=6, could now be further investigated, and would be found
to approximately follow an exponential law.

D. Periodic Curves.

158. All periodic functions can be expressed by a trigo-
nometric series, or Fourier series, as has been discussed in
Chapter 111, and the methods of resolution and arrangements
devised to carry out the work rapidly have also been dis-
cussed in Chapter IIIL.

The resolution of a periodic function thus consists in the
determination of the higher harmonics, which are super-
imposed on the fundamental wave.

As periodic curves are of the greatest importance in elec-
trical engineering, in the theory of alternating-current phe-
nomena, a familiarity with the wave shapes produced by the
different harmonics is desirable. This familiarity should be
sufficient to enable one to judge immediately from the shape
of the wave, as given by oscillograph, ete., which harmonics
are present.

The effect of the lower harmonics, such as the third, fifth,
seventh, ete. (or the second, fourth, etc., where present), is
to change the shape of the wave, make it differ from sine
shape, and in the “Theory and Calculation of Alternating-
current Phenomena,” 4th. Ed., Chapter XXX, a number of
characteristic distortions, such as the flat top, peaked wave, saw
tooth, double and triple peaked, sharp zero, flat zero, cte., have
been discussed with regard to the harmonies that enter into
their composition.

159. High harmonics do not change the shape of the wave
much, but superimpose ripples on it, and by counting the
number of ripples per half wave, or per wave, the order of the
harmonic can rapidly be determined. For instance, the wave
shown in Fig. 84 contains mainly the eleventh harmonic, as
there are eleven ripples per wave (Fig. 84).

Very frequently high harmonics appear in pairs of nearly
the same frequency and intensity, as an eleventh and a thir-
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teenth harmonic, etc. In this case, the ripples in the wave
shape show maxima, where the two harmonics coincide, and
nodes, where the two harmonics are in opposition. The
presence of nodes makes the counting of the number of ripples
per complete wave more difficult. A convenient method of
procedure in this case is, to measure the distance or space

J

T16. 8. Wave in which Eleventh Harmonic Predorinates.

between the maxima of one or a few ripples in the.range where
they are pronounced, and count the number of nodes per
cycle. For instance, in the wave, Fig. 85, the space of two
ripples is about 60 deg., and two nodes exist per complete

. . 6 .
wave. 60 deg. for two ripples, gives 2><§660=12r1pples per

Fic. 85. Wave in which Eleventh .and Thirteenth Harmonics Predominate.

complete wave, as the average frequency of the two existing
harmonics, and since these harmonics differ by 2 (since there
are two nodes), their order is the eleventh and the thirteenth
harmonics.

This method of determining two similar harmonies, with a
little practice, becomes very convenient and useful, and may
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frequently be used visually also, in determining the frequency
of hunting of synchronous machines, ¢te. In the phenomenon
of hunting, frequently two periods are superimposed, forced
fréquency, resulting from the speed of generator, etc., and the
natural frequency of the machine. Counting the number of
impulses, f, per minute, and the number of nodes, n, gives the

two frequencies: f+ gand Vi —7—; ; and as one of these frequencies

is the impressed cngine frequency, this affords a check.

Not infrequently waveshape distortions are met, which
are not due to higher harmonics of the fundamental wave,
but are incommengurable therewith. In this case there are
two entirely unrelated frequencies. This, for instance, occurs
in the secondary circuit of the single-phase induction motor;
two sets of currents, of the frequencies f; and (2f—f;) exist
(where f is the primary frequency and f, the frequency of
slip). Of this nature, frequently, is the distortion produced by
surges, oscillations, arcing grounds, ete., in electric circuits;
it is a combination of the natural frequency of the circuit
with the impressed frequency. Telephonic currents commonly
show such multiple frequencies, which are not harmonies of
each other.



CHAPTER VIL
NUMERICAL CALCULATIONS.

160. [ingineering work leads to more or less extensive
numerical caleulations, when applying the general theoretical
investigation to the specific cases which are under considera-
tion. Of importance in such enginecring caleulations are:

(@) The method of calculation.

(0) The degree of exactness required in the calculation.

(¢) The ln‘celllrrlblhty of the results.

(d) The reliability of the calculation.

a. Method of Calculation.

Before beginning a more extensive caleulation, it is desirable
carefully to scrutinize and to investigate the method, to find
the simplest way, since frequently by a suitable method and
system of calculation the work can be reduced to a small frac-
tion of what it would otherwise be, and what appear to be
hopelessly complex calculations may thus be carried out
quickly and expeditiously by a proper arrangement of the
work. The most convenient way usually is the arrangement
in tabular form.

As example, consider the problem of calculating the regula-
tion of a 60,000-volt transmission line, of r=060 ohms resist-
ance, z=135 ohms inductive reactance, and 5=0.0012 conden-
sive susceptance, for various values of non-inductive, inductive,
and condensive load.

Starting with the complete equations of the long-distance
transmission line, as given in “Theory and Calculation of
Transient Electric Phenomena and Oscillations,” Section III,
paragraph 9, and considering that for every one of the various
power-factors, lag, and lead, a sufficient number of values

249
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have to he calculated to give a curve, the amount of work
appears hopelessly large.

However, without loss of engineering exactness, the equa-
tion of the transmission line can be simplified by approxima-
tion, as discussed in Chapter V, paragraph 123, to ths form,

7Y A4
6

E1=E0{1+T} + Z]o{l'i-—'r‘ ;

7 |
L=l {1-1-‘—.2}:} +YE0{1+*6‘};

where By, [o are voltage and current, respectively at the step-
down end, By, 1 at the step-up end of the line; and
Z=r—jzr="00~135] is the total line impedance;
. Y =g—7b=—0.0012] is the total shunted line admittance.
Herefrom follow the numerical values:
—1357)(=0.0012;
1+ZTY=1 ; (60 1353,é 0.0012;)
=1-0.036j-0.081=0.919—0.036;;

2
142 1001200270073~ 0012

Z{I +%I—7} = (60— 1357)(0.973—0.012)
=58.4—0.72j— 131.1j— 1.62=56 8~ 1318

Y{ 1 +—Z—1—7} =(=0.00127)(0.973—0.012})

§
= —0.001168j—0.0000144 = (~ 00144~ 1.1687)10~

hence, substituting in (1), the following equations may be
written:

E1=(0.919-0.0367)Eo +(56.8—131.8))[p=4 +B; 1
1= (0.919—0.0367]p — (0.0144 +1.168))By10-3= D, @
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161. Now the work of calculating a series of numerical
values is continued in tabular form, as follows:

1. 100 PER CENT POWER-FACTOR.
Ey=60 kv at step-down end of Line
A=(0919—-00867)Eo=551-22; kv
D=(00144+11687)E; 10—3=09+70 17 amp.

|
Bi=a—ep | o
Iyamp. | Bhv. . =AI+B. at+et=el ¢ |==tane Le

0 0 55.1— 2 2) | 8086+ G5=8041} 55.1 |—0.,040 |- 2
20 | 11— 26/ | 56.2— 48 | 8158+ 23=8181| 56 4 [—0 085 [— 4
40 |2.3— 5% | 574- 9.5 | 3295+ 656=3351 | 57.9 -0 181 (- 7
60 | 84— 79 | 58.5—-101 | 3422+102=8524| §9.4 (-0 173 |- 9
80 | 45-10.5 | 59 6-12.7; | 3552+161=3718 | 60.9 [-0 218 |~12
100 | 5 7-18.% | 60 8—15.47 | 3607+287=38034| 627 [-0 253 |~14.
120 | 6.8—158 | 61.9-18 0; | 3832+8324=41586 | 64.5 |-0.291 [~168

I L=u=gu 0t s g ¥ — tani . Al: Power-

amp € amp =(¢-D it v A4y K=l or
Lo

0 0 —0.7-90 15|4014+1 = 4915| 70.1/4+-78 |+89 1)—88 60 024

=|—90 9
20 | 184—07; 175-708) 5018+ 808= 5819) 72 9|—4.04 |—76.3|—71.4/0.882
40 | 86.8—14; 85.9—-715; 5112+1289= 6401, 80.0!—1 99 |—63 4|—65 9| 0,558
80 | 551—22; 542—72.37| 5227+2938= 8165, 90.4)—1.83 |—53.1|—48 2/ 0 728
80 | 785—29; 726-73.0; 5328+ 5271=10600/108.0(—1 055/—45 2|—83.2 0 837
100 | 919—367 910—789; 8281+ 5432=18718/117.1)—0 811{—89.1(—24.9{ 0 907
120 (110 3—4.37(109 474 4111960 +5535=17504/132 8| —0 680/ —34.1{—17 8/ 0 952

lead

=00 kv, at step~up end of line,

Red Factor, ,

L e 1'0 o “ Power-Factor

amp. — amp kv, amp.
60

0 0.918 0 65 5 76.4 0 024
20 0,840 218 83.8 77.5 0.832
40 . 0965 4l 4 82.1 829 0 558
60 0 990 60.8 60.8 91.4 0.728
80 1015 78 8 59 1 101.5 0.887
100 1 045 95.7 57 6 112.8 0 907
120 1,075 111.7 55 8 122.8 0.952

lead

Curves of v, e, 1, cos 6, plotted in Fig 86,
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[N
(<13
o

2. 90 Per Cent Powsr-FacToR, Lag.

cos 0=09; sin §=+1-0.92=0.436;
To="g(cos 0+7sin 0)=10(0 9+0.4367);

By =(0.919—0.0367)e0 + (56.8~ 13L.3/1(0.9 +0.4367)io
=(0.919—0.0367)e0 + (108.5—93.8)Vip=4 +B;

Ty =(0.919—0.0367)(0.9 +0.4367)i5 — (0.0144 +1.168])eg1 03
= (0.843 +0.3667)io— (0.0144 +1.168])eo10-3= "= D,

and now the table is calculated in the same manner as under 1.

Then corresponding tables are calculated, in the same
manner, for power-factor, =0.8 and =0.7, respectively, lag,
and for power-factor =0.9, 0.8, 0.7, lead; that is, for

cos 047 sin 6=0.840.67;
0.7 +0.7145;
09-0.4367;
0.8—0.6;:
0.7-0.7145.

Then curves are plotted for all seven values of power-factor,
from 0.7 lag to 0.7 lead.

From these curves, for a number of values of 4, for instance,
19=20, 40, 60, 80, 100, numerical values of 4, ey, cos 4, are
taken, and plotted as curves, which, for the same voltage
e;=00 at the step-up end, give 41, eq, and cos 4, for the same
value 1o, that is, give the regulation of the line at constant
current output for varying power-factor.

b. Accuracy of Calculation.

162. Not all engineering caleulations require the same
degree of accuracy. When calculating the efficiency of a large
alternator it may be of importance to deteymine whether it is
97.7 or 97.8 per cent, that is, an accuracy within one-tenth
per cent may be required; in other cases, as for instance,
when estimating the voltage which may be produced in an
electrie circuit by a line disturbance, it may be sufficient to
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determine whether this voltage would be limited to double
the normal circuit voltage, or whether it might be 5 or 10
times the normal voltage.

In general, according to the degree of accuracy, engineering
calculations may be roughly divided into three classes:

(¢) Estimation of the magnitude of an effect; that is,
determining approximate numerical values within 25, 50, or
100 per cent,  Very frequently such very rough approximation
is sufficient, and is all that can be expected or calculated.
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F1c. 86. Transmission Line Characteristics.

For instance, when investigating the short-circuit current of an
electric generating system, it is of importance to know whether
this current is 3 or 4 times normal current, or whether it is
40 to 50 times normal current, but it is immaterial whether
it is 45 to 46 or 50 times normal. In studying Lightning
phenomena, and, in general, abnormal wvoltages in electric
systems, calculating the discharge capacity of lightning arres-
ters, etc., the magnitude of the quantity is often sufficient. In
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caleulating the critical speed of turbine alternators, or the
natural period of oscillation of synchronous machines; the
same applies, since it is of importance only to sec that these
speeds are sufficiently remote from the normal operating speed
to give no trouble in operation.

(b) Approximate calculation, requiring an accuracy of one
or a few per cent only; a large part of enginecring caleu-
lations fall in this class, especially calculations in the realm of
design. Although, frequently, a higher accuracy could be
reached in the caleulation proper, it would be of no value,
since the data on which the calculations are based are sus-
ceptible to variations beyond control, due to variation in the
material, in the mechanical dimensions, ete.

Thus, for instance, the exciting current of induction motors
may vary by several per cent, due to variations of the length
of air gap, so small as 1o be beyond the limits of constructive
accuracy, and & caleulation exact to a fraction of one per cent,
while theoretically possible, thus would be practically uscless,
The caleulation of the ampereturns required for the shunt
field excitation, or for the series field of a direct-current
generator needs only moderate exactness, as varjations in the
magnetic material, in the speed regulation of the driving
power, ete., produce. differences amounting to several per
cent.

(¢) Exact enginecring calculations, as, for instance, the
calculations of the efficiency of apparatus, the regulation of
transformers, the characteristic curves of induction motors,
ete. These are determined with an accuracy frequently amount-
ing to one-tenth of one per cent and even greater.

Even for most exact engineering calculations, the accuracy
of the slide rule is usually sufficient, if intelligently used, that
is, used so as to get the greatest aceuracy. Thus, in dividing,
for instance, 297 by 283 by the slide rule, the proper way is
to divide 297—283=14 by 283, and to add the result to 1.
This gives a greater accuracy than direct division. For accu-
rate caleulations, preferably the glass slide should not be used,
but the result interpolated by the eye.

163. While the calculations are unsatisfactory, if not carried
out with the degree of exactness which is feasible and desirable,
it is equally wrong to give numerical values with a number of
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ciphers greater than the method or the purpose of the calcula-
tion warrants. For instance, if in the design of a direct-current
generator, the calculated field ampere-turns are given as 9738,
such a numerical value destroys the confidence in the work of
the caleulator or designer, as it implies an accuracy greater
than possible, and thereby shows a lack of judgment.

The number of ciphers in which the result of caleulation is
given should signify the exactness, In 'this respect two
systems are in use:

(¢) Numerical values are given with one more decimal
than warranted by the probable error of the result; that is,
the decimal before the last is correet, but the last decimal may
he wrong by several units. This method is usually employed
in astronomy, physics, ete.

(b) Numerical values are given with as many decimals as
the aceuracy of the calculation warrants; that is, the last
decimal is probably correct within hall a unit. For instance,
an cfficieney of 86 per cent means an efficiency between 85.5
and 80.5 per cent; an efficiency of 97.3 per cent means an
cfficiency between 97.25 and 97.35 per cent, cte. This systen
is generally used in engineering calculations. To get accuracy
of the last decimal of the result, the calculations then must
be carried out for one more decimal than given in the result.
For instance, when calculating the efficiency by adding the
various percentages of losses, data like the following may be
given:

Corcloss... . . . ... . ... 2.73per cent
oo R 1 B
Friction.. . .. eereiiiinn .. 093 «
Total. . .. ... ... ...472 ¢
Efficiency. .. . . .. 100-472=9538 ¢
Approximately. ... ... . .....954 ¢

It is obvious that throughout the same calculation the
same degree of accuracy must be observed.
It follows herefrom that the values:

2% 2.5, 2.50: 2500,
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while mathematically equal, are not equal in their meaning as
an engineering result:

2.5 means between 245 and 2.55,
2.50 means between 2.495 and 2.505;
2.500 means between 2.4995 and 2.5005;

while 23 gives no clue to the accuracy of the value.

Thus it is not permissible to add zetos, or drop zeros at
the end of numerical values, nor is it permissible, for instance,
to replace fractions as 1/16 by 0.0625, without changing the
meaning of the numerical value, as regards its accuracy.
This is not always realized, and especially in the reduction of
common fractions to decimals an unjustified laxness exists
which impairs the reliahility of the results. For instance, if
in an are lamp the arc length, for which the mechanism is
adjusted, is stated to be 0.8125inch, such a statement is
ridiculous, as no arc lamp mechanism can control for one-tenth
as great an accuracy as implied in this numerical value: the
value is an unjustified translation from 13/16 inch.

The principle thus should be adhered to, that all caleula-
tions are carried out for one decimal more than the exactness
tequired or feasible, and in the result the last decimal dropped;
that is, the result given so that the last decimal is probably
correct within half a unit.

c. Intelligibility of Engineering Data.

164. In engineering calculations the value of the results
mainly depends on the information derived from them, that is,
on their intelligibility. To make the numerical results and
their meaning as intelligible as possible, it thus is desirable,
whenever a series of values are calculated, to carefully arrange
them in tables and plot them in a curve or in curves. The
lafter is necessary, since for most engineers the plotted curve
gives a much better conception of the shape and the variation
of a quantity than numerical tables.

Even where only a single point is required, as the core
loss at full load, or the excitation of an electric generator at
rated voltage, it is generally preferable to calculate a few
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points near the desired value, so as to get at least a short plece
of curve mcludmg the desired point.

The main advantage, and foremost purpose of curve plottmv
thus is to show the shape of the function, and thereby give
a clearer conception of it ;

but for recording numerical Volts
values, and deriving numer- | | t—t—1"7"]

ical values from it, the plntted 0
curve is inferior to the table,

due to the limited accuracy 0
possible in a plotted curve,

and the further inaccuracy

resulting when drawing a

curve through the plotted cal- 200
culated points. To some

extent, the numerical values 10
as taken from a plotted curve,

depend on the particular o | ol | o5 | ds | 1o

kind of curve rule used in  Fie.87, Compounding Curve.
plotting the curve.

In general, curves are used for two different purposes, and
on the purpose for which the curve is plotted, should depend
the method of plotting, as the scale, the zero values, ete.

When curves are used to
°5';{SJ illustrate the shape of the
L function, so as to show how
much and in what manner a
quantity varics as function
of another, large divisions of
510’ inconspicuous cross-section-
wl ing are desirable, but it is
4

530

essential that the cross-
sectioning should extend to
| the zero values of the func-
tion, even if the numerical
o | o4 | os | o8 | 10 | values do not extend so
Fic. 88. Compounding Curve.  far, since otherwise a wrong
impression would be con-"

ferred. As illustrations are plotted in Figs. 87 and 88, the
compounding curve of & direct-current generator. The arrange-
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ment in Fig. 87 is correct ; it shows the relati_ve Vgriation
of voltage as function of the load. Fig. 88, in which the
cross-sectioning does not begin at the scale zero, confers the

HERN

el

10 2 30 40 50 80 it

Fie. 89 Curve Plotted to show Characteristic Shape.

Fic. 90. Curve Plotted for Use as Design Data

wrong impression that the variation of voltage is far greater
than it really is.

When curves are used to record numerical values and
derive them from the curve, as, for instance, is cormmonly the
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case with magnetization curves, it is unnecessary to have the zero
of the function coincide with the zero of the eross-sectioning, but
tather preferable not to have it so, if thereby a better scale of
the curve can be secured. It is desirable, however, to use suffi-
ciently small cross-sectioning to make it possible to take
numerical values {rom the curve with good accuracy. This is
illustrated by Figs. 89and 90. Both show the magnetic charac-
teristic of soft stecl, for the range above ®=8000, in which it is
usually employed. Fig. 89 shows the proper way of plotting
for showing the shape of the function, Fig. 90 the proper way of
plotting for use of the curve to derive numerical values therefrom.

11

I~
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Fre. 91. Same Function Plotted to Different Scales; I is correct.

165. Curves should be plotted in such a manner as to show
the quantity which they represent, and its variation, as well as
possible. Two features are desirable herefor:

1. To use such a scale that the average slope of the curve,
or at least of the more important part of it, does not differ
much from 45 deg. Hereby variations of curvature are best
shown, To illustrate this, the exponential function y=¢™* is
plotted in three different scales, as curves I, II, IIT, in Fig. 9L
Curve I has the proper scale. '

2. To use such a scale, that the total range of ordinates is
not much different from the total range of abscissas. Thus
when plotting the power{factor of an induction motor, in
Fig. 92, curve I is preferable to curves IT or III.
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These two requirements frequently are at variance with
each other, and then a compromise has to be made between
them, that is, such a seale chosen that the total ranges of the
two coordinates do not differ much, and at the same time
the average slope of the eurve is not far from 45deg. This
usually leads to a somewhat rectangular area covered by the
curve, as shown, for instance, by eurve I, in Fig. 91.

In curve plotting, a scale should he used which is easily
read. Hence, only full seale, double scale, and half scale
should be used. Triple seale and one-third scale are practically
unreadable, and should therefore never be used. Quadruple
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Frc. 92. Same Function Plotted to Different Scales; I is Correct.

seale and quarter seale are difficult to read and therefore unde-
sirable, and ave generally unnccessary, since quadruple scale
is not much different from half scale with a ten times smaller
unit, and quarter seale not much different from double scale
of a ten times larger unit.

166. Any engineering caleulation on which it is worth
while to devote any time, is worth being recorded with suffi-
clent completeness to be generally intelligihle. Very often in
making calculations the data on which the caleulation is based,
the subject and the purpose of the caleulation are given incom-
pletely or not at all, since they are familiar to the caleulator at
the time of caleulation. The calculation thus would be unin-
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telligible to any other engineer, and usually becomes unintelli-
gible even to the caleulator in a few weeks.

In addition to the name and the date, all caleulations should
be accompanicd by a complete record of the object and purpose
of the caleulation, the apparatus, the assumptions made, the
data used, reference to other calculations or data employed,
cte., in short, they should include all the information required
to make the caleulation intelligible to another engineer without
further information besides that contained in the caleulations,
or in the references given therein. The small amount of time
and work required to do this is negligible compared with the
increased utility of the caleulation.

Tables and curves belonging to the caleulation should in
the same way be completely identified with it and contain
sufficient data to be intelligible.

d. Reliability of Numerical Calculations.

167, The most important and essential requirement of
numcrical engincering caleulations is their absolute reliability,
When making a caleulation, the most brilliant ability, theo-
retical knowledge and practical experience of an engineer are
made useless, and even worse than useless, by a single error in
an important caleulation.

Reliahility of the numerical caleulation is of vastly greater
importance in engincering than in any other field. In pure
mathematics an crror in the numerical calculation of an
example which fllustrates a general proposition, does not detract
from the interest and value of the latter, which is the main
purpose; in physics, the general law which is the subject of
the investigation remains true, and the investigation of interest
and use, even if in the numerical illustration of the law an
error is made. With the most brilliant cngineering design,
however, if in the numerical calculation of & single structural
member an error has been made, and its strength thereby calcu-
lated wrong, the rotor of the machine flies to pieces by centrifugal
foraes, or the bridge collapscs, and with it the reputation of the
engineer. The essential difference between engineering and
purely seientific caclulations is the rapid check on the correct-
ness of the calculation, which is usually afforded by the per-



262 ENGINEERING MATHEMATICS.

formance of the calculated structure—but too late to correct
€ITOrS.

Thus rapidity of calculation, while by itself useful, is of no
value whatever compared with reliability—that is, correct-
ness.

One of the first and most important requirements to sceure
reliability is neatness and care in the execution of the caleula-
tion. If the calculation is made on any kind of a sheet of
paper, with lead pencil, with frequent striking out and correct-
ing of figures, etc., it is practically hopeless to expect correct
results from any more extensive calculations. Thus the work
should be done with peh and ink, on white ruled paper; if
changes have to be made, they should preferably be made by
erasing, and not by striking out. In general, the appearance of
the work is one of the best indications of its reliability. The
arcangement in tabular form, where a series of values are caleu-
lated, offers considerable assistance in improving the reliability.

168. Essential in all extensive calculations is a complote
system of checking the results, to insure correctness.

One way is to have the sane calculation made independently
by two different calculators, and then compare the results.
Another way is to have a few points of the caleulation checked
by somebody else. Neither way is satisfactory, as it is not
always possible for an engineer to have the assistance of another
engineer to check his work, and besides this, an engincer should
and must be able to make numerical caleulations so that he can
absolutely rely on their correctness without somebody else
agsisting him.

In any more important calculations every operation thus
should be performed twice, preferably in a different manner.
Thus, when multiplying or dividing by the slide rule, the multi-
plication or division should he repeated mentally, approxi-
mately, as check; when adding a column of figures, it should be
added first downward, then as check upward, ete.

Where an exact caleulation is required, first the magnitude
of the quantity should be estimated, if not already known,
then an approximate calculation made, which can frequently
be done mentally, and then the exact caleulation; or, inversely,
after the exact caleulation, the result may be checked by an
approximate mental calculation.
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Where a series of values is to be calculated, it is advisable
first to calculate a few individual points, and then, entirely
independently, caleulate in tabular form the series of values,
and then use the previously calculated values as check. Or,
inversely, after calculating the series of values & few points
should independently be caleulated as check.

When a series of values is caleulated, it is usually easier to
secure reliability than when calculating a single value, since
in the former case the different values check each other. There-
fore it is always advisable to calculate a number of values,
that is, a short curve branch, even if only a single point is
required. After calculating a series of values, they are plotted
as a curve to see whether they give a smooth curve. If the
entire curve is irregular, the calculation should be thrown away,
and the entire work done anew, and if this happens repeatedly
with the same calculator, the calculator is advised to find
another position more in agreement with Lis mental capacity.
If a single point of the curve appears irregular, this points to
an crror in ity caleulation, and the caleulation of the point is
checked; if the error is not found, this point is calculated
entirely separately, since it is much more difficult to find an
error which has been made than it is to avoid making an
error.

169. Some of the most frequent numerical errors are:

1. The decimal ervor, that is, a misplaced decimal point.
This should not be possible in the final result, since the magni-
tude of the latter should by judgment or approximate calcula-
tion be known sufficiently to exclude a mistake by a factor 10.
However, under a square root or higher root, in the exponent
of a decreasing exponential function, etc., a decimal error may
oceur without affecting the result so much as to be immediately
noticed. The same is the case if the decimal crror oceurs in &
term which is relatively small compared with the other terms,
and therchy does not affect the result very much.  For instance,
in the caleulation of the induction motor characteristics, the
quantity 2 +s%;? appears, and for small values of the slip s,
the second term $2x;2 is small compared with ri2, so that a
dlecimal error in it would affect the total value sufficiently to
make it seriously wrong, but not sufficiently to be obvious,

2. Omission of the factor or divisor 2.
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3. Error in the sign, that is, using the plus sign instead of
the minus sign, and inversely. Here again, the danger is
especially great, if the quantity on which the wrong sign is
used combines with a larger quantity, and so does not affect
the result sufficiently to become obvious.

4. Omitting entire terms of smaller magnitude, ete.



APPENDIX A.
NOTES ON THE THEORY OF FUNCTIONS.

A. General Functions.

r70. The most general algebraic expression of powers of
z and ¥,

F(x,y) = (ao(] Fagir+agex®+. . .) +<Cho +ayr+ape?+. . )y
+(a20 -I-a21:c+a22.r2+. AR
+(@no Faniz+an2®+. . Jy"=0, . . . . (1)

is the implicit analytic function. It rclates y and 2 so that to
cevery value of @ therce correspond n values of y, and to every
value of y there correspond m values of z, if m is the exponent
of the highest power of « in (1).

Assuming expression (1) solved for ¢ (which usually cannot
be carried out in final form, as it cequires the solution of an
equalion of the nth order in y, with coefficients which are
expressions of ), the explicit analytic function,

y=f@), . . . . . ... @

is obtained. Inversely, solving the implicit function (1) for
7, that is, from the explicit function (2), expressing z as
function of y, gives the reverse function of (2); that is

z=fiy). . . . . ... @

In the general algebraic function, in its implicit form (1),
or the explicit form (2), or the reverse function (3), z and y
are assumed as general numbers; that is, as complex quan-
tities; thus,
: T=121 +]2;
e 4)
y=y1+7y2,
and likewise are the coeficients ago, @o1 . . - Gun.
. 265
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1t all the coefficients o are real, and z is real, the corre-
sponding 7 values of y are either real, or pairs of conjugate
complex imaginary quantities: y1+y» and y1— 792

171, For n=1, the implicit function (1), solved for y, gives
the rational function,

a00+aml+(102.(‘2"r. .. (5)
Go+onz+anpt+.. 0 T T T

and if in this function (5) the denominator contains no z, the
inleger function, ,

y=aptmr+tagr24. . Fazm, , . . . (6)

is obtained.
For n=2, the implicit function (1) can be solved for y as a
quadratic equation, and thereby gives

- (llm+ agtes’t. )t —
A (@03 08" 4 ) ~4{an Ty + 02+ ) (G +anZ + a7 5 o)
2aptamtos’t..)

0]

that is, the explicit form (2) of equation (1) contains in this
cage a square root.

For n>2, the explicit form y=f (z) either hecomes very
complicated, for n=3 and n=4, or cannot be produced in
finite form, as it requires the solution of an equation of more
than the fourth order. Nevertheless, y is still & function of
«, and can as such be caleulated by approximation, etc.

To find the value y;, which by function (1) corresponds to
z=1;, Taylor’s theorem offers a rapid approximation. Sub-
stituting z; in function (1) gives an expression which is of
the nth order in y, thus: F(ryy), and the problem now is to
find a value y;, which makes F(zy,51)=0.

However,

dF(.xh ) h? d2F(xly y)

Fley,y)=F(z1,9) +h 0 I) B T @&

where h=y;—y is the difference betwaen the correct value %
and any chosen value 4.
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Neglecting the higher orders of the small quantity , in
(8), and consirlering that F(z1,y,) =0, gives

Flry,y)
Ty 9)

dy

and herefrom is obtained y1=y+h, as first approximation.
Using this value of g as y in (9) gives a second approximation,
which usually is sufficiently close.

172, New functions are defined by the integrals of the
analytic functions (1) or (2), and by their reverse functions.
They are called Adelian integrals and Ahelian functions.

Thus in the most general case (1), the explicit function
corresponding to (1) being

- f f@y,

then is the general Abclian inlegral, and its reverse function,

$=¢(Z),

the gencral Abelian function.

(o) Inthe case, n=1, function (2) gives the rational function
(5), and its special case, the integer function (6)..

Function (6) ean be integrated by powers of 2. (5) can be
resolved into partial fractions, and thereby leads to integrals
of the following forms:

@ f amdz;
dz

the integral,

@) 5‘_71; o)
dz '
O (o
dx

G et
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Integrals (10), (1), and (3) integrated give rational functions,
(10), (2) gives the logarithmie function log (z—@), and (10), (4)
the arc function arc tan 1.

As the arc functions are logarithmic functions with complex
imaginary algument this case of the integral of the rational
function thus leads to the logarithmic function, or the loga-
rithmic integral, which in its simplest form is

zzf%—fﬂogx, R (A )
and gives as its reverse function the exponential function,
=& . . .. (19)
Tt is expressed by the infinite series,
22 23
:~1+2+P 13 ‘ (13)

as seen in Chapter II, paragraph 53.

173. b. In the case, n=2, function (2) appears as the expres-
sion (7), which contams a square root of some power of z. Its
first part is & rational function, and as such has already been
discussed in @. There remains thus the integral function,

N/bo+blx+ng2+. .. +b,,x1’
coteit e+ ..

de. . .. (14)

This expression (14) leads to & series of important functions.
(1) For p=1or?2

f VB +b12+boz? &

co+eil+co? + (15>

By substitution, resolution into partial fractions, and

separation of rational functions, this integral (11) can be
reduced to the standard form,

zzj‘ dx
T (16)

In the case of the minus sign, this gives

dz
z=fﬁi—alcsmz,. N ¢ V)]
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and as reverse functions thercof, there are obtained the trigo-
nometric functions.

T=sinz |’
V1-1P=cos zj

In the case of the plus sign, integral (16) gives

(18)

de
\/__=—log{\/1+x ~z}=arc sinhz, . (19)
and reverse functions thereof are the hyperbolic functions,
etz 2

2

T= =ginh z:

.20

+z+e—z

2

a

\/1+.1c=6

=cosh 2.

The trigonometric functions are expressed by the series:
? 25 z7+

BET

2 z‘* z6+

B'RE

sin z=z—

.
' eosz=1-

as seen in Chapter II, paragraph 58.
The hyperbolic functions, by substituting for ¢*= and ¢~=
the series (13), can he expressed by the series:

25
sinh 2= z+ + + +

|3 B ;7
7 zﬁ @)
cosh 2= 1+!2+|4 |6

174. In the next case, p=3 or 4,

\/b() +b1x +b2ﬁ2 +63x3+b4x4
Coteizteont+. ..

dz, . (23)

already leads beyond the elementary functions, that is, (23)
cannot be integrated by rational, logarithmic or are functions,
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but gives a new class of functions, the elliptic infegrals, and
their reverse functions, the elliptic functions, so called, because
they bear to the ellipse a relation similar to that, which the
trigonometric functions bear to the cirele and the hyperbolic
functions to the equilateral hyperhola.

The integral (23) can he resolved into elementary functions, .
and the three classes of elliptic integrals:

u_f dr .
I vai=Di-)

" _j 2dz ) o)
) Vil-al-c%) I

dr
“sz (T-DVall—0) (1=

(These three classes of integrals may be expressed in several
different forms.)

The reverse functions of the elliptic integrals are given hy
the elliptic functions:

Vr=sin am(y,c); l

V1—z=cos am(u, ¢); (25)

V1 -2z =dam(u, ¢);

known, respectively, as sine-amplitude, cosine-amplitude, delta-
amplitude.

Elliptic functions are in some respects similar to trigo-
nometric functions, as is seen, but they are more general,
depending, as they do, not only on the variable z, but also on
the constant ¢. They have the interesting property of being
doubly periodic. The trigonometric functions are periodic, with
the periodicity 2z, that is, repeat the same values after every
change of the angle by 2x. The elliptic functions bave two
periods py and ps, that is,

sin am(u-+np; +mps, ¢)=sin am(y, c), ete.; . (26)

hence, increasing the variable « by any multiple of either
period p; and ps, repeats the same values.
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The two periods are given by the equations,

(=
jﬂx—ﬁ Wr(l-r)1-cz)

—lea d.r I . .
P L 2Vrl-n(d—c)

175. Elliptic functions can be expressed as ratios of two
infinite series, and these series, which form the numerator and
the denominator of the elliptic function, are called theta func-
tions and expressed by the symbol 6, thus

o)
Valg)

= 6>
¢os am(u, ¢) = ,’
6

. @

sin am(u, ¢)

g

l\;l
\_/ “\/
-

—
o
(@3]
==

dom(u,¢)  =AT-¢*

and the four 0 functions may be expressed by the series:

0o(z) =1 —2q cos 2z +2¢* cos 4z ~2¢° cos bz+ —. . . ;

%
01(x) =2g"% sin & —2¢** ¢in 3z +2¢% sin Sz —+.. . ;

, (29)
25
05(z) =2g"* cos 1 +20%* cos 3 +2¢'% cos bz +.
03(x) =1+2¢ cos 25 +2¢* cos 42 +2¢° cos 6z +. . .,
where
=l d = .‘- Bz- L T S 30
g=¢ and o=z " (30)

In the case of integral function (14), where p>4, similar
integrals and their reverse functions appear, more complex



272 ENGINEERING MATHEMATICS.

than the elliptic functions, and of a greater number of periodici-
ties. They are called hyperelliptic integrals and hyperelliplic
funetions, and the latter are again expressed by means of auxil-
lary functions, the hyperelliptic 8 functions.

176. Many problems of physics and of engineering lead to
elliptic functions, and these functions thus are of considerable
importance. For instance, the motion of the pendulum i
expressed by elliptic functions of time, and iis period therehy
is a function of the amplitude, increasing with increasing ampli-
tude; that is, in the so-called “second pendulum,” the time of
one swing is not constant and equal to one second, but only
approximstely so. This approximation is very close, as long
as the amplitude of the swing is very small and constant, hut
if the amplitude of the swing of the pendulum varies and
reaches large values, the time of the swing, or the period ot
the pendulum, can no longer be assumed as constant and an
exact caloulation of the motion of the pendulum by elliptic
functions becomes necessary.

In clectrical enginecring, one has frequently to deal with
oscillations similar to those of the pendulum, for instance,
in the hunting or suwrging of synchronous machines. In
general, the frequency of oscillation is assumed as constant,
but where, as in cumulative hunting of synchronous machines,
the amplitude of the swing reaches large values, an appreciable
change of the period must be expected, and where the hunting
is a resonance cffect with some other periodic motion, as the
cngine rotation, the change f frequency with increase of
anplitude of the oscillation breaks the complete resonance and
thereby tends to limit the amplitude of the swing.

177. As example of the application of elliptic integrals, may
be considered the determination of the length of the are of an
ellipse.

Let the ellipse of equation

22
&Tz+§)i._,=1, R 1)

be represented in Fig. 93, with the circumseribed cirele,

2=t ... (3
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_To every point P=z, y of the ellipse then corresponds a
point Py=1z, 11 on the circle, which has the same abseissa r,

and an angle §=A0P;.
The arc of the ellipse, from A to P, then is given by the

integral,
s (1-c%)de
L= ———— PN :
j W1~z (1-c%) )

)\ 2 T2
z=sin20=<§) and c=\/ua ... (3D

where

is the eceentricity of the ellipsc.

A
=z,

A
P=

f
a
0
b

F1q6. 93, Rectification of Ellipse.

Thus the problem leads to an clliptic integral of the first
and of the sccond class.

For more complete discussion of the elliptic integrals and
the elliptic functions, reterence must be made to the text-books
of mathematies.

B. Special Functions.

178. Numerous special functions have been derived by the
exigencies of mathematical problems, mainly of astronomy, but
in the latter decades also of physics and of engineering. Some
of them have already been discussed as special cases of the
general Abelian integral and its reverse function, as the expo-
nential, trigonometrie, hyperbolic, ete., functions.
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Functions may be represented by an infinite serics of terms;
that is, as a sum of an infinite number of terms, which pro-
gressively decrcase, that is, approach zero. The denotation of
the terms is commonly represented by the summation sign X.

Thus the exponential functions may be written, when
defining,

0=1; |n=1X2X3X4X...Xn,
N d 4
mn
i;{7 DR

2
ez=1+x+%+,~§+. s (35)

which means, that terms ‘%’ are to be added for all values of n

from n=01to n=cc.
The trigonometric and hyperbolic functions may be written

in the form:

B o5

. x

51nx=z—|—§-+E—]—z—+...=%n(—l] e (36)
2 x4 8 I 2n

€08 :c=1—-%+l-d:-—i%+...=§“(—l)"l%: (37)

sinh x=x+x—3+—ﬁ+x—7+ S (38
PR W
12 24 [ ol »

COSh5C=1+E'+ET]—§+...=§"@. e e (39)

Functions also may he expressed by a series of factors;
that is, as & product of an infinite scries of factors, which pro-
gressively approach unity. The product scries is commonly
represented by the symbol TT.

f Thus, for instance, the sine function can be expressed in the
orm,

i 2 2 2\ 2/ 2
sin m:x(l-—ﬂ—2> <1~E2> (1——77-2>. . =x|'111| (1-—7!-2;_:5). (40)

79, Integration of known functions frequently leads to new
functions. Thus from the general algebraic functions were
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derived the Abelian functions. In physics and in engincering,
integration of special functions in this manner frequently leads
to new special functions.

For instance, in the study of the propagation through space,
of the magnetic field of a conductor, in wireless telegraphy,
lightning protection, etc., we get new functions. If i=f(f)
is the current in the conductor, as function of the time ¢, at a
distance = from the conductor the magnetic field lags by the
2
light). Since the field intensity decreases inversely propor-
tional to the distance z, it thus is proportional to

time ;== where S is the speed of propagation (velocity of

e P 1)
and the total magnetic flux then s ;
2= f yde
z
) . .
= I.r,.......()

If the current is an alternating current, that i, f(t) a
trigonometric function of time, equation (42) leads to the
functions,

U= El—n—tdx,]
X
....... (43)
V= —c-oifdx.
I

If the current is a direct current, rising as exponential
function of the time, equation (42) leads to the function,
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Substltutmg in (43) and (44), for sinz, cosz, €% their
infinite series (21) and (13), and then integrating, gives the
following:

sin xd 73 :15 x7
=S YER T

cos T 2 gt 1
O fr=log pmme oo F e b L (45
f:c dr=logz 2‘2-'-4'4 6]§+ ool (15)

3
f —dr= logx+x+2i2 3|_3_+

For further discussion of these functions see “Theory and
Calculation of Transient Electric Phenomena and Oseillations,”
Section ITT, Chapter VIIL.

180, If =/ (z) is a function of =, and 2= f f (z)dr=¢(z)

its integral, the definite integral, Z= f bf(x)dx, is no longer
a function of z but a constant, ’
Z=¢(b)-¢(a)
For instance, if y=c(z—n)2, then

z f(x n)zdx—%@—,

and the definite integral is
b
Z=f c(x—n)2dx=§{(b—n)3— (a—n)3}.

This definite integral does not contain x, but it contains
all the constants of the function f (z), thus is a function of
these constants ¢ and n, as it varies with a variation of these
constants.

In this manner new functions may be derived by definite
integrals.

Thus, if

y=flzwv...) . . ..., . (46)

is & function of z, containing the constants u, v, . .
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The definite integral,
)
Z=ff(x,u,v...)dx,. N ()]

Is not a function of x, but still is a function of u, v..., and
may be a new function.
181. For instance, let

' y=eTmr oL L oL L 48)
then the integral,

fw)= .ﬁ :‘Ix“‘ldx, e e (49)

is a new funetion of u, called the gamma function.
Some properties of this function may be derived by partial
integration, thus:

Fu+D)=ul@w);, . . . . . . ... (50)
if # is an integer number,

IFw)=u-1)u-2)...(u—=m)'u~n), . . (51)
and since

if u is an integer number, then,

O s (53)

C. Exponential, Trigonometric and Hyperbolic Functions,
(a) Funcrions oF REAL VARIABLES.

182. The exponential, trigonometric, and hyperbolic func-
tlons are defined as fhe reverse functions of the integrals,

a.( .u;j%ﬂogx, ...... e (B

and: =& ... .. ... .. (83

b', ‘u=[%=arcsinx; ..... .. (56)
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and: T=siNU, . . . e e e e (57)
VI=I2=C08U, . . .« . e (58)

dr =
c. u=f:-/-.1.—:_;=-]og{*/l+a,2—x},. NG

M U

and z= 2———=sinhu; B (0}

VITa== —l;e— =cosht . . . . (61)

From (57) and (58) it follows that

sinfuteostu=1. . . . . ., . (62)

From (60) and (61) it follows that

cos? hu—sin 2hu=1. ., . . . . (63)

Substituting (—z) for = in (56), gives (—wu) instead of u,
and therefrom,
sin (—u)=—sinu . . . . .. (64)

Substituting (~w) for » in (60), reverses the sign of z,
that is,
sinh (—u)=—sinh w. N (1)

Substituting (—z) for z in (58) and (61), does not change
the value of the square root, that is,

€08 (—U)=C08%, . . . . . . (66)
cosh (—w)=coshu, . . . . . (67)

Which signifies that cosw and cosh u are even functions, while
sin  and sinh v are odd functions.
Adding and subtracting (60) and (61), gives

ef¥=coshutsinhu, . . , ., . (68)
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(b) FoncTioNs OF IMAGINARY VARIABLES.

183. Substituting, in (56) and (59), 2= —fy, thus y =z, gives

dr dz
(56.) u=fﬁ, (59) U= \'/17_!_?,
U o=l
r=sin u; s=sinhy=- 25 ;
VI+a2=cosu; V1+x2=coshu=€”;ﬁ;

. dy , dy
henee, fu= | —== hence, fu= | —ete;
ence, fu f T ence, fu f —

du— ¢=fu

5
-

y=sinh ju= y=sinju; . . . (69)

e o
1+y*=cosh ju= L VIsg=csu .. . (70)

P)
Resuhstituting z in both
. sinhju di—eh . =¥ gin§
£=sin u= ].] =i—7:——; r=sinh =" 96 =Sl—nﬁ; (T1)

U ]
/1—x2=cos u=cosh ju VIT=cosh u=- +95

-

i i

=

=cosfu. . (72)

Adding and subtracting,
eiv=cos u+] sin u=cosh jutsinh ju
and etu=cosh usinhu=cos uFjsinju, . . (73)

() Fuxcrions oF CoMPLEX VARIABLES

184. It is:
@ii= eth=g(cosvtising); o . . (74)
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sin (u +jv) =sin u cos fo £cos usin o
v Lg? v g0

. . . e, £ .
=sinucoshv £]cosusinhv=—F—sinu £]—5—C05%;

(76)

E’U -7 leg_s—’v .
=cosucoshvF jsinusinhy=—5—cosu¥ g sing;

euiru,__e—u:F?r ft—g™ ey
sinh(u£7v)= 5 = oSV L[5 —sine

(77
=sinh u cos v+ cosh u sin v;

Uil LgmuFi g g e,
cosh(u )= 5 == —tosvj—y—siu

cos(u = jo) =cos % cos fvF sin w sin v l

=cosh w cos v+ sinh u sin v;
ete.

(d) RELATIONS.

185. From the preceding equations it thus follows that the
three functions, exponential, trigonometric, and hyperbolic,
are so related to each other, that any one of them can be
expressed by any other one, so- that when allowing imaginary
and complex imaginary variables, one function is sufficient.
As such, naturally, the exponential function would generally
be chosen.

Furthermore, it follows, that all functions with imaginary
and complex imaginary variables can be reduced to functions
of real variables by the use of only two of the three classes
.of functions. In this case, the exponential and the trigono-
metric functions would usually be chosen.

Since functions with complex imaginary variables can be
resolved into funetions with real variables, for their calculation
tables of the functions of real variables are sufficient.

The relations, by which any function can be expressed by
any other, are calculated from the preceding paragraph, by
the f ollowmg equations:
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e*%=corh u £sinh u=cos juF ] sin qu;
€*"=c0s v+7 sin v=cosh jv+] sinh Jv;

uEIr = &% (oS vﬂ:] sin v),

. ginh ju  ge—ei®

SN u =——=T;
=]

Co et

sin p=7sinh v=7—5—

Z

gin (1 £7%) =sin u cosh 2 £ cos u sinh v

e LE— T
=——2—sm ut] —T—COS U,

. Eu‘u+ s—iu
cos u=cosh ju=—75—;
. e e
cos jy=cosh v =——s—o!,
2

cos (% +v) =cos % cosh vF J ¢in u sinh v
E’D__E"‘l’ .E‘U_ -V .
=——2—cosu¢j~T—smu;

) e¥—e~% qinqu
sinh 4 =—p— =—"—;
& 7

)

v o=

sinh jv=7 sin v=— 5

sinh (u +7v) =sinh u cos v 47 cosh % sin v

eh— T vt

= 2——008?):]:] 5 — §in v;

€u+ E—u .
cosh u=———=cos ju;
rd
. & =i
cosh jv=cos V=5
cosh (w+jv) =cosh u cos v+ sinh u sin »
U gt Y U

= — €08 v:l:]—2--sm .

281

(d)
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And from (b) and (d), respectively (c) and (e), it follows that
sinh (u+v) ={sin (+o—ju) = £jsin (v 7u);
| . b
cosh (wjv) =cos (vF ju).
Tables of the exponential functions and their logarithms,

and of the hyperholic functions with real variables, are given
in the following Appendix B.
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TWO TABLES OF EXPONENTIAL AND HYPERBOLIC

FUNCTIONS.
Tasre L
5—2
=2 7183, log e==0 4343

z X108 | x10=2 | x10— X1
1.0 0.990 0990 | 0.905 | 0.368
1.2 0988 | 0887 | 0301
1.4 0.986 | 0.869 | 0 247
16 0oose | o0ss2 | 0202
18 | o oos2 | 0835 | 0.165
20 0 908 0 980 0 819 0135
2.5 . 0 975 0 779 0 082
3.0 0.997 0 970 0.741 0 050
3.5 . 0.966 | 0.705 | 0030
40 0996 | 0961 0670 | o0.018
45 . 0.956 | 0638 | o0.011
50 0995 | 0.951 0607 | 0.007
6 0.994 0.942 | 0549 | 0 o002
7 0903 | o0.e32 | 0407 | 0 o001
8 0902 | 0928 | o440 | o000
9 0.991 0.914 | o0.407 ..
10 0.990 0.905 | 08368 | .....

283
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Tapre IL

EXPONENTIAL AND HYPERBOLIC FUNCTIONS.
log §=04342045~0 4343
sich g=Yete—e4]

o ]

pp

434435

0100

0.1] 43| 43
0.2 87| 87
0.3]130130
0 4(174174

0 5[217217
0 6/261/261
0 71304(304
0 8[347/348
0 9/301/301

1.0(434/435

£=2718282~2 7183,
cosh g=1eto+e7%),

dlog
1 |loget® | ex* [log &%) ¢F% | 7% Jeosh o [mpha| ¥
0 0 0 1 1 1 0 0
0 001{0 000434, 24 9 9995661 001000 99900fL.00000/0.001000.001
0 002(0 000869, 432 9 99913141.00200(0.99800§1.000000.00200]0.002,
0 003|0 001303 434 9.998697)L 00301;0‘99700 1.00000/0 0030010.003,
0.004/0 001737 9.998263]1.00401/0 99601{1 00001 0.00400{0 004,
434 | —
0 006(0 002171 9 997829'1 005010 9950141 000010 00500(0 005
435 ——
0 0060 002608 434 9.997394]1 00602?0,994031 00002(0 006000 008
0 0070 003040 e 9 9969601 00702(0.99302f1.00002/0 00700(0 007
0.008|0.003474, 133 9 996526}1.008030.99203f1 00003{0.00800(0.008
0.009/0 003909 0.996091}1.00904/0 9910441.00004|0 00900|0 009
—| 434 —
0 0100 004343 9.995657]1 01005/0 99005'1 00005}0.01000{0 010
0.012]0 005212 9.99478841 0120710.98807}1.00007|0.01200(0 012
0 014/0 006080 9 9939201 01410/0- 986101 00010]0.01400|0 014
0 0160 006949 9.993051]1.01613/0 98413]1.00013|0 01600|0.016
0 018(0 007817 9.992183}1 01816(0- 98216f1 000160 01800{0 018
0 020]0 008686, 9.991314'1 020200 9802()|1 00020{0 02000{0 020
0 025(0 010857 9.98914341 025310 9753141.00031/0.02500{0 025
0 030[0.013029 9.986971]1 03046/0 97045]1.00046{0 03000/0 030)
0 0350 015200 9 984800]1.035620.96561)1 00062(0 03500]0.035
0.040[0 017372 9 982628]1 04081(0.96079)1 000800 04001|0 040)
0 045/0.019543 0 98045741 04603(0 9560001 .00102(0).045020 045
0 050(0 021715 9 978285'1 0512710 9512301.0012510 05003(0 050,
0 06 |0 026058] 9.97394241 0618410 9417dl.00180 0.06004{0 06
0 07 (0 030401 0.96959941.07251/0 9323941 002450 07006/0 07
0.08 |0 034744 9 965256]1 08329/0 92312]1.00321/0.08008(0 08
009, 0.0390865 9 960914]1 09417(0 91393f1 004050 09011/0.09
0.10 [0 043429 9.956571J1.10516/0 90484§1.00500/0 10016(0 10
0.12 (0.052115 9.947885 1.12750‘0 88692)1.00721(0 12028[0 12
0.14 |0.060801 9.939109)1. 15027 0.86936'1 00982/0.14046[) 14
0.16 [0.069487 9 93051341 17351(0 85214]1 012830 1606/, 16
0.18 |0 078173, 9.921827)L 19721(0.83527}1 01624|0.180970 18
0.20 0.086859 9.913141]1 22140(0 81873)1.02008/0.20134/0.20
1 | !

¢+ 00012 001000494,

= 0020 99900049,
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Tasue II—Continued,

EXPONENTIAL AND HYPERBOLIC FUNCTIONS.

285

| log et® | loge~® | et2 i cosh z | sinhz | =z

020 ] 0.086859 | 9 913141 | 1 22140 0 81873 1.02006 | 0 20134 | 0 20
025 | 0.108574 | 9 891426 § 1.28403] 0 77880 103142 | 0 25261 [ 025
030 | 0.130288 | 9 869712 | 1 34986| 0 74082 1.04534 | 0.30457 | 0 30
035 | 0152003 | 9 847997 | 1 41907| 0 70469 106188 | 0 35719 | 0 35
040 | 0 173718 | 9 826282 | 1 49183| 0 67032 1.08108 | 0 41076 | 0 40
045 | 0.195433 | 9 804567 | 1 56831 0.63763 1.10297 | 046534 | 0 45
050 | 0217147 | 9 782853 | 1 64870 0 60653 112761 | 052108 | 0 50
06 | 0.260577 | 9 730423 | 1.82212| 0.54881 1.19546 | 0 63666 | 0 6
07 |0.304006 | 9 695994 | 2 01375 0 49659 125517 | 075858 | 07
08 | 0347436 | 9 652564 | 2 22554 0 44933 1.33744 | 088811 {08
09 |0.390865 | 9.609135 | 2 45960 0 40657 143300 | 102657 |09
10 | 0434294 | 9 565706 § 2 71828 0 36788 1.54308 | 117520 [ 10
12 10521153 | 9 478847 § 3 32011] 0 30119 1.81065 | 1 50046 2
14 | 0608012 | 9 391988 § 4 05520| 0 24660 215090 | 1 90430 4
1.6 | 0 694871 | 9.305120 | 4.95304| 0.20180 2 57745 | 2 37657

18 | 0781730 | 9 218270 | 6 04965| 0 16530 310745 | 3 44218

2.0 | 0.868580 | 9.131411 § 7.38906] 0 13534 376220 | 3 62686 | 2.0
2.5 | 1085736 | 8 914264 | 12 1825 | 0.082085 6.1323 60002 |25
3.0 | 1.302883 | 8 694117 | 20 0855 | 0 048797 ] 10.0677 | 10 0178 .0
35 | 1.520030 | 8.479970 f 33 1154 | 0 030197 | 16.57°8 | 16.5426 {35
4,0 | 1.737178 | 8.262822 | 54,5983 | 0 018316 ] 27.3083 | 27,2000 |40
4.5 | 1.954325 | 8 045675 | 90.0170 | 0.011109 | 45.0141 | 450030 |45
5.0 | 2.171472 | 7.828528 [148.413 0.006738 | 74 210 74 203 5.0
6 9 605767 | 7.804233 403 428 0.002479 f201.715 (201 713 8

7 3 040061 | 6.959939 ]1096.63 0.000912 |————— | T

8 3.474356 | 6 525644 2980.96 0 000335 =4e+? 8

9 3.908650 | 6 091350 |8103 08 0.000123 forz> 6 9
10 4,342045 | 5.657055 ‘22026 5 0 0000454 10
12 5.211534 | 4 788466 162755/ 0.0000061 12
14 6.080123 | 3.919877 | 1202610{ 0.00000083] 14
16 6.948712 | 3.051288 | 8886120| 0.0000001} 16
18 7.817301 | 2 182699 | 65660000| 0.0000000 18
20 8 685890 | 1.314110 r85166000 0 00000000 20







INDEX.

A

Abehian integrals and functions, 276.
Absolute number, 4.
value of fractional expression, 49.
of general number, 30.
Accuracy of approximation estimated
200.
of transmission line equations,
of caleulation, 252.
of eurve equation, 210.
Addition, 1.
of general number, 28.
and subtraction of trigonometric
functions, 102.
Algebra of general number or com-
plex quantity, 25.
Algebraic expression, 265.
function, 265.
Alternating current and voltage vee-
tor, 41.
functions, 117, 125.
waves, 117, 125.
Alternations, 117.
Alternator short circuit current,
approximated, 195.
Analytical calculation of extrema,
152.
function, 265.
Angle, see also Phase angle.
Approximate caleulation, 254.
Approximations giving (14s) and
(1-s), 201.
of infinite series, 53.
methods of, 187.
Arbitrary constants of seres, 69, 79.
Areq of triangle, 106.
Arrangement of numerical calcula-
tions, 249.

B

Base of logarithm, 21.
Binomial series with small quantities,

theorem, mfinite series, 59.
of trigonometne function, 104.
Biquadratic parabola, 219.

C

Caleulation, accuracy, 252.
checking of, 262.
numerical, 249.
reliability, 261.
Capacity, 65.
Change of curve law, 211, 233.
Characteristics of exponential curves,

of parabolic and hyperbolic curves,

Charging current maximum of con-
denser, 176.

Checking calculations, 262.

Ciphers, number of, in calculations,
255.

Circle defining trigonometric func-
tions, 94.
Coefficients, unknown,
series, 60.
Combination of exponential functions,

229.
of general numbers, 28
of vectors, 29.
Comparison of exponential and hyper-
bolic curves, 228.
Complex imaginary quantities, see
General number.
quantity, 17
algebra, 27.
see (General number.

of infinite

287
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Complementary angles in trigono-
metric functions, 99.
Conjugate numbers, 31.
Constant, arbitrary of series, 69, 79.
errors, 186.
fagtor with parabolic and hyper-
bolic curves, 223.
phenomena, 106.
terms of eurve equation, 211.
of empirical curves, 232.
in exponential curves, 228.
with exponential curves, 227.
in pambolic and hyperbolic
curves, 225,
Convergency determinations of series,
57.
of potential series, 215.
Convergent series, 6.
Careloss by potential series, 213.
curve evaluation, 242.
Cosecant function, 98.
Cosh function, 276.
Cosine-amphtude, 270.
function, 94.
components of wave, 121, 125.
series, 82.
versus function, 98.
Cotangent function, 94.
Counting, 1.
Current change curve evaluation, 239.
input of induetion motor, approxi-
imated, 191.
maximum of alternating irans-
mission cireuit, 159.
of distorted voltage wave, 169.
Curves, checking calculations, 263.
empirical, 200.
law, change, 233.
rational equation, 210,
use of, 257.

D

Data on caleulations and curves, 261.
derived from curve, 258.
Decimal error, 263.
number of, in calculations, 255.
Definite integrals of trignometrie
functions, 103.
Degrees of accuracy, 253.
Delta-amplitude, 270.
Differential equations, 64.
of electrical engineering, 65, 78,
86.

INDEX.

Differential equations of second order,
78.
Differentiation of trigonometric func-
tions, 103.
Distorted electric waves, 108
Distortion of wave, 139.
Divergent series, 56.
Division, 6
of general number, 42.
with small quantitics, 190.
Double angles in trigonometric func-
tions, 103,
peaked wave, 246.
periadicity of elliptic functions, 270.
seale, 260.

E
g 21
Efficiency maximum of alternator,
162.
of impulse turbine, 154.
of induction generator, 177.
of transformer, 155, 174.
Electrical engineering, differential
equations, 65, 78, 86.
Ellipse, length of are, 272.
Elliptic mtegrals and functions, 270.
Empirical curves, 209,
evaluation, 233,
cquation of curve, 210.
Engineering, defferential cquations,
65, 78, 86.
Equilateral hyperhola, 217.
Errors, constant, 186.
numerical, 263.
of observation, 180.
Estimate of accuraey of approxima-
tion, 200.
Evaluation of empirical eurves, 232.
Even functions, 81, 98,276,
periodic, 122.
harmonies, 117,
separation, 120, 125, 134.
Evolution, 9.
of general number, 44,
of series, 70.
Exact caleulation, 254.
Exciting current of transformer,
resolution, 137.
Explicit analytic function, 205.

' Exponent, 9.

Exponential curves, 226.
forms of general number, 50.
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Exponential functions, 52, 268, 275
with small quantities, 196.
tables, 283, 284, 285.

series, 71.
amd trignometrie functions, rela-
tion, §3.
Extrapolation on curve, limitation,
210.
Extrema, 147,
analytic determmation, 152.
graphical construetion of differen-
tial function, 170
graphical determination, 147, 150,
168,
with mtermediate variables, 155
with several variables, 163.
smiplification ot function, 157

T
Factor, constant, with parabolic and
hypetholie curves, 223.
Tun motor torque by potential series,
215.
Tlat top wave, 246
zero waves, 246
Tourer series, see Trigonometrie
series.
Fraction, 8.
as sorios, 52
Fractional exponents, 11, 44.
expressions of general number, 49.
Full scale, 260.
Tunctions, theory of, 265.

G

Gamima function, 275.
General number, 1, 16.
algebra, 25.
exponential forms, 50.
reduction, 48.
Graphical determination of extrema,
147, 150, 168.

H
Talf angles in trigonometric func-
tions, 103.

Half waves, 117.
Half scale, 260.
Harmonics, even, 117.

odd, 117.

of trigonometric series, 114,

two, in wave, 246.
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High harmonies in wave shape, 246.
Hunting of synehronous machines,
248.
Hyperbola, arc of, 61.
equilateral, 217
Hyperholic curves, 216.
functions, 275
curve shape, 231.
Tables, 284, 285.
integrals and functions, 269
Hyperelliptic integrals and functions,
272

I

Imaginary number, 26.
quantity, see Quadrature number.
Incommensurable waves, 248
Indeterminate coefficients, method,
71
Indeterminate coefficients of infimte
series, 60.
Individuals, 8.
Inductance, 65
Infinite series, 52.
values of curves, 211.
of cmpirical curves, 232.
Inflection points of curves, 153.
Impedance vector, 41
Implicit analytic function, 265.
Integral function, 266.
Integation constant of series, 69, 79
of differential equation, 65.
by infinite serics, 60.
of trigonometric functions, 103.
Intelligibility of calculations, 256.
Intercepts, defining tangent and co-
tangent functions, 94.
Involution, 9.
of general numbers, 44.
Irrational numbers, 11.
Irrationalhty of representation by
potential series, 213.

J
i, 14.

L

Least squares, method of, 179, 186.
Limitation of mathematical represen-
tation, 40.
of method of least squares, 186.
of potential series, 216.
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Limiting value of infinite series, 54.
Linear number, 33.

see Positive and negative number.
Line calculation, 249.

equations, approxumated, 204.
Logarithm of exponential curve, 228.

as infinite series, 63.

of parabolic and hyperbolic curves,

225.

with small quantities, 197.
Logarithmation, 20.

of general numbers, 51.
Logarithmie curves, 226.

functions, 263

paper, 232.
Loss of curve induction motor, 183.

M

Magnetite are, volt-ampere character-
istie, 237.
Magnetite characteristic, evaluation,
244,
Magnitude of effect, determmation,
253.
Maximum, see Extremum,
Maxima, 147.
MeLaurin's series with small quan-
tities, 198.
Mechanism of calculating empirical
curves, 235.
Methods of calculation, 249.
of indeterminate coefficients, 71.
of least squares, 179, 186.
Minima, 147.
Minimum, see Extremun.
Multiple frequencies of waves, 248
Multiplicand, 39.
Multiplication, 6.
of general numbers, 39.
with small quantities, 188.
of trigonometric functions, 102.
Multiplier, 39.

N

Negative angles in trigonometric
functions, 98.

exponents, 11.

number, 4.
Nodes in wave shape, 247,
Non-periodie curves, 212.
Nozzle efficiency, maximum, 150.
Number, general, 1.

INDEX.

Numerical calculations, 249
values of trigonometric functions,
101.

0

Observation, errors, 180.
0dd funetions, 81, 98, 276.

periodic, 122.

harmomes m symmetrical wave,
117.

separation, 120, 125, 134
Omissions 1n caleulations, 263.
Operator, 40
Order of small quantity, 188.
Oscillating functions, 92.
Output, see power.

P
z and % added and subtracted in

trigonometrie function, 100.
Parabola, common, 218.
Paraholic curves, 216
Parallelogram law of general numbers
.28,
of vectors, 20.
Peaked wave, 246.
Pendulum motion, 272.
Percentage change of parabolic and
hyperbolie curves, 223.
Periodic curves, 246.
decimal fraction, 12.
phenomena, 106.
Periodieity, double, of elliptic func-
tions, 270.
of trigonometric funetions, 96.
Permeability maximum, 148, 170.
Phase angle of {ractional exprossion,
49.
of general number, 28.
Plain number, 32.
see General number.
Plotting of curves, 212.
proper and improper, 259.
of empirical curve, 232.
DPolar co-orcinates of general number,
25, 97.
expression of general number, 25,
27, 38, 43, 44, 48.
Polyphase relation, redueing trigo-
nometrnc series, 134.
of trigonometric funetions, 104,
system of points or vectors, 46.
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Positive number, 4.
Potential series, 52, 212.
Power factor maximum of induction
motor, 149.
maximum of alternating trans-
mission circuit, 158
of generator, 161.
of shunted resistance, 135.
of storage hattery, 172.
of transformer, 173
of transmission line, 165.
not veetor product, 42.
of shunt motor, approximated, 189.
with small quantities, 194.
Probability calculation, 181.
Product series, 274.
of trigonometric functions, 102.
Projection, defining cosine {unction,
94,
Projector, defining sine function, 94.

Q

Quadrants, sign of trigonometric
funetions, 96.
Quadrature numbers, 13.
Quarter seale, 260.
- Quaternions, 22.

R

Radius veetor of general number, 28.

Range of convergency of serics, 56.

Rational equation of curve, 210.
funetion, 266

Rationality of potential series, 214.

Real number, 26.

Rectangular co-ordinates of general

number, 25.
Reduction to absolute values, 48.
Relations of hyperbolic, trigono-

metric and exponential func- -

tions, 280.

Relativeness of small quantities, 188.

Reliability of numerical calculations,
261.

Resistance, 65

Resolution of vectors, 29.

Reversal by negative unit, 14.

Reverse function, 265.

Right triangle defining trigonometric
functions, 94.

Ripples in wave, 45.

201

Roots of general numbers, 45.
with small quantities, 194.
of umit, 18, 19, 46.

Rotation hy negative unit, 14,
by*quadrature unit, 14.

S

Saw-tooth wave, 246.
Sealar, 26, 28, 30.
Scale 1 curve plotting, proper and
improper, 259, 212.
full, double, half, ete., 260.
Secant function, 98.
Secondary effects, 210.
phenomena, 233.
Series, exponential, 71.
infinite, 52.
trigonometric, 106.
Shape of curves, 212.
proper in plotting, 259.
of exponential curve, 226, 229,
of function, by curve, 257.
of hyperholic functions, 231.
of parabolic and hyperbolic curves,
27.
Sharp zero wave, 246.
Short cireuit current of alternator,
approximated, 195.
Sign error, 264.
of trigonometric functions, 95.
Simplification by approximation, 187.
Sme-amplitude, 270.
component of wave, 121, 125,
function, 94.
series, 82.
versus function, 98.
Sinh funetion, 276.
Slide rule accuracy, 254.
Small quantities, approximation, 187.
Squares, least, method of, 179, 186.
Special functions, 273.
Steam path of turbine, 33.
Subtraction, 1.
of general number, 28,
of trigonometric functions, 102.
Summation series, 274.
Surging of synchronousmachines, 272.
Supplementary angles in trigonomet-
ric functions, 99.
Symmetrical curve maximum, 150.
periodic function, 117,
wave, 117.
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T

Tabular form of calculation, 249.
Tangent function, 94.
Taylor’s series with small quantities,
199.
Temperature wave, 131.
Temporaryuse of potential series, 216.
Terminal conditions of problem, 69.
Terms, constant, of empirical curves,
232.
in exponential curve, 228.
with exponential curve, 227,
in parabolic and hyperbolic
curves, 225.
of infinite series, 53.
Theorem, binomial, infinite series,
59
Thermomotive force wave, 133.
Theta functions, 271. ¥
Third harmonie, separation, 136.
Torque of fan motor by potential
series, 215.
Transient current curve, evaluation,

phenomena, 106.
Transmission line calculation, 249.
equations, approximated, 204.
Triangle, defining trigonometric fune-
tions, 94.
trigonometric relations, 106.
Trigonowmetric and exponential fune-
tions, relation, 83.
functions, 94, 275.
series, 82.
with small quantity, 198S.
integral: and functions, 269.

INDEX.

Trigonometric series, 106.
calculation, 114, 116, 139.
Triple harmonie, separation, 136.
peaked wave, 246.
scale, 260.
Tungsten filament, volt-ampere char-
acteristic, 233.
Turbine, steam path, 33.

U
Univalent functions, 106.

TUnsymmetrie curve maximum, 151.
wave, 138.

v
Values of trigonometric funciions,
101.

Vector analysis, 32.
multiplication, 39.
quantity, 32.
see General number.
representation by general number,

Velocity diagram of turbine steam
path, 34.
functions of electric field, 275.
Versed sine and cosine functions, 98.
Volt-ampere characteristic of magnet-
ite are, 237.
of tungsten filament, 233.

zZ

Zero values of curve, 211,
of empirical curves, 232.
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