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PREFACE '

THE following work owes its origin to a course of instruction
given during the last few years to the senior class in electrical
engineering at Union University and represents the work of a
number of years. It comprises the investigation of phenomena
which heretofore have rarely been dealt with in text-books but
have now become of such importance that a knowledge of them
is essential for every electrical engineer, as they include some of
the most important problems which electrical engineering will
have to solve in the near future to maintain its thus far unbroken
progress. )

A few of these transient phenomena were observed and experi-
mentally investigated in the early days of electrical engineering,
for instance, the building up of the voltage of direct-current

_generators from the remanent magnetism. Others, such as the
investigation of the rapidity of the response of a compound
generator or a booster to a change of load, have become of impor-
tance with the stricter requirements now made on electric systems.
Transient phenomena which were of such short duration and
small magnitude as to be negligible with the small apparatus of
former days have become of serious importance in the huge
generators and high power systems of to-day, as the discharge of
generator fields, the starting currents of transformers, the short-
circuit currents of alternators, etc. Especially is this the case
with two classes of phenomena closely related to each other: the
phenomena of distributed capacity and those of high frequency
currents. Formerly high frequency currents were only a subject
for brilliant lecture experiments; now, however, in thé wireless
telegraphy they have found an important industrial use. Teleph-
ony has advanced from the art of designing elaborate switch-

boards to an engineering science, due to the work of M. I. Pupin
vil
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and others, dealing with the fairly high frequency of sound
waves. Especially lightning and all the kindred high voltage
and high frequency phenomena in electric systems have become
of great and still rapidly increasing importance, due to the
great increase in extent and in power of the modern electric
systems, to the interdependence of all the electric power users in
a large territory, and to the destructive capabilities resulting
from such disturbances. Where hundreds of miles of high and
medium potential circuits, overhead lines and underground
cables, are interconnected, the phenomena of distributed capacity,
the effects of charging currents of lines and cables, have become
such as to require careful study. Thus phenomena which once
were of scientific interest only, as the unequal current distribu-
tion in conductors carrying alternating currents, the finite velocity
of propagation of the electric field, etc., now require careful study
by the electrical engineer, who meets them in the rail return of
the single-phase railway, in the effective impedance interposed
to the lightning discharge on which the safety of the entire
system depends, etc.

The characteristic of all these phenomena is that they are
transient functions of the independent variable, time or distance,
that is, decrease with increasing value of the independent variable,
gradually or in an oscillatory manner, to zero at infinity, while
the functions representing the steady flow of electric energy are
constants or periodic functions.

While thus the phenomena of alternating currents are repre-
sented by the periodic function, the sine wave and its higher
harmonics or overtones, most of the transient phenomena lead
to a function which is the product of exponential and trigono-
metric terms, and may be called an oscillating function, and its
overtones or higher harmonics.

A second variable, distance, also enters into many of these
phenomena; and while the theory of alternating-current appara-
tus and phenomena usually has to deal only with functions of
one independent variable, time, which variable is eliminated by
the introduction, of the complex quantity, in this volume we
have frequently to deal with functions of time and of distance.
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We thus have to consider alternating functions and transient
functions of time and of distance.

The theory of alternating functions of time is given in “Theory
and Calculation of Alternating Current Phenomena.” Transient
functions of time are studied in the first section of the present
work, and in the second section are given periodic transient
phenomena, which have become of industrial importance, for
instance, in rectifiers, for circuit control, etc. The third section
gives the theory of phenomena which are alternating in time and
transient in distance, and the fourth and last section gives
phenomena transient in time and in distance.

To some extent this volume can thus be considered as a con-
tinuation of “Theory and Calculation of Alternating Current
Phenomena.”

In editing this work, I have been greatly assisted by Prof. O.
Ferguson, of Union University, who has carefully revised the
manuscript, the equations and the numerical examples and
checked the proofs, so that it is hoped that the errors in the
work are reduced to a minimum.

Great credit is due to the publishers and their technical staff
for their valuable assistance in editing the manuscript and for
the representative form of the publication they have produced.

CHARLES P. STEINMETZ. -

ScHENECTADY, December, 1908.
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TRANSIENT PHENOMENA IN TIME

CHAPTER L

THE CONSTANTS OF THE ELECTRIC CIRCUIT,

1. To transmit electric energy from one place where it is
generated to another place where it is used, an electric cir-
cuit is required, consisting of conductors which connect the
point of generation with the point of utilization.

When electric energy flows through a circuit, phenomena
take place inside of the conductor as well as in the space out-
side of the conductor.

In the conductor, during the flow of electric energy through
the circuit, electric energy is consumed continuously by being
converted into heat. Along the circuit, from the generator
to the receiver circuit, the flow of energy steadily decreases
by the amount consumed in the conductor, and a power gradi-
ent exists in the circuit along or parallel with the conductor.

(Thus, while the voltage may decrease from generator to
receiver circuit, as is usually the case, or may increase, as in
an alternating-current circuit with leading current, and while
the current may remain constant throughout the circuit, or
decrease, as in a transmission line of considerable capacity
with a leading or non-inductive receiver circuit, the flow of
energy always decreases from generating to receiving circuit,
and the power gradient therefore is characteristic of the direc-
tion of the flow of energy.)

In the spaee outside of the conductor, during the flow of
energy through the circuit, a condition of stress exists which
is called the electric field of the conductor. That is, the
surrounding space is not uniform, but has different electric
and magnetic properties in different directions.

No power is required to maintain the electric field, but energy

3
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is required to produce the electric field, and this energy is
returned, more or less completely, when the electric field dis-
appears by the stoppage of the flow of energy.

Thus, in starting the flow of electric energy, before a perma-
nent condition is reached, a finite time must elapse during
which the energy of the electric field is stored, and the generator
therefore gives more power than consumed in the conductor
and delivered at the receiving end; again, the flow of electric
energy cannot be stopped instantly, but first the energy stored
in the electric field has to be expended. As result hereof,
where the flow of electric energy pulsates, as in an alternating-
current circuit, continuously electric energy is stored in the
field during a rise of the power, and returned to the circuit
again during a decrease of the power.

The electric field of the conductor exerts magnetic and elec-
trostatic actions.

The magnetic action is a maximum in the direction concen-
tric, or approximately so, to the conductor. That is, a needle-
shaped magnetizable body, as an iron needle, tends to set itself
in a direction concentric to the conductor.

The electrostatic action has a maximum in a direction radial,
or approximately so, to the conductor. That is, a light needle-
shaped conducting body, if the electrostatic component of the
field is powerful enough, tends to set itself in a direction radial
to the conductor, and light bodies are attracted or repelled
radially to the conductor

Thus, the electric field of a circuit over whlch energy flows
has three main axes which are at right angles with each other:

The electromagnetic axis, concentric with the conductor.

The electrostatic axis, radial to the conductor.

The power gradient, parallel to the conductor.

This is frequently expressed pictorially by saying that the
lines of magnetic force of the circuit are concentric, the lines
of electrostatic force radial to the conductor.

Where, as is usually the case, the electric circuit consists of
several conductors, the electric fields of the conductors super-
impose upon each other, and the resultant lines of magnetic
and of electrostatic forces are not concentric and radial respec-
tively, except approximately in the immediate neighborhood
of the conductor.
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Between parallel conductors they are conjugate pencxls of
circles.

2. Neither the power consumption in the conductor, nor
the electromagnetic field, nor the electrostatic field, are pro-
portional to the flow of energy through the circuit.

The product, however, of the intensity of the magnetic field,
®, and the intensity of the electrostatic field, ¥, is proportlonal
to the flow of energy or the power, P, and the power P is there-
fore resolved into a product of two components, 7 and e, which
are chosen proportional respectively to the intensity of the
magnetic field ® and of the electrostatic field .

That is, putting

P =z {1

we have
& = L: = the intensity of the electromagnetic field. 2)
¥ = Ce = the intensity of the electrostatic field. 3

The component 7, called the current, is defined as that factor
of the electric power P which is proportional to the magnetic
field, and the other component e, called the voltage, is defined
as that- factor of the electric power P which is proportional to
the electrostatic field.

Current ¢ and voltage e, therefore are mathematical fictions,
factors of the power P, introduced to represent respectively the
magnetic and the electrostatic phenomena.

The current ¢ is measured by the magnetic action of a circuit,
as in the ammeter; the voltage e, by the electrostatic action of
a circuit, as in the electrostatic voltmeter, or by producing a
current ¢ by the voltage e and measuring this current ¢ by its
magnetic action, in the usual voltmeter.

" The coefficients L and C, which are the proportionality factors
of the magnetic and of the electrostatic component of the
electric field, are called the inductance and the capacity of the
circuit, respectively.

As electric power P is resolved into the product of current ¢
and voltage e, the power loss in the conductor, P,, therefore can
also be resolved into a product of current ¢ and voltage ¢
which is consumed in the conductor. That is,

P[-'l.&[.
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It is found that the voltage consumed in the conductor, ¢, is
proportional to the factor 7 of the power P, that is,

e = ri, 4)
where r is the proportionality factor of the voltage consumed
by the loss of power in the conductor, or by the power gradient,
and is called the reststance of the circuit.

Any electric circuit therefore must have three constants,
r, L, and C, where

r = circuit constant representing the power gradient, or the
loss of power in the conductor, called resistance.

L = circuit constant representing the intensitv of the electro-
magnetic component of the electric fic.d of the circuit,

called 1nductance.

C = circuit constant representing the intensity of the electro-
static component of the electric field of the circuit, called
capactty.

8. A change of the magnetic field of the conductor, that is,

of the number of lines of magnetic force ¢ surroundmg the
conductor, generates an e.m.f.

-

_ 99
=% (5)
in the conductor and thus absorbs a power
P=1id = z@- )
or, by equation (2), &
P=Li— @)

and the total energy absorbed by the magnetic field during the
rise of current from zero to 7 is

Wy = f Prdt ®)
- L f i,
that is, aL

Wy =" ®
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A change of the electrostatic field of the conductor, ¥,

absorbs a current proportional to the change of the electro-
static field:

av
, Y
V= (10)
and absorbs the power
) av
/" — ey = _
Pl=¢e’ =e¢ l (11)
or, by equation (3),
de
" ,
P’ = Cedt (12)

and the total en"é‘rgy absorbed by the electrostatic field during
a rise of voltage from 0 to e is

W = f Pdt (13)
= C fede,
that is _— e%’ . w0
The power consumed in the conductor by its resistance r is
P, = ie, (15)
and thus, by equation (4),
P, = or. (16)
That is, when the electric power
P=e ()

exists in a circuit, it is

P,= 7% = power lost in the conductor, (16)

v
Wy= 1—22 =energy stored in the magnetic field of the circuit, (9)
Wg= —5~ = energy stored in the electrostatic field of the cir-

cuit, (14)
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and the three circuit constants r, L, C' therefore appear as the
components of the energy conversion into heat, magnetism, and
electric stress, respectively, in the circuit.

4. The circuit constant, resistance r, depends only on the
size and material of the conductor, but not on the position of
the conductor in space, nor on the material filling the space
surrounding the conductor, nor on the shape of the conductor
section.

The circuit constants, inductance L and capacity C, almost
entirely depend on the position of the conductor in space, on
the material filling the space surrounding the conductor, and
on the shape of the conductor section, but do not depend on
the material of the conductor, except to that small extent as
represented by the electric field inside of the conductor section.

6. The resistance r is proportional to the length and inversely
proportional to the section of the conductor,

l .
r=p0 a ) (17)
where - p is a constant of the material, called the resistivity or
specific resistance.

For different materials, p varies probably over a far greater
range than almost any other physical quantity. Given in ohms
per centimeter cube* it is, approximately, at ordinary tem-
peratures:

Metals: Cu....o.oovvvvo il 1.6 x 10~°
Al 2.5 10"°
Fe.. ..o 10 x 10~*
Hg. ... .o 94 X 10°°
Gray castiron.............. up to 100 x 10~*
High-resistance alloys. . .. ... up to 150 X 10™°
Electrolytes: NOH............ .down to 1.3 at 30-per cent
: KOH............. down to 1.9 at 25 per cent
NaCl..............down to 4.7 at 25 per cent

up to '
Pureriverwater . ....................... 10*

and over alcohols, oils, etec., to practically infinity.

* Meaning a conductor of one centimeter length and one square centimeter
section.
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So-called ‘“‘insulators’:

Fiber...... e e e about 10*
Paraffinoil.............................. about 10*
Paraffin........................... about 10 to 10
Mica. ... ... about 10"
Glass. . ... about 10" to 10
Rubber...... ... ... .. ... ... ... .. about 10
Alro .o practically oo

In the wide gap between the highest resistivity of metal
alloys, about p = 150 X 107% and the lowest re31st1v1ty of
electrolytes, about p = 1, are

Carbon: metallic. ..................... about 0.0003
amorphous (dense).......... 0.04 and higher
anthracite........................ very high

Silicon and Silicon Alloys:
Cast silicon.......... e 1 down to 0.04
Ferro silicon. ........... ....0.04 down to 50 X 10~°

The resistivity of arcs and of Geissler tube discharges is of about
the same magnitude as electrolytic resistivity.

The resistivity, p, is usually a function of the temperature,
rising slightly with increase of temperature in metallic conduct-
ors and decreasing in electrolytic conductors. Only with few
materials, as silicon, the temperature variation of p is so enor-
mous that p can no longer be considered as even approximately
constant for all currents ¢ which give a considerable tempera-
ture rise in the conductor. Such materials are commonly
called pyroelectrolytes.

6. The inductance L is proportional to the section and
inversely proportional to the length of the magnetic circuit
surrounding the conductor, and so can be represented by

= ﬂr (18)
l
where 4 is a constant of the material filling the space surround-
ing the conductor, which is called the magnetic permeability.

As in general neither section nor length is constant in differ-

ent parts of the magnetic circuit surrounding an electric con-
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ductor, the magnetic circuit has as a rule to be calculated
piecemeal, or by integration over the space occupied by it.

The permeability, g, is constant and equals unity or very
closely ¢ = 1 for all substances, with the exception of a few
materials which are called the magnetic materials, as iron,
cobalt, nickel, etc., in which it is very much higher, reaching
sometimes and under certain conditions in iron values as high
as p = 6000.

In these magnetic materials the permeability x is not con-
stant but varies with the magnetic flux density, or number of
lines of magnetic force per unit section, ®, decreasing rapidly
for high values of ®.

In such materials the use of the term y is therefore incon-
venient, and the inductance, L, is calculated by the relation
between -the magnetizing force as given in ampere-turns per
unit length of magnetic circuit, or by ‘“field intensity,” and
magnetic induction ®. )

The magnetic induction ® in magnetic materials is the sum
of the “space induction’’ 3¢, corresponding to unit permeability,
plus the “metallic induction ” ®’, which latter reaches a finite
limiting value. That is,

® =3+ ®. (19)
The limiting values, or so-called ‘“‘saturation values,” of ®’

are approximately, in lines of magnetic force per square centi-
meter:

Iron..... . ... . 20,000
Cobalt.......... ... ... ... . 12,000
Nickel......... ... . ... . . . .. 6,000
Magnetite. .:...... ... ... 5,000
Manganese alloys . .................... .up to 4,000

The inductance, L, therefore is a constant of the circuit if
the space surrounding the conductor contains no magnetic
material, and is more or less variable with the current, ¢, if
magnetic material exists in the space surrounding the conductor.
In the latter case, with increasing current, ¢, the inductance, L,
first slightly increases, reaches a maximum, and then decreases,
approaching as limiting value the value which it would have in
the absence of the magnetic material.
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7. The capacity, C, is proportional to the section and inversely
proportional to the length of the electrostatic field of the con-
ductor: A

c=" (20)
where « is a constant of the material filling the space surround-
ing the conductor, which is called the “dielectric constant,” or
the “specific capacity.”

Usually the section and the length of the different parts of
the electrostatic circuit are different, and the capacity therefore
has to be calculated piecemeal, or by integration.

The dielectric constant « of different materials varies over a
relative narrow range only. It is approximately: '

x = 1in the vacuum, in air and in other gases,
x = 2 in oils, paraffins, fiber, etc.,

x = 3 to 4 in rubber and gutta-percha,

x« = 3 to 5 in glass, mica, etc.,

reaching values as high as 7 to 8 in organic compounds of heavy
metals, as lead stearate, and about 12 in sulphur. ‘
The dielectric constant, , is practically constant for all voltages
e, up to that voltage at which the electrostatic field intensity,
or the electrostatic gradient, that is, the “volts per centimeter,”’
exceeds a certain value 8, which depends upon the material and
which is called the “dielectric strength”’ or ““disruptive strength”’
of the material. At this potential gradient the medium breaks
down mechanically, by puncture, and ceases to insulate, but
electricity passes and so equalizes the potential gradient.
The disruptive strength, d, given in volts per centimeter is
approximately :
Air: 60,000.
Oils: 250,000 to 1,000,000.
Mica: up to 4,000,000.

The capacity, C, of a circuit therefore is constant up to the
voltage e, at which at some place of the electrostatic field the
dielectric strength is exceeded, disruption takes place, and a
part of the surrounding space therefore is made conducting, and
by this increase of the effective size of the conductor the capacity
C is increased.
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8. Of the amount of energy consumed in creating the electric
field of the circuit not all is returned at the disappearance of
the electric field, but a part is consumed by conversion into heat
in producing or in any other way changing the electric field.
That is, the conversion of electric energy into and from the
electromagnetic and electrostatic stress is not complete, but a
loss of energy occurs, especially with the magnetic field in the
so-called magnetic materials, and with the electrostatic field in
unhomogeneous dielectrics.

The energy loss in the production and reconversion of the
magnetic component of the field can be represented by an
effective resistance v which adds itself to the resistance r, of
the conductor and more or less increases it.

The energy loss in the electrostatic field can be represented
by an effective resistance r, shunting across the circuit, and
consuming an energy current ¢”/, in addition to the current 7 in
the conductor. Usually, instead of an effective resistance r”,
its reciprocal is used, that is, the energy loss in the electro-
static field represented by a shunted conductance g.

In its most general form the electric circuit therefore contains
the constants:

2

1. Inductance L, storing the energy, 17,
. . eC
2. Capacity C, storing the energy, 3
3. Resistance r = r, + 1/, consuming the power, ?r = #*r,+%r,
4. Conductance g, consuming the power, €é’g,

where 7, is the resistance of the conductor,  the effective resist~
ance representing the power loss in the magnetic field L, and ¢
represents the power loss in the electrostatic field C.

9. If of the three components of the electric field, the electro-
magnetic stress, electrostatic stress, and the power gradient, one
equals zero, a second one must equal zero also. That is, either
all of the three components exist or only one exists.

Electric systems in which the magnetic component of the
field is absent, while the electrostatic component may be consider-
able, are represented for instance by an electric generator or
a battery on open circuit, or by the electrostatic machine. In
such systems the disruptive effects due to high voltage, there-
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fore, are most pronounced, while the power is negligible, and
phenomena of this character are usually called “static.”

Electric systems in which the electrostatic component of the
field is absent, while the electromagnetic component is consider-
able, are represented for instance by the short-circuited secondary
coil of a transformer, in which no potential difference and, there-
fore, no electrostatic field exists, since the generated e.m.f. is
consumed at the place of generation. Practically negligible also
is the electrostatic component in all low-voltage circuits.

The effect of the resistance on the flow of electric energy in
industrial applications is restricted to fairly narrow limits: as
the resistance of the circuit consumes power and thus lowers the
efficiency of the electric transmission, it is uneconomical to
permit too high a resistance. As lower resistance requires a
larger expenditure of conductor material, it is usually uneco-
nomical to lower the resistance of the circuit below that which
gives a reasonable efficiency.

As result hereof, practically always the relative resistance,
that is, the ratio of the power lost in the resistance to the total
power, lies between 2 per cent and 20 per cent.

It is different with the inductance L and the capacity C. Of

the two forms of stored energy, the magnetic TL and electro-

static e‘_?C. , usually one is so small that it can be neglected com-

pared with the other, and the electric circuit with sufficient
approximation treated as containing resistance and inductance,
or resistance and capacity only.

In the so-called electrostatic machine and its applications,
frequently only capacity and resistance come into consideration.

In all lighting and power distribution circuits, direct current
or alternating current, as the 110- and 220-volt lighting circuits,
the 500-volt railway circuits, the 2000-volt primary distribution
circuits, due to the relatively low voltage, the electrostatic

energy %C is still so very small compared with the electro-

magnetic energy, that the capacity C can for most purposes be
neglected and the circuit treated as containing resistance and
inductance only.
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Of approximately equal magnitude is the electromagnetic
2
energy l—z-L and the electrostatic energy e;g in the high-potential

long-distance transmission circuit, in the telephone circuit, and
in the condenser discharge, and so in most of the phenomena
resulting from lightning or other disturbances. In these cases
all three circuit constants, r, L, and C, are of essential impor-
tance.

10. In an electric circuit of negligible inductance L and
negligible capacity C, no energy is stored, and a change in the
circuit thus can be brought about instantly without any disturb-
ance or intermediary transient condition.

In a circuit containing only resistance and capacity, as a
static machine, or only resistance and inductance, as a low or
medium voltage power circuit, electric energy is stored essentially
in one form only, and a change of the circuit, as an opening of
the eircuit, thus cannot be brought about instantly, but occurs
more or less gradually, as the energy first has to be stored or
discharged.

In a circuit containing resistance, inductance, and capacity,
and therefore capable of storing energy in two different forms,
the mechanical change of circuit conditions, as the opening of a
circuit, can be brought about instantly, the internal energy of
the circuit adjusting itself to the changed circuit conditions by
a transfer of energy between static and magnetic and inversely,
that is, after the circuit conditions have been changed, a transient
phenomenon, usually of oscillatory nature, occurs in the circuit
by the readjustment of the stored energy.

These transient phenomena of the readjustment of stored
electric energy with a change of circuit conditions require careful
study wherever the amount of stored energy is sufficiently large
to cause serious damage. This is analogous to the phenomena
of the readjustment of the stored energy of mechanical motion:
while it may be harmless to instantly stop a slowly moving light
carriage, the instant stoppage, as by collision, of a fast railway
train leads to the usual disastrous result. So also, in electric
systems of small stored energy, a sudden change of circuit con-
ditions may be safe, while in a high-potential power system of
very great stored electric energy any change of circuit conditions
requiring a sudden change of energy is liable to be destructive.
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Where electric energy is stored in one form only, usually little
danger exists, since the circuit protects itself against sudden
change by the energy adjustment retarding the change, and
only where energy is stored electrostatically and magnetically,
the mechanical change of the circuit conditions, as the opening
of the circuit, can be brought about instantly, and the stored
energy then surges between electrostatic and magnetic energy.

In the following, first the phenomena will be considered which
result from the stored energy and its readjustment in circuits
storing energy in one form only, which usually is as electro-
magnetic energy, and then the general problem of a circuit .
storing energy electromagnetically and electrostatically will be
considered.



CHAPTER II.

INTRODUCTION.

11. In the investigation of electrical phenomena, currents
and potential differences, whether continuous or alternating,
are usually treated as stationary phenomena. That is, the
assumption is made that after establishing the circuit a sufficient
time has elapsed for the currents and potential differences to
reach their final or permanent values, that is, become constant,
with continuous current, or constant periodic functions of time,
with alternating current. In the first moment, however, after
establishing the circuit, the currents and potential differences
in the circuit have not yet reached their permanent values,
that is, the electrical conditions of the circuit are not yet the
normal or permanent ones, but a certain time elapses while the
electrical conditions adjust themselves.

12. For instance, a continuous e.m.f., e, impressed upon a
circuit of resistance r, produces and maintains in the circuit a .
current,

T, =

S|

In the moment of closing the circuit of e.m.f. e, on resistance r,
the current in the circuit is zero. Hence, after closing the circuit
the current ¢ has to rise from zero to its final value 7,. If the
circuit contained only resistance but no inductance, this would
take place instantly, that is, there would be no transition period.
Every circuit, however, contains some inductance. The induc-
tance L of the circuit means L interlinkages of the circuit with,
lines of magnetic force produced by unit current in the circuit,
or ¢L interlinkages by current <. That is, in establishing current
7, in the circuit, the magnetic flux ¢, must be produced. A
change of the magnetic flux :L surrounding a circuit generates
in the circuit an e.m.f,,

(L).

e =

S\%la.
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This opposes the impressed e.m.f. e,, and therefore lowers the
e.n.f. available to produce the current, and thereby the current,
which then cannot instantly assume its final value, but rises
thereto gradually, and so between the starting of the circuit
and the establishment of permanent condition a transition
period appears. In the same manner and for the same reasons,
if the impressed e.m.f. ¢, is withdrawn, but the circuit left closed,
the current ¢ does not instantly disappear but gradually dies
out, as shown in Fig. 1, which gives the rise and the decay of a
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Fig. 1. Rise and decay of continuous current in an inductive circuit.

continuous current in an inductive circuit: the exciting current
of an alternator field, or a circuit having the constants r = 12
ohms; L = 6 henrys, and e, = 240 volts; the abscissas being
seconds of time.

13. If an electrostatic condenser of capacity C is connected
to a continuous e.m.f. e,, no current exists, in stationary con-
dition, in this direct-current circuit (except that a very small
current may leak through the insulation or the dielectric of the
condenser), but the condenser is charged to the potential dif-
ference e,, or contains the electrostatic charge

Q = Ce,.

In the moment of closing the circuit of e.m.f. e, upon the
capacity C, the condenser contains no charge, that is, zero
potential difference exists at the condenser terminals. If there
were no resistance and no inductance in the circuit in the
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moment of closing the circuit, an infinite current would exist
charging the condenser instantly to the potential difference e,
If r is the resistance of the direct-current circuit containing the
condenser, and this circuit contains no inductance, the current

starts at the value 7 = ‘j:, that is, in the first moment after

closing the circuit all the impressed e.m.f. is consumed by the
current in the resistance, since no charge and therefore no
potential difference exists at the condenser. - With increasing
charge of the condenser, and therefore increasing potential
difference at the condenser terminals, less and less e.m.f. is
available for the resistance, and the current decreases, and
ultimately becomes zero, when the condenser is fully charged.

If the circuit also contains inductarice L, then the current
cannot rise instantly but only gradually: in the moment after
closing the circuit the potential difference at the condenser is
still zero, and rises at such a rate that the increase of magnetic
flux <L in the inductance produces an e.m.f. Ldv/dt, which
consumes the impressed e.m.f. Gradually the potential differ-
ence at the condenser increases with its increasing charge, and
the current and thereby the e.m.f. consumed by the resistance
increases, and so less e.m.f. being available for consumption by
the inductance, the current increases more slowly, until ulti-
mately it ceases to rise, has reached a maximum, the inductance
consumes no e.m.f., but all the impressed e.m.f. is consumed by
the current in the resistance and by the potential difference at
the condenser. The potential difference at the condenser con-
tinues to rise with its increasing charge; hence less e.m.f. is
available for the resistance, that is, the current decreases again,
and ultimately becomes zero, when the condenser is fully
charged. During the decrease of current the decreasing mag-
netic flux 7L in the inductance produces an e.m.f., which assists
the impressed e.m.f., and so retards somewhat the decrease of
current.

Fig. 2 shows the charging current of a condenser through an
inductive circuit, as ¢, and the potential difference at the con-
denser terminals, as e, with a continuous impressed e.m.f. e,
for the circuit constants r = 250 chms; L = 100 mh.; C =
10 mf., and e, = 1000 volts.

If the resistance is very small, the current immediately after
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closing the circuit rises very rapidly, quickly charges the con-
denser, but at the moment where the condenser is fully charged
to the impressed e.m.f. e, current still exists. This current
cannot instantly stop, since the decrease of current and there-
with the decrease of its magnetic flux ¢L generates an e.m.f.,

4 8 12 18 20 U 28 N ¥ W

Fig. 2. Charging a condenser through a circuit having resistance and
inductance. Constant potential. Logarithmic charge.

which maintains the current, or retards its decrease. Hence
electricity still continues to flow into the condenser for some
time after it is fully charged, and when the current ultimately
stops, the condenser is overcharged, that is, the potential dif-
ference at the condenser terminals is higher than the impressed
e.an.f. e, and as result the condenser has partly to discharge
again, that is, electricity begins to flow in the opposite direction,
or out of the condenser. In the same manner this reverse
current, due to the inductance of the circuit, overreaches and
discharges the condenser farther than down to the impressed
e.m.f. e, so that after the discharge current stops again a charg-
ing current — now less than the initial charging current —
starts, and so by a series of oscillations, overcharges and under-
charges, the condenser gradually charges itself, and ultimately
the current dies out.

Fig. 3 shows the oscillating charge of a condenser through an
inductive cireuit, by a continuous impressed e.m.f. ¢, The
current is represented by 7, the potential difference at the con-
denser terminals by e, with the time as abscissas. The con-
stants of the circuit are: r = 40 ohms; L = 100 mh.; C =
10 mf., and e, = 1000 volts.

In such a continuous-current circuit, containing resistance,
inductance, and capacity in series to each other, the current at
the moment of closing the circuit as well as the final current
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is zero, but a current exists immediately after closing the
circuit, as a transient phenomenon; a temporary current,
steadily increasing and then decreasing again to zero, or con-
sisting of a number of alternations of successively decreasing
amplitude: an oscillating current.

If the circuit contains no resistance and inductance, the cur-
rent into the condenser would theoretically be infinite. That

Fig. 8. Charging a condenser through a circuit having resistance and
inductance, Constant potential. Oscillating charge.

is, with low resistance and low inductance, the charging current

of a condenser may be enormous, and therefore, although only

transient, requires very serious consideration and investigation.

If the resistance is very low and the inductance appreciable,

the overcharge of the condenser may raise its voltage above

the impressed e.m.f., e, sufficiently to cause disruptive effects.
14. If an alternating e.m.f.,

e = E cos ¥,

is impressed upon a circuit of such constants that the current
lags 45°, that is, the current is

1 = I cos (0 — 45°),

and the circuit is closed at the moment 6 = 45°, at this
moment the current should be at its maximum value. It is,
however, zero, and since in a circuit containing inductance (that
is, in practically any circuit) the current cannot change instantly,
it follows that in this case the current gradually rises from zero
as initial value to the permanent value of the sine wave <.
This approach of the current from the initial value, in the
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present case zero, to the final value of the curve 7, can either
be gradual, as shown by the curve ¢, of Fig. 4, or by a series
of oscillations of gradually decreasing amplitude, as shown by
curve 2, of Fig. 4.

156. The general solution of an electric current problem there-
fore includes besides the permanent term, constant or periodic,
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Fig. 4. Starting of an alternating-current circuit having inductance.

a transient term, which disappears after a time depending upon
the circuit conditions, from an extremely small fraction of a
second to a number of seconds.

These transient terms appear in closing the circuit, opening
the circuit, or in any other way changing the circuit conditions,
a3 by a change of load, a change of impedance, etc.

In general, in a circuit containing resistance and inductance
only, but no capacity, the transient terms of current and volt-
age are not sufficiently large and of long duration to cause
harmful nor even appreciable effects, and it is mainly in circuits
containing capacity that excessiveé values of current and poten-
tial difference may be reached by the transient term, and there-
with serious results occur. The investigation of transient terms
therefore is largely an investigation of the effects of electro-
static capacity.

16. No transient terms result from the resistance, but only
those circuit constants which represent storage of energy, mag-
netically by the inductance L, electrostatically by the capacity
C, give rise to transient phenomena, and the more the resist-
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ance predominates, the less is therefore the severity and dura-
tion of the transient term.

When closing a circuit containing inductance or capacity
or both, the energy stored in the inductance and the capacity
has first to be supplied by the impressed e.m.f. before the
circuit conditions can become stationary. That is, in the first
moment after closing an electric circuit, or in general changing
the circuit conditions, the impressed e.m.f., or rather the source
producing the impressed e.m.f., has, in addition to the power
consumed in maintaining the circuit, to supply the power which
stores energy in inductance and capacity, and so a transient
term appears immediately after any change of circuit condi-
tion. If the circuit contains only one energy-storing constant,
as either imductance or capacity, the transient term, which
connects the initial with the stationary condition of the circuit,
necessarily can be a steady logarithmic term only, or a gradual
approach. An oscillation can occur only with the existence of
two energy-storing constants, as capacity-and inductance, which
permit a surge of energy from the one to the other, and there-
with an overreaching.

17. Transient terms may occur periodically and in rapid suc-
cession, as when rectifying an alternating current by synchro-
nously reversing the connections of the alternating impressed
e.n.f. with the receiver circuit (as can be done mechanically
or without moving apparatus by undirectional conductors, as
arcs). At every half wave the circuit reversal starts a tran-
sient term, and usually this transient term has not yet disap-
peared, frequently not even greatly decreased, when the next
reversal again starts a transient term. These transient terms
may predominate to such an extent that the current essentially
consists of a series of successive transient terms.

18. If a condenser is charged through an inductance, and the
condenser shunted by a spark gap set for a lower voltage than
the impressed, then the spark gap discharges as soon as the
condenser charge has reached a certain value, and so starts a
transient term; the condenser charges again, and discharges,
and so by the successive charges and discharges of the condenser
a series of transient terms is produced, recurring at a frequency
depending upon the circuit constants and upon the ratio of the
disruptive voltage of the spark gap to the impressed e.m.f.
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Such a phenomenon for instance occurs when on a high-
potential alternating-current system a weak spot appears in the
cable insulation and permits a spark discharge to pass to the
ground, that is, in shunt to the condenser formed by the cable
conductor and the cable armor or ground.

19. In most cases the transient phenomena occurring in
electric circuits immediately after a change of circuit conditions
are of no importance, due to their short duration. They
require serious consideration, however, —

(@) In those cases where they reach excessive values. Thus
in connecting a large transformer to an alternator the large
initial value of current may do damage. In short-circuiting a
large alternator, while the permanent or stationary short-circuit
current is not excessive and represents little power, the very
much larger momentary short-circuit current may be beyond
the capacity of automatic circuit-opening devices and cause
damage by its high power. In high-potential transmissions
the potential differences produced by these transient terms may
reach values so high above the normal voltage as to cause
disruptive effects.

() Lightning, high-potential surges, etc., are in their nature
essentially transient phenomena, usually of oscillating character.

(¢) The periodical production of transient terms of oscillating
character is onc of the foremost means of generating electric cur-
rents of very high frequency as used in wireless telegraphy, etc.

(d) In alternating-current rectifying apparatus, by which the
direction of current in a part of the circuit is reversed every half
wave, and the current so made unidirectional, the stationary
condition of the current in the alternating part of the circuit is
usually never reached, and the transient term is frequently of
primary importance.

(¢) In telegraphy the current in the receiving apparatus
essentially depends on the transient terms, and in long-distance
cable telegraphy the stationary condition of current is never
approached, and the speed of telegraphy depends on the duration
of the transient terms.

(f) Phenomena of the same character, but with space instead
of time as independent variable, are the distribution of voltage
and current in a long-distance transmission line; the phenomena
occwrring in multigap lightning arresters; the transmission of
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current impulses in telephony; the distribution of alternating
current in a conductor, asthe rail return of a single-phase railway;
the distribution of alternating magnetic flux in solid magnetic
material, ete.

Some of the simpler forms of transient terms are investigated

and discussed in the following pages.



CHAPTER III.

INDUCTANCE AND RESISTANCE IN CONTINUOUS-
CURRENT CIRCUITS.

20. In continuous-current circuits the inductance does not
enter the equations of stationary condition, but, if e, = impressed
em.f., r = resistance, L = inductance, the permanent value of

.. e
current is 7, = -
r

Therefore less care is taken in direct-current circuits to reduce
the inductance than in alternating-current circuits, where the
inductance usually causes a drop of voltage, and direct-current
circuits as a rule have higher inductance, especially if the circuit
is used for producing magnetic flux, as in solenoids, electro-
magnets, machine-fields.

Any change of the condition of a continuous-current circuit,
as a change of e.m.f., of resistance, etc., which leads to a change
of current from one value %, to another value 7, results in the
appearance of a transient term connecting the current values
1, and 7,, and into the equation of the transient term enters the
inductance.

Count the time ¢ from the moment when the change in the
continuous-current circuit starts, and denote the impressed
em.f. by e, the resistance by r, and the inductance by L.

. € . . o
1,= -,—f = current in permanent or statlonm condition after

the change of circuit condition.

Denoting by 7, the current in circuit before the change, and
therefore at the moment ¢ = 0, by ¢ the current during the
change, the e.m.f. consumed by resistance r is

ar,
and the e.m.f. consumed by inductance L is
dv
L E )

where ¢ = current in the circuit.
26
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di .
-

Hence, e, =1ir + L I @
or, substituting e, = 7,7, and transposing,
T di
——dl = — . 2
L 1—1, ( .)

This equation is integrated by
r ..
- Zt =log (t — 7,) — loge,

where — log ¢ is the integration constant, or,

_r,
1—1,=c .

However, fort = 0, 1 = 7,
Substituting this, gives
| io - ix =,
_ry
hence, T=t 4 @G —t)e ©,° @)

the equation of current in the circuit.
The counter e.m.f. of self-inductance is

di . . -t
| e,=——La—t=r(1o—1,)e L, @
hence a maximum for ¢t = 0, thus:
e’ =11, — 1). 5)

The e.m.f. of self-inductance e, is proportional to the change
of current (i, — 7,), and to the resistance r of the circuit after
the change, hence would be » for r = «, or when opening the
circuit. Thatis, an inductive circuit cannot be opened instantly,
but the arc following the break maintains the circuit for some
time, and the voltage generated in opening an inductive circuit
is the higher the quicker the break. Hence in a highly inductive
circuit, as an electromagnet or a machine field, the insulation
may be punctured by excessive generated e.m.f. when quickly
opening the circuit.
 As example, some typical circuits may be considered.
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21. Starting of a continuous-current lighting circuit, or non~in-

ductive load.

Let e, = 125 volts = impressed e.m.f. of the circuit, and
t, = 1000 amperes = current in the circuit under stationary
condition; then the effective resistance of the circuit is

r =<2 = 0.125 ohm.
’l'l

Assuming 10 per cent drop in feeders and mains, or 12.5 volts,
gives a resistance, r, = 0.0125 ohm of the supply conductors.
In such large conductor the inductance may be estimated as
10 mh. per ohm: hence, L = 0.125 mh. = 0.000125 henry.

The current at the moment of startingis 2, = 0, and the general
equation of the current in the circuit therefore is, by substitution

in (3), i = 1000 (1 — 1), ©®)

The time during which this current reaches half value, or
. = 500 amperes, is given by substitution in (6)
500 = 1000 (1 — etoot)
hence g1t — (.5,
t = 0.00069 seconds.

The time during which the current reaches 90 per cent of its
full value, or ©+ = 900 amperes, is ¢ = 0.0023 seconds, that is,
the current is established in the circuit in a practically inappre-
ciable time, a fraction of a hundredth of a second.

22. Ezxcitation of a motor field.

Let, in a continuous-current shunt motor, e, = 250 volts =
impressed e.m.f., and the number of poles = 8.

Assume the magnetic flux per pole, ®, = 12.5 megalines, and
the ampere-turns per pole required to produce this magnetic
flux as § = 9000.

Assume 1000 watts used for the excitation of the motor
field gives an exciting current

and herefrom the resistance of the total motor field circuit is

€ o =
r= z—“ = 62.5 ohms.
1
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To produce § = 9000 ampere-turns, with 7, = 4 amperes,
requires i = 2250 turns per field spool, or a total of n= 18,000

1'1
turns.

n = 18,000 turns interlinked with &, = 12.5 megalines gives
a total number of interlinkages for ¢, = 4 amperes of n®, =
225 X 10°, or 562.5 X 10° interlinkages per unit current, or
10 amperes, that is, an inductance of the motor field circuit
L = 562.5 henrys.

The constants of the circuit thus are e, = 250 volts; r = 62.5
ohms; L = 562.5 henrys, and ¢, = 0 = current at time ¢ = 0.

Hence, substituting in (3) gives the equation of the exciting
current of the motor field as

1 =4 (1 — 0w )

Half excitation of the field is reached after the time ¢ = 6.23
seconds;

90 per cent of full excitation, or ¢« = 3.6 amperes, after the
time ¢ = 20.8 seconds.

That is, such a motor field takes a very appreciable time
after closing the circuit before it has reached approximately
full value and the armature circuit may safely be closed.

Assume now the motor field redesigned, or reconnected so
as to consume only a part, for instance half, of the impressed
e.n.f., the rest being consumed in non-inductive resistance.
This may be done by connecting the field spools by two in
multiple.

In this case the resistance and the inductance of the motor
field are reduced to one-quarter, but the same amount of
external resistance has to be added to consume the impressed
e.m.f., and the constants of the circuit then are: e, = 250
volts; r = 31.25 ohms; L = 140.6 henrys, and 7, = 0.

The equation of the exciting current (3) then is

i =811 — & v, ®

that is, the current rises far more rapidly. It reaches 0.5
value after ¢t = 3.11 seconds, 0.9 value after ¢ = 10.4 seconds.
An inductive circuit, as a motor field circuit, may be made
to respond to circuit changes more rapidly by inserting non-
inductive resistance in series with it and increasing the im-

*
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pressed e.m.f., that is, the larger the part of the impressed
e.n.f. consumed by non-inductive resistance, the quicker is the
change.

Disconnecting the motor field winding from the impressed
e.n.f. and short-circuiting it upon itself, as by leaving it con-
nected in shunt with the armature (the armature winding
resistance and inductance being negligible compared with that
of the field winding), causes the field current and thereby the
field magnetism to decrease at the same rate as it increased in
(7) and (8), provided the armature instantly comes to a stand-
still, that is, its e.m.f. of rotation disappears. This, however,
is usually not the case, but the motor armature slows down
gradually, its momentum being consumed by friction and other
losses, and while still revolving an e.m.f. of gradually decreas-
ing intensity is generated in the armature winding; this e.m.f.
is impressed upon the field.

The discharge of a motor field winding through the armature
winding, after shutting off the power, therefore leads to the
case of an inductive circuit with a varying impressed e.m.f.

23. Dvischarge of a motor field winding. 1

Assume that in the continuous-current shunt motor dis-
cussed under 22, the armature comes to rest ¢, = 40 seconds
after the energy supply has been shut off by disconnecting the
motor from the source of impressed e.m.f., while leaving the
motor field winding still in shunt with the motor armature
winding.

The resisting torque, which brings the motor to rest, may be
assumed as approximately constant, and therefore the deceler-
ation of the motor armature as constant, that is, the motor
speed decreasing proportionally to the time.

If then S = full motor speed, S (1 - ﬁ_) is the speed of the
. 1

motor at the time ¢ after disconnecting the motor from the

source of energy.
Assume the magnetic flux ® of the motor as approximately
proportional to the exciting current at exciting current © the

magnetic flux of the motor is ®= - <I>o, where ®,= 12.5 mega-

lines is the flux corresponding to full excitation ¢, = 4 amperes.
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The e.m.f. generated in the motor armature winding and
thereby impressed upon the field winding is proportional to

the magnetic flux of the field, ®, and to the speed S (1 - i—),

and since full speed S and full flux ®, generate an e.m.f. e, -

250 volts, the e.m.f. generated by the flux ® and speed S (l - [t—),
1

that is, at time ¢ is

1 t
C = v 1 - ):
e (1-, ©
and since
eO
- =T,
1'1
we have (
e~ir (1= ) (10)
ll
or for r = 62.5 ohms, and ¢, = 40 seconds, we have
e =0625: (1 — 0.025¢). (11)

Substituting this equation (10) of the impressed e.m.f. into
the differential equation (1) gives the equation of current ¢
during the field discharge,

Ty (l - ;—l> =ir+ L gg: (12)
hence, ridt  di
L d (13)
integrated by ”
- 20.L = log ¢,
where the integration constant c is found by
t=0, i=1, logei, =0, ¢ =_.:_,
1
hence )
’ Tl L
— Etl_L = l()g il y (14:)
or, y

. . 2061 -
=1 7 (15)
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This is the equation of the field current during the time in
which the motor armature gradually comes to rest.
At the moment when the motor armature stops, or for

t=1t,
it iS - _il. -
e 2k, (16)

1, = 1,

This is the same value which the current would have with
the armature permanently at rest, that is, without the assistance

. . t
of the e:m.f. generated by rotation, at the time ¢ = ;‘ .

The rotation of the motor armature therefore reduces the
decrease of field current so as to require twice the time to reach
value 7,, that it would without rotation.

These equations cease to apply for ¢ > ¢, that is, after the
armature has come to rest, since they are based on the speed

. t . . .
equation S (l - t—)’ and this equation applies only up to
1
t =t, but for ¢ >, the speed is zero, and not negative, as

. 14
given by S(l - F) .
1
That is, at the moment ¢ = ¢, a break occurs in the field
discharge curve, and after this time the current ¢ decreases in
accordance with equation (3), that is,

. 2(!—!.)’ (17)

1 = 1.6

or, substituting (16),
=1, . (18)

Substituting numerical values in these equations gives:
fort < ¢,, -
L =4 ¢ o-ooxssat*; (19)
fort = ¢, = 40,
. T = 0.436; (20)
fort > ¢, ‘
7 =4 ¢ ount — zo). (21)
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Hence, the field has decreased to half its initial value after
the time ¢ = 22.15 seconds, and to one tenth of its initial
value after ¢ = 40.73 seconds.

- W <«

Beconds .

Fig. 6. Field discharge current.

Fig. 5 shows as curve I the field discharge current, by equations
(19), (20), (21), and as curve II the current calculated by the
equation

1 =4¢ o-nul’

that is, the discharge of the field with the armature at rest, or
when short-circuited upon itself and so- not assisted by the
e.m.f. of rotation of the armature. ,
The same Fig. 5 shows as curve III the beginning of the field
discharge current for L = 4200, that is, the case that the field
circuit has a much higher inductance, as given by the equation

2 = 4 ¢— 0-000185¢

As seen in the last case, the decrease of field current is very slow,
the field decreasing to half value in 47.5 seconds.

24. Self-excitation of direct-current generator.

In the preceding, the inductance L of the machine has been
assumed as constant, that is, the magnetic flux ® as proportional
to the exciting current?. For higher values of ®, this is not
even approximately the case. The self-excitation of the direct-
current generator, shunt or series wound, that is, the feature
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that the voltage of the machine after the start gradually builds
up from the value given by the residual magnetism to its full
value, depends upon the disproportionality of the magnetic flux
with the magnetizing current. When considering this phenom-
enon, the inductance cannot therefore be assumed as constant.

When investigating circuits in which the inductance L is not
constant but varies with the current, it is preferable not to use
the term ‘inductance” at all, but to introduce the magnetic
flux ®.

The magnetic flux ® varies with the magnetizing current 7 by
an empirical curve, the magnetic characteristic or saturation
curve of the machine. This can approximately, within the range
considered here, be represented by a parabolic curve, as was
first shown by Frohlich in 1882:

& ,
= — 22
®=itHm 22)

where ¢ = magnetic flux per ampere, in megalines, at low
density.

%= magnetic saturation value, or maximum magnetic flux,
in megalines, and .

i 1+

&~ ¢ (23)

., -
.

can be considered as the magnetic exciting reluctance of the
machine field circuit, which here appears as linear function of
the exciting current 7.

Considering the same shunt-wound commutating machine as
in (12) and (13), having the constants r = 62.5 ohms = field
resistance; ®, = 12.5 megalines = magnetic flux per pole at
normal mmf F = 9000 ampere-turns = normal m.m.f. per
pole; n = 18, OOO turns = total field turns (field turns per pole

_ 18000 _ 2250), and i, =4 amperes = current for full

8
excitation, or flux, ®, = 12.5 megalines.
Assuming that at full excitation, ®,, the magnetic reluctance
has already increased by 50 per cent above its initial value, that
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ampere-turns T

is, that the ratio magnetic fiux’ or =

lines and ¢ = 7, = 4 amperes, is 50 per cent higher than at low
excitation, it follows that

,at &= &, = 12.5 mega-

14 b, = 1.5, ]
(24)

01' b = 0.125. [

Since ¢ = ¢, = 4 produces ® = &, = 12.5, it follows, from
(22) and (24)
' $ = 4.69.

That is, the magnetic characteristic (22) of the machine is
approximated by
4.691

=i ame

(25)
Let now e, = e.m.f. generated by the rotation of the arma-
ture per megaline of field flux.
This e.m.f. e, is proportional to the speed, and depends upon
the constants of the machine. At the speed assumed in (12)
and (13), &, = 12.5 megalines, e, = 250 volts, that is,

e
e, = g"o = 20 volts.

Then, in the field circuit of the machine, the impressed e.m.f.,
or e.m.f. generated in the armature by its rotation through the
magnetic field is,

e =ed = 200;

the e.m.f. consumed by the field resistance r is
r = 62.51;

the e.m.f. consumed by the field inductance, that is, generated
in the field coils by the rise of magnetic flux &, is

e, db

(P being given in megalines).
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The differential equation of the field circuit therefore is (1)

n dd
e,(l) r + 1—0—0 'a? (26)

Since this equation contains the differential quotient of @, it
ismore convenient to make ¢ and not ¢ the dependent variable;
then substitute for ¢ from equation (22),

) b
1= m, (27)
which gives
br n do
e,dJ = ¢—_ bd + m El. ) (28)
or, transposed,
100 at — bd) db

n <I>{(¢e—r)—be(d)}

This equation is integrated by resolving into partial fraction
by the identity
¢— bd A B

P[@e -1 -be®) & T ge-r—ted’ OO
resolved, this gives
¢ — b® = A (. — 1) — (Abe, & ~ BP);
¢
hence, A= et
(31)
B=—_,
¢e¢—1‘
_and
100dt _ _ ¢d @ brd® a2

= + °
n (¢ec-r)d) (¢e¢—1') (¢ec_r_bec(b)
This integrates by the logarithmic functions

100
Tt _ ¢ec¢— log® c(¢e:— 5 log (¢e,—7—be, ®)+C. (33)
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The integration constant C is calculated from the residual
magnetic flux of the machine, that is, the remanent magnetism
of the field poles at the moment of staft.

Assume, at the time, ¢t = 0, ® = &, = 0.5 megalines = residual
magnetism and substituting in (33),

__% - e )
O—qSec—rlOg(b’ ec(qSe,—r)lOg(qsec r — be®,)+ C,

and herefrom calculate C.
C substituted in (33) gives

100 ¢ ) e, — r — bed

b r

e =1 B o Ge = e —r—bes,

or, o
_ n é Pe. — r — bectbg

= 100 € (¢’er_ 7') g¢ec log d)r - log ¢€‘. -r—- bec(pr (35)

substituting
e =¢d
and
em = ecd)n

where e, = e.m.f. generated in the armature by the rotation in
the residual magnetic field,

_ n
- 100 € (¢ec - 7')

This, then, is the relation between e and ¢, or the equation
of the building up of a continuous-current generator from its
residual magnetism, its speed being constant.

Substituting the numerical values n = 18,000 turns; ¢
4.69 megalines; b = 0.125; e, = 20 volts; r = 62.5 ohms; ,
0.5 megaline, and e, = 10 volts, we have

t = 26.8log® — 17.9log (31.25 — 2.5 ®) + 79.6  (37)

go- — 1 =

e be
t que,loge——rlogmg- (36)

and
t =26.8loge — 17.9log (31.25 — 0.125¢) — 0.8. (38)

dn

]
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Fig. 6 shows the e.m.f. e as function of the time {. As seen,
under the conditions assumed here, it takes several minutes
before the e.m.f. of the machine builds up to approximately
full value.

Fig. 6. Building-up ctuve of a shunt generator.

The phenomenon of self-excitation of shunt generators there-
fore is a transient phenomenon which may be of very long
duration.

From equations (35) and (36) it follows that

e = ‘P?‘—b—f = 250 volts (39)

is the e.m.f. to which the machine builds up at ¢ = o, that is,
in stationary condition.
To make the machine self-exciting, the condition

de. —r >0 (40)
must obtain, that is, the field winding resistance must be
r < ge,,
or, (41)
r < 93.8 ohms,

or, inversely, e., which is proportional to the speed, must be

r
e.> —

¢ 42)
e.> 13.3 volts.

or,
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The time required by the machine to build up decreases with
increasing e, that is, increasing speed; and increases with
increasing r, that is, increasing field resistance.

2b. Self-excitation of direct-current series machine.

Of interest is the phenomenon of self-excitation in a series
machine, as a railway motor, since when using the railway motor
as brake, by closing its circuit upon a resistance, its usefulness
depends upon the rapidity of building up as generator.

Assuming a 4-polar railway motor, designed for e,= 600 volts
and 7,= 200 amperes, let, at current ¢ = 7, = 200 amperes, the
magnetic flux per pole of the motor be ®,= 10 megalines, and
8000 ampere-turns per field pole be required to produce this
flux. This gives 40 exciting turns per pole, or a total of n =
160 turns.

Estimating 8 per cent loss in the conductors of field and
armature at 200 amperes, this gives a resistance of the motor
cireuit 7= 0.24 ohms.

To limit the current to the full load value of 7, = 200 amperes,
with the machine generating e,= 600 volts, requires a total
resistance of the circuit, internal plus external, of

r = 3 ohms,
or an external resistance of 2.76 ohms.
600 volts generated by 10 megalines gives
e.= 60 volts per megaline per field pole.

Since in railway ‘motors at heavy load the magnetic flux is
carried up to high values of saturation, at 7, = 200 amperes the
magnetic reluctance of the motor field may be assumed as three
times the value which it has at low density, that is, in equation

(22), 140, =3,
or b =001,
and since for 7 = 200, ® = 10, we have in (22)
¢ = 0.15,
0157
hence, = mz (43)

represents the magnetic characteristic of the machine.
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Assuming a residual magnetism of 10 per cent, or &, =
1 megaline, hence e, = e, ®,= 60 volts, and substituting in
equation (36) gives n = 160 turns; ¢ = 0.15 megaline; b =
0.01; e,= 60 volts; r = 3 ohms; ®,= 1 megaline, and -em =
60 volts,

t = 0.04 log e — 0.01333 log (600 — ) — 0.08. (44)

This gives for e = 300, or 0.5 excitation, ¢ = 0.072 seconds;
and for e = 540, or 0.9 excitation, ¢ = 0.117 seconds; that is,
such a motor excites itself as series generator practically instantly,
or in a small fraction of a second.

The lowest value of e, at which self-excitation still takes place
is given by equation (42) as
= 20,

€, =

o=

that is, at one-third of full speed.
- If this series motor, with field and armature windings connected
in generator position,—that is, reverse position,—short-circuits
upon itself,
- r = 0.24 ohms,

we have
t = 0.0274 log e — 0.00073 log (876 — ¢) — 0.1075,  (45)
that is, self-excitation is practically instantaneous:

e = 300 volts is reached after ¢ = 0.044 seconds.

Since for e = 300 volts, the current ¢ = ; = 1250 amperes,

the power is p = et = 375 kw., that is, a series motor short-
circuited in generator position instantly stops.
Short-circuited upon itself, r = 0.24, this series motor still

builds up at e. =£~ = 1.6, and since at full load speed e,= 60,

¢t.= 1.6 is 2.67 per cent of full load speed, that is, the motor
scts as brake down to 2.67 per cent of full speed.

It must be considered, however, that the parabolic equation
(2) is only an approximation of the magnetic characteristic,
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and the results based on this equation therefore are approximate
only.

One of the most important transient phenomena of direct-
current circuits is the reversal of current in the armature coil
short-circuited by the commutator brush in the commutating
machine. Regarding this, see ““ Theoretical Elements of Elec-
trical Engineering,” Part II, Section B.



CHAPTER 1V.

INDUCTANCE AND RESISTANCE IN ALTERNATING-
CURRENT CIRCUITS.

26. In alternating-current circuits, the inductance L, or, as
it is usually employed, the reactance r = 2 zfL, where f = fre-
quency, enters the expression of the transient as well as the
permanent term.

At the moment 6 = 0, let the em.f. e = Ecos (¢ — 6,) be
impressed upon a circuit of resistance r and inductance L, thus
inductive reactance x = 2 zfL; let the time § = 2 zft be counted
from the moment of closing the circuit, and 6, be the phase of
the impressed e.m.f. at this moment.

In this case the e.m.f. consumed by the. resistance = r,
where ¢ = instantaneous value of current.

The e.m.f. consumed by the inductance L is proportional

to L and to the rate of change of the current, Z—:, thus,is L %,
or, by substituting 6 = 2 zft, x = 2 zfL, the e.m.f. consumed
by inductance is z% .
Since e = E cos (f — 6,) = impressed e.m.f.,
.o di
Ecos(0—00)=1_r+xd—0 (1)

is the differential equation of the problem.
This equation is integrated by the function

buce L=1Tcos(@—20)+ A, 2)

where ¢ = basis of natural logarithms = 2.7183.
Substituting (2) in (1),

Ecos (0 — 6,) =Ir cos (0 — ) + Are~* — Iz sin (6 — 0) — Aazs~ %,
or, rearranged :
(E cos 8, — Ir cos & — Izsind) cos 8 + (Esind, — Ir sin &

+ Izcosd)sinf — Ae~* (ax — 1) = 0.
41
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. Since this equation must be fulfilled for any value of 6, if (2)
is the integral of (1), the coefficients of cos 6, sin 6, ¢~* must
vanish separately.

That is,
Ecos8, — Ircos 8 — Ixsind = 0,
Esin6, — Irsindé + Ircosd = 0, 3)
and ar—r =0.

Herefrom it follows that
r

a= - 4)
Substituting in (3),
mnol=f
and - ®)
z=VP + 2,

where 6, = lag angle and z = impedance of circuit, we have

Ecosf,— Izcos (3 — 6,) =0
and ’

Esinfd, — Izsin (0 — 0,) =0,
and herefrom

and ©)
8=10,+0,

Thus, by substituting (4) and (6) in (2), the integral equation
becomes :

r

i=§cbs(0—0o—0,)+ Ae *, - @)

where A is still indefinite, and is determined by the initial con-
ditions of the circuit, as follows:
for 6=0  1=0;

hence, substituting in (7),

E
0= - €08 6, +406)+ A,
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or,

o 0, + ), ®

and, substituted in (7),

r

z—gzcos(()-—ﬂ—(l) * cos(00+0l)§ )

is the general expression of the current in the circuit.
If at the starting moment ¢ = 0 the current is not zero
but = 7, we have, substituted in (7),

i.,=§cos(0.,+0,)+A,
. E
A ='&°—;(305(00+01))
. —10
i=§gcos(0-0.—.0l)—(cos(0°+0l)— tl";,—z)e * g (10)

27. The equation of current (9) contains a permanent term
é' cos (6 — 6, — 6,), which usua.lly is the only term considered,
anda.tranmenttem) gs = coswo+0)

The greater the resistance r and smaller the reactance z, the

r

z

more rapidly the term % e © cos (6, + 6,) disappears.

This transient term is a maximum if the circuit is closed at
the moment 6, = — 6,, that is, at the moment when the

permanent value of current, %' cos (8 — 8, — 0)), should be a

maximum, and is then

The transient term disappears if the circuit is closed at the
moment 8, = 90° — 6, or when the stationary term of current
passes the zero value.
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As example is shown, in Fig. 7, the starting of the current
under the conditions of maximum transient term, or 6, = — 6,

in a circuit of the following constants: —: = (.1, corresponding

approximately to a lighting circuit, where the permanent value

Fig. 7. Starting current of an inductive circuit.

of current is reached in a small fraction of a half wave; % = 0.5,
corresponding to the starting of an induction motor with rheo-
stat in the secondary circuit; -:;_ = 1.5, corresponding to an
unloaded transformer, or to the starting of an induction motor
with short-circuited secondary, and :— = 10, corresponding to a

reactive coil.

Fig. 8. Starting current of an inductive circuit.

z . .
Of the last case, 5= 10, a series of successive waves are

plotted in Fig. 8, showing the very gradual approach to perma-
nent condition.
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Fig. 9 shows, for the circuit ;— = 1.5, the current when closing

the circuit 0°, 30°, 60°, 90°, 120°, 150° respectively behind the
zero value of permanent current.
The permanent value of current is usually shown in these

diagrams in dotted line.

AR\ I

LI AN] | [F \
J AL LN \
ViV A\ \
0 {-\ 3 L

A
a \ %

0 ® 120 10 240 %0 800 420 40 50
. Degrees
Fig. 9. S8tarting current of an inductive circuit.

28. Instead of considering, in Fig. 9, the current wave as
consisting of the superposition of the permanent term

r

I cos (0—0,) and the transient term — Ie * cos 0, the current
wave can directly be represented by the permanent term

: A N

ANEDAREAN

TTIAC g

1 / [~ N |

_ ™ —
-1 M

N4 N\

-3

-4 \\ l/
-6

Fig. 10. Current wave represented directly.

I cos (@ — 0,) by considering the zero line of the diagram as

~ZIe
deflected exponentially to the curve Ie * cos 8, in Fig. 10.
That is, the instantaneous values of current are the vertical



46 TRANSIENT PHENOMENA

distances of the sine wave I cos (6 — 6,) from the exponential
—Ty

curve Ie © cos 0, starting at the initial value of perma-
nent current.

In polar coordinates, in this case I cos (0 — 8,) is the circle,

_To
z

Ie cos 6, the exponential or loxodromic spiral.

As a rule, the transient term in alternating-current circuits
containing resistance and inductance is of importance only in
circuits containing iron, where hysteresis and magnetic saturation
complicate the phenomenon, or in circuits where unidirectional
or periodically recurring changes take place, as in rectifiers,
and some such cases are considered in the following chapters.



'CHAPTER V.

RESISTANCE, INDUCTANCE, AND CAPACITY IN SERIES.
CONDENSER CHARGE AND DISCHARGE.

29. If a continuous e.m.f. e is impressed upon a circuit contain-
ing resistance, inductance, and capacity in series, the stationary
condition of the circuit is zero current, < = o, and the poten-
tial difference at the condenser equals the impressed e.m.f.,
e, = ¢, no permanent current exists, but only the transient
current of charge or discharge of the condenser.

The capacity C of a condenser is defined by the equation

. de
1=C dT ’
that is, the current into a condenser is proportional to its increase
of e.m.f. and to the capacity.
It is therefore
de = 7 id,
and
e = L f dt 1)
- C

is the potential difference at the terminals of a condenser of
capacity C with current 7 in the circuit to the condenser.

Let then, in a circuit containing resistance, inductance, and
capacity in series, e = impressed e.m.f., whether continuous,
alternating, pulsating, etc.; ¢ = current in the circuit at time ¢;
r = resistance; L = inductance, and C = capacity: then the
e.n.f. consumed by resistance r is

T,
the e.m.f. consumed by inductance L is
dv
L E ’
47
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and the e.m.f. consumed by capacity C is

e,=é—fidt; ‘

hence, the impressed e.m.f. is

—_ —_— 9
e-—n+L! +Cf1,dt, (.:)

and herefrom the potential difference at the condenser terminals
is
e,=c—l,fidt=e—-ri—L3—1t'~ 3)

Equation (2) differentiated and rearranged gives

d= di 1. de
Ld—tz+ra+51—a (4)
as the general differential equation of a circuit containing resist-
ance, inductance, and capacity in series.

80. If the impressed e.m.f. is constant,

e = constant,
de
then i 0,

and equation (4) assumes the form, for continuous-current
circuits,
& A 1, -
Ld—tz+ra+b—z—0. (O)
This equation is a linear relation between the dependent vari-
able, 7, and its differential quotients, and as such is integrated
by an exponential function of the general form

1= Ae™ % (6)

(This exponential function also includes the trigonometric
functions sine and cosine, which are exponential functions with
imaginary exponent a.)
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Substituting (6) in (5) gives
(a’L ar + C) Ae= %= (;

tlns must be an identity, lrr%pectlve of the value of ¢, to make
(6) the integral of (5). That is,

2 1 _
aL——ar+5—0. @

4 is still indefinite, and therefore determined by the terminal
conditions of the problem.

From (7) follows
r+ \/ rz - 4—13
a = T ’ . (8)
hence the two roots,
r—s
“=9L
and )
+ 8
a,= 2L ’
where 8 = \/r" - — (10)

Since there are two roots, a, and a,, either of the two expres-
ions (6), e~ and ¢, and therefore also any combination of
these two expressions, satisfies the differential equation (5).

That is, the general integral equation, or solution of differential
equation (5), is

r—a r+a

— —_—

t - 4
i=Ae * + A4, L. (11)

Substituting (11) and (9) in equation (3) gives the potential
difference at the condenser terminals as

r+s SRt r—s , -Gnt
e|=e—g———A Tt % (12)
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81. Equations (11) and (12) contain two indeterminate con-
stants, 4, and A,, which are the integration constants of the
differential equation of second order, (5), and determined by
the terminal conditions, the current and the potential differ-
ence at the condenser at the moment ¢ = 0.

Inversely, since in a circuit containing inductance and capac-
ity .two electric quantities must be given at the moment of
start of the phenomenon, the current and the condenser poten-
tial — representing the values of energy stored at the moment
t = 0 as electromagnetic and as electrostatic energy, respec-
tively — the equations must lead to two integration constants,
that is, to a differential equation of second order.

Let 7 =1, = current and e, = ¢, = potential difference at
condenser terminals at the moment ¢t = 0; substituting in (11)
and (12),

t,=A4, + A,
and e,,-e—%—fAl-%A,;
hence,
— 3
) e, 8+r—2—.'9‘io
A =-
s
and » (13)
€, — € +7i§io
2
Az =+ ——_—_T——_“’

and therefore, substituting in (11) and (12), the current is

T+ s. r—s.
eg—e+ —(5—1 r+s, € — €+ —(5—1 _r-s
: 2" =zt 2 " ~Et
1= —— — - 5 € y  (14)
S

the condenser potential is

r+s. r—8.
€—€+——1 ris e—e+——1 s
e, =e (r—s) 2 e_ﬁt (r+3) 2 2
=Qe—— -—)—— -— —_—f
1 2 8 s
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For no condenser charge, or 1, = 0, e, = 0, we have

substituting in (11) and (12), we get the charging current as -

_Ir=s _r+s
i=‘§§¢ 2z _,~ oL’ § (16)

The condenser potential as
1 -5 -5
e, =e I-Q_,; (r+s)e —(r—298)e - (17

For a condenser discharge or 7, = 0, e = ¢, we have

[ Al=_?

and
: e
A4, = +;°=-A,;

hence, the discharging current is

e _r-s, _rts,
'i=—;°ge 2L 2L g . (18)
The condenser potential is
€ § -3 -5%
=2 - - ,
e, 28)(r+s)e r—s)e 19)

that is, in condenser discharge and in condenser charge the
currents are the same, but opposite in direction, and the con-
denser potential rises in one case in the same way as it falls in
the other.

32. As example is shown, in Fig. 11, the charge of a con-
denser of C = 10 mf. capacity by an impressed e.m.f. of
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e = 1000 volts through a circuit of » = 250 ohms resistance
and L = 100 mh. inductance; hence, s = 150 ohms, and the
charging current is

7 = 6.667 {e=50¢ — ¢~2!} amperes.
The condenser potential is
e, = 1000 {1 — 1.333 ¢~ + 0.333 =2} volts.

Amp.
~

Fig. 11. Charging a condenser through a circuit having resistance and induc-
tance. Constant potential. Logarithmic charge.

83. The equations (14) to (19) contain the square root,

4L
s = \/7'z - Fy
hence, they apply in their present form only when

4L
">

If? = ECTL, these equations become indeterminate, or = (9)"
and if 7% < %, s is imaginary, and the equations assume a
complex imaginary form. In either case they have to be
rearranged to assume a form suitable for application.

Three cases have thus to be distinguished:

(@ > %,I—‘, in
used in their present form. Since the functions are exponen-
tial or logarithmic, this is called the logarithmic case.

which the equations of the circuit can be

\
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® 7= 4L is called the critical case, marking the transi-

C
tion between (a) and (c), but belonging to neither.
() P < 4—CI~' . In this case trigonometric functions appear; it

is called the trigonometric case, or oscillation.
34. In the logarithmic case,

4L
” >

or, 4L <P

that is, with high resistance, or high capacity, or low induec-
tance, equations (14) to (19) apply.

r—s r+s
The term ¢ 2L ' is always greater than ¢ 2L ‘ since the
former has a lower coefficient in the exponent, and the differ-
ence of these terms, in the equations of condenser charge and
discharge, is always positive. That is, the current rises from
zero at ¢ = 0, reaches a maximum and then falls again to
‘zero at ¢ = o, but it never reverses. The maximum of the

. . e
current is less than 7 = o

The exponential term in equations (17) and (19) also never
reverses. That is, the condenser potential gradually changes,
without ever reversing or exceeding the impressed e.m.f. in the
charge or the starting potential in the discharge.

. 4 .
Hence, in the case 7* > no abnormal voltage is pro-

C 2
duced in the circuit, and the transient term is of short duration,
so that a condenser charge or discharge under these conditions
is relatively harmless.

In charging or discharging a condenser, or in general a circuit
containing capacity, the insertion of a resistance in series in the
circuit of such value that 2 > % therefore eliminates the
danger from abnormal electrostatic or electromagnetic stresses.

In general, the higher the resistance of a circuit, compared
with inductance and capacity, the more the transient term is
suppressed.
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386. In a circuit containing resistance and capacity but no
inductance, L = 0, we have, substituting in (5),

& 1 .
r a + 6 1= 0, (20)
or, transposing, & dt
T’ '
which is integrated by L
i=c ' @n

where ¢ = integration constant.

Equation (21) gives for ¢t = 0, ¢ = c; that is, the current at -
the moment of closing the circuit must have a finite value, or
must jump instantly from zero to ¢. This is not possible, but
so also it is not possible to produce a circuit without any induc-
tance whatever.

Therefore equation (21) does not apply for very small values
of time, ¢, but for very small ¢ the inductance, L, of the circuit,
however small, determines the current.

The potential difference at the condenser terminals from (3) is

e, =e—ri
hence '

e,=e—rcc (22)
The integration constant ¢ cannot be determined from equation
(21) at t = 0, since the current * makes a jump at this moment.
But from (22) it follows that if at the moment ¢t = 0, ¢, = ¢,
€, =€ —TC
e—e,
r b

hence; c =

and herefrom the equations of the non-inductive condenser
circuit,

_t
_le—e)e (23)
) T
d _t
o e, =e— (e—e)e °. 24

As seen, these equations do not depend upon the current 7, in
the circuit at the moment before ¢ = 0.
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36. These equations do not apply for very small values of ¢,
but in this case the inductance, L, has to be considered; that is,
equations (14) to (19) used.

For L = 0 the fisst ferm in (14) becomes indefinite, as it

[

contains ¢ ° ' , and therefore has to be evaluated as follows:
For L = 0, we have

s=r,
r+s
2 ~ D
and
r—s
g =0
and, developed by the binomial theorem, dropping all but the
first term,
r—s=r§1—\/1-ﬂ‘§
7C
2L,
C
and
r—s 1,
2L C
r+s_r.
2L L

Substituting these values in equations (14) and (15) gives the
current as ‘
c_eo€°1c_ e_eo—noe_Z' (25)
r r

and the potential difference at the condenser as
t

e, =¢— (e—e) s—'?; (26)

that is, in the equation of the current, the term
¢~ 6~ ”‘oe'z:,‘
r
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has to be added to equation (23). This term makes the transition
from the circuit conditions before ¢ = 0 to those after ¢ = 0,
and is of extremely short duration.

For instance, choosing the same constants as in § 32, namely:
e = 1000 volts; r = 250 ohms; C = 10 mf., but choosing the
inductance as low as possible, L = 5 mh., gives the equations
of condenser charge, i.e., for 7, = 0 and ¢, = 0,

1=4 {e“’”' — S0t}

and
e, = 1000 {1 — &'},

The second term in the equation of the current, e~ %%‘ has
decreased already to 1 per cent after ¢t = 17.3 X 10~° seconds,
while the first term, ¢ **, has during this time decreased only
by 0.7 per cent, that is, it has not yet appreciably decreased.

37. In the critical case,

and . s =0,
r
a=a=,7
e—e — i
PR A

Hence, substituting in equation (14) and rearranging,

8 8
st ~art

'=(e—e,—r§io)e_ﬁ'(e——:sf—)- 27
The last term of this equation,

8
A 5T
N ¢ ¢ 2L 0

F?D=_—=J’



CONDENSER CHARGE AND DISCHARGE 57

that is, becomes indeterminate for s = 0, and therefore 1s
evaluated by differentiation,

aN
ds

F=@=Z. (28)
ds

Substituting (28) in (27) gives the equation of current,
'=-[t:(e—eo—;;io)e_ﬁ‘. (29)
The condenser potential is found, by substituting in (15), to be

L4
rT+S 57t T—8 —55t
t 8.7z e ZL

e,=e—(e—e°—r2—i,,)e_‘ﬁ' 2 . 2 . 30)

The last term of this equation (30) is

T;S‘n‘ 22_—8‘—2;“ POt o 1 e 4—:!
- ___._2_;§€2L —¢ 2L §+§3€ﬁ +e 2L %

(31)

Fors =0, the first term of this equation (31), by substituting

(28), becomes | the second term = 1, and substituting in (30),
this gives the condenser potential as

e, 31 + 0 % ;-io)e’f"i‘. (32)

Herefrom it follows that for the condenser charge, 7, = 0 and
e, =0,

and
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for the condenser discharge, t, = 0 and e = 0,

. t -
== 3Tt
and
i - L
e, ==(l + Z)eoé‘ 2"t.

38. As an example are shown, in Fig. 12, the'charging current
and the potential difference at the terminals of the condenser,

Amp.
b

Fig. 12. Charging a condenser through a circuit having resistance and induc-
tance. Constant potential. Critical charge.

in a circuit having the constants, e = 1000 volts; C = 10 mf.:
L = 100 mh., and such resistance as to give the critical start,
that is, L
r = 1L = 200 ohms. ' )
C
In this case,

i = 10,000 te~ 1ot
and

e, = 1000 {1 — (1 + 2000 ) e~ 1ot}

39. In the trigonometric or oscillating case,

4L
r”< —CT .

The term under the square root (10) is negative, that is, the
square root, 8, is imaginary, and a, and a, are complex imaginary
quantities, so that the equations (11) and (12) appear in imagi-
nary form. They obviously can be reduced to real terms,
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since the phenomenon is real. Since an exponential function
with imaginary exponents is a trigonometric function, and
inversely, the solution of the equation thus leads to trigono-
metric functions, that is, the phenomenon is periodi¢ or oscil-
lating.

Substituting s = jq, we have

q = F—T’ (33)
and
r— i
a,=—2ﬂ,
T+ (34)
o=,

Substituting (34) in (11) and (12), and rearranging,

= _—'3A T AN § (35)
_r . ia . _ e
e' 3\3""3 2L‘ zrg]qu€+2L‘ +T 2]qu€ 2L‘ g. (36)

Between the exponential function and the trigonometric
functions exist the relations

eti" = cosv + jsinv
and ' 37
€= cosv — jsino.
Substituting (37) in (35), and rearranging, gives
. ——r ‘
P 7 %(A,-}:A,)cOszt+](A A sin-Lof.
Substituting the two new integration constants,
B, =4+ A,
and . } (38)
B,=j(4,-4),)
gives

———l

S e q q
1 gB cosZLt+B s1n2Lt§ (39)
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In the same manner, substituting (37) in (36), rearranging,
and substituting (38), gives

L t+rB qB’sn

2 “®3L 2 2L i (10)

D=3t 3rBl + qB
e, =e—¢ —

B, and B, are now the two integration constants, determined
by the terminal conditions. That is, fort = 0, let © = 7, = cur-
rent and e, = ¢, = potential difference at condenser terminals,
and substituting these values in (39) and (40) gives

1, = B,
and .
rB, + ¢B
| | e, = — — "2 5 7.,
hence,
B, =1,
and
2 (e — e) — i, (41)
B, =——2—".
q
Substituting (41) in (39) and (40) gives the general equations
of condenser oscillation:
the current is
._-ﬁ' q 2(e—¢€) =1y . ¢ g .
1=¢ gzcosth+-———q_ sm2Lt, (42)
and the potential difference at condenser terminals is
r q r (e_ed) - f;;_qf ) q
—e—e 2L' | (e— q in L
e,=e—¢ (e eo)coszLH- . sm2Lt .
(43)

Herefrom follow the equations of condenser charge and dis-
charge, as special case:
For condenser charge, i, = 0; €, = 0, we have -

. 2e -35t. q
z=—q—e sm;lJ (44)
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and -

el=e§1—s 2L (cosz—Lt+-—sm )s, (45)
and for condenser discharge, 1, = 0, e = 0, we have

) = —2—e—°e 22! sin 2—_qL ' (46)
and

e, = eos_ﬁ‘ gcos 2q—Lt + qsm 2%1 % 47)

40. As an example is shown the oscillation of condenser
charge in a circuit having the constants, e = 1000 volts; L =
100 mh., and C' = 10 mf.

Fig, 18. Charging a condenser through a circuit having resistance and induc-
tance, Constant potential. Oscillating charge.

(a) In Fig. 13, r = 100 ohms, hence, ¢ = 173 and the current is
1 = 11.55 ¢ 3®*¢gin 866 ¢;
the condenser potential is
e, = 1000{1 — ¢~ (cos 866 ¢ + 0.577 sin 866 ¢)}.

) (b) In Fig. 14, r = 40 ohms, hence, ¢ = 196 and the current
is
© = 10.2 & sin 980 ¢;

the condenser potential is
e, = 1000 {1 — ¢ 2@ (cos 980 ¢ + 0.21sin 980 ¢)}.
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41. Since the equations of current and potential difference
(42) to (47) contain trigonometric functions, the phenomena
are periodic or waves, similar to alternating currents. They

—=Te
differ from the latter by containing an exponential factor ¢ %%,
which steadily decreases with increase of ¢&. That is, the suc-

Fig. 14. Charging a condenser through a circuit having resistance and induc-
tance. Constant potential. Oscillating charge.

cessive half waves of current and of condenser potential pro-
gressively decrease in amplitude. Such alternating waves of
progressively decreasing amplitude are called oscillating waves.

Since equations (42) to (47) are periodic, the time ¢ can be
represented by an angle 4, so that one complete period is denoted
by 2 z or one complete revolution,

q
q
25 = 1
hence, the frequency of oscillation is
-9
S =1 “9)

or, substituting .
\ /4 L
¢=V5- P

gives the frequency of oscillation as

/= él,—. 1}6 B (2%)2' | 50
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This frequency decreas&s with increasing resistance 7, and
T\ 4L "
becomes zero for(z L) o that is, ¥ = < °r the critical
case, where the phenomenon ceases to be oscillating.
If the resistance is small, so that the second term in equa-
tion (50) can be neglected, the frequency of oscillation is

1

=— 51)
f 22VIC ¢
Substituting 4 for ¢ by equation (48)
=2k,
q
in equations (42) and (43) gives the general equations,
5 (e—e,) —%i,
i ;i,,cos0+ T sin0§r (52)
, r(e—eo)—rz;qzi,,
e,=e—¢ 1 |(e—e)cos 0+——q—~ —— -sin @ [,(53)
‘9 = 2xft 48)
and
1 1 r\?
I=51=3:V e~ (51) (50)

42. If the resistance r can be neglected, that is, if * is small
4L . .
compared mth C the following equations are approximately

exact: v /L

¢=2V5 (54)
and B 1

I=sevie |
or, (65)
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Introducing now r = 2 zfL = inductive reactance and

1 . o e
r = F2fC = capacity reactance, and substituting (55), we
have
o\
g
and
\/Z
.E, = 6’
hence, Y =z, -

that is, the frequency of oscillation of a circuit containing
inductance and capacity, but negligible resistance, is that

frequency f which makes the condensive reactance ¥ = 2_:,}5
equal the inductive reactance r = 2 zfL:
veray é : (56)
Then (54), '
g=2r, . (57)

and the general equations (52) and (53) are

r .
ot (e—e,,)—éz0
t=¢ 2% i,,coso+Tsin0 ; (58)

e,=e—¢ 2% % (e —e)) cosf + oW =TT (e_e°)2_: !

\x=\/§ (56)

and by (48) and (55):

sin 0; ; (59)
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— =t
43. Due to the factore 2%, successive half waves of oscilla-
tion decrease the more in amplitude, the greater the resistance r.
The ratio of the amplitude of successive half waves, or the

N _
decrement of the oscillation, is A = ¢ 2%, where ¢, = duration

1
of one half wave or one half cycle, = 37

A
0.0

3 L4
08—\ -

\‘ INERSER
0.6
N
04 ™,
N
I el TSNS
0 7\ I~
[ 01 02 03 04 5 08 07 08 09 10

Fig. 16. Logarithmic decrement of oscillation.

Hence, from (50),

¢ = T
1 1 r X
Lc (ZL)
and . S
4L
A=ed=¢ Y7,
Denoting the critical resistance as
. _4L
1 C ’
we have
L4 A
A=c?t=¢ (:-‘2— ‘,
or,

(60)

(61)

(62)
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that is, the decrement of the oscillating wave, or the decay of
the oscillation, is a function only of the ratio of the resistance
of the circuit to its.critical resistance, that is, the minimum
resistance which makes the phenomenon non-oscillatory.

In Fig. 15 are shown the numerical values of the decrement A,

for different ratios of actual to critical mnstance —

As seen, forr > 0.21r,ora resistance of the clrcult of more
than 21 per cent of its critical resistance, the decrement A is
below 50 per cent, or the second half wave less than half the first
one, etc.; that is, very little oscillation is left.

Where resistance is inserted into a circuit to eliminate the
danger from oscillations, one-fifth of the critical resistance, or

r =04 \/%, seems sufficient to practically dampen out the

oscillation.



CHAPTER VL

OSCILLATING CURRENTS.

44. The charge and discharge of a condenser through an
inductive circuit produces -periodic currents of a frequency
depending upon the circuit constants.

The range of frequencies which can be produced by electro-
dynamic machinery is rather limited: synchronous machines
or ordinary alternators can give economically and in units of
larger size frequencies from 10 to 125 cycles. Frequencies
below 10 cycles are available by commutating machines with
low frequency excitation. Above 125 cycles the difficulties
rapidly increase, due to the great number of poles, high periph-
eral speed, high power required for field excitation, poor regu-
lation due to the massing of the conductors, which is required
because of the small pitch per pole of the machine, etc., so that
1000 cycles probably is the limit of generation of constant
potential alternating currents of appreciable power and at fair
efficiency. For smaller powers, a few kilowatts, by using
shunted capacity to assist the excitation, and not attempting
to produce constant potential, single-phase alternators have
been built and are in commercial service giving 10,000 and even
100,000 cycles, and 200,000-cycle alternators are being designed
for wireless telegraphy and telephony.

Still, even going to the limits of peripheral speed, and sacri-
ficing everything for high frequency, a limit is reached in the
frequency available by electrodynamic generation.

It becomes of importance, therefore, to investigate whether
by the use of the condenser discharge the range of frequencies
can be extended.

Since the oscillating current approach& the effect of an
alternating current only if the damping is small, that is, the
resistance low, the condenser discharge can be used as high
frequency generator only by making the circuit of as low resist-
ance as possible.

67
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This, however, means limited power. When generating oscillat-
ing currents by condenser discharge, the load put on the circuit,
that is, the power consumed in the oscillating-current circuit,
represents an effective resistance, which increases the rapidity
of the decay of the oscillation, and thus limits the power, and,
when approaching the critical value, also lowers the frequency.
This is obvious, since the oscillating current is the dissipation
of the energy stored electrostatically in the condenser, and the
higher the resistance of the circuit, the more rapidly is this
energy dissipated, that is, the faster the oscillation dies out.

With a resistance of the circuit sufficiently low to give a fairly
well sustained oscillation, the frequency is, with sufficient
approximation,

e
2z VIC

46. The constants, capacity, C, inductance, L, and resistance, r,
have no relation to the size or bulk of the apparatus. For
instance, a condenser of 1 mf., built to stand continuously a
potential of 10,000 volts, is far larger than a 200-volt condenser
of 100 mf. capacity. The energy which the former is able to
store is%ez- = 50 joules, while the latter stores only 2 joules,
and therefore the former is 25 times as large.

A reactive coil of 0.1 henry inductance, designed to carry

continuously 100 amperes, storesl—é— = 500 joules; a reactive

coil of 1000 times the inductance, 100 henrys, but of a current-
carrying capacity of 1 ampere, stores 5 joules only, therefore is
only about one-hundredth the size of the former.

A resistor of 1 ohm, carrying continuously 1000 amperes, is a
ponderous mass, dissipating 1000 kw.; a resistor having a
resistance a million times as large, of one megohm, may be a lead
pencil scratch on a piece of porcelain.

Therefore the size or bulk of condensers and reactors depends
not only on C and L but also on the voltage and current which
can be applied continuously, that is, it is approximately pro-

2

portional to the energy stored, C?e’ and I/"-Z— , or since in electrical

AN
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engineering energy is a quantity less frequently used than
power, condensers and reactors are usually characterized by
the power or rather apparent power which can be impressed
upon them continuously by referring to a standard frequency,
for which 60 cycles is generally used. .

That means that reactors, condensers, and resistors are rated
in kilowatts or kilovolt-amperes, just as other electrical appa-
ratus, and this rating characterizes their size within the limits
of design, while a statement like “a condenser of 10 mf.” or
“a reactor of 100 mh.” no more characterizes the size than a
statement like “an alternator of 100 amperes capacity’ or “a
transformer of 1000 volts.”

A bulk of 1 cu. ft. in condenser can give about 5 to 10
kv-amp. at 60 cycles. Hence, 100 kv-amp. constitutes a very
large size of condenser.

In the oscillating condenser discharge, the frequency of oscil-
lation is such that the inductive reactance equals the condensive
reactance. The same current is in both-at the same terminal
voltage. That means that the volt-amperes consumed by the
inductance equal the volt-amperes consumed by the capacity.

The kilovolt-amperes of a condenser as well as of a reactor
are proportional to the frequency. With incréasing frequency,
at constant voltage impressed upon the condenser, the current
varies proportionally with the frequency; at constant alter-
nating current through the reactor, the voltage varies propor-
tionally with the frequency.

If then at the frequency of oscillation, reactor and con-
denser have the same kv-amp., they also have the same at
60 cycles.

A 100-kv-amp. condenser requires a 100-kv-amp. reactive
coil for generating oscillating currents. A 100-kv-amp. react-
ive coil has approximately the same size as a 50-kw. trans-
former and can indeed be made from such a transformer, of
ratio 1 : 1, by connecting the two coils in series and inserting
into the magnetic circuit an air gap of such length as to give
the rated magnetic density at the rated current.

A very large oscillating-current generator, therefore, would
consist of 100-kv-amp. condenser and 100-kv-amp. reactor.

46. Assuming the condenser to be designed for 10,000 volts
alternating impressed e.m.f. at 60 cycles, the 100-kv-amp. con-
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denser consumes 10 amperes: its condensive reactance is

E . 1
Z=7= 1000 ohms, and the capacity C = Tz, 2.65 mf.

Designing the reactor for different currents, and therewith
different voltages, gives different values of inductance L, and
therefore of frequency of oscillation f.

From the equations of the instantaneous values of the con-
denser discharge, (46) and (47), follow their effective values, or
Vmean square,

=_e_°_e—2r_L‘
RV,
and (63)
e, V2 -5t e, [C -5t
I=oqE2L=\/_o§\/ZE 2L,
and thus the power, « Wy
A\ s
N 2 ~T,
pomei=SVi ", (64

[

.\\‘ -
Herefrom would follow that the‘énergy of each discharge is
© eo, -
w =‘/;p,dt = E\/CL' (65)

Therefore, for 10,000 volts effective at 60 cycles at the con-
denser terminals, the e.m.f. is

e, = 10,000 V2,
and the condenser voltage is
-
e, = 10,000 2%,

Designing now the 100-kv-amp. reactive coil for different
voltages and currents gives for an oscillation of 10,000 volts:
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Frequency !

React- Oscillati Oscillati;

Reactive Coil. ance, Inductance. oneittFeton. Currz;:g Pcow‘:;.ng

I U

Amp. Volts, € _ o _ -1 Amp., Kv-amp.,

: '-.- . ' '.o Zo 2’.,.0 L. f 2.—\/[‘7& i. P

| |

{ 1| 100,000 | 105 | 265 8 1 10

; 10| 10,000 108 2.65 60 10 100

) 100 1,000 10 2.66 x10—? 600 100 1,000

! 1,000 100 10—1 2.66x 10—+ 6,000 1,000 10,000

' 10,000 10 10-3 2.65x 10— 60,000 10,000 100,000

! 100,000 1 10—3 2.65x10—3 | 600,000 | 100,000 |1,000,000
r r

X 5-2_‘ X E_ i ¢

As seen, with the same kilovolt-ampere capacity of con-
denser and of reactive coil, practically any frequency of oscil-
lation can be produced, from low commercial frequencies up to
hundred thousands of cycles.

At frequencies between 500 and 2000 cycles, the use of iron in
the reactive coil has to be restricted to an inner core, and at
frequencies above this iron cannot be used, since hysteresis
and eddy currents would cause excessive damping of the oscil-
lation. The reactive coil then becomes larger in size.

47. Assuming 96 per cent efficiency of the reactive coil and
99 per cent of the condenser,

r = 0.05 x;
gives
\/Z
r = 0.05 (—7)
since
z =2xfL,
1
/= 2z VILC ’
and the energy of the discharge, by (65), is
2
= % VIC = 10 ¢ C volt-ampere-seconds;

thus the power factor is
cos 6, = 0.05.

l T
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Since the energy stored in the capacity is
]

W, = ﬁ;g joules,

r1='2\/§;

T~ 0025

1 .

and the logarithmic decrement of the oscillation is
A =092

that is, the decay of the wave is very slow at no load.

Assuming, however, as load an external effective resistance
equal to three times the internal resistance, that is, an elec-
trical efficiency of 75 per cent, gives the total resistance as

the critical resistance is

hence,

r+1r =02z
hence,
r+ 7 ~ 01,
rl
and the decrement is '
A =073;

hence a fairly rapid decay of the wave.

At high frequencies, electrostatic, inductive, and radiation
losses greatly increase the resistance, thus giving lower effi-
ciency and more rapid decay of the wave.

48. The frequency of oscillation does not directly depend
upon the size of apparatus, that is, the kilovolt-ampere capacity
of condenser and reactor. Assuming, for instance, the size, in

kilovolt-amperes, reduced to %, then, designed for the same

voltage, condenser and reactor, each takes :—; the current, that
is, the condensive reactance is n times as great, and therefore
the capacity of the condenser, C,reduced to :z_ , the inductance, L,



OSCILLATING CURRENTS 73

is increased n-fold, so that the product CL, and thereby the
frequency, remains the same; the power output, however, of the
oscillating éurrents is reduced to:—‘.

The limit of frequency is given by the mechanical dimensions.

With a bulk of condenser of 10 to 20 cu. ft., the minimum
length of the discharge circuit cannot well be less than 10 ft.;
10 ft. of conductor of large size have an inductance of at least
0.002 mh. = 2 X 107% and the frequency of oscillation would
therefore be limited to about 60,000 cycles per second, even _
without any reactive coil, in a straight discharge path.

The highest frequency which can be reached may be estimated
about as follows:

The minimum length of discharge circuit is the gap between
the condenser plates.

The minimum condenser capacity is given by two spheres,
since small plates give a larger capacity, due to the edges.

The minimum diameter of the spheres is 1.5 times their .
distance, since a smaller sphere diameter does not give a clean
spark discharge, but a brush discharge precedes the spark.

With e, = 10,000 V2, the spark gap length between spheres
is e= 0.3 in., and the diameter of the spheres therefore 0.45 in.
The oscillating circuit then consists of two spheres of 0.45 in.,
separated by a gap of 0.3 in.

This gives an approximate length of oscillating circuit of
0.3x 10" e

24,000 =0.125 X 10~° henry.

The capacity of the spheres against each other may be
estimated as C = 10~ mf.; this gives the frequency of oscilla-
tion as 3

0.5in., or an inductance L =

1
= = 4.5 X 10°,
f 2 vIC
or, 4.5 billion cycles.
At ¢, = 10,000 V2 volts,

e, = 10,000 ¢ ezt volts,
1= 283 c_z_"‘ amp.,

and P, = 28.3 T kv-amp.
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Reducing the size and spacing of the spheres proportionally,
and proportionally lowering the voltage, gives still higher
frequencies. . .

As seen, however, the power of the oscillation decreases with
increasing frequency, due to the decrease of size and therewith
of storage ability, of capacity, and of inductance.

With a frequency of billions of cycles per second, the effective
resistance must be very large, and therefore the damping rapid.

Such an oscillating system of two spheres separated by a gap
would have to be charged by induction, or the spheres charged
separately and then brought near each other, or the spheres
may be made a part of a series of spheres separated by gaps and
connected across a high potential circuit, as in some forms of
lightning arresters.

Herefrom it appears that the highest frequency of oscillation
of appreciable power which can be produced by a condenser
discharge reaches billions of cycles per second, thus is enormously
higher than the highest frequencies which can be produced by
electrodynamic machinery.

At five billion cycles per second, the wave length is about
6 cm., that is, the frequency only a few octaves lower than
the lowest frequencies observed as heat radiation or ultra red
light. .

The average wave length of visible light, 55 X 10~° cm.,
corresponding to a frequency of 5.5 X 10 cycles, would require
spheres 10~° cm. in diameter, that is, approaching molecular
dimensions.

OSCILLATING-CURRENT GENERATOR.

49. A system of constant impressed e.m.f., e, charging a con-
denser C through a circuit of inductance L and resistance r, with
a discharge circuit of the condenser, C, comprising an air gap
in series with a reactor of inductance L, and a resistor of resist-
ance r,, is a generator of oscillating current if the air gap is set
for such a voltage e, that it discharges before the voltage of the
condenser C has reached the maximum, and if the resistance r,
is such as to make the condenser discharge oscillatory, that is,

4L,

W<
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In such a system, as shown diagrammatically in Fig. 16, as
soon, during the charge of the condenser, as the terminal voltage
at C and thereby at the spark gap has reached the value e,, the
condenser C discharges over this spark gap, its potential dif-
ference falls to zero, then it charges again up to potential differ-
ence e,, discharges, etc. Thus a series of oscillating discharges

I

ﬁ‘ig. 16. Oscillating-current generator.

oceur in the circuit, L,, r,, at intervals equal to the time required
to charge condenser C' over reactor L and resistor r, up to the
potential difference e,, with an impressed e.m.f. e.

The resistance, r, obviously should be as low as possible, to
get good efficiency of transformation; the inductance, L, must
be so large that the time required to charge condenser C to
potential e, is sufficient -for the discharge over L, r, to die out
and also the spark gap e, to open, that is, the conducting products
of the spark in the gap e, to dissipate. This latter takes a con-
siderable time, and an air blast directed against the spark gap e,,
by carrying away the products of the discharge, permits a more
rapid recurrence of the discharge. The velocity of the air blast
(and therefore the pressure of the air) must be such as to carry
the ionized air or the metal vapors which the discharge forms
in the gap e, out of the discharge path faster than the con-
denser recharges.

Assuming, for instance, the spark gap, e, set for 20,000 volts,
or about 0.75 in., the motion of the air blast during successive
discharges then should be large compared with 0.75 in., hence
at least 3 to 6 in. With 1000 discharges per second, this would
require an air velocity of v = 250 to 500 feet per second, with
5000 discharges per second an air velocity of » = 1250 to 2500
feet per second, corresponding to an air pressure of approximately
p=147 {1 +2+10-7)*° — 1} Ib. per sq. in., or 0.66 to 2.75
Ib. in the first, 23 to 230 lb. in the second case.
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While the condenser charge may be oscillatory or logarithmic,
efficiency requires a low value of r, that is, an oscillatory charge.

With a frequency of discharge in L, r, very high compared
with the frequency of charge, the duration of the discharge is
short compared with the duration of the charge, that is, the
oscillating currents consist of a series of oscillations separated
by relatively long periods of rest. Thus the current in L does
not appreciably change during the time of the discharge, and at
the end of the condenser charge the current in the reactor, L,
. is the same as the current in L, with which the next condenser
charge starts. The charging current of the condenser, C, in L
thus changes from 7, at the beginning of the charge, or con-
denser e.m.f., e, = 0, to the same value 7, at the end of the
charge, or condenser e.m.f., e, = e,

60. Counting, therefore, the time, ¢, from the moment when
the condenser charge begins, we have the terminal conditions:

t =0,1=1, e =0 at the beginning of the condenser charge.
t=1t, 1=1, e, =e, attheend of the condenser charge.

In the condenser discharge, through circuit L,, 7, counting
the time ¢ from the moment when the condenser discharge
begins, thatis, ¢ =t — ¢, we have

=0 1=0, e, =e,the terminal condition.

e,, thus, is that value of the voltage e, at which discharge
takes place across the spark gap, and ¢, is the time elapsing
between e, = 0 and e, = e,, or the time required to build up
the voltage e, sufficiently to break down the spark gap.

Under the assumption that the period of oscillation of the
condenser charge through L, r, is large compared with the
period of oscillation of the condenser discharge through L, r,,
the equations are:

(4) Condenser discharge:

2 e, - in Qo
s n 3 2L, v, (66)
e, = e "L’ g cos 2q£ v+ =2 q" t'z 67)

where —_—
9o ='\'; 6 Y- roz' (68)
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(B) Condenser charge :

. - . 2e
1 =¢ 2L gz,cos-ziLt+ ---—sm——t§ (69)
¢ q re—i—;_qzi" q
—e—¢ 2L 2 —_— &ipn X
e, =e—¢ ecos2Lt+ P smth , (70)
where —_—
4L

Substituting in (69) and (70) the above discussed terminal
conditions,
b=1ty, T=1, €, = €
gives

z'.-c'z'_b“gi,cosé%t,+2 sm—t,,g (72)
and.

, re—" &
e.-e—-e—z—""'{ecos2—qlll,+—%-—sm2—git.} (73)

Denoting, for convenience,

|

to

I
»
K

[\
™~

(74)

NS
y
A

r

q

and resolving (72) for ¢,, gives
. 2e e~ "sin '

¢ 75)

to ﬂ? 1—ccos¢ +ac’sing

and substituting (75) in (73) and rearranging,
1—2¢*cos¢p + ¢ 2°
1—¢"%cos¢ + ac™’sin ¢

—_—a’

(76)

e, =e
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The two equations (75), (76) permit the calculation of two of
the three quantities <, e, ¢,: the time, ¢,, of condenser charge
appears in the exponential function, in s, and in the trigonometric
function, in ¢.

Since in an oscillating-current generator of fair efficiency,
that is, when r is as small as possible, s is a small quantity,
e=* can be resolved into the series

e"=1—s+§—+.... (77)

Substituting (77) in (75), and dropping all terms higher than
&, gives

s\ .
2¢ (1—s+§)sm¢

L =

s
g l—cos¢+scos¢—§cos¢+asin¢—assin¢

Multiplying numerator and denominator by (1 + g), and
rearranging, gives

1

: _2e sin ¢ B
° g 2+s .
2——_s—cos¢+asm¢
[ 78)
_2e sing
T g 2s

- N
i L
2_s+2sm2-i-asm¢ J

Substituting (77) in (76), dropping terms higher than s* and

as, multiplying numerator and denominator by (l + g), and
rearranging, gives ’

3?.5+'f

2 sin 5 t3

e, =2e 2% 3 . (79)
2s - .
2_8+2sm 2+asm<j>
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Substituting ¢, in (78) and (79) gives

2,
. 28 2L
T om, q q (60)
4L—rto+2sm 4—Lt +qsnn2Lt
and
2
2sm—q—t +r’to
4L 8L
e, =2e (81)
3 Tho + 2sin® qt + sin qt
4L — t, 4L° "¢ 2L

as approximate equations giving ¢, and e, as functions of ¢,, or the
time of condenser charge.

61. The time, t,, during which the condenser charges, increases
with increasing e,, that is, increasing length of the spark gap in
the discharge circuit, at first almost proportionally, then, as
e, approaches 2 e, more slowly.

Aslong as e, is appreciably below 2 ¢, that is, about e, < 1.75 ¢,
t, is relatively short, and the charging current 7, which increases
from 7, to a maximum, and then decreases again to 7,, does not
vary much, but is approximately constant, with an average
value very little above 7, so that the power supplied by the
impressed e.m.f., e, to the charging circuit can approximately
be assumed as

Py = €, 82)

The condenser discharge is intermittent, consisting of a series
of oscillations, with a period of rest between the oscillations,
which is long compared with the duration of the oscillation,
and during which the condenser charges again.

The discharge current of the condenser is, (66),

2e, _%.,‘
—e - sin ¢, in am
2 ZL p-

and since such an oscillation recurs at intervals of ¢, seconds,
the effective value, or square root of mean square of the dis-

charge current, is
. 1 to
= \/Z;.'/': 2 dt. (83)

1:=
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Long before ¢ = t,, ¢ is practically zero, and as upper limit of
the integral can therefore be chosen c« instead of ¢,,.

Substituting (66) in (83), and taking the constant terms out
of the square root, gives the effective value of discharge cur-

rent as
2e 1 -—'!
\/ f “sint 2o g gy
L
%f"‘dz f cosq"zdzl; (84)
however,
f:'% dt = — .Iis[ L' _L
° = To 13 o)
and by fractional integration,
_n,
[Eoat
K cos Lotdt
L,
-2 [_l%‘gsm q°t——5cos&’t§]:
1~l-(ﬁ-)2 ¢ L, g% . L
1]
_ Ly, .
et a
hence, substituting in (84),
. T 2L
1, =e\/—Z 0 85)
' °\/toro e+ g ®
Since
4L,
¢=¢c ™

we have, substituting in (85),

= e\ / C
1’1 eo 2T.r07 (%)
and, denoting by

f1= ¢’
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¢

the frequency of condenser charge, or the number of complete
trains of discharge oscillations per second,

. o,
i, = e, 2{‘ (87

that is, the effective value of the discharge current is propor-
tional to the condenser potential, e, proportional to the square
root of the capacity, C, and the frequency of charge, f,, and
inversely proportional to the square root of the resistance, r,,
of the discharge circuit; but it does not depend upon the induc-
tance L, of the discharge circuit, and therefore does not depend
on the frequency of the discharge oscillation.
The power of the discharge is

.C
P, = iiry = £, (38)

2
Since ?322 is the energy stored in the condenser of capacity G

at potential e, and f, the frequency or number of discharges
of this energy per second, equation (88) is obvious.

Inversely therefore, from equation (88), that is, the total
energy stored in the condenser and discharging per second,
the effective value of discharge current can be directly calcu-
lated as
Pi_g . .

1, =\
! To 2r

The ratio of effective discharge current, ¢,, to mean charging
current, z,, is

_ %y /9 89)

and substituting (80) and (81) in (89),

2 4 rt} _
Y Ak VARET
%o 7 27, . q

aLb



82 TRANSIENT PHENOMENA

The magnitude of this quantity can be approximated by

neglecting r compared w1th that is, substituting ¢ = \/ 4—CL

C b
and replacing the sine-function by the arcs. This gives
7, 1
i~ Ve,
that is, the ratio of currents is inversely proportional to the
square root of the resistance of the discharge circuit, of the
capacity, and of the frequency of charge.

62. Example: Assume an oscillating-current generator, feed-
ing a Tesla transformer for operating X-ray tubes, or directly
supplying an iron arc (that is, a condenser discharge between
iron electrodes) for the production of ultraviolet light.

The constants of the charging circuit are: the impressed
em.f., e = 15,000 volts; the resistance, r = 10,000 ohms; the
inductance, L = 250 henrys, and the capacity, C=2 X 10~*
farads = 0.02 mf.

The constants of the discharge circuit are: (a) operating
Tesla transformer, the estimated resistance, r, = 20 ohms
(effective) and the estimated inductance, L, = 60X 10~*
henry = 0.06 mh.; (b) operating ultraviolet arc, the esti-

mated resistance, r = 5 ohms (effective) and the estimated
inductance, L, = 4 X 10~° henry = 0.004 mh.

Therefore in the charging circuit,

q = 223,400 ohms,

(91)

= 0.0448,

1 _.
= 4468, 5

[V

then
o= 0134 — sin 46814,
0o _ 2 .
0:025 — t + 2sin* 223.4 {,+ 0.0448 sin 446.8 ¢,

and ., » (92)
X 200t?
e 30, y 2 sin? 223.4 1, + 200 1, _

0.025 — ¢,

+ 25sin?223.4 £, + 0.0448sin 446.8 ¢,
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Fig. 17 shows 7, and e, as ordinates, with the time of charge
t, as abscissas.

€ge=10-3 X Volts
111311

Fig. 17. Oscillating-current generator charge.
The frequency of the charging oscillation is

f= 4_3:L = 71.2 cycles per sec.;

for
1, = 0.365 amp.,

substituting in equations (69) and (70) we have

T=e"2°t {0.365 cos 446.8 t+-0.118 sin 446.8 ¢}, in amp.,

and (93)
e,=15,000{1—¢"2[cos 446.8 t—2.67 sin 446.8 {]}, in volts,

the equations of condenser charge.

From these equations the values of 7 and e, are plotted in
Fig. 18, with the time ¢ as abscissas.

As seen, the value 7 =7, = 0.365 amp., is reached again
at the time ¢, = 0.0012, that is, after 30.6 time-degrees or about
v of a period. At this moment the condenser e.m.f. is e, =
e, = 22,300 volts; that is, by setting the spark gap for 22,300
volts the duration of the condenser charge is 0.0012 second,
or in other words, every 0.0012 second, or 833 times per second,
discharge oscillations are produced.

With this spark gap, the charging current at the beginning
and at the end of the condenser charge is 0.365 amp., and the
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average charging current is 0.3735 amp. at 15,000 volts, con-
suming 5.6 kw.

Assume that the e.m.f. at the condenser terminals at the end
of the charge is e, = 22,300 volts; then consider two cases,
namely: (@) the condenser discharges into a Tesla transformer,
and (b) the condenser discharges into an iron arc.

28,
(__'E: volts 4
2 Py
Fir /
» Gg--m volts /
18 /
g..
éxz 7
» /
/

/
s

te=02 04 06 08 10 12X10"%Bec.
Fig. 18. Oscillating-current generator condenser charge.

(@) The Tesla transformer, that is, an oscillating-current
transformer, has no iron, but a primary coil of very few turns
(20) and a secondary coil of a larger number of turns (360),
both immersed in oil.

While the actual ohmic resistance of the discharge circuit is
only 0.1 ohm, the load on the secondary of the Tesla trans-
former, the dissipation of energy into space by brush discharge,
etc., and the increase of resistance by unequal current distribu-
tion in the conductor, increase the effective resistance to many
times the ohmic resistance. We can, therefore, assign the
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following estimated values: r,= 20 ohms; L,= 60 X 10~* henry,
and C = 2 X 10~* farad.

Then
g, = 108 ohms, Lo_ 0.186,
0
% _ 0.898 x 10° To_ _ 0.1667 X 10°
2L, ! 2L, !
which give
1=415 ¢~ 010671 gjp 0.898 X 10° ¢, amp.
and :
€, =22,300 e~ *197<19" { o5 0,898 X 10° ¢+0.186 sin 0.898 X 10° ¢},
volts.
(94)
‘The frequency of oscillation is
(]
7, = (&821(—19 — 143,000 cycles per sec. 95)

Fig. 19 shows the current ¢ and the condenser potential e,
during the discharge, with the time ¢ as abscissas. As seen,
the discharge frequency is very high compared with the fre-

Kilovolts
LX)
Amp.

-15

x10"* Beo.
Fig. 19. Oscillating-current generator condenser discharge..

quency of charge, the duration of discharge very short, and
the damping very great; a decrement of 0.55, so that the oscil-
lation dies out very rapidly. The oscillating current, however,
is enormous compared with the charging current; with a mean
charging . current of 0.3735 amp., and a maximum charging
current of 0.378 amp. the maximum discharge current is 315
amp.,or 813 times as large as the charging current.
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The effective value of the discharge current, from equation
(87), is ¢, = 14.4 amp., or nearly 40 times the charging current.

63. (b) When discharging the condenser difectly, through
an ultraviolet or iron are, in a straight path, and estimating
r, = 5 ohms and L, = 4 X 10~° henry, we have

g, = 27.84 ohms, To _ 0.1795,
9
o _ 348%10°, o _ 0.625 x 10°;
2L, 2L, ’
then,
4=1600 e~ %26<*¢ gin 3.48X 10° £, in amp.,
and
€,=22,300 e~ *28x19" {0 3.48 X 10° £+ 0.1795 sin 3.48X10° ¢},
in volts,

(96)
and the frequency of oscillation is

f, = 562,000 cycles per sec.; 97

that is, the frequency is still higher, over half a million
cycles; the maximum discharge current over 1000 amperes;
however, the duration of the discharge is still shorter, the
oscillations dying out more rapidly.

The effective value of the discharge current, from (87), is
7, = 28.88 amp., or 77 times the charging current. A hot
wire ammeter in the discharge circuit in this case showed
29 amp.

As seen, with a very small current supply, of 0.3735 amp.,
at e = 15,000 volts, in the discharge circuit a maximum voltage
of 22,300, or nearly 50 per cent higher than the impressed
voltage, is found, and a very large current, of an effective value
very many times larger than the supply current.

As a rule, instead of a constant impressed e.m.f., ¢, a low
frequency alternating e.m.f. is used, since it is more conven-
iently generated by a step-up transformer. In this case the
condenser discharges occur not at constant intervals of ¢, sec-
onds, but only during that part of each half wave when the
e.m.f. is sufficient to jump the gap e, and at intervals which
are shorter at the maximum of the e.m.f. wave than at its
beginning and end.
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" For instance, using a step-up transformer giving 17,400 volts
effective (by the ratio of turns 1:150, with 118 volts im-
pressed at 60 cycles), or a maximum of 24,700 volts, then
during each half wave the first discharge occurs as soon as the
voltage has reached 22,300, sufficient to jump the spark gap,
and then a series of discharges occurs, at intervals decreasing
with the increase of the impressed e.m.f., up to its maximum,
and then with increasing intervals, until on the decreasing
wave the e.n.f. has fallen below that which, during the charg-
ing oscillation, can jump the gap e,, that is, about 13,000 volts.
Then the oscillating discharges stop, and start again during the
next half wave.

Hence the phenomenon is of the same character as investi-
gated above for constant impressed e.m.f., except that it is
intermittent, with gaps during the zero period of impressed
voltage and unequal time intervals ¢, between the successive
discharges.

64. An underground cable system can act as an oscillating-
current generator, with the capacity of the cables as condenser,
the internal inductance of the generators as reactor, and a short-
circuiting arc as discharge circuit.

In a cable system where this phenomenon was observed
the constants were approximately as follows: capacity of the
cable system, C = 102 mf.; inductance of 30,000-kw. in gen-
erators, L =6.4 mh.; resistance of generators and circuit up to
the short-circuiting arc, r = 0.1 ohm and r = 1.0 ohm respec-
tively; impressed e.m.f., 11,000 volts effective, and the fre-
quency 25 cycles per second.

The frequency of charging oscillation in this case is

-2 _
=i 197 cycles per sec.

q=\/‘%’—r’=l5.80hms.

Substituting these values in the preceding equations, and
estimating the constants of the discharge circuit, gives enor-
mous values of discharge current and e.m.f.

since



CHAPTER VII.

RESISTANCE, INDUCTANCE, AND CAPACITY IN SERIES IN
ALTERNATING-CURRENT CIRCUIT.

86. Let, at time ¢ = Q0 or § = 0, the e.m.f.,
e = FEcos (6 — 46,), 1)

be impressed upon a circuit containing in series the resistance, r,
the inductance, L, and the capacity, C.

The inductive reactance is  z = 2 =fL

1 @

and the condensive reactance is r, = ——,

2 =fC
where f = frequency and 6 = 2 =ft. ®)

Then the e.m.f. consumed by resistance is r¢;
the e.m.f. consumed by inductance is

dy di
L a—t = x'd—ﬂy
and the e.m.f. consumed by capacity is
1 (. .
&= idt=z, [ia, @
where © = instantaneous value of the current.
Hence, e=ri+x‘%+:c,fid0, ®)
. dr .
or, Ecos(0—00)=n+:cd—0+:cc 1db, ©)

and hence, the difference of potential at the condenser terminals
is
: . du
el=z,f%d0=Ecos(0—0°)—n—xd_0. V)
88



RESISTANCE, INDUCTANCE, AND CAPACITY 89

Equation (6) differentiated gives

s dv .
d7’+rd_0+‘m=0‘ 8

Esin (0 -0, + =
The integral of this equation (8) is of the general form
it =A™ + Bcos (6 — o). 9)
Substituting (9) in (8), and rearranging, gives

Ac*{a*z—ar+z.} +sin6 {E cos §,—rB cos ¢ — B (z—z,) sin o}
— cos0{Esinf, — rBsine + B (z — z.)cos ¢} =0,

and, since this must be an identity,
ax—ar +z. =0, _
Ecosb,— rBecosa — B (z — z,)sina = 0, (10)

Esin6, — rBsine + B (zx — z,) cos o = 0.

Substituting
s =Vr—4zrzx,
2, = V7P + @ - z.), 11)

T

in equations (10) gives

r+8
2z

E

B == 12)

20
a=0,+7
and A = indefinite,

a =

and the equation of current, (9), thus is

r+s
-0
2z

i=gcos -0, -7)+A,e_2_’o+ Ag y (13)
(]
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and, substituting (l?} in (7), and rearranging, the potential
difference at the condenser terminals is
r+s "% r—8 t+e,

ﬂnm—m—ﬂ——E—Ag-“ — Ay T (1)

Ezx,

e, =
°

The two integration constants A, and A, are given by the
terminal conditions of the problem.
Let, at the moment of start,

0 =0,
© = 1, = instantaneous value of current and
e, = e, = instantaneous value of condenser potential (1)
difference.

Substituting in (13) and (14),
. E
1, =z—cos(00+'y) + A4, + A4,
0

and

Ex

. . r+s r—s
p sin (0, + ) —
0

7 A3

A,

e, = —
Therefore

. E
A +A,=1,— 5 ¢cos @, + 7
o
and (16)

o+ 2 E .
A,—A,=—u+——{rcos(0°+'7")—23:‘.sm(0,+7)i,
s 82,

or,

r—si te

2 et Egr—s . %
Al——T +a —Q—cos(00+7)—xcsm(0°+')')
and an

r+s.

—1,+€

2 7 E (r+s )
=42 B AT e gty zsin o, .
s sz, 2
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Substituting (7) in (13) and (14) gives the mtegral equations
of the problem
The current is

- orr—
i=§cos 0—0,—v)+ E gs 2z [1—")—8(;03 6,+7)—z.sin (0,+'7)]
2, sz, 2
r+s +8
—e 2z [Tcos (@,+7) —x.sin (0+'1)J§

— lge“ﬁ' [r—f io+eo]—e -_’[igz +eo]§ (18)

s 2 2

and the potential difference at the condenser terminals is

es%sin(ﬁ—()o—'r)
[
E g (r+8)e -"[r-;—scos(00+'¥)—x,. sin(0,+'y)]
2sz

~Fre[r+s .
—(r—s)e —— Cos 0, +7) —x.sin (0,+)

14 - r—s. -Serris,
+£3(r+s)e 2 [--2 7,+ eo]— (r—s)e [--2— zﬁ-e,]%.
19)
where
=V 4+ (x - z)

tany = x—"r i (10)

and
s=vr-izz.

The expressions of 7 and e, consist of three terms each:

(1) The permanent term, which is the only one remaining
efter some time;

(2) A transient term depending upon the constants of the
cireuit, 7, 8, Z,, 2,, z, the impressed e.m.f., E, and its phase 6, at
the moment of starting, but mdependent of the eondltlons
axisting in the circuit before the start; and
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(3) A term depending, besides upon the constants of the
circuit, upon the instantaneous values of current and potential
difference, 7, and e,, at the moment of starting the circuit, and
thereby upon the electrical conditions of the circuit before
impressing the e.m.f., e. This term disappears if the circuit is
dead before the start.

Equations (18) and (19) contain the term s=vr —4zz,

= \/1’ — 4 g ; hence apply only when 7*> 4 rz, but become

indeterminate if =4 r z,, and imaginary if < 4z z,; in the
latter cases they have to be rearranged so as to appear in real
form, in manner similar to that in Chapter V.

66. In the critical case, . =4 z z, and 8 = 0, equation (18),
rearranged, assumes the form

. E E -5
i =008 (0= 0=+ 2
' +33° ‘2%' :
;[% cos (6,+ ) — z.sin (0o+")]e—‘ - —cos (0°+7)§

~Te([r. 52’—52" .
B O DT

However, developing in a series, and canceling all but the
first term as infinitely small, we have

+2-0 ]

< 2z — 2z 0-

—_ =-—,

s z

hence the current is
. E -5
t=—=cos(0 —0,—v) +—e 2°
zo zo

2[% cos (6,+ ) — z,sin (0, + 'Y)]g— cos (6, + 'Y)g

-{;'3. [1:.+ 6
+ ¢ Y~ 21’0 eo]ziv (20)
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and in the same manner the potential difference at condenser
terminals is

_z_xp

1

E
—0,—7 "27;6

g[gcos @, +9) — zrsin (0, +'Y)]g —2z,8in 0+ 7) g

1 -=0([r. (/]
+§€ 2z %['2-"0"'7'60];"'2302' (21)

Here again three terms exist, namely: a permanent term, a
transient term depending only on E and 6, and a transient
term depending on ¢, and e,.

§7. In the tngonometrw or osctllatory case, ¥ < 4z z, 8 be-
comes 1magmary and equations (18) and (19) therefore contain
complex imaginary exponents, which have to be eliminated,
since the complex imaginary form of the equation obviously
is only apparent, the phenomenon being real.

Substituting

g=Varzr —1r =js (22)

in equations (13) and (14), and also substituting the trigono-
metric expressions

+i2%0 _q q
€ = cos 5~ 0+]sm2x0
and (23)
~i-Lo
e 2% o cos—lﬁ—]sm2—qﬁ

and separating the imaginary and the real terms, gives

. E -33°
1=z—cos(0-—0,—'7)+s 2=

9ot — Aysin L
g(A,+A,)<Jos2:':0+](Al A,)smzx&i
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and
~ T
e, = Eosin @ = 0,— ) — ¢ 2
20
A +4 ey 1.4
; '2 2[r cos (0,+ ¥)— ¢sin (6, + 7)) + j- ‘2 2

oo A .
[g cos (6, ) + rsin (0, + 7]

then substituting herein the equations (16) and (22) the imagi-
nary disappears, and we have the current,

nl _%‘
7= Ecos @ —-0,— v - ét =
2, )
N q 21:'. . r .
gcos (0°+7)0082}0 + [Tsm (00+'y)._(}cos (0,,+'1)] smngcﬂ'g
BT PR AP S PSP Y 2
te gzocosle) . sing= 0 )

and the potential difference at the condenser terminals,

Ex,

. Er, -5
e == sm(0-—0o—7)+z—e'
(] + %

. Lol _2z ] q
3bm(0o+'7)c052x0+[qs1n(00+'y) 7 cos (6,+7) s1n2:0%

r
-TLoe

9 .
+e 2* %eocosl0+ re°+%i

: 4ol s
2z 3q S“zz"f @)

Here the three component terms are seen also.

68. As examples are shown in Figs. 20 and 21, the starting
of the current 7, its permanent term %,, and the two transient
terms 7, and 7,, and their difference, for the constants £ = 1000
volts = maximum value of impressed e.m.f.; r = 200 ohms
=resistance; z = 75 ohms = inductive reactance, and z, = 75
ohms = condensive reactance. We have

4rr. = 22500

and 7 = 40,000;
therefore :

r>4rr,
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~ that is, t.he start is logarithmic, and z, = 200, s = 132, and
7=0.

Amn

v -

De‘:l;el
Big. 20. Starting of an alternating-current circuit, having capacity, mduct.ance
and resistance in series. Logarithmic start.

In Fig. 20 the circuit is closed at the moment 6, = 0, that
is, at the maximum value of the impressed e.m.f., giving from
the equations (18) and (19), since 7, = 0, ¢, = 0,

t=5{cos0 — 1.26 722 + 0.26 s‘°'““}
and

e, = 375 {sin § + 0.57 (¢~2B® — —o4s20)},

AV e

Degrees

Fig. 21. Starting of an alternating-current circuit having capacity, inductance
and resistance in series. Logarithmic start.

In Fig. 21 the circuit is closed at the moment 6, = 90°, that
is, at the zero value of the impressed e.m.f., giving the equa-
tions
T =25 {sin @ + 0.57 (7320 — ¢—0420)}
and

e, = — 375 {cos 6 + 0.26 e~320 — 1.26 e—04%20) },
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There exists no value of 6, which does not give rise to a
transient term.

ww Ay -

Degrees
Fig. 22. Starting of an alternating-current circuit having capacity, inductance
and resistance in series. Critical start.

In Fig. 22 the start of a circuit is shown, with the inductive -
reactance increased so as to give the critical condition,”

P?=4zz,

but otherwise the constants are the same as in Figs. 20 and 21,
that is, E = 1000 volts; r = 200 ohms; z = 133.3 ohms, and
x, = 75 ohms;

therefore z, = 208.3,

58.3
tany = 200 ~ 0.2915, or 7 = l§°,
assuming that the circuit is started at the moment 6, =0, or
at the maximum value of impressed e.m.f.
Then (20) and (21) give

1 =478cos (6 — 16°) + £ *"? (270 — 4.6)
and
e,= 358sin (# — 16°) — ¢ *™°(41060 — 99).

Here also no value of 6, exists at which the transient term
disappears.

69. The most important is the oscillating case, * < 4 z z,,
since it is the most common in electrical circuits, as underground
cable systems and overhead high potential circuits, and also is
practically the only one in which excessive currents or excessive
voltages, and thereby dangerous phenomena, may occur.
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If the condensive reactance z. is high compared with the
resistance 7 and the inductive reactance z, the equations of
start for the circuit from dead condition, that is, 7, = 0 and
¢, = 0, are found by substitution into the general equations
(24) and (25), which give the current as

. E. R
t=——§sﬂl @—0)+¢ ** [sma,,cos\/éa
Ze z

xﬂ 4 xC ) '
- \/-:—cos 8, sin \/-; 0]$ (26)
and the potential difference at the condenser terminals as

e,=E zcos 0-46,) — e 2
e r _\/E. ) . z. ]
[cosﬂ cos \/:0 +(2———\/x_xccos 0, zcsmﬂo sin xo %, 27)

-where q= 2\/17_-;4-’ 2,= z,, and v = — 90°. (28)

In this case an oscillating term always exists whatever the
value of 6,, that is, the point of the wave, where the circuit is

started.
The frequency of oscillation therefore is

-2 _
fom s - 1VE- T
or, approximately, (29)

- VB

where f = fundamental frequency.
e -1
Substituting z = 2 zfL and z, = T7C’ we have

f, = 1 ‘/ 1 P
* 2xVoL I
or, approximately, (30)
1

fo= 57T
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60. The oscillating start, or, in general, change of circuit
conditions, is the most important, since in circuits containing
capacity the transient effect is almost always oscillating.

The most common examples of capacity are distributed
capacity in transmission lines, cables, etc., and capacity in the
form of electrostatic condensers for neutralizing lagging currents,
for constant potential-constant current transformation, ete.

(a) In transmission lines or cables the charging current is a
fraction of full-load current 7,, and the e.m.f. of self-inductance
consumed by the line reactance is a fraction of the impressed
e.m.f. ¢, Since, however, the charging current is (approximately)

e . .
== and the e.m.f. of self-inductance = xi, we have
J:C
e, . .
C= < 1y, XY, < €y
IC

hence, multiplying,

I
—<landr < r.

The resistance r is of the same magnitude as z; thus
4rx, >r.

For instance, with 10 per cent resistance drop, 30 per cent
reactance voltage, and 20 per cent charging current in the line,
assuming half the resistance and reactance as in series with the
capacity (that is, representing the distributed capacity of the
line by one condenser shunted across its center) and denoting

= &,
P= Iio
where e, = impressed voltage, 7, = full-load current, we have
) -
X, = 0%-)‘ =a9p,
z=05X03p =015 p,

0.5 % 0.1p = 0.05 p,
and

r+z+zr=1+3=+ 100,
and

4rx, +r =1200 = 1.
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In this case, to make the start non-oscillating, we must have

3 OOT’ or z < 0.000125 p, which is not possible; or » > ‘V

which can be done only by starting the circuit through a very
large non-inductive resistance (of such size as to cut the starting

current down to less than \;3 of full-load current). Even in

this case, however, oscillations would appear by a change of
load, etc., after the start of the circuit.

() When using electrostatic condensers for producing watt-
less leading currents, the resistance in series with the condensers
is made as low as possible, for reasons of efficiency.

Even with the extreme value of 10 per cent resistance, or

r + 1. =1 + 10, the non-oscillating condition is z < 410 or
0.23 per cent, which is not feasible.
In general, if
Z consumes. ....... 1 2 4 9 16 per cent of the con-
denser potential
difference,

r must consume > 20 28.3 40 60 80 per cent of the con-
denser potential
difference.

That is, a very high non-inductive resistance is required to
avoid oscillations.

The frequency of oscillation is approximately f, = \/%f
that is, is lower than the impressed frequency if r. < z (or the
permanent current lags), and higher than the impressed fre-
quency if z, > r (or the permanent current leads). In trans-

mission lines and cables the latter is always the case.

Since in a transmission hnexgls approximately the charging
(4

current, as fraction of full-load current, and i half the line

em.f. of self-inductance, or reactance voltage, as fraction of
impressed voltage, the following is approximately true:
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The frequency of oscillation of a transmission line is the
impressed frequency divided by the square root of the product
of charging current and of half the reactance voltage of the line,
given respectively as fractions of full-load current and of im-
pressed voltage. "For instance, 10 per cent charging current,
20 per cent reactance voltage, gives an oscillation frequency

f
=——J =10/
T v0.1 X 0.1 1

Fig. 28. Starting of an alternating-current circuit having capacity, inductance
and resistance in series. Oscillating start of transmission line.

61. In Figs. 23 and 24 is given as example the start
of current in a circuit having the constants, E = 35,000
cos (8 — 0,); r = 5 ohms; z = 10 ohms, and z, = 1000 ohms.

In Fig. 23 for 6,= 0° or approximately maximum oscilla-
tion,

i = — 35 {sin § — 10 e~ 9% * 5in 10 0}

and
e, = 35,000 {cos @ — ¢~ °3°[cos 10 & + 0.025sin 10 6]}.

In Fig. 24 for 6, = 90°, or approximately minimum oscilla-
tion,
1 =35 {cos 6 — e 3 cos 10 4}

and
e, = 35,000 {sin 0+ 0.1 °*°gin 10 0}.

As seen, the frequency is 10 times the fundamental, and in
starting the potential difference nearly doubles.
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As further example, Fig. 25 shows the start of a circuit of a
frequency of oscillation of the same magnitude as the funda-
mental, in resonance condition, z = z., and of high resistance.

o

| Fig. 24. Starting of an alternating-current circuit having capacity, inductance

and resistance in series. Oscillating start of transmission line.

The circuit constants are E = 1500 volts; r = 30 ohms;
=20 ohms; z,=20 ohms, and 6, = — v; which give
q=2646; z, = 30; ¥ =0,and ¢, = 0.

Fig. 25. Starting of an alternating-current circuit having capacity, inductance
and resistance in series. Oscillating start. High resistance.

Substituting in equations (24) and (25) gives

1 =250 {cos 8 — e *™*[cos 0.661 § — 1.14 sin 0.661 6]}
and

¢, = 1000 {sin 6 — 1.51 &7 * sin 0.661 6}.
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As example of an oscillation of long wave, Fig. 26 represents
the start of a circuit having the constants E = 1500 volts;
r = 10 ohms; z = 62.5 ohms; z,= 10 ohms, and 6, = — v;
which give ¢ = 49; 2z, = 534; v = 79° and 6, = — 79°

Substituting in equations (24) and (25) gives

7 =28 {cos0 — ¢ *9°[cos 0.39 9 — 0.2sin 0.39 0]}
and
e, = 280 {sin 0 — 2.55¢ %08 9gin (0.396 0} .

62. While in the preceding examples, Figs. 23 to 26, con-
stants of transmission lines have been used, as will be shown
in the following chapters, in the case of a transmission line

Fig. 26. Starting of an alternating-current circuit having capacity, inductance
and resistance in series. Oscillating start of long period.

with distributed capacity and inductance, the oscillation does
not consist of one definite frequency but an infinite series of
frequencies, and the preceding discussion thus ‘approximates
only the fundamental frequency of the system. This, however,
is the frequency which usually predominates in a high power
low frequency surge of the system.

In an underground cable system the preceding discussion
applies more closely, since in such a system capacity and induc-
tance are more nearly localized: the capacity is in the under-
ground cables, which are of low inductance, and the inductance
is in the generating system, which has practically no capacity.

In an underground cable system the tendency therefore is

.
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either towards a local, very high frequency oscillation, or travel-
ing wave, of very limited power, in a part of the cables, or a low
frequency high power surge, frequently of destructive magnitude,
of the joint capacity of the cables, against the inductance of the
generating system.

63. The physical meaning of the transient terms can best be
understood by reviewing their origin.

In a circuit containing resistance and inductance only, but a
single transient term appears of exponential nature. In such a
circuit at any moment, and thus at the moment of start, the
current should have a certain definite value, depending on
the constants of the circuit. In the moment of start,however,the
current may have a different value, depending on the preceding
condition, as for instance the value zero if the circuit has been
open before. The current thus adjusts itself from the initial
value to the permanent value on an exponential curve, which
disappears if the initial value happens to coincide with the final
value, as for instance if the circuit is closed at the moment of
the e.m.f. wave, when the permanent current should be zero.
The approach of current to the permanent value is retarded by
the inductance, accelerated by the resistance of the circuit.

In a circuit containing inductance and capacity, at any
moment the current has a certain value and the condenser a
certain charge, that is, potential difference. In the moment of
start, current intensity and condenser charge have definite
values, depending on the previous condition, as zero, if the
circuit was open, and thus two transient terms must appear,
depending upon the adjustment of current and of condenser
e.m.f. to their permanent values.

Since at the moment when the current is zero the condenser
e.m.f. is maximum, and inversely, in a circuit containing induc-
tance and capacity, a change of circuit conditions always results
in the appearance of a transient term.

If the circuit is closed at the moment when the condenser
e.m.f. should be zero, that is, about the maximum value of cur-
rent, the transient term of current cannot exceed in amplitude its
final value, since its maximum or initial value equals the value
which the current should have at this moment. If, however,
the circuit is closed at the moment where the current should be
zero and the condenser e.m.f. maximum, the condenser being
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without charge acts in the first moment like a short circuit, that
is, the current begins at a value corresponding to the impressed
e.m.f. divided by the line impedance. Thus if we neglect the
resistance and if the condenser reactance equals n? times line
reactance, the current starts at n? times its final rate; thus it
would, in a half wave, give n* times the full charge of the con-

denser, or in other words, chargé the condenser ini of the time
of a half wave. That is, the period of the starting current is
%and the amplitude n times that of the ﬁnallcurrent. How-.
ever, as soon as the condenser is charged, in - of a period of

the impressed e.m.f., the magnetic field of the charging current
produces a return current, discharging the condenser again at
the same rate.

Thus the normal condition of start is an oscillation of such a
frequency as to give the full condenser charge at a rate which
when continued up to full frequency would give an amplitude
equal to the impressed e.m.f. divided by the line reactance.
The effect of the line resistance is to consume e.m.f. and thus
dampen the oscillation, until the resistance consumes during the
condenser charge as much energy as the magnetic field would
store up, and then the oscillation disappears and the start becomes
exponential.

Analytically the double transient term appears as the result
of the two roots of a quadratic equation, as seen above.



CHAPTER VIIIL

LOW FREQUENCY SURGES IN HIGH POTENTIAL SYSTEMS.

64. In electric circuits of considerable capacity, that is, in
extended high potential systems, as long distance transmission
lines and underground cable systems, occasionally destructive
high potential low frequency surges occur; that is, oscillations
of the whole system, of the same character as in the case of
localized capacity and inductance discussed in the preceding
chapter.

While a system of distributed capacity has an infinite number
of frequencies, which usually are the odd multiples of a funda-
mental frequency of oscillation, in those cases where the
fundamental frequency predominates and the effect of the
higher frequencies is neghglble the oscillation can be approxi-
mated by the equations of oscillation given in Chapters V and
VII, which are far simpler than the equations of an oscillation
of a system of distributed capaclty

Such low frequency surges comprise the total system, not only
the transmission lines but also the step-up transformers, gen-
erators, etc., and in an underground cable system in such an
oscillation the capacity and inductance are indeed localized to
a certain extent, the one in the cables, the other in the generating
system. In an underground cable system, therefore, of the
infinite series of frequencies of oscillations which theoretically
exist, only the fundamental frequency and those very high
harmonics which represent local oscillations of sections of
cables can be pronounced, and the first higher harmonics of the
fundamental frequency must be practically absent. That is,
oscillations of an underground cable system are either

(@) Low frequency high power surges of the whole system,
of a frequency of .a few hundred cycles, frequently of destructive
character, or,

(®) Very high frequency low power oscillations, local in
character, so called “static,” probably of frequencies of hundred

106
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thousands of cycles, rarely directly destructive, but indirectly
harmful in their weakening action on the insulation and the
possibility of their starting a low frequency surge.

The former ones only are considered in the present chapter.
Their causes may be manifold, — changes of circuit conditions, as
starting, opening a short circuit, existence of a flaring arc on the
system, etc.

In the circuit from the generating system to the capacity of
the transmission line or the underground cables, we have always

4L
r<— <
equations (24) and (25), Chapter VII, apply, and for the current
we have

that is, the phenomenon is always oscillatory, and

. E -Ze([. E q
Proguny -0 - 2z -—— —_
) e cos(0—0,—)+e g[t. 2 cos (0°+'y)] cos 5

[%qiﬁ%f(%c sin (0,+7y) —rcos (6, +7))] %s } 1

and for the condenser potential we have

e,=§ism(0 0,—y)+¢ 2% ?[%-‘-Eﬁ sin (oo+7)] cos
2, 2z
[2re,,+4 zx'bo :(r sin (6,+y) -2 z cos (6, +1))]sm—0§

@

66. These equations (1) and (2) can be essentially simplified
by neglecting terms of secondary magnitude.

z, is in high potential transmission lines or cables always very
large compared with r and z.

The full-load resistance and reactance voltage may vary
from less than 5 per cent to about 20 per cent of the impressed
e.m.f., the charging current of the line from 5 per cent to
about 20 per cent of full-load current, at normal voltage and
frequency.

In this case, z, is from 25 to more than 400 times as large asr
or z, and r and z thus negligible compared with z..
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It is then, in close approximation:

Z°=Zc,

g=2vVzz, > )
7

Y= —§= —90°. J

Substituting these values in equations (1) and (2) gives the

currend as

i=- xgsin 6—-0,) + ¢~7: ;[i,,— fsin 0,,]cos\/£;°o

c

€,+ 11, E T ] .
[22\/—:c: 2\/__(2coeﬂo+xcsln0°) sm\/;_og,

and the potential difference at the condenser as

e, = Ecos (6 — 6, +e—‘7='2[e0— E’cosoo]cos\/%()

+[‘lreo+(r’+4x:c)z E )
4Vzz, .

: 7 : .z,
(2 rcosd, + rtizz sin ()o)]sm \/&0 2 .
xc x }
These equations consist of three terms:

1: —_ ,l:l + ill + ‘iIII’
®)

4 ” ”ne .
e, =e' +e' +e'"

Vo= —Esin(ﬁ—ao),
Ze 6)
e/ =FEcos (6 —0,;
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) E —1, ]
1,”=—;c-s 2z gsmo cos 0—[\/-cosﬂ

r
+ ———si 1 \/-—‘ !
Veri sin 00] sin 02, o

. . Y
e/'= — Ee EE 30030 cos\/—‘() +[ \/_cos().,
+rz+4xxsm0]sm\/-0),
4r,Vzz, J
or, by dropping terms of secondary order,
P = \—/E—e 72 ¢08 0 sm\/i <0,
zz, . ®)
” = — Ee 2= cosdocos\/éﬂ;
and: T
— T 28 + rl T,
z"’—e 2z 3@ COS\/_-o n _cog
2\/1:3: \/x ’
r 9

_r 2 ~
e/ =¢ 2Eogeocos\ %0+ re,t (422 i, 'n\/zfﬁg;

4Vzr,
or, by dropping terms of secondary order,

. e (. /z, € . [T}
v =e 2r 37, co8)/ =0 — ——sin Zegl
. { r Vzz, z

¢/ = ¢ I3 ) € €08 \/;’0 + 1, Vzr, sin\/jog.
Thus the total current is approximately ’
E =
1——;<1n(0—0,,)+s-’ 31 cos\/—ﬂ ]’
— Ecos 0 :
—_— 0 [

\/ I .1: \/ '

and the difference of potential at the condenser is ey

|

-Loe oy
e, =FEcos (0 —0)+ ¢ ** ?(eo—Ecos0o)cos\/f;0:
.
)

—
p— I
LV si /—c
+ 1, .r.v,sm\xf)
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Of the three terms: ¢/, e//; "/, ¢,”; 1", ¢,’”, the first obviously
represents the stationary condition of charging current and con-
denser potential, since the two other terms disappear for ¢ =

The second term, ¢”/, e,”, represents that component of oscilla-
tion which depends upon the phase of impressed e.m.f., or the&'
point of the impressed e.m.f. wave, at which the oscillation
begins, while the third term, "/, e,””’, represents the component
of oscillation which depends upon the instantaneous values of
current and e.m.f. respectively, at the moment at which the

L
2z

-l
oscillation begins. ¢ is the decrement of the oscillation.
66. The frequency of oscillation is

Vs

where f is the impressed frequency. That is, the frequency of
oscillation equals the impressed frequency times the square root
of the ratio of condensive reactance and inductive reactance of
the circuit, or is the impressed frequency divided by the square
root of inductance voltage and capacity current, as fraction of
impressed voltage and full-load current.

Since -
z. =3 fC and z = 2 xfL,
the frequency of oscillation is
o1
* 2zvC b

that is, is independeht of the frequency of the impressed e.m.f.
Substituting

1
0 = 2zft, x°=5;f—6_' and = =2zfL

in equations (8), (10), and (11), we have

C . -3t t
=\~ Ee ?F cosf sin — , !
\/L ) PN VCL
(12)

.
-t
e/’ =— Ee *" cosd,cos

t
vCL’
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o =;—2—L'§%cos eo\/asm\/__g
r (13)
, "3 t Lo, ¢
e/ =¢ L 36"008\/07,-'-% ok \/_i
1=—2#fCEsin (0 — 6, + s"‘%" 31’ cos t
[ 0 /—CL
C ¢
- E cos 6 \/— —:§
(e, — E cos 8,) sin a7
- (14)

e, =FEcos(0—-0,)+ e 2L %(e,,— E cos 6,) cos \/271

L ¢
+z°\/;smm§ J

The oscillating terms of these equations are independent of
the impressed frequency. That is, the oscillating currents and
potential differences, caused by a change of circuit conditions
(as starting, change of load, or opening circuit), are independent
of the impressed frequency, and thus also of the wave shape of
the impressed e.m.f., or its higher harmonics (except as regards
terms of secondary order)

The first component of oscillation, equation (1‘)), depends
not only upon the line constants and the impressed e.m.f., but
principally upon the phase, or the point of the impressed e.m.f.
wave, at which the oscillation starts®, however, it does not
depend upon the previous condition of the circuit. Therefore
this component of oscillation is the same as the oscillation
produced in starting the transmission line, that is, connecting
it, unexcited, to the generator terminals.

There exists no point of the impressed e.m.f. wave where no
oscillation occurs (while, when starting a circuit containing
resistance and inductance only, at the point of the impressed
e.m.f. wave where the final current passes zero the stationary
condition is instantly reached).

With capacity in circuit, any change of circuit conditions
involves an electric oscillation.
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The maximum intensities of the starting oscillation occur
near the value 6, = 0, and are

and 15)
~T o ;
= — 2z cos \/&
E ¢ \/:c a.

o
-
>
N
|

Since
E .
v = -—x—csm(o—ﬁo)

is the stationary value of charging current, it follows that the
maximum intensity which the oscillating current, produced in

starting a transmission line, may reach is \/’;E times the sta-

tionary charging current; or the.initial current bears to the
stationary value the same ratio as the frequency of oscillation
to the impressed frequency.

The maximum oscillating e.m.f. generated in starting a trans-
mission line is of the same value as the impressed e.m.f. Thus
the maximum value of potential difference occurring in a trans-
mission line at starting is less than twice the impressed e.m.f.
and no excessive voltages can be generated in starting a circuit.

The minimum values of the starting oscillation occur near
6, = 90°, and are, from equations.(22),

, _
~-Toe
we_ B = cos\/fsg
z, z

and (16)
—~T 9
e/ = \/E—E e 2% gin V EC0;
z, z

that is, the oscillating current is of the same intensity as the
charging current, and the maximum rush of current thus is
less than twice the stationary value. The potential difference
in the circuit rises only little above the impressed e.m.f.

The second component of the oscillation, equation (13), does
not depend upon the point of the impressed e.m.f. wave at
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which the oscillation starts, 0,, nor upon the impressed e.m.f. as
a whole, E, but, besides upon the constants of the circuit, it
depends only upon the instantaneous values of current and of
potential difference in the circuit at the moment when the
oscillation starts, 7, and e,.

Thus, if 7, =0, ¢, = 0, or in starting a transmission line,
unexcited, by connecting it to the impressed e.m.f., this term
disappears. It is this component which may cause excessive
potential differences. Two cases shall more fully be discussed,
namely :

(@) Opening the circuit of a transmission line under load, and
(b) rupturing a short-~circuit on the transmission line.

67. (a) If 7, is the instantaneous value of full-load current,
e, the instantaneous value of difference of potential at the
condenser, 77 is small compared with e, and Vzz, %, is of the
same magnitude as e,.

Writing
eo

ioVIx

c

tanod =
and substituting in equations (10), we have
T LI, I~ '
= \/'L:’ 420 T oo (\/ﬂO + 5)
Tz, r

—_— "0 z
e/ =Vel +irz,e °* sin (\/: 0+ 6);
7

and an

2
that is, the amplitude of oscillation is\/ 7’ +;—°xforthecun'ent,
c

and e? + i’rr, for the em.f. Thus the generated e.m.f.
can be larger than the impressed e.m.f., but is, as a rule, still of
the same magnitude, except when z, is very large.

In the expressions of the total current and potential difference
at condenser, in equations (11), (¢, — E cos 8,) is the difference
between the potential difference at the condenser and the
impressed e.m.f., at the instant of starting of the oscillation, or
the voltage consumed by the line impedance, and this is small
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if the current is not excessive. Thus, neglecting the terms with
(e, — E cos 8,), equations (11) assume the form

i = — ES“] (0 - 00) + ?:oe-‘z_;ocos \/&0
z, z

and 18)

T
e,=Ecos(0—0) +i,Vzze ** sin\/z—;‘-ﬂ;
T

that is, the oscillation of current is of the amplitude of full-load
current, and the oscillation of condenser potential difference is
of the amplitude #,Vz z,-

z 1z, is the ratio of inductance voltage to condenser current, in
fractions of full-load voltage and current. We have, therefore,

T

W, = i o

Thus in circuits of very high inductance L and relatively low
capacity C, ©,Vz z, may be much higher than the impressed
e.m.f., and a serious rise of potential occur when opening the
circuit under load, while in low inductance cables of high capacity
i,Vzz, is moderate; that is, the inductance, by tending to
maintain the current, generates an e.m.f., producing a rise in
potential, while capacity exerts a cushioning effect. Low
inductance and high capacity thus are of advantage when
breaking full-load current in a circuit.

68. () If a transmission line containing resistance, induc-
tance, and capacity is short-circuited, and the short-circuit
suddenly opened at time ¢ = 0, we have, for t < 0,

e, =0
and ?:=‘§COS(0—00—7),
- (19)
where z2=VrP + 2
and tan y =£;
T



114 TRANSIENT PHENOMENA

thus, at time ¢t = 0,

&

) lp = — C08 6, + 7). (20)

Substituting these values of e, and %, in equations (9) gives

E o T r -
7 =—=cos(f,+y) e ** ; cos\/:(i— sin \/I_e oi
2 ’ xr 2Vzz, z

E - +4zz, . [z
81"'= ; cos (0°+ 7)6 2 m—— sin \/;0,

or, neglecting terms of secondary magnitude,

T

) E
= —¢ 2" cos (0,+ ) cos\/%o

and 4 @
VZIz, -35° z,
61’” = E—‘_'zx % e 2% cos (00 +7) Sin\/% g,

that is, ¢’ is of the magnitude of short-circuit current, and
e,””” of higher magnitude than the impressed e.m.f., since z is

small compared with Vzz,.
The total values of current and condenser potential difference,
from equation (11), are

- ]
i=—Zain@-0) + B 7[R0t

0,
_sin ] \/‘0+c080 in\/; 0%

and < (22)

-Loe
e, =E cos 0 — 6) — Ee ** gcosﬁ,,cos\/ée
z

Virz,
_ Vzz, cos (0°+7)sin\/%0§,

z
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or approximately, since all terms are negligible compared with
iIII and e‘III,

-Toe A
i=€e 22" cos (0, +r)cos\/—0
and t (23)

EVizz, -3¢ : ,
e, = z“fe 22" 008 (0, + r)sm\/%ﬁ.

J

These values are a maximum, if the circuit is opened at the
moment 6 = — y, that is, at the maximum value of the short-
circuit current, and are then

1= E e 2% ’ cos \/-;-" (/]
z z
and ! (24)
¢, = Vzz 2z, o / 0
The amplitude of oscillation of the condenser potential dif-

ference is
Vzz, B
2 ?

/

or, neglecting the line resistance, as rough approximation,

z=2,
xc
. z

that is, the potential difference at the condenser is increased
above the impressed e.m.f. in the proportion of the square root
of the ratio of condensive reactance to inductive reactance, or
inversely proportional to the square root of inductance voltage
times capacity current, as fraction of the impressed voltage and
the full-load current. Thus, in this'case, the rise of voltage is
excessive.

The minimum intensity of the oscillation due to rupturing
short-circuit occurs if the circuit is broken at the moment
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0 = 90° — 7, that is, at the zero value of short-circuit current.
Then we have

~-Loe 3
i= E;J-cos @ +7r)— Ee ** ;wcosﬁo
z, x, T

siny . /r
— ———=8Iny/ =
Vzr, \/;0§ f 25)
and
. —-5=0 T
e,=Esin (0 +7) — Ee " sinycos z‘(i;

that is, the potential difference at the condenser is less than twice
the impressed e.m.f.; therefore is moderate. Hence, a short-
circuit can be opened safely only at or near the zero value of the
short-circuit current.

The phenomenon ceases to be oscillating, and becomes an

ordinary logarithmic discharge, if V72— 4 zz, is real, or
r>2Vrz,.

Some examples may illustrate the phenomena discussed in the
preceding paragraphs.

69. Let, in a transmission line carrying 100 amperes at full
load, under an impressed e.m.f. of 20,000 volts, the resistance
drop = 8 per cent, the inductance voltage = 15 per cent of the
impressed voltage, and the charging current =8 per cent of full-
load current. Assuming 1 per cent resistance drop in the
step-up transformers, and a reactance voltage of 2} per cent,
the resistance drop between the constant potential generator
terminals and the middle of the transmission line is then 5 per
cent, or r = 10 ohms, and the inductance voltage is 10 per
cent, or z = 20 ohms. The charging current of the line is 8
amperes, thus the condensive reactance z, = 2500 ohms.

Then, assuming a sine wave of impressed e.m.f., we have

E = 20,000 V2 = 28,280 volts;
1/ =— 113 sin (6 — 6,);
e,/ = 28,280 cos (6 — 0,);
7" =— 11.3 ¢ **[sin 6, cos 11.2  — 11.2 cos 6, sin 11.2 6],
and
e, = —28,280 <~ ****[cos 6, cos 11.2 6—0.089 sin 6, sin 11.2 4].
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Therefore the oscillations produced in starting the trans-
mission line are
t= — 11.3[sin (0 — 6,) + ¢ ****(sin 6, cos 11.2 0
, — 11.2 cos 4, sin 11.2 6)]
sod e, = 28,280 [cos (0 — 0,) — ¢~ "*° (cos §, cos 11.2 6
— 0.089 sin 4, sin 11.2 6)].

m 75 ] E—{28.280 vpite| |2, = 2500 obims
W—50 + an 1:em{10-chm O 0%
il ] e T Z =20 hm
o8— 0 v \ 7 /V A -
0o— ! et \ 9 . ’ . P
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Fig. 27. Starting of a transmission line.
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Fig. 28. Starting of a transmission line.

Hence the maximum values for 6, = 0, are

1 ==—11.3 (8in 0 — 11.2 ¢ **° sin 11.29)
and e, = 28,280 (cos § — & **’ cos 11.26),
and the minimum values, for 6, = 90°, are
7 =113 (cos @ — ¢ **’cos 11.2 6)
and e, = 28,280 (sin 6 + 0.089 ¢~****sin 11.2 6).
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These values are plotted in Figs. 27 and 28, with the current, ¢,
in dotted and the potential difference, ¢,, in drawn line. The
stationary values are plotted also,in thin lines, ¢ and ¢/, respec-
tively. .

(a) Opening the circuit under full load, we have

| == 11.3sin (6 — 6,) + ¢ °®° (i, — 11.35in 6,) cos 11.2 0

and e, = 28,280 cos (8 — 6,) + 224 1,6 ***sin 11.2 6.
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A = B . | o i
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% ) ] \ i/ \ ]
10 1 \| . A\ ,’
120 Ao Wi N
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Fig. 20. Opening a loaded transmission line.

These values are maximum for 6, = 0 and non-inductive
circuit, or 7, = 141.4, and are

i =—1135in0 + 141.4 e *®cos 11.2 6
and e, = 28,280 cos0 + 31,600 °%* sin 11.26.

These values are plotted, in Fig. 29, in the same manner as
Figs. 27 and 28.
(b) Rupturing the line under short-circuit, we have

z =224
and 1, = 1265 cos (6, + 71);
and therefore

i =— 11.3sin (6 — 6,) + 1265 "% {[cos (6, + 1)
— 0.0089 sin 6,] cos 11.2 8 + 0.1 cos 6, sin 11.2 8}
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and e, = 28,280 {cos (0 + 0,) — ¢ ***[cos 0, cos 11.2 4
— 10 cos (0, + 7) sin 11.2 6]§.

These values are a maximum for 6, = — y = — 63°, thus
1 =— 113sin (6 + 63°) + 1260 ¢ ***° (cos 11.2 6
+ 0.044 sin 11.2 6)
and e, = 28,280 cos (6 + 63°)— 282,800 ¢~ **** (0.044 cos 11.2 0
— sin 11.20);

that is, the potential difference rises about tenfold, to 282,800
volts. These values are plotted in Fig. 30.
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Fig. 30. Opening a short-circuited transmission line.

70. On an experimental 10,000-volt, 40-cycle line, when a
destructive e.m.f. was produced by a short-circuiting arc, the
author observed a drop in generator e.m.f. to about 5000 volts,
due to the limited machine capacity. The resistance of the
system was very low, about r = 1 ohm, while the inductive
reactance may be estimated as z = 10 ohms, and the condensive
reactance as =z, = 20,000 ohms. Therefore tan y = 10, or
approximately, r = 90°. ’

Herefrom it follows that

1 =707 "®%cos 44.7 0
and
e, = 316,000 £~ **°sin 44.7 9;
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that is, the oscillation has a frequency of about 1800 cycles per
second and a maximum e.m.f. of nearly one-third million volts,
which fully accounts for its disruptive effects.

T71. As conclusion, it follows herefrom:

1. A most important source of destructive high voltage

~~phenomena in high potential circuits containing inductance and
capacity are the electric oscillations produced by a change of
circuit conditions, as starting, opening circuit, etc.

2. These phenomena are essentially independent of the fre-
quency and the wave shape of the impressed e.m.f., but de-
pend upon the conditions under which the circuit is changed,
as the manner of change and the point of the impressed e.m.f.
and current wave at which the change occurs.

3. The electric oscillations cccurring in connecting a trans-
mission line to the generator are not of dangerous potential, but
the oscillations produced by opening the transmission circuit
under load may reach destructive voltages, and the oscillations
caused by interrupting a short-circuit are liable to reach voltages
far beyond the strength of any insulation. Thus special pre-
cautions should be taken in opening 'a high potential circuit
under load. But the most dangerous phenomenon is a low
resistance short-circuit in open space.

4. The voltages produced by the oscillations in open-circuiting
a transmission line under load or under short-circuit are mod-
erate if the opening of the circuit occurs at a certain point of
the e.m.f. wave. This point approximately coincides with the
moment of zero current.



CHAPTER IX.

DIVIDED CIRCUIT.

72. A circuit consisting of two branches or multiple circuits
1 and 2 may be supplied, over a line or circuit 3, with an impressed
em.f., e,

Let, in such a circuit, shown diagrammatically in Fig. 31,
r, L, C, and r,, L,, C, = resistance, inductance, and capacity,
respectively, of the two branch circuits 1 and 2; r,, L, C,=

[y
To ZL',Z"',, ‘I-Ile'
. " %’,’
="

0 ===

Fig. 81. Divided circuit.

resistance, inductance, and capacity of the undivided part of the
circuit, 3. Furthermore let ¢ = potential difference at terminals
of branch circuits 1 and 2, ¢, and 7, respectively = currents in
branch circuits 1 and 2, and 7; = current in undivided part of
cireuit, 3.

Then 1y =1, + 1, (1)
and e.m.f. at the terminals of circuit 1 is
&, 1
e—rz+let C' 1, dt, 2)
of circuit 2 is
dr 1
r, + L, dt’ C 1, dt, 3)

121
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and of circuit 3 is

0 =€+ T, +Lo Cjzdt @)

Instead of the inductances, L, and capacities, C, it is usually
preferable, even in direct-current circuits, to introduce the

reactances, z = 2 zfL = inductive reactance, z, = 2%(7 = con-
densive reactance, referred to a standard frequency, such as
f = 60 cycles per second. Instead of the time ¢, then, an angle

6 = 2=ft 6)

is introduced, and then we have

dt 2xfdédi  db
and
1 i 6)
(—}fidt=2nfxcf@d0=chidﬂ,
dt
since
Z—f=2zﬁ

Hereby resistance, inductance, and capacity are expressed in
the same units, ohms.

Time is expressed by an angle 6 so that 360 degrees correspond
to # of a second, and the time effects thus are directly com-
parable with the phenomena on a 60-cycle circuit.

A better conception of the size or magnitude of inductance
and capacity is secured. Since inductance and capacity are
mostly observed and of importance in alternating-current cir-
cuits, a reactor having an inductive reactance of z ohms and
1 amperes conveys to the engineer a more definite meaning as
regards size: it has a volt-ampere capacity of ?’z, that is, the

approximate size of a transformer of half this capacity, or of a
2

z
%-watt transformer. A reactor having an inductance of L

henrys and ¢ amperes, however, conveys very little meaning to
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the engineer who is mainly familiar with the effect of inductance
in alternating-current circuits.

Substituting therefore (5) and (6) in equations (2), (3), (4),
gives the e.m.f. in circuit 1 as

e =ri +n 0o [ia; @
in circuit 2 as

e=r ,1,,+1:,(;9’+xj. ds; ®
in circuit 3 as

. ) .
eo=e+ro¢s+xo£+xcof7':d0; )

hence, the potential differences at the condenser terminals are

e, =z, id0=e—rlil—x%, (10)

1 |' 1 1 de

e,=xc'fi,d0=e—]‘,i,— ,‘Z; (11)
and o=z, [1,d0 = 6~ ¢ — r, - ,‘;;' (12)

Differentiating equations (7), (8), and (9), to eliminate the
integral, gives as differential equations of the divided circuit:

d’l di . de
d0’ +r, d0 T,y =d—0r (13)
& .
z,% +r, £ + z.0, = Z—;’ (14)
d‘i, dvg . de, de
and xo% 0d0+1’&—£—£* (15)

Subtracting (14) from (13) gives

d*, dv =, &, )
( d0’+rd0+x"z) (’d0°+ + z.0 0. (16)
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Multiplying (15) by 2, and adding thereto (13) and (14), gives,
by substituting (1), % =1, + i,,

& .
(2x°+x,)i+(2 +7) ‘+(2z +z)i, +

(2:):04-1:,) +(2 +r,) 2+ 2z, + = )iz;z%, 17

These two differential equatlons (16) and (17) are integrated
by the functions
G=i + A
and (18)

=g ~ae
1, =1 + A%,

where ¢ and ¢, are the permanent values of current, and
1,/ = Ae~*and 1,” = A,e~™ are the transient current terms.
Substituting (18) in (16) and (17) gives

i’ di’ i) di, ’
(:c»——-i- +xclz) (x +r ’—+I‘L)

2

'dpe vdo ' de > do

+Ae @z, —ar,+1x,)—-Ag ¥ @z, —ar,+1,)=0 (19)
and
@z, +x) +(2r +r) +(21: + )i + 2z, +1x,)

y l

+ @Zry+r ,) + @, + 1), + A~ *{*2 z, +1,)

dﬁl
—a@2r,+ 1)+ (2 w + 2} + A ¥ {@ 2z, + 1)
—a(2r,,+r,)+(2£m+.tc,)}=2%- (20)

78. For 6 = o, the expdnential terms eliminate, and there
remain the differential equations of the permanent terms
1,” and 2/, thus

( LT +x,,1,) ( ¢, dl—+.rz)?-0 @1)

¢ dﬂ’ tdo ’dfF *do
and
Pi
2z, + x) —+ 2r, +r)—— + @2z, +zx)it/+Q2x,+ z,)
2 c !l __ dﬁ().
dﬂg cg/ Y2 —2d0 (22)
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The solution of these equations (21) and (22) is the usual
equation of electrical engmeermg, gmng ) and 1, % sine waves
if the e.m.f., e, is a sine wave; giving © and ¢, as constant
quantities if e, is constant and r, and either z,, or r, or both
vanish, and giving i/ and 2/ =0 'if either x,, or both r, and
1, differ from zero.

Subtracting (21) and (22) from (19) and (20) leaves as dif-
ferential equations of the transient terms 7,” and ¢,”

e {A, @z, —ar, +1r,)— A, (@, —ar, + 1)} =0 (23)
and

e {4, @Rz, +1)-aRrx,+1)+ Q2r, +2)]+ A,
[@2r,+2)—aQ@ry+r1)+ Q2r, +r)]}=0. (24)

Introducing a new constant B, these equations give, from (23),

= B (a’z, — ar, + 1)
and (25)
A, = B (¢’x, — ar, + 1,);

then substituting (23) in (24) gives
@r,—ar, + 1) [@2r,+ 1) —aQry+ 1)+ 2x, + r,)]
+ (@r, —ar, + 2 )@*2x, + 1) —a 27, + 1)+ 2z,
+z.)] =0, (26)
while B remains indeterminate as integration constant.

Quartic equation (26) gives four values of a, which may be all
real, or two real and two conjugate imaginary, or two pairs of
conjugate imaginary roots.

Rearranged, equation (26) gives
@ (r,L, + x1, + 2,2,) — @ {ro (£ + L) + 1, (x5, + 2)

+r,(x,+ )} +@ {0y, + o, ) + 2, (2, + 2,)

+ 1, (Zg+ 2)+ z, (T4 2) = a {z,(r+ 1)+ 2, (r,+ 1))

+z, (rg+ 1)} + (22, + 22, + 1.2.)=0. (27)

Let a,, a,, a,, a, be the four roots of this quartic equation (27):

| W
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then
t,=1'+B, (a’r,—ar,+1)e " +B, (e z,—ay,+2.) e
+ B, (a/z,— ag,+ 1.) e~ + B, (az,— ay,+ z.) ¢~*° (28)
and
t,=1%, +B, (a’c,—a;r, +z,)e "+ B, (@ c,—ay, +z,)e*
+ B, (ajz,— ag,+ z,) e~ ™+ B, (a]z,— ajg,+ x.) e~ (29)
where the integration constants B,, B,, B, and B, are deter-
mined by the terminal conditions: the currents and condenser
potentials at zero time, 8 = 0.
The quartic equation (27) usually has to be solved by approxi-
mation.

74. Special Cases: Continuous-current divided circuit, with
resistance and inductance but no capacity, e,= constant.

e L,

Fig. 32. Divided continuous-current circuit without capacity.

In such a circuit, shown diagrammatically in Fig. 32, equations
(M), (8), and (9) are greatly simplified by the absence of the
integral, and we have

e=11,+ 1,— d0 (30)
d,
e=r1,+ 1, 2 (31)
and e, =¢e+ i, + xo%. (32)

(30) and (31) combined give

di, di,
T, — Ty, +zd0 HE—O. (33)
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Substituting (1), 7, = %, + 1,, in (32), multiplying it by 2 and

adding thereto (30) and (31), gives

2e,= 2r,+ 1)+ (2 roji- ) 1,+ 2 z,+ )

d
+ @z,+ x,)ﬁ.

Equations (33) and (34) are integrated by
1, =1+ 4,
and :
1, =1+ A%
Substituting (35) in (33) and (34) gives

(rlil’ - rziz,) + e_MiAl(rl— azl) - Az(r: - ax,)f =0

and

2e,=(27,+ 7)1+ 271, + 1) 5 +e ¥4, [@r, + 1)
—a2zy+z)]+ A,[2r,+1))— a2z, + z,)]}.

3

(34)

> (35)

These equations resolve into the equations of permanent

state, thus
ra/ —ra’ =0

and @Rro+r)i/ +@2ry+ 1)1, =2e,.
Hence i) = €2

) 1 Orz

. r

and z‘,’ = 6073‘,
where =1y b, T,

and the transient equations having the coefficients
A (r,—az)—A4,(r,—azx,) =0

and

A [2Cry+1)—az, + )]+ A4,[(@2r, + 1)

-a2z,+12,)]=0.

}

(36)

@7



128 TRANSIENT PHENOMENA

Herefrom it follows that
A, =B (r, — ax,) .
and (38)
A, =B (r, — ax,),

and
@ (zryr, + ror, +xx,) —afry (x, + z,) + 1, (x, + ,)
+ 712 + 2)] + (rry + 7, + rr) =0, (39)
B = indefinite. 40)

Substituting the abbreviations,
Iy, + 2,2, + rr, = T,
T, T, T, =1,
and (41)
ro(r, +2) +r (2, + )+, (T, +x)=x,(r, +7,)
+ (ro + 1'2) + I, (ro + rl) = sz’

gives (39)

@dr —as + 17 =0, 42)
hence two roots,

¢ ¢

W=

and 43)
' s +

(lz = _xzf ’

where ¢ = V& — 479278 44)

The two roots of equation (42), @, and a,, are always real, since
in ¢
s> 4r70,
as seen by substituting (41) therein.
The final integral equations thus are

. r _g-¢, _s+g,
zl=eo;,3+(r2—al.z:,)Ble 228 " 4 (r,—ax,) Be 27

and 435)
2=, 2+,

. r - _£re
z,=eo-r—:+(rl—alxl)Ble e +(r —a,r) Be 27 .
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B, and B, are determined by the terminal conditions, as the
currents ¢, and 7, at the start, 6 = 0.
Let, at zero time, or 8 = 0,

.t
Hh=

and (46)

1, = 1,0
then, substituting in (45), we have

N ilo = eo r—z + (rz - alzg) B| + (rz - azxz) 32
and "N
'i,o =€, ﬁ + ("1 - alxl) Bl + (rl - artl) BZ’

and herefrom calculate B, and B,.

76. For instance, in a continuous-current circuit, let the
impressed e.m.f., e, = 120 volts; the resistance of the undivided
part of the circuit, r, = 20 ohms; the reactance, r, = 20 ohms;
the resistance of one of the branches, 7, = 20 ohms; the reactance,
z, = 40 ohms, and the resistance of the other branch, r, =
5 ohms, the reactance, z, = 200 ohms.

Thus one of the branches is of low resistance and high react-
ance, the other of high resistance and moderate reactance.

The permanent values of the currents, (©* = 600), are

1/ = 1 amp. }

.1, = 4 amp.

and

(@) Assuming now the resistance r, suddenly decreased from
r, = 20 ohms to r, = 15 ohms, we have the permanent values
of current as

1,/ = 1.265 amp.
and

L, o
1, = 5.06 amp.

i

The previous values of currents, and thus the values of currents
at the moment of start, @ = 0, are

1,° = 1 amp. }

1, = 4 amp.

and
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therefrom follow the equations of currents, by substitution in
the preceding, .

1, = 1.265 + 0.455 ¢~ *"? — (.720 %
and
i, = 5.06 — 1.038 ¢ M0 _ 0,022 ¢~ 0529

(b) Assuming now the resistance 7, suddenly raised again
from r, = 15 ohms to r, = 20 ohms, leaving everything else
the same, we have

.

1, = 1.265 amp.
and }
1,° = 5.06 amp.;
and then
7, =1 — 0.528 ¢ *®7¢ + (.793 ¢~ *-*"*
and }

7, =4 + 1.018 ¢ *®7° 4+ 0.042 ¢ >*° .

(c) Assuming now the resistance r, suddenly raised from
7, = 20 ohms to r, = 25 ohms, gives

i, = 0.828 — 0.374 ¢ “78¢ 4 0.546 O™
and }
i, = 3.312 + 0.649 ¢ 79 1 0.039 ¢ "™,

(d) Assuming now the resistance r, lowered again from r, =

25 ohms to r, = 20 ohms, gives

Gy = 1+ 03427970 — 0,514 "
and 1(
7, =4 — 0.660 e *®"° — 0.028 ¢~ >, J

76. In Fig. 33 are shown the variations of currents ¢, and ¢,,
resultant from a sudden variation of the resistance r, from 20
to 15, back to 20, to 25, and back again to 20 ohms. As seen,
the readjustment of current 7,, that is, the current in the induc-
tive branch of the circuit, to its permanent condition, is very

‘slow and gradual. Current 7,, however, not only changes very

rapidly with a change of 7, but overreaches greatly; that is, a
decrease of r, causes 7, to increase rapidly to a temporary value
far in excess of the permanent increase, and then gradually ¢,
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falls back to its normal, and inversely with an increase of r,.
Hence, any change of the main current is greatly exaggerated
in the temporary component of current ¢,; a permanent change
of about 20 per cent in the total current results in a practically
instantaneous change of the branch current ¢,, by about 50 per
cent in the present instance.

Thus, where any effect should be produced by a change of
current, or of voltage, as a control of the circuit effected thereby,
the action is made far more sensitive and quicker by shunting
the operating circuit ¢,, of as low inductance as possible, across

Fig. 83. Current in divided continuous-current circuit resulting from sudden
variations in resistance.

a high inductance of as low resistance as possible. The sudden
and temporary excess of the change of current 7, takes care of
the increased friction of rest in setting the operating mechanism
in motion, and gives a quicker reaction than a mechanism
operated d1rectly by the main current.

This arrangement has been proposed for the operation of arc
lamps of high arc voltage from constant potential circuits.
The operating magnet, being in the circuit 7, more or less
anticipates the change of arc resistance by temporarily over-
reaching.

Ti. The temporary increase of the voltage, e, across the
branch circuit, ,, corresponding to the temporary excess current’
of this circuit, may, however, result in harmful effects, as de-
struction of measuring instruments by the temporary excess

voltage.
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Let, for instance, in a circuit of impressed continuous e.m.f.,
¢ = 600 volts, as an electric railway circuit, the rtsistance of
the circuit equal 25 ohms, the inductive reactance 44 ohms.
This gives a permanent current of ©/ = 24 amperes.

Let now a small part of the circuit, of resistance r, = 1 ohm,
but including most of the reactance r, = 40 ohms — as a motor
series field winding — be shunted by a voltmeter, and r, = 1000
ohms = resistance, z, = 40 ohms = reactance of the volt-
meter circuit.

In permanent condition the voltmeter reads % X 600 = 24
volts, but any change of circuit condition, as a sudden decrease
or increase of supply voltage e, results in the appearance of a
temporary term which may greatly increase the voltage impressed
upon the voltmeter.

In this divided circuit, the constants are: undivided part of
the circuit, r, = 24 ohms; x, = 4 ohms; first branch, voltmeter
(practically non-inductive), r, = 1000 ohms, z, = 40 ohms;
second branch, motor field, highly inductive, r, = 1 ohm, z, =
40 ohms.

(a) Assuming now the impressed e.m.f., e, suddenly dropped
from e, = 600 volts to e, = 540 volts, that is, by 10 per cent,
gives the equations

1, = 0.0216 — 0.0806 ¢~ °*** 4 0.0830 ~>**
and
iy = 21.6 + 2407 & — 0.007 &2,

() Assuming now the voltage, e,, suddenly raised again from
= 540 volts to e, = 600 volts, gives the equations

1, = 0.024 + 0.0806 ¢~°*2¢ — (.0830 ¢~ 21°
and .
1, = 24 — 2407 %% 4 (0.007 20,

The voltage, e, across the voltmeter, or on circuit 1, is

e=r3 + z,— =1000% F 77.9 "% 1 6.2 21,

'dﬂ

. r
where 1) = e-r% .
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Hence, in case (@), drop of impressed voltage, e, by 10 per cent,
e =216 779"+ 627,
and in (b), rise of impressed voltage,
e =240+ 779" _ 627210,

This voltage, e, in the two cases, is plotted in Fig. 34. As
seen, during the transition of the voltmeter reading from 21.6
to 24.0 volts, the voltage momentarily rises to' 95.7 volts, or

Fig. 34. Voltage across inductive apparatus in series with circuit of high
resistance.

four times its permanent value, and during the decrease of
permanent voltage from 24.0 to 21.6 volts the voltmeter momen-
tarily reverses, going to 50.1 volts in reverse direction.

In a high voltage direct-current circuit, a voltmeter shunted
across a low resistance, if this resistance is highly inductive, is in
danger of destruction by any sudden change of voltage or current
in the circuit, even if the permanent value of the voltage is well
within the safe range of the voltmeter.

CAPACITY SHUNTING A PART OF A CONTINUOUS-CURRENT
CIRCUIT.

78. A circuit of resistance r, and inductive reactance z, is
shunted by the condensive reactance z,, and supplied over the
resistance 7, and the inductive reactance z, by a continuous
impressed e.m.f., ¢, as shown diagrammatically in Fig. 35.
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In the undivided circuit,

d d
eo=e+ro(il+i,)+z(d?;+d?) “8)
In the inductive branch,
e=ri, + 72, (z) 49
In the condenser branch,
e=1z, f 1, df. (50)
r]l
|
0z,

" Lo %o I, L)z, |

Fig. 85. Suppression of pulsations in direct-current circuits by series induc-
tance and shunted capacity.

Eliminating e gives, from (48) and (49),
=(r,+7r) 1 + (z, + a:,) + T, + z‘,‘; (51)
and from (49) and (50),
xcfi,dﬂ=r,i,+xl% . (52
Differentiating (52), to eliminate the integral,

. d %,
Ti, =1, 2 +z

Ry (53
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Substituting (53) in (51), and rearranging,

=, +7r)t +— g(rr +a:cxo+xcx.)—

a
+(rx|+rzo) +xo 1d0:§ (54)

a differential equation of third order.
This resolves into the permanent term

e, = (ry + 1)1/,

.,
hence, 3/ = T (55)
and a transient term
1, = A, (956)
that is,
i, =1/ + A7 = n + —ae, (57)

Equation (57) substituted in (54) gives as equation of a,
T (7' + rl) —a (rorx + LT, + xcxl) +a (rozl + rlxo) - a’x‘,:vl = 0’

@~ a’(z +a(z°"+ + 220t o g
of1 Lo Ty

ZoTy

while A remains indefinite as integration constant.

Equation (58) has three roots, a,, a,, and a,, which either are
all three real, when the phenomenon is logarithmic, or, one
real and two imaginary, when the phenomenon is oscillating.

The integral equation for the current in branch 1 is

1, =

lr+r

the current in branch 2 is by (53)

. 1 d
-2 e=5)

1
= z {—a,(r,—az)Ae " —a,(r, —a,z) A’

=8, (r, —az) 47, (60)

+ A 4+ A0 4 A, (59)
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and the potential difference at the condenser is

e=chi,d0 T, +x%
rleo

ro + rl

+(ry = agr) Agm0 (61)

In the case of an oscillatory change, equations (59), (60), and
(61) appear in complex imaginary form, and therefore have to
be reduced to trigonometric functions.

The three integration constants, 4,, 4,, and A, are deter-
mined by the three terminal conditions, at 6 = 0, 1, = 7,°,
1, =1 e =¢.

T9. As numerical example may be considered a cireuit having
the constants, e, = 110 volts; 7, =1 ohm; z, = 10 ohms;

= 10 ohms; z, = 100 ohms, and z, =10 ohms

In other words a continuous emf of 110 volts supphes,
over a line of r, = 1 ohm resistance, a circuit of r, = 10 ohms
resistance. An inductive reactance z, = 10 ohms is inserted
into the line, and an inductive reactance r, = 100 ohms in the
load circuit, and the latter shunted by a condensive reactance of
z, = 10 ohms.

Then, substituting in equation (58),

a@—-02a + 111a - 011 = 0.

This cubic equation gives by approximation one root, a, = 0.1,

" and, divided by (a — 0.1), leaves the quadratic equation
a@—-0la+11=0,

which gives the complex imaginary roots a, = 0.05 — 1.047 j

and a; = 0.05 + 1.047 j; then from the equation of current,

by substituting trigonometric functions for the exponential

functions with imaginary exponent, we get the equation for the
load current as

=1/ + A" 4+ %% (B, cos 1.047 0 + B, sin 1.047 6),
the condenser potential as

=104, + %% {(5 B, + 1047 B,) cos 1.047 § — (104.7 B,
— 5B,)sin 1.047 6},

+(r,—azx)Ae ™ + (r, — ax,) A’
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and the condenser current as
1, = 10.9 ¢*%?{B, cos 1.047 § + B, sin 1.047 6}.

At g, = 110 volts impressed, the permanent currentis <,/ = 10
amp., the permanent condenser potential is ¢ = 100 volts, and
the permanent condenser current is 7,’ = 0.

Assuming now the voltage, e, suddenly dropped by 10 per
cent, from e, = 110 volts to e, = 99 volts, gives the permanent
current as ¢,/ = 9 amp. At the moment of drop of voltage,
6 =0, we have, however, 7, = ¢° = 10 amp.; e = ¢ = 100
volts, and ¢, = 0; hence, substituting these numerical values
into the above equations of 7, e, 7,, gives the three integration
constants:

A, =1; B, =0, and B, = 0.0955;
therefore the load current is
1, =9+ &% + 0.0955 ¢ >** sin 1.047 6,
the condenser current is
iy = 1.05 ¢ *%* sin 1.047 6,
and the condenser, or load, voltage is
e =90 + %% (10 cos 1.047 6 + 0.48 sin 1.047 6).
Without the condenser, the equation of current would be
1=9 4
In this combination of circuits with shunted condensive

reactance r,, at the moment of the voltage drop, or 6 = 0, the
rate of change of the load current is, approximately, -

%= [— 0.1 + 0.0955 X 1.047¢~™*? cos 1.047 4], = 0,
while without the condenser it would be
‘%= [— 0.1, = — 0.1

80. By shunting the circuit with capacity, the current in the
creuit does not instantly begin to change with a change or
fluctuation of impressed e.m.f.
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In Fig. 36 is plotted, with 6 as abscissas, the change of the
current, 7,, in per cent, resulting from an instantaneous change
of impressed e.m.f., e, of 10 per cent, with condenser in shunt
to the load circuit, and without condenser.

As seen, at 6 = 172°, both currents, ¢, with the con
and © without condenser, have dropped by the sar/m‘

ount,

26 ) T
24 : fo =1 vo{u A
Ol
o 22 L 10 onfas A/
Load and perles inductanoe /
z.o '. = ,
) <= 100 ohms /
L8|-ghumted it5; l'n
1.6 Xe e 1) ohms A
-
214 A
H R4 )4
&Lt g
1.0 / d &5
K s &
08 Paia &
0.8 7kl
04 A
0.2
0 \/
0 = 0.4 0.8 1.2 1.6 2.0 2.4 28

Fig. 86. Suppression of pulsations in direct-current circuits by series induc-
tance and shunted capacity. Effect of 10 per cent drop of voltage.

2.6 per cent. But at 6 = 57.3°, 7, has dropped only % per cent.
and ¢ nearly 1 per cent, and at § = 24° ¢, has not yet dropped
at all, while ¢ has dropped by 0.38 per cent.

That is, without condenser, all pulsations of the impressed
e.m.f., e,, appear in the load circuit as pulsations of the current,
7, of a magnitude reduced the more the shorter the duration of
the pulsation. After 6 = 60°, or ¢ = 0.00275 seconds, the
pulsation of the current has reached 10 per cent of the pulsation
of impressed e.m.f.

With a condenser in shunt to the load circuit, the pulsation
of current in the load circuit is still zero after § = 24°, or after
0.001 seconds, and reaches 1.25 per cent of the pulsation of
impressed e.m.f., ¢, after & = 60°, or ¢t = 0.00275 seconds.

A pulsation of the impressed e.m.f., ¢, of a frequency higher
than 250 cycles, practically cannot penetrate to the load circuit,
that is, does not appear at all in the load current 7/ regardless
of how much a pulsation of the impressed e.m.f., e,, it is, and a
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pulsation of impressed e.m.f., ¢, of a frequency of 120 cycles re-
appears in the load current ¢,, reduced to 1 per cent of its value.

In cases where from a source of e.m.f., e, which contains a
slight high frequency pulsation — as the pulsation corresponding
to the commutator segments of a commutating machine— a
current is desired showing no pulsation whatever, as for instance
for the operation of a telephone exchange, a very high inductive
reactance in series with the circuit, and a condensive reactance
in shunt therewith, entirely eliminates all high frequency pulsa-
tions from the current, passing only harmless low frequency
pulsations at a greatly reduced amplitude.

81. As a further example is shown in Fig. 37 the pulsation
of a non-inductive circuit, z, = 0, of the resistance 7, = 4 ohms,
shunted by a condensive reactance z, = 10 ohms, and supplied
over a line of resistance r, = 1 ohm and inductive reactance
1, = 10 ohms, by an impressed e.m.f., ¢, = 110 volts.

Due to z, = 0 equation (58) reduces to

£ SR AN 3 r
a’—a(—‘+—° +—‘(1 +—°)=0;
. or/ o\ .,

or, substituting numerical values,
a—26a+125=0
and a, = 0.637, a, = 1.963;
that is, both roots are real, or the phenomenon is logarithmie.
We now have
ix - l'l/ + Ale—o.ean + Aze—l.mo’
i, = — 0.255 A, — 0.785 A,
and e =ri, =4/ + A0 4 A1),
The load current is
1, = 22 amp.

A reduction of the impressed e.m.f., e,, by 10 per cent, or from
110 to 99 volts, gives the integration constants A, = 3.26 and
4, = — 1.06; hence,

1, = 19.8 + 3.26 ¢ %% — 1.06 %9,
i, = — (.83 (e.-o.mo +e—"°.’“),

and e=41,.
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Without a condenser, the equation of current would be
1 =19.8 + 2.2 %9,

In Fig. 37 is shown, with 6 as abscissas, the drop of current
7, and 7, in per cent.

Although here the change is logarithmic, while in the former
paragraph it was trigonometrie, the result is the same—a very
great reduction, by the condenser, of the drop of current imme-
diately after the change of e.m.f. However, in the present case

Per cent

Fig. 37. Suppression of pulsations in non-inductive direct-current circuits by
series inductance and shunted capacity. Effect of 10 per cent drop of
voltage.

the change of the circuit is far more rapid than in the preceding
case, due to the far lower inductive reactance of the present case.
For instance, after § = 0.1, the drop of current, with condenser,
is 0.045 per cent, without condenser, 0.5 per cent. At 6 = 0.2,
the drop of current is 0.23 and 0.95 per cent respectively. For
longer times or larger values of 6, the difference produced by the
condenser becomes less and less.

This effect of a condenser across a direct-current circuit, of
suppressing high frequency pulsations from reaching the circuit,
requires a very large capacity.



CHAPTER X.

MUTUAL INDUCTANCE.

82. In the preceding chapters, circuits have been considered
containing resistance, self-inductance, and capacity, but no
mutual inductance; that is, the phenomena which take place
in the circuit have been assumed as depending upon the impressed
e.m.f. and the constants of the circuit, but not upon the
phenomena taking place in any other circuit.

Of the magnetic flux produced by the current in a circuit
and interlinked with this circuit, a part may be interlinked with
a second circuit also, and so by its change generate an e.m.f. in
the second circuit, and part of the magnetic flux produced by

% 00

r Le

- 8

@ LA

Fig. 38. Mutual inductance between circuits.

T

the current in a second circuit and interlinked with the second
circuit may be interlinked also with the first circuit, and a
change of current in the second circuit, that is, a change of
magnetic flux produced by the current in the second circuit,
then generates an e.m.f. in the first circuit.

Diagrammatically the mutual inductance between two circuits
can be sketched as shown by M in Fig. 38, by two coazial coils,
while the self-inductance is shown by a single coil L, and the
resistance by a zigzag line.

141
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The presence of mutual inductance, with a second circuit,
introduces into the equation of the circuit a term depending
upon the current in the second circuit.

If 7, = the current in the circuit and r, = the resistance of
the circuit, then r;i, = the e.m.f. consumed by the resistance
of the circuit. If L, = the inductance of the circuit, that is,
total number of interlinkages between the circuit and the number
of lines of magnetic force produced by unit current in the circuit,
we have
di,

L‘E = e.m.f. consumed by the inductance,

where, t = time.
If instead of time ¢ an angle & = 2 =ft is introduced, where f
is some standard frequency, as 60 cycles,

z, %‘- = e.m.f. consumed by the inductance,
where z, = 2 zfL, = inductive reactance.
If now M = mutual inductance between the circuit and
another circuit, that is, number of interlinkages of the circuit
" with the magnetic flux produced by unit current in the second
circuit, and ¢, = the current in the second circuit, then

M ‘;—;’ = e.m.f. consumed by mutual inductance in the first
circuit,

M % = e.m.f. consumed by mutual inductance in the second
circuit.

Introducing zm = 2 zfM = mutual reactance between the
two circuits, we have
xm%= e.n.f. consumed by mutual inductance in the first
circuit,
T :%= e.m.f. consumed by mutual inductance in the second
circuit.
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If now e, = the e.m.f. impressed upon the first circuit and
e, = the e.m.f. impressed upon the second cnrcmt the equations
of the circuits are

di, dv .
e, ,zl+x,d0+:c,.d0+:c“led0 1)
and
du dv .
e, rz,+x,d0+xmdﬂ+xc,fz,d0, 2
where r, = the resistance, z, = 2=zfL, = the inductive re-
1 .
actance, and z, = = the condensive reactance of the
t o 2qfC,
first circuit; r, = the resistance, r, = 2 zfL, = the inductive
1 .
reactance, z, = -2—”1,?; = the condensive reactance of the

second circuit, and z» = 2 zfM = mutual inductive reactance
between the two circuits.

83. In these equations, r, and z, are the total inductive
reactance, L, and L, the total inductance of the circuit, that is,
the number of magnetic interlinkages of the circuit with the
total flux produced by unit current in the circuit, the self-
inductive flux as well as the mutual inductive flux, and not
merely the self-inductive reactance and inductance respectively.

In induction apparatus, such as transformers and induction
machines,it is usually preferable to separate the total reactancer,
into the self-inductive reactance r,, referring to the magnetic
flux interlinked with the inducing circuit only, but with no
other circuit, and the mutual inductive reactance, z,, usually
represented as a susceptance, which refers to the mutual induc-
tive component of the total inductance; in which case

= z, + Zm. This is not done in the present case.

Furthermore it is assumed that the circuits are inductively
related to each other symmetrically, or reduced thereto; that
is, where the mutual inductance is due to coils enclosed in the
first circuit, interlinked magnetically with coils enclosed in the
second circuit, as the primary and the secondary coils of a
transformer, or a shunt and a series field winding of a generator,
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the two coils are assumed as of the same number of turns, or

reduced thereto.
. n, No. turns second circuit h ]
= — = _ - h
fha n, No. turns first ciremig * UhC currents in the

second circuit are multiplied, the e.m.fs. divided by a, the resis-
tances and reactances divided by a?, to reduce the second circuit
to the first circuit, in the manner customary in dealing with
transformers and especially induction machines.*

If the ratio of the number of turns is introduced in the equa-

tions, that is, in the first equation 1—13a:,,. substituted for zm, in the
1

.n .
second equation — zn, for zm, and the equations then are

nz
di, di
e—rzl+1:d; n’x £+I,‘fi,d0 3
and
di, di .
e, =T, +1:,d0 —.cmﬁ+xfa,dﬂ. 4)

Since the solution and further investigation of these equations
(3), (4)are the same as in the case of equations (1) and (2), except
that n, and =, appear as factors, it is preferable to eliminate n,
and n, by reducing one circuit to the other by the ratio of turns

= %’ , and then use the simpler equations (1), (2).

1
84. (A) Circuats contarning resistance, inductance, and mutual
inductance but no capacity.
In such a circuit, shown diagrammatically in Fig. 42, we have

di di,
e = ”+Id0+x’"d7 )
. di, di
and e, =T, + xz'd"” + Tm a (6)
Differentiating (6) gives
di s d=
S AR A @

* See the chapters on induction machines, etc., in ‘*“ Theory and Calcula-
tion of Alternating Current Phenomena.”
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from (5) follows
di,

di, Ydo

do Im ! 8)
and, differentiated,

e, —T1, — T

Ly b,
d® Tmlds a0 ’*E% ®
Substituting (8) and (9) in (7) gives
76t 5 Ef — Tm 702 =rr, + (rr, + 7,1, %l
i
+ (23, — 2 2, . (10)
and analogously,
de de . ;
re, + I, EE: — Im j =T + (2, + 1,2) %
. Pi -
+ (@2, — zm’) dT:zz ’ 1)

Equations (10) and (11) are the two differential equations of
second order, of currents 7, and 1,.

If e/, ¢/ and ¢/, 7,’ are the permanent values of impressed
e.m.fs. and of currents in the two circuits, and e,”, ¢,”” and
e,”’, 1,” are their transient terms, we have,

e, =¢ ' +e”, o=+ 14

e, =¢,’ + e, 1, =1,/ + i,”.
Since the permanent terms must fulfill the differential equations
(10) and (11),

de’ de,’ . .  /
e’ + 1z, E; - x'"'d—éz' =rri’ + (rz, + rle)%lﬁ'_
da’
+ (z,z, — Tm’) - d:_i; (12)
and
’ de,’ de!l s, dizl
re, + %, r7 R zmﬁ =rr3’ + (rz, + rle)TE
di,)
+ (2,2, — Im® e (13)

ag
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subtracting equations (12) and (13) from (10) and (11) gives
the differential equations of the transient terms,

” de ’” d’t ”
rzel’, + z, d; - x,‘?;— = rlrﬁi!” + (rnxz + r’x‘) TJ#
dzi ”
+ (2, = 2a) b (19)
and

” de.” . L
ai,’ .
+ (-’Crtz - T -—Ta;z_ . (10)

These differential equations of the transient terms are the
same as the general differential equations (10) and (11) and
the differential equations of the permanent terms (12) and (13).

86. If, as is usually the case, the impressed e.m.fs. contain no
transient term, that is, the transient terms of current do not
react upon the sources of supply of the impressed e.m.fs. and
affect them, we have

e/ =0 and e,” =0;
hence, the differential equations of the transient terms are

. di ;
0=rri+ (rr, + r,z,) d—; + (z,2, — Tm?) ‘%—: (16)

and are the same for both currents ¢, and ¢,”, that is, the
transient terms of currents differ only by their integration
constants, or the terminal conditions.

Equation (16) is integrated by the function
1= Ae™%, (17)
Substituting (17) in (16) gives
Ae=®{rr,—a(rz, + rz,) + @ (2,2, — zm)} = 0;
hence,
A = indefinite, as integration constant, and
@ et T T,

-0. as
3 2
X, — Tm T, T, — Tm
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The exponent a is given by a quadratic equation (18). This
quadratic equation (18) always has two real roots, and in this
respect differs from the quadratic equation appearing in a circuit
containing capacity, which latter may have two imaginary roots
and so give rise to an oscillation.

Mutual induction in the absence of capacity thus always
gives a logarithmic transient term; thus,

o= (ra, +rx) £ Vg, —1,5) + 41700 (19)
2 (x,x, — Tm®) »

As seen, the term under the radical in (19) is always positive,
that is, the two roots a, and a, always real and always positive,
since the square root is smaller than the term outside of it.

Herefrom then follows the integral equation of one of the
currents, for instance ¢, as

Go= i)+ A AP (20)
and eliminating from the two equations (5) and (6) the term
di, .
dT gives
di,
do

leaving the two integration constants 4, and A4, to be deter-
mined by the terminal conditions, as § = 0,
7, =12 and 1, =10

. 1 .
i, = ;2-5— §r,x,z, + (2,2, — Tm)

m

+ ZTme, — 2,8, g , (21

86. If the impressed e.m.fs. ¢, and e, are constant, we have

del de2 .
7 0 and 7 =0;
hence, the equations of the permanent terms (12) and (13) give
o, _6 L, 9
1, 7‘1 and <, r (22)
thus: . e —ae —ag
% = ; + Ale ®9 4 A,e

and (23)
fy= 2 ALt A,
2

where, A/ and A’ follow from A, and A, by equation (21).
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If the mutual inductance between the two circuits is perfect,
that is,

Tm’ = Z,T,, (24)

—_ 2
equation (18) becomes, by multiplication with Tty — Im
T\ Ty + 73T,
T\,

a4 =——- (29)
T, + 7,2,

that is, only one transient term exists.

As example may be considered a circuit having the following
constants: e, = 100 volts; e, = 0; r, = 5 ohms; r, = 5 ohms;
z, = 100 ohms; z, = 100 ohms, and z, = 80 ohms. This
gives

1,/ = 20 amp. and i,” = 0,
and )
a® — 0.278 a + 0.00695 = 0;

the roots are  a, = 0.0278 and a, = 0.251

and
i, =20 + A0 4 A o™e,

By equation (21),

1, =— 25+ 1.251%, + 9%;
hence,
i, = Ale—o.omo_ A,e'o‘”".

For 6 = 0 let 7° = 18 amp., or the current 10 per cent below _
the normal, and ¢,° = 0; then substituted, gives:

18=20+ A, + A4, and 0=4, -4,
) hence, A, =4,=-1,

and we have
7, =20 — (~%0™0 4 0
1

and iz - (t-o.mn - e-o.nxO).
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87. An interesting application of the preceding is the inves-
tigation of the building up of an overcompounded direct-current
generator, with sudden changes of load, or the building up, or
down, of a compound wound direct-current booster.

While it would be desirable that a generator or booster, under
sudden changes of load, should instantly adjust its voltage to the
change so as to avoid a temporary fluctuation of voltage, actually
an appreciable time must elapse.

A 600-kw. 8-pole direct-current generator overcompounds
from 500 volts at no load to 600 volts at terminals at full load
of 1000 amperes. The circuit constants are: resistance of
armature winding, r, = 0.01 ohm; resistance of series field
winding, 7,/ = 0.003 ohm; number of turns per pole in shunt
field winding, n,= 1000, and magnetic flux per pole at 500
volts, ® = 10 megahn&; At 600 volts full load terminal voltage
(or voltage from brush to brush) the generated e.m.f.is e + ir
= 610 volts.

From the saturation curve or magnetic characteristics of the
machine, we have:

At no load and 500 volts:
5000 ampere-turns, 10 megahnes and 5 amp. in shunt field
circuit.

At no load and 600 volts:
7000 ampere-turns and 12 megalines.

At no load and 610 volts:
7200 ampere-turns and 12.2 megalines.

At full load and 600 volts:
8500 ampere-turns, 12.2 megalines and 6 amp. in shunt
field.

Hence the demagnetizing force of the armature, due to the
shift of brushes, is 1300 ampere-turns per pole.

At 600 volts and full load the shunt field winding takes
6 amperes, and gives 6000 ampere-turns, so that the series field
winding has to supply 2500 ampere-turns per pole, of which
1300 are consumed by the armature reaction and 1200 magnetize.

At 1000 amp. full load the series field winding thus has 2.5
turns per pole, of which 1.3 neutralize -the armature reaction
and 7, = 1.2 turns are effective magnetizing turns.
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The ratio of effective turns in series field winding and in shunt
field winding is a = %’ = 1.2 X 107%. This then is the reduc-

1
tion factor of the shunt circuit to the series circuit.

It is convenient to reduce the phenomena taking place in the
shunt field winding to the same number of turns as the series
field winding, by the factors a and a? respectively.

If then e = terminal voltage of the armature, or voltage
impressed upon the main circuit consisting of series field winding
and external circuit, the same voltage is impressed upon the
shunt field winding and reduced to the main circuit by factor

a, gives e, = ae =12 X 10~%e.

Since at 500 volts impressed the shunt field current is 5
amperes, the field rheostat must be set so as to give to the shunt
field circuit the total resistance of r/ = 5—2-0 = 100 ohms.

Reduced to the main circuit by the square of the ratio of '
turns, this gives the resistance,

r, = a’r/ = 144 X 107° ohms.

An increase of ampere-turns from 5000 to 7000, corresponding
to an increase of current in the shunt field winding by 2 amperes,
increases the generated e.m.f. from 500 to 600 volts, and the
magnetic flux from 10 to 12, or by 2 megalines per pole. In
the induction range covered by the overcompounding from 500
to 600 volts, 1 ampere increase in the shunt field increases the
flux by 1 megahne per pole, and so, with n, = 1000 turns, gives
10° magnetic interlinkages per pole, or 8 X 10° interlinkages
with 8 poles, per ampere, hence 80 X 10° interlinkages per unit
current or 10 amperes, that is, an inductance of 80 henrys.
Reduced to the main circuit this gives an inductance of 1.2* X
107° X 80 = 115.2 X 10~® henrys. This is the inductance due
to the magnetic flux in the field poles, which interlinks with
shunt and series coil, or the mutual inductance, M = 115.2 X
10~ henrys.

Assuming the total inductance L, of the shunt field winding
as 10 per cent higher than the mutual inductance M, that is,
assuming 10 per cent stray flux, we have

= 11M = 126.7 X 10~° henrys.
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In the main circuit, full load is 1000 amp. at 600 volts. This
gives the effective resistance of the main circuit as r = 0.6 ohm.

The quantities referring to the main circuit may be denoted
without index.

The total inductance of the main circuit depends upon the
character of the load. Assuming an average railway motor load,
the inductance may be estimated as about L = 2000 x 10~°
henrys.

In the present problem the impressed e.m.fs. are not constant
but depend upon the currents, that is, the sum ¢ + ¢,, where
t, = shunt field current reduced to the main circuit by the
ratio of turns.

The impressed e.m.f., e, is approximately proportional to the
magnetic flux ®, hence less than proportional to the current, in
consequence of magnetic saturation. Thus we have

e = 500 volts for 5000 ampere-turns,

ort+ 1, = = 4170 amp. and

12
e = 600 volts for 7200 ampere-turns,

2
ori+i,=zl%o=60008,mp.;

hence, 1830 amp. produce a rise of voltage of 100, or 1 amp.

100 1
1830 183" '
. 6000 .

At 6000 amp. the voltage is4g3 = 328 volts higher than at
_0 amp., that is, the voltage in the range of saturation between
500 and 600 volts, when assuming the saturation curve in this
range as straight line, is given by the equation
1+ 1,
18.3

The impressed e.m.f. of the shunt field is the same; hence,
reduced to the main circuit by the ratio of turns, a = 1.2 X 107%,
is

raises the voltage by

e= 272 +

T+ 1,
18.3

¢, =(272 + ) 1.2 X 10~.
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Assuming now as standard frequency, f = 60 cycles per sec.,
the constants of the two mutually inductive circuits shown
diagrammatically in Fig. 38 are:

Main Circuit. Shunt Field Circuit.

Current........... T amp. L t,amp.
141 1+1

Impressed em.f...| e= 272 + _18_3‘ volts | e, =é72+ m‘) 1.2X 103 volts

Resistance........! r = .6 ohms r, = 0.144X 10~ ohms

Inductance. ......| L = 2000X 10—* henrys l:,- 126.7X 10~* henrys

Reactance, 2#fL..| z = 755X 10~ ohms ' z, = 47.8X 10~ ohms

Mutual inductance M = 115.2 X 10—* henrys

Mutual reactance. Tm = 43.5 X 10—3 ohms

This gives the differential equations of the problem as

'I:-I-‘lfl_ .. - é dil o
183 0.6 + 0.1.)5d0 + 0.0435 20 26)

272 +
and

141 dv dv
2(272 + —) = ,+ 4782 + 20 2
1.2 (2/- 18.3) 0.144 1, 4/.8d0 43.5 7h (27)

88. Eliminatingdi; from equations (26) and (27) gives
i, . .

7 0.6951: — 0.0712 7, — 338. (28)
Equation (28) substituted in (26) gives

di

1, = 13.07 — + 9.957 — 4950. (29) -

dé
Equation (29) substituted in (28) gives

di, di ik
7= 0.93 i 0.0157 +15. (30)

Equation (29) differentiated, and equated with (30), gives

® L ossd

7 =+ 0.00115§ — 115 = 0. 31)

—— e -4
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Equation (31) is integrated by
=7, + A,
Substituting this in (31) gives
Ae*{a® — 0.828 @ + 0.00115} + {0.001154, — 1.15} =0,
hence, 7, = 1000, A is indefinite, as integration constant, and
a — 0.828a + 0.00115 = 0;
thus a = 0414 + 0.4126,
and the roots are
a, = 0.0014 and a, = 0.827.
Therefore :
7 =1000 + A, "M+ A, 0, (32)
Substituting (32) in (29) gives
i, = 5000 + 9.932 A M .85 A, """ (33)

Substituting in (32) and (33) the terminal conditions # = 0.
i =0, and 7, = 4170, gives

A +A,=—1000 and 99324, — 0854, = — 830,

that is,
A, = —-15 and 4,= — 8#4.
Therefore _
i = 1000 — 156 &% — 844 o1 (34)
and
1, = 5000 — 1550 = **M* + 720 &~ (35)

or the shunt field current 7, reduced back to the number of turns
of the shunt field by the factor @ = 1.2 X 107* is

il, =6 — 1.86 ‘-o.oouo + 0.86 ‘—o.an, (36)
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and the terminal voltage of the machine is
i+ i,’
18.3
or, e =600 — 932 %M — 6.8, 37)
As seen, of the two exponential terms one disappears very

quickly, the other very slowly.
Introducing now instead of the angle § = 2 zft the time, ¢,

gives the main current as

i = 1000 — 156 ¢ — 844 7, )
the shunt field current as

i) =6 — 186670 + 0.86 7, NG )
and the terminal z;oltage as

e = 600 — 93.2 ¢~ — 6.8 %,

89. Fig. 39 shows these three quantities, with the time, t, as
abscissas.

e =272 +

Seconds

i 6

900 4.

800 4.

00

600

500

400

300

200

100

1000

900

800 4.

00 4.

600 4.

t=1 2 3 4 5 (] 1 8

Beconds

Fig. 39. Building-up of over-compounded direct-current generator from
500 volts no load to 600 volts load.

The upper part of Fig. 39 shows the first part of the curve
with 100 times the scale of abscissas as the lower part. As seen,
the transient phenomenon consists of two distinctly different

\
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periods: first a very rapid change covering a part of the range
of current or e.m.f., and then a very gradual adjustment to the
final condition.

So the main current rises from zero to 800 amp. in 0.01 sec.,
but requires for the next 100 amp., or to rise to a total of 900
amp., about a second, reaching 95 per cent of full value in 2.25
sec. During this time the shunt field current first falls very
rapidly, from 5 amp. at start to 4.2 amp. in 0.01 sec., and then,
after a minimum of 4.16 amp., at ¢t = 0.015, gradually and very
slowly rises, reaching 5 amp., or its starting point, again after
somewhat more than a second. After 2.5 sec. the shunt field
current has completed half of its change, and after 5.5 sec. 90
per cent of its change.

The terminal voltage first rises quickly by a few volts, and
then rises slowly, completing 50 per cent of its change in 1.2
sec., 90 per cent in 4.5 sec., and 95 per cent in 5.5 sec.

Physically, this means that the terminal voltage of the machine
rises very slowly, requiring several seconds to approach station-
ary conditions. First, the main current rises very rapidly, at a
rate depending upon the inductance of the external circuit, to
the value corresponding to the resistance of the external circuit
and the initial or no load terminal voltage, and during this
period of about 0.01 sec. the magnetizing action of the main
current is neutralized by a rapid drop of the shunt field current.
Then gradually the terminal voltage of the machine builds up,
and the shunt field current recovers to its initial value in 1.15
sec., and then rises, together with the main current, in corre-
spondence with the rising terminal voltage of the machine.

It is interesting to note, however, that a very appreciable
time elapses before approximately constant conditions are
reached.

90. In the preceding example, as well as in the discussion of
the building up of shunt or series generators in Chapter II, the
e.m.fs. and thus currents produced in the iron of the magnetic
field by the change of the field magnetization have not been
considered. The results therefore directly apply to a machine
with laminated field, but only approximately to one with solid
iron poles.

In machines with solid iron in the magnetic circuit, currents
produced in the iron act as a second electric circuit in inductive
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relation to the field exciting circuit, and the transition period
thus is slower.

As example may be considered the excitation of a series
booster with solid and with laminated poles; that is, a machine
with series field winding, inserted in the main circuit of a feeder,
for the purpose of introducing into the circuit a voltage propor-
tional to the load, and thus to compensate for the increasing
drop of voltage with increase of load.

Due to the production of eddy currents in the solid iron of the
field magnetic circuit, the magnetic flux density is not uniform
throughout the whole field section during a change of the mag-
netic field, since the outer shell of the field iron is magnetized by
the field coil only, while the central part of the iron is acted upon
by the impressed m.m.f. of the field coil and the m.m.f. of the
eddy currents in the outer part of the iron, and the change of
magnetic flux density in the interior thus lags behind that of
the outside of the iron. As result hereof the eddy currents in
the different layers of the structure differ in intensity and in
phase.

A complete investigation of the dlstnbutlon of magnetism in
this case leads to a transient phenom-
enon in space, and is discussed in
Section III. For the present purpose,
where the total m.m.f. of the eddy
currents is small compared with that A\
of the main field, we can approxi-
mate the effect of eddy currents in
the iron by a closed circuit second-
ary conductor, that is, can assume
uniform intensity and phase of
secondary currents in an outer layer
of the iron, that is, consider the outer
layer of the iron, up to a certain depth, as a closed circuit
secondary.

Let Fig. 40 represent a section of the magnetic circuit of the
machine, and assume uniform flux density. If & = the total
magnetic flux, [ = the radius of the field section, then at a
distance | from the center, the magnetic flux enclosed by a

Fig. 40. Section of a mag-
netic circuit.

2
circle with radius [ is (IL) ®, and the e.m.f. generated in the
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sone at distance ! from the center is proportional to ( l) ¢, that

is,e=a (T,) ®. The current density of the eddy currents in

this zone, which has the length 2 zl, is therefore proportional to
e .. bl
2—’:—1' ,0ri8t = l 3

the space enclosed by it, that is, upon (l—) of the total field

—®. This current density acts as & m.m.f. upon

section, and the magnetic reaction of the secondary current at

2
distance !/ from the center therefore is proportional to z(il—) , or

s —E &, and therefore the total magnetic reaction of the

Is
,' c

) = E}' =—(b‘
Ty jo‘ dl 1

eddy currents is
At the outer periphery of the field iron, the generated e.m.f.

. . . b
is e, = a®, the current density therefore 7, = -l-d’, and the

r

magnetic reaction ¥, = i &, and therefore

that is, the magnetic reaction of the eddy currents, assuming
uniform flux density in the field poles, is the same as that of the

l,
currents produced in a closed circuit of a thickness — 3 OF one-

fourth the depth of the pole iron, of the material of the field pole
and surrounding the field pole, that is, fully induced and fully
‘ magnetizing.

The eddy currents in the solid material of the field poles thus
can be represented by a closed secondary circuit of depth -l—'

surrounding the field poles.
The magnitude of the depth of the field copper on the spools
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is probably about one-fourth the depth of the field poles. Assum-
ing then the width of the band of iron which represents the
eddy current circuit as about twice the width of the field coils
—since eddy currents are produced also in the yoke of the
machine, etc. —and the conductivity of the iron as about 0.1
that of the field copper, the effective resistance of the eddy
current circuit, reduced to the field circuit, approximates five
times that of the field circuit.

Hence, if r, = resistance of main field winding, r, = 5r, =
resistance of the secondary short circuit which represents the
eddy currents.

Since the eddy currents extend beyond the space covered by
the field poles, and considerably down into the iron, the self-
inductance of the eddy current circuit is considerably greater
than its mutual inductance with the main field circuit, and thus
may be assumed as twice the latter.

91. As example, consider a 200-kw. series booster covering
the range of voltage from 0 to 200, that is, giving a full load
value of 1000 amperes at 200 volts. Making the assumptions
set forth in the preceding paragraph, the following constants
are taken: the armature resistance = 0.008 ohms and the
series field winding resistance = 0.004 ohm; hence, the short
circuit — or eddy current resistance — r, = 0.02ohm. Further-
more let M = 900 X 10~° henry = mutual inductance between
main field and short-circuited secondary; hence, z,, = 0.34 ohm
= mutual reactance, and therefore, assuming a leakage flux of
the secondary equal to the main flux, L, = 1800 X 10~* henry
and z, = 0.68 ohm.

The booster is inserted into a constant potential circuit of 550
volts, so as to raise the voltage from 550 volts no load to 750
volts at 1000 amperes.

The total resistance of the circuit at full load, including main
circuit and booster, therefore is 7 = 0.75 ohm.

The inductance of the external circuit may be assumed as
L = 4500 X 10~° henrys; hence, the reactance at f = 60 cycles
per sec. is z = 1.7 ohms. The impressed e.m.f. of the circuit is
e =550 + ¢, ¢ being the e.m.f. generated in the booster.
Since at no load, for = = 0, ¢ = 0, and at full load, for ¢+ = 1000,
¢ = 200, assuming a straight line magnetic characteristic or
saturation curve, that is, assuming the effect of magnetic satura-
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tion as negligible within the working range of the booster, we
have
e =550+ 0.2 (2 + 1,).

This gives the following constants:

i
Main Circuit. Eddy Current Circuit.

~Current... ..........| tamp. t, amp.

Impressed em.f......| e=550+0.2 (+7,) volts.| 0 volts.

Resistance........... r=0.75 ohm, r,=0.02 ohm.
' Inductance. .. ....... L=4500X 10~ henrys. L =1800% 10~ henrys. |
: Reactance........... z=1.7 ohms, x,=0.68 ohm. |
. Mutual inductance. .. M= 900 X 10~ henrys.
' Mutual reactance. .. ' I = 0.34 ohm.

This gives the differential equations of the problem as

di dv
== _ -3 Y - - bt S
550 — 0.551 + 021, — 1.7 7 0.34 20 0 (39)
and
. di di
0024, + 034 — + 0.68 = = 0. (40)
Adding 2 times (39) to (40) gives 4
1100 — 1.1% + 0427, — 3.063—; = (), (41)
or 1, =7.28 :—; + 2.62 1 — 2620, 42)
herefrom: 0.027%, =0.1456 Z—; + 0.0524 v — 524, 43)
dr, d= di
substituting the last two equations into (40),
a di . -
T + 0.458 7 + 0.0106 © — 10.6 = 0. 45)
If T =1, + Ae™%, 46)

then
Ae~*(@® — 0.458 a + 0.0106) + 0.0106 i, — 10.6 = 0.
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As transient and permanent terms must each equal zero,
= 1000 and a* — 0.458a + 0.0106 = O,
wherefrom a = 0.229 + 0.205;
the roots are a, =0.02¢ and a, = 0.434;

then we have

T =1000 + A "™ + A0 @7
and
T, =245 4,700 — 0.55 A0, (48)

With terminal conditions® = 0,7 = 0, and 7, = 0,
A = —183 and A, - — 8I7.

If 0 = 2=ft = 377.5t, we have
T = 1000 — 183 ¢~ *07'— 817 ¢ 14!,
1. = — 450 {5—9-"‘ _ E—mt}' (49)

1

and e = 750 — 127 ¢—9%07t _ 7371%¢

.y

w0

8econds
Fig. 41. Building up of feeder voltage by series booster.

In the absence of a secondary circuit, or with laminated field
poles, equation (39) would assume the form 7, = 0, or

di

530 + 0217 = 0751 + 17 2 (50)
dv
hence, B 0.323 (1000 — 7)
and i = 1000 (1 — ¢ =);
or i = 1000 (1 — &9
and e = 750 — 200 «—=¢; (51
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that is, the e.m.f., ¢, approaches final conditions at a more rapid
rate.

Fig. 41 shows the curves of the e.m.f., ¢, for the two conditions,
namely, solid field poles, (49), and laminated field poles, (51).

(B) Mutuwol inductance in circuits containing self-induclance
and copacity.

92. The general equations of such a pair of circuits, (3) and
(4), differentiated to eliminate the integral give

. di, d3 d%
forirndinfien
and
de, . . di, &, &5
d—o'—llc,’tz + T,da + z 2d02 +-lfmd021 (53)

and the potential differences at the condensers, from (3) and (4),
are

. dv dv
’ . N 1 2
e/ = xc“/z,dﬂ =€ — Tl — L= — Tm— (54)

do db
and
e,’=xm'[-i,d0=e,—-r,i,—:c,%—:cm%- (55)

If now the impressed e.m.fs., e, and e,, contain no transient
term, that is, if the transient values of currents ¢, and 1, exert
no appreciable reaction on the source of e.m.f., and if 7" and ¢,/
are the permanent terms of current, then, substituting 7,” and
?,’ in equations (52) and (53), and subtracting the result of this
substitution from (52) and (53), gives the equations of the
transient terms of the currents 7, and i,, thus:

di, i &)
0 =z + v,y o Tt T (56)
and
dr, d*. d*,
0=1=x.,+rm, dj9+x’7d_;_:+ df:" 57

de,

de,
If the impressed e.m.fs., e, and e,, are constant, o7 ! and —E
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equal zero, and equations (52) and (53) assume the form (56)
and (57); that is, equations (56) and (57) are the differential
equations of the transient terms, for the general case of any
e.m.fs., e, and e,, which have no transient terms, and are the
general differential equations of the case of constant impressed
e.m.fs., e, and e,
From (56) it follows that
d, . dr, %,
S A O e
Differentiating equation (57) twice, and substituting therein
(58), gives

(58)

dv a4
:cx,do‘-i-(r:c +r,x,)—~+( x,+xz,+rr,—xm)ﬁ

+ (z.r, + xhrl) + T, Tyt = 0. 59)

This is a differential equation of fourth order, symmetrical in
rzx, and rzr,x.,, which therefore applies to both currents,
v, and ¢, °

The expressions of the two currents ¢, and 4, therefore differ
only by their integration constants, as determined by the- ter-
minal conditions.

Equation (59) is integrated by

=A™ (60)

and substituting (60) in (59) gives for the determination of the
exponent a the quartic equation
rz,a' — (rz, +rz)a + (.rc,x + 1.z, + 17, — Tw') @
- (@, + z,)a + I =0,

or
T r X x r.r Tm?
a4_<_l+_!>a3+<_ﬂ+_"+.l__z__l'_)a’
r, I, r, r, I Ix
- (Feley Th) g fte g (61)
r,r, I,x, r,z,

The solution of this quartic equation gives four values of a,
and thus gives

Pm AW Ay AL A (62)
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The roots, @, may be real ar two real and two lmagmary, or
all imaginary, and the solution of the equation by approxima-
tion therefore is difficult.

In the most important case, where the resistance, r, is small
compared with the reactances z and z, — and which is the only
case where the transient terms are prominent in intensity and
duration, and therefore of interest — as in the transformer and
the induction coil or Ruhmkorff coil, the equation (61) can be
solved by a simple approximation.

In this case, the roots, a, are two pairs of conjugate imaginary
numbers, and the phenomenon oscillatory.

The real components of the roots, a, must be positive, since
the exponential ¢e~* must decrease with increasing 6.

The four roots thus can be written:

a, =a, —jB,

a, = a, + 38, 63)
aQy = a, — jﬂz,
a, = a, + i,

where a and j are positive numbers.

In the equation (61), the coefficients of a* and @ are small,
since they contain the resistances as factor, and this equation
thus can be approximated by

2
a‘+("—°'+x—°’—£"'—)a'+ﬁx—°’=0; 64)
z, I, I Tz,
hence,
a = — 1;( c'+—’ ) \/ = 4 Tea _ _'”:)2_.4“”0-%:;.
: 2(\z, =z, z, Ir zz, )’
(65)

that is, @® is negative, having two roots,
b, = -8 and b, = - 37
This gives the four imaginary roots of a as first approximation:

a=¢ml

+ 7B, (66)
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If a,, a,, a,, a, are the four roots of equation (61), this equation
can be written

f@) =(a-a)(@a—-a,)@—-a,)(@a—a)=0;
or, substituting (63), :

f(@) = {(@— a) + 82 {(@a— a) + 8} =0, (67)
and comparing (67) with (61) gives as coefficients of a® and of a,

2(al+at,)=t—’-i—ﬁ

xl xz
and . (68)
2 2y _ Tal2 t Ty
2 (2,8, + a,8?) T

and since 8,? and j3,* are given by (65) and (66) as roots of equa-
tion (64), a,, a,, B,, B,, and hereby the four roots a,, a,, a,, a, of
equation (61) are approximated by (64), (65), (66), (68).

The integration constants 4,, 4,, 4,, A, now follow from the
terminal conditions.

93. As an example may be considered the operation of an
inductorium, or Ruhmkorff coil, by make and break of a direct-
current battery circuit, with a condenser shunting the break, in
the usual manner.

Let e, = 10 volts = impressed e.m.f.; r, =04 ohm =
resistance of primary circuit, giving a current, at closed circuit
and in stationary condition, of 1,= 25 amp.; r,= 0.2 ohm =
resistance of secondary circuit, reduced to the primary by the
square of the ratio of primary + secondary turns; z, = 10 ohms
= primary inductive reactance; z, = 10 ohms = secondary
inductive reactance, reduced to primary; ., = 8 ohms = mutual
inductive reactance; r, = 4000 ohms = primary condensive
reactance of the condenser shunting the break of the interrupter
in the battery circuit, and z, = 6000 ohms = secondary
condensive reactance, due to the capacity of the terminals and

the high tension winding.
Substituting these values, we have
e, = 10 volts 1, = 25 amp.

r, =040hm =z =100ohms =z, = 4000 ohms
r,=020ohm =z, =100hms  z, = 6000 ohms
Zm = 8 ohms.

(69)
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These values in equation (61) give
f(a) =a*— 0.06 a* + 999.36 a® — 32 @ + 240,000 = 0, (70)
and in equation (64) they give
S, (@) = a* + 999.36 a* + 240,000 = 0

and @ = — (499.68 F 98.39)
= — 598.07,
or = — 401.29;
hence, B, =245
and B, = 20.0.
From (68) it follows that
a, + a, = 0.03
and 598.07 a, + 401.29 «, = 16;
hence, a, = 0.02 and
a, = 0.01.

Introducing for the exponentials with imaginary exponents the
trigonometric functions gives

1, = *P*{A4 cos24.50 + A, sin 24.50}
+ ¢ *"* {B, cos 20 6+ B, sin 20 6}
and (71)
i, = ¢ > {C, cos 4.50 + C,sin 24.5 6}
+ ¢~ %" {D, cos 20 6+ D, sin 20 6},

where the constants C' and D depend upon A and B by equations
(56), (57), or (58), thus:
Substituting (71) into (58),
d, . de, i,
W'l‘ 4000?'1 + 0.45 + IO'dF =0 (58)

gives an identity, from which, by equating the coefficients of
¢ cos b6 and ¢ sin bd to zero, result four equations:

= —24C, - 0.004C,,

, = —24C, + 0.004C,,

= —800D, + 08D,

= + 800 D, + 0.8 D,,

-

oo
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or with sufficient approximation,

A, = —24C,
A, = —240C, -
B, = — 800D, ’
B, = +800D,:

hence,
1, = — 24¢ *%°{C, cos 24.50 + C,sin 24.5 0}
— 8006~ ***{D, cos 200 — D, sin 20 6, (73)

and substituting (71) and (73) in the equations of the condenser
potential, (54) and (55), gives
e/ =10 + 392 *%°{C, c0s24.50 — C, sin 24.56}
— 160,000 ¢=°**"°{D, cos 206 + D, sin 206}
and )
e, =225¢""°{C,cos24.560 — C,sin 24.50}
— 128,000 ¢~ **"*{D, cos 2060 + D,sin 206}.

94. Substituting now the terminal conditions of the circuit: \

At the moment where the interrupter opens the primary
circuit the current in this circuit is ¢, = ? = 25 amp. The

1

condenser in the primary circuit, which is shunted across the
break, was short-circuited before the break, hence of zero poten-
tial difference. The secondary circuit was dead. This then
gives the conditions 6 =0; 1, =25, 1,=0, ¢/ =0, and
e/ = 0.

Substituting these values in equations (71), (73), (74) gives

25 = — 24C, — 800 D,,

0= C,+ D,

0 = 10 + 392 C, — 160,000 D,,

0= 225C, — 128,000 D,;
hence, C,=+0158x10*=0, -

C, = —0.09,

D, = - 0158 X 10 =0,
D, = — 0.0312,
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and
1, = 0.216 e~ *®? §in 24.560 + 25 ** cos 20 6, )
1, = —0.09 ¢~ %% 5in 24.5 6 — 0.0312 ¢~ > * sin 20 4,
e/ =10— 35.3¢ %908 24.50 + ¢~ * (25305200 | (75)
+ 5000 sin 20 ),
e/ =202¢ "% cos24.50 — ¢~ *"? (20.2 cos 20 4
— 4000 sin 206).
Approximately therefore we have
3, = 256 % cog 206,
iy = — {0.09¢7* 5in 24.50 + 0.0312 ¢ ® sin 20 6},
e,/ = 5000 ¢~ sin 20 6,
e, = 4000 ¢~ *** sin 20 6.

The two frequencies of oscillation are 1470 and 1200 cycles
per sec., hence rather low.

The secondary terminal voltage has a maximum of nearly
4000, reduced to the primary, or 400 times as large as corre-
sponds to the ratio of turns. )

In this particular instance, the frequency 1470 is nearly
suppressed, and the main oscillation is of the frequency 1200.



CHAPTER XI.

GENERAL SYSTEM OF CIRCUITS,
(A) Circuits containing resistance and tnductance only.

96. Let, upon a general system or network of circuits con-
nected with each other directly or inductively, and containing
resistance and inductance, but no capacity, a system of e.m.fs.,
e, be impressed. These e.m.fs. may be of any frequency or
wave shape, or may be continuous or anything else, but are
supposed to be given by their equations. They may be free of
transient terms, or may contain transient terms depending upon
the currents in the system. In the latter case, the dependency
“of the e.m.f. upon the currents must obviously be given.

Then, in each branch circuit,

. i dr
e—rt—La—zaM,—‘= , (1

where e = total impressed e.m.f.; r = resistance; L = induc-
tance, of the circuit or branch of circuit traversed by current 1,
and M, = mutual inductance of this circuit with any circuit in
inductive relation thereto and traversed by current ;.

The currents in the different branch circuits of the system
depend upon each other by Kirchhoff’s law,

2i=0 )

at every branching point of the system.

By equation (2) many of the currents can be eliminated by
expressing them in terms of the other currents, but a certain
number of independent currents are left.

Let n = the number of independent currents, denoting these
currents by 17,, where x = 1,2, ... n. 3)

Usually, from physical considerations, the number of inde-
pendent currents of the system, n, can immediately be given.

168
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For these n currents 7,, n independent differential equations
of form (1) can be written down, between the impressed e.m.fs.
e, or their combinations, and currents which are expressed by
the n independent currents ¢,. They are given by applying
equation (1) to a closed circuit or ring in the system.

These equations are of the form

e . - di,
eqg— 2 b1, — D« cI— =0,
; ; dt @)
where qg=12...n

where the n? coefficients b,9 are of the dimension of resistance ®)
and the n? coefficients c,? of the dimension of inductance.

These n simultaneous differential equations of n variables 1,
are integrated by the equations

1::'-_' ix' + 2‘ Ai‘e-a‘) (6)
1

where 1./ is the statlonary value of current ¢,, reached for ¢ = .

Substltutmg (6) in (4) gives

‘u
‘l 2 b1, —z- ch’L 2: b,“' sA“e"“s‘.{.z ¢t
1
) m
D aAfe W = 0. @
1
Fort = o, this equation becomes
< . - i/
— S b9t — Sk 0% o
eq g, x ?" ; cx dt
These n equations (8) determine the stationary components
of the n currents, .’

Subtracting (8) from (7) gives, for the transient components
of currents 7,,

@®

i = z.- A‘;e—at(’ 9

1

. the n equations

i;. be f;s Afem® — 2 cd i" aAfe=% =0. (10)
1 1 1 1
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Reversing the order of summation in (10) gives

n

) iu‘ e‘“c‘z:: Af (03— ac? = 0. (11)
1

1

The n equations (11) must be identities, that is, the coefficients
of ¢~* must individually disappear. Each equation (11) thus
gives m equations between the constants «, 4, b, ¢, for 7 = 1,
2,...m, and since n equations (11) exist, we get altogether mn
equations of the form

D Af (b7 - agd) =0,

1 12

where ’ 12)
¢=123...n and 1=1,23...m.

In addition hereto, the n terminal conditions, or values of
current ¢,” for t = 0: 1%, give by substitution in (9) n further
equations,

B0 =2 Af, (13)
1
There thus exist (mn + n) equations fér the determination

of the mn constants A and the m constants a;, or altogether
(mn + m) constants. That is,

m=mn (14)
and o=+ D Are, (15)
1
where S AF (b — aed) = 0; (16)
1
3 Af =1y an
1 N
g=12,...n,
k=12, ...n, (18)
and 1=12...n
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Each of the n sets of n linear homogeneous equations in
A (16) which contains the same index 7 gives by elimination
of A the same determinant:

1 1 2 2 3 3 n
b!—ac', bi—ack bl—ac’... b "—ag,

b'—ag,', br—ac?, bl—agc’ ... b —ac,"

[bi—aed| =b —ac,, bi—acl, bl—ac?. .. b"—ae|=0-(19)

ibn!_atcnl’ bnz_atcnzﬂ bn:_a;cna LR bn"'—aucun

Thus the n values of a; are the n roots of the equation of nth
degree (19), and determined by solving this equation.

Substituting these n values of a; in the equations (16) gives
n* linear homogeneous equations in A, of which n (n — 1) are
independent equations, and these n (n — 1) independent equa-
tions together with the » equations (17) give the n? linear
equations required for the determination of the n? con-
stants 4%

The problem of determining the equations of the phenomena
in starting, or in any other way changing the circuit conditions,
in a general system containing only resistance and inductance,
with n independent currents and such impressed e.m.fs., e,,
that the equations of stationary condition,

W =f®),

ean be solved, still depends upon the solution of an equation of
nth degree, in the exponents a; of the exponential functions
which represent the transient term.

98. As an example of the application of this method may
be considered the following case, sketched diagrammatically in
Fig. 42:

An alternator of e.m.f. E cos (6 — 6,) feeds over resistance
r, the primary of a transformer of mutual reactance z,. The
secondary of this transformer feeds over resistances r, and r,
the primary of a second transformer of mutual reactance Tm,,
and the secondary of this second transformer is closed by resist-
ance r,. Across the circuit between the two transformers and
the two resistances r, and r,, is connected a continuous-current
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e.m.f., e, as a battery, in series with an inductive reactance z.

The transformers obviously must be such as not to be saturated

magnetically by the component of continuous current which
_traverses them, must for instance be open core transformers.

Fig. 42. Alt.erhat.ing-current. circuit containing mutual and self-inductive
reactance, resistance and continuous e.m.f.

Let 2,, ,, %y, ?,, 1, = currents in the different circuits; then, at
the dividing point P, by equation (2) we have

T+ 1, — 1, =0;
hence, Ty = Ty — 1, (20)

leaving four independent currents 1, ,, 1,, 7,
This gives four equations (4): :

Ecos (60 —0,) —rs, — xm% =0,
. dv dv dv
- €y — Ty, — x"'&/)h-'-x(d—?_ d%) =0,
; ; : s (21)
eo—r,i,—x,,.o%—x(:%- -—%)=O,
and
— Tl — xmo% =0.

7

If now ¢/, ¢, ¥, ¢,/ are the permanent terms of current, by
substituting these into (21) and subtraction, the equations of
the transient terms rearranged are:



GENERAL SYSTEM OF CIRCUITS 173

qg: k=1 2 3 4
1 T, +.z:.,.d—l9—2 =0,
di ., di dz,
2 xmd—;'+r,z,+xd7’ —xd%a =0,
. . . > (22)
di ., di d
3 —xdi+r,z,+xd—0’ + :c.,.d—0‘=0,
dyy . :
4 . x,,.d? +7d, =0. J
These equations integrated by
4 .
S D AR (23)
1
give for the determination of the exponents a,; the determinant
(19):
r, —ar, 0 0
-axr, r,—ar ar 0 A
0 ar s —ar —axr,| 0; (24)
0 0 — azr,, ry
; or, resolved,
| f = a""‘:m’;':moz + a’c (.v,,.’r‘ + J:,,,o’rl) -a (xmzrarl + x:nozrtrz)
—arrr,(r, + 1) + rrrre=0. (25)
Assuming now the numerical values,
r, =1 Im = 10
r,= 1 Img = 10 o
ry =1 z =100 (26)
r,= 10

equation (25) gives
f=a"+11a - 0.11a> — 0.2a + 0.001 = 0. 27
The sixteen coefficients,
A* 1=1,23,4, k=1,234,

are now determined by the 16 independent linear equations (12)
and (13).
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(B) Circuits contaiming resistance, self-inductance, mutual in-
ductance and capacity.

97. The general method of dealing with such a system is the
same as in (A4).

Kirchhoff’s equation (1) is of the form

e-n—L——z M,dt fdt—o 28)

Eliminating now all the currents which can be expressed
in terms of other currents, by means of equation (2), leaves
n independent currents:

Ty rc=1,2,. .M.

Substituting these currents ¢, in equations (28) gives n inde-
pendent equations of the form

n d"/ n

€ — i‘ b‘q’l:. - 2‘ qu%_ ?‘ gxqfixdt = 0. (”)

1

Resolving these equations for f 1, dt gives

e‘,=é i,dz=2e+2b§+2c% (30)

as the equations of the potential differences at the condensers.
Differentiating (29) gives

1 1

where g=12...n

By the same reasoning as before, the solution of these equa-
tions (31) can be split into two components, a permanent term,

w =, 32)

and a transient term, which disappears for ¢ = «», and is given
by the n simultaneous differential equations of second order,
thus :
s di, d*,
x [} q _‘ —
2 ; 95, + b, e + ¢? 7 0. (33)

1
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These equations are integrated by

Geo= D AT, (34)
l L]
Substituting (34) in (33) gives
EZA“%wwMHw§ (35)
where g=12.
k=12 ...n (36)
and 1=12...m

Reversing in these n equations the order of summation,

m n

2‘. e Z‘ At" ggkq - a’cbxq + a’ct g =0, (37)
1

and this gives, as identity, the mn equations for the determma—

tion of the constants:

2‘ Ai‘ ggxq - aibxq + aizqug =0,
! (38)
where

¢g=12...n and 7=1,2,..

In addition to these mn equations (38), two sets of terminal
conditions exist, depending respectively on the instantaneous
current and the instantaneous condenser potential at the moment
of start.

The current is

=4/ + Qi A% (39)
1

and the condenser potential of the circuit ¢ is
e = z- g,“’fi, dt = e, — Z:rb,,"i, - Exc," %1'—"; (40)
1 ) 1 1
hence, for ¢ = 0,

0=+ AL 1)

1
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where k=12 ...n

- . i di,° .
and . e = e — ;x bn — Z:c“l o (42)
where, g=12...n;

or, substituting (39) in (40), and then putting ¢t = 0,

i di. |
0 — —_ “ Q' e ']
€, [eq ; 2b, l, Ce &S .

— 3 S AL - ac). (43)
1

1

As seen, in (41) and (43), the first termn is the instantaneous
value of the permanent current ¢/, and condenser potential e,’.

These two sets of n equations each, given by the terminal
conditions of the current, i/, = ,° (42), and condenser potential,
e, = e (43), together with the mn equations (38), give a total
of (mn + 2n) equations for the determination of the mn con-
stants A and the m constants a,, that is, a total of (mn + m)
constants. )

From

mn+2n=mn+m
it follows that
m = 2n. (44)

We have, then, 2 n constants, a,, giving the coefficients in the
exponents of the 27 exponential transient terms, and 2 n?
coefficients, A, and for their determination 2 n? equations,

n

2. ‘4: (g‘q - albxq + aizqu) = 07 (45)
L] l .
n equations,
2‘ Ai‘ =1, - (46)
1

and n equations,

n 2n

S D AF (07 - agd) = &, @n ‘

1 1
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n

where kp= [eq - 21‘ 9 l T dt]( ; (48)

=0

or the difference between the condenser potential required by
the permanent term and the actual condenser potential at time
t = 0, where

g=1,223,...n,

k=1,223,...n, 49)
. and 1=1,23...2n

Eliminating A from the equations (45) gives for each of the
2 n sets of n equations which have the same a; the determinant:

!lgxq - alblq + aizqu“ =
. gxl —al'blt +aizc|lr glz —'aublz +aizclz, oe gln —afbl" +a'_zcln
! gzl —a,b,‘ +ai’cz‘; gz’ - a,b,’ +a'_zczz’ oo gzu - a'a’bz" + aizczn

gal _alb:‘ +aizcal! gsz —aaba’ + a'izc!zv s 93” —a'lb!n + a‘zcau i=0. (50)

1 1 3,1 2 2 2, 2 2
19n —atbn +ai Cns Gn —atbn +ajc,’, . .. gn"_aibnn'*-ai cnn

The 2 n values of a; thus are the roots of an equation of 2 nth
order.

Substituting these values of a@; in equations (45), (46), (47),
leaves 27 (n — 1) independent equations (45) and 27 inde-
pendent equations (46) and (47), or a total of 2 n? linear equa-
tions, for the determination of the 2 n? constants A, which now
can easily be solved.

The roots of equation (50) may either be real or may be com-
plex imaginary, and in the latter case each pair of conjugate
roots gives by elimination of the imaginary form an electric
oscillation.

That is, the solution of the problem of n independent circuits
leads to » transient terms, each of which may be either an
oscillation or a pair of exponential functions.

98. The preceding discussion gives the general method of the
determination of the transient phenomena occurring in any
system or net work of circuits containing resistances, self-induc-
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tances and mutual inductances and capacities, and impressed and
counter e.m.fs. of any frequency or wave shape, alternating or con-
tinuous.

It presupposes, however,

(1) That the solution of the system for the permanent terms
of currents and e.m.fs. is given.

(2) That, if the impressed e.m.fs. contain transient terms
depending upon the currents in the system, these transient
terms of impressed or counter e.m.fs. are given as linear functions
of the currents or of their differential coefficients, that is, the
rate of change of the currents.

(3) That resistance, inductance, and capacity are constant
quantities, and for instance magnetic saturation does not appear.

The determination of the transient terms requires the solution
of an equation of 2 nth degree, which is lowered by one degree
for every independent circuit which contains no capacity.

Thus, for instance, a divided circuit having capacity in either
branch leads to a quartic equation. A transmission line loaded
with inductive or non-inductive load, when representing the
capacity of the line by a condenser shunted across its middle,
leads to a cubic equation.



CHAPTER XII.

MAGNETIC SATURATION AND HYSTERESIS IN ALTERNAT-
ING-CURRENT CIRCUITS.

99. If an alternating e.m.f. is impressed upon a circuit con-
taining resistance and inductance, the current and thereby the
magnetic flux produced by the current immediately assume
their final or permanent values only in case the circuit is closed
at that point of the e.m.f. wave at which the permanent current
iszero. Closing the circuit at any other point of the e.m.f. wave
produces a transient term of current and of magnetic flux. So
for instance, if the circuit is closed when the current ¢ should
have its negative maximum value — I, and therefore the
magnetic flux and the magnetic flux density also be at their
negative maximum value — &, and — ® — that is, in an
inductive circuit, near the zero value of the decreasing e.m.f.
wave — during the first half wave of e.m.f. the magnetic flux,
which generates the counter e.m.f., should vary from — @, to
+ &,, or by 2 ®,; hence, starting with 0, to generate the same
counter e.m.f., it must rise to + 2 ®,, that is, twice its permanent
value, and so the current 7 also rises, at constant inductance L,
from zero to twice its maximum permanent value, 21, Since
the e.m.f. consumed by the current during the variation from
0 to 2], is greater than during the normal variation from — I,
to + I, less e.m.f. is to be generatéd by the change of magnetic
flux, that is, the magnetic flux does not quite rise to 2 ®,, but
remains below this value the more, the higher the resistance of
the circuit. During the next half wave the e.m.f. has reversed,
but the current is still mostly in the previous direction, and the
generated e.m.f. thus must give the resistance drop, that is, the
total variation of magnetic flux must be greater than 2 &,
the more, the higher the resistance. That is, starting at a value
somewhat below 2 &, it decreases below zero, and reaches a
negative value. During the third half wave the magnetic flux,
starting not at zero as in the first half wave, but at a negative

179
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value, thus reaches a lower positive maximum, and thus grad-
ually, at a rate depending upon the resistance of the circuit, the -
waves of magnetic flux ®, and thereby current 7, approach their
final permanent or symmetrical cycles.

100. In the preceding, the assumption has been made that
the magnetic flux, @, or the flux density, ®, is proportional to
the current, or in other words, that the inductance, L, is con-
stant. If the magnetic circuit interlinked with the electric
circuit contains iron, and especially if it is an iron-clad or closed
magnetic circuit, as that of a transformer, the current is not
proportional to the magnetic flux or magnetic flux density, but
increases for high values of flux density more than proportional,
that is, the flux density in the iron reaches a finite limiting value.
In the case illustrated above, the current corresponding to
double the normal maximum magnetic flux, ®,, or flux density,
®,, may be many times greater than twice the normal maximum
current, I,. For instance, if the maximum permanent current
is I, = 4.5 amperes, the maximum permanent flux density,
®, = 10,000, and the circuit closed, as above, at that point of
the e.m.f. wave where the flux density should have its negative
maximum, — & = — 10,000, but the actual flux density is O,
during the first half wave of e.m.f., the flux density, when
neglecting the resistance of the electric circuit, should rise from
0 to 2®, = 20,000, and at this high value of saturation the
corresponding current maximum would be, by the magnetic
cycle, Fig. 43, 200 amperes, that is, not twice but 44.5 times
the normal value. With such excessive values of current, the
e.m.f. consumed by resistance would be in general considerable,
and the e.m.f. consumed by inductance, and therefore the
variation of magnetic flux density, considerably decreased, that
is, the maximum magnetic flux density would not rise to 20,000,
but remain considerably below this value. The maximum
current, however, would be still very much greater than twice
the normal maximum. That is, in an iron-clad circuit, in
starting, the transient term of current may rise to values very
much higher than in air magnetic circuits. While in the latter
it is limited to twice the normal value, in the iron-clad circuit,
if the magnetic flux density reaches into the range of magnetic
saturation, very much higher values of transient current are
found. Due to the far greater effect of the resistance with such
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excessive values of current, the transient term of current during
the first half waves decreases at a more rapid rate; due to the
lack of proportionality between current and magnetic flux
density, the transient term does not follow the exponential law
any more.

101. In an iron-clad magnetic circuit, the current is not only
not proportional to the magnetic flux density, but the same
magnetic flux density can be produced by different currents, or
with the same current the flux density can have very different
values, depending on the point of the hysteresis cycle. Therefere
the magnetic flux density for zero current may equal zero, or, on
the decreasing branch of the hysteresis cycle, Fig. 43, may be
+ 7600, or, on the increasing branch, — 7600. Thus, when
closing the electric circuit energizing an iron-clad magnetic
circuit, as a transformer, at the moment of zero current, the
magnetic flux density may not be zero, but may still have a high
value, as remanent magnetism. For instance, closing the
circuit at the point of the e.m.f. wave where the permanent
wave of magnetic flux density would have its negative maximum
value, — ®, = — 10,000, the actual density at this moment may
be ®, = + 7600, the remanent magnetism of the cycle. During
the first half wave of impressed e.m.f. the variation of flux
density by 2 ®,, as required to generate the counter e.m.f., when
neglecting the resistance, would bring the positive maximum of
flux density up to ®, + 2 ®, = 27,600, requiring 1880 amperes
maximum current, or 420 times the normal current. Obviously,
no such rise could occur, since the resistance of the circuit would
consume a considerable part of the e.m.f., and so lower the flux
density by reducing the e.m.f. consumed by inductance.

It is obvious, however, that excessive values of transient
current may occur in transformers and other iron-clad magnetic

" cireuits. '

102. When disconnecting a transformer, its current becomes
zero, that is, the magnetic flux density is left at the value of the
remanent magnetism + ®,, and during the period of rest more
or less decreases spontaneously towards zero. Hence, in con-
necting a transformer into circuit its flux density may be any-
where between + ®, and — ®,. The maximum magnetic flux
density during the first half cycle of impressed e.m.f. therefore is
produced if the circuit is closed at the moment where the per-
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manent value of the flux density should be a maximum, + ®,,
and the actual density in this moment is the remanent magnetism
in opposite direction, F ®,, and the maximum value of
density which could occur then is + (®, + 2®,). If therefore
the maximum magnetic flux density ®, in the transformer is
such that ®, + 2 ®, is still below saturation, the transient term
of current cannot reach abnormal values. At ® = 16,000, the
flux density is about at the bend of the saturation curve, and
the current still moderate. Estimating ®, = 0.75 ®, as approx-
imate value, ®, + 2 &, = 16,000 thus gives ® = 5800, or
37,500 lLines of magnetic flux per square inch.

In 125-cycle transformers, ®, is below 5800 or not much above,
for reasons of heating, and this phenomenon of excessive tran-
sient currents in starting thus does not appear. At 60 cycles,
®, is usually above this value, and under unfavorable conditions
considerable transient current may be observed. However,
for ®, = 0, the limit is ®, = 8000, or 51,600 lines per square
inch; and since in 60-cycle transformers the flux density rarely
exceeds this value to a great extent, and in starting the remanent
magnetism is rarely very high, this phenomenon of an excessive
transient current is not very marked. At 25 cycles, however,
higher densities are used and the transient starting current
may then reach formidable values.

103. Since the relation between the current, ¢, and the mag-
netic flux density, ®, is empirically given by the magnetic cycle
of the material, and cannot be expressed with sufficient accuracy
by a mathematical equation, the problem of determining the
transient starting current of a transformer cannot be solved in
general, but must be investigated in the individual case by
constructing the curves of current and magnetic flux density.

Let the normal magnetic cycle of a transformer be represented
by the dotted curve in Figs. 43 and 44; the characteristic points
are: the maximum values, + ®&, = + 10,000; the remanent
values, + ®, = + 7600, and the maximum exciting current,
im = + 4.5 amp.

At very high values of flux density an appreciable part of the
total magnetic flux ® may be carried through space, outside of
the iron, depending on the construction of the transformer.
The most convenient way of dealing with such a case is to
resolve the magnetic flux density, ®, in the iron into the “ metallic
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flux density,” ® = ® — 3¢, which reaches a finite limiting
value, and the density in space, 3¢. The total magnetic flux
then consists of the flux carried by the molecules of the iron,
& = A’®’, where A’ is the section of the iron circuit, and the
space flux, ” = A”3¢, where A” is the total section interlinked
with the electric circuit, including iron as well as other space.

¢= ¢l + ‘b” —_ A/(Bl + A,,Jc.
If then A” = kA’, that is, the total space inside of the coil is
k times the space filled by the iron, we have
’ ¢ = A" (® + ki),
or the total magnetic flux even in a case where considerable
stray field exists, that is, magnetic flux can pass also outside of

B

AB' x 103

-

“Degroos

Fig. 456. Starting current of a transformer. Low stray field.

the iron, can be calculated by considering only the iron section
as carrying magnetic flux, but using as curve of magnetic flux
density not the usual curve,

® = ® + 3,
but a curve derived therefrom,
® =® + ki,
where k& = ratio of total section to iron section.
This, for instance, is the usual method of calculating the

m.m.f. consumed in the armature teeth of commutating machines
at very high saturations.
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In investigating the transient transformer starting current,
the magnetic density curve thus is corrected for the stray field.

Figs. 43 and 45 correspond to & = 3, or a total effective air
section equal to three times the iron section, that is, ® = ®’ +
3 3.

Figs. 44 and 46 correspond to k£ = 25, or a section of stray
field equal to 24 times the iron section, that is, ® = ®’ + 25 3c.
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Fig. 46. Starting current of a transformer. High stray field.

104. At very high values of current the resistance consumes
a considerable voltage, and thus reduces the e.m.f. generated
by the magnetic flux, and thereby the maximum magnetic flux
and transient current. The resistance, which comes into con-
sideration here, is the total resistance of the transformer primary
circuit plus leads and supply lines, back to the point where the
voltage is kept constant, as generator, busbars, or supply main.

Assuming then at full load of 7,, = 50 amperes effective in the
transformer, a resistance drop of 8 per cent, or the voltage con-
sumed by the resistance, as e, = 0.08 of the impressed e.m.f.

Let now the remanent magnetic flux density be ® = + 7600,
and the eircuit be closed at the moment 6 = 0, where the flux
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density should be ® = —®, = — 10,000; then the impressed
e.m.f. is given by

e=—Esin0=E%(con). 1)
It is, however,
e=A % + Ci, )

where A and C are constants; that is, the impressed e.m.f., ¢, is
consumed by the self-inductance, or the e.m.f. generated by the

changing magnetic density, which is proportional to :%, and by

the voltage consumed by the resistance, which is proportional
to the current 7.
Combining (1) and (2) gives
a® . d cos 8

A—+Ci=E

do do ®

However, at full load, we have 5: effective impressed
e.n.f. and 7,, = 50 amperes = effective current; hence
Cim = 50 C = e.m.f. consumed By resistance,

and since this equals e, = 0.08 of impressed e.m.f.,

e
Cm = . ’
v
or 5OC ='O£E"r
V2
C e 0.08
—_——= r = = o 0 4
or E= iz = 50v3 0.00113 @
From (3) follows
E Ci
® = — - = f)
d Ad cos 0 Ada ®

and

Lin -2 fcmo - S [
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hence, for ¢ = 0, or negligible resistance drop, that is, permanent
condition,
E

®, = 2 = 10,000. ®6)
Multiplying (4) and (6) gives
C 8, .
Z = ;,:\/_i = 11.3, (7)
and substituting (6) and (7) in (5) gives.
d® = ®dcosb — > do
608 ' m‘\/2
= 10,000 dcosf — 11.3 v dd. (8)

Changing now from differential to difference, that is, replacing,
as approximation, d by A, gives

e®
AB = B Acosl — 1 —2 A0
o ImV2

= 10,000 A cos & — 11.3 7A6. 9

Asguming now
Af = 10° = 0.175 ' (10)

gives for the increment of magnetic flux density during 10°
change of angle the value

A® = 10,000 A cosd — 21 (11)
and ®=® 4+ A®
=_®" + 10,000 A cos § — 271. (12)

From equation (12) the instantaneous values of magnetic
flux density ®, and therefrom, by the magnetic cycles, Figs. 43
and 44, respectively, the values of current ¢ are calculated, by
starting, for # = 0, with the remanent density ® = ®, = 7600,
adding thereto the change of cosine, 10,000 A cos 8, which gives
a value @, = ® + 10,000 A cos 6, taking the corresponding
value of 7 from the hysteresis cycle, Figs. 43 and 44, subtracting
217 from ®,, and then correcting ¢ for the value corresponding to
®=@® — 29

The quantlty 27is appreclable only during the range of the
curve where 7 is very large.
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105. The following table is given to illustrate the beginning

of the calculation of the curve for low stray field.

STARTING CURRENT OF A TRANSFORMER.
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The first column gives angle 6,

The second column gives cos 8,

The third column gives A®, = 10 A cos 6, in kilolines per
§q. cm.,

The fourth column gives ®, = & + A®,,

The fifth column gives <,

The sixth column gives D, = 2¢ X 107%, and

The seventh column gives ® = ®, — D,,
i in the fifth column being chosen, by trial, so as to corre-
spond, on the hysteresis cycles, not to &,, but to ® = ®,— D,.

These values are recorded as magnetic cycles on Figs. 43-and
44, and as waves of flux density, current, etc., in Figs. 45 and 46.

The maximum values of successive half waves are:

f
A. Low Stray Field. B. High Stray Field.
k=3 1 k= 25
L ® T [ 0 ® Tm
0 7.6 0 ! 0 7.6 0
145° 22.0 510 l 160° 24.6 230
360° - .2 —2.8 360° +2.0 —2.4
530° 18.6 120 530° 20.7 117
720° -2.2 —-2.9 720° — .4 -2.7
900° | 18.0 92 Y
1080° l —2.8 —=3.0 || ...
1260° 17.4 66 || ........
1440° -3.1 =3.0 ...
1620° 16.9 50 ...l
Permanent| $4-10.0 +4.5 RRRERRRE +10.0 +4.5

As seen, the maximum value of current during the first cycle,
510, is more than one hundred times the final value 4.5, and more
than 7 times the maximum value of the full-load current, 502
= 70.7 amperes, and the transient current falls below full-load
current only in the fourth cycle. That is, the excessive value of
transient current in an ironclad circuit lasts for a considerable
number of cycles.

In the presence of iron in the magnetic field of electric circuits,
transient terms of current may thus occur which are very large
compared with the transient terms in ironless reactors, which do
not follow the exponential curve, can usually not be calculated
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by general equations, but require numerical investigation by
the use of the magnetic cycles of the iron.

These transient terms lead to excessive current values only if
the normal magnetic flux density exceeds half the saturation
value of the iron, and so are most noticeable in 25-cycle circuits.

Fig. 47. Starting current of a 26-cycle transformer.

As illustration is shown, in Fig. 47, an oscillogram of the
starting current of a 25-cycle transformer having a resistance
in the supply circuit somewhat smaller than in the above
instance, thus causing a still longer duration of the transient
term of excessive current.



CHAPTER XIII.

TRANSIENT TERM OF THE ROTATING FIELD.

106. The resultant of n, equal m.m.fs. equally displaced
from each other in space angle and in time-phase is constant in
intensity, and revolves at constant synchronous velocity. When
acting upon a magnetic circuit of constant reluctance in all
directions, such a polyphase system of m.m.fs. produces a
revolving magnetic flux, or a rotating field. (‘“Theory and
Calculation of Alternating Current Phenomeha,” 4th edition,
Chapter XXXIII, paragraph 368.) That is, if n, equal mag-

netizing coils are arranged under equal space angles of %’

electrical degrees, and connected to a symmetrical n, phase
system, that is, to n, equal e.m.fs. displaced in time-phase by’

3;10 degrees, the resultant m.m.f. of these =, coils is a constant
P
and uniformly revolving m.m.f., of intensity §, = n—2—”€F, where &

is the maximum value (hence \/12_ the eﬂ:ective value) of the

m.m.f. of each coil.

In starting, that is, when connecting such a system of mag-
netizing coils to a polyphase system of e.m.fs., a transient term
appears, as the resultant magnetic flux first has to rise to its
constant value. This transient term of the rotating field is the
resultant of the transient terms of the currents and therefore
the m.m.fs. of the individual coils.

107. If, then, § = n/ = maximum value of m.m.f. of each
coil, where » = number of turns, and / = maximum value of
current, and r = space-phase angle of the coil, the instantaneous
value of the m.m.f. of the coil, under permanent conditions, is

J'=Fcos (68 — 1), 1)
191
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and if the time 6 is counted from the moment of closing the
circuit, the transient term is, by Chapter IV,

r

J' = —Fe * cosr, @)
where Z =1 — jx.

The complete value of m.m.f. of one coil is

o=+ =Ffeos@—7) —¢ < "cosz). B
In an n,-phase system, successive e.m.fs.-and therefore currents

are displaced from each other by 51 of a period, or an angle ?n—r
P
and the m.m.f. of coil, 7, thusis

A ~-I 2z ) :
f,-=$}'§cos(0—-r———rt>—s ‘.cos(r-i-—r-z,)g. o
n}'

"y

The resultant of n, such m.m.fs. acting together in the same
-direction would be

np n

z =7 ;' cos (0 — n )
r np

- —;‘ zt COs(' 2n_ ) =0; (2
1

that is, the sum of the instantaneous values of the permanent
terms as well as the transient terms of all the phases of a sym-
.metrical polyphase system equals zero.

In the polyphase field, however, these m.m.fs. (4) do not act
in the same direction, but in directions displaced from each

lO

2z . .
other by a space angle :n— equal to the time angle of their phase
P
displacement.
108. The component of the m.m.f., f;, actmg in the direction

(0, — 7), thus is

S = f; cos (0 -7 - zn—’ f) (6

P
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and the sum of the components of all the n, m.m.fs., in the
direction (8, — ), that is, the component of the resultant m.m.f.
of the polyphase field, in the direction (6, — ), is

I

1 \

ll' 2“ —z
=52i3c05(0—r——r1)—e “cos(r+&ri>§,
n n,

1 4

2z
cos(0°—r—n—ﬂt)- )
Transformed, this gives

np

F . ° 47 ) .
f= 532;0080+00—-T—n—L>+E‘COS(0—00)
1

P

_r, " _r np .
—e zicoseo — P cos(0°—27—4—ri)z,
1 1 np /)
.. 4=
and as the sums containing o equal zero, we have
p
n _r
f-—-é-’&’%cos(ﬂ—ﬂo)—e ”cosfloz, ®
and for 0 = o, that is as permanent term, this gives
nP
Jo =25 Fcos (0 —0,): 9)

. n . .
hence, a maximum, and equal to ‘—)"&F, that is, constant, for

-

8, =°0, that is, uniform synchronous rotation. That is, the
resultant of a polyphase system of m.m.fs., in permanent con-
dition, rotates at constant intensity and constant synchronous
velocity.

Before permanent condition is reached, however, the resultant
m.m.f. in the direction 8, = 6, that is, in the direction of the
synchronously rotating vector, in which in permanent condition
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the m.m.f. is maximum and constant, is given during the transient
period, from equation (8), by

f°=%"ﬁgl—e_;‘cos0§' (10)
that is, it is not constant but periodically varying. -

As example is shown, in Fig. 48, the resultant m.m.f. f; in the
direction of the synchronously revolving vector, 6, = 6, for the

m.m.f.—{,
(-

Fig. 48. Transient term of polyphase magnetomotive force.

constants n, = 3, or a three-phdase system; ¥ = 667, and
Z =r —jzr =032 — 47; hence,

f, = 1000 (1 — e cos 6),

with 0 as abscissas, showing the gradual oscillatory approach to
constancy.

109. The direction, 6, = 6, is, however, not the direction in
which the resultant m.m.f. in equation (8) is & maximum, but
the maximum is given by

af
@~ % 11)
this gives sin (0 — 6,) +¢ = sinf, =0, . (12)

_T e
cosf —e *

hence, cot b, = P

; (13)

that is, the resultant maximum m.m.f. of the polyphase system
does not revolve synchronously, in the starting condition, but
revolves with a varying velocity, alternately running ahead and

.



TRANSIENT TERM OF THE ROTATING FIELD 195

dropping behind the position of uniform synchronous rotation,
by equation (13), and only for 6 = «, equation (12) becomes
cot 6, = cot 6, or 6, = 0, that is, uniform synchronous Totation.

The speed of rotation of the maximum m.m.f. is given from
equation (12) by differentiation as

dQ N
g _ _db
Tl
dﬂo
where Q =sin (6 —0,) + ¢ =°sin 0,;

r -z .
cos (0 — 0,) — L * sin 4,
hence, S = Xy , (14)
cos (0 —0) —e * cosd,

or approximately,

1 —ge_;osinﬂo .
S = P . (15)
1—¢ % cosd,

For § = o, equation (14) becomes S = 1, or uniform syn-
chronous rotation, but during the starting period the speed
alternates between below and above synchronism.

From (13) follows

and (16)
sin 00 = _G-{- y

where

® =\/(c080—e '5")’ + sin?§ = \/1 —2¢7% cosd + R
17)
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110. The maximum value of the resultant m.m.f., at time-
phase 6, and thus of direction 6, as given by equation (13) or
(16), (17), is derived by substituting (16), (17) into (8), as:

=%’9’ Vi —2¢75 cos 0 + 3, 18)

hence is not constant, but pulsates periodically, with gradually
decreasing amplitude of pulsation, around the mean value %”5.
For 6 = 0, or at the moment of start, it is, by (13),

and tan 6,/ = ;;

that is, the position of maximum resultant m.m.f. starts from
angle 6, ahead of the permanent position, where 6, is the time-
phase angle of the electric magnetizing circuit. The initial
value of the resultant m.m.f., for 6 = 0, is f,, = 0, that is, the
revolving m.m.f. starts from zero.

Substituting (16) in (15) gives the speed as function of time

1—¢ =° (cos0— isinﬂ)
S = ) k (19)
—2-0 -0
1+ = —2¢ * cosf

for 6 = 0 this gives the starting speed of the rotating field

So—

= g, or, indefinite;
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hence, after differentiating numerator and denominator twice,
this value becomes definite.
1
S = 3 H
that is, the rotating field starts at half speed.
As illustration are shown, in Fig. 49, the maximum value of
the resultant polyphase m.m.f., fa, and its displacement in

(20)

6.- 0

. ST (1.4 (L8 v dan
—_ T — T — —_ —_— —
3 2 2 2 3r 2 i 2 5 2

Fig. 49. Start of rotating field.

position from that of uniform synchronous rotation, 6,— 8, for
the same constants as before, namely: n, = 3; § = 667, and
Z=r — jz=0.32 — 47; hence,

fm = 1000 V1 — 269980 03 + e—o.iﬂ’

with the time-phase angle 6 as abscissas, for the first three cycles.

111. As seen, the resultant maximum m.m.f. of the poly-
_ phase system, under the assumed condition, starting at zero
in the moment of closing the three-phase circuit, rises rapidly
— within 60 time-degrees — to its normal value, overreaches
and exceeds it by 78 per cent, then drops down again below
normal, by 60 per cent, rises 47 per cent above normal, drops
37 per cent below normal, rises 28 per cent above normal, and
thus by a series of oscillations approaches the normal value.
The maximum value of the resultant m.m.f. starts in position
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85 time-degrees ahead, in the direction of rotation, but has in
half a period dropped back to the normal position, that is, the
position of uniform synchronous rotation, then drops still fur-
ther back to the maximum of 40 deg., runs ahead to 34 deg.,
drops 23 deg. behind, etc.

It is interesting to note that the transient term of the rotat-
ing field, as given by equations (10), (13), (18), does not contain
the phase angle, that is, does not depend upon the point of the
wave, = 7, at which the circuit is closed, while in all preced-
ing investigations the transient term depended upon the point
of the wave at which the circuit was closed, and that this tran-
sient term is oscillatory. In the preceding chapter, in circuits
containing only resistance and inductance, the transient term
has always been gradual or logarithmic, and oscillatory phenom-
ena occurred only in the presence of capacity in addition to in-
ductance. In the rotating field, or the polyphase m.m.f., we
thus have a case where an oscillatory transient term occurs in
a circuit containing only resistance and inductance but not
capacity, and where this transient term is independent of the
point of the wave at which the circuits were closed, that is, is
always the same, regardless of the moment of start of the phe-
nomenon.

The transient term of the polyphase m.m.f. thus is independ-
ent of the moment of start, and oscillatory in character, with
an amplitude of oscillation depending only on the reactance

factor, ;, of the circuit.



CHAPTER XIV.

SHORT-CIRCUIT CURRENTS OF ALTERNATORS.

112. The short~circuit current of an alternator is limited by
armature reaction and armature self-inductance; that is, the
current in the armature represents a m.m.f. which with lagging
current, as at short circuit, is demagnetizing or opposing the
impressed m.m.f. of field excitation, and by combining therewith
to a resultant m.m.f. reduces the magnetic flux from that corre-
sponding to the field excitation to that corresponding to the
resultant of field excitation and armature reaction, and thus
reduces the generated e.m.f. from the nominal generated e.m.f.,
e,, to the virtual generated e.m.f., e,, The armature current
also produces a local magnetic flux in the armature iron and pole-
faces which does not interlink with the field coils, but is a true
self-inductive flux, and therefore is represented by a reactance z,.
Combined with the effective resistance, r,, of the armature
winding, this gives the self-inductive impedance Z, = r, — jz,,
or z, = Vr?+ z2 Vectorially subtracted from the virtual
generated e.m.f., e, the voltage consumed by the armature
current in the self-inductive impedance Z, then gives the ter-
minal voltage, e.

At short circuit, the virtual generated e.m.f., e,, is consumed
by the armature self-inductive impedance, z,. As the effective
armature resistance, r,, is very small compared with its self-
inductive reactance, z,, it can be neglected compared thereto,
and the short-circuit current of the alternator, in permanent
condition, thus is

As shown in Chapter XXII, “Theory and Calculation of
Alternating Current Phenomena,” the armature reaction can be
represented by an equivalent, or effective reactance, z,, and the
self-inductive reactance, z,, and the effective reactance of

199
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armature reaction, z,, combine to form the synchronous react-
ance, , = r, + ,, and the short-circuit current of the alterna-
tor, in permanent condition, therefore can be expressed by
i =2,
xo
where ¢, = nominal generated e.m.f.

113. The effective reactance of armature reaction, z,, differs,
however, essentially from the true self-inductive reactance, z,,
in that z, is instantaneous in its action, while the effective
reactance of armature reaction, r,, requires an appreciable time
to develop: z, represents the change of the magnetic field flux
produced by the armature m.m.f. The field flux, however, can-
not change instantaneously, as it interlinks with the field exciting
coil, and any change of the field flux generates an e.m.f. in the
field coils, changing the field current so as to retard the change
of the field flux. Hence, at the first moment after a change of
armature current, the current change meets only the reactance,
z,, but not the reactance z,, Thus, when suddenly short-cir-
cuiting an alternator from open circuit, in the moment before
the short circuit, the field flux is that corresponding to the
impressed m.m.f. of field excitation and the voltage in the arma-
ture, i.e., the nominal generated e.m.f., e, (corrected for mag-
netic saturation). At the moment of short circuit, a counter
m.m.f., that of the armature reaction of the short-circuit
current, is opposed to the impressed m.m.f. of the field excitation,
and the magnetic flux, therefore, begins to decrease at such a
rate that the e.m.f. generated in the field coils by the decrease
of field flux increases the field current and therewith the m.m.f.
so that when combined with the armature reaction it gives a
resultant m.m.f. producing the instantaneous value of field flux.
Immediately after short circuit, while the field flux still has full
value, that is, before it has appreciably decreased, the field m.m.f.
thus must have increased by a value equal to the counter m.m.f.
of armature reaction. As the field is still practically unchanged,
the generated e.m.f. is the nominal generated voltage, e,, and
the short~circuit current is
el)

-

z,

i =
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and from this value gradually dies down, with a decrease of the
field flux and of the generated e.m.f., to
el
z, %,
Hence, approximately, when short-circuiting an alternator,
in the first moment the short-circuit current is

. €
0 = -2,

i:

z,

while the field current has increased from its normal value 7, to

the value
Field excitation + Armature reaction

to X Field excitation ’
gradually the armature current decreases to
1= & = ?2)
xl zo

and the field current again to the normal value 7.
Therefore, the momentary short-circuit current of an alternator
bears to the permanent short-circuit current the ratia

that is,
Armature self-inductance + Armature reaction
Armature self-inductance

In machines of high self-inductance and low armature reaction,
as uni-tooth high frequency alternators, this increase of the
momentary short-circuit current over the permanent short-
circuit current is moderate, but may reach enormous values in
machines of low self-inductance and high armature reaction, as
large low frequency turbo alternators.

114. Superimposed upon this transient term, resulting from
the gradual adjustment of the field flux to a change of m.m.f., is
the transient term of armature reaction. In a polyphase
alternator, the resultant m.m.f. of the armature in permanent
conditions is constant in intensity and revolves with regard to
the armature at uniform synchronous speed, hence is stationary
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with regard to the field. In the first moment, however, the
resultant armature m.m.f. is changing in intensity and in velocity,
approaching its constant value by a series of oscillations, as
discussed in Chapter XIII. Hence, with regard to the field, the
transient term of armature reaction is pulsating in intensity and
oscillating in position, and therefore generates in the field coils

Fleld Current

Armature Current

ANNANNNN

AR

Fig. 60. Three-phase short-circuit current of a turbo-alternator.

an em.f. and causes a corresponding pulsation in the field
current and field terminal voltage, of the same frequency as
the armature current, as shown by the oscillogram of such a
three-phase short-circuit, in Fig. 50. This pulsation of field
current is independent of the point in the wave, at which the
short~circuit occurs,.and dies out gradually, with the dying out
of the transient term of the rotating m.m.f.

In a single-phase alternator, the armature reaction is alter-
nating with regard to the armature, hence pulsating, with double,
frequency, with regard to the field, varying between zero and its
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maximum value, and therefore generates in the field coils a
double frequency e.m.f., producing a pulsation of field current
of double frequency. This double-frequency pulsation of the
field current and voltage at single-phase short-circuit is pro-
portional to the armature current, and does not disappear
with the disappearance of the transient term, but persists also
after the permanent condition of short-circuit has been reached,

Armature
current

Feld
current

J____________________________________

Fig. 51. Single-phase short-circuit current of a three-phase turbo-alternator.

merely decreasing with the decrease of the armature current.
It is shown in the oscillogram of a single-phase short-circuit on
a three-phase alternator, Fig. 51.

Superimposed on this double frequency pulsation is a single-
frequency pulsation due to the transient term of the armature
current, that is, the same as on polyphase short-circuit. With
single-phase short-circuit, however; this normal frequency pul-
sation of the field depends on the point of the wave at which
the short-circuit oceurs, and is zero, if the circuit is closed at
the moment when the short-circuit current is zero, as in Fig. 51,
and a maximum when the short-circuit starts at the maximum
point of the current wave. As this normal frequency pulsation
gradually disappears, it causes the successive waves of the
double frequency pulsation to be unequal in size at the
beginning of the transient term, and “gradually become equal,
as shown in the oscillogram, Fig. 52.

The calculation of the transient term of the short-circuit
current of alternators thus involves the transient term of the
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armature and the field current, as determined by the self-
inductance of armature and of field circuit, and the mutual
inductance between the armature circuits and the field circuit,
and the impressed or generated voltage; therefore is rather
complicated; but a simpler approximate calculation can be

Armature
current

Field
ocurrent

2.5 amp.

o I O
Fig. 62. Single-phase short-circuit current of a three-phase turbo-alternator.

given by considering that the duration of the transient term is
short compared with that of the armature reaction on the field.

(A) Polyphase alternator.

116. Let n, = number of phases; 6 = 2 zft = time-phase
angle; n,= number of field turns in series per pole; n, = number
of armature turns in series per pole; Z,= r,— jr,= self-inductive
impedance of field circuit; Z, = r, — jr, = self-inductive impe-
dance of armature circuit; p = permeance of field magnetic cir-
cuit; @ = 2 zfn, 10~* = induction coefficient of armature; E =

exciter voltage; I , = 7;-9 = field exciting current, in permanent
1)

condition; 7, = field exciting current at time 0; i = field
exciting current immediately after short-circuit; ¢ = armature

. 2 . .
current at time 4, and &k, = - %’ = transformation ratio of field
P "
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to resultant armature. Counting the time angle 6 from the
moment of short circuit, 6 = 0, and letting & = time-phase
angle of one of the generator circuits at the moment of short
circuit, we have,

F, = nd, = field excitation, in permanent or stationary con-
dition, 1)

®, = pF, = pn,J, = magnetic flux corresponding thereto,

and
e’ = apF, = a.pn.l, 2)
= nominal generated voltage, maximum value, at 6§ = 0.
o
Hence, L 1, 3)
xl xl
= momentary short-circuit current at time 8 = 0, and
o 2Ty o o MeoPnimd, @
F' =3 n, I’ 7z, 4)

= resultant armature reaction thereof.
Assume this armature reaction as opposite to the field excita-
tion,
FL = ng, 6))
as is the case at short circuit.
The resultant m.m.f. of the magnetic circuit at the moment
of short-circuit is
FO=FO —FPO ©6)
At this moment, however, the field flux is still ®,, and the result-
ant m.m.f. is given by (1) as

F = F, =n,, @
Substituting (4), (5), (7) in (6) gives
., mnyapnmnl
nd, = NG’ — —"2—1_:#,

T, + n_,,a2pn !

hence, -, ®)

z,
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Writing z, = &'g-zp—ﬁ: ©)]
we have 1 = :sz’ I,; (10)
1

that is, at the moment of short circuit the field exciting current
rises from I, to 72, and then gradually dies down again to I, at

To

a rate depending on the field impedance Z,, that is,by e ® ,as

discussed in preceding chapters. Hence, it can be represented
by

o
ot meTn 1)
0 xl

The resultant armature m.m.f., or armature reaction, is

npn,I°
2

thus the magnetic flux which would be produced by it is

pngn,I°
2 )

and therefore the voltage generated by this flux is

apn,n,)" .
B 2 )
hence,

_ Voltage corresponding to the m.m.f. of armature current_
- Armature current ’

that is, z, is the equivalent or effective reactance of armature
reaction.

In equations (10) and (11) the external self-inductance of the
field circuit, that is, the reactance of the field circuit outside of
the machine field winding, has been neglected. This would
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introduce a negative transient term in (11), thus giving equation
(11) the approximate form

T,

L onEnl e S, 12)
[ x‘ (2]

where z, = self-inductive reactance of the field circuit outside
of alternator field coils.

The more complete expression requires consideration when
I, is very large, as when an external reactive coil is inserted in
the field circuit.

In reality, r, is a mutual inductive reactance, and z, can be
represented approximately by a corresponding increase of z,.

116. If I = maximum value of armature current, we have

nn I
F = ”2‘ = armature m.m.f.,
. onnld
hence, F=ng,— 5 (13)
= resultant m.m.f.,
and E = ap¥
= e.m.f. maximum generated thereby,
E
and 1-=-g (14)
z, z,
= armature current, maximum.
Substituting (13) in (14) gives
zl = apng, - nea"zll'h
apng, apng,
I= = ;
and n,apn, z,+x,’ (15)
nE T

or, by (9),

2n,.
L
! npn‘z°x,+ ' : (16)
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where 1% ;h’ = k, = transformation ratio of field turns to
» .
resultant armature turns; hence,
.oz,
= 7
1 k’z"x, oy 17)

Substituting (11) in (17) thus gives the maximum value of the
armature current as

_Ty

x, T,+zxg *

I B klloxi + xz xl

) (18)
the instantaneous value of the armature current as

i= B et 2a2)

s G 1 7) 3cos(0—0’)—e*:—‘.-'coso’§, (19)

and by equation (10) Qf Chapter XIII, the armature reaction as

Ny
f= 1_z£7_z_l1 x,(x,+x,e ’0)
2 (z, + z,)

gl—e-g'cos(ig, (20)

where z, + z, = z, is the synchronous reactance of the alter-
nator. ‘

For § = «, or in permanent condition, equations (18), (19),
(20) assume the usual form:

X
1= kllo ;::
i =k, 22 cos (0 — &) @1
xo
and f= inn, kd, i—: .

117. As an example is shown, in Fig. 53, the instantaneous
value of the transient short-circuit current of a three-phase
alternator, with the time angle 0 as abscissas, and for the con-
stants: the field turns, n, = 100; the normal field current,
I, = 200 amp.; the field impedance, Z, = r, — jzr, = 1.28 —
160 ; ohms; the armature turns, n», = 25, and the armature
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impedance, Z, = r, — jz, = 0.4 — 5] ohms. For the phase
angle, # = 0, the transformation ratio then is

and the equivalent impedance of armature reaction is

n, /n,\
x,=5p(;:)xo

=15,
and we have
I = 400 (1 + 3¢9, (18)
T= 400 (1 + 3¢ ") (cosd — &™), (19)
and f=15000 (1 + 3 %°%) (1 — ¢ *%° cos 6). (20)

Fig. 63. Short-circuit current of a t.hree-phase alternator.

(B) Single-phase alternator.

118. In a single-phase alternator, or in a polyphase alternator
with one phase only short-circuited, the armature reaction is
pulsating.

The m.m.f. of the armature current,

1=1Icos (68 — &), (22)
of a single-phase alternator, is, with regard to the field,
Ji=ncos (0 — &) cos (0, — ¢);
hence, for position angle 6, = time angle 6, or synchronous
rotation,

f,=1‘2-'1{1+cosz(o-0')}; (23)
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that is, of double frequency, with the average value,

n
F, =5

21 (24)

pulsating between 0 and twice the average value.

The average value (24) is the same as the value of the poly-
phase machine, for n, = 1.

Using the same denotations as in (4), we have:

1 & = no’or : (25)
@ g0 =220 (140082 (0—0)} = 2200 {1+ cos 2607},
2z, 2z,
(26)
Denoting the effective reactance of armature reaction thus:
a
z, = =5 @)

and substituting (27) in (26) we obtain
2 =:—’n,l,{1 +co82 (0 — &)} =§3noI° {1+cos20}; (28)
1 1

hence, by (6),

nJd, = ng0 — %’-nolo{l + cos 2 ¢’}
1

and ‘
..=ZC"+ x:[ 3 IB, g,
1, z o l+x‘+x,c°320’ (29)
and the field current,
_m,
io=$n_+i_f_’“’1031+ o cosﬂ’(0—00)§ (30)
1 1 2

119. If / = maximum value of armature current,
n
l=§‘l{1+cos2(0—0’)} (31)

= armature m.m.f.;
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hence,
F =ng, — F, (32)
= resultant m.m.f.
Since, however,
¢ = s,
= ab = aps,
_&_9s
I= z, =, (33)
and, by (27),
ap = -2-&1:
n, ¥
we have, by (33)
dy "z :
¥ = ap I= 2 :c,I (_34)

Substituting (30), (31), and (34) into (32) gives

' 2y I, + e ™ g _ §
2::1 J————l+———l+ cos2 (0 — &)
n
——211{1+cos2(0—0’)];
or, substituting,

k, =2 :‘T" = transformation ratio, (35)
1
and rearranging, gives

L )
T, Ttz

I B k‘Io Il + xz xl

(36),

a8 the mazimum value of the armature current.

This is the same expression as found in (18) for the poly-
phase machine, except that now the reactances have different
values.
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Herefrom it follows that the instantaneous value of the armature
current is

z,(z, + 26 a ‘)

1=kl z, (z, + x,)

3cos(0 —0’)—5—%'0050'2, 37)

and, by (31), the armature reaction is

_To 4
z, (:c, + T * )
z, (x, + x,)

7, =3 ki, §1+cos2(o-o')§. (38)

For § = , or permanent condition, equations (30), (36), (37),
and (38) give

; 3
- z, o
'L,—I°§l+xl+x’cos2(0 0)2,
1=k,1°x’j:x,
lz 2 ! (39)
. s B
z—k,loz‘_’_x’ cos (0 — @),
nlk‘ I’
SR esem— — 0— .

. and F = I"x,+x,‘l+COS2( &)} J

As seen, the field current ¢, is pulsating even in permanent
condition, the more so the higher the armature reaction z,
compared with the armature self-inductive reactance z,.

120. Choosing the same example as in Fig. 52, paragraph
117, but assuming only one phase short-circuited, that is, a single-
phase short circuit between two terminals, we have the effective
armature series turns, n, = 25 V'3 = 43.3; the armature impe-
dance, Z, = r, — jz, = 0.8 — 107; ¢ = 0; the transformation
ratio, k, = 4.62, and the effective reactance of armature reaction

z, = 532—:1:0 =15; herefrom,
I =555(1+ 1.57°°%%, (36)

1 =2555(1+ 1.567°°%? (cos @ — ¢~ "%, (37)
and £=12,000 (1 + L5 (1 + cos26);  (38)
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and the field current is
i, =200 (1 + L.567°°%?) (1 + 0.6 cos 2 6). (30)

In this case, in the open-circuited phase of the machine, a
high third harmonic voltage is generated by the double frequency
pulsation of the field, and to some extent also appears in the
short-circuit current.
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PERIODIC TRANSIENT PHENOMENA

CHAPTER 1.

INTRODUCTION.

1. Whenever in an electric circuit a sudden change of the
circuit conditions is produced, a transient term appears in the
circuit, that is, at the moment when the change begins,
the circuit quantities, as current, voltage, magnetic flux,etc., cor-
respond to the circuit conditions existing before the change, but
do not, in general, correspond to the circuit conditions brought
about by the change, and therefore must pass from the values
corresponding to the previous condition to the values corre-
sponding to the changed condition. This transient term may be
a gradual approach to the final condition, or an approach by a
series of oscillations of ‘gradual decreasing intensities.

Gradually — after indefinite time theoretically, after relatively
short time practically — the transient term disappears, and
permanent conditions of current, of voltage, of magnetism, etc.,
are established. The numerical values of current, of voltage, ete.,
in the permanent state reached after the change of circuit con-
ditions, in general, are different from the values of current,
voltage, ete., existing in the permanent state before the change,
since they correspond to a changed condition of the circuit.
They may, however, be the same, or such as can be considered
the same, if the change which gives rise to the transient term
can be considered as not changing the permanent circuit con-
ditions. For instance, if the connection of one part of a circuit,
with regard to the other part of the circuit, is reversed, a transient
term is produced by this reversal, but the final or permanent
condition after the reversal is the same as before, except that
the current, voltage, etc., in the part of the circuit which has been
reversed, are now in opposite direction. In this latter case,
the same change can be produced again and again after equal
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intervals of time ¢,, and thus the transient term made to recur
periodically. The electric quantities 7, e, etc., of the circuit,
from time ¢ = 0 to ¢ = ¢,, have the same values as from time
t =tytot =2¢t, fromt =2t tot = 3¢, etc., and it is sufficient
to investigate one cycle, from ¢t = 0 to ¢t = ¢,.

In this case, the starting values of the electrical quantities
during each period are the end values of the preceding period,
or, in other words, the terminal values at the moment of start
of the transient term, ¢t = 0, i = 7, and e = ¢,, are the same as
the values at the end of the period ¢t = ¢, ¢t = and e = ¢;
that is, 1, = + 7/, ¢, = + ¢, etc.; where, the plus sign applies
for the unchanged, and the minus sign for the reversed part of the
circuit.

2. With such periodically recurrent changes of circuit con-
ditions, the period of recurrence t, may be so long, that the
transient term produced by a change has died out, the permanent
conditions reached, before the next change takes place. Or,
at the moment where a change of circuit conditions starts, a
transient term, the transient term due to the preceding change,
has not yet dlsappeared that is, the time, ¢,, of a period is shorter
than the duration of the transient term.

In the first case, the terminal or starting values, that is, the
values at the moment when the change begins, are the same as
the permanent values, and periodic recurrence has no effect on
the character of the transient term, but the phenomenon is cal-
culated as discussed in Section I, as single transient term,
which gradually dies out.

If, however, at the moment of change, the transient term of
the precedmg change has not yet vanished, then the starting or
terminal values of the electric quantities, as 7, and e,, also contain
a transient term, namely, that existing at the end of the preced-
ing period. The same term then exists also at the end of the
period, or at ¢ = t,. Hence in this case, the terminal conditions
are given, not as fixed numerical values, but as an equation
between the electric quantities at time ¢t = 0 and at time ¢ = ¢,;
or, at the beginning and at the end of the period, and the inte-
gration constants, thus, are calculated from this equation.

3. In general, the permanent values of electric quantities
after a change are not the same as before, and therefore at least
two changes are required before the initial condition of the
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circuit is restored, and the cycle can be repeated. Periodically
recurring transient phenomena, thus usually consist of two or
more successive changes, at the end of which the original con-
dition of the circuit is reproduced, and therefore the series of
changes can be repeated. For instance, increasing the resistance
of a circuit brings about a change. Decreasing this resistance
again to its original value brings about a second change, which
restores the condition existing before the first change, and thus
completes the cycle. In this case, then, the starting values of
the electric quantities during the first part of the period equal
the end values during the second part of the period, and the
starting values of the second part of the period equal the end
values of the first part of the period. That is, if a resistor is
inserted at time ¢ = 0, short circuited at time ¢ = ¢,, and inserted
again at time ¢ = ¢, and e and ¢ are voltage and current respec-
tively during the first, ¢, and 7, during the second part of the
period, we have

/e/i=0 = [&/ 1=t '/e:/:-q = /e/t-t‘)
[tim0 = [is) =ty [02/ 1=ty = [/ 1=ty

If during the times ¢, and ¢, — ¢, the transient terms have
already vanished, and permanent conditions established, so that
the transient terms of each part of the period depend only upon
the permanent values during the other part of the period, the
length of time ¢, and ¢, has no effect on the transient term, that
is, each change of circuit conditions takes place and is calculated
independently of the other change, or the periodic recurrence.
A number of such cases have been discussed in Section I, as
for instance, the effect of cutting a resistor in and out of a
divided inductive circuit, paragraph 75, Fig. 33. In this case,
four successive changes are made before the cycle recurs: a
resistor is cut in, in two steps, and cut out again in two
steps, but at each change, sufficient time elapses to reach
practically permanent condition. -

In general, and especially in those cases of periodic transient
phenomena, which are of engineering importance, successive
changes occur before the permanent condition is reached, or
even approximated after the preceding change, <o that frequently

and
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the values of the electric quantities are very different throughout
the whole cycle from the permanent values which they would
gradually assume; that is, the transient term preponderates
in the values of current, voltage, etc., and the permanent term
occasionally is very small compared with the transient term.

4. Periodic transient phenomena are of engineering impor-
tance mainly in three cases: (1) in the control of electric circuits;
(2) in the production of high frequency currents, and (3) in the
rectification of alternating currents.

1. In controlling electric circuits, etc., by some operating
mechanism, as a potential magnet increasing and decreasing the
resistance of the circuit, or a clutch shifting brushes, etc., the
main objections are due to the excess of the friction of rest over
the friction while moving. This results in a lack of sensitiveness,
and an overreaching of the controlling device. To overcome
the friction of rest, the deviation of the circuit from normal
must become greater than necessary to maintain the motion of
the operating mechanism, and when once started, the mechanism
overreaches. This objection is eliminated by never allowing
the operating mechanism to come to rest, but arranging it in
unstable equilibrium, as a “floating system,” so that the con-
dition of the circuit is never normal, but continuously and
periodically varies between the two extremes, and the resultant
effect is the average of the transient terms, which rapidly and
periodically succeed each other. By changing the relative
duration of the successive transient terms, any resultant inter-
mediary between the two extremes can thus be produced. On
this principle, for instance, operated the controlling solenoid of
the Thomson-Houston arc machine, and also numerous auto-
matic potential regulators. _

2. Production of high frequency oscillating currents by period-
ically recurring condenser discharges has been discussed under
““oscillating current generator,”” in Section I, paragraph 44.

Non-sinusoidal high frequency alternating currents are pro-
duced by an arc, when made unstable by shunting it with a
condenser, as discussed before.

The Ruhmkorff coil or inductorium also represents an appli-
cation of periodically recurring transient phenomena, as also
does Prof. E. Thomson’s dynamostatic machine.

3. By reversing the connections between a source of alter-
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nating voltage and the receiver circuit, synchrenously with the
alternations of the voltage, the current in the receiver circuit is
made unidirectional (though more or less pulsating) and there-
fore rectified.

In rectifying alternating voltages, either both half waves of
voltage can be taken from the same source, as the same trans-
former coil, and by synchronous reversal of connections sent in
the same direction into the receiver circuit, or two sources of
voltage, as the two secondary coils of a transformer, may be
used, and the one half wave taken from the one source, and sent
into the receiver circuit, the other half wave taken from the
other source, and sent into the receiver circuit in the same
direction as the first half wave. The latter arrangement has
the disadvantage of using the alterngting current supply source
less economically, but has the advantage that no reversal, but
only an opening and closing of connections, is required, and is
therefore the method commonly applied in stationary rectify-
ing apparatus.

6. In rectifying alternating voltages, the change of connec-
tions between the alternating supply and the unidirectional
receiving circuit can be carried out as outlined below:

(@) By a synchronously moving commutator or contact
maker, in mechanical rectification. Such mechanical rectifiers
may again be divided, by the character of the alternating supply
voltage, into single phase, quarter phase and three phase, and
by the character of the electric circuit, into constant potential
and constant current rectifiers. Mechanical rectification by a
commutator driven by a separate synchronous motor has not yet
found any industrial application. Rectification by a commuta-
tor driven by the generator of the alternating voltage has found
very extended and important industrial use in the excitation of
the field, or a part of the field (the series field) of alternators and
synchronous motors, and especially in the constant-current arc
machine. The Brush arc machine is a quarter-phase alternator
connected to a rectifying commutator on the armature shaft,
and the Thomson-Houston arc machine is a star-connected
three-phase alternator connected to a rectifying commutator on
the armature shaft. The reason for using rectification in these
machines, which are intended to produce constant direct current
at very high voltage, is that the ordinary commutator of the
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continuous-current machine cannot safely commutate, even at
limited current, more than 30 to 50 volts per commutator
segment, while the rectifying commutator of the constant-
current arc machine can control from 2000 to 3000 volts per
segment, and therefore rectification is superior to commutation
for very high voltages at limited current, as explained by the
character of this phenomenon, discussed in Chapter III.

(b) The synchronous change of circuit connection required
by the rectification of alternating e.m.fs. can be brought about
without any mechanical motion in so-called “‘arc rectifiers,”
by the characteristic properties of the electric arc, to be a good
conductor in one, an insulator in the opposite direction. By
thus inserting an arc in the path of the alternating circuit,
current can exist and thus a circuit be established for that half
wave of alternating voltage, which sends the current in the
same direction as the current in the arc, while for the reversed
half wave of voltage the arc acts as open circuit. As seen, the
arc cannot reverse, but only open and close the circuit, and so
can rectify only one half wave, that is, two separate sources of
alternating voltage, or two rectifiers with the same source of
voltage, are required to rectify both half waves of alternating
voltage.

(¢) Some electrolytic cells, as those containing aluminum as
one terminal, offer a low resistance to the passage of current in
one direction, but a very high resistance, or practically interrupt
the current, in opposite direction, due to the formation of a non-
conducting film on the aluminum, when it is the positive terminal.
Such electrolytic cells can therefore be used for rectification in
a similar manner as arcs.

The three main classes of rectifiers thus are: (a) mechanical
rectifiers; (b) arc rectifiers; (c) electrolytic rectifiers.

Still other methods of rectification, as by the unidirectional
character of vacuum discharges, of the conduction in some
crystals, etc., are not yet of industrial importance.



CHAPTER II.

CIRCUIT CONTROL BY PERIODIC TRANSIENT PHENOMENA.

6. As an example of a system of periodic transient phenomena,
used for the control of electric circuits, may be considered an
automatic potential regulator operating in the field circuit of
the exciter of an alternating current system.

Let, r, = 40 ohms = resistance and L = 400 henrys =
inductance of the exciter field circuit.

A resistor, having a resistance, r, = 24 ohms, is inserted in
series to r,, L in the exciter field, and a potential magnet, con-
trolled by the alternating current system, is arranged so as to
short circuit resistance, r,, if the altematmg potential is below,
to throw resistance r, into circuit again, if the potential is
above normal. , ,

With a single resistance step, r,, in the one position of the
regulator, with r, short circuited, and only r, as exciter field
winding m1stmce the altematmg potentlal would be above
normal, that is, the regulator cannot remain in this position,
but as soon after short circuiting resistance r, as the potential
has risen sufficiently, the regulator must change its position
and cut resistance r, into the circuit, increasing the exciter field
circuit resistance to r, + r,. This resistance now is too high,
would lower the alternating potential too much, and the regula-
tor thus cuts resistance r, out again. That is, the regulator
continuously oscillates between the two positions, corresponding
to the exciter field circuit resistances r, and (r, + r,) respec-
tively, at a period depending on the momentum of the moving
mass, the force of the magnets, etc., that is, approximately
constant. The time of .contact in each of the two positions,
however, varies: when requiring a high field excitation, the
regulator remains a longer time in position r,, hence a shorter
time in position (r, + r,), before the rising potential throws it
over into the next position; while at light load, requiring low
field excitation, the duration of the period of high resistance,

223



224 TRANSIENT PHENOMENA

(ro +1,), is greater, and that of the period of low resistance, r,,
less.

7. Let, ¢, = the duration of the short circuit of resistance r,;
t, = the time during which resistance r, is in circuit, and ¢, =
i, +1i,

l Dux?ing each period ¢, the resistance of the exciter field,
therefore, is 7, for the time ¢,, and (r, + r,) for the time ¢,.

Furthermore, let, ?, = the current during time ¢, and 7, =
the current during time ¢,.

During each of the two periods, let the time be counted
anew from zero, that is, the transient current <, exists during the
time 0 < ¢ < ¢, through the resistance r, the transient
current, 1,, during the time 0 < ¢ < t,, through the resistance
(o + 1),

This gives the terminal condltlons:

/":1/¢=a = /iz/t—t,
and 1)

/":2/¢=o = /il/tsl,;

that is, the starting point of the current, 7,, is the end value of
the current, 7,, and inversely.

If now, e = voltage impressed upon the exciter field circuit,
the differential equations are:

. di
e=rga, + Ld—t'

and 2)
di
e=(ry+1)1, +Ldt’
or,
di, Ty
; e——-I—Jdt’
= —
ro
3
di, ——r°+r‘dt @)
. e L )
b rot+ T
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Integrated,
. e -t
1, = 7.'_0 +ce
and CY)

_ntn,
L

1, = ¥ + ¢t
Substituting the terminal conditions (1) in equations (4),

gives for the integration constants c, and c, the equations,

bo= —5 g T
R
and
e e -y
=2 L
ro +rl + : 0 + CIE ’
herefrom, )
_"o+'|h
c = — 6”1!1 —e L ;
' [, 3e =]
T,y +7,){1—¢
and . ®)
_n
er {l — ¢ L";
C, = + L .
’ 1 - 3o o]
ro(re +1)l —¢ &

Substituting (5) in (4),

3
ro+ry
2 "‘

(ro +1,) tl - e-%"_
and (6)

L { rf1 -2 _}
1, = 1 4+ — e € .
z To + 17, rozl A —Z“"

If, e = 250 volts; t, = 0.2 sec., or 5 complete cycles per sec.;
t, = 0.15, and ¢, = 0.05 sec.; then

1, = 6.25 {1 — 0.128 7'} I

)

and
7, = 3.91 {1 +0.391 ¢ °"'}.
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8. The mean value of current in the circuit is

i=tl1t’3_/j'i,dz+j:'i,dt§._ @®)

This integrated gives,
e e
i, —+1
i = 11-0 :ro+r,_ (9)
t, +1, !
and, if -
., _€
tl ro .
and (10)
.
ot

are the two extreme values of permanent current, corresponding
respectively to the resistances r, and (r, + r,), we have
' T A A A :
YT, g Ty (1
that is, the current, 7, varies between ¢,” and ¢,” as linear function
of the durations of contact, ¢, and ¢,.

The maximum variation of current during the periodic change
is given by the ratio of maximum current and minimum current;
or,

v
= =4q (12)

Uyl t=o

and is
_ @ =) (L -7
ro(L =€) 4r e (l-c"")’

(13)

where,

and (14)
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Substituting
- 2?2
1-—¢ =.’E—§—+'6——+..., (15)
by using only term of first order;
l-¢"=1
gives } (16)
=1

that is, the primary terms eliminate, and the difference between
i, and 7, is due to terms of secondary order only, hence very

Substituting
- x?

1-¢ =z-2; 7)

that is, using also terms of second order, gives

fro (s, +8) +78,} — 3 {r, (5, + )" + 187} .
{ro (8, +8,) +rs,} — 3 {1‘0 (8, +8) +18° +2r38.3,}’

(18)
or, approximately,
1+ 78,8, (19)
= H
1 ro (8, +8,) +13,
and, substituting (14),
rt.t
= 1 —_t13 m
1=141e +0) (20)
that is, the percentage variation of current is
rltlt’
-1 =t 21
1-1=70 +0) 1)
Equation (21) is &8 maximum for
t
=t = —2? ’ (22)
and, then, is
rl to
g—-1= VAl (23)
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or, in the above example, (r, = 24; L = 400; ¢, = 0.2);
g — 1 = 0.003;

that is, 0.3 per cent.

The time ¢, of a cycle, which gives 1 per cent variation of
current, ¢ — 1 = 0.01, is

=g, @)

= % sec.

The pulsation of current, 0.3 per cent respectively 1 per cent,
thus is very small compared with the pulsation of the resistance,
r, = 24 ohms, which is 46 per cent of the average resistance

T, +% = 52 ohms.




CHAPTER III.

MECHANICAL RECTIFICATION.

9. If an alternating-current circuit is connected, by means
of a synchronously operated circuit breaker or rectifier, with a
second circuit in such a manner, that the connection between
the two circuits is reversed at or near the moment when the
alternating voltage passes zero, then in the second -circuit
current and voltage are more or less unidirectional, although
they may not be constant, but pulsating.

If 7 = instantaneous value of alternating current, and 7, =
instantaneous value of rectified current, then we have, before
reversal, 7, = 7, and after reversal, 1, = — 7; that is, during
the reversal of the circuit one of the currents must reverse.
Since, however, due to the self-inductance of the circuits, neither
current can reverse instantly, the reversal occurs gradually,
so that for a while during rectification the instantaneous value
of the alternating and of the rectified current differ from each
other. Thus means have to be provided either to shunt the
difference between the two currents through a non-inductive
bypath, or, the difference of the two currents exists as arc over
the surface of the rectifying commutator.*

The general phenomenon of single-phase rectification thus
is: The alternating and the rectified circuit are in series. Both
circuits are closed upon themselves at the rectifier, by the
resistances, r and r,, respectively. The terminals are reversed.
The shunt-resistance circuits are opened, leaving the circuits
in series in opposite direction.

Special cases hereof are:

1. If r = r, = 0, that is, during rectification both circuits are
short circuited. Such short-circuit rectification is feasible only
in limited-current circuits, as on arc lighting machines, or in

*If the circuit is reversed at the moment when the alternating current
pasees zero, due to self-inductance of the rectified circuit its current differs
from zero, and an arc still appears at the rectifier.

229
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cases where the voltage of the rectified circuit is only a small part
of the total voltage, and thus the current not controlled thereby,
as when rectifying for the supply of series fields of alternators.

2. r =r, = o, or open circuit rectification. This is feasible
only if the rectified circuit contains practically no self-inductance,
but a constant counter e.m.f., ¢, (charging storage batteries),
so that in the moment when the alternating impressed e.m.f.
falls to e, and the current disappears, the circuit is opened, and
closed again in opposite direction when after reversal the alter-
nating impressed e.m.f. has reached the value, e.

In polyphase rectification, the rectified circuit may be fed
successively by the successive phases of the system, that is
shifted over from a phase of falling e.m.f. to a phase of rising
e.m.f., by shunting the two phases with each other during the
time the current changes from the one to the next phase. Thus
the Thomson-Houston arc machine is a star-connected three-
phase constant-current alternator with rectifying commutator.
The Brush arc machine is a quarter-phase machine with rectify—
ing commutator.

In rectification frequently the sine wave term of the current
is entirely overshadowed by the transient exponential term,
and thus the current in the rectified clrcmt is essentially of an
exponential nature.

As examples, three cases will be dlscussed

1. Single-phase constant-current rectification; that is, a
rectifier is inserted in an alternating-current circuit, and the
voltage consumed by the rectified circuit is small compared with
the total circuit voltage; the current thus is not noticeably
affected by the rectifier. In other words, a sine wave of current
is sent over a rectifying commutator. '

2. Single-phase constant-potential rectification; that is, a
constant-potential alternating e.m.f. is rectified, and the impe-
dance between the alternating voltage and the rectifying com-
mutator is small, so that the rectified circuit determines the
current wave shape.

3. Quarter-phase constant-current rectification as occurring
in the Brush arc machine.
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1. Single-phase constant-current rectification.

10. A sine wave of current, ?,sin 6, derived from an e.m.f.
very large compared with the voltage consumed in the recti-
fied circuit, feeds, after rectification,
a circuit of impedance Z = r — jz.
This circuit is permanently shunted
by a circuit of resistance r,.

Rectification takes place over short-
circuit from the moment = — 6, to
= + 0,; that is, at = — 0, the rectified
and the alternating circuit are closed
upon themselves at the rectifier, and
this short-circuit opened, after rever-
sal, at = + 60,, as shown by the dia-
grammatic representation of a two-
pole model of such a rectifier in Fig.
51. In this case the space angles
7 + 7,and 7 — 7, and the time angles
= + 0, and = — 0, are identical.

This represents the conditions ex-
isting in compound-wound alter-
nators, that is, alternators feeding a series field winding
through a rectifier.

Let, during the period from 6, to = — 6,, © = current in
impedance Z, and 7, = current in resistance r,, then:

Fig. 64. Single-phase curxent
rectifier commutator.

1+ 1, = 1,sin 0. 1)

However,
.. v 9
ir, =1 + T (2

and substltutmg (1) in (2) gives the differential equation:

1 (r +r,)+xzo Ty sm0—0 6))
which is integrated by the function:
1= Ae %+ Bsin (0 - 9). €)]

Substituting (4) in (3) and arranging, gives:
AT +r,—azr)e®+[B([r +r]cosd + zsind) — 7,r,)sin 6
~[(r +7)sind — zcosd]Bcosd =0, (5)
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which equation must be an identity, thus:

r+r, —ar =0,
B([r+r,]cos&+xsin8)—'ior,=0}
and (r +r)sind —zcosd =0,
and herefrom:
r+r,
a = )
z
z
ts,nz?=r+7_l | (6)
r .
and B=g——-t____ _ %",
Ve +r)+ 2 2
where
z=V( +r) + 2 )
hence:
_r+r,‘ r
1=A¢ ° +i°;‘sin(0—6). ®)

During the time of short-circuit, from = — 6, to = + 4,, if
7’ = current in impedance Z, we have

Y4

o+ xj—; =0, ©)

hence:
7 = A’ . (10)
The condition of sparkless rectification is, that no sudden

change of current occur anywhere in the system. In consequence
hereof we must have:

t = = 1, sin 0 at the moment 6 = = — 6,,

and, at the moment § = = + 6,, ¥ must have reached the same
value as ¢ and 7, sin 6 at the moment 6 = 6,.
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This gives the two double equations:

7:' —0, = i" —0 = ioﬂin (7!' - 0,)
and (11)
1o, = Vu 1o, = %, 8iN0,;

or, substituting (8) and (9),

T ) ~lr-0
Ae * +i,r;‘sin(8 +6) =A% * " =1i,sin6, (12)
and

e TR I
Ae * '—zojsm(t)-—(),)=A’e z =1,8n6, (13)

These four equations (12) (13) determine four of the five
quantities, 4, A’, 6,, 0,, r,, leaving one indeterminate.

Thus, one of these five quantities can be chosen. The deter-
mination of the four remaining quantities, however, is rather
difficult, due to the complex character of equations (12) (13),
and is feasible only by approximation, in a numerical example.

11. ExaMpPLE: Let an alternating current of effective value
of 100 amp., that is, of maximum value 7, = 141.4, be rectified
for the supply of a circuit of impedance Z = 0.2 — 2 j, shunted
by & non-inductive circuit of resistance r,.

Let the series connection of the rectified and alternating
circuits be established 30 time-degrees after the zero value of

alternating current, that is, 6, = 30 deg. = g chosen.
Then, from equation (13), we have

~Ler+o)

Ae
hence, substituting r, z, 6,, 1,, gives
A’ = 102.

= 1,80,

From equation (12),

r
Ar =) ..
Als = = 1, 8in 6,,

and, substituting,
gin 6, = 0.527 %;
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approximately _
sin 4, = 0.527 and 6, = 32°

thus
sin 6, = 0.527 &*° = 0.558, and 60, = 34°;

thus
sin 6, = 0.527 &+ = 0.559, and 0, = 34°.

From equations (12) and (13) it follows:

e

Ae + 1, fz-' sin (3 +0,) = 1,sin 0,,

_ r+r

A = - i,,%sin (@ —0,) =1,sin6,;

eliminating A gives
PN STt 2 sinf, — r sin (8 +6,)
zsinf, +r,;sin (@ —0)" °

r+r

substituting sin d = ;, cos d = 2 =(r+r) +2, and

substituting for r, z, 0,, 6,, gives after some changes:
g _ 16 — 1047,

11 -7, '’
calculating by approximation,
assuming r, = 0.5,
0.603 = 0.612;
assuming r, = 0.51,
0.597 = 0.602;

assuming r, = 0.52,
0.591 = 0.592;
hence, r, = 0.52,

and z = 2124,
d = 70°.
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Substituting these values in (12) or (13) gives
A = 113;
hence, as final equations, we have

T =112¢7%% + 34.6sin (6 — 70°),
7 =102,
1, = 141.4 sin 0,

and T, =1, — %;

which gives the following results:

Arith-
metic
Mean

‘| Value.

Quantity. : Tnstantaneous Values. tive

L

= |30 |50 (70 | 90 {110 |130 146 | 170 190 | 210

§ = 70.8]70.5/72.6| 74.9/79.0/80.4{79.0[....  .|..... |...... 75.2 1 75.2

79.00 75.8 73.2| 70.8 ’ :

,,smO— 70.8{108 |133 [141.4/133 |108 179.0| 24.7!—-24.7—70.8'1100.0 |.. ...

§, = | 0 [37.5(60.4] 66.554.0(27.6/ 0 |(—51.1—48.5)! 0 38.227.3
i

Curves of these quantities are plotted in Fig. 55, for 4, =
100 sin 4.

The effective value of the rectified current is 75.2 amp., and
this current is fairly constant, pulsating only between 70.5 and
80.4 amp., or by 6.6 per cent from the mean; that is, due to the
self-inductance, the fluctuations of current are practically
suppressed, and taken up by the non-inductive shunt, and the
arithmetic mean value of this current is therefore equal to its
effective value. The effective value of the shunt current is 38.2
amp., and this current is unidirectional also, but very fluctuating.
its arithmetic mean value is only 27.3 amp.; that is, ip this
circuit a continuous-current ammeter would record 27.3, an
alternating ammeter 38.2 amperes. The effective value of the
total difference between alternating and rectified current (shunt
plus short~circuit current) is 44.9 amp.

The current divides between the inductive rectified circuit
and its non-inductive shunt, not in proportion to their respective
impedances, but more nearly, though not quite, in proportion
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. to the resistances; that is, in a rectified circuit, self-inductance
does not greatly affect the intensity of the current, but only its
character as regards fluctuations.

v A :
Fig. 656. Single-phase current rectification.

2. Single-phase constant-potential rectification.

12. Let the alternating e.m.f. e, sin § of the alternating cir-
cuit of impedance Z, = r, — jr, be rectified by connecting it
at the moment 6, with the direct-current receiver circuit of
impedance Z = r — jr and continuous counter e.m.f. e, dis-
connecting it therefrom at the moment = — 0,, and closing
during the time from = — 0, to = + 6, the alternating circuit by
the resistance r,, the direct-current circuit by the resistance r,,
then connecting the circuits again in series in opposite direction,
at = + 0,, etc., as shown diagrammatically by Fig. 56, where

S S
| 1
’ + H
rl _+_ rl 7.III +7JIII )
B 1
=7 1

P

1. Then, during the time from 0, to = — 6,, if 1, = current,
the differential equation is

i,

e, sinfl —e — i (r +To)—(-”+%)d'§=0’ (¢))
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which is integrated by
t,=A, + Be™* + C,sin (0 - 3) )

Fig. 56. Single-phase constant-potential rectifying commutator.

Equation (2) substituted in (1) gives
e, sinf —e— (r +r)[4, + Be~**+ C,sin (0 - 3,)]

- (z+z)[-aBg "+ C,cos (0 —3,)] =0;
or, transposing,

—[+e+ @ +r)A)+Be[a,(x +z) — (r+71,)]
+sinfde, — (r +r,) C,co8d, — (r + z,) C,sind,]
+C,co80((r +r,)sind, — (z + z,) cos d,] = 0;

herefrom it follows that
e+ (r +ro)A1 =0,
a,(x+zx) —(r+r) =0,
e — (r+r)C,co8d, — (z +x,) C,sind, =0,

and .
(r +r)siné, — (x + z,) cos d, = 0;



238 TRANSIENT PHENOMENA

hence

e N\

-— )

r + To
r+r,
—_—
T4z,

r+z
tand, = - %
r+r,

C,- - % -
' \/(1'-f-7'o)’+(:t:+.1:,,)”J

and

and, substituting in (2),

e . -LF D e,sin (6 — 3))

B 3 )
VI +1)'+ (@ + 2,0
¢ B e—;rzo +_eo[(7‘ +r,)sin0 — (x +1,)cosf]
! (r+r1)* + (x +z,)?
z + z,
r+r,

tan d, =

©)

F (4)

7

2. During the time from = — 6, to = + 0,, if ¢, = current in
the direct circuit, v, = current in alternating circuit, we have

Alternating-current circurt:
e,sinf — v, (ry +r,) — xo% =0,

which is integrated the same as in (1), by

i _B -2the e sin (0 — 3,)
= 13 S i
P Vi, + 1) + 2
+ .
= Bse_m-‘ton’ +en [(ro + rl) sin § — I, COS 0];

(ro + Tl)z + xoz

tan g, = . N
ro+7,

©®)

(6
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Direct-current circuit:
. * dv
—e—1,(r+ r,)—xd%’=0, @
integrated by
_rtn,
1, = +Bge * ®

T4,
At0 = = — 0,, however, we must have
'ix = 'iz = is
and 7,at 6 = = + 6, must be equal to
7, at 0 = 0,, and opposite to 1,at 0 = 7 + 6,;
1,0 =0]=7[0=x4+6]=—1[0=r+06,)

(9

These terminal conditions represent four equations, which
suffice for the determination of the three remaining integration
constants, B,, B,, B,, and one further constant, as 6, or 6,, or
r,orr,, or ¢; that is, with the circuit conditions Z,, Z, r, r,, €,, e
chosen, the moment 6, depends on 6, and inversely.

13. Special case:

Z,=0, r,=0, e¢=0; (10)

that is, the alternating e.m.f. e, sin 6 is connected to the circuit

of impedance Z = r — jz during time 6, to = — 6,, and closed

by resistance r,, while the rectified circuit is short-circuited,

during time = — 6, to = + 6,.
The equations are:

1. Time 6, to = — 6,:

rd

~-ZLe
i, =Be * +rzz°_x,[rsin0-xcoso].

2. Timer — 6, ton +0,:

. -Te (11)
1,=Bg *
i = €, sin 6

3
Ty
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The terminal conditions now assume the following forms:

At 0==-20,,
=1, =1
— a0y € . ~Cr—8) )
Be - +r,+f(rsm0,+.z:cost9,)=B,e *
€, .
= ;‘:’sm 0,;
at6 = = + 0, and 6, respectively - (12)
.Y e . L+ &)
Be = +5 _'fz,(rslnﬂl—:ccos0l)=B z
' = %6in 0,.
r, J

These four equations suffice for the determination of the two
integration constants B, and B,, and two of the three rectifica-
tion constants, 6,, 4,, r,, so that one of the latter may be chosen.

Choosing 6,, the moment of beginning reversal, the equations
(12) transposed and expanded give

|
E—;’(o.+0,> sin 0,

sin 0
= r ™
cot 0, + e*cotd, = ( L Z) (e’ —l),
Tz Z. $ (13)
B, - e, sin 0,e+£(--o,).
rl

and Tty

B, = B, — (rsin 0, + z cos 0,)e ,

r’+x’ J

which give 8,, r,, B,, B,: 0, is calculated by approximation.
Assuming, as an example

e, = 156 sin @ (corresponding to 110 volts effective),

Z =10 - 307, (14)
and -
02 == 6 = 300,
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by equations (13) we have:
logsin 0, = — 0.3765 — 0.1448 6,,

and 0, = 21.7°,
r, = 7.63,
B, - 24, (15)
and B, = 128;
thus
[
1, = 12.8¢ 3 4+ 1.56 (sin 6 — 3 cos 0),
[ . .
1, =244¢ 3, (16)
and 1, = 20.58in 0,
which gives:
o 4 5 % ! o o % %
21.7 7.55 |......... 135 10.27 |.........
30 74T | 150 10.20 | 10.2 10.2
45 7.7 | 165 |........ 9.4 5.3
60 8.02 |........|...... 180 | 8.6 0
75 8.56 |.........|..... 195 |........ 7.9 | —5.3
90 9.18 |......... 2017 |........ 7.55 | —17.85
105 9.67 ...l
120 10.09 e

The mean value of the rectified current is derived herefrom
as 8.92 amp., while without rectification the effective value of

110
- =348. 110 volts
i

alternating current would be
Y

. 2V'2 C
effective corresponds to ~ -~ 110 = 99 volts mean, which in
e

r = 10 would give the current as 9.9 amp.

Thus, in a rectified circuit, self-inductance has little effect
besides smoothing out the fluctuations of current, which in this
case varies between 7.47 and 10.27, with 8.92 as mean, while
without self-inductance it would vary between 0 and 15.6, with
9.9 as mean, and without rectification the current would be
4.95 sin (6 — 71.6°).
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As seen, in this case the exponential or transient term of
current largely preponderates over the permanent or sinusoidal
term.

Amp.
-3 oo ¢

v L aw

Degrees
Fig. 67. Single-phase e.m.f. rectification.

In Fig. 57 is shown the rectified current in drawn line, the
value it would have without self-inductance, and the value the
alternating current would have, in dotted lines.

3. Quarter-phase constant-current rectification.

14. In the quarter-phase constant-current arc machine, as
the Brush machine, two e.m.fs., E, = ecos 6 and E, = esin 6,
are connected to a rectifying commutator, so that while the first
E, is in circuit E, is open-circuited. At the moment 6,, E, is
connected in parallel, as shown diagrammatically in Fig. 58,
with E,, and the rising e.m.f. in E, gradually shifts the current
1, away from E, into E,, until at the moment 6,, E, is dis-
connected and E, left in circuit.

Assume that, due to the superposition of a number of such
quarter-phase e.m.fs., displaced in time-phase from each other,
and rectified by a corresponding number of commutators offset
against each other, and due to self-inductance in the external
circuit, the rectified current is practically steady and has the
value 7. Thus up to the moment 8, the current in E, is 7,, in
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E,is 0. From 6, to 0, the current in E, may be ; thus in E, it
is 1, = ¢, — 1. After 6,, the current in E, is 0, in E, it is %,

A change of current occurs only during the time from 6, to 6,,
and it is only this time that needs to be considered.

Fig. 68. Quarter-phase constant-current rectifying commutator.

Let Z = r — jz = impedance per phase, "where z = 2 nfL;
then at the time ¢ and the corresponding angle 8 = 2 nft the
difference of potential in E| is

P
ecos()-—(1],—1’)1'—L‘uz—"dt—'Q
=eco80 — (v, — )7 +x3—;; [ a
the difference of potential in E, is
esin()—ir-—:c‘—ii'
dg’ J

and, since these two potential differences are connected in
parallel, they are equal

e (sin 6 — cos 0) + 1 —2ir—2:cj—;=0. 2)
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The differential equation (2) is integrated by

t=A + Be=® + Ccos (0 — 9); (€)]
thus Z—Z= —aBe“".—Csin @ - 9),

and substituting in (2),
e@sind — cosd) + 10 —2Ar — 2 Bre=* — 2Crcos (6 — 3)
+ 2aBze~* +2Czsin (6 — 3) = 0-
or, transposed,
(ty—2A)r +2Be~*(@x —r)+sinfe — 2Crsin ¢
+2Cxcosd] —cosffe +2Crcosd + 2Czsind] = 0;
thus

i, —24 =0,
er —r =0,
e—2Crsind +2Crcosd =0,
and e +2Czsind + 2Crcosd = 0,

and herefrom, letting% = tan o, we have

e= —2Czsin (¢ — 9),
e = —2Czcos (¢ — 9),
1
A=§o;
r
a = -,
x
tanr=I—r, r 4)
Tr+r.
e
== T—_—_——"—)
v2 (@ +7r)
tan (¢ — ) =1,
e
and =—
V22 J
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These values substituted in (3) give

r

os (0 _.8))

. T ~Te e
i=24B* —— ¢
2 V2 (Z + P)
tana=x__r.
z+r

Atf = 0,,7 = 0, and we have

1 —Ls e
0=24+B: = ———_cos (8, — 9);
2 € ,_—2(3:’-}-1'2) (l ))
hence,
B_io'=—e c;)s 0 -9 —2.2'
) 2@ + 1) O =9 =3

substituting in (5), we have the equations of current in the
coils as follows:

€ - i(‘-'l) .
_ 72—(5__+_—r25(cos (0—38)— cos (6, —3) ¢ )o,,

Yo_(__ € _ay YY) -Ze-a
: ( 9 0, =) z)e

[
Ry —— 0-00
+\/2(a:’ + ) 08 )

245

©®)

(6)

two

r(7)
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At 0 = 0,, 1 = 1 ; thus

Y _

s (6

( e co i) L0
2 V2 (@2 + 1)

—6)—§°e

1

e
+ —————cos (§, — 9) = 0;
Vi i o )

or, multiplied by ¢ =" and rearranged, we have the condition
connecting moments 6, and 4,, as follows:

”“_o(-;' 5 e -Te -
2" e )+ 2(x2+r2)35 cos (8,— 3)
—e_;"cos(ﬂ,—a);=0
and
(g%, 5% _ e e _
2(‘ +°’) \/2(x’+1’)§£ cos 6, =9
— &* cos (6, 9) g ®)

Rearranged equation (8) gives

rOa 2e
0 = g% [1+ - —— 0 —‘]
/@, i 2(x2+rz)cos(, d)
101 2e
=¢% | ———— cos (A, — O -1], 9
¢ [i°\/Z(z’+r’)cos(' ) _()
where tan6‘=x_r-
z+r

By approximation, from this equation the value of 8,, corre-
sponding to a given 6,, is derived.
16. Example:

e = 2000, ¢, = 10, and Z = 10 — 407;.

Thus d = 31° = 0.54 radians -
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and 1 =5 + [34.3 cos (0, — 31°) — 5] ¢~ 0*E-%
— 34.3 cos (6 — 31°),
f(6,) = %1 + 6.86 cos (9, — 31°)]
= 596,86 cos (0, — 31°) — 1].

Substituting for 6,, 30° = :—;, 45° = g,and 60° = -, respec-

[SUI ]

tively, gives:

—om (0~ T)-
o,-%,i=5+ 29.3 ¢ °2( °)—34.3cos(0—3l°)
—os(0-12

Z,i=05+28.3¢ ( ‘)—34.3cos(0— 31°)

! —o0s5(0 ~3

E,.'=5+25.l e ( ')—34.3008(0—3l°)

3

and

o= "'; 0 =1
[ 4 % 12 1 12 [y 2 e e
25 | e 1810 850
30| 0 10 |
35 ... o 1640 | 1150
40(—0.9(10.9......[...... ] ... o]t
45 |......|...... 0 10 |...... 1410 | 1410
50 |—0.6(10.6...... U
55 8 9.2 |. 1150 | 1640
60 |(+0.6 9.41]...... .0 10 |......{......
65|...... 2.5 7.5 1. 850 | 1810
70 3.0 7.0]...... 2.2 7.8]...... ...
%y 5.1 4.9 ......|...... 520 | 1930
80 6.0 4.0 ...... ...| 5.4 4.6 )......0......
8 |......]..... 8.6 1.4 ......0...... 170 | 1990
90 9.9 0.1(...... el 9.3 0.71}......
951 .....|......| 12.8|—-2.8]......|. —170 | 1990
100 | 14.3 [—4.3|...... oo, 13.8 (=38 .. ... ...
10 (......|......] 17.3 |-7.3|...... —520 | 1930
110 | 19.1 {—9.1 vee...| 186 |—8.6|......]. ...
115 [......[......]1 22.2 —l2.2l ...... —850 | 1810

These values are plotted in Fig. 59, together with e, and e,.
It follows then,

6, = 90.2° 88.6° 91.7°
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The actual curves of an arc machine differ, however, very
greatly from those of Fig. 59. In the arc machine, inherent regu-
lation for constant current is produced by opposing a very high
-armature reaction to the field excitation, so that the resultant
m.m.f., or m.m.f. which produces the effective magnetic flux, is

‘0 20

Fig. 69. Quarter-phase rectification.

small compared with the total field m.m.f. and the armature
reaction, and so greatly varies with a small variation of armature
current. As result, a very great distortion of the field occurs,
and the magnetic flux is concentrated at the pole corner. This
gives an e.m.f. wave which has a very sharp and high peak, with
very long flat zero, and so cannot be approximated by an equiva-
lent sine wave, but the actual e.m.f. curves have to be used in a
more exact investigation.



CHAPTER 1V.

ARC RECTIFICATION.

I. THE ARrc.

16. The operation of the arc rectifier is based on the charac-
teristic of the electric arc to be a good conductor in one direction
but a non-conductor in the opposite direction, and so to permit
only unidirectional currents.

In an electric are the current is carried across the gap between
the terminals by a bridge of conducting vapor consisting of the
material of the negative or the cathode, which is produced and
constantly replenished by the cathode blast, a high velocity
blast issuing from the cathode or negative terminal towards the
anode or positive terminal.

An electrit arc, therefore, cannot spontaneously establish
itself. Before current can exist as an arc across the gap between
two terminals, the arc flame or vapor bridge must exist, i.e.,
energy must have been expended in establishing this vapor
bridge. This can be done by bringing the terminals into contact
and so'starting the current, and then by gradually withdrawing
the terminals derive the energy of the arc flaine by means of the
current, from the electric circuit, as is done in practically all arc
lamps. Or by increasing the voltage across the gap between the
terminals so high that the electrostatic stress in the gap repre-
sents sufficient energy to establish a path forthe current, i.e., by
Jumping an electrostatic spark across.the gap, this spark is fol-
lowed by the arc flame. An arc can also be established between
two terminals by supplying the arc flame from another are, etc.

The arc therefore must be continuous at the cathode, but may
be shifted from anode to anode. Any interruption of the cathode
blast puts out the arc by interrupting the supply of conducting
vapor, and a reversal of the arc stream means stopping the
cathode blast and producing a reverse cathode blast, which, in
general, requires a voltage higher than the electrostatic striking

249
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voltage (at arc temperature) between the electrodes. With an
alternating impressed e.m.f. the arc if established goes out at
the end of the half wave, or if a cathode blast is maintained
continuously by a second arc (excited by direct current or
overlapping sufficiently with the first arc), only alternate half
waves can pass, those for which that terminal is negative from
which the continuous blast issues. The arc, with an alternating
impressed voltage, therefore rectifies, and the voltage range of
rectification is the range between the arc voltage and the electro-
static spark voltage through the arc vapor, or the air or residual
gas which may be mixed with it. Hence it is highest with the
mercury arc, due to its low temperature.

The mercury arc is therefore almost exclusively used for arc
rectification. It is enclosed in an evacuated glass vessel, so as
to avoid escape of mercury vapor and entrance of air into the
arc stream. Due to the low temperature of the boiling point of
mercury, enclosure in glass is feasible with the mercury arc.

II. MERCURY ARC RECTIFIER.

17. Depending upon the character of the alternating supply,
whether a source of constant alternating potential or constant
alternating current, the direct-current circuit receives from the
rectifier either constant potential or constant current. Depend-
ing on the character of the system, thus constant-potential
rectifiers and constant-current rectifiers can be distinguished.
They differ somewhat from each other in their construction and
that of the auxiliary apparatus, since the constant-potential
rectifier operates at constant voltage but varying current, while
the constant-current rectifier operates at varying voltage. The
general character of the phenomenon of arc rectification is, how-
ever, the same in.either case, so that only the constant-current
rectifier will be considered more explicitly in the following
paragraphs.

The constant-current mercury arc rectifier system, as used
for the operation of constant direct-current are circuits from an
alternating constant potential supply of any frequency,is sketched
diagrammatically in Fig. 60. It consists of a constant-current
transformer with a tap C brought out from the middle of the
secondary coil AB. The rectifier tube has two graphite anodes



ARC RECTIFICATION 251

a, b, and a mercury cathode ¢, and usually two auxiliary mercury
anodes near the cathode ¢ (not shown in diagram, Fig. 60),
which are used for excitation, mainly in starting, by establishing
between the cathode ¢ and the two auxiliary mercury anodes,
from a small low voltage constant-potential transformer, a pair
of low current rectifying arcs. In the constant-potential rectifier,
generally one auxiliary anode only is used, connected through
a resistor r with one of the main anodes, and the constant-

Fig. 60. Constant-current Fig. 61. Constant-potential
mercury arc rectifier. mercury arc rectifier.

current transformer is replaced by a constant-potential trans-
former or compensator (auto-transformer) having considerable
inductance between the two half coils II and III, as shown in
Fig. 61. Two reactive coils are inserted between the outside
terminals of the transformer and rectifier tube respectively, for
the purpose of producing an overlap between the two rectifying
arcs, ca and cb, and thereby the required continuity of the arc
stream at c. Orinstead of separate reactances, the two half coils
IT and IIT may be given sufficient reactance, as in Fig. 61. A
reactive coil is inserted into the rectified or arc circuit, which
connects between transformer neutral C and rectifier neutral c,
for the purpose of reducing the fluctuation of the rectified current
to the desired amount.

In the constant-potential rectifier, instead of the transformer
ACB and the reactive coils Aa and Ba, generally a compensator
cr auto-transformer is used, as shown in Fig. 61, in which the
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two halves of the coil, AC and BC, are made of considerable
self-inductance against each other, as by their location on
different magnet cores, and the reactive coil at ¢ frequently
omitted. The modification of the equations resulting herefrom is
obvious. Such auto-transformer also may raise or lower the
impressed voltage, as shown in Fig. 61,

The rectified or direct voltage of the’ constant—current rectifier
is somewhat less than one-half of the alternating voltage supplied
by the transformer secondary AB, the rectified or direct current
somewhat more than double the effective alternating current
supplied by the transformer.

In the constant-potential rectifier, in which the currents are
larger, and so a far smaller angle of overlap 6 is permissible, the
direct-current voltage therefore is very nearly the mean value
of half the alternating voltage, minus the arc voltage, which is
about 13 volts. That is, if e = effective value of alternating
voltage between rectifier terminals ab of compensator (Fig. 61),

2 . .
e = mean value, the direct current voltage is

o=i§e—13.
T

hence

III. MopE oF OPERATION.

18. Let, in Figs. 62 and 63, the impressed voltage between
the secondary terminals AB of an alternating-current trans-
former be shown by curve I. Let C be the middle or center of
the transformer secondary AB. The voltages from C to 4 and
from C to B then are given by curves II and III.

If now 4, B, C are connected with the corresponding rectifier
terminals a,b,cand at ¢ a cathode blast maintained, those currents
will exist for which ¢ is negative or cathode, i.e., the current
through the rectifier from a to ¢ and from b to ¢, under the
impressed e.m.fs. IT and III, are given by curves IV and V, and
the current derived from c is the sum of IV and V, as shown in
curve VL

Such a rectifier as shown diagrammatically in Fig. 62 requires
some outside means for maintaining the cathode blast at ¢, since
the current in the half wave 1 in curve VI goes down to zero at
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the zero value of e.m.f. III before the current of the next half

wave 2 starts by the e.m.f. II.

It is therefore necessary to maintain the current of the half

wave 1 beyond the zero value of its propel-
ling impressed e.m.f. III until the current of
the next half wave 2 has started, i.e., to
overlap the currents of the successive half
waves. This is done by inserting reactances
into the leads from the transformer to the
rectifier, i.e., between A and a, B and b respec-
tively, as shown in Fig. 60. The effect of
this reactance is that the current of half wave
1, V, continues beyond the zero of its im-
pressed e.m.f. III i.e., until the e.m.f. III has
died out and reversed, and the current of the
half wave 2, IV, started by e.m.f. II; that is,
the two half waves of the current overlap,
and each half wave lasts for more than half
a period or 180 degrees.

The current waves then are shown in curve

n

e e Y e K X

Fig. 62. Constaut-
current mercury
arc rectifier.

VII. The current half wave 1 starts at the zero value of its
e.m.f. III, but rises more slowly than it would without react-

4ix

X

Fig. 63. E.m.f. and current waves of constant-current mercury arc rectifier.

ance, following essentially the exponential curve of a starting
current wave, and the energy which is thus consumed by the
reactance as counter e.m.f. is returned by maintaining the
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current half wave 1 beyond the e.m.f. wave, i.e., beyond 180
degrees, by 0, time-degrees, so that it overlaps the next half
wave 2 by 0, time-degrees.

Hereby thé rectifier becomes self-exciting, i.e., each half wave
of current, by overlapping with the next, maintains the cathode
blast until the next half wave is started. .

The successive current half waves added give the rectified or
unidirectional current curve VIII.

During a certain period of time in each half wave from the zero
value of e.m.f. both arcs ca and cb exist. During the existence
of both arcs there can be no potential difference between the
rectifier terminals a and b, and the impressed e.m.f. between the
rectifier terminals a and b therefore has the form shown in curve
IX, Fig. 63, i.e., remains zero for 0, time-degrees, and then with
the breaking of the arc of the preceding half wave jumps up to
its normal value.

The generated e.m.f. of the transformer secondary, however,
must more or less completely follow the primary impressed e.m.f.
wave, that is, has a shape as shown in curve I, and the difference
between IX and I must be taken up by the reactance. That is,
during the time when both arcs exist in the rectifier, the a. c.
reactive coils consume the generated e.m.f. of the transformer
secondary, and the voltage across these reactive coils, therefore,
is as shown in curve X. That is, the reactive coil consumes
voltage at the start of the current of each half wave, at z in
curve X, and produces voltage near the end of the current, at y.
Between these times, the reactive coil has practically no effect and
its voltage is low, corresponding to the variation of the rectified
alternating current, as shown in curve XI. That is, during this
intermediary time the alternating reactive coils merely assist the
direct-current reactive coil.

Since the voltage at the alternating terminals of the rectifier,
a, b, has two periods of zero value during each cycle, the rectified
voltage between ¢ and C must also have the same zero periods,
and is indeed the same curve as IX, but reversed, as shown in
curve XII.

Such an e.m.f. wave cannot satisfactorily operate arcs, since
during the zero period of voltage XII the arcs go out. The
voltage on the direct-current line must never fall below the
“counter e.m.f.” of the arcs, and since the resistance of this
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circuit is low, frequently less than 10 per cent, it follows that the
total variation of direct-current line voltage must be below
10 per cent, i.e., the voltage practically constant, as shown by the
straight line in curve XII. Hence a high reactance is inserted
into the direct-current circuit, which consumes the excess voltage
during that part of curve XII where the rectified voltage is
above line voltage, and supplies the line voltage during the
period of zero rectified voltage. The voltage across this reactive
coil, therefore, is as shown by curve XIII.

IV. CoNSTANT-CURRENT RECTIFIER.

19. The angle of overlap 0, of the two arcs is determined by
the desired stability of the system. By the angle 6, and the
impressed e.m.f. is determined the sum total of e.m.fs. which
has to be consumed and returned by the a. c. reactive coil, and
herefrom the size of the a. c. reactive coil.

From the angle 0, also follows the wave shape of the rectified
voltage, and therefrom the sum total of e.m.f. which has to be
given by the d. c. reactive coil, and hereby the size of the d. c.
reactive coil required to maintain the d. c. current fluctuation
within certain given limits.

The efficiency, power factor, regulation, etc., of such a mercury
arc rectifier system are essentially those of the constant-current
transformer feeding the rectifier tube.

Let f = frequency of the alternating-current supply system,
1, = mean value of the rectified direct current, and a = the pulsa-
tion of the rectified current from the mean value, i.e., 7, (1 + a)
the maximum and ?, (1 — a) the minimum value of direct cur-
rent. A pulsation from a mean of 20 to 25 per cent is permissible
in an arc circuit. The total variation of the rectified current
then is 2 a7, i.e., the alternating component of the direct current

has the maximum value az,, hence the effective valuevaé_ i, (or

for a = 0.2, 0.141 2,) and the frequency 2 f. Hysteresis and eddy
losses in the direct-current reactive coil, therefore, correspond
to an alternating current of frequency 2f and effective value

2 1,, or about 0.141 7,, i.e., are small even at relatively high

V2

densities.
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In the alternating-current reactive coils the current varies,
unidirectionally, between 0 and 7, (1 + a), i. e., its alternating

a.
i, and the effec-

. 1
component has the maximum value -1-

4

. 1 . . .
tive value —-H-lz,, (or, for a = + 0.2, 0.425 7)) and the fre-

2v2

quency f. The hysteresis loss, therefore, corresponds to an

alternating current of frequency f and effective value Loy

l+a
2v2
or about 0.425 7.

With decreasmg load, at constant alternating-current supply,
the rectified direct current slightly increases, due to the increas-
ing overlap of the rectifying arcs, and to give constant direct
current the transformer must therefore be adjusted so as to
regulate for a slight decrease of alternating-current output with
decrease of load.

V. THEORY AND CALCULATION.

20. In the constant-current mercury-arc rectifier shown dia-
grammatically in Fig. 64, let e sin § = sine wave of e.m.f. im-
pressed between neutral and outside of
alternating-current supply to the rec-
tifier; that is, 2 e sin ¢ = total secondary
generated e.m.f. of the constant-current
transformer; Z, = r, — jz, = imped-
ance of the reactive coil in each anode
circuit of the rectifier (“alternating-
current reactive coil”’), inclusive of the
internal self-inductive impedance be-
tween the two halves of the transformer
secondary coil; 7, and 7, = anode cur-
rents, counted in the direction from

: anode to cathode; e, = counter e.m.f.

Fig.64. Constant-current Of rectifying are, which is constant; Z =
mercury arc rectifier. r, — jr, = impedance of reactive coil
in rectified circuit (‘“‘direct-current re-

active coil”’): Z, = r, — jr, = impedance of load or arc-lamp
circuit; e, = counter e.m.f. in rectified circuit, which is con-
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stant (equal to the sum of the counter e.m.fs. of the arcs in the
lamp circuit); 6, = angle of overlap of the two rectifying arcs,
or overlap of the currents ¢, and 7,; ¢, = rectified current during
the period, 0 < 6 <6,, where both rectifying arcs exist, and ¢,/ =
rectified current during the period, 6, < 8 < =, where only one
arc or one anode current ¢, exists.

Let e, = e,/ + e = total counter e.m.f. in the rectified cir-
cuitandZ =r —jr=(r, + 71, +71,) — j(r, + 2, + x,) = total
impedance per circuit; then we have

(@) During the period when both rectifying ares exist,

0<0<0,
io = il + iz' (1)

In the circuit between the e.m.f. 2 e sin 0, the rectifier tube,
and the currents ¢, and 7,, according to Kirchhoff’s law, it is,
Fig. 64,

di,

2esinl) —ryi, — %2

. di
1y 42,22 = 0. 2)

In the circuit from the transformer neutral over e.m.f. ¢ sin 0,
current ¢, rectifier arc e, and rectified circuit 7, back to the
transformer neutral, we have
d,

i dv
. . 1 . [ - .
esin 0—rlzl—x,70 —€a = Tely = To g~ Tilo ~ Ty gy ~ e’ =0;

or,

. . di . . di
esinl —rja, — x,%}—(ro +r) i, —(z, -l-r,)Fl”"— e, =0. (3)

(b) During the period when only one rectifying arc exists,

0, <0 <=
i: = io’;
hence, in this circuit,
, , i) . &,
esinf —r3,) — x, = — (ry + 1)1/ —(x,+ z,) d_;) —e, =0. (4)

d
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Substituting (1) in (2) and combining the result (5) of this
substitution with (3) gives the differential equations of the rec-
tifier:

. . . d . .
2¢asm0+r,(z‘,—2z,)+:¢t‘d()(t0 27) =0, 6]
. di
2eo+(2r—rl)zo+(2x—x,)7;—"9’=0, (6)
dl
and esinf — e, — i, —.t-d7=0 (N

In these equations, i, and %, apply for the time, 0 < 6 < 4,

1, for the time, 6, < <

21 These differential equatlons are integrated by the func-
tions

To— 27, = As™™ + 4’sin (0 — ), 8
i, = Be™" + B, 9
and i =Ce™®+C’" +C”sin (0 - p). (10)

Substituting (8), (9), and (10) into (5), (6), and (7) gives
three identities: ’
2esin 0 +A[r,sin (A—f) +x, cos (6—B)]+Ae™* (r,—az,) =0,
2e,+B/(2r—r,) +Be ¥ [(2r—r,) =b (2 2—1,)]=0,
and
esind —e,~C"[rsin (0 —r) +xcos(8 — 7)) = C'r = Ce=(r —cz) =0;

hence,
r, —ar, =0, ]
Rr—-r)-bR2x—-12)=0,
and r—cx=0.
2e¢, +B 2r —1) =0,
e, + C'r =0, > an

2e + A’ (r,cos 3 + r,sinf) =0,
A’ (r;sinf — r cospB) =0,
e —C"(rcosy + xsiny) = 0,

C” (rsiny —rcosy) =0.
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Writing .
2, =Vr'+ z?,

and z=VP + 2,

r
a=’—l7
1
b 2r — 1,
2z — 1,
r
C = —y
T
:B=au
r=a,
2e
A = — —,
zl
(3
B’ _ 280
2r — 1,
e
C'= -2
T
e
C”= +"y
2

and thus the ntegral equations of the rectifier are

. . 2e .
Ty — 21, = Ae™ — -Z-fsm 0 - a,),

1
2e,
2r —r,’

1, = Be ™% —

. € e .
1y =Ce™® — ;-°+;s1n @ - a),

259

(12)

(13)

(14)

(15)

(16)

an

(18)
(19)

(20)
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where a, b, c are given by equations (14), « and a, by equations
(12) and (13), and 4, B, C are integration constants given by the
terminal conditions of the problem.

22. These terminal conditions are:

ii1|0=0 = O’
lio|o=o = |io’|0-w (21)
.and [{o=80 = |Tolo=s0 = |7o lo=s0-

That is, at # = 0 the anode current 7, = 0. After half a
period, or = = 180° the rectified current repeats the same
value: At 6 = 6,, all three currents 7,, 7, 2, are identical.

The four equations (21) determine four constants, 4, B, C, 0,.

Substituting these constants in equations (18), (19), (20)
gives the equations of the rectified current 7, 7/, and of the
anode currents ¢, and 7, = 7, — 7,, determined by the constants
of the system, Z, Z, e,, and by the impressed e.m.f., e.

In the constant-current mercury-arc rectifier system of arc
lighting, e, the secondary generated voltage of the constant-
current transformer, varies with the load, by the regulation of
the transformer, and the rectified current, 7,, ¢,/, is required to
remain constant, or rather its average value.

Let then be given as condition of the problem the average
value 7 of the rectified current, 4 amperes in a magnetite or
mercury arc lamp circuit, 5 or 6.6 or 9.6 amperes in a carbon
arc lamp circuit.

Assume as fair approximation that the pulsating rectified
current ¢, ¢, has its mean value ¢ at the moment, § = 0. This
then gives the additional equation

Iiolﬁ-o =1, (22)
and from the five equations (21) and (22) the five constants

A, B, C, 6, e are determined. )
Substituting (22), (18), (19), (20) in equations (21) gives

. 2e
A =1—- —sina,,
21
2e,

B =1
z+2r—rl’

(23)

. e, e
C=¢"31 + —°—-smaz
r oz
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2e 2e
— Ae™% — " in (a,— 0,) = Be—b% — e o
2z, 2r -1,

= Ce~h — CT—" - : sin (a — 0,). @)

Substituting (23) in (24) gives

f) ,
"z—egs'“"’ sin a, — sin (a, — 00)§ =1 35““"’ + ¢ 0% %
1
2e,
J—— 1 — ¢ 25
2r —r, ¢ g (25)

and

¢ gs“""” sin @ + sin (@ — 0°)§ =1 3:""“’“’—-:"""§

260 ‘ — b8y 2 o ‘ ¢ (m—8g) 2 .
2r—-r,’,l ) S+r25 IS’ (26)
and eliminating e from these two equations gives

€% gina + sin (a — 6,)

e~ " sin @, — sin (a, — 6,)

gf"""—e'““% L gl—e“"’*'; +ﬁgs°(""’—1§
r

2z i@2r-r) _
R Sl S Rl
. (27)

Equation (27) determines angle 8,, and by successive substitu-
tion in (26), (23), 3, A4, B, C are found.

Equation (27) is transcendental, and therefore has to be solved
by approximation, which however is very rapid.
T

As first approximation, a =b=¢=0; a = a, = 90° or 5
and substituting these values in (27) gives

o _ e_o)
€* + cos f, 2_2(e 1)(1+ir

1 —cosf, 2z 2




262 TRANSIENT PHENOMEN A

z—(e"" - l) (l + ﬁ)— "
2, . )
Z—(e"— 1)(1 + e:‘?)+1
z, i

This value of 6, substituted in the exponential terms of equa-
tion (27) gives a simple trigonometric equation in ¢,, from which
follows the second approximation 6,, and, by interpolation, the
final value,

and

08 0, =

(28)

(6, - 0,

6, = 6, +

(29)
. .
23. For instance, let ¢, = 950, ¢ = 3.8, the constants of the
circuit being Z, = 10 — 1855 and Z = 50 — 1000 j.
Herefrom follows
a = 0.054, b = 0.050, and ¢ = 0.050, (14)
a, = 86.9°and a = 87.1°. (15)
From equatidn (28) follows as first approximation, 8, = 47.8°;
as second approximation, 6, = 44.2°.

Hence, by (29),
0 = 44.4°.

Substituting a in (26) gives e = 2100,
hence, the effective value of transformer secondary voltage,
2e
— = 2980 volts
V2
and, from (23),
A = -1894, B = 24.90, C = 24.20.
Therefore, the equations of the currents are
i, = 24.90 e°%°¢ — 21.10, :
i) = 24.20 "™ _ 19.00 + 2.11sin (0 — 87.1°),
1, = 12.45 7% 4 9.47 ¢**®* —10.58 + 11.35 sin (9 — 86.9°),
and

1, =1, — 1,
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The effective or equivalent altérnating secondary current of
the transformer, which corresponds to the primary load current,
that is, primary current minus exciting current, is

v =1, — 1,

From these equations are calculated the numerical values of
rectified current %,, ¢,/, of anode current ?,, and of alternating
current ¢/, and plotted as curves in Fig. 65.
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Fig. 65. Current waves of constant-current mercury arc rectifier.

24. As illustrations of the above phenomena are shown in
Fig. 66 the performance curves of a small constant-current rec-
tifier, and in Figs. 67 to 76 oscillograms of this rectifier.

Interesting to note is the high frequency oscillation at the ter-
mination of the jump of the potential difference cC' (Fig. 60)
which represents the transient term resulting from the electro-
static capacity of the transformer. At the end of the period of
overlap of thetwo rectifyingarcs one of theanodecurrentsreaches
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Fig. 66. Results from tests made on a constant-current mercury arc rectifier.
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Fig. 67. Supply e.m.f. to constant-current rectifier.

JANNPADAWPAN
VERVERARAR

Fig. 68. Secondary terminal e.m.f. of transformer.

Fig. 69. E.m.f. across a.c. reactive coils.

Fig. 70. Alternating e.m.f. impressed upon rectifier tube.
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Fig. 71. Unidirectional e.m.f. produced between rectifier neutral and
transformer neutral.

AANAANNAT
VAYAYAVAVAVAVAVA

Fig. 72. E.m.f. across d.c. reactive coils.

Fig. 73. Rectified e.m.f. supplied to arc circuit.

/\ﬂ/l/\,
NN N

Fig. 74. Primary supply current.

Q_Q_/\/\

Fig. 76. Current in rectifying arcs,

Fig. 76. Rectified current in arc circuit.
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zero and stops, and so its L % abruptly changes; that is, a sud-

den change of voltage takes place in the circuit aACDc or
bBCDc. Since this circuit contains distributed capacity, that
of the transformer coil ACBC respectively, the line, ete., and
inductance, an oscillation results of a frequency depending upon
the capacity and inductance, usually a few thousand cycles per
second, and of a voltage depending upon the impressed e.m.f.;

that is, the L% of the circuit. An increase of inductance L

E:" hence does
not greatly affect the amplitude, but decreases the frequency of

. d:
increases the angle of overlap and so decreases the

this oscillation. An increase of % at constant L, as resulting

from a decrease of the angle of overlap by delayed starting of
the are, caused by a defective rectifier, however increases the
amplitude of this oscillation, and if the electrostatic capacity is
high, and therefore the damping out of the oscillation slow, the

Fig. 77. E.m.f. between rectifier anodes.

oscillation may reach considerable values, as shown in oscillo-
gram, Fig. 77, of the potential difference ab. In such cases, if
the second half wave of the oscillation reaches below the zero
value of the e.m.f. wave ab, the rectifying arc is blown out and
a disruptive discharge may result.
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VI. EQuivALENT SINE WAVES.

26. The curves of voltage and current, in the mercury-arc
rectifier system, as calculated in the preceding from the con-
stants of the circuit, consist of successive sections of exponential
or of exponential and trigonometric character.

In general, such wave structures, built up of successive sections
of different character, are less suited for further calculation.
For most purposes, they can be replaced by their equivalent
sine waves, that is, sine waves of equal effective value and equal
power.

The actyal current and e.m.f. waves of the arc rectifier thus
may be replaced by their equivalent sine waves, for general
calculation, except when investigating the phenomena resulting
from the discontinuity in the change of current, as the high
frequency oscillation at the end and to a lesser extent at the
beginning of the period of overlap of the rectifying arcs, and
similar phenomena.

In a constant-current mercury arc rectifier system, of which
the exact equations or rather groups of equations of currents
and of e.m.fs. were given in the preceding, let 7, = the mean
value of direct current; e, = the mean value of direct or rectified
voltage; 7 = the effective value of equivalent sine wave of
secondary current of transformer feeding the rectifier; e = the
effective value of equivalent sine wave of total e.m.f. generated

in the transformer secondary coils, hence,g = the effective

equivalent sine wave of generated e.m.f. per secondary trans-
former coil, and 6, = the angle of overlap of rectifying arcs.
The secondary generated e.m.f., e, is then represented by a
sine wave curve I,.Fig. 78, with ¢ v/2 as maximum value.
Neglecting the impedance voltage of the secondary circuit
during the time when only one arc exists and the current changes
are very gradual, the terminal voltage between the rectifier
anodes, e, is given by curve II, Fig. 78, with ¢ V2 as maximum
value. This curve is identical with e, except during the angle
of overlap 6, when e, is zero. Due to the impedance of the
reactive coils in the anqde leads, curve II differs slightly from I,
but the difference is so small that it can be neglected in deriving
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the equivalent sine wave, and this impedance considered after-
wards as inserted into the equivalent sine-wave circuit.
The rectified voltage, e,, is then given by curve III, Fig. 78,

with a maximum value of ¢V = = nd zero value durin
a 2 Va2 6

the angle of overlap 6,, or rather a value = e,, the e.m.f. con-
sumed by the rectifying arc (13 to 18 volts).
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Fig. 8. [E.m.f. and current curves in a mercury arc rectifier system.

The direct voltage e,, when neglecting the effective resistance
of the reactive coils, is then the mean value of the rectified
voltage, e,, of curve III, hence is

e 1 (7.
€, T@;./‘:Slnode
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_e (1 + cos 00)
V2r

V2

r —e — © .
o ¢ = %g + cos 0,

If e, = the mercury arc voltage, r, = the effective resistance of
reactive coils and 7, = the direct current, more correctly it is

V2

e = ‘(eo + e, + ro?:o) im .
o

The effective alternating voltage between the rectifier anodes
is the v'mean square of e,, curve II, hence is

el=e\/§\/1f'sin’0d0
_e\/-\/_[__sm2
—e\/—\/”_o sm20

_e\/1 26, sm2()

and the drop of voltage in the reactive coils in the anode leads,
caused by the overlap of the arcs, thus is

e—e,=e% \/1_20 <1n20§

26. Let «* = the maximum variation of direct current from
mean value i, hence, ¢, = ¢, + " = the maximum value of
rectified current, and therefore also the maximum value of
anode current.

The anode current thus has a maximum value 7,, and each
half wave has a duration = + 6, as shown by curve IV, Fig. 78.

The direct current, z,, is then given by the superposition or
addition of the two anode currents shown in curves V, and is
given in curve VL.
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The effective value of the equivalent alternating secondary
current of the transformer is derived by the subtraction of the
two anode currents, or their superposition in reverse direction,
as shown by curves VII, and is given by curve VIIIL.

Each impulse of anode current covers an angle = + 6,, or
somewhat more than one half wave.

Denoting, however, each anode wave by =, that is, considering
each anode impulse as one half wave (which corresponds to a

lower frequency ”_:7), then, referred to the anode impulse
as half wave, the angl; of overlap is

T
0= 50

The direct current, ,, is the mean value of the anode current
curves V, VI, and, assuming the latter as equivalent sine waves
of maximum value 7, = ¢, + ¥, the direct current, 7, is

l‘fmmw
7‘ haad 01 0
21,

T —0,

By =1,

and 1, = 1,

1,

or, . 1, =2(z—w)

and the pulsation of the direct current, " = 7, — 1,, is

,ii____,ig 7:’__13.
2@ + 6,

The effective value of the secondary current, as equivalent
sine wave in one transformer coil, is the v/ mean square of curves
VII, VIII, or, assuming this current as existing in both trans-
former secondary coils in series — actually it alternates, one half
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wave in one, the other in the other transformer coil — is half this
value, or

i z,‘/ 1

g sm’ﬁ'dﬁ' +ﬁsm 6" +sin (¢’ - 6,) ]’d0'§

322 gf sin? & d6’ + 2sina'sin(a'__a,)do'§
[}
5’ gg [0’c0301—sin(20’—01):[§
1:—0 % +01c0s01—sin01§;
or, substituting
.. m—0,
1‘2=1’0 2 !

i=%\/(n— ,); + 6, cos 6, sinﬁlg

=32L\/(1 — ﬁ)(l +a cos 0, — gsm 01),

2 2v2 n 7

or, substituting

_ b,
't g +00’ 4
P z_\/ _ 0 207 Ox 2 o O
2 2V2 n+60, (z+60)* =+6, =n+6, =+,

where 2—55 =ratio of effective value to mean value of sine wave.

27. An approximate representation by equivalent sine waves,
if e, = the mean value of direct terminal voltage, v, = the mean

value of direct current, is therefore as follows: .
The secondary generated e.m.f. of the transformer is
™2

e=(e,, + €, +Toio)m;
(]
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the secondary current of the transformer is
) 0, 20 (/)
_ i, ”_\/1— h_, 20a O 2 o e
2 2v2 n+6, (46, =w+6, =+6, =+,
the pulsation of the direct current is

V=i g—-’? —1'2-
A2 (z +6,) ’

the anode voltage of the rectifier is

B \/ 26, — sin 26,
e, =ey 1 o ,

and herefrom follows the apparent efficiency of rectification, %"

the power factor, the efficiency, etc.

22
31
20 4
19
18
4
17 L4
L6 V4
15 (]
27
14 Ll
>
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12 -
L1~ =
L0 —— L
09 B
—
0.8 2 ——
01 [O¥Or Ractor
0.6 i ™~
N
o’s .
NG
04 : ,
o N KX
To~{lo
0.2 —
01 T~

0,= 10° 20° 20° ° 60° &° N° &°
Fig. 79. E.m.f. and current ratio and secondary power factor of constant-
current mercury arc rectifier.

From the equivalent sine waves, e and 7, of the transformer
secondary, and their phase angle, the primary impressed e.mf-
and the primary current of the transformer, and thereby the
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power factor, the efficiency, and the apparent efficiency of the
system, are calculated in the usual manner.

In the secondary circuit, the power factor is below unity
essentially due to wave shape distortion, less due to lag of cur-
rent.

As example are shown, in Fig. 79, with the angle of overlap b,

. . . 2
as abscissas, the ratio of voltages, 58;; the ratio of currents, ;3;
(] 0

Y4
the current pulsation, %’ and the power factor of the secondary
(]

circuit.
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TRANSIENT PHENOMENA IN SPACE.

CHAPTER 1.

INTRODUCTION.

1. The preceding sections deal with transient phenomena in
time, that is, phenomena occurring during the time when a
change or transition takes place between one condition of a cir-
cuit and another. The time, ¢, then is the independent variable,
electric quantities as current, e.m.f., etc., the dependent variables.

Similar transient phenomena also occur in space, that is, with
space, distance, length, etc., as independent variable. Such
transient phenomena then connect the conditions of the electric
quantities at one point in space with the electric quantities at
another point in space, as, for instance, current and potential
difference at the generator end of a transmission line with those
at the receiving end of the line, or current density at the surface
of a solid conductor carrying alternating current, as the rail
return of a single-phase railway, with the current density at the
center or in general inside of the conductor, or the distribution
of alternating magnetism inside of a solid iron, as a lamina of an
alternating-current transformer, etc. In such transient phenom-
ena in space, the electric quantities, which appear as functions
of space or distance, are not the instantaneous values, as in the
preceding chapters, but are alternating currents, e.m.fs., etc.,
characterized by intensity and phase, that is, they are periodic
functions of time, and the analytical method of dealing with
such phenomena therefore introduces two independent variables,
time ¢ and distance /, that is, the electric quantities are periodic
functions of time and transient functions of space.

The introduction of the complex quantities, as representing the
alternating wave by a constant algebraic number, eliminates
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the time ¢ as variable, so that, in the denotation by complex
quantities, the transient phenomena in space are functions of
one independent variable only, distance I, and thus lead to the
same equations as the previously discussed phenomena, with
the difference, however, that here, in dealing with space phenom-
ena, the dependent variables, current, e.m.f., etc., are complex
quantities, while in the previous discussion they appeared as
instantaneous values, that is, real quantities.

Otherwise the method of treatment and the general form of
the equations are the same as with transient functions of time.

2. Some of the cases in which transient phenomena in space
are of importance in electrical engineering are:

(a) Circuits containing distributed capacity and self-induc-
tance, as long-distance energy transmission lines, long-distance
telephone circuits, multiple spark-gaps, as used in some forms
of high potential lightning arresters (multi-gap arrester), etc.

(b) The distribution of alternating current in solid conductors
and the increase of effective resistance and decrease of effective
inductance resulting therefrom.

(c) The distribution of alternating magnetic flux in solid iron,
or the screening effect of eddy currents produced in the iron, and
the apparent decrease of permeability and increase of power
consumption resulting therefrom.

(d) The distribution of the electric field of a conductor
through space, resulting from the finite velocity of propagation
of the electric field, and the variation of self-inductance and
mutual inductance and of capacity of a conductor without
return, as function of the frequency, in its effect on wireless
telegraphy.

(e) Conductors conveying very high frequency currents, as
lightning discharges.
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LONG-DISTANCE TRANSMISSION LINE.

8. If an electric impulse is sent into a conductor, as a trans-
mission line, this impulse travels along the line at the velocity
of light (approximately), or 188,000 miles per second. If the
line is open at the other end, the impulse there is reflected and
returns at the same velocity. If now at the moment when the

impulse arrives at the starting point a second impulse, of.

opposite direction, is sent into‘the line, the return of the first
impulse adds itself, and so increases the second impulse; the
return of this increased second impulse adds itself to the third
impulse, and so on; that is, if alternating impulses succeed each

other at intervals equal to the time required by an impulse to

travel over the line and back, the effects of successive impulses
add themselves, and large currents and high e.m.fs. may be
produced by siall impulses, that is, low impressed alternating
e.m.fs., or inversely, when once started, even with zero impressed
e.m.f., such alternating currents traverse the lines for some time,
gradually decreasing in intensity by the energy consumption in
the conductor, and so fading out.

The condition of this phenomenon of electrical resonance
thus is that alternating impulses occur at time intervals equal
to the time required for the impulse to travel the length of the
line and back; that is, the time of one half wave of impressed
e.m.f. is the time required by light to travel twice the length of
the line, or the time of one complete period is the time light
requires to travel four times the length of the line; in other
words, the number of periods, or frequency of the impressed
alternating e.m.fs., in resonance condition, is the velocity of
light divided by four times the length of the line; or, in free
oscillation or resonance condition, the length of the line is one
quarter wave length. . \
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If then ! = length of line, S = speed of light, the frequency of
oscillations or natural period of the line is

S .
fo = 4'_ly (l)
or, with / given in miles, hence S = 188,000 miles per second, it is
fo = 47’?00 cycles. 2

To get a resonance frequency as low as commercial frequencies,
as 25 or 60 cycles, would require / = 1880 miles for f, = 25
cycles, and ! = 783 miles for f, = 60 cycles.

It follows herefrom that many existing transmission lines are
such small fractions of a quarter-wave length of the impressed
frequency that the change of voltage and current along the line
can be assumed as linear, or at least as parabolic; that is, the line
capacity can be represented by a condenser in the middle of the
line, or by condensers in the middle and at the two ends of the
line, the former of four times the capacity of either of the two
latter (the first approximation giving linear, the second a para-
bolic distribution).

For further investigation of these approximations see “Theory
and Calculation of Alternating-Current Phenomena,” 4th edition,
pages 225 to 233.

If, however, the wave of impressed e.m.f. contains appreciable
higher harmonics, some of the latter may approach resonance
frequency and thus cause trouble. For instance, with a line of
150 miles length, the resonance frequency is f, = 313 cycles per
second, or between the 5th harmonic and the 7th harmonic, 300
and 420 cycles of a 60-cycle system; fairly close to the 5th har-
monic.

The study of such a circuit of distributed capacity thus
becomes of #mportance with reference to the investigation of
the effects of higher harmonics of the generator wave.

In long-distance telephony the important frequencies of
speech probably range from 100 to 2000 cycles. For these fre-
quencies the wave length varies from % = 1880 miles down to
4 miles, and a telephone line of 1000 miles length would thus
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contain from about one-half to 11 complete waves of the im-
pressed frequency. For long-distance telephony the phenomena
occurring in the line thus can be investigated only by consider-
ing the complete equation of distributed capacity and inductance
as so-called ‘“wave transmission” and the phenomena thus
essentially differ from those in a short energy transmission line.

4. Therefore in very long circuits, as in lines conveying alter-
nating currents of high value at high potential over extremely
long distances, by overhead conductors or underground cables,
or with very feeble currents at extremely high frequency, such
as telephone currents, the consideration of the line resistance,
which consumes e.m.fs. in phase with the current, and of the
Line reactance, which consumes e.m.fs. in quadrature with the
current, is not sufficient for the explanation of the phenomena
taking place in the line, but several other factors have to-be taken
into account.

In long lines, especially at high potentials, the electrostatic
capacity of the line is sufficient to consume noticeable currents.
The charging current of the line condenser is proportional to the
difference of potential and is one-fourth period ahead of the
e.m.f. Hence, it either increases or decreases the main current,
according to the relative phase of the main current and the e.m.f.

As a consequence the current changes in intensity, as well as
in phase, in the line from point to point; and the e.m.fs. con-
sumed by the resistance and inductance, therefore, also change
in phase and intensity from point to point, being dependent
upon the current.

Since no insulator has an infinite resistance, and since at high
potentials not only leakage but even direct escape of electricity
into the air takes place by “brush discharge,” we have to rec-
ognize the existence of a current approximately proportional
and in phase with the e.m.f. of the line. This current represents
consumption of power, and is therefore analogous to the e.m.f.
consumed by resistance, while the condenser curfent and the
e.m.f. of inductance are wattless or reactive.

Furthermore, the alternating current passing over the line pro-
duces in all neighboring conductors secondary currents, which
react upon the primary current and thereby introduce e.m.fs.
of mutual inductance into the primary circuit. Mutual induc-
tance is neither in phase nor in quadrature with the current,
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and can therefore be resolved into a power component of mutual
inductance in phase with the current, which acts as an increase
of resistance, and into a reactive component in quadrature with
the current, which decreases the self-inductance.

This mutual inductance is not always negligible, as, for
instance, its disturbing influence in telephone circuits shows.

The alternating potential of the line induces, by electrostatic

influence, electric charges in neighboring conductors outside of
the circuit, which retain corresponding opposite charges on the
line wires. This electrostatic influence requires the expenditure
of a current proportional to the e.m.f. and consisting of a
power component in phase with the e.m.f. and a reactive com-
ponent in quadrature thereto.
. The alternating electromagnetic field of force set up by the
line current produces in some materials a loss of power by mag-
netic hysterests, or an expenditure of e.m.f. in phase with the cur-
rent, which acts as an increase of resistance. This electro-
magnetic hysteresis loss may take place in the conductor proper
if iron wires are used, and may then be very serious at high fre-
quencies such as those of telephone currents.

The effect of eddy currents has already been referred to under
“ mutual inductance,”” of which it is a power component.

The alternating electrostatic field of force expends power in
dielectrics by what is called diele<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>