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ABSTRACT

This thesis discusses spherical near-field measurements impldrbgraecircular
waveguide probe which has much shorter length and wider operatigg tlaan those
proposed similar circular probes. A brief introduction of spherioalar-field
measurement techniques is provided first. We also introduce th&mweslia conclusion
that utilizing first-order probes simplifies the measurementsassociated near-field to
far-field transformation. Accordingly, a relatively short alar waveguide probe antenna
is designed and fabricated. Detailed fields of this probe atgzadato demonstrate that
it is still a first-order probe even though the length is shertthermore, it radiates only
first-order fields over a wide frequency range, indicating iapplicable as a near-field
measurement probe in this range. This wide operating ranigecause of the use of
symmetry to control unwanted modes. We also exploit the concept that a firspaier
can be realized with two first-order modes:;T&Bnd TM;. Probe calibration results also
evidence these findings. This circular waveguide probe is théredtilo examine a base
station antenna in its near-field range. The transformed fdr{iatterns validate the

practicability of our probe.
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CHAPTER ONE
INTRODUCTION TO SPHERICAL NEAR-FIELD MEASUREMENT

Background of Near-Field Measurement

Antenna testing and characterization has been studied intensAweignna
measurements can be performed in outdoor range and indoor rangeldtively easier
to accommodate the far-field (Rayleigh) distanc€®f/4 in an outdoor range. HerB, is
the largest dimension of the test antenna arid the wavelength. An indoor range
generally employing an anechoic chamber is attractive imynraspects, such as
suppression of environmental reflection, immunity to adverse weattteresistance to
outside interference. However, in a chamber, the separation betiwee@nobe and the
antenna under test (AUT) may be smaller than the Rayleggandie. Accordingly, near-
field measurement, along with appropriate mathematical operafiwasgiding a
possibility for deriving the radiation properties of the far-figéfkdm the measured
information of the near-field, emerged as the solution to this problem.

In accordance with the scanning surfaces of the test antenmasfiaid
measurements are classified into planar scanning, cylinds@aining and spherical
scanning. Among these groups, spherical scanning is the most popular oseapicet
in this work. Spherical near-field testing is developed relatitlebroughly by Hansen
[1]. In addition, Jensen, Engen also made considerable contribution frelthiBesides
[1], Wittmann and Stubenrauch developed the method in parallel wittsedaand

authored a report [2].



The notations in this work and the theoretical derivations in tltgosefollow

those in Hansen’s book [1], and the same time depenéétide assumed.

Measurement Geometry

The near-field measurement geometry is the same as tnatfaf-field
measurement except that the measurement dist#nge, Fig. 1.1, is less than the
Rayleigh distance. As shown in Fig. 1.1, the coordinate systethedWT is &,y,2 and
for probe is X,y’,z'). A spherical coordinate system is superimposed over the AUT
coordinate system and is denoted,f). The origin of the probe coordinate system is
located in this system a#\¢,p). Angle y, frequently used in spherical near-field
measurements and often called probe orientation angle, is éeksaglihe angle resulting

from probe’s rotation around is axis.

AUT

probe
minimum
sphere

Fig. 1.1. Probe and AUT minimum spheres and coordinate systems. The origin of the
primed (probe) coordinates lies at a raddsa the unprimed (AUT) coordinates and
moves around the AUT through variation 6.



Transmission Formula

In a spherical near-field measurement, the AUT is assumedliaiedhe signal
and the probe to receive it. When a measurement is in procegstabe measures the
signal over a sphere enclosing the AUT, see Fig. 1.1.

Since we deal with conditions in spherical coordinates, we casphsgical wave
functlonstmn(r 0, (p) [1, p. 13] to build fields. Here, the indexs related to one of the

spherical Bessel function, Neumann function, and Hankel function dfr¢héind and
second kind. The indexcorresponds to the two types of spherical wave functions for a
source-free region; the indices and n are the order and degree of the associated
Legendre function, respectively.

The relationship between the received signal at the probe antdhecteristics

of AUT and probe is expressed by thensmission formul@l, p. 67] appearing as

2
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wherew is the signal received by the prolveis the excitation signal on the AUTymn

andR? are the AUT transmitting coefficients and the probe receiviagfficients,

/7%

respectively; andd; (¢) and csd (kA) are the rotation coefficients and translation

ouv
coefficients, respectively. Note that indieegt andv have the same meaningsasn and
n, respectively. The only difference is the former are usechtoptobe, while the latter
are used for the AUT. The infinite series in (1.1) will be truncated in prhasea

We can apply this formula in four different ways:



First, if Tsmn is known for AUT andR® is known for probew(Ay,0,0) is

ouv
computable for al(8,¢). Furthermore, characteristics of the AUT such as pattern and

directivity are also obtainable.

Second, ifR?, is known for a given probe, then we can use the probe to sample

w, radiated by AUT, on a discref@ ) grid over a sphere encircling the AUT.
Third, after the measurement in the second application is conducted, the

transmission formula can be solved for the seTgf, for a given AUT based on the

knownRP

v+ This procedure is central to spherical near-field measurenehtisa
addressed in the next section.

Fourth, the signalv’'(A’,x,0,0) [1, p. 125] received by any other probe and/or

measurement radius’ can be computed with them, of the AUT andR?,, of the old

probe orR? ' of the new probe. Then, from the obtained the AUT pattern for this

new radius can be determined.

Probe calibration allows one to obtaiR’i

® . before these applications are
implemented.
The usual near-field measurements aimed at determining rtfielapattern of

the AUT are accomplished by the combination of the second, thirtbarttd ways, with

the A’ of the fourth in the far-field range of AUT.



Solving the Transmission Formula

In view of the two complex trigonometric factors in (1.1), the tmaission
formula is solved or inversed by means of the inverse discreteeFduansform
algorithm (IDFT) [1, p. 107]. In addition, the orthogonality of the rotatoefficients is
also exploited to enable another IDFT process. At least twambet@A,r,0,¢0) should be

obtained at two differentto make the transmission formula solvable.

The third way in the last section, using probe’s coefficiBfifs is termed

measurement with probe correctioRerforming probe correction is the general case
when we do near-field measurements. However, in some speci wéen probes’
dimensions are small, we emplaypeasurement without probe correction this

situation, the probe radiation pattern is similar, at least irsd¢iid angle in which the

AUT can be illuminated by the probe, to that of an ideal dipole. Thereforé{;];hm the

transmission formula is substituted by the well-known receivogfficients of an ideal
dipole. Uncorrected measurements were mainly used historicalbn wbople did not
know much about probe correction.

When probe size is significant compared with wavelength, probeatiom is
necessary. All probe correction techniques are defined accoulitite probes’ order
which is thep index in the transmission formula. The order of a probe is determined from
the dominanft mode power spectruof its radiation far-fields, which are obtained from
probe calibration. The detailed procedure of generating this spergiven in Section

2.5. Theoreticallyfirst-order probes which have significant power only in their first-



order (u=%1) [1, p. 107], lead to simple probe correction procedures and asdociate
measurements. Furthermore, in practice, many kinds of antenndse cansidered as
first-order probes when used in proper bandwidths, such as rectangalaguide
antennas, circular waveguide antennas and conical horn antennas. Tharefst®rder

probe is our first choice in spherical near-field measurements.



CHAPTER TWO

CIRCULAR WAVEGUIDE PROBE

Configuration

As discussed in Chapter 1, a first-order probe is attradieeause both
measurement and probe correction procedures associated witheitagikely simple. An
open-ended circular waveguidecarrying dominant T mode, is the customary
embodiment of a first-order probe. This is because wheni$Ehe only mode present at
the waveguide aperture, its radiated field will have power antye first-order, which
will be manifestedn Section 2.3.3The circular waveguide excitation structure in [3] was
shown to have good performance. Like other proposed circular waveguideguide
in [3] is also very long, and thus cumbersome. However, we will shakws chapter that
one can maintain single-mode performance with a shorter waveguieleerady
speaking, any means of excitation of a waveguide produces higherimaies.
Traditionally, one sets the dimension of the guide fix a cuteffiency that suppresses
unwanted modes at the radiating aperture. In this work, we show#rathough several
modes can propagate in the guide, the use of symmetry at theop@rtitation can
suppress the modes and lead to orthomode radiation.

We fabricated thecircular waveguide probeshown in Fig. 2.1. We have
calibrated it and employed it as a probe to examine other astémriheir near-field
regions.

This probe is designed to be operated at a frequency as low as Hz16T &

inner diameter of the circular tubing is 6 inches, leading to ardomi(TR;) mode



cutoff of 1.15 GHz. The probe was first planned to cover the rangelfro®hGHz to 1.9
GHz. Further investigations show that it can operate well dsdsgaround 2.4 GHz, as

discussed irsection2.4.2.

Fig. 2.1. Photo of the probe.

The 12-inch length of the probe is divided into two segments by acttgnlar 6-
inch diameter dielectric sheet, seen in the drawing inZ®y.The sheet, which contains
etched excitation probes for the circular waveguide, is visibkeg. 2.3. The dimensions
of the metal patches are given in Fig. 2.4. The segment beaxe#ation probes and the
circular aperture is below cutoff for most, but not all modes dtizar the Tk, mode and
serves to attenuate such modes. The modes that can propagatppmessed with
symmetry in the probe configuration as will be shown in Section 2182, the Tk,
mode field is much stronger than other modes in the aperture. Aiéepart shorted by
the slider plays a role sésonant cavityo performimpedance matchings discussed in
Section 2.2.2. Moving the slider changes the length of the resonaty ead the

resonant frequency.



Brass tubing  Connector

=
Metal Patches—| Spira-Shields I\EB
Shider-__
_ ' Resonant
Dielectric sheet cavity
Spira-Shields

El ]
™~ Connector

Fig. 2.2. Longitudinal view of probe structure and components.

The dielectric sheet is the ceramic substrate of a circulewit board. The metal
on one side is entirely removed, and on the other side are four mietaégpahaped as
shown in Fig. 2.4. The center conductor of an SMA connector is soldetkd tapered
end of each metal patch, connecting each patch to external devices, ¢jkel @snerator

or a receiver.

Fig. 2.3. Photo of the dielectric sheet with metal patches.



Operating Principles

Excitation
The four feed ports of the waveguide are fed through twé bhgbrid couplers
from the four ports. As shown in Fig. 2.4, diametrically opposite porend C are
connected to the differential mode outputs of a°1&@upler so as to produce vertical
polarization, and ports B and D are connected to that of anotherecoppbducing

horizontal polarization. This creates a dual linear polarization antenna.

Switch

——

Hybrid Hybrid

135°

\

180°C

Fig. 2.4. Feeding scheme and metal patch dimension.

The currents flowing on the metal patches stimulate the futitispa of circular
waveguide modes, propagating to both the right and left in Fig. 2.&uBef the
opposite phases and equal magnitudes of the currents on the two daliyetpposite
patches, the T distribution, shown in Fig. 2.5, and perhaps a few other modes, will be
stimulated most strongly. Some higher-order modes are also at@tubut are below the

waveguide cutoff and are attenuated heavily before they reacpdhera at the left end

10



of Fig. 2.2. Thus, the aperture is an antenna with a field distributiopreong, at most,

a few low-order modes.

Mode | Cutoff Frequency (GHz) | Control Mechanism
TE1 1.154 None

TMos 1.507 Symmetry
TEx 1.914 Symmetry
TEo; 2.401 Symmetry
TM1; 2.401 None

TE3; 2.632 Cutoff

TM21 3.218 Cutoff

TE4 3.332 Cutoff

Table 2.1. Control mechanisms for circular waveguide modes. Thermbtle is not
harmful because it is first-order ¢ as will be discussed below.

Table 2.1 shows some modes of a 6-inch diameter circular wavegufdeorder

of their cutoff frequencies.

Fig. 2.5. Electric field distribution of Tz mode.

11



It is evident that if this waveguide is operated at a frequasdyigh as about 2.4
GHz, three unwanted modes §M TE;; and Tk; must be controlled through the
symmetry of the feed rather than by cutoff. The presence ofMhg in the radiating
aperture does not compromise the operation of the probe with onlgriestfields. The
following discussion explains how the proper symmetry of excitafivoids radiation
from unwanted modes.

As seen in Fig. 2.4, two hybrids are configured to excite two péjpsitches 90°
apart around the waveguide. By switching the excitation to the twadsy one can
select between two linear polarizations without rotating the sade, and two sets of
measurement of orthogonal polarizations can be accomplished withonalyset of
rotations of the AUT. In our experiments, one hybrid is fed bynpatisignal while the
other is removed, with the two vacant connectors terminated 1§y I6@ds. Thus, only
one field polarization is observed. The two diametrically oppagsétches directly

connected to the feeding hybrid are terrttezfeeding patches

Impedance Matching
The basic function of impedance matching is to minimize the meaetaf the
total antenna impedance, and accordingly maximize the power radiated frapethae.
As depicted in Fig. 2.6, the total antenna impedahteexpressed as
Z, =2, iX.=R+ j( X,— X)), (2.1)
whereZ, is the impedance, containing resistaRg@nd reactanck,, looking toward the

aperture andX; is the reactance of the cavity. In practice, we will tunesticker to make

12



the reactive part in (2.1) vanish. On the most ordinary occasidre wnly one
waveguide mode exists, in view of the reflection coefficient efaiis -1, the length d in
Fig. 2.6 should be/y/4 to occasion resonance. Hefgis the guided wavelength for the
resonant frequency. In practice, when several modes are oftemtprtbe functioning of

impedance matching is much more complicated.

D 2r D+3m/2

< d=hg/4

180°

Fig. 2.6. Functions of impedance matching.

Fields
Expansion Coefficients
This section deals with deducing the fields in the waveguiei@ed by the input
currents. We use the method discussed in Collin [4] to deal wishpiftblem. The
method is based on a conclusion that due to the orthogonality of eachudevenode,
the fields stimulated by a current source in a waveguiddeaxpressed as an infinite

series of all the normal modes ([[Eand TMny)

13



0

E (%Y. =3 doE( X & +EES( xy E]. 2.2)

where E(x,y,2) is the total electric field in waveguideE (%, y)is the total modal

electric field for themrd" normalized transverse electric (TE) mode for positive- and

negative-going waves and, (x,y) is the total modal electric field for theri"

mn

normalized transverse magnetic (TM) mode for positive- and negguing waves
These field elements each have corresponding expansion coeffigienéd a>.. The

reciprocity principle may be used to solve the expansion coefficients.

For purposes in the present work, the expressions of the expansionieastfic

a: anda’’ , for positive- and negative-going modes are written as

2ar, =—[[ 3¢ ¥)- Ep(x ) S (2.3a)
for TE modes, and
2803, =[] 3 (% ) Ef(x y) (2.3b)

for TM modes.
Here, J(x,y) (A/m) is the surface current density on an opposing pair of metal
patches. We employ the field’s properties tabulated in [ dftey are normalized to

compute expansion coefficients. The currents are completely traabvdrstributed, and

the plane where the metal patches reside is assigned to beltpdane. From [5h. =

a’> can be readily deduced.

! We have expanded the notation of [4] in an obviashion so as to denote explicitly TE and TM modes
as well as the wave numbérdy unprimed and primed notations respectively.

14



Exact current density(x,y) on patches can be computed numerically with integral
equation techniques. It is adequate for present purposes to develop irapfgox
expressions fad(x,y). First, the current density is taken to having sinusoidal distomuti
alongy axis in Fig. 2.7, and vanishes at the ends of the patgheg). Second, in view
of the patch shape, the current directions are assumed to follasrdieed lines in Fig.
2.7. Last, the current density magnitude would have no variation xi@oms and be
inversely proportional to the metal width when flow through the quasigular region.
Therefore, the current densily andJ, on the upper and lower patches, respectively, in

Fig. 2.7 are specified to be

S Csfn[ko( y— B)](A_)A( sine+ycos) , n<y<p .42

Csin[k,(y-15)]¥. fa <Y<}
and

—Csi Y, -n -5

S an[ko(ny b)] yA | A < y<-—r | 2.40)

—Csin[ k,(y+ ) |(Xsing+¥ coB) , -r,<y<-—g

where,
a:arcta{iJ ,p = arct nij (2.4c)
a-y a+y

In (2.4), C is a constant specified by the amplitude of the input sigpal the wave
number in free space angl r; andr, are indicated in Fig. 2.7.
In practice, (2.2) is truncated to limit the number of term$édxpansion. We

will first investigate the relationships between the sourcesnts and the properties of

15



the modes in waveguide, and then take advantage of the evanesceriigsropaigher-

order modes to choose the number of terms retained in (2.2).

— T ——

Ji

a

)2

"--.-_..______—__-‘__‘—-!

Fig. 2.7. Approximate current directions on patches.

Fields in the Waveguide
Even though an infinite set of waveguide modes are present to makerithe
expressions (2.2) complete, symmetry dictates that just pdrewf can be generated by
the source currents in Fig. 2.7 and are meaningful in calculationisTénvgdent from the
dot products in the integrands in (2.3). Based on the notation of [4], shénflex of a
mode is associated with the circumferential variation ofetds. This is characterized by

thep dependence fact@in(pp) or cos(tp) in a mode’s field expressions. Here, the index

16



M is the same as the index in (2.2). But when we describe something relate@ to
dependence, we choogeto make it consistent with the similar concepts in probe
radiation fields. In Figs. 2.8 and 2.9, we can assume ¢th@tis defined by a line
horizontal and pointing to the right. Thus, hassin(uy) dependence in all three parts of
Fig. 2.8. In the (a) and (b) parts of Fig. ZE9exhibitscos(up) variation. The TE12 mode

in Fig. 2.9 (c) has n&, component at all. We observe that modes with odd first indexes
[ are more strongly coupled with the patch currents shown in Fig\We7erm these
modesodd modesn waveguide. The modes with=1 are termed thérst-order modes
modes withu=3 are termed ththird-order modesand so on. Besides T the electric
field configurations of some other odd modes whose electric fiedsd'lidirections are

coincident with the patch currents’ directions in Fig. 2.7 are listed in Fig. 2.8.

(a) TMy1. (b) BE (c) 1E

Fig. 2.8. Electric field configurations of some modes having good coupling wittntstr

The even modeswhose first indexes are even, are excited very weakly dy th
source currents because their electric field lines’ dwastiare nearly orthogonal to the

direction of the current or else antisymmetry exists betwkerdirections on the two

17



patches. Thus, expansion coefficients of these modes are quiteasihaNe will not
consider these modes in practical computation. Electric field gumafiions of some of

the even modes are shown in Fig. 2.9.

(@) TMoz. (b) TE (c) BE

Fig. 2.9. Electric field configurations of some modes having poor coupling with urrent

So far, we have reduced the infinite set of modes in (2.2) to only adidsn
which is still an infinite set. We proceed to consider furtther fields made up of odd
modes in waveguide. In the expansion (2.2) ztlependence of the summands is carried
in the €™ ande™ ™. All but a few low-order modes are evanescent, and the distance
from the probes to the radiating aperture of the antenna causestgoing decay in these
modes.

Actually, all odd modes can be produced by the source currents. Tory w
together to provide detail in the extremely complicated fidslized around the
patches. But most of them are evanescent for a specific opefimgency and will
attenuate exponentially along the waveguide. The further theirf duéofuencies are

from the operating frequency the faster they will fade awlderefore, most of the

18



evanescent modes are negligible at the aperture regardiéssr afxpansion coefficients,
and they are computationally meaningless compared with propagatidgs. Besides
the propagating modes, the first few evanescent modes whosef@dgagncies are near
the operating frequency may not attenuate rapidly enough and need to be considered.

We can identify in (2.2) what we term tlmeode coefficientas the products
a: @"™=anda: €" ™" with z, the distance from the plane of the patches to the aperture.

The magnitudes of the mode coefficients of some moddsaferl.9, 3 and 4.1,
when transmitting from the patches to the aperture, are recbaiadz=0 (patches) to
z=2a (aperture) in step af=2a/3 and tabulated in Table 2.2. All of the coefficients are
normalized by the coefficients for TE For the 6-inch diameter probe = 1.9, 3, 3.83
and 4.1 corresponds to 1.19 GHz, 1.88 GHz, 2.4 GHz and 2.57 GHz.

Table 2.2 explicitly illustrates that almost all of the evaeas modes except EE
are excited with significant coefficients at the patchesthmyt become insignificant due
to evanescent propagation. Consequently, we must limit operation of thenarite
frequencies where the TEmode is far enough below cutoff to be insignificant. As
pointed out in Section 2.1, evanescent propagation from the plane of the patthes
aperture increases the purity of T Held.

All of the forgoing may be scaled to new waveguide diameteasdirect fashion
so long as the patch size scales with the waveguide diameter.

In conclusion, although the field expression in (2.2) contains infinite sp@den

modes do not emerge due to their weak coupling to the source currents. Most of the

19



ka Modes TE1#1 | TMo1 | TExn | TM11 | TER TEs TEx TM3;

(f(GH2) | p | 184| 24 | 3.05| 3.83 | 3.83| 42 | 533| 6.38

z=0 1 0 0 |0681| O 0.451| 0.01| 0.506

1.9 z=2a/3| 1 0 0O |[0.074] O 0.037 | <0.001 0.009

(1.19) |z=4a/3| 1 0 0 | 0.008f O 0.003 | <0.001 <0.001

z=2a 1 0 0 0.001| O <0.001| <0.001| <0.001

z=0 1 0 0 (0793 O 1.126| 0.009| 0.624

3 z=2a/3| 1 0 0 |0.162 O 0.159 | <0.001 0.015

(1.88) |z=4a/3| 1 0 0O (0033 O 0.022 | <0.001 <0.001

z=2a 1 0 0 | 0.007f O 0.003 | <0.001%1 <0.001

z=0 1 0 0 | 0156 O 1.717| 0.011] 0.482

3.83 z=2a/3| 1 0 0O |[0146| O 0.543| 0.001| 0.016

(2.4) z=4a/3| 1 0 0O (0135 O 0.172 | <0.001 0.001

z=2a 1 0 0 |0125( O 0.054 | <0.001 <0.001

z=0 1 0 0O |0531| O 244 | 0.021| 0.432

4.1 z=2a/3| 1 0 0O |0531 O 1.325| 0.002| 0.017

(257) |z=4a/3| 1 0 0O |0531 O 0.719| <0.001 0.001

z=2a 1 0 0O |0531 O 0.39 | <0.001 <0.001

Table 2.2. Mode coefficient magnitudes of some modes at several plakesi®, 3,
3.83 and 4.1p are the roots of Bessel functidn(p)=0 for TM modes and derivatives of
Bessel functiody/(p)=0 for TE modes. p can also be viewedamff ka since modes
can only propagate when ka is larger tham.its
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generated odd modes are evanescent and will die out rapidly asattee travels.
Consequently, all of the odd propagating modes and the first one a@dtivevanescent
modes whose cutoff frequencies are close to the operating freqasncufficient in

computation. This serves as the truncation standard.

Radiated Fields

Several techniques based on the Weiner-Hopf method have been propdsald to
with radiation from an open-ended circular waveguide. The most aedeeclopment is
likely that of Weinstein [6]. It takes into consideration the cusemt the outside wall of
the circular waveguide and the diffraction at its open end. Anotbel [7] based on [6]
gives results showing good agreement between measured data aneticdleor
calculations based on Weinstein’s solution. We will use the regulen in [6] to
generate the analytical far-fields of the probe.

From the obtained electric far-fields, we can deduce the powatigedtin each
mode and construct ifsmode power spectrum, which indicates the probe’s order.

It is also possible to determine the order of the probe without involliangntire
complicated calculation of the far-fields using [6]. The trigoneimetunction ¢
dependence factors in the field expressions in [6, 7] are taken advantage of fy g@pli
work. Similar to the function of the factasin(up) or cos(ip) in a mode’s field
expressions in a circular waveguide, such factors in the radeatéidld expressions also

designate the order of the far-field. Therefore, sincefahdéield expressions of source
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aperture field including only T mode have the fact@in(p) or cosg) [6, 7], the far-

field is certainly first-order and so is the probe.

Probe Operating Range

Basic Operating Range
The upper limit of the operating range of a circular wavegprdbe is typically
chosen to fall below the cutoff frequency of the second propagating M) (fcru,, -
This frequency is 1.51 GHz for the 6-inch probe, making the openatimge of the probe
about 0.35 GHz. Circular waveguide’s major disadvantage is a napevating range

when operating range is based on this criterion.

Extended Operating Range

Any probe that manifests the first-order property discussed aboseited for
near-field measurements. Consequently, the requirement that onlypd &dmitted into
propagation is not necessary. Higher-order modes can be excludegropagation
using the cutoff phenomenon in the traditional way; but they can alsacheled by
designing the excitation of the waveguide so as not to launch unwaatkgs in the first
place as discussed in Section 2.3.2, thereby extending the operating range of our probe.

In Section 2.1, an initial estimate of the probe operating rangel@sasibed to be
1.16 GHz~1.9 GHz, with 1.9 GHz being just belfwg, , when the probe was designed.
This is based on the reasoningsiction2.3.2, which indicates that even though theygfM

mode begins to propagate at 1.507 GHz, it is weakly excited hyélves and does not
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appear at the aperture at a significant level. This sugdestshie probe could be used

without concern of unwanted modes until the,,TEhode begins to propagate at 1.914

GHz.
TEu TE TEu TEsx
1.84l 3.0.1 3.83l 4.21
| l l | | >
0 1 2 2.4T 3 3.ssT = ka
T Mo TMu
(a) Cutoffka.
TEu TEa TEu TEs
: %.15l 1.91l : 2.4l 2.631
—>
0 1 1.5 1T 2 2.41 UL
Tl\"[ul Tl\'[n

(b) Cutoff frequency.

Fig. 2.10. Cutoff values dfa and cutoff frequencies of some modes in the 6-inch probe.

We can continue to take advantage of the orthogonality between the probe
currents and succeeding modes, displayed in Fig. 2.10, to extend thengdezguency
upward to further broaden the operating range. As discussedtiorS2@.2, Tk; and
TEp1 are not stimulated by the patch currents by a fraction, améfdhe are not
detrimental to the purity of Tk fields. As shown in Table 2.2, Tiy has some
coefficients whose values are significant compared with thoskeoTlk; mode when
frequency is high and thus affects the;Tfeld distribution in the waveguide and at the
aperture. However, the TiMis a first-order mode and does not affect the order of the

field at the aperture and a probe radiating both, BBd TMi; modes is still a first-order
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probe. Moreover, the power carried by the ;Tivhode contributes to the power of the
first-order mode, and helps to increase the total first-order pdvieally, the upper
boundary of the practicable bandwidth may approach or go befyand, 2.401 GHz for
6-inches probe. The next mode TS undesired for a first-order probe. We need to find
how close tof,rg, the probe can work. It is evident that the upper frequency of the
operating range depends on a specific accuracy requirement, iwhiolw much third-
order mode power can be accepted. The third-order mode’s power idecedselative

to the first-order modes’ power comprising (TBnd TM;. The power ratios of third-
order to first-order for different frequencies is expressed as

Third-order power
First-order power

TE,, power e o (@5)
10log,, 2 P =10log, - -~
TE,, power TM, powe an el 4| af el

This expression is based on the normalization of (2.2) and orthogonalitygathe
modes. The three mode coefficients are chosen to be positive-goirgg.ni@d) is also
applicable to negative-going modes. Power ratio from 2 GHz to 2.6 GHz igdglofeg.
2.11. Different required precisions in applications can find their usgiger frequencies

in Fig. 2.11. Besides the 6-inch lengtifrom the feeding patches to the aperture, we also
investigated the situations fay of 8-inch and 10-inch for applications demanding higher
accuracies and wider operating ranges.

Once close to or beyonfirg,,, TEs; will not be sufficiently attenuated, and the

probe will no longer be a first-order probe. For our work, we hé&esen to allow, at
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most, -25 dB relative third-order power. Accordingly the usable apgrednge for us is

from 1.16 GHz to 2.4 GHz.
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Fig. 2.11. Power ratio of the third-order to the first-order for different frecjee and
different values og,.

Calibration of the Probe

The measurement or calibration of the circular waveguide probe is performed in
an anechoic chamber as shown in Fig. 2.12.

Before the probe is measured, the resonant cavity should be adjusted to make the
impedance matched. The mixture of several modes, as discussed in Section 2.2.2,
complicates the analysis of resonance mechanism because of théydofeheir guided
wavelengths, mode coefficients, and phase velocities. Thus, we avoid theoretical

derivation of the resonance cavity lengths and simply tune the cavity manually.
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Fig. 2.12. Anechoic chamber.

The 6-inch circular waveguide probe was calibrated by anotherstaidentical
circular waveguide antenna with a 9.1-inch diameter, shown in Fig. 2.13. As concluded in
Section 2.3.2, the properties of the 6-inch antenna are applicable forithiech antenna
so long as its length and the properties of the metal patatesscaled properly.
Obviously, another hybrid coupler should be introduced to control the excitatibis of
new waveguide antenna. It can function beyond 760 MHz, and thus coveratitiee
operating bandwidth of the 6-inch probe. Similar to the 6-inch one9.théench probe

also has a resonant cavity, which should be tuned to work as well.
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Fig. 2.13. 9.1-inch diameter circular waveguide.

When the 6-inch probe is being measured, it is antenna under tes}, (Ahile
the 9.1-inch antenna plays the role of a probe. In the followingopénts section, if not
specified probedenotes the 9.1-inch antenna, wildT means the 6-inch antenna.

Measurements are performed with a vertically polarized ptolsample & and

horizontally polarized probe to capturg & the AUT.

Fig. 2.14. 6-inch AUT on positioner.
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During measurements, the probe is immobilized while the AUT is redum a
positioned as shown in Fig. 2.14 to rotate to genératedy variations. The probe’s axis
is always coincident with the boresight and its aperture is pgiati the AUT. Since the
AUT'’s aperture is the main radiating part, we make the rotatkis of & coplanar with
the aperture, shown in the measurement set-up in Fig. 2.15. ¥¥0erthe axis of the
AUT is on the boresight. After we finish the measurement with pmiarization of the

probe, it is rotated 90° to do measurements of the other polarization.

y=7t/2
9" Probe

el
ROV

=0

Fig. 2.15. Measurement set-up for 6-in probe calibration.

The separation between the apertures of the probe and the AUT6s. It is
easy to calculate that this distance is far beyond the Rbaylfistance for the AUT

working at even 2.6 GHz. Thus, the measurements are conducted infietlfeange of
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the AUT. The steps af andg are both made to be 2.5°, which was proved to be accurate

enough for this far-field measurement.
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Fig. 2.17. 6-inch probe far-field principle power patterns at 1.88 GHz.

We make the probe transmit power and the AUT receive it, whicpposite to
the case in Chapter 1. However, based on reciprocity, they are equivalent.
Measurements were performed at 1.19 GHz, 1.88 GHz, 2.4 GHz and 2.57 GHz,
identical to those in Table 2.2. After the measured data are peaege obtain the far-

field power patterns of the AUT shown in Fig. 2.16 to Fig. 2.19.
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Fig. 2.18. 6-inch probe far-field principle power patterns at 2.4 GHz.
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Fig. 2.19. 6-inch probe far-field principle power patterns at 2.57 GHz.

We can also calculate tipemode power spectrum of the radiation fields for each
frequency to determine the probe’s order. This process is described below.

We start from the calibration data of the 6-inch probe, i.em@asured electric
fields, which havey component ang component. We expre&s andE, in the form of

the spherical wave expansion [1, p. 63] as

(r,0.4)=kJn> Q. F2 (r,0,0)-0 (2.6)

ouv
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and

(r.0,0)=kn>.Q,.F¥ (r,0,0)-6, (2.7)

ouv
where, 7 is the intrinsic impedance andis the propagation constant. The coefficients

Q. are to be solved by the orthogonality [1, p. 330] of the sphericad ftanctions

F% (r,6,p) . The final solution 0f,, is

_ (—1)# 27 7 (
Qo;uv - 2| _ _ EE’ Fcr —uv r 0 0
kyn | R (k)] Ll 00 ) . (@8)

+E,(F,.(1.0.0)-6) [siodo dp

The functionRY (kr) in (2.8) is defined in [1, p. 314]. This expressinay be evaluated

from measured field data using numerical integratithe power contained by all modes
with the same| in the radiation fields is expressed by [1, p.]236

max

=X T 3k

012# —p o V=p

, u>0. (2.9)

/zv

Then mode power spectrums, normalized by the power efitet-order modes,
are given in Fig. 2.20.

One sees from Fig. 2.20, the 6-inch probe is &dirder probe in the range from
1.19 GHz to 2.4 GHz, since the third-order mode growg negligible based on our
accuracy requirement. At 2.57 GHz, thesTBode radiates significant power relative to
the first-order modes and the 6-inch probe is mgdo a first-order probe. These results

verify the reasoning in Sections 2.3.2 and 2.4.2.
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Fig. 2.20. Normalize@t mode power spectrums of the 6-inch probe.
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CHAPTER THREE
MEASUREMENTS OF A BASE STATION ANTENNA

Brief Introduction to Antenna

A base station antenna used for wireless commuancathown in Fig. 3.1, will
be measured by our 6-inch circular waveguide orster probe. Its length is 1.86 m and

can operate from 1.8 GHz to 2.1 GHz.

Fig. 3.1. Photo of the base station antenna.

Measurement Geometry

We use a specialized positioner, shown in Fig. @ Zacilitate the mounting of
this long antenna. It is noteworthy that the masthis antenna and the drive mechanism
through the mast are altogether dielectric. It iwious that the coordinate system is
different from the one used when calibrating theuwtar waveguide probe in Chapter 2.
Change in the coordinate system does not affecttlaeyry in Chapter 1, because the
long antenna is also measured on a sphere fullpgEng it. Note that it is tilted by an
angle 4° when being mounted on the aluminum pipé&igm 3.2. This emulates the

conditions when it is hung on a tower with declioat
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Measurements are performed at 1.8 GHz and 1.9 GQHus, the antenna is
measured in its near-field region. Since we araguaifirst-order probe, only two sets of
measurement are needed, with the probe verticafly &orizontally polarized
respectively. The angular increasetfnd ¢ are both set to 3°, which is adequately

accurate for the antenna size and frequency.

Fig. 3.2. Base station antenna mounted on theiposit
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Far-Field Patterns from Near-Field Data

The measured near-field patterns are given in3Fg&jand Fig. 3.4.
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Fig. 3.3. Base station antenna near-field pringioeer patterns at 1.8 GHz.
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Fig. 3.4. Base station antenna near-field prinqyueer patterns at 1.9 GHz.

We can then implement a near-field to far-fielchgfarmation to generate the far-
field pattern of the base station antenna. It ideavt that the calibration data of the 6-inch
probe at 1.8 GHz and 1.9 GHz should be alreadylablai now. During the

transformation process, the properties of the G-jprobe is utilized to accomplish probe
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correction. This is operated by the software TICRAbed in Ml 3000. The
corresponding transformed far-field patterns andliphed measured far-field patterns of

the same type of antenna are plotted in Figs.d33%8.
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Fig. 3.6. Base station antenna far-field H-planegropatterns at 1.8 GHz.

From Figs. 3.3 to 3.8, we can see the agreemehigbe the measured far-field
patterns and the transformed far-field patterngace at the main lobe in E-plane. Some
deviations are observed at the first side lobess Ehprobably because the antenna we

measured is not the same specific unit from whieh published far-fields data were
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obtained. Thus we have the conclusion that antéanfield patterns are successfully
obtained by spherical near-field measurements astceated near-field to far-field
transformations. The performance of our 6-inch utac waveguide probe is also
validated. To be concrete, good far-field pattdtislled by only two sets of near-field

measurement demonstrate the first-order propertiyeo6-inch probe.
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Fig. 3.8. Base station antenna far-field H-planegropatterns at 1.9 GHz.
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CHAPTER FOUR

CONCLUSIONS

This thesis discusses new features of a circularegusde probe applied to
spherical near-field measurement. The first newufeais its short length, whose
feasibility is supported by its demonstrated sifglede property. Second, the feeding
scheme contributes to elimination of all the evewdes, which is a new mechanism to
control the modes besides the traditionally usadftunethod. This is essential to its
operating frequency range extension. Lastly, tis®mant cavity guarantees maximum
radiated power of the probe at any frequency.

It is also shown that the first-order probe operais not necessarily restricted to
only TE;; mode. So long as the significant modes are alfl-6rder modes like TE and
TMy4, it is a first-order probe. This concept is alsaplful in extending the probe’s
operating range. The first-order property of thebgr was evidenced by its calibration
measurements.

Finally, near-field measurements of a base staittienna were performed. The
transformed far-field patterns show acceptable eagemt with the measured far-field

ones. Therefore, the usability of our first-ordeske was validated.
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