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A NON-SINGULAR ETHEREAL COSMOLOGY

C.K. Thornhill

Abstract

An attempt is made to construct an ethereal cosmology based on two primary
premises; that, with an ether, the universe may be finite and have a finite
boundary with a true vacuum or void; and that the expansion in a vacuum of
any finite quiescent mass of gas will lead asymptotically to a unique spherically
symmetric accelerating outward flow. The ether is taken to be the only known
medium which both has Maxwellian statistics and satisfies Planck's energy
distribution, with sound-speed and electromagnetic wave speed identical.

It is first necessary to clarify what is meant by 'seeing’, 'distance' as distinct
from radius of curvature of observed incoming light-waves, curvilinear rays in
an unsteady non-uniform flow, and red-shift as distinct from the trivial case of
Doppler's principle in a uniform medium at rest.

The asymptotic flow so derived is hypersonic and hyperluminal away from the
centre, and the conclusion is reached that the mass of matter in the universe 1s
negligible compared with the mass of ether (i.e. 'dark matter') and that, with
such high ethereal velocities over such long periods of time, ether drag ensures
that all matter moves with the ethereal flow apart from relatively very small
perturbations.

In this asymptotic flow light waves are found to be almost spherical, thus
allowing observations to be made with axially symmetric instruments. Hubble's
law' 1s derived between recession velocity and distance, but not between red-
shift and radius of curvature of incoming light waves. The fact that every
observer's rest frame 1s an accelerating frame of reference provides for a
physical theory of gravitation which accords precisely with Newton's 'law’. The
small perturbations from the ethereal flow of every observer's universal velocity
account for the imprecision in measuring G. There seems not yet to be
sufficient information to determine the scale of the universe and our position in
it precisely but, with a physical meaning for G, only one relation is lacking, so
that a full determination can be made for any assumed position of our
observations.



With this model, the universe will inevitably go on expanding for ever and,
when n times as old as it is now, the speed of light in our location will be n™*
times its present value, the background cther temperature 7™ times, and Planck's
constant, /2, n” times its present value. There is nothing to suggest that the
present expansion phase was not preceded by a convergence, or that matter was
not present from the beginning.

“That gravity should be innate, inherent and essential to
matter, so that one body may act upon another, at a distance, in
a vacuum, without the mediation of anything else, by and
through which their action may be conveyed one to another, is
to me so great an absurdity that I believe no man, who has in
philosophical matters a competent facility for thinking, can
ever fall into it."

Isaac Newton



1. Introduction
1.1 The ether concept

It has been shown (Thornhill, 1985b, 1993) that the characteristic wave
hypersurfaces and the wave hyperconoid for Maxwell's equations are exactly
the same as those for the standard wave equation

Vig=(1/2" )¢/ ar (1.1.1)

in which ¢ is a constant wave speed. It is also well-known that Maxwell's
equations reduce precisely to the single equation (1.1.1) when there is no
current or charge distribution.

The equation (1.1.1) is also found to be (Thornhill, 1993) the equation which
governs the propagation of condensational oscillations or sound waves in any
general fluid which is in a uniform state at rest. As such, equation (1.1.1), its
characteristic wave hypersurfaces and its wave-hyperconoid are not invariant
under transformation but unique to one reference-frame. They transform, for
any other reference frame moving with a constant relative velocity, into a
progressive form which is invariant. This progressive form differs only by a
change from the operator &/¢l, wherever it occurs, to /Dt where

DiDt=06/ot+ud/ox (1.1.2)

is Euler's total time-derivative moving with the fluid and {-u,} (7 = 1, 2, 3) is the
constant velocity of the new reference-frame relative to the old one.

In the same way Maxwell's equations transform under Galilean transformation
into a progressive form which is invariant for all other reference-frames and
which has the same characteristic equations as the progressive form of the wave
equation. More generally, the equations governing the general unsteady flow of
a general flmd, and the general equations for the electric and magnetic field-
strengths (Thornhill, 1993) are invariant under Galilean transformation and
have identical characteristic wave surfaces.

There are no alternative forms of 'physical mathematics' which would permit
the same equation, its solution, and its characteristics equations to be treated
mathematically or transformed in different ways, according as the equation
happened to be regarded at any particular time as applying to different physical
phenomena or to be purely a mathematical concept. Thus the equation (1.1.1)



must be treated mathematically in the same way whether it is applied to sound
waves in a general fluid at rest or to electromagnetic waves, or is regarded
purely as a mathematical equation (cf. Thornhill, 1996).

It follows then that, if no error can be found in the comparatively simple
mathematics used to derive the characteristics of Maxwell's equations, it is
impossible to avoid the conclusion that Maxwell's equations are not general
equations invariant under transformation but are unique; and that non-
Newtonian relativity and the non-ether concept are therefore mathematically
untenable. In such case Maxwell's equations must then refer to electromagnetic
waves in a uniform ether at rest; the progressive form of Maxwell's equations
must refer to electromagnetic waves in a uniform ether moving at a constant
velocity relative to the reference frame; and the general equations for the
clectromagnetic field must refer to electromagnetic waves in an cther in general
unsteady motion (Thornhill, 1993).

A return to the cther concept revives many problems in Newtonian mechanics
such as, for instance, the elucidation of stellar aberration, or the refraction of
light in a moving medium, by means of fluid dynamics and the theory of
characteristics. The most far-reaching of such problems concerns cosmology.
It is the purpose here to make a first attempt to construct a non-singular ethereal
cosmology which is in accord with present observations and which predicts
properties of the universe which may be tested against future observations.

1.2 The ether

The first requirement of an cthereal cosmology is an ether. In the course of
history there have been many different ethers proposed (see, for example,
Whittaker, 1953). One of the last of these, prior to the advent of the non-ether
concept, suggested that the ether must behave like an elastic solid, since
Maxwell's equations show that electromagnetic waves are transverse.
Oscillations in the electromagnetic field-strengths, however, are not
condensational oscillations of an ether, and so the suggestion could not be a
valid one. Indeed, there are no observations which, taking into account the
exceeding low density that the ether around us must have, suggest that the ether
should behave other than as a gas (cf. Thombhill, 1985a).

Newtonian mechanics, classical kinetic theory and observation require that an
ethereal gas in thermodynamic equilibrium should have Maxwellian statistics
and also satisfy Planck's energy distribution for a black-body radiation field.
This not merely narrows down the choice for an ether but renders it, at present,
unique, since only one gaseous medium is known, at the present time, which
satisfies both these requirements. This is an ideal gas (loc. cit.) which has an
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infinite variety of ether particles whose masses nm (n = I to g are integral
multiples of the mass 2 of a unit ether particle. All these particles have six
degrees of freedom so that the constant first adiabatic index of this ether is

» = 4/3. The abundance of n particles is given by N, ecn”®. The relation derived
between the energy of the particles and the frequency of radiation is not that
given by Planck's quantum hypothesis or by Einstein's 'light-quantum'’
hypothesis but requires that the energy per unit mass, &, of all the particles,
whatever their masses, shall correlate with frequency v according to the relation

g=hvm (1.2.1)
where /4 1s what is known as Planck's 'constant’.

Thus radiation of frequency v is not associated, as Planck or Einstein
hypothesised, with 'quanta’ or photons' having a particular energy £ = Av, but
with all ether particles, whatever their masses, which have a particular energy
per unit mass £, and thus have energies £ = n/v appropriate to their masses nm.

The black-body state may be taken to correspond to thermodynamic equilibrium
and then the ether in our present local 2. 7°K microwave background black-body
radiation is found to have a density of about 0.2 x 107 (kg)/m’. The mass m of
a unit ether particle is determined as about 0.5 x 10 (kg). The product ch of
the local wave-speed and the local value of Planck's 'constant’ h is found to be a
function of the entropy of the cther.

1.3 Difficulties inherent in ethereal cosmology

In a simple cosmology based on a uniform ether at rest, or based on the non-
cther concept, the wave surfaces emanating from a point source are concentric
spheres and the rays are their orthogonal trajectories, the radii of these spheres.
In an ethereal cosmology, however, based on a non-uniform, unsteady
expanding ethereal flow, the situation is much more complicated. In this case
the wave surfaces from a point source are not spherical and the rays are neither
their orthogonal trajectories, nor arc they straight lines but curvilinear. It is
essential, in these circumstances, to re-examine precisely what is meant by such
simple terms as 'ray’, ‘observe’, 'distance’, etc.

Rays may be defined mathematically. Thus, in two space variables ¢x;, x;) and
time £, the characteristic wave surfaces through any point at any time in general
envelop a wave conoid; and its curvilinear generators, i.¢. the curves along
which the wave surfaces through the point touch the conoid, are called bi-
characteristic curves (see, for example, Thornhill, 1952). The projections of the



sections of this conoid, by planes ¢ = const, on to the (x;, x;) plane, are the wave
fronts from the point source, and the projections of the bi-characteristic curves
are the rays.

When axially symmetric telescopes or dishes of any kind are used to make
astronomical observations, they do not measure any actual distance at any time
between themselves and the source of the wave fronts which reach them. All
they can determine is the radius of spherical or near-spherical wave fronts
reaching them, and the direction of the normals to these wave fronts. In a
simple stationary or non-cther cosmology the observed radius R of the
spherical wave fronts is usually referred to as 'distance’ &, and the time d/c as
the time from emission at a point source to observation of the wave front,

¢ being the local wave speed of light at the point of observation, assumed to be
a universal constant.

In ethereal cosmology, in contrast, it is necessary to distinguish between at least
six different distances, only two of which could be derived directly from
observation of a point source by means of the non-spherical wave fronts
reaching an observer, viz.

(1), (i1) the two principal radii of curvature of the non-spherical wave fronts.

(i)  the arc length along the curvilinear ray from emitter to observer.

(1v) the true distance between emitter and observer at the time ¢, of
emission.

(v) the true distance between emitter and observer at the time of arrival ¢,
of the wave front at the observer.

(vi) the true distance between the emitter at time 7, and the observer at
time £,.

(Note that suffix e will always be used to denote quantities associated with the
emitter of a point disturbance; and suffix a will always refer to quantities
associated with the arrival of an ensuing wave front at an observer).

It is also possible to observe, by spectrometry for instance, the frequency of
arrival from a point source of a recognisable regular series of wave fronts, and
thus to measure a spectral shift between the frequencies or wavelengths of
emission and reception of a regular train of wave-fronts.

Thus, in a simple cosmology with an assumed universally constant wave speed,
the red-shift can be defined uniquely as

z=A /A -1=v /v -1 (1.3.1)



In an expanding ethereal cosmology, however, there are two possible
definitions of red-shift, namely

z,= A/ -1 = (cie) vy -1 (1.3.2)
and

z,= n'y -1 = (c/cy) A4 - 1 (1.3.3)
These two red-shifts are not, of course, independent since

(z,+ 1) ec,=(z;+1) c. (1.3.4)

In practice it is the frequency red-shift z, which is important, since it is the
emission frequency which is recognised as the universal signature of a
particular atom.

The red-shift in an expanding ethereal cosmology must be determined by a full
characteristic theory which examines how the interval between the wave fronts
from two successive wave peaks or point emissions varies as the light travels
from emitter to observer along a curvilinear ray. This is in marked contrast to
the trivially simple case, known as the Doppler principle, which is used in
simple cosmologies. The Doppler shift was derived originally for wave sources
moving relative to a uniform stationary medium, in which case it only applies at
distances from a moving wave source which are large compared with the
thickness of the viscous boundary layer surrounding it.

1.4 Observational restrictions

Some well-known observations, which are easily incorporated into simple
cosmologies, place great restrictions on, and provide stringent tests for, ethereal
cosmologies. How can it be possible, for instance, with non-spherical wave-
fronts in an expanding ethereal flow, for us to 'sec' out as far as red-shifts of
order 4 to 5 with axially symmetric telescopes or dishes? The simplest
explanation would be that, in our locality at the present time, distances out to
red-shifts 4 or 5 are very small compared with the present dimensions of the
universe, and the age of the present expansion phase so large that, up to such
distances, the difference between the two principal radii of curvature of wave-
fronts arriving from point sources is negligibly small.

Observations of the red-shifts of distant objects and estimates of their distances

led initially to what is now known as Hubble's 'law'. This is an empirical
relation suggested by Edwin Hubble around 1929. It was based on the earliest
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measurements of very small red-shifts and estimates of the relevant 'distances’
deduced from the luminosity of Cepheid variables. Hubble conjectured that
recession speed was proportional to distance on the basis of an apparent linear
relation between observed red-shift z and radius R of incoming wave-fronts.

In a simple non-ether cosmology with a universally constant wave-speed, ¢ ,

¢ z is interpreted as recession speed and radius R is interpreted as distance
d. The quantity ¢ z/R , interpreted as V/d, has dimensions (time)™ and is now
known as the Hubble 'constant' f7; its reciprocal fx = I/H is usually called the
Hubble time. It is usually assumed that / is either a universal constant or varies
only with time, and is therefore the same for all observers. It 1s used as a
measure of expansion rate on which to base cosmologies in the non-ether
concept. Unfortunately, even some 70 years after the conception of Hubble's
"law', when so many more elaborate measurements of red-shifts have been made
and 'distances' to objects with larger red-shifts have been estimated by
alternative methods, it has not proved possible so far to determine a 'constant’ H
to within a factor of about two.

It is not possible to use an empirical relation such as Hubble's 'law' as a
foundation for an ethereal cosmology, as is done in the construction of some
cosmologies. Rather, onc of the principal aims of constructing an ethereal
cosmology must be to determine the relation between red-shift and radius of
incoming wave-fronts and between recession speed and distance. An ethercal
cosmology must stand or fall, therefore, according as the relations it yields are
in agreement or at odds with present and future observations. An ethereal
cosmology must also explain, for instance, why it is not possible at present to
determine a precise contemporary value of H to within a factor of about two.

1.5 The Universal ethereal flow

In an ethereal cosmology the characteristic wave-hypersurfaces and wave-
hyperconoids through any point at any time must be derived both from the
equations of motion of the ether and the general equations for the electric and
magnetic field-strengths. Whilst it is true (Thornhill, 1993) that these
characteristics can be determined separately, without assuming that the two
wave-speeds (thermodynamic and electromagnetic) are equal, reconciliation
between the energy distribution in the ether in thermodynamic equilibrium and
Planck's energy distribution in a black-body radiation field can only be effected
(Thornhill, 1985a) if the two wave-speeds are equal. Moreover, only one
family of wave-hypersurfaces and one unique wave-hyperconoid are observed.
In what follows, therefore, the thermodynamic and electromagnetic wave-
speeds of the ether will be regarded as identical.



For the simple static ethereal cosmology with Maxwell's equations, the
differential equation for the wave-hypercone through any point at any time is
then derived as

(dx/dt’ + (deydy’ + (dxsdt’ = T (1.5.1)

where ¢ is the constant thermodynamic and electromagnetic wave-speed.
Equation (1.5.1) is a differential equation which can be integrated. This
integration is not trivially simple but it can be shown, without significant
difficulty, that the general integral of (1.5.1) corresponding to an infinitesimal
disturbance at any time ¢, at the point {x,,} is a right spherical hypercone (or, in
three space-dimensions only, a family of concentric spheres), namely

(- x30)" + (%2 - X20)” + (X3-x30" = T (t- 1) (1.5.2)

The equation (1.5.1) and its general integral (1.5.2) are also taken over into the
non-ether concept. Thus, in two space-dimensions and time, the solution (1.5.2)
reduces to a right circular cone (or, in two space-dimensions, a family of
concentric circles), namely

(xl -xlg)E + (JCQ -x;g)z = Ez(t- fg)2

and this is often used to 'illustrate’ special relativity. The forward part of this
cone (£>1,), the 'region of influence' of characteristic theory, is usually labelled
'the future", and the backward part (¢<¢,), the ‘domain of dependence’ of
characteristic theory, is labelled 'the past'.

In the non-cther concept, however, the differential equation (1.5.1) is
misinterpreted as the quadratic differential form of an imaginary Riemannian
geometry in four dimensions, namely x; and i ¢ ¢, which is usually referred to
'space-time'. The term 'space-time’, in fact, is used indiscriminately both to
refer to the real four-dimensional metric (x, ¢ #) in which the right spherical
hypercone (1.5.2) is located, and to the imaginary four-dimensional Riemannian
metric (x, ¢ ¢) associated with the Lorentz transform and special relativity.

This misinterpretation of the differential equation for the wave hyperconoid, as
a quadratic differential form, cannot play any part in the ether concept and so
the construction of an cthereal cosmology, with a non-steady non-uniform
expanding ether, must necessarily depend entirely on the integration of the
general equation for the wave hyperconoid in a general flow, namely

(dx/dt - w,) + (dx/dt - u)® + (dxs/dt - uz)® =¢ (1.5.3)



where {u;} and c are, respectively, the local contemporary values of the ethereal
velocity and the wave-speed.

For the ethereal cosmology constructed here, symmetry properties of the flow
solution are used to effect considerable reduction and simplification of the
general equation (1.5.3) before its general integral is obtained.

Before, however, an equation for the wave-hyperconoid can be obtained for
integration it is necessary to specify a model for the universal ethereal flow.
There is no reason to suppose a priori that an ethereal universe is infinite, as it
may often be convenient to do in a non-cther cosmology. The existence of an
cther permits there to be a finite boundary to the universe outside which there is
a true vacuum or void containing neither ether nor matter. In such case, the
outward flow of the expanding cthereal universe must be such that the pressure
and density of the ether tend to zero at this boundary. This leads to the idea of
the expansion of a finite mass of ether, starting from some initial condition, into
a true vacuum or void.

In order to handle and evaluate an ethereal cosmology. it is desirable also to
have a complete mathematical solution for the flow, in closed form, which will
allow the determination of non-spherical wave-fronts and non-linear rays
arising from a point source of disturbance. This raises the question of whether
such complete mathematical solutions exist for flows in three-dimensional
space and time.

1.6 Similarity solutions

Solutions of the type required for the construction of an ethereal cosmology, as
now proposed, do exist. They are usually called special, self-similar or
similarity solutions, and are, generally, solutions of unsteady flow problems in
one space-variable and time, with plane, axial or spherical symmetry, the latter
meeting the requirements of a universe in three space-dimensions and time.

The type of similarity solution, which could be applied to an expanding ethereal
universe with spherical symmetry, is one in which the variables can be
separated so as to give ordinary differential equations in time and in a similarity
variable # = r/R, where r is the radius vector and R(#) the value of r at the outer
boundary of the flow. This separation of variables is generally achieved, in
Eulerian co-ordinates, by attempting to obtain a solution in which each of the
dependent variables is the product of a function of the similarity variable »and

a function of time; e.g. for the radial velocity u = ¢(77)R where R is the speed
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of the outer boundary R. Thus, the separate differential equations obtained in
the similarity variable » give the constant 'shape’ of the solution and the
differential equation in time gives the temporal development of the solution.

Three solutions of this type, which have proved most useful in practical
application, may be mentioned briefly. First, the similarity solution obtained in
1941 for a very intense explosion (Taylor, 1950) was used to predict the form of
the initial blast produced by the first atomic explosions. This solution uses only
the leading terms in the conditions behind a very strong Rankine-Hugoniot
shock-wave in air when these are expanded as series in 74, M being the Mach
number of the shock with respect to the uniform atmosphere ahead of it. Thus,
this solution ceases to be valid as the shock-wave expands and weakens. The
blast then ultimately decays more slowly in a way similar to that in a
conventional explosion, with a leading shock of moderate strength or very
weak.

Second, the similarity solution to the complete problem of internal ballistics
(Thornhill, 1966) takes account of the burning phase of the propellant, as
distinct from Lagrange's ballistic problem which starts only at the time when the
propellant is all burnt. This solution does not cease to be accurate, but is valid
for all time, and enables systems of internal ballistics to be scaled and modelled
by means of three scale-factors and seven modelling parameters.

Third, and here the most pertinent, is the similarity solution for the expansion
into a vacuum of a finite homentropic mass of gas, originally at rest and
confined within a spherical boundary. The existence of such a solution was first
demonstrated by Keller (1956) who formulated the problem of spherical,
cylindrical and plane-symmetric flow of an ideal polytropic gas in Lagrangian
co-ordinates. He found a class of special or similarity solutions of his equations
by separation of variables and these depend on an arbitrary function related to
arbitrary entropy distribution in the gas. In particular, he showed that such
solutions, with variable entropy, exist for the expansion of a finite mass of gas
into a vacuum, and even predicted that such solutions for the expansion of a
sphere of gas may become of interest to astrophysicists.

Such similarity solutions are more easily discovered in Lagrangian co-ordinates
but, although more difficult to derive, are much easier to exploit and apply to
practical problems in Eulerian co-ordinates. The complete solution for the
spherical expansion into a vacuum of a finite homentropic mass of an ideal
polytropic gas was given, in Eulerian co-ordinates, by Thornhill (1958). The
solution was of interest, at that time, not in connection with astrophysics or
cosmology, but in order to estimate the limiting case of blast from a
conventional explosion as the altitude increases indefinitely and the atmospheric
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pressure and density effectively tend to zero. This was necessary because,
under sufficiently rarefied atmospheric conditions, the continuum solution for
the blast from a conventional explosion, headed by a Rankine-Hugoniot shock-
wave, breaks down.

A general account of similarity and dimensional methods is given by Sedov
(1959). He discusses, among other things, a particular class of similarity

solutions in which the velocity distribution is lincar, i.e. () = 7and u = /7R .
Taylor's solution for the very intense explosion is not of this type, but the
internal-ballistic solution is. Indeed, the assumption of a linear velocity
distribution, in the flow of propellant gases along a gun barrel behind the shot,
was first made by Benjamin Robins (1742) although it is now usually known as
Lagrange's assumption. This assumption of a linear velocity distribution in the
flow along a gun barrel has been used ever since, with great success, in all
numerical systems of internal ballistics. It was the success of this assumption
which first suggested the possibility of obtaining a similarity solution to the
complete problem of internal ballistics more sophisticated than the primitive
similarity solutions of Robins and Lagrange to the restricted case of Lagrange's
ballistic problem.

Likewise, the similarity solution for the homentropic expansion into a vacuum
1s also of the type in which ¢ (79 = » and the velocity distribution is linear. It
was this property of the solution, which clearly foreshadows Hubble's 'law’, that
first suggested the possibility of using this solution as the basis on which to
construct an ethereal cosmology.

1.7 The ethereal expansion into a vacuum

Some further remarks are appropriate concerning the choice of this solution and
the justification for using it as a basis for ethereal cosmology. First, it is the
only available solution in closed form that satisfies the requirements for an
ethereal cosmology, and it applies to an ideal polytropic gas, the only choice
available, at present, for an ether.

There 1s no a priori reason to assume that the entropy distribution in the
universal ether is other than uniform. Within the limits of our observations at
the present time there is no evidence for any significant variation in the ethereal
entropy. It is true, however, that superluminal motion of the tips of some quasar
jets has been regularly observed for the last twenty or thirty years and, more
recently, superluminal motion through the cther has been detected within the
galaxy. This implies entropy changes across the ethereal bow shock waves
which must accompany such superluminal motions, but this is not on a scale
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which indicates any significant alteration to the universal entropy distribution as
a whole. Nor are there any observations of reaction or phase-change waves in
the ether which would imply any significant changes in the ethereal entropy
across the other three types of (non-Rankine-Hugoniot) shock waves which
mitiate such waves (cf. Thornhill, 1973)

Attention must be drawn, however, to two aspects of the complete similarity
solution for a homentropic expansion into a vacuum which merit more detailed
consideration.

First, as the outer boundary of the flow is approached, the cthereal pressure,
density and wave-speed all tend to zero, whilst the speed of the outer boundary
increases monotonically to a constant finite limit. One consequence of this is
that the continuum solution must cease to be valid as the outer boundary is
approached and the density of the ether tends to zero. Outside the region of
validity of the continuum solution, therefore, it is necessary to fit a rarefied
gasdynamic solution in order to determine the flow nearer the outer boundary.
The question arises then as to whether our present observations are made in a
region where the continuum solution could be valid, or outside this region,
where they could only be analysed in terms of rarefied gasdynamics.
Fortunately, it is found that we are within the region of validity of the
continuum solution. With a local contemporary ethereal temperature of about
2.7°K (the micro-wave background black-body temperature), Boltzmann's
universal constant &, and local contemporary values for the wave-speed ¢ and
Planck's 'constant' /4, it is determined (Thornhill, 1985a) that there are, on
average at any time, in our vicinity, about 360 cther particles per cm® in the
ether background in thermodynamic equilibrium, and these, on average, have a
mass about 400 times that of the unit ether particle. This result may be
compared with the result given by Zeldovich and Novikov (1975), namely
"using as a basis the observational data and a minor theoretical extrapolation,
the number density of the primordial (velic) photons has been calculated to be
about 400 per cnt’, which is 10° - 10°° times greater than the average mumber
density of baryons in the universe."

Another consequence of the conditions at the outer boundary of the complete
similarity solution is that the Mach number of the ethereal flow tends to infinity
as the outer boundary is approached. There is always, then, a region of flow, in
the outer part of the solution, which, on the assumption made here, is both
supersonic and superluminal. In the non-ether concept, of course, relative
speeds greater in magnitude than the wave-speed are not permissible, but this
restriction has no place in Newtonian mechanics. It will become clear that these
extremely high flow speeds relative to the centre of the universe, and their
persistence in the outer reaches of the flow for most of the duration of the

13



expansion, are essential in order to ensure a motion of matter suspended in the
universal ether which is consistent with our observations of the red-shifts of
material sources of signals.

Second, the similarity solution demands conditions, in the initial stationary
mass of ether, which conform precisely to the constant 'shape’ of the solution,
1.e. spherical symmetry and a predetermined radial distribution of pressure,
density, etc. At first sight this appears to be an impossible restriction to place
upon any proposed cosmology and it is precisely for this reason that, so far as
practical applications are concerned, such similarity solutions are not generally
held in very high regard. In practice, however, this restriction is not so serious.

All complete similarity solutions of this type suffer from this restriction on the
nitial conditions. Observations, however, of the blast from an atomic explosion
(Taylor, 1950) showed that, in spite of not satisfying the initial conditions of the
solution, the blast rapidly approached the similarity solution and continued to
conform to it until the leading shock became too weak for the similarity solution
to remain valid. Likewise, although the initial conditions in a gun barrel during
the burning of the propellant and immediately afierwards are remotely different
from the requirements of the similarity solution, observation shows that the
linear-velocity distribution in the propellant gases is rapidly achieved and
measurements then show good agreement with a similarity solution suitably
scaled and modelled.

These observations tend then to support the conclusion that similarity solutions
of this type are extremely stable and are rapidly or ultimately approached in
practice even when the initial conditions are much different from those required
by the solution.

For the complete similarity solution for homentropic expansion into a vacuum,
however, the situation is not so straightforward. In the early 1960s the advent
of space flight aroused considerable interest in the expansion of gas clouds into
a vacuum, particularly that of an initially uniform gas cloud (Molmud, 1960;
Greifinger and Cole, 1960; Greenspan and Butler, 1962; Mirels and Mullen,
1963; Wedemeyer, 1965; Hubbard, 1966). No analytical solution is available in
the case of an initially uniform cylinder or sphere so, among other things,
attention was given to numerical solutions in these cases and to empirical
approximations to the results they suggested for the asymptotic self-similar
form of the flow. The asymptotic forms derived from the numerical solutions
were compared with the complete similarity solutions. It was realised (cf.
Greenspan and Butler, 1962) that, when the initial cylinder or sphere has finite
pressure, ete. at its outer boundary, the ensuing outer boundary of the flow has

constant speed R =2a/( 201), where a; 1s the initial sound speed at the outer
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boundary. In the complete similarity solution the initial cylinder or sphere has
zero pressure at its outer boundary; the outer boundary of the flow has zero
speed initially and accelerates monotonically to the constant asymptotic speed

R=2a/ 1) (o + 1)”, where a, is the initial sound speed at the centre of the
cylinder (7= 1) or sphere (7= 2). This fact, together with attempts to compare
the ‘asymptotic' forms derived from Greifinger and Cole's numerical solutions
with the complete similarity solutions, led to the unanimous conclusion that the
expansion of an initially uniform cylinder or sphere of gas into a vacuum does
not ultimately approach the form of the complete similarity solution.

If this conclusion were correct, the complete similarity solution could not be
regarded as the ultimate form of all such flows, whatever the initial distribution
of pressure, cte. It would not then be suitable as a ‘universal' solution for the
purpose of ethereal cosmology. It would also imply that, in any ethereal
cosmology, it would be possible theoretically for any observer, in any location
at any time, to make local observations which would enable him to derive
information about the initial conditions in the universe at the beginning of the
present expansion phase. This would clearly not be possible if all expansions
tended asymptotically to the same 'universal’ form.

These considerations are of such paramount importance to ethereal cosmology
that they must be examined in more detail. In comparing the asymptotic forms
denved from numerical solutions with the complete similarity solution, it is
important to realise several important requirements.

1) Although the two cases under consideration have different outer boundaries
to the flow, it is possible that the mass of gas between the two boundaries
tends asymptotically to zero.

1) Since neither of the flows has any overall momentum the comparison must
be made strictly for equal masses, energics and entropy.

1) For the same distance r from the centres of symmetry of the two flows the
values of 7, = r/R,, and 7, = r/R; are different.

1v) It must not be assumed that the rate of any convergence to the complete
similarity solution would be the same for all values of the first adiabatic
index y or that the rate of accumulation of errors, in what is a hyperbolic or
marching problem, would be the same in all cases, or for plane, axial or
spherical symmetry.
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A new comparison of the numerical solutions, so far as they have been taken,
with the complete similarity solution, is made here in detail in an appendix,
taking into account the above requirements. It is found that the agreement, both
in the 'shape' and the time development of the two solutions is remarkably good
for small values of (- 1), but deteriorates as (¥ - 1) increases or as the number
of dimensions increases. There is, however, at present, no evidence to show
that, if the computations were taken further, with adequate control of the
accumulation of errors, the agreement could not be improved for the higher
values of (7 - 1) and the number of dimensions. The conclusion may then be
reached that all expansions of a gas cloud into a vacuum tend asymptotically to
the corresponding complete similarity solution.

It is still possible, therefore, to regard the complete similarity solution as being
extremely stable, like the other complete similarity solutions, and to use it as a
'universal' solution for the asymptotic form of an ethereal cosmology. This
would imply, as one would expect, that it is impossible to derive information
about the initial state of the universe from local observations at large specific
times after the beginning of the expansion; and that knowledge of the initial
state of the universe can only be obtained by direct observation.

1.8 Matter

So far no mention has been made of the material content of the universe which
(without prejudice to the possibility that ether is a form of matter) may be
discussed as distinct from the ether. Matter must be suspended in the expanding
cthereal flow and it is necessary, therefore, to determine how it moves.

The Michelson-Morley experiment is usually interpreted in terms of the non-
cther concept and this leads to the Lorentz transform and relativity which, in the
present context, are considered to be mathematically untenable. In terms of the
cther concept and Newtonian mechanics the results of the Michelson-Morley
experiment mean, quite simply, that the ether is moving locally with the
apparatus and this implies no more than that the ether like any other gas, has
viscosity. When a body, like the Earth, moves relative to a surrounding fluid
that has viscosity a viscous boundary layer is formed around its surface across
which the relative velocity between the body surface and the fluid tends to zero
as the surface is approached. Thus, experiments near the surface of the Earth
will give null results or will, at best, over greater ranges which are still small
compared with the boundary layer thickness, determine a relative velocity much
less than the true velocity of the Earth relative to the mainstream flow outside
its boundary layer. It follows that a material body moving relative to the
surrounding ether will, therefore, experience viscous ether drag.
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So far as our observations are concerned ether drag is exceedingly small.
Terrestrial observations are, however, confined to time durations and relative
velocities which are very small on a universal scale. The situation is completely
different if the ethereal flow has superluminal or hyperluminal velocities
relative to the centre of the universe and the time duration extends over the
present expansion phase of the universe. Continual ether drag, exerting very
large forces when the relative velocity between the ether and matter is very
large, and acting over very long periods of time, will accelerate matter
suspended in the ether until the relative velocity between matter and ether
becomes very small compared with the velocity of the ether relative to the
centre of the universe.

Macroscopically, then, matter may be regarded, to good approximation, as
ultimately moving with the ether and this will be taken to be so in the
construction of an ethereal cosmology.

This necessitates the assumption that the total mass of matter in the universe is
very small compared with the mass of the ether, so that the acceleration of
matter and the maintenance of its motion in the ether do not significantly affect
the overall motion of the universal ether. Observations of the density of matter
in our vicinity at the present time, as compared with the density of the
surrounding ether, seem, at first, to belie such an assumption. It must be
remembered, however, (cf. para 1.4 above) that our observations out to red-
shifts of 4 or 5 may only extend over very small distances compared with the
size of the universe. They may be, therefore, on the cosmology considered
here, typical at most of a narrow spherical annulus between two nearly equal
universal radii. Moreover, the present density of the local ethereal flow around
us (the micro-wave background radiation field), namely about 0.2 x 10 dkg)/m’
(cf. para 1.2 above) suggests that we may be located near the outer boundary of
the universe. There is no a priori reason, therefore, to think that the density of
matter around us is typical of the whole universe rather than, say, that most of
the matter in the universe is in the outer reaches; and the density of the universal
cther, as given by the similarity solution, has its maximum value at the centre, at
any time, and declines monotonically to zero at the outer boundary. 1t is,
therefore, quite feasible for the total mass of the universal ether to be much
greater than the total mass of matter.

It is necessary also to consider the origin of the matter in the universe.
Contemporary theories, based on relativity, rely on very extreme conditions at
an initial mathematical singularity to explain the beginning of time or the
present expansion phase and to deduce that these conditions led to the evolution
of matter. In the cosmology constructed here, however, attempts to determine
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completely the scale of the universe suggest that the conditions at the beginning
of the present expansion phase were not nearly so extreme and leave open the
possibility that matter was present from the beginning.

The effect of expansion into a vacuum is ultimately to convert all the energy
into kinetic energy and, as a result of ethereal viscosity, the end result is that
matter and cther have the same kinetic energy per unit mass. Moreover, if
matter is formed out of ether during the expansion process, then matter will
have the same kinetic energy per unit mass as the ether from the time of its
creation. Whether, therefore, matter is present ab initio, or is formed during the
expansion process, it is again necessary to assume that the total mass of matter
in the universe is always very small compared with the mass of ether so that the
overall motion of the ether, as given by the similarity solution, is not
significantly altered by the presence or creation of matter.

It is, indeed, possible to look for observational confirmation of the
preponderance of ether mass. For, if this is so, it should be possible to detect
the presence of such a large mass of ether by the gravitational force it exerts.
The cther cannot, of course, be 'seen’ for 'seeing' is only the observational
process of detecting the arrival of ethereal waves; the ether must, then, be
utterly dark. In fact, the gravitational forces due to such an invisible mass,
estimated to be very much larger than the mass of observed matter, are
observed. This mass is aptly referred to as 'dark matter'.

If matter moves, for practical purposes, with only slight perturbations from the
cthereal flow, a significant simplification is introduced into ethereal cosmology.
For then the red- shift observed by a material observer in the light from a
material source will be practically the same as the red-shift due to, and
denvable from, the cthereal flow as given by the similarity solution. An
obvious difficulty arises, then, for small distances and red-shifts when the
corresponding recession velocity given by the similarity solution is not large
compared with the perturbation velocities of the source and the receiver. This
accords with the failure to determine the Hubble 'constant', to within a factor of
two, from observations of red-shifts sufficiently small for the 'distance’ of the
source to be reliably estimated.

All observers moving with the ethereal flow (Thornhill, 1993) have the same
local wave-hyperconoid, given by the differential equation

(dxy/dty” + (de/dy” + (dxs/dty’ = ¢ (1.8.1)
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where ¢ is the (variable) local wave speed. This simple local wave hyperconoid
appears, therefore, to be invariant under Galilean transformation to all such
observers, and does not require, for its invariance, any alternative
transformation like the Lorentz transform introduced by the interpretation of the
Michelson-Morley experiment in the non-ether concept.

1.9 Gravitation

Another principal objective of an ethereal cosmology must be to provide a
physical theory of gravitation. Indeed, without such a physical theory,
knowledge of the local contemporary value of Newton's 'constant' of gravitation
cannot be used in the determination of the scale of the universe. The
acceleration due to gravity is real and apparently universal. Newtonian
mechanics requires, therefore, that the source of this acceleration be explained
physically. It cannot be dismissed as a *force of Nature' or as some mystical
curvature property of an imaginary four-dimensional Riemannian metric.

In the cosmology constructed here the ether is accelerating away from the
centre of the universe up to a finite asymptotic radial velocity. It is clear,
therefore, that a frame of reference whose origin moves with the ethereal flow,
i.e. the rest-frame of a material observer travelling with the ether, is an
accelerating frame of reference. In Newtonian mechanics, Galilean
transformation decrees that all masses in such a rest-frame experience an
acceleration (i.e. a force per unit mass) in the reverse direction, namely towards
the centre of the universe. This force per unit mass towards the centre of the
universe experienced by all masses (matter and ether) in the rest-frames of all
materials observers is seen to provide completely for the phenomenon of
gravitation.

The acceleration given by the similarity solution for any material observer can
be expressed in the form of Newton's empirical 'law' of gravitation, namely a
force per unit mass GM/r°, where M is the total mass contained with the sphere
of radius r about the centre of the universe, which passes through the observer.
(5 1s found to be independent of time, but varies with the relative position, /R,
of the observer in the universe. Thus, for any given observer, travelling with
the ethereal flow, & is constant for all time. (This accords with the amusing
anagram of 'constant of gravitation', namely 'O, so in fact G not r-variant'!)

The universal gravitational potential is determined and found to be the amount
by which the kinetic energy per unit mass falls short of its asymptotic value.
Thus, for all observers throughout the universe, the universal gravitational
potential tends asymptotically to zero.
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1.10 Comparison with observations

The success of an ethereal cosmology depends entirely on the extent to which
its properties conform to, and its predictions are verified by, observation. The
similarity solution enables all the relevant information pertaining to an emitter
and receiver, not too far apart, to be derived as series expansions in powers of a
small quantity which is, essentially, (z, - £.)/¢, in some form or other. [Suffix a
refers to the arrival at an observer, at time 7,, of a point source signal emitted by
a source at time #.. So far as our own observations are concerned, then, ¢, is the
present epoch and suffix a refers to our location in the universe. |

The common leading term in the series expansions for the two principal radii of
curvature of an incoming wave front is non-directional, but subsequent
coefficients contain directional elements whose influence declines as 7,
increases. The first two terms in these expansions are identical and, as £, tends
to infinity, the third terms also become identical. This accords with the fact that
observations can be made, out to red-shifts of order 4 or 5, with axi-symmetric
instruments, indicating that, at least up to such distances, incoming wave fronts
are practically spherical with radius *R.

Hubble's law' is derived exactly insofar as the true source distance o and the
recession speed 1V, at time £, are such that &/77is a function of 7, only which
tends to 7, as #, increases.

On the other hand the observation usually referred to as source 'distance’ is the
radius of curvature R of the practically spherical wave fronts arriving at the
observer, so that, what is normally called the red-shift-distance relation is the
relation between z, and R. The derived relation between z, and R does not
accord with Hubble's "law', but the series expansion for R /c,z,7, tends to unity
as R, z,, (1, - t.) all tend to zero; 1.e. R /c,z, tends to ¢, as z, tends to zero.

Thus, even though the relation between z, and R is not linear at any time, as
Hubble envisaged, its slope for small red-shifts would provide a means of
determining £, as the Hubble time, were it not for the fact that the perturbational
motion of source and observer make it difficult to determine the Hubble time
with any precision.

1.11 The scale of the universe
The final objective of an ethereal cosmology must be to determine the scale of

the universe, our position in it, and the time which has elapsed since the
beginning of the present expansion phase.
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The observational and theoretical information available at present do not permit
any such determination to be made preciscly. It appears that five relations are
required for such a precise determination but, at present, only four are available
even when a physical meaning is attributed to the gravitational 'constant’ G
which permits its local value to be used.

It is possible, with only four relations, however, to evaluate the complete
systems corresponding to different values of our relative position, /R, in the
universe. This is done on the basis that the present age of the universe is
sufficiently large for simplifications to be made such as have already been
indicated to occur when ¢, is sufficiently large. Uncertainty in the
determination of the Hubble time, however, necessitates that the calculations be
made for three values of #y, an upper limit, a median value and a lower limit.

The present radius of the universe is found to be of order 10**m; the total mass
of the universe of order 107 (kg); the total number of cther particles of order
10%°; the initial cthereal temperature of order 5 x 10*°K; and the initial speed of
light of order 10"°m/s.

It is possible also, with the complete solution, to determine what will happen in
the future. For example, when the universe is # times as old as at present, the
speed of light in any particular location will be 7™ times its present value and
the ethereal temperature will be ™' times its present value. Thus, in our
location, when the universe is twice its present age, the speed of light will have
fallen to about 2.1 x 10°m/s and the ethereal temperature to about 1.35°K.

This first attempt to construct a complete ethereal cosmology thus falls short of
any precise and unique determination of the present expansion phase of the
universe and our position in it. It does, however, conform to all our present
observations, explain various observational difficulties and make predictions for
the future. It also purports to solve one of the three great questions unanswered
in present day theoretical physics, namely the physical raison d'éire of
gravitation. It does not, however, contribute towards the elucidation of the
physical nature of electricity and magnetism. In the ether used here, cther
particles have six degrees of freedom (Thornhill, 1985a) only three of which are
required for the three components of velocity. It scems likely that the physical
nature of electricity and magnetism derives from the remaining three degrees of
freedom, probably rotation or vibration.
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It will be interesting to see from where, and how soon, a fifth relation will come
which will permit a precise evaluation of the cosmology constructed here; and
even more interesting, whether ultimately a sixth and further relations give
consistency.

Perhaps the most surprising aspect of the cosmology constructed here is that it
1s so antithetic to the theoretical physics and cosmology which have come to be
accepted during the twentieth century. Here there is no denial of an ether, no
assumption that the speed of light is a universal constant, no upper limit to
relative speed, no big bang or other mathematical singularity, no imaginary
Riemannian geometry, no specious explanation of gravitation - and no strings
attached. Whereas, in the cosmologies accepted at the present time, the mass of
the universe is entirely the mass of matter permeated by a 'non-ether' of
massless photons, in the cosmology here the mass of matter in the universe is
negligible compared with the mass of ether.

2. The similarity solution

The similarity solution is concerned with the expansion in vacuo of a
homentropic sphere of an ideal polytropic gas with a constant first adiabatic
index y. Initially, at time £ = o, the gas is at rest, the radius of the sphere is L.
and the pressure, temperature and wave-speed at its centre are, respectively, p,,
T, and ¢,. The radial distribution of pressure, density, etc., in the initial gas
sphere is the particular constant radial distribution required by the similarity
solution. At subsequent times the radius of the sphere is R(?) and, at the outer
boundary, where » = R(1), pressure, density and wave-speed all tend to zero
mathematically, for the purpose of deriving the solution, even though physically
the continuum solution must necessarily cease to be valid before such
conditions are reached.

The solution 1s rendered non-dimensional in terms of a fundamental mass,
length, time and temperature as defined by p,, ¢;, 7 and L. Thus P = P/{P],
where F stands for any physical quantity and /FP/ denotes that combination of
the fundamentals that has the same dimensions as P; e.g. r =v/L, p = p/ps,

u =u/c,, t = tc/L but density p= pc,”/p; = yp/p,.

The general solution is then obtained (Thornhill, 1958), in terms of time £ and
the similarity variable » = #/R, as

p= (]_WZ)W‘U 5-3}*,. p= ?/(]_TIZ)N(?‘U 5-3,
¢! =I=(I-1f) R
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together with the radial velocity distribution, u = UE, where K satisfics

R = [2M3/(-D] [T - RV

For the ether p = 4/3 (Thornhill 1985a) and, with
n=sina, R=cosl’E r=sin acosh’& 2.1

the solution for the ethereal flow reduces to

p = (cos a/cosh&)® ; p = 4(cosa/cosh&)°/3 ; c = cos a/coshé (2.2)
E = 2¥3 tanh & or dt = cosh’ EE/V3 (2.3)
u =23 sin atanh £ 2.4)

Thus, asf =g B = og and £ — og f_? —23; and equation (2.3) may be
integrated to give, satisfying £ = 0 when f = 0,

t = (V3/6) (sinh Ecosh £+ & (2.5)
The flow is supersonic (and therefore superluminal) if

2V3 tan a > cosech & or 17>1/(12R-11) (2.6)
In the (7, #)-plane the world-lines or universe-lines are given by

17 = /R = r/cosi’ & = constant, 2.7)
whilst the characteristics in the (r, ¢)-plane, namely dr/dt = 1 + ¢ become

d(sina cosh’&/dt = 243 sin a tanh & #cos a/cosh
These integrate at once to give

Ve #gd& = constant (2.8)

where the Gudermannian is defined by
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gdx = jx sech xdx = tan ' (sinhx) = 2tan” &-7/2 (2.9

3. The wave hyperconoid

For general flow in three space variables and time, the general equation for the
wave hyperconoid is

(dxy/dt - w,)” + (dx/dt - u)* + (dxs/dit - uzl’ = ¢ (3.1)

where {u,} and ¢ are, respectively, the ethereal velocity and the wave-speed.
Here, the symmetry properties of the similarity solution enable considerable
simplifications to be made in the general differential equation (3.1). First, since
the flow in the similarity solution is spherically symmetric, it follows that the
wave-fronts from a point disturbance at any time are all axially symmetric about
the diameter on which the point source of the disturbance lies. It is sufficient,
therefore, to consider only the flow in a diametral plane and its wave-conoids in
two space variables and time. Second, the flow is radial in a diametral plane so
that further simplification is possible by using polar co-ordinates. Thus, the
differential equation for the wave conoid through any point on a diametral plane
is

(dr/dt-w’ + 1 (dady” = ¢ (3.2)
If the values of u given by equation (2.4), ¢ given by equation (2.2) and
r = sin o cosh’ £ are substituted in equation (3.2) and a new time-variable 7is
introduced, defined by

r=(1/V3) gd £ : dr = (1/V3) d&/cosh & (3.3)
then the differential equation (3.2) for the wave-conoid reduces to

(do)’ + tar a (dOF = (do)° (3.4)

Remarkably, in this form, equation (3.4) may be integrated by standard
methods.
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Let #(e, 0), (7. = p . o= g) be a particular integral of the equation (3.4) i.e. the
equation of a wave-surface. If (7, @;, ) is a neighbouring point on this wave
surface, then

7T = (a-aps + (6i-0)q; (3.3)
so that, by equation (3.4)
(ara)’ + tan’ay(0-0)° = (1-9 = [(ara)p, + (0-0)q,] (3.6)

The envelope of (3.6) for different values of ¢, 8, i.e. a wave-conoid, must also
be a wave-surface. Hence, by partial differentiation with respect to o, &,

(a;-a) = p, [{a-a)p, + (6:-8)q,]

and
tar’ e (6-0) = q.f (a-clp; + (6-6)q.] (3.7)
Thus
(o - o) _ (0, —Bitan a, _ [to, —a)p, +(6,—6)q, ] by equation (3.7).
P, q,cot a, 1
= [(a,=a)p, *(0,=0)q,] by equation (3.6),
(1} +4] cot’ a, )"
so that
P g cofa=1 (3.8)

The relation (3.8) is of the form dfe,p) = w8 g) which is a standard form; e.g.
it is the standard III of Forsyth (1933). The procedure is as follows. Put q equal
to an arbitrary constant a, so that

T=al+ fifa). (3.9)
Then, by equation (3.8)

p = ov'da = (I-a° cot’ o)”

This may be integrated to give
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r=-acos'(acota) + (@ + 1)* cos’[(a+1)* cosa] + fo(O) (3.10)

The equations (3.9) and (3.10) can now be combined to give, if & = e, 7= 7,
when &= o,

17, = af- acos” (acota) + a cos”(a cota,) + (@ + 1)* cos”[(a® + 1)* cosa]
-’ + 1)* cos'f(a’ + 1)” cosat,] (3.11)

The general integral, i.e. the wave conoid, is now the envelope of (3.11) for
different values of @ and so must also satisfy the following relation obtained by
differentiating (3.11) with respect to a.

0= 8 —cos”(a cotey) + cos”(a coter,) + a cos’'[{a” + 1)* cos a/(a” + 1)*
—acos’f(a + 1)* cos e.J/ta” + 1)* (3.12)

By combining the two relations (3.11) and (3.12), the solution for the wave
conoid is finally given, in terms of the parameter o, by

-1, =cos [(a + 1)" cosal/a + 1)¥ —cos” [(a’ + 1)¥ cos er,]/a’ +1)"
(3.13)

and

8+ a(t- 1) = cos ' (a cota) - cos” (a cota,) (3.14)

4. The rays

The solution, obtained in the previous section, for the wave conoid of the flow
in a diametral plane, is not in a form suitable for practical application. It is
necessary, therefore, to start again with a different approach which can be
ultimately reconciled with the equations (3.13) and (3.14).

Figure 1 shows the flow in the diametral plane defined by the polar co-ordinates
n=sin a¢and & The point P, (sina, 6), is on the wave-front DPE, at time 7,
emanating from a point disturbance at P,, (sine,,0), at time 7. PP is a
curvilinear ray which, at time 7, is inclined at an angle fto the radius vector

6 = 0; and, at time 7, is inclined at an angle y to the radius vector OP. On any
wave-front 7has a constant value. The wave-conoid, projected on to the
diametral plane (sin o, &) gives, then, two families of curves, namely the wave-
fronts like DPE along which 7is constant but fvaries; and the curvilinear rays,
like P.F, along which f1is constant but 7 varics.
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In the (sina, G-plane, the flow is stationary, and therefore the rays must be the
orthogonal trajectories of the wave-fronts. It 1s, then, possible to write down at
once the two equations

tan o B'oy = -cot y; tan o B0, = tan y 4.1)

But, from the equation (3.4) for the wave conoid, it follows, since fis constant
along a ray, that

al v tanfa 87 =1
so that

a.=cosys; tan & 0. = siny (4.2)
In the equations (3.13) (3.14) of the previous section 3, the parameter a 1s
independent of 7and so must be a function of Fonly. Differentiating equation
(3.13) with respect to 7 gives

a = tanasin’y (4.3)

whilst differentiating equation (3.14) with respect to 7 gives a quartic equation
in a, namely

(sinwcota + a)l’ (1 -a cof ) = & cosec’ o cos” v (4.4)
It is easily verified that a = tan « sin yis a root of equation (4.4) and so both

equations (3.13) and (3.14) are satisfied by a = fan o sin w. Since also a 18
constant along a ray, it follows that

a =tan @ sin = tan a, sinf (4.5)
and so
W, = -Sin ysin cos & (4.6)

Further, if this value of a is substituted in the equations (3.13) and (3.14) it
vields the results

M-l = (] + Siﬂzﬁfanzae)% (T_ Te) (47)

where sin = sin « cos y; sin g, = sin o, cos f,
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and fg-0-w=sinfiana,(t- 1) (4.8)

The equations (4.5) to (4.8) are the key relations required to determine the
relation between a signal sent at time z, by an emitter at 7, and the
corresponding wave-front which arrives, at time ¢, at an observer F.,.

5. The interpretation of observations

Before setting out to determine the various quantities connecting an observer
with an emitter it is first necessary to move from the (sin @, ) frame of
reference of Figure 1, in which the flow is stationary, to the physical plane, with
polar co-ordinates (sin o cosh’£ 8), in which the outer boundary of the solution
is R = cosh’&, as shown in Figure 2.

Thus, in Figure 2, P,, 1s the position of the emitter at time £,, P, 1s the position
of the observer at time £.; and the wave-front £, P, D,, the ray F,, F,. and the
normal 4, P, simply reproduce Figure 1 with all the radii vectores about O
multiplied by R, = cosh’&. Likewise, P., is the position of the emitter at time
1., Paq 18 the position of the observer at time z,; and the wave-front /7, P,, D,, the
ray P,, P, and the normal 4, P,, reproduce Figure 1 with all the radii vectores
about O now multiplied by R, = cosh’&,.

According to the similarity solution a point disturbance emitted at time £., when
the emitter is at ., and the observer at P,,, will arrive at the observer at time £,
when the emitter is at P, and the observer at P,,. The observer at F,,, lying on
the true physical ray, P.. P,., will observe the disturbance by means of the full
three-dimensional axi-symmetric wave-front whose diametral section is

E, Py, D, and will be able to observe its two principal radii of curvature and the
direction P, A, of its normal.

Again, before setting out to determine the various relations between emitter and
observer, it is necessary to consider the type of expansion in power series, for
'small’ distances and time intervals, which is appropriate to the observer's
measurements. Clearly, power series are required in which the coefficients
pertain to the observer's conditions at P, at time £, and these are achieved by
means of reverse Taylor series.

As an example of this, the conversion of series in powers of (z, - 7) to series in

powers of (&, - &) or (¢, - t,) may be considered. Thus the reverse Taylor
series.
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L= T (e (& - &)+ (Teda (- E)/2+ . ,
together with dz = (1/v3)d&/coshs, [equation (3.3)], gives

e = 1V3 cosh &; 1z = -(1/33) sinh&lcosh’ &

T = (1/98) (sinh’ 1) /cosh
and hence

(7 - 0 = (1/V3) (& - Ecosh & + (V3/6) (& - &) sinh Efcosh” &,

+ (V3/18) (£ - EF (sinh*E, - Dicosh®, + .......... (5.1)

Similarly, using df = (1/3) cosh’E d&

(& - &) = V3(s - L/cosh” & + 3sinh & (1, - £)/cosh” &

+ V3(4sink’E, - 1) (t, - t)/cosh® & + ..., (5.2)
and

(7. - 7) = (L, - teycosh®E, + (3 V3/2) sinh E(t, - 1) /cosh’,
+(32) (L, - t)° Bsinh’E, - Dicosh™&, + ... (5.3)
The series (5.1) - (5.3) enable series expansions to be obtained which can be
interpreted physically. Further simplification of some of these series is
achieved, when the solution has progressed to cover a volume very large

compared with the initial volume at =0, by noting that, as £ — g
sinh & — &%2, cosh & — e%2 and so, by equation (2.4),

t=(V3/6) (sinh& cosh &+ & — (V3/24)e” (5.4)

for large £.

6. The two principal radii of curvature

One of the two principal radii of curvature (R,) of the axially-symmetric wave-
surface, of which £, P,, D, in Figure 2 is a diametral section, is, by Meunier's
theorem, the intercept A, ., made, on the normal, by the axis of symmetry

8= 0. Thus, by simple trigonometry
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R, = cosh’ &, sin a, sin Asin(0+ (6.1)

By the method outlined, using the key relations (4.5) - (4.8), it is found that

coshd cos o (& -& sinh oo Wl
g caht, e, é"]{ﬁﬁr.-m[ b cavs ]

H, Nz Jawhé,  f7cashe

( )2 |:(sinh2 & 1) sinhé cosyilana, sinh & (2 cos’ g:/tan2 a —2- tan’ a ) :|
+ §ﬂ‘ - e

i N 2 * 2 * 2
6cosh &, 2N 3cosh £, 2N 3cosh £, Seosh &,

+} (6.2)

It can now be seen that the expansion for R, has coefficients with a directional
element specified by the angle . This dependence on direction, however,
decreases as the solution progresses. Thus, as £, — «o,

R, _>(\E/6)e§“ cos at, (£, ,52)[1+(§a —EI2H(E LY /6+...:| (6.3)
and, by equation (5.2)
E-f a3, 1) 148 (e, 1) 125633 (e, 1) 4. (6.4)

Also, by equation (5.4),as £, > o0, £, > V3¢75/24, so that, finally, as t, — o

2 3
§G_§E_>l l:a_ze +l Ea_l_‘e +l Ea_l_‘e 4 (65)
20 1, SAN 6\ 1,

and

a _ _ 2 _ 3
R, - e cose, || 1,1, +i L L +£ Lob|, (6.6)
- 43 t, ) 40 ¢, s{ g,
If s denotes arc length along the wave-front EPD in Figure 1, then the second

principal radius of curvature of the wave surface, at the point 7, on the
diametrical section /2,F,,0, of Figure 2, is given by

R, = cosh’ &, s7/(0+ Wy (6.7)
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whilst, by equation (4.1)

—cosa, 0,/ siny =sina, 0,/ cosy = s, (6.8)
and so

R, = cosh’&, sin a, Ossecyr(0+ g (6.9)

Using the key relations (4.5) - (4.8), it is found that

? :coshé‘a cosaa(\fa—é‘g){]+(§a§e)|: sinhé, +coswmno:a:|

—? \E 2cosh \E coshé,

(&~ 59)2 (S.inhgéa - ]) sinh& cosytana, (] + 3sin” o, cos’ w— 3sin’ W)
+ + + +o
cosh’ g 6 \/5 9cos’ e

(6.10)

Again, the coefficients are directional, depending on the angle ¥ but it may be
seen at once that the first two terms of the expansions for R, and R, are
identical. As £, — ocoR,becomes identical with 3R, at least as far as the first
three terms of the expansion. To this order, therefore, the wave-front becomes a
sphere, with

£ 2 3
B r -t 3t -t 3t -t

R =R, =R |2z | 2t | 2 | (6.11)
43 I, AN AN

The leading term in this expansion for 1 is, of course, simply ¢,(%, - ) the
result always obtained in simple cosmologies.

7. Recession speed and distance

The distance between the emitter and the observer at time £, 18 P, F,, In
Figure 2. Thus

d, = cosl’ E(sin’ar, + sin’a, -2sina, sina, cos)” (7.1)
Again, in Figure 2, the emitter at P,, at time ¢, has radial velocity

243 sines tanh&,; the observer, at F,, at time £, has radial velocity
243 sina, tan h&,. The recession speed at time £, is thus
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¥V, =23 tanh&,(sin"a, + sin’a, - 2sina, sin, cos0)” (7.2)
Hence

d/V, = (V3/6) cosh’ &, /sinh&, (7.3)
re. d,/V, is a function of £, only. This is the 'law' conjectured by Edwin Hubble
on the basis of an apparent linear relation between the observable quantities red
shift z, and radius of curvature . In the cosmology considered here it is an
exact relation in the form of equation (7.3). It will be shown that it is not an
exact relation between z, and ‘R.
As ¢, increases, d./V, tends to £, and so

av —»t, (7.4)

When the expression (7.1) for d, is evaluated in series form it gives the result

cosa, (L, — L, t -t _
d,= Cofhfa ) {] + 2(005,’13 ;a |:3\/§ sinhé +cosytana, }+}

(7.5)

Again, the leading term is ¢,ft, - £.) as in simple cosmologies, and the
directional element introduced by the angle 1 decreases as 7, increases. When
1, is large

(6,1,

d —c (1, -1t )| 1+>
e e o 4 1

a

(7.6)

8. The red-shift

In Figure 3, P, (cosh’ £ sin o, 0) 1s the position of an emitter at time ¢, whose
radial velocity is 2V3 sin @, tanhé. and who is transmitting a train of waves of
frequency 1,. One wave-peak leaves P,, at time .. P, (cosh’ & sin o, 6 1s the
position of an observer at time £, whose radial velocity is 245 sin @, tanh £, and
who is receiving the train of waves at a frequency v;,. The wave-peak which left
P., at time ¢, arrives at P, at time ¢, along a curvilinear ray 7., F,,.
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At time (7, + 1/1v;) the next wave peak will leave the emitter who will then be at
S.. where P.. S..= 23 sinc, tanhs&/ v, . This wave-peak will reach the observer
attime (¢, + 1/v) when he 1s at §,, where P, S,, =2 VBsina, tanh&/v,.

If the ethercal flow accords with the similarity solution, the triangles F,. G F,,,
S.. O S, must be similar so that

os OP S P

OSaa B OP{I{I ) Saapaa
and hence

v, _ cosh® & sinh&,
v, cosh’& sinhé,

(73

The frequency red-shift z, is then

Ve o cosh® & sinh&,

z, = —£ -1 8.1
v, cosh’ & sinhé, 1)
For large ¢, and £, then
AR A | (8.2)

or

2, > R = 28 8 )16, 6 )F2AE~E ) /34 ](83)

The wave-length red shift z; is given by

_cosh® & sinh& cosa, 3
cosh’ & sinhé, cosa, (8.4)

so that, for large £, 1.
z3 — (L1 )7 cosa/cosa, - 1 (8.5)
or

zZ3 = Cal/ct. - 1

36



9. The relation between red-shift and radius of curvature

From the expansions for the principal radii of curvature of observed waves,
(6.2) and (6.10), and the expansion for the observed red-shift z, (8.3), it is clear
that Hubble's 'law' does not hold for the relation between red-shift and radius of
curvature. Using the leading terms in these expansions, however, it is found
that, when £, 1s large,

Lt Ric.z, = sinhé cosh® & /V3(2cosh’ &, - 3) (9.1)
z, —»0

This is a function of £, only, but it is not the same function of £, as that derived
for d./V,, (equation 7.4). As ¢, increases, however, both these functions tend to

L.

More generally, when £, is sufficiently large for the directional elements in the
coefficients of the expansions for R, and R to be neglected, then from equation
(6.3)

R, =R, =R =(V8/6)e™ cosan(&, - ENT + (&, - EN2+ (5,- EF/6+..]  (9.2)

and from equation (8.3)

(& - &) = in(l+z,) =~z (l-2/2+ 2,773 - ) (9.3)
so that
Ric,z, ~t, (1 - 2/4 + 2,78 ...) (9.4)

or, using equation (8.2)

2
R I —t 1{t —t
AV I BN St N il ©9.5)
C,z, 41t S\t

a (73

10. Gravitation
Up to the present time no viable physical theory of gravitation has yet emerged.

By using the similarity solution without any gravitational forces, however, as a
basis for a cosmology, it has been implicitly assumed here throughout that there
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are no gravitational forces in a Newtonian frame of reference at rest or in
uniform motion. Such an assumption implies, in turn, that gravitation is a
consequence of the acceleration of an observer's rest-frame.

The need for a physical theory of gravitation has long been recognised and
many such theories have been proposed, going back to the vortical theories of
Descartes (17th century) and others, and the ultra-mundane corpuscles of John
Louis LeSage (18th century), (cf. Whittaker 1953).

Newton's empirical 'law' of gravitation is very often referred to as a theory of
gravitation regardless of the fact that he always vigorously denied any
knowledge of the physical mechanism which causes gravitation. Whilst,
therefore, it is possible to speak of the mathematical theory of Newtonian
gravitation, there is no Newtonian physical theory of gravitation.

Likewise, Einstein's theory of general relativity is often referred to as a theory
of gravitation. In fact it is no more than a geometric allegory describing
gravitation in terms of the curvature properties of a general imaginary four
dimensional Riemannian metric. This is a Riemannian metric obtained by
generalising the simple imaginary metric of special relativity imposed as a
consequence of Minkowski's unfortunate misinterpretation of the differential
equation.

(@dx/dy’ + (@dwdy’ + (dzidy’ = ¢ (10.1)

This equation (10.1) is no more than the common differential equation
(Thornhill 1993, 1996) for the wave hypersurfaces both of sound waves in any
general fluid at rest and of electromagnetic waves as given by Maxwell's
equations.

In the cosmology constructed here all material observers move, apart from
slight perturbations, with the universal ethereal flow which is accelerating
outwards from the centre of the universe up to a finite asymptotic radial
velocity. Galilean transformation therefore, to any observer's rest-frame
requires that all masses experience, in this rest frame, an acceleration towards
the centre of the universe. This acceleration, or force per unit mass, is given by

-¥ = -6sinacosh’ £ (10.2)
Now the mass contained within the sphere on which lies the observer at radius

. 2 . .
r = sinc. cosh’g is given by
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sincrcosh? &

mia )= ({,’const.)jo dzr’pdr

which, since dr = cosa cost” & da + 2 siné cosha sinhédE, leads to

mia)= J.:(]67'¢'/3)an2a0057 ada

(10.3)

and thus to

mier) = (1679 simwafl - 9sin’a/S + 9 sin*e/’7 - sin’a/3) (10.4)
The force per unit mass towards the centre may then be written as

- F=- Glo) m(a)/r” (10.5)
where the gravitational 'constant' G is given by

Gla) = (27/8m(1 - 9 sin"e/S + 9sin* /7 - sine/3)” (10.6)
so that G(a) mfo) = 6sin'cx (10.7)

Thus Gfez) 1s independent of time and, for any observer travelling with the
universal ethereal flow at a fixed «, remains constant for all time.

If V. denotes the universal gravitational potential of an observer at 7 =
sinccosh’ & then

(ng/ dﬂ) aconst T f
andso V= —(12sin” a sinh &/ cosh’ & )d&E

{ aconst )

Since V, = O when o = o this leads to

V, = 6sin’a/cosh’ & = 6sin’ a - Gsin’ otanh’ & (10.8)
or V,=G(a) m(a)/r (10.9)
Now 6sin’ ctanl’ £ is the kinetic energy per unit mass of the flow at

r = sina cosh’ £ and 6sin’a s its asymptotic value as & —» oo Thus the universal
gravitational potential on each flow surface & = const. is the amount by which
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the kinetic energy per unit mass of the flow falls short of its asymptotic value.

Let P, be a point in the universe with polar co-ordinates ( L 0) and P any other

point at (7,8, such that P, P = d. Then since, in general, ¥ /7 = 6/cosh’&, a

function of ¢ only, it follows that the triangle P,OF may be used at any time as a
triangle of accelerations. Thus, in the rest frame of 7,, the force per unit mass -

¥, felt by a mass at P,, is the vector sum of c_z' towards P and - ¥ along PO,

equal and opposite to P's acceleration away from the centre O. Likewise, in the
rest frame of P, the force per unit mass, - #, felt by a mass at P, is the vector

sum of a_’ towards P, and - ¥ along F,0, equal and opposite to P's acceleration

away from the centre 0. Thus, any mass in the universe i its own unique rest-
[frame feels an attraction towards every other mass, and the resultant of all these
attractions is a force per unit mass - ¥ towards the centre of the universe.

P, If the universe were uniform, and stationary
and subject to Newtonian gravitation, the
resultant force per unit mass towards the
centre would be exactly that given by
equation (10.5). More specifically, this
force per unit mass would be the resultant
of the attractions of all the mass within the
sphere on which the point lies, and the
resultant of the attractions of all the mass
outside this sphere would be zero. Since
the model of the universe given by the
similarity solution is neither uniform nor
stationary it is necessary to determine what
the corresponding results would be in the
similarity solution if all observers, in their
own unique rest frames, experienced
Newtonian gravitation.

0

In this case the resultant force per unit mass towards the centre of the universe,
from the attractions of all the mass within the sphere on which an observer at
r, = sin o, cosh’ £lies will be

T Sma’]cosh‘?f P -
I(a,) =L:o LD 2rr” sin@drdOpGla, Jeos¢/ d (10.10)

where d = cosh’&sin"a, + sin’a - 2sina; sina cosf)” and cos ¢ = (1, - rcosOh/d
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The double integral (10.10) reduces to

EnGla )

Ka )= —J':I

J‘rr (sina ; — sin acos&')sin 8de
3cosh &

L2 7
sin - acos ada

b0 2 2 ,

(sin @ ,+sin a-2sina , sinccosd) !
The inner integral is found to be independent of & and equal to 2/sin” @, and
then

I(ay) = Gle) m(e)/rs” (10.11)
in exact agreement with the result (10.5).

It follows however from equation (10.11) that the resultant force per unit mass
towards the centre of the universe from the attractions of all the mass outside
the sphere on which lies the observer at r, = sineycos”£1s not zero but is equal
to

I(w2) - I{ew) = Gle)[m(m2) - mia) ]/t (10.12)

and the total resultant force towards the centre of the universe from the
attractions of all the mass in the universe is

I(w2) = Glew) m(w'2)ir,” (10.13)

The result (10.13) does not agree with the value given by the similarity solution
[cf. equation (10.5)] and thus implies that Newtonian gravitation is not
universally valid. For an observer near the outer boundary of the universe,
however, there is very little difference between mi(e) and p(72) as shown
below.

1 = sina 0.85 0.875 0.9 0.925 0.95 1.0
mia) 8401 8454 8487 8502 8508 .8510
mifo)/miw’2) 9872 9934 9973 9991 9998 1.0

Newton's "law’ of gravitation is, therefore, an exceedingly good approximation
for observers near the edge of the universe, and this, in turn, provides further
evidence that we, who observe Newton's 'law' to be valid, are near the outer
boundary.

There is also another difference between Newton's 'law' and the concept of

gravitation given by the similarity solution. In Newtonian gravitation it is
assumed that the 'constant’ of gravitation is the same everywhere and that,
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therefore, the attraction felt by one body for another is mutual. In the similarity
solution, however G(w) vares with e and, even in the outer reaches of the
universe, this variation is significant, since G(e) = 6sin’avm(e) [cf. equation
(10.7)]. Locally, however, or between observers with the same value of «,
Newtonian gravitation with a constant G is, again, a good approximation to the
physical theory of gravitation given by the similarity solution.

Since observers in the universe do not move precisely with the ethercal flow of
the similarity solution but are subject to very small perturbations in velocity
relative to the mainstream, it follows that the value of G(e) for any observer
should also exhibit very small variations. This accords with the fact that the
'constant' of gravitation G is the most difficult of all the universal 'constants' to
measure accurately; it is, in fact, only known to about one part in two thousand
(Kaye and Laby 1973). This gives rise to an interesting question: can G be
measured over a prolonged period of time to a sufficient degree of accuracy to
detect a monotonic variation due to the Sun's motion around the centre of the
galaxy, or even an annual variation due to the Earth's orbit around the Sun?

11. The scale of the universe

In order to determine the scale of the universe, our position in it and the present
epoch, by means of the similarity solution, it is necessary to determine five
quantities, namely p,, ¢,, I, cosh&, and sinc,, where now the suffix a refers to a
terrestrial observer at the present time.

In attempting to do this, it will be assumed here that &, is sufficiently large, say
£>3, so that sinh’ &, cosh’ £, €*"/4 are practically indistinguishable and tanhé,
is practically unity. (When & =3, sinh°& = 100.4, cosi & = 101 4,

e’%/4 = 100.9, tanh& = 0.995). Estimates of the Hubble time may then be used
as values of z,. The justification for this is observational, namely that we can
'see’ out to red-shifts of order 4 or 5 with axially symmetric instruments,
implying that the two principal radii of curvature of waves, arriving even from
such large distances are practically indistinguishable; and, so far, no directional
differences have been detected.

Our present observed value of the gravitational 'constant' G, gives, when
equation (10.5) is written in full,

(Lp/e’)(1 - 9sin‘a,/5 + 9 sin’a,/7 - sina,/3) = 27/82G, (11.1)

The present value of the speed of light gives
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¢; cosa/coshé, = ¢, (11.2)
The estimated value of the Hubble time £ gives
L cosi’EJe, = 2731, (11.3)

The thermodynamics of the ether (Thomhill 1985a) yields a further relation.
Thus the homentropy of the similarity solution gives ¢,”/p; = ¢,”/p,, whilst

E = 3pv and EA = AT where the radiation density constant, 4, = 82°k%/15c°h°,
is a function of entropy only so that, in a homentropic cosmology A, and ¢/ are
universal constants. (% is specific energy per unit mass; / is Planck's 'constant”,
k 1s Boltzmann's universal constant). Then

Pa = E/3v, = AT3 = 82K T, /45¢,7°h,
so that finally

c,%/py = 45¢, hy /8L K'T, (11.4)
The four relations (11.1-4) are not sufficient to determine the five unknowns
P, C1, L, sin e, and cosh £, but they enable the system to be determined
completely for any assumed value of our position in the universe as given by
M. = sincy,. Thus, for a given value of sina,, the relations (11.2) and (11.3) give

Le, = 2V3 t.e,feos’ a, (11.5)

whilst the relations (11.1) and (11.4) give

) 1215hc”
L Cf = [ 4 4 L2 L4 L (11'6)
647 kT G (1-9sin" e /5+9sin o /7—sin"a _/3)
Finally, the relations (11.5) and (11.6) combine to give
5 405h§c:cos4aa
(11.7)

T 2567k TtIG (1-9sin o /54 9sin e, /T —sin’ e /3)

and then the relation (11.5) gives L, (11.4) gives p; and (11.3) gives cosé,. The
calculations have been carried out for three values of the Hubble time tg. The
results are given in Tables 1,2 and 3 for 5 = 10 x 10° years

JH = 97.8 km/iMpc).s], ty = 15 x 107 years [H = 65.2 km/(Mpc).s] and t; = 20
x 10 years [H = 48.9km/(Mpc).s].
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The physical quantities used in the calculations are as follows.

c: = 2.998 x10'ms. ke =13.805 x 107 (kg)m’/s°C°
G, = 66.70x 10 ni'/kg)s” h, = 662.56 x 10™*°(kg)m*/s
T, = 27K

In the tables, 1.,/c, 18 the Mach number of our radial flow outwards from the
centre of the universe at the present time, which, for the values of sina, shown,
is therefore both hypersonic and hyperluminal. V, is the present volume of the
universe and M the total mass. M/ is the number of ether particles in the
universe, the mean mass of ether particles in the ethereal mixture being

m = 4kT/3¢%, (Thornhill 1985a). In Table 1, the quantities in the last four
columns are independent of the value chosen for tyand so apply to all three
tables.

Cy L ::r;

hy
(eg)mfs | HafCa

. pr p) 1 R, v, M —
S| e | m | gghms | O % | K| g m | o | g M7
095 | 10°x [ 10%x 10°x | 107 x | 10%x 107 x| 10%x | 107 x| 10”x

2019|4825 | M7 [ 432 11300 2271 | o504 | 227t | 2286 | 50.06 | 1.628 | 2.949

092529772289 | 1254 | 1,421 [26.57| 1887 | 6.678 | 317.9 | 3254 | 1443 | 1446 | 2.619

090 | 3763|1376 | 818.6 | 2990 4247 | 77.07 | 5.282 | 391.1 | 41.14 | 291.7 | 1.282 | 2.322

0875 |4458| 942 | 3177 | 5176 [59.61| 213.1 | 4458 | 450.5 | 48.74 | 485.0 | 1.135 | 2.057

0.85 |50.70) 6.99 | 8885 7,926 | 77.09] 460.9 | 3.921 | 4976 | 5543 | 713.2 | 1.006 | 1.823

0.825|56.06| 5.50 | 19844 | 11,151 | 94.24 | 842.0 | 3.546 | 534.0 | 61.28 | 964.0 | 0.892 | 1.616

Table 1: (tg), = 10 x 10° years (3.156 x 10"s)
H =978 km/Mpc.s

4]

L T h

Sindy, mi's m (kgl)a/fmsz cosit &, 011( (kg/ji/ma (kg)ri:z/s /g
10°x | 10%*x 108x | 10%%% | 10%x

095 1 1304 | 1086 | 92907 | 2106 | 5e3 | 51004 | 1425 | 17264

0925 | 19.84 | 51.51 4894 | 631.7 | 11.81 | 1.657 10.02 | 212.0
0.90 2509 | 30.% | 31.94 | 1329 | 1888 | 6.766 | 7923 | 260.7
0875 | 29.72 | 21.19 124.0 | 2,301 | 26.50 | 18.71 6.687 | 3003
0.85 33.80 | 15.73 | 346.7 | 3,523 | 34.26 | 40.46 | 5.881 331.8
0825 | 3737 | 1237 | 7742 | 4956 | 41.88 | 73.92 | 5319 | 356.0

Table 2: (ty), = 15 x 10° years (4.734 x 10"s)
H =65.2 km/Mpc.s
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. ] L F25 i 7, P 3 hy /
Sty m/s m fkg)/ms’ | €95 S| ok | (kgiim flegim?/s | Hee'Ca
005 | 10°x | 10%x 10°x | 10%x | 10%x

1046 | 103.0 | 92210 | U85 1 3599 | 53548 | 1001 | 1147

0925 | 1488 | 91.57 | 0.4899 | 3553 | 6.643 | 2949 13.36 159.0
0.90 18.82 | 55.04 | 3.197 | 7474 | 10.62 | 1.204 10.56 1955
0875 | 22.29 | 37.66 12.41 1,294 | 14.90 | 3330 | 8917 | 2252
0.85 2535 | 27.97 | 3471 1,981 | 19.27 | 7.201 7.841 248.8
0825 | 28.03 | 21.98 | 7750 | 2,783 | 23.56 | 13.16 | 7.092 | 267.0

Table 3: (tg), =20 x 10° years (6.312 x 10"s)
H =489 km/Mpc.s

12. The past, the present and the future

Although sufficient time may now have elapsed for the universe to conform to
the complete similarity solution, this cannot lead to any precise information
about the very early stages or the initial conditions in the universe.
Nevertheless the complete similarity solution does constitute the only available
estimate of the comparatively quiescent initial state of the universe. From
tables 1, 2 and 3 the initial conditions determined for the similarity solution are:
speed of light ¢, of order 3 x 10" m/s; ethereal temperature T; of order
50,000°K; Planck's ‘constant' h, of order 7 x 10 (kg) m®/s.

Observation does, however, allow us to 'see’ something of the past state of the
universe. Figure 2 shows clearly how an observer F,,, at the present time ¢, and
travelling in the position sing,,. 'sees’ an object travelling in the position siner,
which was at P, at time ¢, and is now at /., at time ¢, To the observer at P,
this object appears to be at 4, the centre of curvature of nearly spherical waves
arriving at P,,, 1.e. its apparent position is very close to where it is now at P,,.
But he 'sees' it as it was at P, at time £., when the observer was at F,, and the
light sct out towards him travelling along a curvilinear ray F,.F,,.

When hoth £, and £, are sufficiently large, equation (8.2) gives, for the frequency
red-shift z = 7,71, - 1, and so an observer will 'see’ objects as they were at the
carlier time ¢, = £,/(z + 1).

Although it is possible at present to identify objects at red-shifts of order 4, it is
not yet possible to 'see’ them, as they were, in any detail, or to estimate their
distances. Indeed, the largest red-shift for which distance can be estimated is
about z = 0.015 which corresponds to t. = 0.985 t,; even at such distances
objects cannot be 'seen’ in much detail.
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So far as the present is concerned, it is important to realise how small is the
fraction of the universe which we can observe in any significant detail at the
present time. When £, and £, are sufficiently large, equation (7.6) gives

dy > Calla- LT+ 3(L - L)/ + ]
or, with z = (t,/t.- 1)
d.~c b z(1 -z4+ ..) (12.1)

The ratio of the volume bounded by red-shift z to the volume of the universe is
then

AR = ¢ (1 - 324 + .. )/24 3 (12.2)

The volume bounded by red-shift z, however, 1s typical of the spherical annulus
contained within spheres of radii (sin a, cosi’ &, #d,), and the ratio of the
volume of this spherical annulus to the volume of the universe is

6sin"a, d/R + 2d; /R’
= Bsimaucaz(l - 24 + ..) + (¢S 12V3)(1 - 324 + ..) (12.3)

Taking ¢, about 107 (see Tables 1, 2, 3) and sin o, = 0.9, for example, the ratios
(11.2), (11.3) are of the order respectively:

forz=0.015 8x107°,2x10*
forz = 0.1, 2x10"Y,1.5x 107
forz =1, 10° 107

Thus if the first order approximations (11.2), (11.3) are reliable up to z = /, the
part of the universe we observe out to red-shift z = 7 is still only typical of
about 1% of the whole universe.

The future can be predicted more reliably since, if the universe already
conforms to the similarity solution, it will continue to do so for all time.

Once the later stages of the universe have been fitted to a similarity solution, ¢,
the initial wave-speed at the centre of the similarity solution is fixed. Then at
time ¢, and position sine,, ¢, = c;cosa,/coshé,, and, in the same position sine,
ata latertime #, > t,, ¢, = ¢, cosa,/coshé,. It follows that
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cy/c, = cosh Ejcosh & = (t./t,)" = h/hy (12.4)
since ch 1s a universal constant.
Further, from the relations (2.2)

Ppa = ()" p/pn = (/) T/To = (12.5)
Thus, for example, when the universe is twice as old as it is at present,
conditions in our locality will be (cf. Thornhill 1985a) ¢ = 2.12x 107 m/s; T =

1.35°K,p = 0.209x 107" (kg)/ms”, p = 0.0248 x 10 (kg)/m’;
h=937x 107 (kg)m'/s.

The ethereal cosmology constructed here effectively presumes that the universe
will go on expanding forever, or until it encounters another universe. The
consequence, however, of adopting the similarity solution as the asymptotic
form of the universal ethereal flow 1s the impossibility of determining, by
means of local observations in its later stages, any knowledge of how the
present expansion phase began.

It remains, then, an open question as to whether it all began as the re-expansion
of a converging mass or as the sudden release of a confined mass at rest.

It remains, too, an open question as to whether matter, as well as cther, has
always been present, or whether the universe consisted initially of ether only,
out of which matter has been formed during the expansion.
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Appendix
The Universality of the Complete Similarity Solution

The equations of unsteady homentropic flow of an ideal polytropic gas in one
space-dimension may be written in the form (cf. Mirels and Mullen 1962,
Hubbard 1966),

Ou/ 0t +udu/0r+(1/ pjop/or =0 (A1)

and

Op/ 0t +0(pu/Or+opu/r=20 (A2)

where o denotes density, u velocity, » distance from the centre of symmetry and
a = 0,1,2 for plane, cylindrical and spherical symmetry respectively. All
quantities with a subscript bar have been non-dimensionalised in terms of a
fundamental length, pressure and wave-speed. For homentropy p/p” = K so that
equation (A.1) may be written as

Ou/ 0t +udu/dr+Kyp’” dp/or=0 (A.3)

For expansion into a vacuum the term in Zp/ZF in equation (A.3) becomes
negligible as f increases so that, for large ¢, '@ + u Av'dr — 0 asymptotically,
and this has the solution # — r/Z. Substituting  — 7/ in equation (A.2) leads to
the solution pt”" = f{r/t) where fis an arbitrary function. Thus the asymptotic
flow in all cases, whatever the initial conditions, is always a similarity solution.
The question at issue is whether all solutions, whatever the imitial conditions,
lead ultimately to the same solution asymptotically and that this solution is,
therefore, the solution given by the asymptotic form of the complete similarity
solution used in the main part of the paper.

First, just as the detonation in air of a piece of high explosive of any shape leads
rapidly to a spherically symmetric flow bounded by a spherical Rankine-
Hugoniot shock-wave, so the expansion into a vacoum of a mass of gas of any
shape and with any distribution of pressure etc. may be expected to lead
ultimately to an expanding spherically symmetric flow. Greenspan and Butler
(1962) demonstrate the early stages of this process for non-spherical initial
conditions. Comparison of the asymptotic solutions for different initial
conditions has been attempted in the literature between a sphere of gas at rest,
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whose initial conditions satisfy the complete similarity solution and an initially
uniform sphere of gas at rest. The crucial difference between these two cases is
that the flows have different outer boundaries when &= 1 or 2.

For the initially uniform sphere (suffix 2) at time ¢ = 0, the uniform pressure,
density and wave-speed are respectively p., o and @, and the radius is 7,. The
asymptotic solution is then

u =it (vp'p) (tay/L,)"" = fir/at); Ry = 2at/(y-1) (A.4)
So  [p(nat)/ p (tarL) =gy say
where 1, =R, = (y- 1) (riat)/2 (A5)
and

[p 00/ pf (tayLy) ° = g(o,p)

Then finally

P8/ p (0,8 = Fx12y) (A.6)

is indicative of the 'shape’ of the asymptotic solution, and

[p o0/ pi] (tasL) ™ = Dafy (A7)
is indicative of the time-development of the asymptotic solution.

The constant total specific energy is given by

E, =LL2(O' : —0'+2)7r )2, “p.dr/(y-1)

whence  E/pL." = (oy- o+ 2) 25/ (y- 1) (o + 1)] (A.8)

and the constant total specific mass is given by
L ol3-o o
M2=L (0'2—0'+2)7z' )27

whence Ma/p, L = we? - o+ 2) 756+ 1) (A.9)
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so that FoMoay = 1/wy-1) (A.10)

For the complete similarity solution (suffix 1) at time ¢ = o, the central
pressure, density and wave-speed are respectively p;, o and a, and the radius is
L;; at the boundary of the flow pressure, density and wave-speed are always
zero. The asymptotic solution is then

u=wtR, =2at/(v-1) (c+ D] 5, =vR, = (y- D {o+ 1) (at) (A.11)
and

P, 0/ pr= (- )" [Li(y- ) (o + 1)"/2a,4"
So [p(m 1V pi (ta/L)™ = [y-1) (o+ D/2]7 (1 - g2y
and[ﬂ(oﬂ/;oz] (ta/L)7" = [(y- 1) (o + 1)"/2]°"
Then, finally

Pt/ pifo,9 =(1- 1) =Fi(n.p (A.12)
1s indicative of the 'shape’ of the solution and

[p Y/ p] [tayL]™ = [(r-1) (c+ 1)"/2]7" (A.13)

1s indicative of the time development of the asymptotic solution. The constant
total specific energy is given by (cf. Thornhill 1958),

E :IOL;(O_Q_O_+2)7TJ(3—5)/2F "p;(]—r Z/Lj 2);//(2’—;)

dr/(}/—])

whence E/pL,°" =(c"-o+2) P yBl{a+ 32.¥ (v- 1}J/fo+t]) (v- 1/ (A.14)

where B (p,g) is the Eulerian integral of the first kind and
B (p.g) = Iip).Ig)/T{p + q). The constant total specific mass is given by

) (-1 i

M=o =o+2)x e p (17 /L,

whence Ma/ /pL," = (o - o+ 2) 277 (v2) Bf(o+ 1)/2, ¥(y- 1)] (A.15)

so that E,Ma” = [2/(v- Dj/f(o+ 3) y- (o + 1)] (A.16)
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In order to compare the asymptotic solutions for these two expansions into a
vacuum, with the same value of but with different initial conditions, it is
necessary to ensure that £, = E,, M, =AM and p,/p," = p./p’>. Using equations
(A.8-10) and (A.14-16) this leads to

arfas’ = pipITT = (prp)" = [(c+ 3 y - (o + D)2y (A.17)

and

I C(y=1) 2 Ty-1 2y

!

(L_ZJ‘T”_ ¥ B[cr+3 y J[(aw)y—(aﬂ)r”'”(A_IS)

The time-development of the two asymptotic solutions will be the same if /p
(0.8 poj(at/L,)°™ is the same for both. For the initially uniform sphere

[p(0.0)/ pfat/L)™™ =Dy (A7)

For the complete similarity solution

[p (o) paftat/L:)™" = [p o)/ plat/L )" (p/piara)™ (L/L)""

s Ca+d )2
(y-Dioc+1) 2y (y-1)
= (A.19)
2 (c+3)y—(a+1) yBlto+3)/ 2,y 4y - D]

=Dy, say

using equation (A.13) and the relations (A.17) and (A.18).

Greifinger and Cole (1966) have evaluated D,(%), for ¢ = o from the limiting
form of an exact analytical solution, and by numerical integration for o=/ and
2. Their values of D,(y are compared with the calculated values of D,(p) in
Figure 4. For ¢ = 0 the agreement is remarkably good and is satisfactory for
small values of (y- /) when &= I, 2. But the agreement clearly deteriorates as
yincreases when o = I, 2 and the flow boundaries are different.

The 'shape’ of the two asymptotic solutions will be the same if i, ) =
Fo(n, 3. Again, Greifinger and Cole have calculated Fi(77;, 7, [equation (A.0)]
and their results for three values of ¥ when & = I, are given by Hubbard (1966).
These values for F,(r, 3 are compared with the calculated values of F,(7,
in Figure 5. The relation between 7, and 7, is
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mm:= {2y + Dil(c +3)y - (o + DI}" (A.20)
The agreement is good for ¥ = 5/4 but again deteriorates as yincreases.

These comparisons, however, only suggest that the convergence to the
asymptotic form of the complete similarity solution takes longer as o and ¥
merease. They provide no evidence that the comparisons could not be
improved by taking the computations to longer times as o and y increase.

Alternatively, since the two sets of initial conditions in these comparisons are so
fundamentally different and lead to quite different flow boundaries when o =
I, 2, it seems reasonable to assume that the convergence to the complete
similarity solution would be quicker and more complete if the initial conditions
were not so different; and, in particular, if pressure, density and wave-speed
were initially zero at the outer boundary as in the complete similarity solution.
The fact that present observations conform so well to the complete similarity
solution suggests that this may well have been so and this, in turn, suggests that
the present expansion phase began not with a confined quiescent mass of ether
but with an unconfined instantaneous stationary minimum consequent upon an
carlier convergence. In Newtonian mechanics times does not begin at a
mathematical singularity associated with the start of an expansion phase of a
particular universe.
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