Chapter 8

Acoustics

By UNO INGARD, Massachusetts Institute of Technology

INTRODUCTION

The field of acoustics as commonly understood
deals with the generation and propagation of mechani-
cal vibrations in matter, the application of sound in
various fields of science, and its effeet on men. Of
these branches the general equations of wave motions
in solids and fluids have already been treated in
Part 3, Chaps. 7 and 4, and we need give only a supple-
mentary summary of some forms of the equations of
sound which will be used in the subsequent dis-
cussions. Some basic concepts and relations will
also be included.

1. Limits of Frequency and Sound Pressure

The range of frequencies encountered in acoustics
is quite large; the audible range itself extends over
almost 10 octaves (cf. the visual electromagnetic
frequency range of about 1 octave). The lower and
upper limits of the audible range are approximately
20 and 20,000 cps, respectively, and much of acoustics
is concerned with this range.

However, the frequencies in acoustics are by no
means limited to the audible range. Frequencies
as high as 500 megacycles have been generated, a
wavelength of 0.6 X 10~ ¢cm in air. In liquids and
solids the corresponding wavelengths are approxi-
mately 2.4 X 107¢ and 8 X 107¢ ¢m. These wave-
lengths are of the same order of magnitude as that
of visible light.

A gas ceases to behave like a continuum when the
wavelength of sound becomes of the order of the
mean free path. Strong dispersion and absorption
result, and when the sound frequency becomes con-
siderably greater than the collision frequency, the
ordered sound motion of the molecules will quickly
be transformed into random thermal motion, and
no sound propagation can take place [1].f At ordi-
nary atmospheric conditions the mean free path is
of the order of 1073 em, a limit frequency of the
order of 10? ¢ps.

In solids the assumption of continuum is senseless
when the wavelength approaches the intermolecular
distance, approximately 10-% ¢m with corresponding
limiting frequency of about 10'? eps. The ultimate
limit is actually reached when the wavelength is
twice the spacing of the unit cell of a crystal. In this

+ Numbers in brackets refer to references at end of
chapter.
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region propagation of sound (multiply scattered)
resembles diffusion of heat {2].

The range of sound pressure is also considerable.
The ear responds to sound pressures from 0.0002 to
2,000 dynes/cm?. The lower limit corresponds to
an intensity of 1071% watt/cm? at continuous exposure.
The least amount of acoustic energy that the ear
can detect is of the order of kT == 107" watt-sec
(ef. sensitivity of the eye: about one quantum of light
in the middle of the visible region hr =~ 4 X 107%).

The upper limit of the sound pressure in a pure tone
that can be generated in the medium is set approxi-
mately by the static pressure. At this pressure the
rarefaction part of the sound cycle would create
vacuum and breakdown, or cavitation, and the
medium could no longer “support” the wave. The
intensity in air of a plane sound wave with this limit-
ing pressure equals approximately 1.20 X 10% watts/
em? (=191 db). In water at atmospheric pressure
the corresponding intensity is 0.36 watt/cm?2 (The
cavitation pressure in a liquid is frequency-dependent
and can under certain conditions considerably exceed
the static pressure.)

Before the upper pure-tone intensity limit is
reached, nonlinearity of the medium causes distortion
of the wave: energy is in effect removed from the
fundamental frequency and distributed on higher
harmonics. Therefore, a large-amplitude wave prop-
agating in air will change waveform and finally,
after a certain distance of travel, break into a shock,
reaching a stable saw-toothed form. This behavior
is somewhat similar to the familiar breaking of waves
on a water surface (see Sec. 17).

Sound Pressure and Intensity Levels. In
expressing the sound intensity on a logarithmic scale,
the reference intensity I, is usually taken to be
Iy = 10718 watt/cm? so that

Intensity level in decibels = 10 loin
[

Correspondingly, the sound pressure is expressed in
decibels by

Sound-pressure level in decibels = 20 logii
o

where po = 0.0002 dyne/cm?, rms value. The refer-
ence pressure has been chosen to be approximately the
threshold of hearing. The intensity level and the
sound-pressure level would be identical if po were the
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sound pressure that corresponds to the intensity ..
This is not exactly true, however, except at one
temperature T, approximately equal to 300°K (20°C).
For temperatures higher than T’ the intensity level
as defined above will be larger than the sound-pressure
level by an additional term 10 log (T/T:)"? db.

2. General Linear Equations of Sound
Propagation [3, 4]

From the linearized equations of sound propagation
obtained by keeping only first-order terms of the
variations u, 3, p, and ¢ in the fluid-field variables,
velocity v, density p, pressure P, and entropy S,
respectively, in the general hydrodynamic equations
(see Part 3, Chap. 4), one finds the wave equation
for a homogeneous moving medium
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where v is the flow velocity of the medium.
If the medium is inhomogeneous, the basic equations
become considerably more complicated [4]:
dé
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(conservation of mass) (8.2)
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(conservation of momentum)

(8.3)
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(conservation of energy) (8.4)
p =c2 + he (equation of state)  (8.5)

where

¢ = velocity of sound = (g)s h = (zg

The effect of dissipation in the medium due to heat
conduction and viscosity has not been accounted for
in these equations.

Irrotational and Isentropic Flow (v X v =0,
vS = 0). In this particular case the sound-particle
velocity u is irrotational, so that, with u = —v¢,
Egs. (8.2) to (8.5) reduce to [4]

De¢ 2 xre 2
ﬁ=c V¢+(vn)'v¢+—v Vine (8.6)

where mo = [dp/p is the enthalpy of the original
flow. The second term on the right-hand side
essentially expresses the effect of a density variation
of the medium, and the third term the variation of
velocity of propagation (as does the factor ¢? in the
first term). For a homogeneous medium Eq. (8.6)
reduces to (8.1). If the flow is directed along the
z axis, the expanded version of this equation is
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Rotational Flow (¥ X v = 0). The sound par-
ticle velocity u is no longer irrotational but contains a
vector potential in addition to the scalar potential.
Neglecting terms of second order in v/c and |V X v|/w
and their products, the velocity u can be expressed in
terms of a single quantity ¢, so that [4]

o —w+f’(vxv)xwdz 8.8)

and the Egs. (8.1) to (8.5) now lead to the wave
equation

DY _ . ; v, . 2

Vg Vi = (Vo) * V¢ + Dt v:Vine

+c:2f£ (W) - Vivdl — (Vo) ﬁ: (VXv) XVvydl
(8.9)

where Viv = —V X (VX V)

3. Kirchhoff’s Formula in a Moving Medium [4]

The velocity potential ¢ at a fixed point, in terms
of the values of ¢ and d¢/dn on fixed surfaces bound-
ing the region under consideration, becomes, in the
case of a moving medium [4],
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The flow is here assumed to be in the positive z direc-
tion. R* = z*: 4 y? + 22 (see Sec. 2) is approxi-
mately the distance from P to the ‘“source” point
on the surface. The brackets indicate retarded
values, [¢] = ¢t — R/c), where

“'»33 4 R*
V1=

The surface element dS: in the last integral is the
projection of dS upon the direction of the flow (the
z axis).

For harmonic time dependence ¢ = g¢e~®! the
formula reduces to
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If the medium in addition contains a volume-source
distribution @ = Q,¢~**, an additional term

[Qie™E/R* dv

appears in the right-hand side of (8.10a).

The generalized Kirchhoff’s theorem is applicable
not only for surfaces and sources at rest and the
medium moving but also for the reversed case (see
Secs. 9 and 10).

4. Boundary Conditions. Impedanece and
Absorption Coeflicients

Accompanying the differential equations (8.2) to
(8.9) or Kirchhoff’s formula are the boundary condi-
tions of continuity of velocily normal to the boundary
and continuity of pressure.

The ratio between the particle velocity at a point
in & field and the sound pressure is termed the specific
acoustic admittance.

no_ W

e P

1=1,2,3

It is a vector with the same direction as w. The
inverse of n/pc in a given direction is termed the
specific acoustic impedance

2 = oo ‘_(fc)_l e

For a plane wave in the z direction the specific
acoustic impedance or the characteristic impedance
of the medium is real and equals

y A
U

(for air =~ 41.5 cgs at 20°C) [5], where p = density,
¢ = velocity of sound (=<340 m/sec at 20°C in air).
The radiation impedance of a vibrating surface is the
ratio of the pressure at the boundary and the particle
velocity of the surface.

The ratio between the pressure and normal velocity
at a boundary is referred to as the normal impedance
of the boundary. In general this quantity is not
known a priori and can be determined first after the
field has been found, utilizing the boundary con-
ditions mentioned above. The normal impedance
will then in general be a function of the angle of
incidence. However, for some special material (a
“wall” with pores normal to the surface) the particle
velocity is always normal to the boundary and will
depend only on the local pressure at the point under
consideration. For such a locally reacting or point-
reacting boundary the normal impedance will be
independent of the sound field and can be specified
in advance as a characteristic property of the bound-
ary. Under those conditions the analysis of many
field problems, sound waves in rooms, etc., is con-
siderably simplified [6]. Many materials met in
practice are approximately locally reacting, e.g.,
perforated porous tiles, dense porous homogeneous
material, cavity-resonator arrangements, etec.

" The absorption coefficient of a plane boundary
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exposed to a plane wave with an angle of incidence

¢is

tcosgp — 12

fceos ¢+ 1
460 cos ¢

T @cos & + 1) + (xcos )?

In a diffuse sound field the probability B(¢) that an
elementary plane wave has an angle of incidence ¢ is
proportional to the solid angle 2r sin ¢ d¢, so that the
average absorption coefficient

[fB(¢)a(¢) cos ¢ d¢)/[[B(¢) cos ¢ dd]
becomes

a=2j;”’2a(¢)sin¢eos¢d¢

a(p) =1 -

(8.11)

This coefficient is usually referred to as the statistical-
average absorption coeffictent. With «(¢) given by
(8.11), & in general cannot be expressed in closed
form. However, if { is independent of ¢, the integral
reduces to [7, p. 388]

u? — gt s '3
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For relatively hard boundaries, (ue) K1, we get

& =~ 8u. Graphical representation of (8.12) is
available [8].

] (8.12)

5. Second-order Quantities

Any quantity that contains the product of two
first-order variables of the field is of second order
and hence of the same order of magnitude as the
terms originally neglected in linearizing the funda-
mental equations. In the calculation of such quanti-
ties as energy flow, mass flow, and time averages
like radiation pressure the contribution of the origi-
nally neglected terms has to be evaluated.

Energy Flow. Such an investigation [9] of the
energy flow in the wave leads to an expression that
involves only first-order quantities, so that the sound
intensity equals

It) = pu (8.13)

With u = —V¢ and ¢ = ¢ie™!, the time average
of the intensity is

I =% Re (piiy) = i“f“ @Yo — oV3) (8.14)

where fi; is the complex conjugate of u; (Re = real
part of).

Radiation Pressure. Correspondingly, the radi-
ation pressure of a plane wave incident on a perfect
absorber equals ezactly twice the mean kinetic energy
density of the wave motion. For small amplitudes
this expression can be written as the mean fotal energy
density,

polual? el

Praa = energy density = &
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i.e., the same expression as in the electromagnetic
case. For a perfect reflector the radiation pressure
is twice as large. A thorough discussion of subtle
questions regarding the effect of large amplitudes,
the infinite extension of the sound beam, the angle
of incidence, etec., can be found in Borgnis [10].

6. Electromechanical Analogues

The electrical analogue of a mechanical system
is the electrical network (or field) which is deseribed
by the same (Lagrangian) equations of motion as the
mechanical system. As an illustration consider the
simple mechanical system shown in Fig. 8.1a, con-
sisting of a horizontal bar, the vertical motion of
which is impeded by an attached mass M, a spring
with spring constant K, and a friction force Dv.

rd Vi
~f+M dv/dt+Dv+K fvdt =0 -i+C dv/dt+R™ v+Llfuat =0
(a) (b)

vV L R C
K D M
e | |

~v+Kdfsat+0 " $+M f1dt=0

-V+L di/di+Ri+C [id1=0

(c) (d)
Fie. 8.1

There are two electrical analogues of this system:
one, a series circuit shown in Fig. 8.1d, and the other,
the dual of Fig. 8.1d, a parallel circuit shown in
Fig. 8.1b. In the first of these analogues, often called

the classical, we have the following correspondence

between mechanical and electrical quantities: force—
voltage, velocity—current, mass—inductance, com-
pressibility (K~')—capacitance, mechanical resist-
ance (D)—electrical resistance. In the second
analogue, often called mobility analogue, we get cor-

respondingly: force—current, velocity—voltage, mass

—capacitance, compressibility—inductance, and me-
chanical resistance—inverse of electrical resistance.
Le Corbeiller and Yeung [11] have pointed out that
the picture is not complete without introducing the
mechanical dual shown in Fig. 8.1¢c. This system is
topologically similar to Fig. 8.1d. The choice of
representation most convenient for a particular
problem has been the subject of many studies [12].

SOUND SOURCES AND THEIR FIELDS

7. The “Natural’”’ Sources of Sound [13]

The linear equations governing the propagation of
sound in air are

Howd L% 0 (oonservationolmass) (8.15)
ox; ot
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a6s) + c*ﬂ =0 {conservation of momentum)
at axs
(8.16)
dU = ¢, dT + P dv (conservation of energy)
(8.17)

P = (cp — co)pT (equation of state) (8.18)

The first of these is the exact equation of conserva-
tion of mass, and the second an approzimation of
conservation of momentum. The two last equations
combine, under isentropic conditions, to the relation
p = (yPo/ps)8 = ¢?5 between the sound pressure
and the density & = p — po. The three resulting
equations lead to the wave equation

1 9%p
vip — — =L =
» c? ol

with the source term on the right-hand side being zero.
The simplest physical means required to bring about
a source term is found directly by inspection of the
equations above, and amounts to introduction of

a. Mass at a rate € per unit volume in the medium,
This means an addition of the term @ on the right-
hand side of Eq. (8.15).

b. Force F; per unit volume in the medium, which
enters as an additional term on the right-hand side
of Eq. (8.16). _

c. An addition 8(pviv;)/dz; per unit volume of the
rate of change of momentum. This term, introduced
by Lighthill, is due to fluctuations (turbulence),
pvv; being the Reynolds stress tensor. The term
enters in the left-hand side of Eq. (8.16).

d. Heat, at a rate pH per unit volume. Appears
in the left-hand side of Eq. (8.17) (after time differen-
tiation of this equation).

By consideration of these additional terms, the
resulting wave equation becomes [13]

1 a% ( ¥y —1 ) aF; 82T ;s
Vip ———L = — — pH — - —"
P c? ot? Q+ c? i g ax: Oz 0x;
(8.19)
s 0Q . OH s
where @ = % H 5 Ti; = pviv;

The three source terms in this equation are those of a
simple source, a dipole, and a quadrupole distribution,
respectively. The heat source is equivalent to a
mass source of strength pH(y — 1) /¢

The Simple Source. The first term in (8.19)
leads to a pressure field given by

pB%f’MdI,f (8.20)
m JU ¥

= (21— 2) + (22 — 32)2 4 (33 — 2)2
where z;" = source point, z; = field point. In the

case where the source is concentrated in a point with
the flow strength ¢ the field becomes

_ 4t —r/e)
P T 8.21)
or p= _—g" eikrg—iut
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if ¢ = gee#t. The total radiated power is

v [o(-9)]

(8.22)
W(t) = %.Q:C_P when ¢ = goe™ i

The simple-source field (8.21) is realized by means of a
pulsating sphere having a radial velocity Upe ¢
such that ¢ = 4xa*Up. At low frequencies the
simple-source field represents the major contribution
to the far field of any finite source with a net flow
strength different from zero.

The Dipole. The second source term in (8.19)
corresponds to a dipole distribution equal to the
vector field F;. 'The source term af;/oz;' of a concen-
trated force f; can be considered as the sum of two
simple sources

1 ] ¥ __1__ '
-E,fl(xi -+ Az;') and M‘_,fi(zi)

of opposite sign, a distance Az’ apart, each giving
rise to a field (8.21). In the limit Az;’ = 0 the
resulting field will then be that of a dipole of strength

f"
__ 1 8 ff@—rlo
L 4«6:\:.‘[ r ] (8.53)

If the force is in the z, direction, the far field becomes

o-gmmegla(-9]

or p= .___"lu_,.fl cos @ gikrg—iuwt (824)
4are
if fi = fie ™! and =/r = cos §. The total radiated
power is
-1 [E ( _ 1‘) ]’

L v el L

— - w%lfﬂ!
or W(t) Sdrcip (8.25)

if fi = fie™t. In general for a continuous force
(or dipole) distribution of strength F; the field becomes

1 o [F:it —r/c)
p= = e [-—~—-~r ] dv’ (8.26)

or in the far field

1 e —x;' 8 [ ( r)] .
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The dipole field (8.24) is obtained, for example,
from an oscillating sphere having a velocity U **
corresponding to the dipolestrength f; = —iw(radp) Uy,
where ¢ = sphere radius.

It follows from (8.24) that the dipole pressure field
will contain one more factor of w than do the simple-
source ficlds from which it is made up. The total
radiated acoustic power, being proportional to w?
“for the simple source of a given flow strength, will
therefore be proportional to w! for the dipole.
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The mounting of a loudspeaker or an oscillating
piston in an infinite wall or in a closed box will in
effect convert the radiator from a dipole to a simple
source and hence improve the low-frequency efficiency.

The Quadrupole. In complete analogy with the
derivation of the field from the force distribution,
it follows that the field caused by the third term in
(8.19) is that of a quadrupole distribution equal
to the stress temsor Ty; [13]. The pressure dis-
tribution becomes

- s at Tyt —r/e) '
4 Jo' Az Bz’ ¥

or in the far field

1 xxj a2

‘r r
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It follows from (8.28) that the quadrupole pressure
field will contain one more factor of « than do the
dipole fields from which it is composed. If the total
acoustic power from the dipole is proportional to «*,
it will be proportional to w® for the quadrupole.

For a longitudinal quadrupole of total strength #;,
concentrated at r = 0 and with both axes in the z,

. direction, the field is

11 a2 r
= —-cos?f—1 (t - —)
P 4mctr ar ! [
w? 1
= - — cos? @ fyyeikre et 8.29
P T e’ (8.29)

if i = tue ™!, with the corresponding radiated
total power
wilt?
=_——" 8.30
40mrpct @80
if ti; = te—iwt,

For a lateral gquadrupole the expression for the
pressure is the same except for a factor sin 6 replacing
one of the factors cos @ in (8.29). The total radiated
power is

_ wlhf?

120mpct

if #; = tse~i@f,  Although the quadrupole source has
little importance in general, it is the sole contribution
in the generation of sound by turbulence in free space.
Sources of higher order can be built and super-
imposed correspondingly to represent (in a mullipole
expansion) the field from an arbitrary finite source.

(8.31)

8. Generation of Sound by Turbulent Flow
(13, 14]

As shown by Lighthill [13], the generation of sound
by turbulent flow is due to the (Reynolds) stress-
tensor (quadrupole) source distribution discussed
above, leading to a sound field given by (8.28). As
far as the dependence on the flow parameters is
concerned, the radiated power is of the form given by
(8.30) or (831). Since b ~pf? and o ~ v/l
it follows that

Acoustic power from turbulence ~ pr®c—52 (8.32)
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In other words, since the rate of kinetic energy of the
flow entering a region is 213, it follows that the
efficiency of sound generation by turbulence goes as the
fifth power of the Mach number M = v/e.

9. Radiation from a Simple Source in a Moving
Medium [4, 15, 16]

An important question concerns the effect of
steady motion of the medium on the field distribution
from a stationary simple source of sound located in
free space. In the absence of motion of the medium
the sound field will be spherically symmetrical, and
the surfaces of constant phase will coincide with the
surfaces of constant amplitude. Motion of the
medium will split this coincidence.

No Sound
Source

2

5 v v

Source

Subsonic Velocity
B =vlc<l

Supersonic Velocity
sin@=c/v
B=v/c>|
Fic. 8.2, Equal sound pressure contours from sound
source in motion or for a stationary source in a moving
medium. The contours are in both cases measured in a
coordinate system attached to the source.

The field distribution of a stationary source in a
moving medium measured in the stationary coordi-
nate system is the same as that of a moving source
in a stationary medium measured in the frame con-
nected with the source. The field from a point
source located at the origin of the stationary coordi-
nate system zyz in which the medium moves with a
constant velocity » in the direction of the z axis is

G(t — R/e)

14 Ji') = SR —— 8.33)
PEy 47R* A/1 — p? ¢
hiere p = —Pz* +R*

V1= g

RB* = g*2 4 42 4 22 x‘=_:c—
¥ V1 — g

which can readily be seen to satisfy Eqgs. (8.7).

The surfaces of constant phase, given by B = con-
stant, are spheres of radius R /1 4 82 with the
origin at # = RB. This can be easily seen in an
elementary way by caleulating the time it takes for a
pulse of sound to reach z, y, 2. The surfaces of con-
stant sound pressure, on the other hand, are given
by R* = constant, which corresponds to the ellipsoid
22/(1 — %) + y? + 2% = constant = R*?, as pictured
in Fig. 8.2. It is interesting to notice that the field
is the same up and down wind and that the intensity

is larger in a direction at right angles to the flow.
Physically the decrease of sound pressure in the direc-
tions with and against the wind can be explained as
follows. Down wind the space occupied by a pulse of
energy of certain length is “stretched” out, and the
energy density is correspondingly decreased. Up
wind the wave has effectively to travel further to
reach the point of observation, and the effect of
spherical divergence will be comparatively larger.

10. Radiation from a Moving Sound Source [4,
15, 16]

Consider a simple source of strength ¢ moving in an
arbitrary path defined by the coordinates X(f),
Y(t), and Z{f) with respect to the stationary coordi-
nate system zyz. In a way similar to that used in the
derivation of the field from a moving charge, it can
be shown that the sound-pressure field becomes

Gt — R/c)

R(1 — [vg]/c)4n (&3

plr,y,2t) =

where the distance R is found from the equation

@ =[e-3 (DT [ (D]

+[z -z(z-? ]’~R==o (8.35)

and [vg] is the projection of the velocity at time
t — R/cupon R.

Subsonic Velocity. For velocities v <e¢ the
equation for determination of R has only one root,
so that at time ¢ there is effectively only one point
on the path of the source which contributes to the
field at =, y, 2. In the particular case of source
motion in the z direction with a constant velocity »
(8 = v/c), the distance R hecomes

prie ﬁf* + k* R

V1 - g

£ = z —
Vi g

_ [o=]

wi (o)

In the coordinate system attached to the source
t=xz—1ol, 9=y, and { =2z the sound-pressure

field becomes p(&n,i,t) = ¢t — R/c)/R*4r /1 — g2
so that the surfaces of constant phase given by

£* oyt 22

(8.36)

=R*/1 — gt

t — % = constant

become circles with their centers displaced along the
£ axis (see Sec. 9), and the surfaces of constant pressure
are the ellipsoids £2/(1 — 8% + %* + {? = constant.
Hence the sound pressure is higher in a direction at
right angles to the direction of motion (see Fig. 8.2).

Supersonic Velocity. If we carry through a’

formal solution for the case of v > ¢, there are two
solutions to Eq. (8.35), R, and R, and the pressure
field becomes




gt — La/c)

gl — Ivg/c)
P@Y2) = TR T = [om)/e]

4r |1 — [ori)/c]
(8.37)

For a rectilinear motion in the z direction the two
values of R are

o __ *
Rl,:=£R,-7BE R*t = g% — (y? 4 2%
gt—1
£ x —v _ E
V-1 E~1
and Rlll—[vm] =R31—[U—R'] =R*+/p* -1

Hence, the surfaces of constant pressure are, in the
coordinate system §¢q{ connected with the source,
hyperboloids

ES

R*? = constant =
g -1

_.,’2_!4)0

as shown in Fig. 8.2. The limiting curve, for R* = 0,
corresponds to the so-called Mach cone

with the half angle &« = sin™! {¢/v). In this idealized
case with a point source of sound the pressure goes
to infinity at the origin and hence along the whole
Mach cone. In front of the cone there will be no
sound.

For a sound source of finite size there will be com-
plicated disturbance in the medium and a shock wave
extending from the front (or any discontinuity) on
the source. This will change the local properties of
the medium, which will affect the sound propagation.

11. The Doppler Effect

When a sound source of frequency w passes a
stationary receiver, the sound observed will in general
have a continuous spectrum. At any instance,
however, frequency can be defined as the time ratio of
change of the phase w = (d/dt){wt — R/c). The
frequencies thus obtained in the case of subsonic and
supersonic velocities are:

Subsonic Velocity.

]ﬂw(l + 8 cos 6)

,_ [ +pE/RY
@ “’[ (1 -89

where the distance between the source and observer is
(z —ot)2+y*+2, £ =(x—v)/1—p5, and
R* = §* 4 y2 + 22, When the observer is on the
z axis in front of the source, o' = /(1 — ), and
when behind the source, o’ = w/(1 + 8).

Supersonic Velocity. In this case we have two
instantaneous frequencies

BE*/R* — 1
B — 1

BE*/R* + 1
-1

lo'| = w o] = w

which requce o

w

g—-1

when the observer is in the z axis. If 1 <8 <2,
both ' and ' are less than w.

’ _w_ f-
w-8+1 and o’

12. Radiation and Scattering

In addition to the basic fields from point sources
desecribed above, a number of other radiation fields
from finite sources are known. With a given velocity
distribution on the surface of the source, the field
is formally given by the Kirchhoff theorem in Eq.
(8.10). Ewvaluation of the field leads often to great
analytical difficulties; some important radiation
problems solved in the literature are indicated below.
Generally only the “far” field is of interest. How-
ever, to find the reactive part of the radiation imped-
ance of the source, the field over the surface of the
source must be evaluated. The radiation resistance
can readily be found directly from the far field by
calculation of the radiated power. Among the large
number of papers in this field we find solutions of, for
example, the following problems: pulsating and
oscillating spheres and cylinders [7, p. 244], piston
in a sphere or cylinder [7, p. 244], piston in an infinite
wall in a medium at rest [7, p. 244] and in a moving
medium [18], vibrating piston in free space [19],
radiation from open end of a pipe [20].

The scattering problem is closely related to the
radiation problem with the additional difficulty
that the field distribution on the scatterer is not
known a priori. The resulting integral equations
must often be solved approximately. Work on
scattering includes spheres and cylinders (7, p. 244],
spherical aperture in an infinite screen [21], spherical
disk [17], straight edge [22], resonators [23], absorbing
strips [24], cylindrical vortex [25] using general
equations in Sec. 2.

13. Technical Aspects of Sound Generation
(5, 26]

The methods used in the generation of sound can
essentially be divided into two groups: (1) conversion
of electrical oscillations into mechanical ones, and
(2) conversion of nonoscillatory mechanical energy
(or heat) into oscillatory motion. As a third group
one could perhaps specify (3) explosions, electric
sparks, and similar effects.

In the first group the means of making the con-
version is usually a linear system, an electromechanical
transducer, whereas in the second group nonlinear
mechanisms are essential. A sound source like a bell,
in which the eigenoscillations are excited, requires
for continuous operation an oscillatory driving force
and can therefore be considered to belong to the
sources in group 1.

In general it is impossible to cover the entire
acoustic spectrum by one and the same transducer,
and several different mechanisms have been developed
for different frequency regions. In the first group
are membrane and piston vibrators (loudspeakers)
driven electromagnetically or electrostatically [27],



