
Waveguides

Waveguides, like transmission lines, are structures used to guide

electromagnetic waves from point to point.  However, the fundamental

characteristics of waveguide and transmission line waves (modes) are quite

different.  The differences in these modes result from the basic differences

in geometry for a transmission line and a waveguide.

Waveguides can be generally classified as either metal waveguides or

dielectric waveguides.  Metal waveguides normally take the form of an

enclosed conducting metal pipe.  The waves propagating inside the metal

waveguide may be characterized by  reflections from the conducting walls.

The dielectric waveguide consists of dielectrics only and employs

reflections from dielectric interfaces to propagate the electromagnetic wave

along the waveguide.

Metal Waveguides

Dielectric Waveguides



Comparison of Waveguide and Transmission Line Characteristics

Transmission line

• Two or more conductors

separated by some insulating

medium (two-wire, coaxial,

microstrip, etc.).

• Normal operating mode is the

TEM or quasi-TEM mode (can

support TE and TM modes but

these modes are typically

undesirable).

• No cutoff frequency for the TEM

mode.  Transmission lines can

transmit signals from DC up to

high frequency.

• Significant signal attenuation at

high  frequencies  due to

conductor and dielectric losses.

• Small cross-section transmission

lines (like coaxial cables) can

only transmit low power levels

due to the relatively high fields

concentrated at specific locations

within the device (field levels are

limited by dielectric breakdown).

• Large cross-section transmission

lines (like power transmission

lines) can transmit high power

levels.

Waveguide

C Metal waveguides are typically

one enclosed conductor filled

with an insulating medium

(rectangular, circular) while a

dielectric waveguide consists of

multiple dielectrics.

C Operating modes are TE or TM

modes (cannot support a TEM

mode).

C Must operate the waveguide at a

frequency above the respective

TE or TM mode cutoff frequency

for that mode to propagate.

C Lower signal attenuation at high

frequencies than transmission

lines.

C Metal waveguides can transmit

high power levels.  The fields of

the propagating wave are spread

more uniformly over a larger

cross-sectional area than the

small cross-section transmission

line.

C Large cross-section (low

frequency) waveguides are

impractical due to large size and

high cost.



General Wave Characteristics as Defined 

by Maxwell’s Equations

Given any time-harmonic source of electromagnetic radiation, the

phasor electric and magnetic fields associated with the electromagnetic

waves that propagate away from the source through a medium

characterized by (ì,å) must satisfy the source-free Maxwell’s equations (in

phasor form) given by

The source-free Maxwell’s equations can be manipulated into wave

equations for the electric and magnetic fields (as was shown in the case of

plane waves).  These wave equations are

where the wavenumber k is real-valued for lossless media and complex-

valued for lossy media.  The electric and magnetic fields of a general  wave

propagating in the  +z-direction (either unguided, as in the case of a plane

wave  or guided, as in the case of a transmission line or waveguide) through

an arbitrary medium with a propagation constant of ã are characterized by

a z-dependence of e .  The electric and magnetic fields of the wave may!ãz

be written in rectangular coordinates as

where á is the wave attenuation constant and â is the wave phase constant.

The propagation constant is purely imaginary (á = 0, ã = jâ) when the wave

travels without attenuation (no losses) or complex-valued when losses are

present.



The transverse vectors                           in the general wave field

expressions may contain both transverse field components and longitudinal

field components.  By expanding the curl operator of the source free

Maxwell’s equations in rectangular coordinates, we note that the

derivatives of the transverse field components with respect to z are

If we equate the vector components on each side of the two Maxwell curl

equations, we find

We may manipulate (1) and (2) to solve for the longitudinal field

components in terms of the transverse field components.



where the constant h is defined by

The equations for the transverse fields in terms of the longitudinal fields

describe the different types of possible modes for guided and unguided

waves. 



For simplicity, consider the case of guided or unguided waves

propagating through an ideal (lossless) medium where k is real-valued.  For

TEM modes, the only way for the transverse fields to  be  non-zero  with

                     is for h = 0, which yields

Thus, for unguided TEM waves (plane waves) moving through a lossless

medium or guided TEM waves (waves on a transmission line) propagating

on an ideal transmission line, we have ã = jk = jâ.

For the waveguide modes (TE, TM or hybrid modes), h cannot be

zero since this would yield unbounded results for the transverse fields.

Thus, â � k for waveguides and the waveguide propagation constant can be

written as

The propagation constant of a wave in a waveguide (TE or TM waves) has

very different characteristics than the propagation constant for a wave on

a transmission line (TEM waves).  The ratio of h/k in the waveguide mode

propagation constant equation can be written in terms of the cutoff

cfrequency f  for the given waveguide mode as follows.

The waveguide propagation constant in terms of the waveguide cutoff

frequency is



An examination of the waveguide propagation constant equation reveals

the cutoff frequency behavior of the waveguide modes.

cIf f  < f , ã = á (purely real) e  = e!ã z !á z

waves are attenuated

(evanescent modes).

cIf f  > f , ã = jâ (purely imaginary) e  = e!ã z !jâ z

waves are unattenuated

(propagating  modes).

Therefore, in order to propagate a wave down a waveguide, the source must

operate at a frequency higher than the cutoff frequency for that particular

mode.  If a waveguide source is operated at a frequency less than the cutoff

frequency of the waveguide mode, then the wave is quickly attenuated in

the vicinity of the source.



TE and TM Modes in Ideal Waveguides
(PEC tube, perfect insulator inside)

Waves propagate along the waveguide (+z-direction) within the

waveguide through the lossless dielectric.  The electric and magnetic fields

of the guided waves must satisfy the source-free Maxwell’s equations.

Assumptions:

(1) the waveguide is infinitely long, oriented along the

z-axis, and uniform along its length.

(2) the waveguide is constructed from ideal materials

[perfectly conducting pipe (PEC) is filled with a

perfect insulator (lossless dielectric)].

(3) fields are time-harmonic.

The cross-sectional size and shape of the waveguide dictates the

discrete modes that can propagate along the waveguide.  That is, there are

only discrete electric and magnetic field distributions that will satisfy the

appropriate boundary conditions on the surface of the waveguide

conductor.

If the single non-zero longitudinal field component associated with

a given waveguide mode can be determined         for a TM mode,        for

a  TE mode), the remaining transverse field components can be found using

the general wave equations for the transverse fields in terms of the

longitudinal fields. 



General waves in an arbitrary medium

TE modes in an ideal waveguide 

TM modes in an ideal waveguide

The longitudinal magnetic field of the TE mode and the longitudinal

electric field of the TM mode are determined by solving  the appropriate

boundary value problem for the given waveguide geometry.



Ideal Rectangular Waveguide

The rectangular waveguide can support either TE or TM modes.  The

rectangular cross-section (a > b) allows for single-mode operation.  Single

-mode operation means that only one mode propagates in the waveguide

over a given frequency range.  A square waveguide cross-section does not

allow for single-mode operation.

Rectangular Waveguide TM modes

The longitudinal electric field of the TM modes within the rectangular

waveguide must satisfy the wave equation

which expanded in rectangular coordinates is

The electric field function may be determined using the separation of

variables technique by assuming a solution of the form



Inserting the assumed solution into the governing differential equation

gives

where h  = ã  + k  = k  ! â .  Dividing this equation by the assumed solution2 2 2 2 2

gives

Note that the first term in (1) is a function of x only while the second term

is a function of y only.  In order for (1) to be satisfied for every x and y

within the waveguide, each of the first two terms in the equation must be

constants.

The original second order partial differential equation dependent on two

variables has been separated into two second order ordinary differential

equations each dependent on only one variable.  The general solutions to

the two separate differential equations are

(1)



The resulting longitudinal electric field for a rectangular waveguide TM

mode is

The TM boundary conditions for the rectangular waveguide are

The application of the boundary conditions yields

The resulting product of the constants A and C can be written as a single

oconstant (defined as E ).  The number of discrete TM modes is infinite

based on the possible values of the indices m and n.  An individual TM

mnmode is designated as the TM  mode.  The longitudinal electric field of the

mnTM  mode in the rectangular waveguide is given by



mnThe transverse field components of the TM  mode are found by

differentiating the longitudinal electric field as defined by the standard TM

equations. 

In general, the cutoff frequency will increase as the mode index increases.

Thus, in practice, only the lower order modes are important as the

waveguide is operated at frequencies below of the cutoff frequencies of the

higher order modes. 



Rectangular Waveguide TE modes

The longitudinal magnetic field of the TE modes within the

rectangular waveguide must satisfy the same wave equation as the

longitudinal electric field of the TM modes:

which expanded in rectangular coordinates is

The same separation of variables technique used to solve for the

longitudinal TM electric field applies to the longitudinal TE magnetic field.

Thus, the longitudinal TE magnetic field may be written as 

To determine the unknown coefficients, we apply the TE boundary

conditions.  Given no longitudinal electric field for the TE case, the

boundary conditions for the transverse electric field components on the

walls of the waveguide must be enforced.  The TE boundary conditions are:



The transverse components of the TE electric field are related to

longitudinal magnetic field by the standard TE equations.

The application of the TE boundary conditions yields

 

oCombining the constants B and D into the constant H , the resulting

mnlongitudinal magnetic field of the TE  mode is 



Note that the indices include m = 0 and n = 0 in the TE solution since these

values still yield a non-zero longitudinal magnetic field.  However, the case

of n = m = 0 is not allowed since this would make all of the transverse field

components zero.  The resulting transverse fields for the waveguide TE

modes are

mnwhere (m = 0, 1, 2, ...) and (n = 0, 1, 2, ...) but m = n � 0 for the TE  mode.

   Summary of Rectangular Waveguide Modes

Rectangular waveguide

mnmn index pairs (TM )
Rectangular waveguide

mnmn index pairs (TE )



Rectangular Waveguide TE and TM Mode Parameters

The propagation constant in the rectangular waveguide for both the

mn mn mnTE  and TM  waveguide modes (ã ) is defined by

mnThe equation for the waveguide propagation constant ã  can be used to

determine the cutoff frequency for the respective waveguide mode.  The

propagation characteristics of the wave are defined by the relative sizes of

mnthe parameters h  and k.  The propagation constant may be written in terms

of the attenuation and phase constants as

mn mn mnã  = á  + jâ

so that,

mn mn mn mnif  h  = k   Y    ã  = 0 (á  = â  = 0) Y     cutoff frequency

mn mn mn mnif  h  > k   Y    ã  (real), [ã = á ] Y     evanescent modes

mn mn mn mnif  h  < k   Y    ã  (imag.), [ã = jâ ] Y     propagating modes

Therefore, the cutoff frequencies for the TE and TM modes in the

rectangular waveguide are found by solving 



Note that the cutoff frequency for a particular rectangular waveguide mode

depends on the dimensions of the waveguide (a,b), the material inside the

waveguide (ì,å), and the indices of the mode (m,n).  The rectangular

waveguide must be operated at a frequency above the cutoff frequency for

the respective mode to propagate.  

According to the cutoff frequency equation, the cutoff frequencies of

10 01both the TE  and TE  modes are less than that of the lowest order TM

11 10mode (TM ).  Given a > b for the rectangular waveguide, the TE  has the

lowest  cutoff frequency of any of the rectangular waveguide modes and is

10thus the dominant mode (the first to propagate).  Note that the TE  and

01TE  modes are degenerate modes (modes with the same cutoff frequency)

for a square waveguide.  The rectangular waveguide allows one to operate

10at a frequency above the cutoff of the dominant TE  mode but below that

of the next highest mode to achieve single mode operation.  A waveguide

operating at a frequency where more than one mode propagates is said to

be overmoded.

Example  (Rectangular waveguide propagating modes)

A rectangular waveguide (a = 2 cm, b = 1 cm) filled with

r rdeionized water (ì  =1, å  = 81 ) operates at 3 GHz.  Determine all

propagating modes and the corresponding cutoff frequencies.    



cMode f  (GHz)

10TE 0.833

01 20TE , TE 1.667

11 11TE , TM 1.863

21 21TE , TM 2.357

30TE 2.5

As previously shown, the propagation constant for a given mode can

be defined in terms of the cutoff frequency for that mode by

The field components, cutoff frequency and propagation constant

mn10associated with the dominant TE  mode (using the TE  equations with m

mn 10=1, n = 0, and ã  = jâ ) are:

Cutoff frequencies - TM modes (GHz) Cutoff frequencies - TE modes (GHz)



10The corresponding instantaneous fields of the TE  mode are determined by

multiplying the phasor field components by e  and taking the real part ofjù t

the result.

The waveguide wavelength is defined using the same definition as for

unguided (TEM) waves [ë = 2ð/â].  However, the size of the waveguide

wavelength can be quite different than that of an unguided wave at the

same frequency.  The wavelength of a TE or TM mode propagating in the

rectangular waveguide can be written in terms of the wavelength for an

unguided (TEM) wave propagating in the same medium (ì,å) as found

inside the waveguide (designated as ëN).



The denominator of the rectangular waveguide wavelength equation

becomes very small when the operating frequency is very close to the

cutoff frequency.  This yields a waveguide wavelength which is much

longer than that of an unguided wave traveling through the same medium

at the same frequency.  Conversely, if the operating frequency is very large

in comparison to the cutoff frequency, the denominator approaches a value

of unity, and the waveguide wavelength is approximately equal to the TEM

wavelength.

Just as the characteristic (wave) impedance for the TEM modes on a

transmission line is defined by a ratio of the transverse electric field to the

transverse magnetic field, the wave impedances of the TE and TM

waveguide modes can be defined in the same manner.  The waveguide

wave impedance can be related to the wave impedance of a TEM wave

traveling through the same medium (as that inside the waveguide) at the

same frequency.  The waveguide TE and TM wave impedances are defined

by



Note that the product of the TE and TM wave impedances is equal to the

square of the TEM wave impedance.



Waveguide Group Velocity and Phase Velocity

The velocity of propagation for a TEM wave (plane wave or

transmission line wave) is referred to as the phase velocity (the velocity at

which a point of constant phase moves).  The phase velocity of a TEM

wave is equal to the velocity of energy transport.  The phase velocity of a

TEM wave traveling in a lossless medium characterized by (ì,å) is given

by

The phase velocity of TE or TM mode in a waveguide is defined in the

same manner as that of a TEM wave (the velocity at which a point of

constant phase moves).  We will find, however, that the waveguide phase

velocity is not equal to the velocity of energy transport along the

waveguide.  The velocity at which energy is transported down the length

of the waveguide is defined as the group velocity.

The differences between the waveguide phase velocity and group

velocity can be illustrated using the field equations of the TE or TM

rectangular waveguide modes.  It can be shown that the field components

of general TE and TM waveguide modes can be written as sums and

differences of TEM waves.  Consider the equation for the y-component of

the TE mode electric field in a rectangular waveguide.

By applying the trigonometric identity:

this component of the waveguide electric field can be written as



 

The two terms in the TE field equation above represent TEM waves

moving in the directions shown below.

Thus, the TE wave in the rectangular waveguide can be represented as the

superposition of two TEM waves reflecting from the upper and lower

waveguide walls as they travel down the waveguide. 

mn mnFor the general TE  of TM  waves, the phase velocity of the TEM

component is given by



mnInserting the equation for the waveguide phase constant â  gives

The waveguide phase velocity represents the speed at which points of

constant phase of the component TEM waves travel down the waveguide.

The waveguide phase velocity is larger than the TEM wave phase velocity

given that the square root in the denominator of the waveguide phase

velocity equation is less than unity.  The relationship between the

waveguide phase velocity, waveguide group velocity, and the TEM

component wave velocity is shown below.



The waveguide group velocity (the velocity of energy transport) is always

smaller than the TEM wave phase velocity given the square root term in the

numerator of the group velocity equation. 

Example

mn mnGiven a pair of degenerate modes (TE   and TM ) in an air-filled

rectangular waveguide with a cutoff frequency of 15 GHz, plot the

following parameters as a function of frequency:  phase velocity and group

velocity, TE wave impedance and TM wave impedance, TEM wavelength

and mode wavelength, TEM phase constant and mode phase constant.







Attenuation in Waveguides

Only ideal waveguides have been considered thus far (characterized

by a perfect conductor filled with a perfect insulator).  The propagating

waves in an ideal waveguide suffer no attenuation as the travel down the

waveguide.  Two loss mechanisms exist in a realistic waveguide: conductor

loss and dielectric loss.  The fields associated with the propagating

waveguide modes produce currents that flow in the walls of the waveguide.

Given that the waveguide walls are constructed from an imperfect

cconductor (ó  < 4), the walls act like resistors and dissipate energy in the

dform of heat.  Also, the dielectric within the waveguide is not ideal (ó  > 0)

so that dielectric also dissipates energy in the form of heat.

The overall attenuation constant á (in units of Np/m) for a realistic

waveguide can be written in terms of the two loss components as

c dwhere á  is the attenuation constant due to conductor loss and á  is the

attenuation constant due to dielectric loss.  For either TE or TM modes in

a rectangular waveguide, the attenuation constant due to dielectric loss is

given by



The attenuation constant due to conductor loss in a rectangular

waveguide depends on the mode type (TE or TM) due to the different

components of field present in these modes.  The attenuation constant due

mnto conductor losses for the TM  mode in a rectangular waveguide is given

by

where

is the surface resistance of the waveguide walls and 

is the skin depth of the waveguide walls at the operating frequency.  It is

assumed that the waveguide wall thickness is several skin depths such that

the wall currents are essentially surface currents.  This is an accurate

assumption at the typical operating frequencies of waveguides (-GHz)

where the skin depth of common conductors like aluminum and copper are

on the order of ìm.

mnThe attenuation constant due to conductor losses for the TE  mode

in a rectangular waveguide with (n �0) is given by



For the special case of (n = 0), the attenuation constant due to conductor

m0losses for the TE  mode in a rectangular waveguide is

The equation above applies to the dominant rectangular waveguide mode

10[TE ].

Example  (Waveguide attenuation)

cAn aluminum waveguide (a = 4.2 cm, b = 1.5 cm, ó  = 3.5 × 10  É/m)7

r r dfilled with teflon (ì  = 1, å  = 2.6, ó  = 10  É/m) operates at 4 GHz.!15

c d 10Determine (a.) á  and á  for the TE  mode  (b.) the waveguide loss

in dB over a distance of 1.5 m.



For this problem, we see that the dielectric losses are negligible in

comparison to the conductor losses.

The waves propagating in the +z direction in the rectangular

waveguide  vary as

Thus, over a distance of 1.5 m, the fields associated with the wave

decay according to

In terms of dB, we find

[a loss of 0.1154 dB in 1.5m].



Cavity Resonators

At high frequencies where waveguides are used, lumped element

tuned circuits (RLC circuits) are very inefficient.  As the element

dimensions become comparable to the wavelength, unwanted radiation

from the circuit occurs.  Waveguide resonators are used in place of the

lumped element RLC circuit to provide a tuned circuit at high frequencies.

The rectangular waveguide resonator is basically a section of rectangular

waveguide which is enclosed on both ends by conducting walls to form an

enclosed conducting box.  We assume the same cross-sectional dimensions

as the rectangular waveguide (a,b) and define the longitudinal length of the

resonator as c.  Given the conducting walls on the ends of the waveguide,

the resonator modes may be described by waveguide modes which are

reflected back and forth within the resonator (+z and !z directions) to form

standing waves.

Waveguide (waves in one direction)



Cavity (waves in both directions, standing waves)

The separation equation for the cavity modes is

The cavity boundary conditions (in addition to the boundary conditions

satisfied by the rectangular waveguide wave functions) are

From the source-free Maxwell’s curl equations, the TE and TM boundary

conditions on the end walls of the cavity are satisfied if

Application of the TE and TM boundary conditions yields



The TE and TM modes in the rectangular cavity are then

mnp mnpThe resonant frequency associated with the TE  or TM  mode is found

from the separation equation to be



110 101The lowest order modes in a rectangular cavity are the TM , TE ,

011and TE  modes.  Which of these modes is the dominant mode depends on

the relative dimensions of the resonator.  

Example  (Cavity resonator)

Find the first five resonances of an air-filled rectangular cavity with

dimensions of a = 5 cm, b = 4 cm and c = 10 cm (c > a > b ).



The quality factor (Q) of a waveguide resonator is defined the same

way as that for an RLC network.

where the energy lost per cycle is that energy dissipated in the form of heat

in the waveguide dielectric and the cavity walls (ohmic losses).  The

resonator quality factor is inversely proportional to its bandwidth.  Given

a resonator made from a conductor such as copper or aluminum, the ohmic

losses are very small and the quality factor is large (high Q, small

bandwidth).  Thus, resonators are used in applications such as oscillators,

filters, and tuned amplifiers.  Comparing the modes of the rectangular

resonator with the propagating modes in the rectangular waveguide, we see

that the waveguide modes exist over a wide band (the rectangular

waveguide acts like a high-pass filter) while the rectangular resonator

modes exist over a very narrow band (the rectangular resonator acts like a

band-pass filter).

Circular Waveguide

The same techniques used to analyze the ideal rectangular waveguide

may be used to determine the modes that propagate within an ideal circular

waveguide [radius = a, filled with dielectric (ì,å)]  The separation of

variables technique yields

solutions for the circular

w av egu id e  T E  an d  T M

propagating modes in terms of

Bessel functions.  The cutoff

frequencies for the circular

waveguide can be written in

terms of the zeros associated

with Bessel functions and

derivatives of Bessel functions.



The cutoff frequencies of the TE and TM modes in a circular

waveguide are given by

where         and          define the n  zero of the m -order Bessel function andth th

Bessel function derivative, respectively.  The values of these zeros are

shown in the tables below.

TE modes

TM modes

11Note that the dominant mode in a circular waveguide is the TE  mode,

01 21 01followed in order by the TM  mode, the TE  mode and the TE  mode. 



Example  (Circular waveguide)

Design an air-filled circular waveguide yielding a frequency

separation of 1 GHz between the cutoff frequencies of the dominant

mode and the next highest mode.

11The cutoff frequencies of the TE  mode (dominant mode) and the

01TM  mode (next highest mode) for an air-filled circular waveguide

are 

For a difference of 1 GHz between these frequencies, we write

Solving this equation for the waveguide radius gives

The corresponding cutoff frequencies for this waveguide are



One unique feature of the circular waveguide is that some of the

0nhigher order modes (TE ) have particularly low loss.  The magnetic field

distribution for these modes generates lower current levels on the walls of

the waveguide than the other waveguide modes.  Therefore, a circular

waveguide carrying this mode is commonly used when signals are sent over

relatively long distances (microwave antennas on tall towers).

mn mnThe general equations for the circular waveguide TE  and TM

mode attenuation constants due to conductor loss are given by

Example  (Circular waveguide attenuation)

cAn air-filled copper waveguide (a = 5 mm, ó  = 5.8 × 10  É/m) is7

01operated at 30 GHz.  Determine the loss in dB/m for the TM  mode.



The attenuation in terms of dB/m is

[a loss of 0.3231 dB/m]


