Practice room for MathJax
This wiki is equipped with MathJax: http://www.pmwiki.org/wiki/Cookbook/MathJax
There's a handy online Latex editor, with which you can create Latex math, which is basically what is supported by LaTeXMathML...
Everything you put in between {$ and $} gets interpreted as Latex math.
Feel free to play around below to see how this works:
This is an inline {$ \delta $} test.
$W_{11} = m c^2 = m \frac{l^2}{t^2} $
$$ \int _a ^b f^{\prime}(x)\, dx = f(b) - f(a) $$
$$R_x = 10.0 \times \sin(R_\phi)$$
$$\sum_{n=1}^\infty \frac{1}{2^n}$$
$\lim_{x\to\infty} f(x) = k \choose r + \frac ab \sum_{n=1}^\infty a_n + \displaystyle{ \left\{ \frac{1}{13} \sum_{n=1}^\infty b_n \right\} }$
$$\$\alpha + \$\beta = \$(\alpha + \beta)$$
$$\begin{eqnarray} x & = & \frac{-7 \pm \sqrt{49 - 24}}{6} \\ & = & -2 \textrm{ or } -\frac13. \end{eqnarray}$$
$$\displaystyle{ V_i = C_0 - C_3 \frac{C_1\cos(\theta_i+C_3)}{C_4+C_1\cos(\theta_i+C_2)} }$$
Some Greek letters:
See here for more examples of letters, etc.
\phi | $ \phi $ |
\varphi | $ \varphi $ |
\psi | $ \psi $ |
\Omega | $ \Omega $ |
\Gamma | $ \Gamma$ |
\Delta | $ \Delta $ |
\eta | $ \eta $ |
\epsilon | $ \epsilon $ |
\theta | $ \theta $ |
ASCIIMath
Some more examples at: http://www1.chapman.edu/~jipsen/mathml/asciimath.html
Example: Solving the quadratic equation. Finally we move {$ b/(2a) $} to the right and simplify to get the two solutions: {$ %num=5% x_(1,2)=(-b+-sqrt(b^2-4ac))/(2a) $}
some actal forrmulas from Dollard:
In LatexMath:
$$ \dot I_1 = j ( Y_c Z_0 + \delta) \dot I_0 $$ | (13) |
Bigger fonts:
$ \dot I_1 = j ( Y_c Z_0 + \delta) \dot I_0 $ | (13) |
$ \dot I_1 = j ( Y_c Z_0 + \delta) \dot I_0 $ | (13) |
$ \dot I_1 = j ( Y_c Z_0 + \delta) \dot I_0 $ | (13) |
In ASCIIMath:
{$ %num% dotI_1 = j (Y_c Z_0 + delta) dotI_0 $}
In ASCIIMath:
{$ W_1 = frac{varphi}{t} $} | Lines per second (Volts) |
In LatexMath:
$ W_1 = \frac {\varphi} {t} $ | Lines per second (Volts) |
some further formulas from Dollard in LatexMath:
$ I = \frac {\psi} {t} $ | Lines per second (Amperes) |
$\begin{eqnarray} x & = & \frac{-7 \pm \sqrt{49 - 24}}{6} \\ & = & -2 \textrm{ or } -\frac13. \end{eqnarray}$
$\begin{eqnarray} V_0 & = & \frac{1}{\sqrt {L_0 C_0}} \\ & = & \eta V_c \end{eqnarray}$ | Units/sec (5) |
$\begin{eqnarray} V_0 & = & \eta V_c \\ & = & \begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}^2 \end{eqnarray}$ | Units/sec (5) |
$\begin{eqnarray} V_0 & = & \eta V_c \\ & = & \left[ \begin{array}{cc} \frac{1.77}{p} + \frac{3.94}{p}n \end{array} \right]^\frac12 \end{eqnarray}$ | $2 \pi 10^9$ Inch/sec (7) |
$ V_c = \frac{1}{\sqrt {\mu \epsilon}} $ | Units/sec (5) |
$ \left( \theta \right) =\left[ \begin{array}{cc} \cos \left( \theta \right) & -\sin \left( \theta \right) \\ \sin \left( \theta \right) & \cos \left( \theta \right) \end{array} \right] $
$ F_0 = \frac{V_0}{ (l_0 . 4) } $ | Cycles/sec (8) |
$ Z_c = \sqrt {\frac{L_0}{C_0}}$ | Ohms (9) |
$ Z_s = \left[ \begin{array}{cc} (182.9 + 406.4n)p \end{array} \right]^\frac12 $ | $ \frac{\pi}{2} 10^3$ Ohms (inches) (11) |
$ u = \frac{R_0}{2 L_0} = ( \frac{2.72}{r}+ \frac{2.13}{l}) \pi \sqrt{F_0} $ | Nepers/sec (inches) (12) |
$$ \begin{eqnarray} 10xy^2+15x^2y-5xy & = & 5\left(2xy^2+3x^2y-xy\right) \\ & = & 5x\left(2y^2+3xy-y\right) \\ & = & 5xy\left(2y+3x-1\right) \end{eqnarray} $$
$ \begin{eqnarray} 10xy^2+15x^2y-5xy & = & 5\left(2xy^2+3x^2y-xy\right) \\ & = & 5x\left(2y^2+3xy-y\right) \\ & = & 5xy\left(2y+3x-1\right) \end{eqnarray} $ | (10) |
$ \begin{eqnarray} \phi_1 & = & \phi_0 cos \theta \\ \phi_{11} & = & \phi_0 sin \theta \\ \end{eqnarray} $ | $\Bigg \rbrace$ (4) |
$\begin{eqnarray} W & = & m c^2 \\ & = & \begin{array}{cc} m \frac{l^2}{t^2}\end{array} \end{eqnarray}$ | Watt . sec (6) |
$ \begin{eqnarray} \varphi & = & \frac{i}{W} \\ & = & \frac{l^2}{t} \frac{m}{\psi} \\ \end{eqnarray} $ | $ \begin{eqnarray} & & lines (7)\\ & & (8)\\ \end{eqnarray}$ |
$ \varphi $ | $ = \frac{i}{W} $ | lines (7) |
$ = \frac{l^2}{t} \frac{m}{\psi} $ | (8) |
$\begin{eqnarray} \psi_11 & = & m c^2 T \\ & = & \begin{array}{cc} m \frac{l^2}{t^2}\end{array} \end{eqnarray}$ | Watt . secē (6) |
$ \phi_{11} $ | $ = m c^2 T $ | Watt . secē |
$ = m \frac{l^2}{t} $ | (9) |